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Abstract / Resumen

Abstract. Nowadays, imaging of the human brain is vastly used in clinical
settings and by the neuroscientific research community. There is an ever-
increasing demand for novel biomedical image analysis approaches and tools
to study the brain from its early intrauterine stage through adolescence to
adulthood. The intrauterine period, in particular, is a crucial stage for
the study of early neurodevelopmental processes. The idiosyncratic nature
of the fetal brain poses numerous challenges and asks for the development
of new techniques that take into consideration the peculiarities of in utero
neurodevelopment. Although still in its infancy, medical image analysis
techniques are progressively landing on the study of fetal brains. The pur-
pose of this thesis is to develop automatic segmentation approaches that can
be applied to brains at different life stages, including the gestational period,
and investigate in utero brain development under abnormal conditions. The
main contributions of this thesis are twofold:

1. Brain segmentation from MR images: we proposed two novel segmen-
tation frameworks that are independent of target dataset and, there-
fore, can be used in the segmentation of images of brains at different
life stages. These methods approach the segmentation problem from
two different but complementary perspectives. The first approach at-
tempts to mitigate systematic errors caused by registration failures.
Each training atlas produces a confidence map based on the registra-
tion quality that weighs the contribution of its labelmap in the final
segmentation. The second approach focuses on reducing the impact
of interpolation errors, which are inherent to most traditional seg-
mentation approaches. Registration is only used to establish spatial
correspondences, while atlas information is extracted from its native
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space, respecting, therefore, the manual segmentation protocol used
by the expert.

2. Analysis of fetuses with ventriculomegaly: ventriculomegaly is a con-
dition in which one or both lateral ventricles are dilated. Postnatal
neurodevelopmental impairment is observed in some fetuses with the
aforementioned condition. To better understand in utero neurode-
velopment, we analyzed the relationship of ventricular dilation with
alterations in cortical folding. First, we studied this association using
either lateral ventricular volume or diagnosis as a descriptor of ven-
triculomegaly. Then, statistical analysis and sparse linear regression
were used to assess the relationship from two different approaches. In
our second study, we adopt a holistic approach by incorporating the
ventricular shapes instead of using a single scalar value (i.e., ventric-
ular volume) to characterize ventricular enlargement. We proposed
a novel approach to jointly analyze cortical and ventricular shapes
based on their growth patterns, which allowed us to find fine-scaled
associations between both shapes.
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Resumen. En la actualidad, las imágenes del cerebro humano son ampli-
amente utilizadas en entornos cĺınicos y por la comunidad neurocient́ıfica.
Existe una demanda, cada vez mayor, de herramientas y enfoques de análisis
de imágenes biomédicas novedosos para estudiar el cerebro desde su tem-
prana etapa intrauterina hasta la adolescencia y la edad adulta. El periodo
intrauterino, en particular, es una etapa crucial para el estudio de los pro-
cesos iniciales del neurodesarrollo. La naturaleza idiosincrásica del cerebro
fetal plantea numerosos desaf́ıos y requiere el desarrollo de nuevas técnicas
que contemplen las peculiaridades del neurodesarrollo fetal. Aunque to-
dav́ıa está en su infancia, las técnicas de análisis de imágenes médicas están
llegando progresivamente al estudio de los cerebros fetales. El objetivo de
esta tesis es desarrollar métodos automáticos de segmentación que puedan
aplicarse a cerebros en distintas etapas de la vida, incluyendo el periodo
gestacional, e investigar el desarrollo del cerebro fetal bajo condiciones anor-
males. Las principales contribuciones de esta tesis son dos:

1. Segmentación del cerebro en imágenes de resonancia magnética: hemos
propuesto dos nuevos métodos de segmentación que pueden utilizarse
para segmentar cerebros en cualquier etapa vital. Estos métodos
abordan el problema de la segmentación desde dos perspectivas difer-
entes pero complementarias. El primero intenta mitigar los errores
sistemáticos causados por fallos en el registro. Cada atlas de entre-
namiento produce un confidence map basado en la calidad del registro
que pondera la contribución de su labelmap en la segmentación final.
El segundo método se centra en reducir el impacto de errores de inter-
polación, que son inherentes a la mayoŕıa de métodos de segmentación
tradicionales. El registro sólo se usa para establecer correspondencias
espaciales, mientras que la información del atlas se extrae de su es-
pacio nativo, respetando, por lo tanto, el protocolo de segmentación
manual utilizado por el experto.

2. Análisis de fetos con ventriculomegalia: la ventriculomegalia es una
condición en la cual uno o ambos ventŕıculos laterales están dilatados.
En algunos fetos con ventriculomegalia, se observa un deterioro en el
neurodesarrollo posnatal. Para entender mejor el neurodesarrollo in-
trauterino, hemos analizado la relación entre la dilatación ventricular
con alteraciones en el desarrollo cortical. Primero, hemos estudiado
esta asociación usando el volumen de los ventŕıculos laterales o el di-
agnóstico como descriptor de la ventriculomegalia. Después, hemos
empleado análisis estad́ısticos y regresión lineal sparse para evaluar la
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relación desde dos enfoques diferentes. En el segundo estudio, hemos
adoptado un enfoque hoĺıstico al incorporar las superficies ventricu-
lares, en vez de usar un único valor escalar (p.ej., volumen ventricular)
para caracterizar la dilatación ventricular. Para ello, hemos prop-
uesto un enfoque novedoso que analiza conjuntamente las superficies
corticales y ventriculares, basado en sus patrones de crecimiento, lo
que permite descubrir asociaciones más detalladas entre ambas estruc-
turas.
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1.1. research context

The aim of this thesis is to explore and develop novel segmentation and
analysis approaches to study the human brain and expand our knowledge
base on in utero brain development.

1.1 Research context

Neuroimaging offers an unprecedented means to access and study the hu-
man brain. Nevertheless, acquired raw brain images must first undergo a
set of preprocessing steps before analysis. One important task among this
preprocessing pipeline is segmentation. Although a wide range of meth-
ods for automatic brain segmentation has been proposed in the literature,
there is still room for improvement. Most existing methods addressed or
were only evaluated on adult brain datasets. In recent years, the field has
witnessed an increasing interest in developing segmentation techniques for
neonates and fetuses. In this context, the development of generic, instead of
population-specific (e.g., adults or fetuses), segmentation methods is chal-
lenging. Note that, population-specific, here, does not refer to the use of
atlases from the same population (e.g., using adult brain atlases to segment
adult brains), but rather to other forms of prior knowledge such as the char-
acteristic features of the fetal brain to improve segmentation. For instance,
to accurately delineate the main tissues of the fetal brain, most existing
methods adopt an age-specific approach in order to take into consideration
the dynamic cerebral changes occurring in very short timeframes at such
early stages. In this thesis, we tackle the segmentation problem using a
multi-atlas approach, which is composed of two main stages: registration
and label fusion. Registration is used to align the atlases and propagate
their labelmaps to the target image, while label fusion seeks an optimal
combination of the labelmaps to find a consensus segmentation. Our aim
is to develop segmentation approaches that are general enough to be used
with different lifespan brain databases.

After preprocessing, we are in position to perform our analyses. The second
part of this thesis focuses on the study of intrauterine neurodevelopment.
Although this research area is still in its infancy, the study of the fetal brain
is recently attracting the interest of the research community. Understanding
the maturational cerebral processes occurring during the gestational period
in the fetal brain is of great importance to the neuroscientific community
and of added value to clinical decision-making. Important cerebral growth
processes take place during this period that have a striking impact on the
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shape, size, and appearance of the fetal brain. The study of the normal
fetal brain serves to gain more insight into in utero neurodevelopment and
establish the normative course of such processes. Hence, this can help in
identifying and characterizing in utero cerebral maldevelopment in the pres-
ence of malformations. Conversely to the adult brain, for example, there are
still no well-established tools to study in utero neurodevelopment. Delving
into the fetal brain requires the development of novel tools and approaches
that are challenged by its idiosyncratic nature. This thesis aims to con-
tribute to this trend with methodological approaches and shed light on the
putative maturational deviations under in utero maldevelopment, with the
purpose of filling important research and knowledge gaps in the analysis of
the fetal brain.

1.2 Contributions

The work carried out during my PhD can be grouped in two main research
areas: segmentation of brain MR images and analysis of in utero neurode-
velopment.

1.2.1 Brain MRI segmentation

In this research area, we contributed with two multi-atlas segmentation
frameworks that approach the segmentation problem from a general per-
spective, without explicitly addressing the fetal brain, but rather tackling
important methodological and design choices inherent to most conventional
segmentation approaches in order to improve automatic segmentation per-
formance, regardless of the target population.

1. We developed a multi-atlas segmentation framework that is robust
to registration failures. For example, when working with the fetal
brain, registration failures may come from different sources, most of
which are caused by the rapid in utero growth processes in case of nor-
mal neurodevelopment. Cortical folding, for instance, is governed by
an intensive sulcogyral formation that changes the shape of the fetal
brain. For segmentation, registering a highly gyrencephalic fetal brain
to a fetus with a smoother cortical sheet might propagate the registra-
tion errors to the label fusion process and, thereafter, produce a poor

4



1.2. contributions

segmentation. The proposed framework equips each training atlas
with an online confidence map estimator to weigh the contribution of
its labelmap in the label fusion process based on the spatially-varying
quality of the registration between the atlas and the target image. For
a given training atlas, registration quality is assessed and learned of-
fline from the rest of atlases using a supervised approach. Continuing
with the previous scenario, the contribution of the atlas corresponding
to the highly gyrencephalic brain to the final segmentation would be
decreased in cortical regions to account for its high dissimilarity to
the smooth target brain, expressed in terms of registration errors.

2. We developed a multi-atlas segmentation framework that is robust to
interpolation artifacts. Besides registration errors, conventional seg-
mentation approaches suffer from interpolation artifacts when warp-
ing the atlas intensity images and labelmaps to the target image. The
main reason is that different interpolation strategies are used when
warping the intensity images and labelmaps, using linear and near-
est neighbor interpolations, respectively, for example. The proposed
framework is based on the patch-based label fusion approach and uses
registration to only establish spatial correspondences, without warp-
ing the atlases to the target image. In this way, intensity patches
and their labels are extracted from the images native spaces, which
correspond to the true images employed and manual segmentations
created by the expert. Furthermore, the benefit of using intensity and
label information extracted from the atlas native spaces is that inten-
sity patches are not distorted, due to interpolation, to have a similar
appearance to the target patch, respecting, therefore, the appearance
changes between different brains, such as the changes occurring in the
fetal brain due to myelination.

1.2.2 Analysis of in utero neurodevelopment

This part is focused on the analysis of in utero neurodevelopment under
lateral ventricular dilation, particularly, in fetuses diagnosed with isolated
non-severe ventriculomegaly, which is characterized by a mild enlargement
of the lateral ventricles with no other anomalies. Prognosis in such cases
is predominantly positive, but few cases will have an adverse outcome. In
the search for prognostic biomarkers that could be suitable as risk indi-
cators of poor outcome, we specifically explore the effects of isolated non-
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severe lateral ventricular enlargement in cortical folding from two different
methodological perspectives:

1. We analyzed the associations of isolated non-severe ventriculomegaly
with alterations in cortical folding in a regional basis using curvature-
based folding measures to describe gyrification. In this study, ven-
triculomegaly was characterized using a single scalar: diagnosis or
ventricular volume. Statistical analysis and sparse linear regression
approaches were used to investigate the relationships of lateral ven-
tricular enlargement with different cortical regions. Our findings re-
veal that curvature-based descriptors were able to capture alterations
in cortical folding, lateral volume offered greater sensitivity and, most
importantly, several cortical regions showed deviations in curvature
from normative development in the abnormal cohort, with ipsilateral
associations being more prominent than global associations.

2. We proposed a novel approach to study the relationship between iso-
lated non-severe ventriculomegaly and alterations in cortical folding
that characterizes ventriculomegaly by incorporating the lateral ven-
tricular shapes rather than using a single scalar value. This approach
allows us to analyze the associations at a more fine-grained level. Cor-
relations between the growth patterns of both sets of cortical and
ventricular shapes were used to find a low-dimensional space where
correlated regions from both shapes would lie close to each other and,
therefore, reveal the associations between lateral ventricular enlarge-
ment and altered cortical folding. This is the first approach in the
literature that explores the effect of fetal ventriculomegaly in cortical
convolutions using ventricular shapes.

1.3 Outline of the thesis

The thesis is organized into 6 chapters. Chapters 2-6 are self-contained
and each of them corresponds to a published or under review paper, while
Chapter 7 contains conclusions and future work.

Chapter 2. This chapter corresponds to a review paper on the state of
the art of fetal brain MRI. In this chapter, we introduce the area of
research and establish the scientific context in which the work of this
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thesis has been carried out. We provide a comprehensive description
of the peculiarities and challenges of working with the fetal brain
and present an in-depth overview of the ongoing research on in utero
neurodevelopment from both methodological and clinical perspectives.

Chapter 3. This chapter presents a multi-atlas segmentation framework.
The main objective of this framework is to calibrate the contribution
of each atlas labelmap to the final labeling of a given target image by
considering the registration quality between this atlas and the target
image. Experiments are carried out on the segmentation of subcortical
structures from 2 well-known adult brain MRI datasets and on tissue
segmentation of fetal brain MR images.

Chapter 4. This chapter presents a multi-atlas segmentation framework
that improves the widely-used patch-based label fusion framework.
In this chapter, we revisit the patch-based label fusion framework,
identify its main design choices and propose important changes that
result in performance gains and considerably reduced computational
complexity. Experiments are carried out on subcortical structure seg-
mentation of adult brain MRI and fetal brain MRI tissue segmenta-
tion.

Chapter 5. In this chapter, we analyze the associations of ventriculomegaly
with deviations in cortical folding from normative development by
characterizing this condition using the diagnosis as a binary indicator
or lateral ventricular volume. Cortical folding was characterized us-
ing several curvature-based descriptors to capture different changes in
curvature. Global and ipsilateral analyses were employed to study the
relationships of ventriculomegaly with the different folding measures
on a regional basis. Findings obtained from these analyses were fur-
ther assessed using sparse linear regression. With both approaches,
relevant associations of ventricular enlargement with alterations in
cortical folding were found to be in great overlap.

Chapter 6. While following the same purpose of Chapter 5, this chapter
undertakes an entirely novel approach to investigate these associa-
tions, based on jointly analyzing different anatomical shapes using
their growth patterns. In this chapter, we study the role of ventricu-
lar surfaces and their association with alterations in cortical folding,
moving from characterizing ventriculomegaly with a single scalar value
based on lateral ventricular volume to a more sophisticated analysis
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based on joint spectral embedding that integrates the ventricular sur-
faces.

Chapter 7. This chapter summarizes the most important ideas and con-
tributions of this thesis in both brain segmentation and in utero neu-
rodevelopment analysis. We highlight the strengths and shortcomings
of the works carried out within this thesis, discuss the potential gains
and advancements in fetal brain analysis and propose promising di-
rections for future work.
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Toward the automatic
quantification of in utero
brain development in 3D
structural MRI
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automatic quantification of in utero brain development

Abstract – Investigating the human brain in utero is important for re-
searchers and clinicians seeking to understand early neurodevelopmental
processes. With the advent of fast magnetic resonance imaging (MRI) tech-
niques and the development of motion correction algorithms to obtain high-
quality 3D images of the fetal brain, it i1s now possible to gain more insight
into the ongoing maturational processes in the brain. In this paper we
present a review of the major building blocks of the pipeline towards per-
forming quantitative analysis of in vivo MRI of the developing brain and
its potential applications in clinical settings. The review focuses on T1-
and T2-weighted modalities, and covers state of the art methodologies in-
volved in each step of the pipeline, in particular, 3D volume reconstruction,
spatio-temporal modeling of the developing brain, segmentation, quantifi-
cation techniques and clinical applications.

This chapter is adapted from:
Benkarim O. M., Sanroma G., Zimmer V. A., Muñoz-Moreno E., Hahner N., Eixarch
E., Camara O., González Ballester M. A., and Piella G. (2017). Toward the automatic
quantification of in utero brain development in 3D structural MRI: A review. Human
Brain Mapping, 38:2772-2787. https://doi.org/10.1002/hbm.23536
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2.1. introduction

2.1 Introduction

Quantitative image analysis of the in vivo fetal brain plays a crucial role in
clinical decision-making and neuroscience research. During the last several
years, a growing trend in using magnetic resonance imaging (MRI) for such
studies is observed. MRI is the most common medical imaging modality for
the diagnosis and follow-up of patients with brain abnormalities, and the
understanding of normal neurodevelopment in adult brains. For fetuses, al-
though ultrasound (US) is widely accepted as the primary technology for in
utero imaging of the brain (Garel, 2008), US examination is often hampered
by some limitations, including reduced amniotic fluid volume, maternal obe-
sity, inappropriate fetal head position, multiple pregnancy, and bony rever-
beration artifacts from the skull (Glastonbury and Kennedy, 2002; Twickler
et al., 2003). On the other hand, MRI offers superior contrast in soft tissues
and an increased field of view compared to US. Prenatal diagnosis can there-
fore benefit from fetal MRI by complementing the findings in US. Indeed,
in recent years, in utero MRI has shown to be of important added value in
the study of disorders (Clouchoux et al., 2013; Kyriakopoulou et al., 2014;
Scott et al., 2013) and early brain development (Clouchoux et al., 2012;
Wright et al., 2014).

Quantification of fetal brains from MRI is more challenging than that of
the adult brain since it requires additional processing techniques and makes
some of the widespread techniques for adult brain MRI not applicable.
In the pipeline to perform fetal brain MRI quantitative studies (see Fig-
ure 2.1), the first challenges come from motion artifacts during image ac-
quisition. While advances in fast MRI sequences help decrease acquisi-
tion times, the development of motion correction techniques allows obtain-
ing high-resolution 3D images of the fetal brain from the several motion-
corrupted acquired stacks. These studies also require the delineation of
tissues and structures of interest in the 3D reconstructed volumes. For
this purpose, automatic segmentation techniques are desirable over man-
ual labeling since the latter is very time-consuming and subject to inter-
and intra-rater variability. Therefore, quantitative approaches often rely on
automated segmentation algorithms to achieve accurate and reproducible
measurements. However, in this third stage of the pipeline (i.e., segmen-
tation), researchers have to face new difficulties concerning the nature of
the fetal brain. The rapid and complex cerebral changes in shape and ap-
pearance (e.g., transient laminar pattern and myelination) that occur during
intrauterine growth make existing techniques for adult brains unfeasible and

11



automatic quantification of in utero brain development

advocate for the development of novel approaches. This has increased the
need to build spatio-temporal atlases of the fetal brain in order to capture
these dynamic changes. Spatio-temporal atlases have shown to be useful for
automatic segmentation, which is notably challenged by the low resolution
of fetal brain images, the excessive amount of partial volume effects (PVEs),
and the substantial dissimilarities in shape and MRI contrast between brains
at different gestational ages (GAs).

Figure 2.1: Pipeline to perform quantitative analysis of fetal brain MRI. Fast MRI se-
quences are used in the first stage to acquire several motion-corrupted stacks of the fetal
brain, which are then used to obtain the final motion-corrected 3D reconstruction (sec-
ond stage). The third stage is for approaches to build spatio-temporal atlases in order
to capture the dynamic changes of the fetal brain, which can serve as spatial priors in
the segmentation of brain tissues and other structures of interest. The fourth stage is
dedicated to quantitative studies (e.g., volumetry, gyrification).

There is a growing body of literature on fetal brain MRI. This work aims to
provide an overview of the automated pipeline for performing quantitative
analysis of fetal brain from structural MRI. Acquisition and reconstruction
stages of the pipeline are not the main purpose of this review and are briefly
discussed in Section 2.2. The reader is referred to the work by (Studholme,
2011, and references therein) for a comprehensive review of these techniques.
For each pipeline stage, the motivation and the difficulties that arise when
working with fetal brain MRI are outlined from both clinical and method-
ological perspectives, and a literature review of the methodological advances
is presented. Although this work mainly focuses on methods targeting the
fetal brain in structural MRI, methods proposed for neonates are also dis-
cussed given the shared similarities once fetal-exclusive limitations are over-
come. The rest of the paper is organized as follows. Section 2.2 overviews
some of the challenges that arise in fetal brain MRI. Section 2.3 introduces
the construction and use of spatio-temporal atlases. Section 2.4 is devoted
to segmentation techniques of tissues and other anatomical structures in fe-
tal and neonatal brains. In Section 2.5, a broad view of quantitative studies
of normal brain development is provided. Section 2.6 describes potential
clinical applications of fetal MRI in the study of early brain abnormalities.
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Figure 2.2: Example of reconstruction from motion-corrupted stacks of 2D MRI slices.
First 3 columns (i.e., stacks 1, 2, and 3) correspond to axial, sagittal, and coronal acquisi-
tions, respectively. Fourth column is the final reconstruction. Rows, from top to bottom,
show axial, sagittal and coronal views, respectively, for each image.

A discussion about the state of the art is presented in Section 2.7. Finally,
Section 2.8 concludes the paper.

2.2 Challenges of fetal brain MRI

Difficulties with fetal brain MRI start to appear as early as in the imaging
process. Acquisition of full 3D MRI of the fetal brain is still impractical
due mainly to the thick slice acquisition necessary to achieve good signal-
to-noise ratio and the presence of motion artifacts caused by spontaneous
movement of the fetus and maternal breathing. Shortening the acquisi-
tion time would help decrease the likelihood of motion artifacts (Malamate-
niou et al., 2013). Advances in fast MRI sequences, such as single shot
fast spin-echo, in conjunction with post-processing techniques (i.e., motion
correction and super-resolution) have granted the means to gain broad in-
sight into the in utero fetal brain by providing high-resolution 3D volumes.
Typically, several motion-corrupted stacks of thick 2D slices are acquired
in orthogonal orientations and then used to reconstruct a high-resolution
motion-free 3D volume of the brain. Existing methods for motion correction
and reconstruction (Kim et al., 2010; Murgasova et al., 2012) require the
delineation of the fetal brain (at least in one slice) from maternal tissue.
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However, Keraudren et al. (2014) proposed a fetal brain extraction method
from 2D stacks, that combined with the reconstruction approach in (Mur-
gasova et al., 2012) provides a fully automated pipeline to obtain the final
3D volumes. A volume reconstruction example using this pipeline is shown
in Figure 2.2. Recently, a GPU-accelerated slice-to-volume reconstruction
method similar to (Murgasova et al., 2012) was proposed in (Kainz et al.,
2015).

Figure 2.3: Examples of partial volume effect (arrows) in the boundaries between gray
matter and cerebrospinal fluid, and background and cerebrospinal fluid in an axial MRI
slice of a 29 GWs fetus.

In quantitative MRI studies, one of the requirements is the labeling of the
different regions of the brain. Nevertheless, segmentation is not forthrightly
applicable as MRI suffers from noise, intensity inhomogeneity and PVE that
may negatively impact the performance of image processing techniques.
PVE is present when multiple tissues contribute to a single voxel producing
a blurring effect, for instance, in the boundary between gray matter (GM)
and cerebrospinal fluid (CSF). PVEs can lead to volume measurement er-
rors in the range of 20%−60% (González Ballester et al., 2002) and are more
recurrent in fetal brain MRI, as illustrated in Figure 2.3, due to its lower
resolution when compared to adult brains images. In fetuses, these prob-
lems are accentuated because early brain development involves a rapid and
complex sequence of morphological, functional, and appearance changes.
Hence, in addition to the aforementioned obstacles, large tissue intensity
variations are present in fetal (and neonatal) brains due to myelination and
cell migration (Rutherford, 2001). Myelination is the last stage of white
matter (WM) development and takes place from the second half of gesta-
tion to the end of adolescence (Dubois et al., 2014), making the intensities
of WM similar to those of both cortical and subcortical GM in T1-weighted
(T1w) and T2-weighted (T2w) MR images. Neuronal migration occurs from
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the germinal matrix (GMAT), which is comprised of ventricular and subven-
tricular zones, towards the cerebral wall to form the prospective neocortex.
During this process of corticogenesis, the fetal brain goes through an in-
tensive laminar organization, where the cortical plate (CP), the subplate
(SP) and the intermediate zone (IZ) are formed, as shown in Figure 2.4.
By the 27th gestational week (GW), however, intensity contrast between
the IZ and SP begins to overlap and eventually transforms into neonatal
WM (Prayer et al., 2006). Also late in the 2nd trimester, the GMAT com-
mences to gradually regress until it completely disappears by term (Girard
and Chaumoitre, 2012). These developmental processes make the segmen-
tation of the developing brain in MRI more challenging as compared to
adult brains.

Figure 2.4: Coronal T2w slice of a fetus at 23 GWs illustrating the laminar organization
of the brain: the hypointense CP is the outermost layer. The SP is hyperintense relative
to the CP and IZ. Immediately beneath the SP, the hypointense IZ appears. The GMAT
represents the innermost layer and is isointense to the CP.

2.3 Atlases of the developing brain

The core raison d’être of brain atlases is to (1) serve as a common refer-
ence coordinate system for spatial normalization of a group of individuals
to study intra- and inter-group variability, and (2) act as an atlas for seg-
mentation of brain regions (Fonov et al., 2011, and references therein). The
study of the developing brain ought to be age-specific given transient lami-
nar pattern and the evident vast differences in shape and appearance across
age (see Figure 2.5) that occur during the maturational process. This age-
specific character of segmentation and processing techniques of the develop-
ing brain has driven research (e.g., Habas et al., 2010; Serag et al., 2012b)
towards the use of spatio-temporal atlases instead of a single atlas at a
particular time-point. Compared to conventional atlases, spatio-temporal
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atlases encode spatial as well as temporal variability. This allows to better
retain the anatomical variability across age. Several atlases can be found in
the literature for adult (Evans et al., 1993), pediatric (Wilke et al., 2003),
infant (Joshi et al., 2004), neonatal (Murgasova et al., 2011; Serag et al.,
2012a) and fetal (Habas et al., 2010) brains.

Figure 2.5: Rapid brain maturation. From left to right: 26, 29 and 34 GWs fetal brains.

2.3.1 Population-specific atlases

An ideal atlas of the human brain should have the desirable features of being
(1) representative of the population, (2) unbiased and (3) sharp (i.e., with
high contrast). Using a single anatomy as an atlas precludes fair representa-
tion since the arbitrary choice of the reference template does not encompass
the neuroanatomical variability of the entire population. To better accom-
modate this variability, population average atlases, such as the Montreal
Neurological Institute (MNI) template (Mazziotta et al., 1995) for adult
brains, were constructed. These atlases are built by averaging the anatom-
ical images from a particular population, based on distinctive criteria such
as age, gender or ethnicity. The representative bias introduced when using a
single-subject atlas can then, to some extent, be avoided by using the MNI
template. Still, when targeting pediatric brains, Wilke et al. (2003) found
considerable differences in tissue distribution between pediatric and adult
data, substantially appreciated in GM. Thus, spatial normalization of pedi-
atric brain images to the MNI or other adult templates is less accurate (Shi
et al., 2011) and might introduce a strong bias in anatomical quantification.
This problem is especially important in younger brains due to their continu-
ous development throughout childhood and adolescence (Paus et al., 1999).
Several researchers have therefore developed population-specific brain at-
lases for children and infants. Joshi et al. (2004) constructed a probabilistic
atlas of anatomical structures from 8 T1w MR scans of 2-year-old children.
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Wilke et al. (2008) created reference pediatric templates from 404 healthy
subjects aged 5-18 years. Recently, Fonov et al. (2011) built age-specific
MRI atlases for 6 age groups in the range of 4.5-18.5 years. Along the same
lines, Altaye et al. (2008) proposed a method to create an infant (9 to 15
months) probabilistic atlas, and demonstrated that the use of their atlas
performed better than a default adult or pediatric template in segmenting
the infant brain. Kazemi et al. (2007) built a neonatal brain template based
on T1w MR images of 7 individuals with GA between 39 and 42 weeks.

The major requirements for the construction of these adult and pediatric
atlases are twofold: (1) the definition of a reference space, and (2) the
transformation model that maps each brain to this common space. A po-
tential source of bias comes forth in the selection or creation of the ini-
tial reference template during atlas construction. For example, Park et al.
(2005) selected the initial template to be the closest brain to the geometrical
mean in a low dimensional space. However, to reduce the dependence on
any particular anatomy during normalization, the conventional approach
is based on iterative strategies where the initial template is derived from
the multiple anatomies in the database and successively updated in each
iteration (Avants et al., 2010; Fonov et al., 2011). Sharpness of atlases, on
the other hand, is closely related to the transformation model. A single-
subject based atlas has well defined anatomical boundaries. For the average
atlases to exhibit sharp anatomical details, non-rigid registration seems to
be more appropriate for building such atlases (e.g., Fillmore et al., 2015;
Fonov et al., 2011). In order to further enhance the anatomical details, Shi
et al. (2014) proposed a patch-based sparse representation approach to fuse
the information from the individual images after registration.

2.3.2 Spatio-temporal atlases

Methods for building atlases of the human brain have evolved in parallel to
the emergence of new imaging techniques, being closely linked to the age of
the individuals under study because of the substantial structural changes
existing between age groups. Atlases described above either were produced
for infant and older populations, or have a sparse age coverage (i.e., tempo-
ral variability is covered by only a few discrete temporal points). The study
of neonates and fetuses at a precise developmental period becomes difficult
because changes in the developing brain occur in the order of weeks or even
days. One way to circumvent this limitation is to provide atlases with a
fine-grained temporal resolution. Beyond static population-specific atlases,
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the solution relies on the building of spatio-temporal atlases, whose purpose
is to encode both longitudinal and inter-subject variability. For the tempo-
ral domain, brains along a certain age range need to be taken into account
in the atlas creation, whilst, for the spatial domain, a sufficient number of
subjects at a particular time-point is needed. Due to ethical and practical
issues, building spatio-temporal atlases directly from repeated longitudinal
imaging of the same subject is difficult, and they are therefore constructed
from many individuals, scanned at different ages. Several methods exist in
the literature to build this kind of atlases for neonates (Murgasova et al.,
2011; Serag et al., 2012a,b; Zhang et al., 2016) and fetuses (Dittrich et al.,
2014; Gholipour et al., 2014; Habas et al., 2010; Serag et al., 2012b). Ta-
ble 2.1 summarizes the main features and datasets used for each of these
methods. The time-varying dimension of these atlases is an advantageous
characteristic in that it allows dynamic generation of average intensity im-
ages and corresponding prior tissue probability maps at any arbitrary time-
point confined within the age range of the brain scans used to build the
atlas.

Most of the aforementioned spatio-temporal atlases were created from T2w
images using non-rigid (Dittrich et al., 2014; Gholipour et al., 2014; Habas
et al., 2010; Serag et al., 2012a,b; Zhang et al., 2016) rather than rigid reg-
istration (Dittrich et al., 2014; Murgasova et al., 2011). Rigid registration is
better suited for the spatio-temporal atlases to capture the variability across
subjects, and this was used in (Dittrich et al., 2014) for age estimation. For
segmentation purposes, non-rigid registration provides more accurate re-
sults. Although, as pointed out in (Murgasova et al., 2011), building the
atlas with affine transformations may turn out to be advantageous for seg-
mentation applications when the to-be-segmented image is non-rigidly reg-
istered to the newly created template. Furthermore, the spatio-temporal
latent atlas in (Dittrich et al., 2014) was built in a semi-supervised man-
ner, where segmentations of ventricles and cortex were only available for a
reduced set of images. During the construction stage, these segmentations
are transferred to the remaining images to create prior probability maps for
the generated atlas. With regard to image modality, the neonatal spatio-
temporal atlas in (Serag et al., 2012b) was created from both T1w and T2w
modalities. Although this multi-channel atlas uses T1w and T2w images,
registrations were only performed on T2w images and resulting transforma-
tions were used to deform the T1w modality. A neonatal spatio-temporal
atlas for both T1w and T2w modalities was also created in (Zhang et al.,
2016).
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Modality
Fetal/

Subjects GA Structures
Type of Registration

Neonatal segmentation Spatial Temporal

(Habas et al., 2010) T2w Fetal 20 21-25 GM, WM Manual Groupwise LS
GMAT Non-rigid
VENT Segmentations

(Murgasova et al., 2011) T2w Neonatal 142 29-44 CoGM Automatic Pairwise KR
CeGM Affine
WM, CSF
BS, CB

(Serag et al., 2012a) T1w and Neonatal 204 29-44 CoGM Automatic Pairwise AKR
T2w CeGM Non-rigid

WM, CSF For each GA
BS, CB (only T2w)

(Serag et al., 2012b) T1w and Both 204 29-44 CoGM Automatic Pairwise AKR
T2w (neonatal) CeGM (neonatal) Non-rigid

80 22-39 WM, CSF Manual For each GA
(fetal) BS, CB (fetal) (only T2w)

(Dittrich et al., 2014) T2w Fetal 12 21-25 CoGM Manual Groupwise KR
VENT (only few) Rigid or

Non-rigid

(Gholipour et al., 2014) T2w Fetal 40 26-36 CoGM – Groupwise AKR
CeGM Non-rigid
GMAT
WM, CSF
BS, CB

(Zhang et al., 2016) T1w and Neonatal 35 0-12 GM, WM Automatic Groupwise AKR
T2w (150 scans) (months) CSF Non-rigid

Table 2.1: Spatio-temporal atlases of the developing brain. Abbreviations: ventricles (VENT), central GM (CeGM), cortical GM
(CoGM), brainstem (BS), cerebellum (CB), LS (least squares fitting), KR (kernel regression) and AKR (adaptive kernel regression).
Unavailable information is marked as –.
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A distinguished feature that needs to be considered in the construction of
spatio-temporal atlases is the modeling of the temporal dimension. The
first work on building a spatio-temporal atlas of the fetal brain (Habas
et al., 2010) used non-linear modeling of the temporal variations in a re-
duced age range of 21-25 GWs. However, in larger age ranges, there may be
no subjects at the exact age of interest. Therefore, the works in (Dittrich
et al., 2014; Murgasova et al., 2011) adopted a temporal kernel regression
method to compute the weighted contribution of the temporal neighbors
in the creation of the average brain templates. In (Gholipour et al., 2014;
Serag et al., 2012a,b), adaptive kernel regression was used to create their
spatio-temporal atlases. Here, the adaptive kernel accounts for a sufficient
number of subjects in the contribution to the atlas creation. This ensures
a consistent level of detail for a synthesized atlas at any time-point when
the brains are not uniformly distributed over the age range. (Zhang et al.,
2016) used a patch-based approach similar to (Shi et al., 2014) for creating
the atlas. However, the key improvement of this work over previous ap-
proaches is the temporal consistency of their atlas, since it was built based
on subject-specific longitudinal information (i.e., using 4.3 scans per subject
in average).

2.4 Segmentation of brain images

Automatic tissue segmentation of the human brain in MRI has been incen-
tivized by its many clinical applications. Cortex delineation, for instance,
is a prerequisite for the study of cortical thickness and gyrification (see
Section 2.5). The success of quantitative analysis is heavily sustained by
the accuracy of image segmentation algorithms. While there is a plethora
of MRI segmentation techniques for the adult brain (e.g., Greenspan et al.,
2006; Ortiz et al., 2013; Pham and Prince, 1999), a limited number of works
to segment brain MRI of neonates and fetuses exists in the literature. The
poor spatial resolution of images, and the varying intensity distribution be-
tween tissues, dynamic shape changes and reduced contrast in the brain at
such early ages render more challenging the automatic brain segmentation
of this age group compared to adults.
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2.4.1 Segmentation of neonatal brain MRI

In the neonatal brain, WM exhibits substantial intensity variation due to
the ongoing process of myelination that gradually reverses the WM-GM con-
trast, reaching a point around the ninth month when both tissues appear
isointense (Barkovich, 2005). This may mislead intensity-based segmenta-
tion algorithms to identify PVEs at the boundary between CSF and GM as
the yet unmyelinated WM (Xue et al., 2007). In order to cope with these
systematic segmentation errors in neonates, several authors have proposed
brain tissue segmentation methods combining intensity information with
spatial priors and contextual information.

Among these works, an atlas-free approach (Xue et al., 2007) adopted
the Expectation-Maximization (EM) algorithm with Markov Random Field
(MRF) regularization for tissue classification combined with a knowledge-
based strategy to correctly classify mislabeled PVEs at the CSF-GM bound-
ary. Recently, another approach that does not require atlas priors was
presented in (Gui et al., 2012), where a watershed technique was used to
segment the brain MRI of neonates based on information about tissue con-
nectivity, structure and relative positions. Most of published works, how-
ever, employed atlas-based approaches to guide the segmentation. Prastawa
et al. (2005) developed an atlas-based automatic algorithm based on graph
clustering and outlier removal. It used the EM scheme followed by a non-
parametric kernel density estimation to obtain the final segmentation. Shi
et al. (2010) proposed a joint registration-segmentation framework that used
subject-specific tissue probabilistic atlases generated with adaptive fuzzy
C-means (Pham and Prince, 1999) from follow-up data of the same sub-
ject. With the same purpose, an atlas-based approach interleaving registra-
tion and segmentation was employed in (Shi et al., 2011), which combined
subject-specific cortical GM distribution with a data-driven neonatal atlas.
Weisenfeld and Warfield (2009) presented an algorithm that iteratively per-
forms sample refinement, segmentation, and fusion using STAPLE (Warfield
et al., 2004). Wang et al. (2011b) proposed a level set segmentation frame-
work with a thickness constraint in the cortical area, and combined local
intensity information and atlas priors. This work was further improved
in (Wang et al., 2014c) by using a subject-specific atlas and incorporat-
ing non-local (i.e., patch) information. In (Ledig et al., 2012), the spatio-
temporal atlas in (Murgasova et al., 2011) was used with an extended version
of the EM algorithm incorporating a second-order MRF to penalize incon-
sistent labeling caused by PVEs. In a recent work, Anbeek et al. (2013)
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segmented eight different tissue classes in a supervised manner using inten-
sity and voxel coordinates with K-nearest neighbors. Wang et al. (2015)
also proposed an iterative supervised approach to segment the main tissues
using random forest (Breiman, 2001) and features from several modalities
(i.e., T1w, T2w and fractional anisotropy images), including the estimated
probability maps. On premature neonates, brain tissue segmentation was
carried out in (Beare et al., 2016; Sanroma et al., 2016a) on the dataset
provided by the NeoBrainS12 challenge (Is̆gum et al., 2015). Sanroma et al.
(2016a) proposed an ensemble approach that optimally combines the out-
puts of two complementary segmentation approaches (i.e., intensity-based
and multi-atlas label fusion). In (Beare et al., 2016), a supervised approach
was presented using a combination of unified segmentation, template adap-
tation and topological filtering.

Beyond the segmentation of the main tissues, methods for the parcellation of
anatomical structures in the neonatal brain have been proposed in (Gousias
et al., 2013; Makropoulos et al., 2014). There is a notable overlap between
tissue segmentation and parcellation in that both approaches make use of
image intensities. Although in the latter case, intensity-based features are
not sufficient as in the case of tissue segmentation, and spatial priors de-
rived from atlases become also necessary. Therefore, Gousias et al. (2013)
presented a multi-atlas approach to segment the brain MRI in 50 regions
using ALBERTs (Gousias et al., 2012), a dataset of manually annotated
neonatal atlases. These atlases were also used in a hierarchical approach to
label multiple brain structures using EM-MRF and knowledge-based rules
for misclassified voxels (Makropoulos et al., 2014).

2.4.2 Segmentation of fetal brain MRI

Automatic segmentation of fetal brain MRI is even more intricate since in
addition to the existing difficulties in neonates, fetal brains have a tran-
sient laminar pattern (see Section 2.2) and MRI quality is highly affected
by fetal and maternal movements during acquisition. There is much less
literature on fetal brain MRI segmentation. Table 2.2 lists the main char-
acteristics of existing methods. One of the first works (Claude et al., 2004)
proposed a semi-automated method to segment 3 regions (i.e., posterior
fossa, brainstem and vermis) on a single MRI slice of the fetal brain, using
region growing based on intensity and gradient features. Also in 2D MRI,
Bach Cuadra et al. (2009) developed an automatic labeling method for the
main tissues that was performed independently in each slice using EM-MRF
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and anatomical priors in form of a cortical distance map. Bayesian segmen-
tation was first performed to segment the fetal brain in 7 different classes.
GM and WM were modeled as a mixture of 2 Gaussians each, and 2 classes
for mislabeled partial volume voxels, which were to be correctly classified
during the MRF stage.

Among pioneering works in addressing the segmentation of fetal brains in 3D
reconstructed MRI, Gholipour et al. (2011) used a semi-automated method
with little user interaction based on intensity information, level sets, and
morphological operations to deal with PVEs. Given that intensity informa-
tion is insufficient to isolate cortical GM from WM, Caldairou et al. (2011)
included anatomical priors through a topological K-means clustering al-
gorithm to segment the cortex in an atlas-free approach. In (Habas et al.,
2008), the GMAT was segmented in fetuses at a reduced age range (20.5-22.5
GWs) using the EM framework with a single probabilistic atlas. However,
with the advent of spatio-temporal atlases of the fetal brain, age-specific
atlases can be generated at any GA to serve as priors in the segmentation
process (Habas et al., 2010; Serag et al., 2012b). Multi-atlas segmentation
approaches were also used in (Gholipour et al., 2012; Koch et al., 2014).
Gholipour et al. (2012) developed a method built over multi-atlas segmen-
tations that incorporates a shape model of structures and regional intensity
values within a probabilistic framework to achieve automatic segmentation
of multiple shapes with similar intensities. The main purpose was to ac-
curately segment the lateral ventricles in subjects with normal, dilated,
or fused ventricles. In (Koch et al., 2014), a semi-supervised graph-based
method was proposed to overcome the unavailability of subjects within cer-
tain GA ranges. After a first labeling stage where only atlases are able
to propagate information, label probabilities of test images in subsequent
iterations are also used to improve the labeling of images whose GA is not
available in the training set. It is worth mentioning that several of the
aforementioned segmentation methods for neonates and fetuses can be used
interchangeably as long as the priors and the spatial constraints are consis-
tent with the dataset under study. In fact, the method proposed in (Ledig
et al., 2012) for neonates was used by Wright et al. (2014) to segment fetal
brain MRI.
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Method MRI Spatial priors/constraints Structures

(Claude et al., 2004) Region growing 2D – Posterior fossa
Semi-automatic (one slice) Brainstem

Vermis

(Bach Cuadra et al., 2009) EM-MRF 2D Cortical distance map Cortical GM
Central GM
WM
CSF

(Gholipour et al., 2011) Level sets 3D – Brain
Morphological op. CSF

(Caldairou et al., 2011) Topological K-means 3D Anatomical priors Cortical GM

(Habas et al., 2008) EM-MRF 3D Probabilistic atlas GMAT

(Habas et al., 2010) EM-MRF 3D Probabilistic atlas Cortical GM
WM
GMAT
VENT

(Serag et al., 2012b) – 3D Probabilistic atlas Cortical GM
Lateral VENT
Hemispheres

(Gholipour et al., 2012) Multiatlas 3D Multiple atlases Lateral VENT
multishape

(Koch et al., 2014) Graph-based 3D Multiple atlases Lateral VENT
label propagation

Table 2.2: Fetal brain MRI segmentation methods. Unavailable information or not used is marked as –.
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2.5 Quantification of early normal brain
development

Quantifying the patterns of normal gyrification and the underlying growth
processes in the developing fetal brain from in utero MRI may offer insights
into the changes that occur during normal fetal brain development, and
provide a baseline for comparison to abnormal development. During early
stages of fetal cerebral development, the brain is lissencephalic in appear-
ance (Rutherford, 2001). However, as growth proceeds, the brain undergoes
drastic changes in its morphology. In the latter half of gestation, the normal
process of human brain maturation is manifested by substantial increases
in volume without equivalent changes in thickness, and an increasing com-
plexity of the CP following a highly orchestrated sequence of gyral-sulcal
formation (Clouchoux et al., 2012; Rajagopalan et al., 2011a; Wright et al.,
2014). In particular, this sequence occurs in a hierarchical manner in which
primary and secondary sulci form in a consistent spatio-temporal pattern
during normal gestation, followed by tertiary sulci that show increasing
variability across individuals (Bendersky et al., 2006; Studholme, 2011).
The timing of this has been considered an accurate marker of brain devel-
opment (Garel et al., 2003), with any divergence from this pattern being
conceived as a potential stable biomarker for abnormal functional develop-
ment.

Several works inspect the global and regional patterns of tissue maturation
in the developing brain to provide a comprehensive understanding of the
maturational process the human brain embarks on from early weeks of ges-
tation (Gholipour et al., 2011; Scott et al., 2013) up to approximately the
second postnatal year (Aljabar et al., 2008), period where the majority of
brain growth occurs (Rutherford, 2001). Other studies reported the pat-
terns of cortical convolutions (Clouchoux et al., 2012; Wright et al., 2014)
that take place in the human brain during this period. This section offers
an overview of the role MRI plays in the quantitative study and assessment
of in utero brain development.

2.5.1 Cortical folding

The study of cortical folding is important because will aid clinicians in the
understanding of normal gyrification and the detection of cortical malde-
velopment. Evidence from MRI studies of preterm neonates (Dubois et al.,
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2008) may not be consistent with fetal brain development since prematu-
rity per se may be considered a limitation in the representation of normal
in utero neurodevelopment (Rutherford et al., 2008). Indeed, preterm-born
infants compared with term-born controls at term equivalent age showed
alterations in cortical volume (Padilla et al., 2014) and folding (Melbourne
et al., 2014). When compared to fetal brains, prematurity also showed an
impact on cortical folding (Lefèvre et al., 2015). In fetuses, conclusions
drawn from ex vivo studies (e.g., Bendersky et al., 2006) about sulcal emer-
gence might be influenced by deformations inherent to brain fixation and
the substantial fluid loss during histological processing (Dubois et al., 2008;
Habas et al., 2012), which may slightly affect the measurements. With the
possibility to perform in vivo fetal MRI, mapping of cortical folding has
been initially restricted to analysis of 2D slices (Garel et al., 2003; Prayer
et al., 2006). This approach exhibits significant limitations in that 2D mea-
surements are very dependent on the use of consistent 2D planes, which is
susceptible to motion during acquisition. Furthermore, exact tissue bound-
aries may be difficult to find on thick 2D MRI slices due to PVEs. Volumet-
ric reconstructions of the fetal brain, on the other hand, ensure selection
of the appropriate planes and enable measurements that take advantage of
the 3D anatomy of the brain.

To provide a reliable timeline of the normal in utero brain development,
researchers have taken benefit of motion-corrected 3D reconstruction tech-
niques, which can be easily integrated into an automated pipeline for the
assessment and quantification of the timing of cortical folding. Using only
cohorts of healthy fetuses, (Clouchoux et al., 2012) delineated sulcal fundi
in 12 fetuses between 25 and 35 GWs, Habas et al. (2012) presented a tem-
poral mapping of the emergence of individual sulci in 40 MRI scans from
38 fetuses with age ranging 20-28 GWs, and Wright et al. (2014) studied
global and regional gyrification measures in 80 fetuses over a wider age range
of 22-39 GWs. All of these works used a surface-based approach, where
curvature information was estimated on the inner CP surfaces extracted
from WM segmentation. Following the pipeline illustrated in Figure 2.1,
segmentations in (Clouchoux et al., 2012) were obtained after 3D volume
reconstruction (Gholipour et al., 2010) using an atlas-based approach with
manual correction. In (Habas et al., 2012), images were first reconstructed
with the method in (Kim et al., 2010) and automatically segmented using
priors from a spatio-temporal atlas (Habas et al., 2010). Also in (Wright
et al., 2014), images went through 3D volume reconstruction (Jiang et al.,
2007) and automatic segmentation (Ledig et al., 2012).
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Among their findings, (Habas et al., 2012) showed that the increase in sur-
face area related to gyrification is linear from 20 to 28 GWs. After the
28th GW, gyrification accelerates and becomes more complex (Clouchoux
et al., 2012), following a non-linear growth model. In particular, a Gom-
pertz model showed to best fit the folding measures studied in (Wright
et al., 2014). Furthermore, they found a positive correlation of these fold-
ing measures with GA, which was stronger than that of GA and volume.
(Clouchoux et al., 2012) also created 4 average cortical templates evenly dis-
tributed along the age range of the subjects that showed the major changes
in gyrification occurring during normal fetal brain development. A more
precise timetable of early sulcation was reported in (Habas et al., 2012),
demonstrating that 3D MRI provided more sensitivity than 2D MRI in the
detection of sulcal emergence. Establishing normative timing for gyrifica-
tion in the fetal brain will allow identification of deviations in development
and early treatment.

2.5.2 Patterns of tissue maturation

Similarly as in the case of cortical folding, there exists a vast literature from
postmortem (Huang et al., 2009), ex utero (Aljabar et al., 2008; Murgasova
et al., 2011; Xue et al., 2007) and, in vivo fetal MRI (Kazan-Tannus et al.,
2007; Limperopoulos et al., 2010; Prayer et al., 2006) and US (Endres and
Cohen, 2001; Roelfsema et al., 2004) on tissue growth and laminar organi-
zation of the developing brain. However, as discussed in 2.5.1, generalizing
the evidence from these studies to normal in utero brain maturation might
render inadequate.

Based on reconstructed 3D MRI of the fetal brain, Gholipour et al. (2011)
carried out a volumetric study using automated segmentations of brain tis-
sue in a cohort of 25 fetuses ranging from 19 to 39 GWs. In (Corbett-Detig
et al., 2011), global and local patterns of SP growth were studied through
quantitative analyses of temporal changes in SP volume and thickness in 21
fetuses within the age of 20 to 26 GWs. From manual segmentations of the
SP and supratentorial brain volume (as a sum of CP, WM, and GMAT),
they also analyzed the relationship between volume and GA. From auto-
matic segmentation of 48 scans of 39 fetuses with age between 21 and 31
GWs, Scott et al. (2011) presented volumetric growth trajectories of CP,
SP and IZ, GMAT, deep gray nuclei, and ventricles. Morphometry was also
used to study the complex series of local tissue volume changes the develop-
ing brain undergoes in its normal course toward acquiring its gyrencephalic
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adult aspect. Aljabar et al. (2008) had previously used Tensor-Based Mor-
phometry (TBM) (Davatzikos et al., 1995) in a longitudinal study to provide
global and local growth factor estimates of GM and WM for a cohort of 25
preterm subjects scanned at 1 and 2 years. TBM uses accurate spatial
normalization of brain anatomy into a common reference space to capture
the pattern of regional structural differences across a set of anatomies by
computing the derivatives (i.e., Jacobian map) of the deformation fields re-
quired to bring each anatomy to the same stereotaxic space (Studholme,
2011). For the in utero fetal brain, Rajagopalan et al. (2011a) provided a
mapping of growth patterns by quantifying tissue locations that were ex-
panding at a different growth rate than the overall cerebral tissue. TBM
analysis combined with a linear model of age was used to create these maps
from fetuses between 20 and 28 GWs. However, besides modeling magni-
tude of local tissue volume increase with scalar TBM (e.g., Dubois et al.,
2008; Habas et al., 2012; Rajagopalan et al., 2011a), directional growth in-
formation is valuable in order to acquire more knowledge about fetal brain
development. Rajagopalan et al. (2011b) extended the study beyond vol-
ume increase by incorporating its normal and tangential components on
either side of the SP-CP interface, which permitted to model the varia-
tional growth patterns that underlie the mechanism of sulcation between
both tissues. Furthermore, Rajagopalan et al. (2012) quantified brain de-
velopment as a combination of volume and direction change patterns, and
provided the principal growth direction at a particular location.

According to these studies, supratentorial brain volume increased quadrati-
cally with GA (Gholipour et al., 2011). From 20 to 26 GWs, the increase in
SP tissue was proportional with the increase in supratentorial volume, al-
though at different rates among brain regions (Corbett-Detig et al., 2011).
Tissue-dependent growth rates where found in (Scott et al., 2011), with
CP growing faster than all other tissue zones, especially along the midline
surface of the frontal and parietal lobes (Rajagopalan et al., 2011a). Also,
significant changes in direction of growth were found to occur primarily in
the CP at locations corresponding to the formation of primary sulci. When
the direction of cortical growth at any sulcus changes rapidly, it occurs in
conjunction with change in direction of growth in the underlying cerebral
mantle (Rajagopalan et al., 2012). Finally, slower growth was found in
the ventricular regions adjacent to the CP, and the GMAT, which begins
to regress after 25 GWs (Corbett-Detig et al., 2011; Rajagopalan et al.,
2011a).
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2.5.3 Interhemispheric structural asymmetries

Interhemispheric asymmetries have also been studied in fetal brain MRI to
establish a precise timing for their in utero emergence. These asymmetries
may be indicators of cortical functional specialization (Dubois et al., 2008),
and alterations of this pattern may be useful as an early biomarker for ab-
normal neurodevelopment (Studholme and Rousseau, 2014). Using fractal
dimension analysis in outer cortical surfaces reconstructed from 2D slices,
Shyu et al. (2010) found earlier development of cortical complexity in the
right hemisphere than in the left in a cohort of 32 fetuses with GA between
27 and 37 weeks. This was also reported in preterm (Dubois et al., 2008)
and term (Hill et al., 2010) neonates, particularly evident at the level of the
superior temporal sulcus. Interhemispheric asymmetries were also analyzed
in 3D reconstructed fetal brain MRI by (Rajagopalan et al., 2011a), where
the emergence of asymmetries was detected using TBM analysis based on
symmetric groupwise registration of tissue maps of 40 fetal brains and their
reflected versions along the sagittal midline. A similar approach was carried
out in (Rajagopalan et al., 2012) to detect directional asymmetries in the
same cohort with GA between 20 and 28 weeks. They found significant
local asymmetries in volume and growth direction in the periSylvian fis-
sure, showing that asymmetries in this area start around 20 GWs. Among
their findings, (Habas et al., 2012) reported statistical significance of inter-
hemispheric asymmetries in the periSylvian region by 23 GWs and in the
parieto-occipital sulcus after 26 GWs.

In accordance with ex vivo studies and in conformity with asymmetries re-
ported in adult and neonatal brains (Hill et al., 2010), these findings confirm
that gyrogenesis occur earlier in the right hemisphere than in the left, and
that cerebral interhemispheric asymmetries start during the intrauterine
period.

2.6 Examples of clinical applications

Brain malformations account for one third of fetal anomalies and 60% have
no identifiable etiology (Rodŕıguez et al., 2010). Although US is the stan-
dard imaging modality for fetal evaluation, it is well demonstrated that
fetal MRI has a greater sensitivity to detect specific brain abnormalities
that could be occult on prenatal US (Banović et al., 2014). In this section,
several contributions of fetal MRI to the diagnosis of brain abnormalities in
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utero are described. We will focus on quantification studies of Intrauterine
growth restriction (IUGR), congenital heart disease (CHD), and ventricu-
lomegaly (VM).

2.6.1 Intrauterine growth restriction

IUGR refers to a condition in which the weight of the fetus is below the 10th
percentile for GA. This condition affects 10-15% of the population (Gardosi,
2011) and it is associated with a wide range of short- and long-term neu-
rodevelopmental disorders. The effect of late-onset IUGR in the in utero
development of the brain was studied in (Egaña-Ugrinovic et al., 2014, 2013)
from 2D MRI slices. In (Egaña-Ugrinovic et al., 2013), differences in corti-
cal development were assessed in 52 late-onset IUGR and 50 control fetuses.
Late-onset IUGR fetuses, compared with controls, presented deeper fissures,
more pronounced right asymmetry and smaller brain volumes. Corpus cal-
losum development was analyzed in (Egaña-Ugrinovic et al., 2014) using
117 late-onset IUGR and 73 control fetuses. The area of the corpus cal-
losum was significantly smaller in IUGR fetuses compared to the control
group. Further, they found that these morphometric differences were in
correlation with worse neurobehavioral performance. These findings reflect
a perturbation in normal fetal brain development and can be used as po-
tential biomarkers to predict abnormal neurodevelopment in pregnancies at
risk.

2.6.2 Congenital heart disease

CHD refers to a structural abnormality of the heart present at birth. A wide
spectrum of brain abnormalities has been identified with CHD in preterm
and term neonates before they undergo cardiac surgery, which may suggest
the occurrence of abnormal brain development in utero (Donofrio and Mas-
saro, 2010). To better understand the impact of CHD in impaired neurode-
velopment outcome, Limperopoulos et al. (2010) performed the first in vivo
quantitative MRI study of 55 fetuses with CHD and 50 healthy fetuses be-
tween 25 and 37 GWs. Volumetric MRI analysis and spectroscopy showed a
progressive deceleration in global brain growth (i.e., intracranial cavity and
total brain volumes) and metabolism in the cohort with CHD over the 3rd
trimester of gestation. Using in utero MRI, Mlczoch et al. (2013) reported
a 39% incidence of brain abnormalities in a cohort of 53 fetuses with age
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between 20 and 37 GWs with CHD. In (Brossard-Racine et al., 2014), MRI
scans of 144 fetuses with CHD and 194 controls of age ranging between 18
and 39 GWs were also studied for brain anomalies. Their findings showed a
significantly higher frequency (23%) of structural brain abnormalities in the
CHD group compared with less than 2% of recurrence in fetuses from the
control group. This highlights the close relationship between heart and brain
development. Based on segmentations of 3D high-resolution reconstructed
volumes of 30 control fetuses and 18 fetuses diagnosed with hypoplastic left
heart syndrome, Clouchoux et al. (2013) demonstrated a progressive third-
trimester decline in volumetric growth of cortical GM, subcortical GM and
WM, in addition to significant region-specific cortical development delays
in the hypoplastic left heart syndrome group. These findings are consis-
tent with postnatal data demonstrating that delayed fetal brain maturation
and development in utero appears to begin in the 3rd trimester (McQuillen
et al., 2010).

2.6.3 Ventriculomegaly

VM is one of the fetal brain anomalies that is frequently diagnosed during
the gestational period. When no other anomalies are present, it is called
isolated VM. VM is defined as a ventricular atrial diameter greater than 10
mm at any GA (Cardoza et al., 1988), while the width in normal subjects
lies between 6 and 9 mm (Scott et al., 2013). Atrial diameter measurements
larger than 15 mm constitute severe VM, whilst measurements between 10-
15 mm are classified into mild VM (10-12 mm) and moderate VM (12.1-15
mm) (Kyriakopoulou et al., 2014). In case of isolated VM, this latter di-
chotomy is typically used as a prognostic biomarker of the neurodevelop-
mental outcome of the fetuses. That is, cases with isolated mild VM are
generally associated with good outcomes, though some will have abnormal
outcomes. A robust method to clearly distinguish between both cohorts is
therefore critical in counseling pregnancies (Scott et al., 2013).

Whether in antenatal US or fetal MRI, routine assessment of VM relies on
a simple 2D measurement of the atrial diameter (see Figure 2.6) on a par-
ticular plane at the level of the atrium (Cardoza et al., 1988). Nonetheless,
reproducibility of these measurements is known to be variable, especially
in US. The possibility of 3D fetal MRI simplifies volumetric measurements,
and promotes computation of other features such as shape measurements.
To the best of our knowledge, VM has been studied in 3 works in the litera-
ture using motion-corrected 3D reconstructions of the fetal brain (Gholipour
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Figure 2.6: Measurement of the atrial diameter in US.

et al., 2012; Kyriakopoulou et al., 2014; Scott et al., 2013). The volume of
the ventricles has been shown to be more distinctive than the atrial diam-
eter in diagnosing VM (Gholipour et al., 2012). In (Scott et al., 2013),
volumetric and curvature analyses were performed to compare a group of
isolated mild ventriculomegaly (IMVM) to a cohort of healthy fetuses be-
tween 22 and 25.5 GWs by identifying potential IMVM-specific deviations
in tissue volume, and cortical and ventricular local surface curvature during
fetal brain development. Except enlarged ventricular volume in IMVM, no
significant difference was found in brain tissue or cortical volume between
groups. However, evidence of cortical GM enlargement in IMVM fetuses
was found in (Kyriakopoulou et al., 2014) after analyzing the differences
between 60 normal fetuses and 65 with IMVM across a wider age range of
22-38 GWs.

2.7 Discussion

The emergence of fast-sequence MRI combined with advanced techniques
for motion correction (e.g., Jiang et al., 2007; Murgasova et al., 2012) has
enabled the formation of 3D volumes of the in vivo fetal brain. This has
supposed an immense step towards the understanding of the early cere-
bral maturational processes compared to conventional prenatal US, and
the discovery of new 3D biomarkers associated with fetal brain anomalies
that are more distinctive and reproducible. However, in contrast to the
widespread techniques existing in the literature for adult brains, fetal brain
MRI needs to be approached in a different manner due to the complex and
rapid changes that occur in the brain. Methods working with MR images of
the fetal brain must take into consideration the transient nature of several
tissues (e.g., GMAT), the inverted contrast between tissues, and the sub-
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stantial shape variation of the brain as growth proceeds. These challenges
have stimulated the development of new methodological approaches that
permit the study of the developing brain.

To better capture the dynamics of the laminar pattern and the changes
in cortical folding, literature in fetal brain MRI encourages the creation of
spatio-temporal atlases (e.g., Gholipour et al., 2014; Serag et al., 2012b),
which shed light onto the fetal brain growth patterns by encoding temporal
and inter-subject variability, and provide a common reference space for the
study of the developmental process in the fetus. In addition, image process-
ing techniques such as registration and segmentation may take advantage of
these atlases to achieve better accuracy. Concerning segmentation methods
of the fetal brain in MRI, the frequent PVE problem present in the bound-
ary between CSF and GM, and the existing tissues at a particular GA have
to be considered. Hence, atlas-based segmentation is highly useful in these
scenarios to aid in segmentation, and spatio-temporal atlases have proved
to be of great benefit.

State of the art segmentation methods allow performing accurate volumet-
ric analyses, providing a broader view than the standard 2D measurements
used in clinical settings. Furthermore, studies concerning sulcation and
gyrification of the cerebral cortex in the fetus are now easily viable through
MRI, allowing for both qualitative and quantitative inspection. Segmenta-
tion of CP and SP is necessary for the study of cortical folding. Mapping
and ordering the normal patterns of cortical folding (e.g., Clouchoux et al.,
2012; Habas et al., 2012) can be used as a baseline to help detect regions of
abnormal or delayed folding correlated with possible neurological disorders.
Recently, spatio-temporal cortical surface atlases of the developing brain
were created in (Li et al., 2015; Wright et al., 2015), providing patterns
of cortical developmental trajectories at every point in the cortical surface
and, therefore, establishing an accurate normative timing for gyrification.

In clinical settings, fetal brain MRI has become an important tool in con-
firming and complementing prior findings in US. Furthermore, now it is
possible to develop automatic methods to facilitate the diagnosis of brain
abnormalities in utero, and provide scalability to study large populations.

There are still many open directions to explore for researchers in fetal brain
MRI. Reconstruction algorithms from motion-corrupted stacks rely on the
segmentation of the brain from 2D slices. However, there exist no well-
established segmentation approaches. In 3D reconstructed images of the
fetal brain, the posterior medial part near the ventricles, for example, is
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a complicated region for the segmentation of the cortex. The availability
of public databases with ground truth annotations and segmentation chal-
lenges, such as the NeoBrains12 (Is̆gum et al., 2015), for the fetal brain
may boost research advances in this area. Regarding spatio-temporal mod-
eling, existing atlases were created from healthy subjects and, therefore,
only capture the morphological changes of the in utero brain in its nor-
mal course. A promising direction of future work could be the construction
of disease-specific spatio-temporal atlases that show the dynamic disease-
related changes in the brain and help understand disease progression. An-
other interesting direction of future work is to analyze the impact of congeni-
tal diseases in neurodevelopmental outcome. Longitudinal studies will allow
neuroscientists to assess the effect of in utero brain anomalies in cognitive
development and link the findings in structural MRI with brain connectivity
and measurements from other modalities.

This work was restricted to T1w and T2w MRI. However, other imaging
modalities, such as fMRI and DTI, can also be used to study the in vivo
fetal brain. In (Huang et al., 2009), DTI allowed both macro- and micro-
scopic characterization of brain development, while fMRI was also used to
capture the emerging connectivity patterns in the fetal brain (Jakab et al.,
2014). Computational growth models constitute another type of approach
to understand the physical forces behind the formation of the cortical convo-
lutions in the developing brain (Nie et al., 2010, 2011; Tallinen et al., 2016).
Combining the heterogeneous findings from all these modalities and ap-
proaches could synergistically improve the understanding of in utero brain
development.

2.8 Conclusions

In this paper, we presented a thorough review of methodological advances
to study early brain development from in utero structural MRI. The re-
view outlined the challenging context for neuroscience research to achieve
an improved understanding of in vivo fetal brain maturational mechanisms,
motivated the need for the implementation of novel processing approaches,
and reported the potential gains resulting from quantitative fetal MRI stud-
ies that can be realized in clinical practice.
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Abstract – Quantitative neuroimaging analyses often rely on the accu-
rate segmentation of anatomical brain structures. In contrast to manual
segmentation, automatic methods offer reproducible outputs and provide
scalability to study large databases. Among existing approaches, multi-
atlas segmentation has recently shown to yield state-of-the-art performance
in automatic segmentation of brain images. It consists in propagating the
labelmaps from a set of atlases to the anatomy of a target image using
image registration, and then fusing these multiple warped labelmaps into a
consensus segmentation on the target image. Accurately estimating the con-
tribution of each atlas labelmap to the final segmentation is a critical step
for the success of multi-atlas segmentation. Common approaches to label
fusion either rely on local patch similarity, probabilistic statistical frame-
works or a combination of both. In this work, we propose a probabilistic
label fusion framework based on atlas label confidences computed at each
voxel of the structure of interest. Maximum likelihood atlas confidences are
estimated using a supervised approach, explicitly modeling the relationship
between local image appearances and segmentation errors produced by each
of the atlases. We evaluate different spatial pooling strategies for modeling
local segmentation errors. We also present a novel type of label-dependent
appearance features based on atlas labelmaps that are used during confi-
dence estimation to increase the accuracy of our label fusion. Our approach
is evaluated on subcortical structure segmentation in adults brains from
the MICCAI 2013 SATA Challenge and the ADNI datasets, and on tissue
segmentation of a fetal brain dataset. Overall, our results indicate that the
proposed label fusion framework achieves superior performance to state-of-
the-art approaches in the majority of the evaluated brain structures and
tissues, and shows more robustness to registration errors.

This chapter is adapted from:
Benkarim, O. M., Piella, G., González Ballester, M. A., and Sanroma, G. (2017). Dis-
criminative confidence estimation for probabilistic multi-atlas label fusion. Medical Image
Analysis, 42:274-287. https://doi.org/10.1016/j.media.2017.08.008

The content of this chapter is updated to further include experiments on fetal brain MRI
segmentation, which were not present in the original paper.
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3.1 Introduction

Brain segmentation from magnetic resonance imaging (MRI) is an impor-
tant preprocessing step for many neuroimaging studies, e.g., volumetry,
cortical thickness, etc. For this task, automatic methods are desirable
over manual segmentation since the latter is very time-consuming and sub-
ject to inter- and intra-rater variability. Although good outcomes can be
achieved for the segmentation of the main tissues based only on image inten-
sities (Ashburner and Friston, 2005; Leemput et al., 1999; Shattuck et al.,
2001), segmentation of anatomical structures (e.g., defined by their func-
tional properties) renders intensity information insufficient and atlas priors
become an imperative resource in order to accurately delineate such struc-
tures. In this setting, single-atlas based segmentation uses a single atlas that
is registered to the to-be-segmented image and then propagates its labelmap
to the target using the resulting warp from the registration step. Single-
atlas based segmentation, however, suffers from (1) representative bias in
that a single atlas may not capture the neuroanatomical variability of the
general population, and (2) high sensitivity to registration errors since only
one atlas is used. To address these drawbacks, multi-atlas segmentation
(MAS) makes use of multiple atlases to segment a given target image (Al-
jabar et al., 2009; Heckemann et al., 2006; Lötjönen et al., 2010). In this
way, it better adapts to the anatomical variability of the population and
highly mitigates the effect of registration failures in the final segmentation.

Indeed, MAS has recently shown to be a promising technique for brain struc-
tural segmentation (Iglesias and Sabuncu, 2015; Sanroma et al., 2016b). It
consists in fusing the propagated labelmaps from a set of training atlases
to a target image. There are two main steps: 1) image registration, where
the spatial transformations are computed to warp the atlas labelmaps to
the target image, and 2) label fusion, where these candidate segmentations
(i.e., warped labelmaps) are fused into a consensus segmentation. The focus
of this paper is on improving label fusion, the second step of MAS. Label
fusion is a rather challenging problem that consists in finding the optimal
combination of the propagated atlas labelmaps at each region of the target
image to obtain the best segmentation. The most straightforward way to
approach this problem is to use majority voting (MV) (Klein et al., 2005;
Rohlfing et al., 2004), which assigns to each target the most frequent la-
bel occurring among the training atlases. This method has shown superior
performance over single-atlas based label propagation. However, since all
the atlases are combined with equal weight, having atlases too dissimilar
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to the target will push the resulting segmentation away from the true tar-
get anatomy. In order to solve this problem, several works have proposed
more robust label fusion strategies that weigh each atlas vote contribution
based on its similarity to the target image (e.g., Artaechevarria et al., 2009;
Coupé et al., 2011; Sabuncu et al., 2010). STAPLE (Warfield et al., 2004)
and similar methods use a statistical approach to label fusion. Although
STAPLE was initially conceived to globally assess the performance of dif-
ferent raters, many works build on STAPLE to provide spatially varying
statistical label fusion approaches for MAS. Non-Local STAPLE (Asman
and Landman, 2013) and STEPS (Cardoso et al., 2013) extend STAPLE by
including appearance information from the images and integrating the non-
local means approach (Buades et al., 2005) into the statistical framework of
STAPLE. Other works tackle label fusion in MAS from the machine learn-
ing perspective, using classification-based approaches (Powell et al., 2008;
Sdika, 2015; Zikic et al., 2013), reconstruction-based approaches (Benkarim
et al., 2014; Zhang et al., 2012), or a combination of both (Sanroma et al.,
2016a, 2015b).

In this work, we propose a probabilistic framework with the following con-
tributions:

• We estimate spatially varying confidences for each training atlas in an
offline way to reduce computation burden at test time.

• We formulate our method in a probabilistic framework and obtain
maximum likelihood confidence parameters through discriminative learn-
ing.

• We explore different spatial pooling strategies for modeling local seg-
mentation errors.

• We propose novel label-dependent features to be used together with
appearance features to estimate the confidences in the proposed frame-
work.

This paper is an extension of a recently published conference paper (Benkarim
et al., 2016). In this current work, we implement more sophisticated spatial
pooling strategies to make our method more accurate and computation-
ally efficient, present a more extensive description of the proposed label
fusion framework, evaluate the performance of our approach in a fetal brain
MRI dataset and 2 adult brain MRI datasets, assess the robustness of our
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method to registration failures by using several registration settings (affine
and 2 different non-rigid registrations), provide an in-depth review of the
literature and a comparison of our approach with the state-of-the-art, and
include a thorough discussion of the results.

The outline of the paper is as follows. Section 3.2 is devoted to state-of-the-
art label fusion approaches in MAS. Section 3.3 presents the details of our
proposed method. In Section 3.4 we describe the experimental setting and
present the results. In Section 3.5 we discuss the advantages and limitations
of our approach. Section 3.6 concludes the paper.

3.2 Related work

The selection of the label fusion strategy is a crucial step in MAS and has
been extensively studied in the literature. Label fusion approaches can be
grouped in 3 categories according to the strategy used for fusing the dif-
ferent atlas labelmaps to produce the final segmentation: similarity-based,
statistical-based and learning-based approaches (González-Villà et al., 2016;
Iglesias and Sabuncu, 2015).

3.2.1 Similarity-based approaches

One major trend is to assign weights (or confidences) to each warped atlas
labelmap based on the similarity of its intensity image with the target image.
Label fusion with MV can be viewed as a trivial case of these approaches
with atlas labelmaps combined with uniform weights. The main assumption
of similarity-based approaches is that regions with similar intensities have
similar labeling. Several works used this heuristic to perform label fusion.
Global weighted voting assigns to each registered atlas a global weight based
on its overall similarity with the target image (Artaechevarria et al., 2009).
This approach, however, does not consider the spatially varying accuracy
of registration, and subsequently, of the confidences. Among approaches
that tackle this problem, we can find works using local (Artaechevarria
et al., 2009; Isgum et al., 2009; Sabuncu et al., 2010) and non-local (Coupé
et al., 2011; Rousseau et al., 2011) weighted voting. Local weighted voting
uses one-to-one correspondences of the atlases and the target image, which
compensates for the potential misalignments by increasing the weights of
the locally well-aligned atlases (and reducing the weights of the rest). In
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non-local weighted voting, the one-to-one correspondence constraint is re-
laxed by adopting the non-local means approach proposed in (Buades et al.,
2005), offering even more flexibility to compensate for registration errors.
Moreover, coarsely warped atlases are enough to achieve satisfactory results,
thus leading to moderate computational requirements during image regis-
tration. In this last approach, the confidence of each atlas is measured using
the most similar or all patches from a small search neighborhood around a
given voxel. This non-local patch-based strategy has been widely adopted
by subsequent methods. The method proposed in (Wang et al., 2013), for
example, searches for the most similar patch from each atlas and models
pairwise dependencies between atlases to reduce the weights of correlated
atlases during label fusion.

In similarity-based approaches, performance is sensitive to the choice of the
similarity measure, and more importantly, image similarity does not always
correlate well with atlas confidence (Sanroma et al., 2014).

3.2.2 Statistical approaches

Another kind of weighting schemes alleviates the bias induced by similarity-
based label fusion by estimating atlas confidences through a more direct
measure of the anatomical overlap (Warfield et al., 2004). These approaches
alternate the segmentation of the target anatomy and confidence estima-
tion for each of the competing candidate labelmaps by comparing to a
consensus segmentation in an iterative fashion. STAPLE is the most rep-
resentative work and defines a principled statistical framework based on
the Expectation-Maximization (EM) algorithm to perform such estimation.
STAPLE, however, was initially conceived to assess the performance of dif-
ferent raters and its performance in MAS is not significantly better than
MV (Artaechevarria et al., 2009; Asman and Landman, 2013). Further-
more, STAPLE does not take into consideration the intensity information
available from the images during the confidence estimation process. Many
extensions build on STAPLE to provide statistical label fusion approaches
for MAS. Gorthi et al. (2014) proposed an approach that incorporates the
versatility of local similarity-based approaches into the estimation of the
confidences. STEPS (Cardoso et al., 2013) proposes a local ranking strategy
based on image similarity to improve the confidence estimation in STAPLE
on a voxel-by-voxel basis. The Non-Local STAPLE (Asman and Landman,
2013) integrates the non-local means approach (Buades et al., 2005) and
includes appearance information into the statistical framework of STAPLE.
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Nonetheless, as pointed out earlier, using image similarity can induce a bias
in the estimation of the confidence.

3.2.3 Learning-based approaches

Learning-based methods constitute a different approach to MAS. They at-
tempt to learn, from a set of examples extracted from the training at-
lases, a function that maps local image appearances to the correct label. A
global classifier per atlas using Random Forest (Breiman, 2001) was pro-
posed in (Morra et al., 2010; Zikic et al., 2013). Compared to patch-based
approaches, the use of global classifiers further relaxes the one-to-one cor-
respondence constraint. However, global classifiers are usually limited in
capturing the complex appearance patterns associated with structural seg-
mentation. This can be circumvented to some extent by using region- or
structure-wise classifiers (Powell et al., 2008; Wang et al., 2011a), and/or
the feature vectors can be augmented to include spatial information for the
classifier. Voxel-wise classifiers were also used in the literature for MAS.
The work presented in (Hao et al., 2014) proposed a MAS approach to
estimate the target image’s label that learns voxel-wise support vector ma-
chine (SVM) classifiers based on the voxel’s k nearest positive and negative
training samples. Sdika (2015) also used voxel-wise SVM classifiers in a
single-atlas based segmentation framework. This approach can be extended
to the MAS framework by learning such classifiers in each of the atlas spaces.

The advantage of supervised approaches to MAS is that they can incor-
porate additional features (e.g., texture, shape, spatial location, etc.) (Bai
et al., 2015; Hao et al., 2014), which may benefit the classifiers. Further-
more, learning can be performed offline (Sdika, 2015; Zikic et al., 2013),
reducing the computational burden of training the classifiers for each target
image.

3.3 Methodology

In this section, we provide a description of the proposed probabilistic label
fusion framework. Figure 3.1 shows the pipeline of the method, which is
composed of two phases:

• Training phase: for each atlas, we compute its confidence model by
maximum likelihood estimation. For this task, registration of each
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Figure 3.1: Pipeline of the proposed label fusion approach. Training: for each atlas, the
remaining atlases are registered onto the atlas space and confidence models are computed.
Testing: given a novel to-be-segmented image, SCMs from each atlas are obtained using
the confidence models. Target labels are then estimated according to the proposed label
fusion framework.

atlas to the spaces of the remaining training atlases is first carried out.
Then, confidence models in each atlas space are estimated in an offline
manner. We propose two ways of estimating the confidence models:
1) a naive approach depending only on local label statistics, and 2)
a learning-based approach modeling the relationship between local
image appearances and segmentation errors. Confidence estimation in
the space of each atlas is important in order to cope with systematic
segmentation errors caused by registration failures.

• Testing phase: for a given target image, spatial confidence maps (SCMs)
are obtained after supplying the target image to the confidence mod-
els computed in the training phase. The target’s final segmentation is
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then estimated in a voxel-by-voxel basis with the proposed framework
using the SCMs in conjunction with the atlas labelmaps.

3.3.1 Probabilistic label fusion

In the MAS setting, we have a set of atlas images A along with their la-
belmaps D, where Dij ∈ D and Dij = {1, . . . , p}, indicates which one of
the p structures is present at voxel i of the j-th atlas. Now consider a novel
target image T , where Ti denotes the intensity value at voxel i, we denote
the to-be-estimated target labelmap as F .

Our proposed label fusion follows the derivation of a spatially varying ver-
sion of STAPLE proposed in (Asman and Landman, 2012). The goal is to
find the target labels that maximize the following posterior probability:

f (F |D,C) =
∏
i

f (Fi|Di,Ci) =
∏
i

f (Di|Fi,Ci) f (Fi)

f (Di, |Ci)
. (3.1)

where Di denotes the set of atlas decisions for voxel i and Ci denotes their
respective confidences (or weights). Note that we assume conditional inde-
pendence in the target voxels. Further assuming independence among the
atlas decisions, we obtain the following expression:

f (Fi|Di,Ci) =

∏
j f (Dij |Fi, Cij) f (Fi)∑

s∈{1,0}
∏
j f (Dij , |Fi = s, Cij) f (Fi = s)

. (3.2)

The binary segmentation case is considered in Eq. (3.2), i.e., we have only
two labels denoted {0, 1}. For multiple structures, a one-versus-rest ap-
proach can be used.

Accordingly, the probability of the target label Fi being foreground (i.e.,
label 1) is defined as:

f (Fi = 1|Di,Ci) =
ai

ai + bi
, (3.3)

where
ai = f (Fi = 1)

∏
j

f (Dij |Fi = 1, Cij) , (3.4)
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bi = f (Fi = 0)
∏
j

f (Dij |Fi = 0, Cij) . (3.5)

Here, we are interested in f (Dij |Fi = s, Cij), which is the probability of
observing the decision of j-th atlas on voxel i, given that the target label
is s and the atlas confidence at that voxel is Cij . This term expresses the
likelihood that the atlas and target labels coincide, and is defined as:

f (Dij |Fi = s, Cij) =

{
Cij if Dij = s
1− Cij otherwise.

(3.6)

In the EM framework used by STAPLE-based approaches, Eq. (3.3) corre-
sponds to the estimation of the hidden reference segmentation (i.e., E-step)
given the rater performance parameters or confidences, Cij . These confi-
dences are then updated during the M-step based on the previous E-step,
and this process is repeated interleaving both steps until reaching conver-
gence. The main difference of our approach with (Asman and Landman,
2012) lies in the computation of the Cij confidences in Eq. (3.6), which
is the central part of our work. We propose to estimate spatially varying
confidences (i.e., for each voxel) in an offline manner using the atlases in
the training set instead of the iterative EM-based approach used in (Asman
and Landman, 2012).

3.3.2 Confidence estimation

Let us focus on the computation of the confidence for a single voxel i of
a single atlas j, denoted as c ≡ Cij for brevity (the same procedure is
repeated for the rest of the voxels on the rest of atlases). Similarly, let
us denote as d ≡ Dij the label at voxel i in the j-th atlas. We denote as

f =
{
D̃ik, k 6= j

}
, the training set of target observations for the voxel i in

the j-th atlas composed of the registered labelmaps of the rest of atlases.
This is indicated by the blue panel in Figure 3.1. We compute the confidence
at each voxel by maximizing the following joint likelihood:

ĉ = arg max
c
f (f , d|c)

= arg max
c

∏
k

f (d|fk, c) f (fk|c) , (3.7)
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where fk ∈ f . We discard the second term in the product since we assume
that target labels are only affected by the confidence parameters in the pres-
ence of an atlas. Taking the logarithm and substituting the atlas likelihood
term by its expression in Eq. (3.6) yields:

ĉ = arg max
c

∑
k

log f (d|fk, c)

= arg max
c

∑
fk=d

log c+
∑
fk 6=d

log (1− c) . (3.8)

Taking derivatives, the optimal confidence is

c =
nh

nh + nm
, (3.9)

where nh and nm are the number of coincident target labels (hits) and
different target labels (misses), respectively, from the atlas label. This
defines our naive approach. When all atlases are used to compute the
confidences, this approach yields similar results to MV. Note that Eq. (3.7)
is the analogue of the M-step in STAPLE-based approaches. However, we
are using solely the training atlases and no estimation of the true hidden
segmentation is considered, as opposed to (Asman and Landman, 2012).

Nevertheless, we further believe that local image appearances provide valu-
able clues for estimating this confidence. Therefore, we extend the previous
naive method by substituting the constant confidence in Eq. (3.6) by a more
complex function informed by the image appearances, as follows:

f (Dij |Fi = s, Cij) =

{
Cij (ti,aij) if Dij = s
1− Cij (ti,aij) otherwise,

(3.10)

where ti and aij are image appearance features extracted around voxel i
from the target atlas image and the j-th atlas respectively. Cij (·) is a
function denoting the confidence we have that the atlas label is correct
given the target and atlas image appearances (as shown in the green panel
in Figure 3.1). By using image appearances, we can effectively capture the
effects of registration errors on modeling such confidence. Again, our goal
is to compute such function as to maximize the joint probability of each
atlas observation given the training set. Using a similar development as in
the naive case, we arrive at the following expression:

Ĉ = arg max
C

∑
fk=d

C (tk,a)−
∑
fk 6=d
C (tk,a) , (3.11)
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where tk and a denote the local image appearances of the k-th target train-
ing sample and atlas in the training set, respectively.

In the testing stage, given a new target image T , it is first warped to each
of the atlases in the training set. Then, SCMs are computed using the
confidence functions of Eq. (3.11) based on intensity information from both
the target, T , and the atlases, A. Next, SCMs and their corresponding
atlas labelmaps, D, are transformed back to the target space. Finally, we
compute the label fusion using Eq. (3.1), as shown in the red panel of
Figure 3.1.

3.3.2.1 Training

Expression (3.11) corresponds to the minimization of an empirical error
subject to the constraint that the computed function must be a probability
density function. For this purpose, we consider a learning-based approach
to build voxel-wise classifiers as our confidence estimators. Note that we
segment each structure separately, thus using binary classifiers. In order to
explain the procedure to create the samples used to train each voxel-wise
classifier, let us assume the simple case of one-to-one correspondences. For
each training atlas (in its native space), classifiers are built for each voxel.
Consider an atlas A ∈ A in its native space and a target atlas W ∈ A\{A}
warped to A. For the i-th voxel, let ai and wi respectively represent the
patches of atlas A and the warped target atlas W , with corresponding labels
dai and dwi . That is, the pair:

1. (ai, d
a
i ) represents the patch and label of the i-th voxel in atlas A.

2. (wi, d
w
i ) represents the patch and label of the i-th voxel in the target

atlas W .

These 2 pairs are used to create a single training sample (xi, yi) correspond-
ing to atlas W for the i-th classifier of atlas A as follows:

• For the features, we use a patch-based approach. The feature vector,
xi, consists on the intensity difference between the atlas patch and
the patch from the target:

xi = ai − wi.
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• The class label (i.e., the label used to train our classifiers), yi, is built
from the atlas labels (i.e., the voxel labels, dai and dwi ) and corre-
sponds to the segmentation error produced by the atlas (i.e., A) when
segmenting the target (i.e., W ), and is defined as:

yi = δ(dai , d
w
i ),

where δ(·, ·) is the Kronecker delta function. If dai and dwi are equal,
then yi is 1, and 0 otherwise. In other words, the class label (or the
ground truth during training) tells us if atlas A correctly segments
atlas W (yi = 1) or not (yi = 0) at the i-th voxel.

Given N training atlases in our database, in this simple case of one-to-
one correspondences, the number of training samples used to train the i-th
classifier of atlas A is N − 1, where each sample is built from atlas A and
each of the remaining N−1 warped atlases W . Therefore, the i-th classifier
of atlas A attempts to learn from all the xi what are the patterns of intensity
differences that lead atlas A to produce correct or erroneous labels, based
on the rest of training atlases.

In the test stage, when a novel to-be-segmented image arrives, it is trans-
formed to the spaces of all training atlases. Given the test image T warped
to the space of atlas A and the patch ti of the test image at the i-th voxel.
The patch difference ai - ti is fed to the classifier, which will predict how
likely is the label of atlas A at voxel i (i.e., dai ) to be the correct label for ti.
The higher the predicted probability by the classifier, the more likely is the
test patch to have a similar label to atlas A. This is what we interpret as
confidence in our label fusion. Once this has been done for all N training
atlases, we will have N label candidates for ti along with their predicted
confidences.

This is how confidences are estimated with Eq. (3.11). Note that in the
naive case, according to Eq. (3.9), the optimal confidence is equal to the
proportion of correct labels in the training set. We do not use the feature
vectors xi, just generate the class labels, yi, to compute this confidence,
which tells us how good is the label dai of atlas A in segmenting the rest of
training atlases W .

Instead of using simple one-to-one correspondences, we adopt two different
spatial pooling strategies to build the training set for each voxel-wise classi-
fier: 1) non-local means approach in the target space and 2) non-local means
approach in both atlas and target spaces. In the following we describe both
approaches in detail.
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3.3.2.2 Non-local means approach in target space

Here we use one-to-many correspondences. Given voxel i in the atlas space
A, whose patch ai is represented as the blue box in Figure 3.2, we used
its label, dai , to segment all voxels within a neighborhood window in the
warped atlas W , Sw(i). This is illustrated in Figure 3.2 as a red box in the
target atlas. The features and labels for A and a given warped atlas W are
extracted as follows:

xj = ai − wj , ∀j ∈ Sw(i),

yj = δ(dai , d
w
j ), ∀j ∈ Sw(i).

The advantage of this approach is twofold: 1) there are more samples to
learn the voxel-wise classifiers than in the one-to-one correspondences case,
and 2) confidence estimators are more robust as they are trained to take
into account larger registration errors (i.e., all patches in the neighborhood
window of W at the i-th voxel). The number of samples created to train the
classifier is (N −1)×|Sw(i)|, where | · | denotes the size of the neighborhood
window (e.g., for a 3 × 3 × 3 neighborhood window, each warped atlas W
contributes with 27 samples.)

Figure 3.2: Non-local means approach in target space. The blue box represents the patch
around the i-th voxel in the atlas space A. The red box in the target space W represents
the window search from which we extract all patches.

3.3.2.3 Non-local means approach in target and atlas spaces

This is an extension of the previous point to have many-to-many corre-
spondences. Here, instead of using a single voxel i in the atlas space A to
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segment the target W , we take into consideration all voxels in its neighbor-
hood, Sa(i) (depicted in Figure 3.3 as a green box), and then use k-nearest

neighbors to select the voxel label of the most similar atlas patch ak̂i , corre-
sponding to a given target patch, (see arrow labeled best:N in Figure 3.3).
The samples created from A and a particular target atlas W are defined as:

xj = ak̂i − wj , ∀j ∈ Sw(i),

yj = δ(dak̂i , d
w
j ), ∀j ∈ Sw(i),

with k̂ indexing the atlas patch most similar to wj :

k̂ = arg max
k∈Sa(i)

sim(ak, wj),

where sim denotes a similarity measure (e.g., cosine similarity). In this
way, segmentation errors produced by atlas A are based on appearance
information. In fact, the voxel-wise classifiers in this case are built upon
a similarity-based approach, therefore, learning not only the appearance
patterns that lead the current atlas A to mislabel the remaining target
atlases, but also the behavior of the similarity measure in segmenting the
target patches. Furthermore, using many-to-many correspondences without
k -nearest neighbors to construct the datasets for our confidences estimators
will make training computationally expensive given that we learn voxel-wise
classifiers. The number of samples used to train the classifiers is the same as
in the one-to-many correspondences, being the only difference that the atlas

patch ak̂i in this case is not fixed but the most similar among all patches
in Sa(i) to the target patch, wj . At test time and for the i-th voxel, given
a test patch ti, the most similar patch and its label from atlas A to ti are

Figure 3.3: Non-local means in both spaces. The green box represents the window search
from which the best (i.e., most similar) patch is selected for each patch in the target atlas
W (red box in target atlas).
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selected. The classifier then predicts the confidence of this label (i.e., the
label corresponding to the most similar patch in A) in correctly segmenting
ti based on the patch difference.

3.3.2.4 Label-dependent feature extraction

In patch-based approaches, the simplest way to represent local features is to
use a cubic patch around the voxel of interest, as stated in subsection 3.3.2.1.
Here, to fully take advantage of our learning-based confidence estimators,
we propose to use additional features based on the atlas labelmap. This
contribution uses the label patch of atlas A to extract label-dependent fea-
tures from the warped images W . As illustrated in Figure 3.4, given the
label patch of the atlas A around the i -th voxel, we identify the target voxels
corresponding to foreground and background regions (in the case of binary
segmentation) and compute different summary statistics. Finally, the dif-
ference between foreground and background features is calculated and the
resulting features are appended to the intensity patch.

Figure 3.4: Label-dependent feature extraction.

With our label-dependent features, we attempt to characterize the intensity
distributions of the target patches according to a given atlas label patch.
In principle, it is expected that background voxels would exhibit a different
intensity distribution when compared to foreground voxels since they do
belong to different structures. Therefore, the more accurate the atlas label
patch is in segmenting the target patches, the larger the features difference
would be between these regions.

3.4 Experiments

In this section, we present the evaluation of our proposed approach and
provide a comparison of its performance with state-of-the-art MAS methods
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on the segmentation of adult subcortical brain structures and fetal brain
tissues.

3.4.1 Data and preprocessing

The proposed approach was evaluated on 3 brain MRI datasets:

1. MICCAI 2013 SATA Challenge dataset1: This dataset is composed
of 35 T1-weighted MR images of control subjects with age ranging
from 19 to 90 years (32.4 years old in average). The size of the im-
ages is 256 × 256 × 287 with a spatial resolution of 1 mm isotropic.
Ground-truth segmentations are available for 7 subcortical structures:
accumbens, amygdala, caudate, hippocampus, pallidum, putamen and
thalamus proper.

2. ADNI dataset2: We used a subset of 135 T1-weighted MR images (44
normal controls, 46 subjects with mild cognitive impairment and 45
with Alzheimer’s disease). The age distribution is: 40 between 60-70
years, 55 between 70-80 years and 40 with more than 80 years. The
size of the images is 197×233×189 with a voxel size of 1×1×1 mm.
In this dataset, ground-truth segmentations are only available for the
hippocampi.

3. Fetal brain dataset: We used 32 subjects from a cohort within a re-
search project on congenital isolated ventriculomegaly. Ages of the
included subjects range between 26 to 29.3 gestational weeks. T2-
weighted MR imaging was performed on a 1.5-T scanner (SIEMENS
105 MAGNETOM Aera syngo MR D13; Munich, Germany) with a
8-channel body coil. All images were acquired without sedation and
following the American college of radiology guidelines for pregnancy
and lactation. Half Fourier acquisition single shot turbo spin echo
(HASTE) sequences were used with the following parameters: echo
time of 82 ms, repetition time of 1500 ms, number of averaging =
1, 2.5 mm of slice thickness, 280 × 280 mm field of view and voxel
size of 0.5× 0.5× 2.5 mm. For each subject, multiple orthogonal ac-
quisitions were performed: 4 axial, 2 coronal and 2 sagittal stacks.
Brain location and extraction from 2D slices was carried out in an

1https://masi.vuse.vanderbilt.edu/workshop2013
2adni.loni.usc.edu
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automatic manner using the approach by Keraudren et al. (2014), fol-
lowed by high-resolution 3D volume reconstruction using the method
by Murgasova et al. (2012). Ground-truth segmentations were ob-
tained for the following tissues and structures: cerebro-spinal fluid
(CSF), cortical gray matter (CoGM), white matter (WM), lateral
ventricles (LV), cerebellum (CB) and brainstem (BS). To obtain the
ground-truth structures, first, 4 subjects were manually segmented by
two expert raters. Then, the remaining subjects were segmented using
the automatic method by Sanroma et al. (2016a) and the automatic
segmentations were manually corrected by the same expert raters.

Our method requires pairwise registrations since it needs to have each atlas
in the rest of the training spaces. However, to save computational time, all
images were registered to a common reference space (i.e., MNI152 template
for both SATA and ADNI datasets, and for the fetal brains, a custom tem-
plate built using the images in our dataset). Pairwise mappings were then
obtained by composing the transformation of the source atlas to the tem-
plate space and the inverse transformation from the template to the target
atlas. Furthermore, for image intensity to be consistent across atlases, all
images were normalized using histogram matching (Nyul et al., 2000).

3.4.2 Experimental Setup

We evaluated our method using the following configurations:

• Naive: the naive approach, where segmentation is based only on local
label statistics (i.e., voxel-wise label errors as priors).

• SCMNF: the SCM approach using one-to-many correspondences with
only patch intensities as features.

• SCMWF: similar to SCMNF but including label-dependent features.

• SCMNF2: the SCM approach based on many-to-many correspon-
dences with only patch intensities as features.

• SCMWF2: similar to SCMNF2 but including label-dependent fea-
tures.
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For comparison, we considered the following state-of-the-art methods: MV,
local weighted voting with inverse similarity metric (LWV) (Artaechevarria
et al., 2009), STAPLE, STEPS and joint label fusion (JOINT) (Wang et al.,
2013).

The summary statistics we used as label-dependent features for SCMWF
and SCMWF2 in the experiments were: mean, maximum and minimum
intensities, and the center of mass of each region. Regarding the classifiers
used for our confidence estimators, we used logistic regression. For SCMNF2
and SCMWF2, the similarity measure used to select the best atlas patch is
cosine similarity:

cos(xi, xj) =
xi · xj

||xi|| · ||xj ||
.

No parameter tuning was performed for the experiments. We used the
default values for all methods, except for the radius of the patch and window
search that was set to 1 (i.e., a patch and window search size of 3× 3× 3).
For logistic regression, the penalty parameter C was set to 1.

For SATA and fetal datasets, a 3-fold cross-validation procedure was used
in our evaluation strategy, and for ADNI, 35 atlases were selected for train-
ing and the remaining 100 for test. The 35 training atlases were selected
in order to span the space of all images using spectral clustering based
on normalized correlation. For quantitative comparison, we used the Dice
similarity coefficient (Dice, 1945), determined as follows:

D(A,B) =
2|A ∩B|
|A|+ |B|

,

where A and B are the reference and automatic segmentations, respectively,
and the modified Hausdorff distance (MHD) (Dubuisson and Jain, 1994),
defined as:

MHD(S, T ) = max(d(S, T ), d(T, S)),

where S and T are the sets of voxels in the boundary of A and B respectively,
and d is a directed distance measure between the first and the second sets
based on Euclidean distance. MHD is reported in mm throughout the whole
article. Statistical significance is measured using the Wilcoxon signed rank
test and is reported at p < 0.05.

Finally, in order to assess the robustness of our approach to registration
failures, all experiments were replicated using three different registrations
settings:
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1. AF: Affine registration,

2. NR1: Affine followed by a non-rigid registration at a coarse scale using
the symmetric diffeomorphic mapping (SyN) proposed by Avants et al.
(2008). Non-rigid registration was done in a multi-resolution fashion
using a regular grid with control point spacings of 8 and 4 mm, and

3. NR2: Affine followed by a finer non-rigid registration (NR2) using
SyN. Non-rigid registration was done in a multi-resolution fashion
using a regular grid with control point spacings of 8, 4, 2 and 1 mm.

3.4.3 Implementation and computational complexity

Our method was implemented in Python using the logistic regression Python
wrapper provided by Scikit-learn (Pedregosa et al., 2011) for the liblinear
library (Fan et al., 2008). For STAPLE and STEPS, we used the imple-
mentations distributed in the NiftySeg3 software package. For JOINT, the
implementation shipped with the ANTs4 package was used.

Experiments were executed on a PC running 64bit Ubuntu Linux 14.04 LTS
with a system configuration Intel(R) Core(TM) i7-4790 CPU (3.60GHz) x
8 with 32 GB of RAM.

Execution times required by our offline learning vary depending on the size
of the structure (i.e, number of voxel-wise classifiers) and the use of label-
dependent features. To reduce the runtimes, learning was not performed for
voxels where all the atlases were in consensus (i.e., same label). Training
our confidence estimators for the accumbens, for instance, took around 3
and 12 minutes for SCMNF2 and SCMWF2, respectively. For SCMNF and
SCMWF, learning took approximately 3 and 10 minutes. At test time, all
versions of our method produced segmentations for the accumbens in less
than 2 seconds, similarly to the rest of the methods, except JOINT that
took around 10 seconds. For one of the largest structures, the hippocampus
in the ADNI dataset, segmentation took around 4 seconds for SCMNF, 6
seconds for SCMNF2, and 12-15 seconds for SCMWF and SCMWF2. For
MV, the Naive approach and STAPLE, segmentation took around 2 seconds.
Segmentation times for STEPS and LWV were less than 5 seconds and for
JOINT took around 20 seconds.

3http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg
4https://stnava.github.io/ANTs

54

http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg
https://stnava.github.io/ANTs


SATA ADNI
Acc Amy Cau Hip Pal Put Tha Hip

MV 0.777±0.052 0.799±0.038 0.826±0.096 0.831±0.037 0.882±0.027 0.920±0.019 0.908±0.026 0.767±0.049
Naive 0.779±0.052 0.799±0.038 0.828±0.096 0.830±0.037 0.886±0.027 0.920±0.019 0.912±0.026 0.768±0.049
STAPLE 0.767±0.064 0.797±0.041 0.819±0.103 0.828±0.036 0.877±0.027 0.915±0.018 0.904±0.027 0.768±0.058
STEPS 0.768±0.075 0.797±0.044 0.822±0.105 0.832±0.042 0.882±0.029 0.919±0.018 0.908±0.028 0.799±0.043
LWV 0.784±0.053 0.802±0.037 0.863±0.075 0.843±0.030 0.881±0.027 0.919±0.018 0.914±0.022 0.796±0.045
JOINT 0.799±0.039 0.827±0.024 0.888±0.068 0.871±0.021 0.888±0.027 0.926±0.018∗ 0.923±0.014 0.860±0.037
SCMNF 0.792±0.049 0.812±0.030 0.902±0.051 0.867±0.016 0.885±0.024 0.923±0.026 0.925±0.011 0.844±0.035
SCMWF 0.805±0.047 0.818±0.033 0.905±0.049 0.871±0.016 0.886±0.026 0.923±0.024 0.924±0.010 0.850±0.039
SCMNF2 0.808±0.047 0.825±0.032 0.906±0.042 0.872±0.018 0.885±0.028 0.922±0.021 0.923±0.013 0.853±0.038

SCMWF2 0.811±0.044∗ 0.830±0.028 0.907±0.040† 0.877±0.015∗ 0.886±0.027 0.924±0.019 0.925±0.011 0.866±0.026

MV 0.255±0.078 0.234±0.061 0.235±0.229 0.224±0.107 0.125±0.032 0.085±0.026 0.109±0.046 0.329±0.139
Naive 0.310±0.080 0.256±0.062 0.249±0.225 0.238±0.099 0.134±0.031 0.091±0.028 0.110±0.043 0.361±0.139
STAPLE 0.267±0.094 0.236±0.062 0.248±0.250 0.228±0.110 0.129±0.032 0.090±0.025 0.115±0.050 0.279±0.098
STEPS 0.255±0.099 0.230±0.064 0.245±0.256 0.223±0.124 0.123±0.034 0.085±0.025 0.110±0.051 0.243±0.083
LWV 0.226±0.062 0.224±0.056 0.199±0.284 0.183±0.060 0.124±0.032 0.085±0.026 0.099±0.044 0.249±0.139
JOINT 0.208±0.055 0.194±0.036 0.153±0.201 0.154±0.047 0.118±0.033 0.077±0.026 0.087±0.024 0.178±0.094
SCMNF 0.213±0.058 0.198±0.045 0.151±0.232 0.150±0.037 0.119±0.032 0.077±0.026 0.085±0.026 0.184±0.101
SCMWF 0.212±0.057 0.197±0.045 0.149±0.228 0.148±0.036 0.119±0.032 0.077±0.025 0.084±0.024 0.180±0.098
SCMNF2 0.206±0.056 0.192±0.044 0.150±0.223 0.149±0.038 0.117±0.031 0.078±0.024 0.086±0.030 0.182±0.093
SCMWF2 0.204±0.055∗ 0.190±0.043 0.142±0.202 0.145±0.034∗ 0.117±0.031 0.077±0.023 0.084±0.027 0.171±0.083∗

Table 3.1: Subcortical structure segmentation. Mean Dice scores (top entries) and MHD (bottom entries) per structure, averaged left and right.
Results obtained using the non-rigid registration NR2. Bold type indicates the best segmentation performance in terms of Dice overlap or MHD.
The ∗ symbol indicates statistical significance difference with all remaining methods, and † indicates statistical significance difference with all
methods except SCMNF2 or SCMWF2. Abbreviations: accumbens (Acc), amygdala (Amy), caudate (Cau), hippocampus (Hip), pallidum
(Pal), putamen (Put) and thalamus proper (Tha).



Fetal
BS CB CSF CoGM LV WM

MV 0.940±0.006 0.955±0.004 0.939±0.024 0.874±0.037 0.910±0.020 0.967±0.013
Naive 0.945±0.005 0.958±0.004 0.941±0.023 0.875±0.035 0.912±0.019 0.967±0.013
STAPLE 0.950±0.005 0.961±0.005 0.944±0.023 0.887±0.037 0.922±0.031 0.970±0.013
STEPS 0.949±0.005 0.960±0.005 0.942±0.023 0.885±0.037 0.922±0.025 0.970±0.013
LWV 0.950±0.006 0.963±0.005 0.949±0.020 0.894±0.031 0.932±0.022 0.973±0.011
JOINT 0.943±0.005 0.961±0.005 0.948±0.020 0.898±0.022 0.930±0.029 0.974±0.010
SCMNF 0.949±0.006 0.963±0.005 0.952±0.019 0.902±0.027 0.936±0.024 0.976±0.010
SCMWF 0.948±0.006 0.963±0.005 0.952±0.019 0.903±0.026 0.935±0.024 0.976±0.010
SCMNF2 0.946±0.006 0.964±0.005 0.952±0.019 0.903±0.024 0.940±0.024 0.975±0.010
SCMWF2 0.946±0.005 0.964±0.005 0.953±0.019 0.905±0.025? 0.935±0.027 0.976±0.010

MV 0.046±0.005 0.036±0.012 0.065±0.055 0.127±0.092 0.074±0.019 0.033±0.025
Naive 0.042±0.004 0.034±0.012 0.065±0.054 0.127±0.090 0.076±0.018 0.033±0.025
STAPLE 0.038±0.005 0.032±0.012 0.060±0.055 0.118±0.093 0.065±0.029 0.031±0.026
STEPS 0.039±0.005 0.032±0.011 0.062±0.055 0.118±0.093 0.065±0.022 0.031±0.026
LWV 0.038±0.005 0.031±0.012 0.049±0.041 0.098±0.066 0.054±0.019 0.026±0.018
JOINT 0.044±0.005 0.032±0.012 0.050±0.042 0.090±0.048 0.055±0.024 0.024±0.016
SCMNF 0.039±0.005 0.030±0.012 0.046±0.039 0.089±0.057 0.051±0.022 0.023±0.017
SCMWF 0.040±0.005 0.030±0.012 0.046±0.039 0.089±0.055 0.052±0.022 0.023±0.017
SCMNF2 0.041±0.005 0.030±0.012 0.047±0.040 0.088±0.056 0.048±0.021 0.024±0.018
SCMWF2 0.041±0.005 0.030±0.012 0.046±0.041 0.087±0.055? 0.052±0.026 0.023±0.018

Table 3.2: Fetal brain tissue segmentation. Mean Dice scores (top entries) and MHD (bottom entries) per tissue. Results obtained
using the non-rigid registration NR2. Bold type indicates the best segmentation performance in terms of Dice overlap or MHD. The ∗
symbol indicates statistical significance difference with all remaining methods.



3.4. experiments

3.4.4 Results

Tables 3.1 and 3.2 report segmentation performance of all tested approaches
for each structure or tissue, in terms of Dice and MHD, in both adult (i.e.,
SATA and ADNI) and fetal MRI databases, respectively. These results cor-
respond to NR2 registration (i.e., finer non-rigid registration), with which
all methods provided the best segmentations. Segmentation results corre-
sponding to AF and NR1 registrations are included in Appendix A.

The performance of our Naive approach is similar in both Dice overlap and
MHD to MV. In fact, when all atlas labelmaps are used to compute the con-
stant confidence in Eq. (3.6), it is equivalent to MV, being the additional
transformations between atlas spaces the only difference. We should expect
better segmentation results when using pairwise registration, because, in the
conducted experiments, target images were only registered to the common
space. STAPLE did not show superior performance in the segmentation
of adult subcortical structures over our Naive approach and MV with this
registration setting, although small improvements are observed on the fetal
dataset, where STAPLE produced the best segmentations for the brainstem.
The other STAPLE-based approach used in this comparison (i.e., STEPS)
showed practically no difference in performance with STAPLE in the fetal
brains. In the adult datasets, STEPS yielded slightly better results than
the aforementioned methods, especially in the hippocampi from the ADNI
dataset. Furthermore, STEPS was outperformed by LWV in the segmenta-
tion results of all structures except the pallidum and the hippocampus from
ADNI.

With the exception of STEPS in the SATA dataset and LWV in the ADNI
dataset, we can observe a clear dichotomy in performance across all sub-
cortical structures, as reported in Table 3.1, between approaches ignoring
image intensity (i.e., MV, Naive and STAPLE) and the rest of methods
using appearance information. We can already see a quantitative increase
in Dice overlap and a decrease in MHD with LWV and STEPS. However,
JOINT and the four versions of our approach provided the most accurate
segmentations, with statistically significant improvement in all structures
over MV, Naive, STAPLE and STEPS. In the fetal dataset, although this
dichotomy is less notable with this registration setting, a considerable in-
crease in performance is observed when using AF and NR1 registration
configurations (see Tables A.3 and A.4).

Comparing the different intensity-based configurations of our approach, in
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Figure 3.5: Sagittal view and 3D rendering of right hippocampus segmentations for a
randomly chosen image from the database. Green and red depict manual and automatic
segmentations respectively. Overlap between automatic segmentation and ground truth
is shown in blue.

the adult datasets, SCMNF outperformed LWV and STEPS, but the consid-
erable boost in performance was due to the inclusion of the label-dependent
features in SCMWF, which reached an overall Dice score and MHD com-
parable to JOINT (see Table 3.3). Still, when adopting the many-to-many
correspondences to learn the confidence estimators, segmentation results
with our novel approaches (i.e., SCMNF2 and SCMWF2) were better than
their original analogue versions. In fact, SCMNF2 produced similar Dice
overlaps and MHD to SCMWF without using label-dependent features. In
SCMWF2, the inclusion of these has further improved the segmentation
results in all structures according to Dice overlap, as shown in Table 3.1.
In terms of MHD, SCMWF2 was outperformed by SCMWF in the tha-
lamus proper, though the difference is minuscule. Dice overlaps achieved
by SCMWF2 were statistically higher than the rest of methods in the ac-
cumbens and hippocampus, and in the caudate results were statistically
significant except for SCMNF2. For MHD, SCMWF2 was statistically bet-
ter than all methods in the accumbens and the hippocampi from both adult
datasets. Figure 3.5 shows an example of caudate segmentations for all the
different approaches. Regarding the fetal dataset, we can observe no im-
portant performance differences between the four intensity-based versions
of our proposed approach.

Table 3.3 summarizes the global performance for all three registrations set-
tings in the segmentation of adult subcortical structures. In terms of over-
all mean Dice overlap for NR2 registration, our Naive approach (0.850)
and MV (0.849) outperformed STAPLE (0.844), while our Naive approach
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SATA ADNI
AF NR1 NR2 AF NR1 NR2

MV 0.737±0.083 0.808±0.056 0.849±0.042 0.635±0.068 0.693±0.055 0.767±0.049
Naive 0.737±0.083 0.808±0.056 0.850±0.042 0.632±0.068 0.694±0.055 0.768±0.049
STAPLE 0.738±0.084 0.815±0.062 0.844±0.045 0.670±0.072 0.711±0.065 0.768±0.058
STEPS 0.746±0.086 0.827±0.033 0.847±0.049 0.733±0.058 0.763±0.048 0.799±0.043
LWV 0.767±0.078 0.847±0.047 0.858±0.037 0.710±0.065 0.748±0.051 0.796±0.045
JOINT 0.855±0.046 0.872±0.034 0.875±0.030 0.835±0.043 0.853±0.031 0.860±0.037
SCMNF 0.844±0.048 0.866±0.032 0.872±0.030 0.811±0.039 0.833±0.034 0.844±0.035
SCMWF 0.849±0.046 0.869±0.030 0.876±0.029 0.818±0.040 0.838±0.037 0.850±0.039
SCMNF2 0.857±0.042 0.871±0.030 0.877±0.028 0.832±0.039 0.848±0.037 0.853±0.038
SCMWF2 0.865±0.037∗ 0.874±0.029 0.880±0.026 0.843±0.038∗ 0.856±0.036 0.866±0.026

MV 0.383±0.207 0.238±0.102 0.181±0.083 0.573±0.247 0.439±0.166 0.329±0.139
Naive 0.410±0.207 0.255±0.096 0.198±0.081 0.622±0.257 0.476±0.167 0.361±0.139
STAPLE 0.383±0.213 0.245±0.112 0.188±0.089 0.475±0.177 0.379±0.124 0.279±0.098
STEPS 0.357±0.209 0.235±0.119 0.182±0.093 0.358±0.130 0.300±0.098 0.243±0.083
LWV 0.263±0.167 0.190±0.092 0.163±0.080 0.368±0.209 0.299±0.161 0.249±0.139
JOINT 0.185±0.118 0.145±0.070 0.142±0.060 0.237±0.121 0.188±0.099 0.178±0.094
SCMNF 0.189±0.112 0.148±0.064 0.142±0.065 0.244±0.119 0.205±0.104 0.184±0.101
SCMWF 0.185±0.109 0.146±0.062 0.141±0.064 0.237±0.114 0.200±0.100 0.180±0.098
SCMNF2 0.180±0.103 0.145±0.063 0.140±0.064 0.235±0.113 0.200±0.095 0.182±0.093
SCMWF2 0.172±0.093∗ 0.141±0.056 0.137±0.059 0.212±0.093∗ 0.184±0.082∗ 0.171±0.083∗

Table 3.3: Subcortical structure segmentation. Overall mean Dice scores (top entries) and MHD (bottom entries) per database for each
registration setting. Bold type indicates the best segmentation performance in terms of Dice overlap or MHD. The ∗ symbol indicates
statistical significance difference with all remaining methods.
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offered higher MHD than STAPLE (0.198 and 0.188 mm for Naive and
STAPLE). Still, with AF and NR1 registrations, STAPLE segmentations
were better according to the evaluation measures. In STEPS, the benefit of
using intensity information to drive label fusion was manifested in a supe-
rior performance over STAPLE for all registration settings, with 0.8%, 1.2%
and 0.3% improvements in Dice overlap for AF, NR1 and NR2 registrations,
respectively. Furthermore, STEPS also outperformed LWV in the segmen-
tation of the hippocampi from ADNI, although LWV segmentations in the
SATA dataset were better than segmentations from STEPS for all regis-
tration configurations. In the fetal dataset, as shown in Table 3.4, STEPS
outperformed MV and our Naive approach in all registration settings, while
STAPLE showed a 0.1% improvement in Dice overlap over STEPS only
with NR2. LWV produced considerably better segmentations than STEPS
in both Dice and MHD, with 4.9%, 4.4% and 0.6% improvements in Dice
overlap for AF, NR1 and NR2 registrations, respectively.

Regardless of the registration setting, we have to emphasize the results of
four methods: JOINT, SCMWF, SCMNF2 and SCMWF2. They all pro-
duced very robust segmentations, although with some distinctions. For the
NR2 registration, as illustrated in Table 3.1, our SCMWF2 approach yielded
the highest Dice scores with 1.2%, 1.9%, 0.6% increase over JOINT in the
accumbens, caudate and hippocampus (in both adult datasets) respectively.
In the fetal dataset, SCMWF2 provided improvements of 0.5% and 0.7%
over JOINT in CSF and CoGM. In fact, JOINT outperformed none of our
methods in the segmentation of fetal brain tissues, whereas, in the adult
brains, it showed superior performance in pallidum and putamen according
to Dice, although the improvements are minor (i.e., 0.2% in both struc-
tures) and not manifested in terms of MHD. SCMWF2 achieved the best
MHD in all adult subcortical structures except in the thalamus proper,
where SCMWF provided the lowest distances. In the fetal dataset, with
the exception of the brainstem, the lowest MHD were achieved, depend-
ing on the tissue of interest, by SCMWF, SCMNF2 or SCMWF2. Overall,
SCMWF2 showed the best performance in the adult datasets for all reg-
istration settings, as shown in Table 3.3, while for the fetal dataset, the
best results were provided by SCMNF2 or SCMWF2 (see Table 3.4). In
all datasets, SCMWF2 was statistically superior in both Dice and MHD to
JOINT when using the AF registration setting. In ADNI, SCMWF2 also
showed significantly lower MHD when using NR1 and NR2.

Most noteworthy is that when using coarse registrations, such as AF, Dice
scores of SCMWF2 were 1%, 0.8% and 1.5% superior to JOINT in SATA,
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Fetal
AF NR1 NR2

MV 0.804±0.042 0.851±0.028 0.931±0.017
Naive 0.803±0.042 0.850±0.028 0.933±0.017
STAPLE 0.797±0.047 0.850±0.035 0.939±0.019
STEPS 0.830±0.037 0.864±0.031 0.938±0.018
LWV 0.879±0.033 0.908±0.020 0.944±0.016
JOINT 0.919±0.023 0.933±0.013 0.942±0.015
SCMNF 0.926±0.022 0.937±0.014 0.946±0.015
SCMWF 0.928±0.021 0.938±0.013 0.946±0.015
SCMNF2 0.929±0.022 0.941±0.013 0.947±0.015
SCMWF2 0.934±0.019? 0.940±0.014 0.947±0.015

MV 0.193±0.059 0.138±0.036 0.064±0.035
Naive 0.194±0.059 0.140±0.036 0.063±0.034
STAPLE 0.205±0.062 0.141±0.043 0.057±0.037
STEPS 0.154±0.044 0.120±0.037 0.058±0.035
LWV 0.111±0.043 0.078±0.024 0.049±0.027
JOINT 0.071±0.032 0.055±0.016 0.049±0.025
SCMNF 0.064±0.030 0.052±0.017 0.047±0.025
SCMWF 0.063±0.029 0.051±0.016 0.047±0.025
SCMNF2 0.064±0.031 0.049±0.016 0.046±0.025
SCMWF2 0.056±0.023? 0.049±0.017 0.046±0.026

Table 3.4: Fetal brain tissue segmentation. Overall mean Dice scores (top entries) and
MHD (bottom entries) for each registration setting. Bold type indicates the best segmen-
tation performance in terms of Dice overlap or MHD. The ∗ symbol indicates statistical
significance difference with all remaining methods.

ADNI and fetal databases, respectively. While when using finer registra-
tions, as is the case of NR2, the improvement reduced to 0.5%, 0.6% and
0.5%. This demonstrates that our approach is more robust against regis-
tration failures when compared to the rest of methods. To better illustrate
the robustness of our approach, Figures 3.6 and 3.7 displays boxplots of
Dice and MHD for each structure or tissue and each registration setting,
comparing SCMWF2 and JOINT. As we can observe, the more accurate
the registration, the better the segmentations, and generally, the lower the
performance gap between both approaches.

3.5 Discussion

Our approach relies on the assumption that systematic segmentation errors
caused by registration failures are atlas-dependent, and therefore can be
diminished if the appearance patterns that lead to such errors are learned

61



discriminative confidence estimation for probabilistic mas

Figure 3.6: Boxplots of Dice and MHD for each subcortical structure from SATA and
ADNI datasets comparing SCMWF2 (orange) and JOINT (green).
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Figure 3.7: Boxplots of Dice and MHD for each tissue from our fetal dataset comparing
SCMWF2 (orange) and JOINT (green).

in each atlas space, taking into consideration the registration model. In
what follows, we present a methodological comparison with the state of the
art, and discuss the strengths and weaknesses of the proposed approach.

3.5.1 Learning from segmentation errors

There is a few number of works in the MAS literature that approach la-
bel fusion considering segmentation errors. The concepts of atlas accuracy
map proposed in (Sdika, 2010) and reliability map proposed in (Wan et al.,
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2008) were computed by co-registering the training atlases. However, both
approaches ignored intensity information. Moreover, Wan et al. (2008) per-
formed label fusion only for voxels where the corresponding confidence was
superior to a predefined threshold, leaving unlabeled the rest of ambiguous
voxels. The main drawback of these approaches is that these maps are static
and may incur poor generalization if the target images are considerably dif-
ferent from the atlases in the training set. The risk of overfitting is also
present when using offline learning (Iglesias and Sabuncu, 2015). Nonethe-
less, our confidence estimators do take into account the target patch appear-
ance to compute the local confidences, and in the SCMNF2 and SCMWF2
versions we further select the most similar patch from the training atlases
prior to feeding the difference between the atlas and target patches to the
confidence estimator.

Supervised learning segmentation approaches existing in the literature (Bai
et al., 2015; Hao et al., 2014; Sdika, 2015) learn directly from the labels,
gathering the patches from the different atlases to train their classifiers. To
the best of our knowledge, the method proposed by Wang et al. (2011a) is
the only work that shares similarities with our approach in that both meth-
ods learn from segmentation errors instead of labels. However, the wrapper
method learns the disagreements between the segmentation produced by
a particular host method and the ground truth segmentation in the space
of the target images. Whereas in our case, we learn local confidence pa-
rameters for each atlas individually as part of a probabilistic label fusion
framework.

3.5.2 The benefit of intensity in segmentation accuracy

As already shown in subsection 3.4.4, incorporating intensity information
in the label fusion process grants superior performance with regard to the
rest of methods (e.g., MV and STAPLE). This is further emphasized by
the substantial performance gain of our SCM-based approaches over the
Naive method. Nevertheless, using solely intensity-based similarity, without
accounting for other factors, is not enough to provide the best segmenta-
tions, as illustrated by the performance gap between LWV and, for instance,
JOINT. This latter method uses a patch-based weighted voting approach
where weight assignment is based on modeling dependencies between pairs
of atlas patches and the target image, with the purpose of reducing the
confidence of correlated erroneous atlas votes. In our approach, weight
assignment accounts for the segmentation errors produced by each atlas
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after co-registering the remaining atlases. Besides, intensity samples used
for training the confidence estimators are augmented with label-dependent
features in the case of SCMWF and SCMWF2.

3.5.3 Similarity-based confidence estimation

Similarity-based approaches employ heuristic measures that may not be di-
rectly related to segmentation accuracy. Yet, these approaches (e.g., Coupé
et al., 2011) have demonstrated excellent results in MAS. Therefore, in
SCMNF2 and SCMWF2, a similarity-based approach is used in combina-
tion with supervised learning to build the confidence estimators. In SCMNF
and SCMWF, an atlas patch had a single static label (i.e., the correspond-
ing label of the central voxel from the expert segmentation). Segmentation
errors were then obtained by comparing this label to the labels of the target
atlases, disregarding any clue from the intensity patches. By adopting the
many-to-many correspondences scheme, we equipped the atlas with infor-
mation to decide what label from its surrounding neighborhood corresponds
to a particular target patch. Strictly speaking, segmentation errors here are
based on a specific similarity measure. Hence, what our confidence esti-
mators try to learn is not the segmentation errors as known in SCMNF
(and SCMWF), but the segmentation errors produced by an atlas through
employing this specific similarity measure.

This may seem computationally more costly than the procedure used in
SCMNF since we introduce an additional intermediate stage (i.e., k nearest
neighbors). Nonetheless, k nearest neighbors did not suppose an important
overhead and learning times were similar as mentioned in subsection 3.4.3.
Additionally, SCMNF2 demonstrated the benefits of this approach by yield-
ing segmentation results comparable to SCMWF, with SCMWF2 outper-
forming SCMWF in most structures. The proposed approach uses a simple
and fast classifier (i.e., logistic regression). In the state of the art, existing
MAS approaches used SVM (Bai et al., 2015; Hao et al., 2014; Sdika, 2015)
and random forest (Wang et al., 2014b) to learn their local classifiers. For
example, the learning-based approach proposed by Bai et al. (2015) used
SVM with the radial basis function kernel. Thus, using a simpler model,
such as logistic regression in our case, can lead to reduced training times,
especially when thousands of local classifiers are to be learned.

The choice of the classifier, however, is not straightforward and is applica-
tion dependent. Its performance may depend on several factors including:
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image modalities, nature of the features, number of samples, etc. Given the
modularity of the proposed method, other supervised learning approaches
can be used to learn our confidence estimators. Deep learning, for instance,
is gaining an increasing interest in medical image analysis (Litjens et al.,
2017). In our case, with deep learning, we can take advantage of the 3D
nature of the image patches rather than representing the patches as feature
vectors (Cireşan et al., 2012; de Brébisson and Montana, 2015). Beyond
patch-based approaches, architectures such as the U-net proposed by Ron-
neberger et al. (2015), and its 3D extensions (Çiçek et al., 2016), can also
be used as global confidence estimators since they can take whole images as
input and output a classification for each pixel/voxel, which permits to take
into consideration larger contextual information for each voxel by analyzing
the images at multiple scales. Although more time-consuming than logistic
regression, this is a promising line of future work.

3.5.4 The effect of label-dependent features

By incorporating label-dependent features, results showed that both SCMWF
and SCMWF2 can produce state-of-the-art results. The benefits of using
additional features beyond patch intensity is well-demonstrated in (Asman
et al., 2015; Bai et al., 2015; Hao et al., 2014; Wang et al., 2011a). In (As-
man et al., 2015), 1009 dimensional feature vectors were used. Similarly,
high-dimensional vectors of 1003 features were used by Wang et al. (2011a).
For voxel-wise classifiers, Hao et al. (2014) used feature vectors of 379 ele-
ments and SVM with l1-regularization to select the sparsest solution from
all the possibly redundant features. In (Bai et al., 2015), 260-element sam-
ples were built from intensity, gradient and contextual features. In our
case, SCMNF and SCMNF2 used feature vectors of only 27 dimensions
(i.e., intensity patch of 3× 3× 3), whereas augmented feature vectors of 33
elements (i.e., 6 additional label-dependent features) were used in SCMWF
and SCMWF2. The informative power of the label-dependent features can
be observed in the considerable increase in performance of SCMWF with re-
spect to SCMNF, especially in the adult brain dataset. However, the boost
achieved by SCMWF2 with regard to SCMNF2 is not that large, except in
the segmentation of the hippocampus from the ADNI dataset, with 1.3%
increase in Dice. This is possibly due to the fact that we are reaching inter-
rater variability is some structures (e.g., thalamus proper). Moreover, more
compact segmentations were obtained by SCMNF2 than SCMWF2 for the
accumbens, pallidum, putamen and thalamus proper in terms of MHD for
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the NR2 registration, as shown in Table 3.1. In the fetal dataset, there is
no consistent difference in performance of SCMNF and SCMNF2 with their
label-dependent versions.

The idea of using information from the label patch was already used in (Wang
et al., 2011a) by appending to the feature vectors the segmentation labels
produced by the host method in the neighborhood of each voxel. However,
they just used the raw label patch as features. Our label-dependent feature
extraction procedure is different from all the aforementioned approaches.
Instead of predefined filters, we use the atlas label patch as a mask to com-
pute the difference between the features extracted from each region of the
intensity patch. This reduced number of features seemed to provide the
local classifiers with potential information to better discriminate between
correct and erroneous atlas patches.

Feature extraction is computationally expensive, especially when using the
non-local approach with voxel-wise classifiers. As reported in subsection 3.4.3,
offline learning took 3 minutes for SCMNF, with a runtime increase of
7 minutes for SCMWF when incorporating the label-dependent features.
Considering sample selection strategies may turn out advantageous to de-
crease computational cost. Bai et al. (2015), for instance, performed patch
selection to reduce such computations.

3.5.5 The influence of outliers

Target images that highly deviate from the anatomies in the training set
have a negative impact in registration, giving rise to misaligned structures
(i.e., outliers). However, our approach has proven its robustness against
outliers since our proposed approach achieved the best segmentations with
the lowest Dice and MHD standard deviations for all registration settings
in both adult (see Table 3.3) and fetal (see Table 3.4) datasets. Moreover,
the similarity-based label fusion approaches used in the conducted experi-
ments (i.e., LWV and JOINT) seem to perform poorly in the segmentation
of outliers, as illustrated in Figure 3.8. This figure shows the caudate from
SATA and lateral ventricles from our fetal dataset with the worst segmen-
tations provided by all methods. For the lateral ventricles, Dice overlaps
produced by LWV, JOINT, SCMNF2 and SCMWF2 using AF registration
are 0.542, 0.630, 0.632 and 0.754 (0.779, 0.831, 0.842 and 0.841 for NR1
registration), respectively. For the caudate, the Dice scores achieved by
LWV, JOINT, SCMNF2 and SCMWF2 using AF registration are 0.150,
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Figure 3.8: Segmentation of outliers. Illustration of A) left caudate and B) lateral ven-
tricles automatic segmentations with the lowest Dice scores and largest MHD using NR1
and AF registrations, respectively. Green and red depict manual and automatic seg-
mentations respectively. Overlap is depicted in blue. For each structure, the first row
shows ground truth and automatic segmentations in coronal (caudate) and axial (lateral
ventricles) views. The second row shows the corresponding 3D renderings.

0.217, 0.396 and 0.417 (0.415, 0.486, 0.692 and 0.701 for NR1 registration),
respectively. Note that overlaps provided by all methods when using the
affine registration are below 0.5, and for NR1 registration both LWV and
JOINT Dice overlaps are below 0.5. We can observe that this is a clear
failure in registration caused by the enlarged ventricles next to the caudate.

In both cases, segmentation errors produced by the aforementioned similarity-
based approaches are mainly due to over-segmentation (i.e., red color). Es-
pecially important is the over-segmentation produced by identifying part of
the left ventricle as caudate, although there is great difference in intensity
because the ventricles have a lower intensity range. In case on the lateral
ventricles, the fetal dataset is composed of healthy controls and fetuses with
dilated ventricles, which might have misguided the fusion process to label
voxels in the periventricular regions as ventricle. This is further illustrated
by the Dice and MHD boxplots of the caudate and lateral ventricles in Fig-
ures 3.6 and 3.7, respectively. Note, however, that results shown in the
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boxplots corresponding to the subcortical structures do not coincide with
the Dice scores of this outlier because the boxplots were created by aver-
aging the results achieved for the left and right caudate. Our confidence
estimators seem to show more robustness in the presence of outlier patches.
Another clear impact of the presence of outliers in performance of JOINT
can be seen in the boxplots of the cerebellum, thalamus proper and the
hippocampus from ADNI, notably with the affine registration.

3.5.6 Robustness to registration failures

The claim of our work is that systematic segmentation errors due to regis-
tration can be substantially mitigated using the proposed approach. Thus,
we studied the effect of registration in segmentation results in order to asses
how segmentation performance evolves from using more coarse (i.e., AF) to
finer registrations (i.e., NR2). From the overall segmentation performance
reported in Tables 3.3 and 3.4 and boxplots in Figures 3.6 and 3.7, we can
conclude that our method is more robust to registration errors. With coarse
registrations, which are more prone to failures, our approach achieved the
largest performance increment compared to the rest of approaches. There-
fore, demonstrating to be robust to registration failures. Overall mean Dice
scores obtained by SCMWF2 with AF registration were lower (0.865 over-
lap in SATA, 0.843 in ADNI and 0.934 in our fetal dataset) than the ones
obtained with NR2 (0.880, 0.866 and 0.947). The same occurs with MHD,
with SCMWF2 providing larger distances (0.172 mm in SATA and 0.212
in ADNI and 0.056 in our fetal dataset) when using AF than the distances
achieved with NR2 (0.137, 0.171 and 0.046). This difference in the per-
formance of our approach between AF and NR2, could be substantially
reduced by taking advantage of the many-to-many correspondences scheme
and using larger patch and window search sizes, rather than the 3 × 3 × 3
size used in this work.

3.5.7 Limitations and future directions

The main limitation of our approach is that confidence learning is per-
formed for each training atlas, which makes it computationally expensive.
One possible way to lessen this computational burden is to restrict the
learning process to the most representative atlas spaces, for example, by
clustering the atlases and only learning in the centroid spaces. To further
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reduce computational time, although at the expense of sacrificing segmen-
tation accuracy, clustering can also be applied to learn considering groups
of neighboring voxels instead of using voxel-wise classifiers. On the other
hand, in this work, the size of intensity patches and search neighborhoods
used in both target an atlas spaces was set to 3 × 3 × 3 (i.e., radius of 1).
As future work, the impact of this parameter in segmentation accuracy can
be studied. Likewise, parameter tuning can be performed to find the best
value for the penalty parameter used in logistic regression. This parameter
can be optimized in a local manner for each of the voxel-wise classifiers or
for the whole structure.

The methods based on the many-to-many correspondences scheme yielded
very accurate results. Still, more work is required here to asses the effect of
the similarity metric and the strategy used to predict the label, considering
only the most similar patch or some heuristic weighting the patches contri-
bution to the final label. In the fetal dataset, our label-dependent features
did not provide a comparable boost in performance as in the segmentation
of the adult datasets. Thus, another direction of future work is to explore
different strategies to extract our label-dependent features or even adopt a
supervised approach to learn such features rather than using feature engi-
neering. Moreover, additional features as the ones used in (Bai et al., 2015;
Hao et al., 2014) could be considered. Finally, a very promising direction of
future work is to consider correlations between voxels and/or the votes of
the training atlases (Wang et al., 2014b). Voxel correlations are especially
important to produce compact segmentations and remove isolated regions,
as shown in Figure 3.8.

3.6 Conclusions

Registration failures constitute a potential source of systematic errors in
MAS. In this manuscript, we have proposed a probabilistic label fusion
framework that takes into consideration local atlas confidences at each point
by the estimation of the so-called spatial confidence maps. Given the na-
ture of our approach, we have also proposed a novel label-dependent feature
extraction that provided valuable information in the prediction of the confi-
dences. Systematic errors due to registration are accounted for during label
fusion since confidence learning is performed in atlas space. As opposed
to STAPLE-like approaches, this learning process is performed in an of-
fline manner using the available training atlases. Therefore, computational
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complexity at test time is comparable to the simplest approaches. Further-
more, incorporating neighborhood information in atlas space to compute
the segmentation errors rendered our approach more robust to registration
errors. Experimental results have shown that our approach yields supe-
rior performance to state-of-the-art approaches in the segmentation of fetal
brain tissues and the majority of subcortical brain structures.
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Abstract – In the field of multi-atlas segmentation, patch-based approaches
have shown promising results in the segmentation of biomedical images. In
the most common approach, registration is used to warp the atlases to the
target space and then the warped atlas labelmaps are fused into a consen-
sus segmentation based on local appearance information encoded in form of
patches. The registration step establishes spatial correspondence, which is
important to obtain anatomical priors. Patch-based label fusion in the tar-
get space has shown to produce very accurate segmentations although at the
expense of registering all atlases to each target image. Moreover, appearance
(i.e., patches) and label information used by label fusion is extracted from
the warped atlases, which are subject to interpolation errors. In this work,
we revisit and extend the patch-based label fusion framework, exploring the
role of extracting this information from the native space of both atlases and
target images, thus avoiding interpolation artifacts, but at the same time,
we do it in a way that it does not sacrifice the anatomical priors derived
by registration. We further propose a common formulation for two widely-
used label fusion strategies, i.e., similarity-based and a particular type of
learning-based label fusion. The proposed framework is evaluated on sub-
cortical structure segmentation in adult brains and tissue segmentation in
fetal brain MRI. Our results indicate that using atlas patches in their native
space yields superior performance than warping the atlases to the target im-
age. The learning-based approach tends to outperform the similarity-based
approach, with the particularity that using patches in native space lessens
the computational requirements of learning. As conclusion, the combina-
tion of learning-based label fusion and native atlas patches yields the best
performance with reduced test times than conventional similarity-based ap-
proaches.

This chapter is adapted from:
Benkarim O. M., Piella G., Hahner N., Eixarch E., González Ballester M. A., and Sanroma
G. Patch spaces and fusion strategies in patch-based label fusion. [Under review.]
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4.1 Introduction

Segmentation of brain magnetic resonance imaging (MRI) is an important
step for many neuroimaging studies. The strive for reproducibility and rea-
sonable runtimes of segmentations renders automatic labeling approaches
more appealing than manual segmentation. There is an important body of
literature concerning automatic segmentation of biomedical images that can
be categorized into supervised and unsupervised approaches. Atlas-based
segmentation falls in the former category in that it uses a set of atlases (i.e.,
images with their corresponding predefined labelmaps) to segment new im-
ages. Single atlas-based approaches employ a single atlas, which is registered
to the target image in order to find a mapping that is used to propagate
its labelmap to the target image. Nonetheless, single atlas-based segmen-
tation exhibits poor performance under the occurrence of registrations er-
rors and/or when the target image is different from the atlas. Multi-atlas
segmentation (MAS) approaches overcome this limitation by using several
atlases (Aljabar et al., 2009; Heckemann et al., 2006; Lötjönen et al., 2010),
and consequently, better encompass the neuroanatomical variability of the
target population and alleviate the impact of registration failures.

MAS has recently shown promising results in the segmentation of biomedical
images (González-Villà et al., 2016; Iglesias and Sabuncu, 2015; Sanroma
et al., 2016b). The major steps common to all MAS approaches consist
on registration and label fusion (LF). During registration, the atlases and
the target image are spatially transformed to the same space in order to
establish spatial correspondences. Then, LF optimally combines all atlas
labelmaps into a consensus segmentation on the target image. One of the
simplest approaches to perform LF is majority voting (MV) (Klein et al.,
2005; Rohlfing et al., 2004), which labels a target voxel using the most
frequent label among the training atlases. Although MV provides better re-
sults than single atlas-based segmentation, its performance is still sensitive
to registration errors because atlas labels are uniformly combined regardless
of how accurate is their registration to the target. More sophisticated fusion
strategies can be used. We can identify two main fusion strategies in the lit-
erature: similarity-based and learning-based LF strategies. Similarity-based
LF strategies assign a weight to each atlas vote based on its similarity to the
target image (e.g., Artaechevarria et al., 2009; Coupé et al., 2011; Sabuncu
et al., 2010), whereas learning-based strategies tackle LF from the machine
learning perspective by learning a labeling function from a set of training
examples that maps image appearances to the correct anatomical label (Bai
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et al., 2015; Benkarim et al., 2017a; Hao et al., 2014). As a limitation of
learning-based approaches compared to similarity-based approaches is that
the former require an additional step to learn the labeling function at test
time for each point.

Independently of the fusion strategy, in order to account for the spatially
varying registration quality, several authors have proposed local (Artaechevar-
ria et al., 2009; Isgum et al., 2009; Sabuncu et al., 2010) and non-local (Coupé
et al., 2011; Hao et al., 2014; Wang et al., 2013) LF approaches. Among
these methods, patch-based LF estimates the weights or learns the labeling
function based on 3D intensity patches around the voxels of interest. In-
spired by the non-local means approach (Buades et al., 2005), patch-based
LF is further extended to the one-to-many correspondences scheme, consid-
ering all atlas patches in the neighborhood of the voxel of interest (Benkarim
et al., 2017a; Coupé et al., 2011; Rousseau et al., 2011).

In this paper, we focus on the non-local patch-based LF framework. Al-
though registration quality is not critical thanks to the non-local means
strategy, approaches within this framework still require establishing cor-
respondences between the atlases and the test image in order to locally
estimate the weights or learn the labeling function. However, these ap-
proaches do not discern between establishing correspondences and atlas
warping, treating them as a unique and transparent process. In this work,
we propose a patch-based LF framework that distinguishes between estab-
lishment of correspondences and image warping compared to traditional
approaches (i.e., based on warped atlases) that consider both steps as in-
divisible. To do so, we revisit the patch-based LF framework to identify
its main steps, namely: 1) the fusion space where LF is carried out, 2)
the fusion strategy used to label test voxels, and 3) the patch space used
to extract atlas and test patches. Furthermore, we adapt two widely-used
LF strategies (i.e., similarity-based and learning-based LF) to our proposed
framework and analyze their impact on runtime and performance. Our pro-
posed LF framework allows us to sample atlas and test patches in native
space with the spatial priors encoded in the correspondences. This turns
out to be especially advantageous for learning-based fusion strategies as
learning is performed offline, regardless of the target image.

This paper builds on our recently published work (Benkarim et al., 2017b).
In this current work, we present a more in-depth description of the design
choices that conform the patch-based LF framework; we propose a common
formulation for similarity-based and a particular type of learning-based LF
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(i.e., SVM with RBF kernel), which may be useful for their common un-
derstanding; we evaluate the performance of our proposed LF framework in
2 brain MRI datasets: adult brain subcortical structure segmentation and
tissue segmentation of fetal brain MR images; and we provide a comparison
to traditional approaches.

The outline of the paper is as follows. Section 4.2 reviews the patch-based
label fusion framework. Section 4.3 presents the details of our proposed
framework. In Section 4.4 we describe the experimental setting and present
the results. In Section 4.5 we discuss the advantages and limitations of our
approach. Section 4.6 concludes the paper.

4.2 The patch-based label fusion framework

In the patch-based LF framework, registration is crucial for establishing ac-
curate voxel-wise correspondences between the target image and each of the
training atlases. In this section, we revisit the patch-based LF framework
to identify the main design choices that define any patch-based segmenta-
tion method and analyze their strengths and weaknesses. There are several
choices in patch-based LF that need to be considered in the fusion process,
namely: fusion space, fusion strategy and patch space.

4.2.1 Fusion space

This is the space where the estimated segmentation of the target image is
computed via LF. It is typically done in one of the following spaces:

1. Target fusion space: the target labelmap is computed directly in the
target space. To that end, spatial transformations between the atlases
and the target image are computed to warp the atlases to the target
space, where LF takes place based on the target image T and the
warped atlases Ãi, as illustrated in Figure 4.1.

2. Template fusion space: the target labelmap is computed in a template
space. To that end, both atlases and target image are warped to a
template space (e.g., MNI152) and LF is performed in this common
space using the warped atlases Ãi and the warped target T̃. The
estimated segmentation is then warped back to the target space, as
shown in Figure 4.2.
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Figure 4.1: Target fusion space. The target labelmap is computed directly in the target
space via LF using the warped atlases Ãi.

Figure 4.2: Template fusion space: target labelmap is computed in the template space
using the atlases and target warped to the template space. Then, the estimated segmen-
tation is warped back to the target space.

In the vast literature on MAS, target fusion space is the most common. Its
advantages are twofold: 1) the estimated target labelmap does not need to
be warped back to the target space, thus incurring in no label interpolation
errors; and 2) the target image suffers no distortion due to registration-
based interpolations. However, given Na training atlases and Nt target
images, the computational burden of target fusion space is high because it
requires registering all training atlases to each target image (i.e., Na × Nt

registrations). To lower the computational requirements, researchers pro-
posed non-local patch-based LF strategies that only use coarse registrations
(i.e., affine) (Coupé et al., 2011; Rousseau et al., 2011). Although such an
approach is faster, we still need to perform Na×Nt atlas warpings (intensity
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images and labelmaps). In order to reduce the number of registrations, tem-
plate fusion space turns out to be appealing since only Na+Nt registrations
are needed to segment Nt target images. Nevertheless, in template fusion
space, we do not work with the original target image but with a deformed
version in the template space. What is commonly done is to concatenate
registrations through the template. This still allows working in target space
but with the same number of registrations as in template space.

With regard to the fusion strategy, target fusion space is adopted especially
for methods using similarity-based fusion strategies (Artaechevarria et al.,
2009; Coupé et al., 2011; Wang et al., 2013), whereas template fusion space is
usually adopted by methods using a learning-based fusion strategy (Manjón
and Coupé, 2017; Sanroma et al., 2015a). The main reason behind this
choice is that template fusion space allows voxel-wise classifiers to be trained
offline. On the other hand, using the target fusion space implies learning
the classifiers online for each new target image, which is computationally
demanding (Hao et al., 2014; Tong et al., 2013). Classifiers are trained on
the warped atlases to segment a single target image and cannot be reused
to segment other target images. Here, atlas selection (Aljabar et al., 2009;
van Rikxoort et al., 2010) can be used to reduce the size of the training
set and hence learning times, though atlas selection introduces another free
parameter (e.g., the number of most similar atlases) into the MAS setting,
to be chosen during an intermediate validation step, for instance.

4.2.2 Fusion strategy

The strategy used to fuse the multiple atlas labelmaps is an important step
in MAS. In this work, we focus on two widely-known strategies: similarity-
based and learning-based LF. Given a set of atlas patches xi and their
corresponding labels yi, the target patch xt is segmented as follows:

1. Similarity-based LF: atlas labels, yi, are weighted according to the
similarity of their intensity patches with the target patch (Coupé et al.,
2011; Rousseau et al., 2011). The more similar xi is to the target patch
xt, the higher the contribution of its label, yi, to the final labeling of
the target patch. If we use the exponential of the negative sum of
square differences to compute the weights (Coupé et al., 2011), for
the binary case, we have:
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ŷt = sign
(∑

i

exp(−γ‖xk − xt‖2)yi
)
, (4.1)

where γ = min ‖xk−xt‖2 and ŷt ∈ {−1,+1} is the estimated label for
the target patch, indicating foreground (i.e., +1) or background (i.e.,
−1).

2. Learning-based LF: these are supervised approaches that learn from
the atlas patches xi a function that maps local image appearances to
the corresponding label, yi (Bai et al., 2015; Hao et al., 2014). When
a target image arrives, this function is used to predict a label for each
target voxel based on its patch, xt, i.e.,:

ŷt = f(xt), (4.2)

where f() is the labeling function learned from the training pairs
(xi, yi).

Note that, for both label fusion strategies, we assume that patches are
already in correspondence, which is established during the registration pro-
cess. Furthermore, correspondences can be established using 1) a one-to-
one scheme to only capture local information (i.e., patch) or one-to-many
scheme that considers all atlas patches in the neighborhood of the voxel of
interest. In this paper, we consider the latter scheme.

In our setting, where voxel-wise classifiers are required, learning-based ap-
proaches are, generally, more time-consuming since we have to learn a model
for each voxel. This burden is especially accentuated when adopting an on-
line strategy, learning different classifiers for each target image. Offline
strategies, on the other hand, considerably reduce the computational re-
quirements by learning a single classifier per voxel, independently from the
target image. Similarity-based LF can also be seen as a learning-based ap-
proach, falling within the category of lazy learning. These approaches tend
to be faster and do not need to learn a model from the training patches.

4.2.3 Patch space

Patch space refers to the space used to extract the appearance (e.g. patches)
and label information used by the LF process. In most approaches, the patch
space coincides with the fusion space. Particularly, LF in target fusion space
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is based on patches extracted from the atlases warped to the target, Ãi (see
green arrows in Figure 4.1), not from the atlases in their native spaces (i.e.,
Ai). Similarly, in template fusion space, patches are extracted from the
atlases and the target image warped to the template space (i.e., Ãi and T̃
respectively, as shown in Figure 4.2). Irrespective of the fusion space, the
warped atlases are subject to interpolation errors. This is an important
drawback because the interpolation strategy used for the atlas intensity
images (e.g., linear) is different from the one used for the labelmaps (e.g.,
nearest neighbors). In this way, a deformed labelmap might no longer be
faithful to its corresponding deformed intensity image under the manual
segmentation protocol followed by the expert. In case of using the template
as fusion space, there is an additional source of error due to interpolation of
the estimated labelmap, which occurs when warping it back to the target
space.

4.3 Proposed framework

So far, researchers have paid little attention to the space from where the
patches are extracted. In this work, we propose a LF approach that uses
appearance and label information from the native spaces of both atlases and
target images, the so-called native patch space. Thus, registration is used
only to find spatial correspondences between the atlases and the target
image, without deforming any of them. The advantages of native patch
space are threefold: 1) there is no need to warp the atlases, thus avoiding
any inaccuracies between atlas images and corresponding labelmaps due to
interpolation artifacts. This allows LF to be driven by the true appearance
patterns used by the expert to create the ground truth, 2) avoiding warping
the atlases also implies a higher storage efficiency, since there is no need
to keep two instances of each atlas (i.e., the original and the warped one),
and 3) learning-based fusion strategies can be applied directly in the target
fusion space, without the need to train the classifiers online for each target.

The proposed approach is based on the observation that LF in template or
target fusion spaces relies on different (i.e., deformed) versions of the atlases
and not the original ones, and therefore, there exists a risk of introducing
noise in the segmentation process due to interpolation errors. In contrast,
in our approach, the mappings computed during registration are only used
to find spatial correspondences between the atlases and the target image,
but the images are not deformed. Moreover, in order to avoid registering
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the atlases each time a novel target image arrives, atlases are registered to
a common reference space. Figure 4.3 illustrates how LF is carried out in
our novel approach. Throughout the rest of the paper, we will refer to it as
LF in native patch space.

Figure 4.3: LF in native patch space. Correspondences between the atlases Ai and the
target image T are used to extract the patches from their respective native spaces. Target
labelmaps are directly computed in the target fusion space.

4.3.1 Extraction of patches in native space

We adopt the one-to-many correspondences scheme by using the non-local
patch-based LF (Coupé et al., 2011). Let φi be the mapping of the i-th
atlas, Ai, to the template space and φt the mapping of the target image,
which were obtained from the registration step. For each voxel vt and
corresponding patch xt (see red box in Figure 4.3) on the target image, we
proceed as follows:

1. Find the corresponding voxel in template space (red arrow in Fig-
ure 4.3):

ṽ = φt(vt). (4.3)

2. Find corresponding voxels in each training atlas space (green arrows
in Figure 4.3):

vi = φ−1i (φt(vt)) = φ−1i (ṽ), i = 1, . . . , Na, (4.4)

with i indexing the atlases in the database.
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3. Extract patches and corresponding labels in the neighborhood of vi
(see green boxes in Figure 4.3):

D = {(xij , yij) | ∀j ∈ S(vi), i = 1, . . . , Na}, (4.5)

where yij is the label of the j-th voxel in the neighborhood of vi,
denoted as S(vi).

4. Label target patch xt using the set of patches D and some LF strategy
as explained in the following.

4.3.2 Fusion strategies in native space

To perform LF for the binary case, we define our labeling function as:

ŷt = sign
( |D|∑
k=1

K(xk, xt)yk + b
)
, (4.6)

where K(xk, xt) is the similarity between the k-th patch in D and xt, yk ∈
{−1,+1} is its corresponding label, | · | denotes cardinality, and b is a bias
term.

Within this framework, we propose to estimate the weights using a similarity-
based approach (SimLF) (Artaechevarria et al., 2009; Coupé et al., 2011).
In SimLF, the weight of each atlas label is based on the intensity similar-
ity between its patch and the target patch. Note that setting b = 0 and
K(xk, xt) = exp(−γ‖xk − xt‖2), with γ = min ‖xk − xt‖2 (Coupé et al.,
2011), SimLF is equal to the similarity weighted voting in Eq. (4.1), which
estimates the label for the target patch xt as a weighted combination of the
labels in D.

This first LF approach uses all patches in D to segment a given target
patch. This can negatively impact the performance of LF since there may
be many noisy or irrelevant patches, especially when using the one-to-many
correspondences scheme to extract atlas patches. To prevent this, some
approaches have been proposed to only use the most reliable patches in
the LF process. For example, structural similarity (Wang et al., 2004) was
used by Coupé et al. (2011), as an intermediate step, to discard the most
dissimilar patches prior to label fusion. For the same purpose, other existing
approaches employ sparse patch-based reconstruction techniques (e.g., Wu
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et al., 2015a). In this work, we pre-select the most reliable patches by
extending our labeling function in Eq. (4.6) as follows:

ŷt = sign
( |D|∑
k=1

K(xk, xt)ykαk + b
)

(4.7)

where αk ≥ 0 is the pre-selection coefficient of the k-th training patch, such
that αk > 0 only if patch xt is found to be relevant for label fusion. In
order to find the αk coefficients and the intercept b, we propose to use a
supervised approach. This is our second fusion strategy, LearnLF, which
consists on learning a labeling function that relates the appearance infor-
mation of patches and their corresponding anatomical labels (xk, yk) using
as training set the atlas patches and labels in D. Learning-based fusion
strategies have already been proposed in the literature (Hao et al., 2014;
Tong et al., 2013). Noteworthy is the fact that Eq. (4.7) corresponds to the
dual decision function used in the well-known kernel-SVM (Cortes and Vap-
nik, 1995) to perform predictions. When K(xk, xt) = exp(−γ‖xk − xt‖2),
it is called the radial basis function (RBF) kernel, with γ being the inverse
kernel width. Hence, the labeling function for our LearnLF strategy is ob-
tained by optimizing the following cost function corresponding to the dual
problem of kernel-SVM:

min
α

1

2

|D|∑
i,j=1

αiαjyiyjK(xi, xj)−
|D|∑
i=1

αi

subject to

|D|∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, (4.8)

where C is a regularization parameter that controls misclassification of
training samples.

Similarly to SimLF, LearnLF also weighs the contribution of the atlas la-
bels based on their similarity. Note the striking similarity between SimLF
and LearnLF when using the RBF kernel in LearnLF. Key differences be-
tween both approaches are that LearnLF includes the learned coefficients
αk, which, by definition of kernel-SVM, are only different than zero for the
atlas patches playing the role of so-called support vectors. This can be in-
terpreted as a form of patch selection. Moreover, the scale parameter γ was
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defined in SimLF as the distance of the target patch to the most similar
atlas patch, γ = min ‖xk − xt‖2 (Coupé et al., 2011), while in LearnLF γ
was set to the patch size. Finally, note that since the proposed approach
uses the native patch space, the atlas training patches for each classifier are
invariant to the to-be-labeled target image, and therefore the classifiers for
each point can be learned offline.

4.4 Experiments

In this section, we evaluate our proposed LF in native patch space in the
segmentation of subcortical brain structures of 35 adult brain MR images
from the MICCAI 2013 SATA Challenge dataset and in tissue segmentation
of 32 fetal brain MRI. The proposed approach is compared to traditional LF
approaches. More specifically, we compared the LF performance using all
the patch spaces, namely, template, target and the proposed native patch
space. Both SimLF and LearnLF fusion strategies were used in each of the
patch spaces. For the latter, the regularization hyperparameter of the SVM
was set to C = 1.

Different patch and neighborhood sizes were used, with a radius of 1 and 2.
For validation, a 3-fold cross-validation procedure was used with Dice simi-
larity coefficient between the ground truth and the estimated segmentations
to assess performance. Finally, all experiments were replicated using two
registration settings: affine and non-rigid using the symmetric diffeomorphic
mapping of ANTs (Avants et al., 2008).

As preprocessing, all images in the adult dataset were registered to the
MNI152 template (Fonov et al., 2009). For the fetal dataset, images were
registered to a template built using the images in our dataset. To establish
correspondences for LF in target fusion space, pairwise mappings between
the images were obtained by composing the transformations through the
template. Furthermore, for image intensity to be consistent across atlases,
histogram matching was used (Nyul et al., 2000) for both datasets.

4.4.1 Segmentation of subcortical structures

The MICCAI 2013 SATA Challenge dataset5 is composed of 35 T1-weighted
MR images of control subjects with age ranging from 19 to 90 years (32.4

5https://masi.vuse.vanderbilt.edu/workshop2013
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Affine Non-rigid
Template Target Native Template Target Native

Acc 0.758±0.046 0.749±0.057 0.783±0.052 0.717±0.058 0.786±0.037 0.797±0.035
Amy 0.778±0.041 0.765±0.062 0.790±0.044 0.773±0.031 0.817±0.029 0.818±0.029
Cau 0.865±0.070 0.856±0.101 0.884±0.083 0.840±0.071 0.883±0.071 0.892±0.070
Hip 0.836±0.028 0.828±0.037 0.846±0.032 0.820±0.021 0.857±0.024 0.862±0.023
Pal 0.857±0.041 0.855±0.049 0.869±0.043 0.852±0.028 0.880±0.027 0.882±0.027
Put 0.900±0.029 0.907±0.030 0.914±0.027 0.882±0.022 0.922±0.018 0.921±0.019
Tha 0.909±0.026 0.908±0.027 0.914±0.028 0.902±0.023 0.920±0.014 0.920±0.016

Table 4.1: Adult dataset: Average Dice overlaps (and standard deviation) of automatic segmentations produced by SimLF using
template, target and native patch spaces. Bold type indicates the best average segmentation performance.

Affine Non-rigid
Template Target Native Template Target Native

Acc 0.770±0.039 0.788±0.040 0.797±0.044 0.715±0.059 0.796±0.042 0.801±0.039
Amy 0.794±0.026 0.803±0.027 0.815±0.023 0.764±0.033 0.812±0.027 0.824±0.023
Cau 0.876±0.058 0.898±0.056 0.903±0.054 0.838±0.073 0.902±0.051 0.904±0.055
Hip 0.855±0.018 0.867±0.020 0.874±0.017 0.822±0.023 0.876±0.015 0.880±0.014
Pal 0.866±0.028 0.878±0.032 0.884±0.028 0.849±0.029 0.884±0.025 0.887±0.025
Put 0.905±0.028 0.919±0.029 0.924±0.025 0.882±0.026 0.924±0.020 0.927±0.020
Tha 0.915±0.019 0.921±0.018 0.923±0.017 0.903±0.020 0.924±0.011 0.926±0.011

Table 4.2: Adult dataset: Average Dice overlaps (and standard deviation) of automatic segmentations produced by LearnLF using
template, target and native patch spaces. Bold type indicates the best average segmentation performance.
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years old in average). The size of the images is 256×256×287 with a spatial
resolution of 1 mm isotropic. Ground-truth segmentations are provided for
seven subcortical structures: accumbens (Acc), amygdala (Amy), caudate
(Cau), hippocampus (Hip), pallidum (Pal), putamen (Put) and thalamus
proper (Tha).
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Figure 4.4: Adult dataset: Comparison of different patch spaces (colored lines), different
fusion strategies and different registration settings. From top to bottom: SimLF and
LearnLF fusion strategies. From left to right: affine and non-rigid registrations. Vertical
axis represents performance (Dice score) and horizontal axis indicates different patch and
neighborhood radii.

Dice overlap scores for all seven subcortical structures are compiled in Ta-
bles 4.1 and 4.2 for SimLF and LearnLF, respectively. Both tables report
overlaps corresponding to a radius of 2 (i.e., size of 5×5×5) for both patch
and neighborhood search, with which all methods reached their best perfor-
mance. The highest Dice overlap is highlighted in bold for each registration
setting. When using affine registration, regardless of the fusion strategy,
LF in the proposed native space (i.e., native patch space) outperformed the
rest of approaches in all structures. The same occurred when using non-
rigid registration, with the exceptions of putamen and thalamus proper in
SimLF, although the difference is negligible (i.e., around 0.01).

In template patch space, both SimLF and LearnLF provided better segmen-
tations with affine than non-rigid registration. Moreover, SimLF in target
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patch space showed reduced performance than in template patch space (ex-
cept for putamen), as shown in the two first columns of Table 4.1. SimLF
in target patch space, however, yielded considerably better segmentations
when using non-rigid registration. With LearnLF, segmentations produced
in target patch space were more accurate, with both registration settings,
than those in template patch space.

Affine Non-rigid
SimLF LearnLF SimLF LearnLF

Template 0.843±0.040 0.855±0.031 0.826±0.036 0.825±0.037
Target 0.838±0.052 0.868±0.032 0.866±0.032 0.874±0.027
Native 0.857±0.044 0.874±0.030 0.870±0.031 0.878±0.027

Table 4.3: Adult dataset: Overall performance in terms of average Dice overlap (and
standard deviation) for the different patch spaces using patch and neighborhood search
radii of 2. Bold type indicates the best average segmentation performance.

Figure 4.4 shows mean overall Dice scores achieved by the tested LF strate-
gies for different registration settings, and patch and neighborhood radii,
comparing their performance depending on patch space. Overall Dice scores
corresponding to a radius of 2 for both patch and neighborhood search are
reported in Table 4.3. We can observe that performance in native patch
space is higher than in other spaces. Moreover, for affine registration, the
difference in performance when compared with LF in target space (i.e., tar-
get patch space) is the largest. Finally, it is worth noting that the LearnLF
strategy achieved better performance than SimLF, which highlights the im-
portance of the learning approach versus the similarity-based approach.

4.4.2 Fetal brain tissue segmentation

In this second experiment, we included 32 subjects from a cohort within
a research project on congenital isolated ventriculomegaly. Approval was
obtained for the study protocol from the Ethics Committee of the Hos-
pital Cĺınic in Barcelona - Spain (HCB/2014/0484) and all patients gave
written informed consent. Ages of the included subjects range between 26
to 29.3 gestational weeks. T2-weighted MR imaging was performed on a
1.5-T scanner (SIEMENS 105 MAGNETOM Aera syngo MR D13; Munich,
Germany) with a 8-channel body coil. All images were acquired without
sedation and following the American college of radiology guidelines for preg-
nancy and lactation. Half Fourier acquisition single shot turbo spin echo
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Affine Non-rigid
Template Target Native Template Target Native

BS 0.918±0.014 0.931±0.018 0.931±0.014 0.927±0.005 0.940±0.007 0.945±0.005
CB 0.941±0.010 0.948±0.014 0.950±0.011 0.950±0.005 0.959±0.006 0.963±0.006
CSF 0.929±0.007 0.948±0.007 0.948±0.008 0.930±0.017 0.953±0.017 0.950±0.016
CoGM 0.838±0.016 0.876±0.021 0.882±0.016 0.850±0.023 0.889±0.022 0.903±0.022
LV 0.867±0.067 0.887±0.067 0.881±0.075 0.909±0.029 0.932±0.033 0.929±0.031
WM 0.962±0.007 0.969±0.007 0.967±0.008 0.966±0.008 0.976±0.008 0.973±0.008

Table 4.4: Fetal dataset: Average Dice overlaps (and standard deviation) of automatic segmentations produced by SimLF using
template, target and native patch spaces. Bold type indicates the best average segmentation performance.

Affine Non-rigid
Template Target Native Template Target Native

BS 0.926±0.009 0.941±0.010 0.940±0.009 0.930±0.005 0.946±0.007 0.949±0.005
CB 0.946±0.008 0.958±0.010 0.957±0.009 0.952±0.005 0.964±0.006 0.966±0.005
CSF 0.933±0.007 0.954±0.006 0.954±0.007 0.932±0.016 0.956±0.016 0.954±0.015
CoGM 0.859±0.009 0.905±0.011 0.905±0.010 0.859±0.021 0.905±0.020 0.912±0.022
LV 0.896±0.039 0.918±0.038 0.920±0.040 0.915±0.026 0.941±0.024 0.941±0.022
WM 0.968±0.005 0.977±0.005 0.977±0.005 0.969±0.007 0.979±0.007 0.977±0.007

Table 4.5: Fetal dataset: Average Dice overlaps (and standard deviation) of automatic segmentations produced by LearnLF using
template, target and native patch spaces. Bold type indicates the best average segmentation performance.
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(HASTE) sequences were used with the following parameters: echo time of
82 ms, repetition time of 1500 ms, number of averaging = 1, 2.5 mm of slice
thickness, 280× 280 mm field of view and voxel size of 0.5× 0.5× 2.5 mm.
For each subject, multiple orthogonal acquisitions were performed: 4 ax-
ial, 2 coronal and 2 sagittal stacks. Brain location and extraction from 2D
slices was carried out in an automatic manner using the approach by Ker-
audren et al. (2014), followed by high-resolution 3D volume reconstruction
using the method by Murgasova et al. (2012). Ground-truth segmentations
were obtained for the following tissues and structures: cerebro-spinal fluid
(CSF), cortical gray matter (CoGM), white matter (WM), lateral ventri-
cles (LV), cerebellum (CB) and brainstem (BS). To obtain the ground-truth
structures, first, 4 subjects were manually segmented by two expert raters.
Then, the remaining subjects were segmented using the automatic method
by Sanroma et al. (2016a) and the automatic segmentations were manually
corrected by the same expert raters.

Similarly to the adult brain segmentation, Dice overlap scores for tissue
segmentation of our fetal brain dataset are reported in Tables 4.4 and 4.5 for
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Figure 4.5: Fetal dataset: Comparison of different patch spaces (colored lines), different
fusion strategies and different registration settings. From top to bottom: SimLF and
LearnLF fusion strategies. From left to right: affine and non-rigid registrations. Vertical
axis represents performance (Dice score) and horizontal axis indicates different patch and
neighborhood radii.
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SimLF and LearnLF, respectively, with patch and neighborhood search radii
of 2. Overall, we can observe that LearnLF in conjunction with non-rigid
registration produced the best segmentations, as shown in Table 4.5. LF
in template patch space provided the lowest overlaps with both registration
settings. On the other hand, with this database, the improvement of LF in
native patch space over target patch space is not consistent since, for some
tissues (e.g., CSF), the latter offered better segmentations. Nevertheless,
no notable differences can be found between both patch spaces, with the
largest Dice overlap difference being 0.007 in CoGM when using LearnLF
and non-rigid registration.

Figure 4.5 shows mean Dice scores of all tissues for different patch and
neighborhood radii, grouped by registration setting and fusion strategy.
Overall, there is a slight improvement in performance (i.e., 0.002) of LF
in native patch space over target patch space when using non-rigid regis-
tration, with LearnLF achieving the highest mean overlap, as reported in
Table 4.6. Moreover, as mentioned above, LearnLF in our proposed frame-
work is computationally cheaper than in target patch space. These results
are in great concordance with the results obtained in the previous dataset,
highlighting the advantages of our proposed framework.

Affine Non-rigid
SimLF LearnLF SimLF LearnLF

Template 0.909±0.047 0.921±0.039 0.922±0.040 0.926±0.038
Target 0.927±0.037 0.942±0.027 0.942±0.030 0.948±0.025
Native 0.927±0.037 0.942±0.026 0.944±0.025 0.950±0.022

Table 4.6: Fetal dataset: Overall performance in terms of average Dice overlap (and
standard deviation) for the different patch spaces using patch and neighborhood search
radii of 2. Bold type indicates the best average segmentation performance.

4.5 Discussion

4.5.1 The impact of interpolation

LF in native patch space is not subject to interpolation errors. It is worth
noting that in our proposed approach correspondences are also interpolated
to valid voxel coordinates. This, however, does not involve interpolation
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Figure 4.6: Accumbens segmentation using template patch space. Comparison of average
Dice scores computed in the original space (blue) and in template space (red) using the
ground truth segmentations warped to the template space.

errors related to warping the intensity images and the labelmaps. The
impact of interpolation on segmentation accuracy can be illustrated using
LF in template patch space. In this setting, the segmentation is estimated in
template space and warped back to the target space. If we warp the ground
truth of the target image to the template space, we can compute the Dice
overlap in template space and compare with the overlap in target space
after warping the estimated segmentation to its original space. Note that
Dice overlap in template space serves no other purpose than illustrating the
negative impact of interpolation, in this case, of the estimated labelmap.

Figure 4.6 shows boxplots of Dice overlap in template patch space using the
warped and original ground truth segmentations. Results correspond to the
segmentation of accumbens structure. The mean Dice overlap in template
space (i.e., using the warped ground truth segmentations) obtained with
SimLF/LearnLF is 0.767/0.771, decreasing to 0.720/0.719 after warping
back the estimated labelmaps. Segmentation quality is notably degraded
after warping the estimated labelmaps from the template to their original
spaces, which emphasizes the negative impact of interpolation.
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4.5.2 The role of patch pre-selection

Patch pre-selection in our LearnLF strategy has shown to outperform SimLF,
where all patches are used. The benefits of patch pre-selection are twofold:
a) faster segmentation runtimes and b) higher accuracy. First, by removing
irrelevant patches, the target patch is compared with a considerably small
number of training patches. In this context, Coupé et al. (2011) used a
heuristic approach to discard patches from the LF based on their structural
similarity with the target patch, Hao et al. (2014) selected the same number
of positive and negative patches for each voxel-wise classifier, and Tong et al.
(2013) summarized the training patches building a small dictionary using
sparse-based representation. Nevertheless, all these approaches perform LF
in target patch space, which requires patch pre-selection to be carried out
online, for each target image. In our LearnLF strategy, patch pre-selection
is performed offline, regardless of the target patch.

4.5.3 Computational complexity

The proposed approach can be seen as a combination of LF in both tem-
plate and target space, exploiting two important aspects: a) a common
template and b) atlas native spaces. First, using a common space allows
registering the atlases to a template, independently of the target images.
Thus, atlas registration is only performed once, as opposed to LF in tar-
get patch space. Second, since voxel-wise correspondences are established
offline, computational complexity of learning-based LF strategies is consid-
erably reduced. Only one model has to be learned for each voxel in the
template, although using patches extracted from the atlases’ native space.
When a new target image arrives, it is registered to the template to find
the spatial correspondences. Then, we iterate over the target voxels to find
the corresponding voxels in the template, which contain the learned models.
When using similarity-based LF strategies, the advantage of native patch
space comes from evading interpolation errors, with the same computational
cost as SimLF in target patch space.

4.5.4 Generalization of native patch space

In terms of performance, the focus of traditional approaches has lied, mainly,
in the fusion strategy, while registration (and, indistinguishably, warping)
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has been relegated to a secondary plane, with the major concern related to
reducing runtimes using affine rather than non-rigid registration. In this
work, by identifying the crucial building blocks of the patch-based LF ap-
proaches, we proposed an improvement in the patch-based LF framework
that is transparent to most existing approaches. Since our improvement
does not affect the fusion strategy, it can be easily integrated into exist-
ing (e.g., Bai et al., 2015; Wang et al., 2013) and adopted by novel patch-
based LF approaches.

4.6 Conclusions

In this work, we revisited the well-known patch-based LF framework, iden-
tified the critical decisions that have notable impact on its performance,
and proposed an improvement that leads to superior performance and con-
siderably reduced runtimes in terms of registration and learning. With the
exception of global LF approaches, patch-based methods require establish-
ing voxel-wise correspondences between the training atlases and the target
image. This has driven existing patch-based LF approaches to perform label
fusion in target or template spaces. Because of its high performance due
to more accurate registration, most patch-based LF approaches carry out
fusion in the target space, which requires all training atlases to be spatially
transformed to the space of each target image. Consequently, segmentation
of a given target patch is performed based on training patches extracted
from the atlases warped to the target space. However, although ignored
by these approaches, establishing correspondences does not imply using the
warped atlases, not even performing their warping. In our proposed frame-
work, we disentangle the process of establishing correspondences from atlas
warping and skip the latter. Extracting patches and their corresponding
labels from the atlases’ native space instead of using some deformed ver-
sion after warping them, for instance, to the target space, has shown to
be better. For learning-based approaches, classifiers can be learned offline
using the available training atlases and reused in the segmentation of novel
target images. Finally, our experiments showed that learning-based LF
outperforms similarity-based LF, which reinforces the advantage of using
the native patch space due to the added computational advantages that it
implies for learning-based fusion strategies.

94



5

Cortical folding alterations
in fetuses with isolated
non-severe ventriculomegaly
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Abstract – Neuroimaging of brain diseases plays a crucial role in under-
standing brain abnormalities and early diagnosis. Of great importance is
the study of brain abnormalities in utero and the assessment of deviations
in case of maldevelopment. In this work, brain magnetic resonance im-
ages from 23 isolated non-severe ventriculomegaly (INSVM) fetuses and
25 healthy controls between 26 and 29 gestational weeks were used to iden-
tify INSVM-related cortical folding deviations from normative development.
Since these alterations may reflect abnormal neurodevelopment, our working
hypothesis is that markers of cortical folding can provide cues to improve
the prediction of later neurodevelopmental problems in INSVM subjects.
We analyzed the relationship of ventricular enlargement with cortical fold-
ing alterations in a regional basis using several curvature-based measures
describing the folding of each cortical region. Statistical analysis (global and
hemispheric) and sparse linear regression approaches were then used to find
the cortical regions whose folding is associated with ventricular dilation. Re-
sults from both approaches were in great accordance, showing a significant
cortical folding decrease in the insula, posterior part of the temporal lobe
and occipital lobe. Moreover, compared to the global analysis, stronger ipsi-
lateral associations of ventricular enlargement with reduced cortical folding
were encountered by the hemispheric analysis. Our findings confirm and
extend previous studies by identifying various cortical regions and empha-
sizing ipsilateral effects of ventricular enlargement in altered folding. This
suggests that INSVM is an indicator of altered cortical development, and
moreover, cortical regions with reduced folding constitute potential prog-
nostic biomarkers to be used in follow-up studies to decipher the outcome
of INSVM fetuses.

This chapter is adapted from:
Benkarim, O. M., Hahner, N., Piella, G., Gratacos, E., González Ballester, M.
A., Eixarch, E., and Sanroma, G. (2018). Cortical folding alterations in fe-
tuses with isolated non-severe ventriculomegaly. NeuroImage: Clinical, 18:103-114.
https://doi.org/10.1016/j.nicl.2018.01.006
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5.1. introduction

5.1 Introduction

Cortical folding is a major developmental process the human brain embarks
on during the intrauterine period to acquire its highly gyrencephalic adult
morphology. In early gestation, the cortex is a smooth sheet that becomes
intensively convoluted following an ordered sequence of sulcogyral forma-
tion, with primary and secondary sulci obeying stable spatio-temporal pat-
terns, while more irregular patterns govern the emergence of tertiary sulci.
These cortical convolutions are intrinsically related to the functional organi-
zation of the cortex. Consequently, alterations in the degree and pattern of
cortical folding might have a profound impact on brain function (Fernández
et al., 2016). In adults, several studies have revealed associations of altered
folding with functional disabilities in a wide spectrum of disorders such
as schizophrenia (Jou et al., 2005) and attention-deficit/hyperactivity dis-
order (Wolosin et al., 2009). These functional disturbances might involve
early cortical folding malformations and manifest in adulthood as symp-
tomatic consequences of said maldevelopment (Batty et al., 2015; Powell,
2010; Rehn and Rees, 2005; Wolosin et al., 2009).

Since gyrification commences early in pregnancy, gestation constitutes a
vulnerable period for cortical folding, where prenatal diagnosis of cerebral
abnormalities is of paramount importance. In the fetus, ventriculomegaly
(VM) is the most frequent abnormal finding in prenatal ultrasound exami-
nation and occurs in around 1% of fetuses (Huisman et al., 2012; Salomon
et al., 2007). Fetal VM is a condition in which the lateral ventricles are
dilated, and is defined as an atrial diameter of ≥10 mm of one or both lat-
eral ventricles at any gestational age (GA) from 14 weeks onwards (Cardoza
et al., 1988), being 6-8 mm the width in normal fetuses. These measure-
ments remain stable in the second and third trimesters (ISUOG Guidelines,
2007). In case of ventricular enlargement, an atrial diameter in the range
of 10-15 mm constitutes non-severe VM, whilst a measurement larger than
15 mm refers to severe VM. Non-severe VM is further classified into mild
(10-12 mm) and moderate (12-15 mm). In case of no other anomalies, it is
called isolated VM.

Though studies have found associations of ventricular enlargement with
attention-deficit/hyperactivity disorder (Lyoo et al., 1996) and schizophre-
nia (Vita et al., 2000; Wright et al., 2000), the implications of fetal VM in
such disorders remain largely unclear due to scarce long-term follow-up stud-
ies and the appearance of confounding factors during development. Never-
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theless, isolated non-severe ventriculomegaly (INSVM)-associated neurode-
velopmental deficits have been observed in neonates and infants (Gómez-
Arriaga et al., 2012; Leitner et al., 2009; Sadan et al., 2007). When VM is
diagnosed, postnatal prognosis is highly dependent on the presence of other
abnormalities and the degree of ventricular dilation (Griffiths et al., 2010).
There is a high risk of poor neurodevelopmental outcome when other ab-
normalities are diagnosed and/or the ventricles are severely dilated. How-
ever, INSVM fetuses are not so prone to have neurodevelopmental prob-
lems (Griffiths et al., 2010; Melchiorre et al., 2009), and the ones that will
have unfavorable outcome cannot be characterized solely by the atrial di-
ameter (Beeghly et al., 2010). With altered cortical folding found in fetuses
with INSVM (Scott et al., 2013), the assessment of cortical folding can play
an important role in prognosis reliability (Li et al., 2011).

Although ultrasound is the most used imaging modality for evaluating preg-
nancies, VM is a common indication for fetal magnetic resonance imaging
(MRI) (Rutherford, 2001). Indeed, MRI of the in vivo fetal brain has re-
cently attracted increasing attention from the neuroscientific community
and is becoming an important tool in the study of in utero brain develop-
ment (Benkarim et al., 2017c; Studholme and Rousseau, 2014). There are
several works in the literature that use 3D MRI to investigate the intrauter-
ine cerebral growth in healthy populations (Clouchoux et al., 2012; Habas
et al., 2012; Wright et al., 2014, 2015). These neuroimaging studies attempt
to identify and set the normative morphological and functional changes the
fetal brain undergoes during its maturational course. On the other hand,
neuroimaging of diseased brains provides the means to find disease-specific
deviations from the aforementioned normative development and the discov-
ery of stable biomarkers that accurately discriminate such diseases. Using
3D reconstructed MRI, isolated VM has been previously studied in (Kyr-
iakopoulou et al., 2014; Scott et al., 2013). Scott et al. (2013) analyzed
volumetric and cortical folding differences between 16 cases and 16 controls
in the age range of 22-25.5 gestational week (GW). Volumetric analysis
was carried out by Kyriakopoulou et al. (2014) in 60 controls and 65 cases
within the GA range of 22-38 weeks. Among their findings, Kyriakopoulou
et al. (2014) showed increased cortical volume in fetuses with VM, and Scott
et al. (2013) found reduced cortical folding in both hemispheres, although
in a narrow area near the parieto-occipital sulcus.

In this work, 3D reconstructed fetal brain MR images were used to inves-
tigate the relationship of INSVM with alterations in gyrification between a
cohort of 25 healthy controls and 23 INSVM fetuses within the age range
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of 26-29 GWs. There are no studies that investigated cortical folding under
VM in the third trimester of gestation. During this period, numerous cor-
tical landmarks are prominently developed in the normal fetal brain (e.g.,
superior temporal sulcus and calcarine fissure) (Clouchoux et al., 2012),
which allow susceptible deviations in gyrification to be reliably detected.
Cortical folding was quantified using several curvature-based folding mea-
sures (e.g., mean curvature, shape index and curvedness). These descriptors
offer a different perspective into intrauterine neurodevelopment than brain
volumetry. Curvedness, for instance, was shown to provide different infor-
mation and be more accurate in the prediction of GA than brain volume (Hu
et al., 2013; Wu et al., 2015b). With several descriptors we can, furthermore,
capture different shape characteristics of the cortex. Positive and negative
versions of some folding measures (e.g., positive and negative mean curva-
ture) were further incorporated to respectively account for folding confined
in gyral and sulcal areas, which affords a separate inspection of cortical fold-
ing. The cortex was parcellated in several regions to study cortical folding
differences in a regional basis. Statistical analysis and sparse regression ap-
proaches were adopted to analyze folding differences related to ventricular
enlargement and identify cortical regions with altered folding. The present
study seeks to add to previous studies by providing insights into the gyrifi-
cation alterations potentially associated with INSVM at mid-third trimester
of gestation (where the majority of primary sulci are formed), assessing the
relationship from different methodological approaches, and characterizing
the implication of ventricular enlargement laterality in cortical alterations.

5.2 Materials and methods

5.2.1 Subjects

For our study, we included 25 healthy controls and 23 subjects diagnosed
with INSVM from a larger prospective cohort of 81 subjects within a re-
search project on congenital isolated VM. INSVM was defined as unilateral
or bilateral ventricular width between 10-14.9 mm. All fetuses were from
singleton pregnancies and met the inclusion criteria of having no abnormal
karyotype, infections or malformations with risk of abnormal neurodevel-
opment. Approval was obtained for the study protocol from the Ethics
Committee of the Hospital Cĺınic in Barcelona - Spain (HCB/2014/0484)
and all patients gave written informed consent. Fetal MRI was performed
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between 26-29 GW. Pregnancies were dated according to the first-trimester
crown-rump length measurements (Robinson and Fleming, 1975). Table 5.1
presents the number of subjects and mean GA per cohort, with INSVM
cases grouped by left, right or bilateral ventricular enlargement.

N GW M/F

Control 25 27.6±0.9 14/11

INSVM
Bilateral 5 27.3±0.9 4/1
Left 8 28.1±0.8 8/0
Right 10 27.2±1.0 9/1
Total 23 27.5±1.0 21/2

Table 5.1: Demographics. Number of subjects (N), mean GA and standard deviation
expressed in GW, and gender (M/F, where M and F stand for male and female, respec-
tively) per cohort. The INSVM cohort is further divided in 3 subgroups (left, right and
bilateral) according to unilateral or bilateral VM diagnosis.

5.2.2 MRI acquisition and reconstruction

T2-weighted MR imaging was performed on a 1.5-T scanner (SIEMENS
MAGNETOM Aera syngo MR D13; Munich, Germany) with a 8-channel
body coil. All images were acquired without sedation and following the
American college of radiology guidelines for pregnancy and lactation. Half
Fourier acquisition single shot turbo spin echo (HASTE) sequences were
used with the following parameters: echo time of 82 ms, repetition time of
1500 ms, number of averaging = 1, 2.5 mm of slice thickness, 280×280 mm
field of view and voxel size of 0.5×0.5×2.5 mm3. For each subject, multiple
orthogonal acquisitions were performed: 4 axial, 2 coronal and 2 sagittal
stacks. Final 3D motion-corrected reconstructions were obtained from these
8 stacks of thick 2D slices. Brain location and extraction from 2D slices was
carried out in an automatic manner using the approach proposed by Ker-
audren et al. (2014), followed by high-resolution 3D volume reconstruction
using the method presented in (Murgasova et al., 2012). Figure 5.1 shows
an example of 2 raw acquisitions and the final reconstructed volume.
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Figure 5.1: Brain MRI of a 26 GW-old healthy control reconstructed from 8 stacks of 2.5
mm slice thickness. From top to bottom: axial, coronal and sagittal views of axial (A)
and coronal (B) raw stacks, and final reconstruction (C).

5.2.3 Tissue segmentation

Reconstructed MR images were segmented with the method proposed in (San-
roma et al., 2016a) into white matter (WM), cortex, cerebrospinal fluid
(CSF), ventricles, cerebellum and brainstem. Briefly, this is an ensemble
method that learns the optimal spatial combination of a set of base methods.
It is based on the hypothesis that different segmentation methods comple-
ment each other in different regions of the brain. As base segmentation
methods we used joint label fusion (Wang et al., 2013) and Atropos (Avants
et al., 2011), which were then spatially combined as proposed by Sanroma
et al. (2016a). Segmentations for 4 subjects, manually delineated by an ex-
pert, were used as atlases for the segmentation method. Figure 5.2 displays
an example of a reconstructed brain MRI and its corresponding automatic
labeling.
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Figure 5.2: Fetal brain MRI segmentation: 26.4 GW-old fetus with right INSVM (A) and
corresponding segmentation (B), with different labels for left and right WM, cortex and
lateral ventricles.

Abbreviation
Cortical region Part

Anterior temporal lobe
lateral ATLlp
medial ATLmp

Cingulate gyrus
anterior CGap
posterior CGpp

Frontal lobe FL

Gyri parahippocampalis et ambiens
anterior GPAap
posterior GPApp

Insula Ins

Lateral occipitotemporal gyrus, gyrus anterior LOGFap
fusiformis posterior LOGFpp

Medial and inferior temporal gyri
anterior MITGap
posterior MITGpp

Occipital lobe OL

Parietal lobe PL

Superior temporal gyrus
middle STGmp
posterior STGpp

Table 5.2: Cortical regions from the neonatal atlas provided by Makropoulos et al. (2014)
and their abbreviations. Each hemisphere is parcellated into these 16 cortical regions.
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5.2.4 Cortical surface extraction

To study gyrification, the inner cortical surface was chosen instead of the
outer surface since the interface between WM and cortex is more stable
and less prone to segmentation errors due to partial volume effects than
the cortex-CSF interface. The WM binary masks were smoothed using
a 2 mm full width at half-maximum Gaussian kernel and cortical surface
meshes for each hemisphere were then reconstructed with the marching
cubes algorithm (Lorensen and Cline, 1987).

Figure 5.3: Inner cortical surface parcellation.

Furthermore, a neonatal atlas with cortical regions (Makropoulos et al.,
2014) was used to parcellate each hemisphere into 16 cortical regions. For
each fetal brain, a neonatal atlas with a similar age was registered to it
using the symmetric diffeomorphic mapping (SyN) proposed by (Avants
et al., 2008). Registration was performed based on intensity images and
cortical masks extracted from both the fetal brain (based on the initial
tissue segmentation) and the neonatal atlas (as a union of all cortical labels
based on the segmentations provided by (Makropoulos et al., 2014)). In
this way, registration is driven to provide a more accurate parcellation of the
cortex. Parcellations were then visually inspected and corrected for possible
mislabeling. Table 5.2 lists the different cortical regions and Figure 5.3
shows them propagated onto the surface mesh.
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5.2.5 Regional cortical folding

Gyrification changes related to ventricular enlargement were investigated
at both hemispheric and regional levels using a curvature-based approach.
This approach has been previously used to study cortical folding in pre-
mature neonates (Rodriguez-Carranza et al., 2008; Shimony et al., 2016)
and healthy fetuses (Wright et al., 2014; Wu et al., 2015b). For each fetus,
principal curvatures (i.e., k1 and k2) were computed at each vertex on the
inner cortical surface mesh and 15 curvature-based folding measures were
derived as described in (Rodriguez-Carranza et al., 2008; Shimony et al.,
2016; Wright et al., 2014). Several folding measures were used in this work
since a single curvature descriptor (e.g., mean curvature) may not be suffi-
cient to fully characterize cortical folding. These measures are summarized
in Table 5.3.

For each vertex on a surface mesh, 11 local curvature descriptors (see first
11 entries in Table 5.3: from MC to NSI) were computed from the principal
curvatures, as shown in the third column. Then, folding for a given cortical
region was characterized by a weighted average of all points belonging to
such region (Eq. (5.1) in Table 5.3) for each curvature descriptor. These
descriptors included MC, which is an extrinsic property of a surface cre-
ated by distance preserving folding (without distortion), with positive MC
values located on gyri and negative values on sulci (Schaer et al., 2008).
For a given cortical region, MC denotes the overall folding of the region,
while PMC only focuses on convexity (i.e., positive MC) and NMC on con-
cavity (i.e., negative MC). On the other hand, GC is an intrinsic property
of the surface that captures curvature changes created by distortion (Pien-
aar et al., 2008). A cortical region is ellipsoidal when the average GC is
positive and saddle-shaped when negative (Van Essen and Drury, 1997).
PGC and NGC summarize surface points with positive and negative GC,
respectively. While jointly using the signs of MC and GC allows identifying
different shapes, the SI proposed by Koenderink and van Doorn (1992) is
able to capture continuous surface shapes ranging from concavity (i.e., -1)
to convexity (i.e., +1) (Hu et al., 2013). PSI and NSI summarize region
points located on gyri and sulci, respectively. Complementary to SI, Koen-
derink and van Doorn (1992) also proposed the CI that quantifies size by
the degree of deviation of a surface from a flat plane. We also consider
FI, defined as a measure of cylindrical parts of a surface (Van Essen and
Drury, 1997). Four more folding measures were additionally incorporated
into the analysis of gyrification (see last 4 entries in Table 5.3). MCL2 and
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Abbreviation Definition

Mean curvature MC H = k1+k2
2

Positive mean curvature PMC H+

Negative mean curvature NMC H−

Gaussian curvature GC K = k1k2
Positive Gaussian curvature PGC K+

Negative Gaussian curvature NGC K−

Curvedness index CI Ci =

√
k21+k

2
2

2

Folding index FI Fi = |k1|
(
|k1| − |k2|

)
Shape index SI Si = − 2

π arctan
(
k2+k1
k2−k1

)
Positive shape index PSI S+

i

Negative shape index NSI S−i∑
i ∗w/

∑
iw (5.1)

Mean curvature L2 norm MCL2
√∑

iH
2w/

∑
iw

Gaussian curvature L2 norm GCL2 4
√∑

iK
2w/

∑
iw

Mean curvature norm ratio MCNR
∑

iH
2w/

∑
i |H|w

Gaussian curvature norm ratio GCNR
∑

iK
2w/

∑
i |K|w

Table 5.3: Curvature-based folding measures used in our study. The ∗ symbol in Eq. (5.1)
can be substituted by any of the above curvature measures to compute the corresponding
folding measure for a given cortical region. Note that superscripts + and − denote positive
and negative curvature, respectively. For example, PMC is 0 in all points where H < 0
and H otherwise. Conversely, NMC is 0 when H > 0 and H otherwise. The same applies
for all remaining curvatures with + and − superscripts.

GCL2 are invariant to translation, rotation and scaling, and measure bend-
ing of the surface and the amount of surface with constant Gauss curvature,
respectively (Batchelor et al., 2002). MCNR and GCNR are further area
independent and quantify gyrification as a ratio of curvatures (Rodriguez-
Carranza et al., 2008).

The contribution of a point in the surface mesh to regional folding measures
was weighted by the mean area of all cells sharing this point (w in Table 5.3).
For all cortical folding measures used in our analyses, the higher their values,
the more folded is the cortical region, with the exceptions of the negative
measures (i.e., NMC, NGC and NSI).
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5.2.6 Statistical analysis

The aim of our study is to analyze the effect of INSVM in gyrification. Thus,
to test the effect of ventricular enlargement in cortical folding, we used a
general linear model (GLM) with 2 versions to characterize the changes in
the aforementioned folding measures. The first model, FD, was used to test
the effect of diagnosis, as a group factor (0 for control and 1 for INSVM),
and GA and supratentorial volume as covariates:

FD = β0 + β1GW + β2STV + β3DG, (5.2)

where GW is GA in weeks, DG refers to the diagnosis, and STV represents
supratentorial volume. The second model, FV , uses ventricular volume as
a covariate instead of diagnosis:

FV = β0 + β1GW + β2STV + β3V V, (5.3)

where V V represents ventricular volume. Since the in utero brain becomes
continuously more convoluted as growth proceeds, GA was incorporated
into both models to control for the effect of age on the analyzed folding
measures. Furthermore, curvature-based folding measures depend on brain
size (Rodriguez-Carranza et al., 2008) and supratentorial volume (composed
of WM, gray matter (GM) and ventricles) was considered as a covariate in
both models to account for scaling differences (Shimony et al., 2016).

In the second model, FV , considering ventricular volume rather than di-
agnosis can improve the accuracy of the model. First, because ventricular
volume was found to be more distinctive in the analysis of VM than atrial di-
ameter (Gholipour et al., 2012), and therefore more properly representative
of such condition. Second, and most importantly, in fetuses with VM, ven-
tricular dilation is not restricted to the atria (Scott et al., 2013). Instead
of a dichotomous variable carrying information solely about the width of
the atrium (in fact, diagnosis only tells us if the atrial width surpasses the
threshold of 10 mm or not), ventricular volume is able to capture the extent
of enlargement.

Besides examining folding measures at a regional level with the 2 proposed
models, we further analyzed the association of lateral ventricular enlarge-
ment (using Eq. (5.3)) per hemisphere instead of the association of total
ventricular volume with the whole cortex.
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For each cortical region, 15 folding measures were extracted and tested.
Results were then considered statistically significant after Bonferroni cor-
rection at p < 0.05/15 ≈ 0.0033.

5.2.7 Sparse linear models for ventricular volume
prediction

Regression models with sparsity-inducing regularization, such as the well-
known Lasso (Tibshirani, 1994), are widely used in neuroimaging data anal-
ysis for diagnosis prediction and prognostic biomarker discovery (Klöppel
et al., 2012; Mwangi et al., 2014; Shimizu et al., 2015). Furthermore, these
approaches are well-suited for high-dimensional data, especially when the
number of predictors (i.e., features) greatly exceeds the number of training
samples (i.e., subjects). Our purpose is to find the most relevant cortical
regions (each region is composed of 15 curvature features) in the prediction
of total ventricular volume using sparse regression models. We use Lasso to
enforce that the regression model will be sparse and only a portion of the
predictor variables will be used in the model. This allows finding the most
relevant features for the prediction of ventricular volume. By comparing
these results with the ones obtained with GLM, we can draw conclusions
about the cortical regions that are related to ventricular enlargement.

In our setting, each subject is represented by a 482-dimensional feature
vector with 15 folding measures extracted from each of the 32 cortical re-
gions and 2 additional features corresponding to GA and STV. Formally,
let Y ∈ Rn denote a vector of total ventricular volume for all n subjects and
an n× p design matrix X with the p folding measures from each subject
arranged in rows. The Lasso estimator is defined as:

min
β

(
||Y −Xβ||22 + λ

p∑
j=1

|βj |
)
, (5.4)

where β ∈ Rp is a coefficient vector, ||·||22 is the squared Euclidean norm, λ is
the penalization parameter and the second term corresponds to the l1-norm.
The first term aims at fitting the data (as in conventional regression) and the
second term is the regularization for improving generalization, controlled by
the λ parameter. A larger λ will force most of the features to be 0 (i.e., not
selected).
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Lasso is designed for selecting individual variables. In this way, we can indi-
rectly conclude that regions with more selected features are more related to
INSVM. However, our purpose is to inspect relevance at region level rather
than at measure or variable level. In order to directly extract conclusions
about the important regions, we can enforce Lasso to select all or none of
the features from a given region. Group Lasso is an extension of Lasso that
incorporates such constraint by performing selection on predefined groups
of variables rather than individual variables (Yuan and Lin, 2006). Thus, all
15 folding measures corresponding to a given cortical region are considered
as a group in Group Lasso regression. GA and STV are also considered
separately as single feature groups. The Group Lasso estimator is defined
as:

min
β

(
||Y −Xβ||22 + λ

L∑
l=1

√
pl ||βl||2

)
, (5.5)

where L is the number of groups (i.e., 34 groups: 32 cortical regions, one
group for GA and another for STV), pl is the number of variables in the
l-th group and || · ||2 is the Euclidean norm. When L is equal to the number
of variables p, this optimization problem is equivalent to Lasso (Friedman
et al., 2010).

The optimal λ values for Lasso and Group Lasso based on leave-one-out
cross-validation are used to identify the most relevant cortical regions. In
terms of performance in predicting the ventricular volume, it is expected
that Lasso would outperform Group Lasso since Group Lasso is more con-
strained than Lasso in that it is forced to include or drop all measures
representing a particular cortical region.

One problem with Lasso and Group Lasso is that selected (i.e., relevant)
features can vary depending on the data used to compute the model. To that
end, Randomized Lasso (Meinshausen and Bühlmann, 2010) determines the
most stable features by randomly selecting the data used to compute the
models multiple times. The Randomized Lasso estimator is defined as:

min
β

(
||Y −Xβ||22 + λ

p∑
j=1

|βj |
Wj

)
, (5.6)

where Wj is an independent and identically distributed random variable
in [α, 1] and α ∈ (0, 1] is the weakness parameter that is used to change
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the value of λ in Eq. (5.6) to be randomly chosen in the range [λ, λ/α].
For a more detailed description, the reader is referred to the original work
of Meinshausen and Bühlmann (2010).

5.3 Results

5.3.1 Ventricular volume

Total ventricular volumes for control and INSVM fetuses are shown in Fig-
ure 5.4. Average total ventricular volumes were lower in healthy controls
(3.65 ± 1.12 cm3) than in INSVM fetuses (8.91 ± 2.70 cm3). We used a
GLM to analyze the association of ventricular volume with GA and diagno-
sis. There was a slight increase of 0.76 cm3 (p = 0.01) in ventricular volume
with increasing GA. In association with diagnosis, ventricular volume was
on average 5.34 cm3 larger (p < 10−20) in the INSVM cohort than in healthy
controls, which is obvious since INSVM was diagnosed based on ventricular
enlargement.

26 27 28 29
GW

5

10

15

Ve
nt
ric
ul
ar
 v
ol
um

e 
(c
m
3 ) Control

INSVM

Figure 5.4: Total ventricular volume with increasing GA.

5.3.2 Statistical analysis

Two types of analysis were conducted to assess the relationship between
ventricular enlargement and cortical folding. First, a global analysis, using
both FD and FV , was performed to investigate the association of INSVM
with cortical folding. Second, a hemispheric analysis was conducted, us-
ing the FV model, where the effect of ventricular dilation was studied per
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hemisphere. In this last analysis, the relationship between ventricular di-
lation and cortical folding was studied per hemisphere. Therefore, the V V
covariate represents the volume of the corresponding lateral ventricle.

Table 5.4 lists the cortical regions where significant differences in cortical
folding related to INSVM diagnosis (FD) or total ventricular enlargement
(FV ) were found in at least one of the folding measures analyzed. We found
that ventricular volume in Eq. (5.3) was more sensitive than diagnosis as
shown in Table 5.4, reaching significance in more folding measures and cor-
tical regions (i.e., occipital and parietal lobes). Moreover, when analyzing
ipsilateral associations, ventricular volume showed a stronger effect on the
cortical folding in the same hemisphere (see Table 5.5) when compared to
the global model using total ventricular volume. In general, the cortical
regions most associated with VM were insula, occipital and parietal lobes,
and the regions located in the posterior part of the temporal lobe.

As shown in the last column of Table 5.4, whole hemispheres were included
as single regions to check for global effects. In the whole hemisphere, di-
agnosis was not associated with any folding measure, while significantly
lower values of PMC and MCL2 (all p = 0.002) associated with ventricu-
lar enlargement were found in the right hemisphere, and bilaterally higher
values of NGC (left: p = 0.002, right: p = 0.001). At a regional basis, sig-
nificant differences in PMC (left: p < 10−4, right: p < 10−5) and CI (left:
p < 0.0002, right p < 10−5), among others, were found bilaterally with both
FD and FV models in GPApp and MITGpp, with diagnosis and ventricular
dilation associated with a decreased cortical folding in all measures reach-
ing significance. In the insula, significant effects of diagnosis were found
in NMC (p < 0.002) and NGC (p < 0.001) solely in the right hemisphere.
Ventricular volume was, however, associated with several folding measures
in the right hemisphere and bilaterally with NGC (left: p < 0.002, right:
p < 10−5) and FI (both p < 0.001). Significant changes were also found
by both FD and FV in GPAap and LOGFpp, although no curvature mea-
sure showed bilateral differences, with the exceptions of GPAap, where MC
(both p < 0.001) and PMC (both p < 0.001) were bilaterally associated with
ventricular enlargement. In association with abnormality, GPAap showed
increased curvature. In LOGFpp, we found variable effects depending on
the hemisphere and folding measure. Reduced cortical folding in the left
SGTpp (i.e., increased NMC and NGC) was only found by the FD. The
second model (FV ), however, seemed to be more sensitive since significant
folding differences in the occipital and parietal lobes were not detected in
the first model (i.e., using diagnosis as factor, FD). Increasing ventricular
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GPAap GPApp Ins LOGFpp MITGpp OL PL STGpp Hem

MC r/b b/b -/r -/r r/r
PMC r/b b/b b/b -/b -/b -/r
NMC r/r l/- -/r -/b l/-
GC -/l l/l -/b
PGC b/b -/r l/- l/b -/b -/l
NGC r/r r/b l/b -/b -/l l/- -/b
CI b/b -/r b/b -/b -/l
FI -/l b/b -/b b/b
SI -/l -/r r/r
PSI -/l l/b r/r
NSI l/r
MCL2 -/l b/b -/r l/- b/b -/b -/l -/r
GCL2 l/b l/- l/l -/r
MCNR b/b l/- l/- -/r
GCNR l/b -/r

Table 5.4: Regions with statistically significant differences in cortical folding associated with diagnosis/ventricular enlargement. Abbre-
viations: left hemisphere (l), right hemisphere (r), bilateral (b), and hemisphere (Hem). The term before the forward slash indicates
statistical significance found using the FD model, while the one after the slash indicates significance when using FV (i.e., FD/FV ).
Abbreviations l, r, and b represent that significance is found only in the left, right hemisphere, and bilaterally, respectively. When
there is no statistical significance for one model, ‘-’ is used. For example, the entry corresponding to GPAap and MC shows that the
effect of diagnosis (i.e. FD model) in the MC folding measure of the right GPAap is statistically significant, whereas it is not in the
left GPAap. However, the effect of ventricular dilation (i.e., FV ) in both right and left GPAap is statistically significant.



GPAap GPApp Ins LOGFpp MITGpp OL PL STGpp Hem

MC b b b r b
PMC r b b b b b
NMC l b l r b l l
GC l b
PGC b b l b b l b
NGC b b b b l b
CI r b b l b b b r b
FI b l b r
SI l b r
PSI l b r
NSI l l r l
MCL2 b b l b b l b
GCL2 b l r r
MCNR b l r b
GCNR b l r

Table 5.5: Regions with statistically significant differences in cortical folding associated with hemispheric ventricular enlargement.
Abbreviations: left hemisphere (l), right hemisphere (r), bilateral (b), and hemisphere (Hem). Abbreviations r/l indicate that
statistical significance is achieved only in the region of right/left hemisphere by the FV model that only uses the right/left ventricular
volume. When statistical significance is found by both hemispheric models on their respective sides, b is used.



5.3. results

volume was significantly associated with bilateral gyrification decrease of
the occipital lobe in multiple folding measures (e.g., NMC left: p < 0.0002,
right: p < 10−4). In the parietal lobe, ventricular volume was associated
with reduced curvature in the left hemisphere and bilaterally only with
PMC (left: p < 0.0001, right: p = 0.002).

Note that in this first analysis (using both FD and FV models), we assumed
that diagnosis and ventricular enlargement might be associated with gyrifi-
cation differences over the whole cortical plate, irrespective of its side. That
is, the diagnosis used as group factor in FD and the total ventricular volume
in FV could not distinguish the laterality. However, since there are cases
diagnosed with left, right or bilateral INSVM in our abnormal cohort, we
further conducted a second analysis to assess the association of ventricular
dilation with reduced cortical folding for each hemisphere separately.

Results from this second hemispheric analysis are shown in Table 5.5. Cor-
tical regions and folding measures statistically associated with ventricular
volume show great overlap with the previous analysis using total ventricu-
lar volume (i.e., FV ), though it is important to emphasize the differences
concerning the insula and whole hemisphere. In this second analysis, lateral
ventricular dilation had a significant effect on reduced folding in both insula
and whole hemisphere in the majority of curvature measures. Reductions in
folding related bilaterally to NMC, PGC, NGC, CI and MCL2 were found
in the insula, with increased curvature only observed in MC. Regarding the
whole hemispheres, lateral ventricular volume was consistently correlated
with reduced folding in all statistically significant curvature measures, with
NGC rendering the lowest p-values (left: p < 10−4 and right: p = 0.0002).
Some of these measures are shown per hemisphere in Figure 5.5. This sug-
gests that albeit cortical folding might be bilaterally altered in the presence
of unilateral ventricular enlargement, ipsilateral association is higher.

5.3.3 Ventricular volume prediction

Sparse linear models were used to predict total ventricular volume and iden-
tify the most relevant cortical regions and curvature-based features related
to ventricular enlargement. Before regression, all features were scaled to
a mean of 0 and a standard deviation of 1. Average mean absolute errors
(MAE) using a leave-one-out cross-validation strategy for each value of λ in
the range [101, 10−4] are shown in Figure 5.6. The goal of this experiment
is to choose the optimal value for the regularization parameter λ. This
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Figure 5.5: Scatter plots of PGC, NGC, PMC and CI versus GA for each hemisphere,
with linear fits for controls and subjects with left or right INSVM, depending on the
hemisphere. Note that fetuses with bilateral ventricular enlargement appear as INSVM
in both hemispheres.

is, the optimal amount of regularization (i.e., sparsity) is chosen to be the
one that leads to the lowest ventricular volume prediction error. We can
see that Lasso yields more accurate volume prediction than Group Lasso.
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Lasso is more free to choose the most relevant features from any cortical
region, while Group Lasso is constrained to select groups of features (i.e., a
group of features corresponds to a cortical region), except for GA and STV,
which are single feature groups.
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Figure 5.6: Leave-one-out cross-validated mean absolute error evolution using different
regularization values. Comparison of Lasso with Group Lasso.

Figure 5.7 shows the MAE for the optimal λ values corresponding to Lasso
and Group Lasso, respectively, separated by cohort. For all fetuses, the
MAE obtained is 1.27 cm3 (control: 0.98, INSVM: 1.59) and 1.48 cm3

(control: 1.20, INSVM: 1.79) for Lasso and Group Lasso, respectively. With
3.65±1.12 cm3 and 8.91±2.70 cm3 being the ventricular volumes in normal
and INSVM cohorts, respectively. Note that both methods provided higher
mean error in the INSVM cohort than in normal fetuses. This may be due
to the large volume variance and heterogeneity (see Figure 5.4) existing in
the abnormal cohort (including left, right and bilateral INSVM).

The advantage of using sparse regularization is that most feature coeffi-
cients will be driven towards zero and only few relevant features will be
selected. However, there may be some instability in the features selected
by Lasso since they may vary depending on the data used to compute the
model. To further assess the relevance of selected regions, stability selection
was considered using Randomized Lasso. After training Lasso and Group
Lasso with their respective best λ values on the complete dataset, and run-
ning Randomized Lasso, the percentage of features selected was: 6.02% (28
folding measures and STV), 50.21% (240 folding measures representing 16
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Figure 5.7: Total ventricular volume mean absolute error in normal and INSVM cohorts:
Comparison between Lasso and Group Lasso. Results are obtained with the optimal
cross-validated λ for each method.

cortical regions, GA and STV) and 6.02% (28 folding measures and STV)
for Lasso, Group Lasso and Randomized Lasso, respectively. This shows
that a few folding measures are relevant for predicting ventricular volume,
according to the number of features selected by both Lasso and Randomized
Lasso. Noteworthy is the fact that STV was selected by all sparse models,
whereas GA was relevant for predicting ventricular volume only in Group
Lasso. Although Figure 5.4 shows a correlation between ventricular volume
and GA, STV appears to better capture this association. This is because
STV carries information about GA (p < 10−12) and, most importantly, is
highly sensitive to ventricular volume (p < 10−6).

Figure 5.8 shows the most relevant regions, in terms of number of features
selected. It is important to note that MITGpp, GPAap, GPApp, occipital
lobe and insula were selected bilaterally by all sparse models, which is in
great accordance with our previous statistical analyses. However, in the
parietal lobe, that showed significant association with ventricular volume
enlargement, no curvature feature was selected by any regression model.
This suggests that, although this region is correlated with ventricular en-
largement, is not part of the predictive pattern obtained when considering
all measures in conjunction. Curvature features selected by Lasso and Ran-
domized Lasso are shown in Figure 5.9. The most recurrent features (se-
lected in more than 3 cortical regions by Lasso or Randomized Lasso) were
MC, PMC, GC, SI and PSI. MC and PMC denote extrinsic folding differ-
ences between cortices of healthy fetuses and those of the INSVM cohort in
the cortical regions were these folding measures were found relevant by our
sparse estimators. MC was found relevant in the right insula, for example,
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Figure 5.9: Feature selection counts corresponding to the number of cortical regions where
a particular curvature feature was selected.

which is predominantly more concave in the normal cohort than in INSVM
fetuses with larger ventricles (as shown in Figure 5.10). The left GPAap,
however, was extrinsically less folded (lower MC) in INSVM subjects. In
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the right MITGpp, PMC was selected by both Lasso and Randomized Lasso
because of its negative correlation with ventricular volume. The gyrus is
more prominent in the normal cohort, as clearly illustrated in Figure 5.10.
The relevance of GC implies that there exists a difference in intrinsic folding
(i.e., with distortion) between both cohorts in regions such as the left occip-
ital lobe (where GC was found relevant). SI was found to be relevant, for
example, in the right LOGFap and PSI in left GPAap. The former expresses
that right LOGFap is, in general, more convex in healthy fetuses, while the
latter points out to the existence of a less prominent convexity within the
left GPAap. This, however, does not mean that other selected measures
were not important. It simply indicates that the most recurrent measures
were found to be strongly correlated with ventricular volume in several cor-
tical regions, which emphasizes their predictive power and higher sensitivity
over the rest of measures to capture the putative effects of INSVM in such
regions. On the other hand, PGC, MCL2 and GCNR were not relevant for
any cortical region, which may reflect that when used together with the rest
of folding measures, they provided no additional information for our sparse
models in the prediction of ventricular volume or were not able to capture
folding differences between both cohorts. Despite some differences, results
obtained with GLM analyses and sparse regression are concordant.

5.4 Discussion

In this work, we studied the association of INSVM with altered cortical
folding in utero. Using high-quality 3D reconstructions of fetal brain MR
images, inner cortical surfaces were extracted and several folding measures
were computed to characterize the curvature and degree of gyrification of
each fetal brain. Two different approaches based on statistical analysis and
sparse linear regression were employed to identify cortical regions associated
with ventricular dilation. In the first approach we probed the capability of
diagnosis or ventricular volume to explain the observed folding measure for
each cortical region individually. We also corrected for other covariates (i.e.,
GA and supratentorial volume) that could affect the relationship to make
sure that the differences are only due to diagnosis or ventricular volume. In
the second approach we aimed to find a pattern among the observed regions
that is predictive of total ventricular volume. Such pattern is composed of
several cortical regions and we considered that a region is relevant if it is
included in such pattern. Both approaches offer complementary information
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Figure 5.10: Examples of folding measures (selected by our sparse models) against ven-
tricular volume. Linear fit is included to show relationship of measures with increasing
ventricular volume.

since regions are either considered separately or in groups. We conclude that
the regions that are significant in the statistical analysis and also selected
by the sparse linear models can be considered to play an important role in
gyrification in fetuses with INSVM. Both approaches showed evidence of
disturbances in cortical folding in the presence of VM. Their results were
in great accordance, with reduced folding in insula, MITGpp, GPApp and
occipital lobe demonstrating consistent bilateral relationship with increasing
ventricular volume.
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5.4.1 Alterations in cortical folding

In the statistical analyses, ventricular volume was more sensitive to changes
in folding than diagnosis, being able to capture differences in additional re-
gions (i.e., occipital and parietal lobes) and in the whole hemisphere. When
cortical folding was analyzed separately for each hemisphere, there was an
increased number of folding measures that significantly correlated with ven-
tricular volume in the insula and occipital lobe in both hemispheres. This
shows stronger associations of altered cortical folding with ipsilateral ven-
tricular enlargement and underlines the importance of using hemispheric
analyses. We argue this is because our dataset is composed of INSVM sub-
jects with unilateral and bilateral ventricular dilation, and global analysis
is not able to discern the laterality. Although this might suggest stronger
ipsilateral effects of ventricular enlargement in cortical folding, a contralat-
eral analysis might reveal interactions across different hemispheres. Cortical
regions found relevant by the sparse linear models, emphasizing regions se-
lected by Randomized Lasso, were in great overlap with regions significantly
associated with ventricular volume in the statistical analyses, with the im-
portant exception of the parietal lobe. Although Randomized Lasso selected
new cortical regions (e.g., left: CGpp, ATLmp and LOGFap, right: LOG-
Fap and MITGap), it is worth mentioning that these regions might have
been selected to account for the amount of ventricular volume not explained
by the regions with reduced folding.

Based on 3D reconstructed MR images, Scott et al. (2013) used a vertex-wise
approach to investigate the association of isolated mild ventriculomegaly
(IMVM) with alterations in cortical folding. Significant deviations in mean
curvature were only found in the anterior aspect of the parieto-occipital sul-
cus. On the contrary, in the current study, several cortical regions showed
significantly lower values associated with INSVM in multiple folding mea-
sures (e.g., mean curvature, Gaussian curvature and curvedness). Our find-
ings encompass the narrow area of the parieto-occipital sulcus that distin-
guished fetuses with IMVM from the normal cohort. Scott et al. (2013)
analyzed folding alterations in fetuses with mild VM (i.e., atrial diameter
of 10-12 mm) instead of INSVM that includes both mild and moderate VM.
The inclusion of fetuses with larger lateral ventricular volumes in our cohort
than the ones with IMVM may explain the additional regions with altered
folding found in our study. Moreover, Scott et al. (2013) compared folding
between 16 healthy controls and 16 IMVM fetuses, while our database is
composed of 23 INSVM subjects and 25 controls.
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According to sulcogenesis studies based on cortical surfaces (Clouchoux
et al., 2012; Habas et al., 2012), the parieto-occipital sulcus, separating
the parietal and occipital lobes, undergoes significant changes starting from
the 23rd GW. In the occipital lobe, significant changes in curvature are
found in the calcarine sulcus and lingual gyrus around the 24th GW and
continue until they are well formed around 28-29 GWs. This might have
precluded finding folding differences in these areas between controls and
cases in (Scott et al., 2013). The same occurs in the insula, for instance,
where first significant folding changes are detected around 24-25 GWs. Be-
tween 22 and 25.5 GWs, the age range studied in (Scott et al., 2013), most
primary sulci are still emerging, which may difficult the detection of cor-
tical alterations. The GA of our cohort is one of the factors that allowed
us to identify gyrification differences in more cortical areas than only in
the parieto-occipital sulcus. In normal in utero brain development, the age
range of 26-29 GWs of our cohort constitutes a period of cortical folding
that occurs immediately before gyrification reaches its peak of growth rate
around the 30th GW in all cortical regions (Wright et al., 2014). By the
end of this period, most primary gyri and sulci are formed in the developing
brain.

Although folding differences in our work were analyzed at a regional scale,
reduced folding in the aforementioned cortical regions hints to the existence
of gyrification alterations that can be found in more localized areas confined
within these regions.

5.4.2 Prognosis in INSVM fetuses

We know from several published studies assessing perinatal and long-term
outcomes that the incidence of unfavorable neurodevelopmental outcome is
low in INSVM fetuses, and even lower in mild than moderate VM (Gaglioti
et al., 2005; Griffiths et al., 2010; Leitner et al., 2009). Within isolated
VM, ventricular size and progressive ventricular enlargement are the main
factors showing association with adverse outcome and postnatal cerebral
abnormalities not detected in utero (Baffero et al., 2015; Gilmore et al.,
2008; Kelly et al., 2001; Scala et al., 2017).

Neurodevelopmental impairment observed with postnatal assessment in fe-
tuses diagnosed with INSVM include delays in cognitive, psychomotor and
language skills (Beeghly et al., 2010; Leitner et al., 2009; Lyall et al., 2012;
Ouahba et al., 2006). Risk of attention-deficit/hyperactivity disorder was
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also observed in children with prenatal non-severe VM (Ball et al., 2013;
Gilmore et al., 2001). These functional deficits were also associated with
abnormal cortical descriptors in a vast variety of disorders such as men-
tal retardation (Zhang et al., 2010), attention-deficit/hyperactivity disor-
der (Wolosin et al., 2009) and schizophrenia (Jou et al., 2005; Powell, 2010).
Fetuses with prenatally diagnosed INSVM showed larger cortical GM vol-
ume (Kyriakopoulou et al., 2014), which was also present in neonates along
with alterations in WM (Gilmore et al., 2008; Lyall et al., 2012). The
usefulness of cortical folding in predicting adverse outcome of fetuses with
INSVM remains speculative and is yet to be evidenced by longitudinal and
follow-up studies. Nonetheless, cortical folding has proved to be a potential
predictor in preterm neonates (Moeskops et al., 2015), schizophrenia (Guo
et al., 2015) and Alzheimer’s disease (Cash et al., 2012).

Fetal MRI grants the means to obtain more detailed information of the in
utero brain. With the recent advancements on motion-correction and super-
resolution techniques, fetal MRI is becoming an important neuroimaging
modality that offers the possibility to use a wide variety of approaches to
study malformations during in utero neurodevelopment. For INSVM, us-
ing fetal MRI for the search for novel prognostic biomarkers that are able
to elucidate the neurodevelopmental outcome of fetuses with non-severely
dilated ventricles is essential to identify fetuses at higher risk of neurodevel-
opmental deficits. Cortical regions with significant convolutional alterations
found in this study constitute potential candidate biomarkers that must be
assessed in future follow-up studies to validate their prognostic or predictive
power in distinguishing between the two subgroups of INSVM fetuses (i.e.,
INSVM fetuses with favorable and adverse outcome).

Still, the association of VM with decreased cortical folding and its effects in
postnatal neurodevelopment remain poorly understood. Moreover, drawing
conclusions about the direct influences of VM on gyrification, with the pos-
sible exception of cortical areas surrounding the dilated ventricles, is not
straightforward since the etiology of VM remains unknown (Kelly et al.,
2001) and there may be other common hidden factors that cause both lat-
eral ventricular dilation and decreasing gyrification.

5.4.3 Limitations and future work

One limitation of the current study is the large extension of the cortical
regions identified to be related to INSVM. Although cortical folding al-

122



5.5. conclusions

terations were found in the whole hemispheres, reduced cortical folding in
these regions (e.g., occipital lobe) could be concentrated in more focalized
areas. Therefore, in order to find such specific areas, a vertex-wise analysis
needs to be conducted. Regarding the cohorts, the study group was com-
posed of fetuses diagnosed with mild or moderate VM and no distinction
was made to assess the alterations in gyrification associated with each sub-
group. However, this may not be considered a limitation since we analyzed
the correlation with lateral ventricular volume instead of atrial diameter.
Furthermore, from the neurodevelopmental perspective, there is no consen-
sus in the literature on the differences between mild and moderate VM.
Another limitation is the gender distribution in our cohorts. Our dataset is
composed of 25 healthy controls (14 males, 11 females) and 23 INSVM sub-
jects (21 males, 2 females), as shown in Table 5.1. This imbalance between
groups (i.e., male over-representation in the INSVM cohort, with only 2
females) has precluded studying the effect of gender. A further limitation
comes from the automatic tissue segmentation. Only 4 images were manu-
ally delineated and used as atlases to segment the remaining 44 brain MR
images. This might have affected our analyses, especially in the anterior
part of the parahippocampal gyri, where segmentation could be improved.

In the current study, although only curvature-based folding measures were
analyzed, other measures related with cortical folding such as gyrification
index (Zilles et al., 1988) and sulcal depth can be studied. Given the exis-
tence of cortical folding alterations associated with INSVM, cortical thick-
ness constitutes another measurement worth investigating. Future work
also involves testing all folding measures and cortical regions associated
with INSVM with follow-up data, using neonatal images and other infor-
mation such as neurodevelopmental test scores. This may serve to select,
among all these candidate cortical regions, the ones with altered folding
that might be used as biomarkers to identify the fetuses with INSVM that
will have poor outcome.

5.5 Conclusions

In this work, we studied in utero gyrification in the presence of non-severe
ventricular enlargement. Our findings demonstrate a relationship of VM
with reduced folding in several cortical regions, not only restricted to the
parieto-occipital sulcus. Delving deeper into other in utero maturational
processes that occur in the fetal brain, such as cortical folding, can shed
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light on other possible malformations that might lead to adverse neurode-
velopment of INSVM fetuses. To the best of our knowledge, this is the first
work to analyze INSVM-specific cortical folding alterations within the GA
range of 26-29 weeks using 3D reconstructed fetal MRI.
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Revealing Regional
Associations of Cortical
Folding Alterations with In
Utero Ventricular Dilation
Using Joint Spectral
Embedding
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Abstract – Fetal ventriculomegaly (VM) is a condition with dilation of one
or both lateral ventricles, and is diagnosed as an atrial diameter larger than
10 mm. Evidence of altered cortical folding associated with VM has been
shown in the literature. However, existing studies use a holistic approach
(i.e., ventricle as a whole) based on diagnosis or ventricular volume, thus
failing to reveal the spatially-heterogeneous association patterns between
cortex and ventricle. To address this issue, we develop a novel method to
identify spatially fine-scaled association maps between cortical development
and VM by leveraging vertex-wise correlations between the growth patterns
of both ventricular and cortical surfaces in terms of area expansion and
curvature information. Our approach comprises multiple steps. In the first
step, we define a joint graph Laplacian matrix using cortex-to-ventricle cor-
relations. Next, we propose a spectral embedding of the cortex-to-ventricle
graph into a common underlying space where their joint growth patterns
are projected. More importantly, in the joint ventricle-cortex space, the
vertices of associated regions from both cortical and ventricular surfaces
would lie close to each other. In the final step, we perform clustering in the
joint embedded space to identify associated sub-regions between cortex and
ventricle. Using a dataset of 25 healthy fetuses and 23 fetuses with isolated
non-severe VM within the age range of 26-29 gestational weeks, our results
show that the proposed approach is able to reveal clinically relevant and
meaningful regional associations.

This chapter is adapted from:
Benkarim O. M., Sanroma G., Piella G., Rekik I., Hahner N., Eixarch E., González
Ballester M. A., Shen D., and Li G. Revealing regional associations of cortical folding
alterations with in utero ventricular dilation using joint spectral embedding. International
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI).
[Accepted.]
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6.1 Introduction

During the intrauterine life, the fetal brain undergoes drastic maturational
changes. Cortical folding is one of the major processes that occur during
this period, and any deviation from its normal developmental course might
lead to adverse postnatal outcome (Benkarim et al., 2017c). In prenatal
ultrasound examination, ventriculomegaly (VM) is the most frequent ab-
normal finding in the fetal brain. VM is a condition with dilation of one or
both lateral ventricles, as shown in Figure 6.1A. It is diagnosed as an atrial
diameter larger than 10 mm at any gestational age (Cardoza et al., 1988).
Evidence of altered cortical folding associated with in utero VM has been
shown by studies in the literature. Among their findings, cortical gray mat-
ter was significantly enlarged in fetuses with isolated VM (Kyriakopoulou
et al., 2014). Using curvature-based analysis, studies also found reduced
cortical folding in the insula, the occipital lobe and the posterior part of the
temporal lobe (Benkarim et al., 2018; Scott et al., 2013).

Figure 6.1: A: Cortical and ventricular surfaces of a 28 gestational weeks fetus with left
VM. B: Regions of the lateral ventricle.

To study the association between VM and the morphology of cortical fold-
ing, existing works either use diagnosis or ventricular volume to characterize
this condition. Although ventricular volume captures the extent of enlarge-
ment and is more distinctive than the dichotomous information offered by
diagnosis, a single scalar value might not be sufficient to provide all the in-
formation related to ventricular enlargement (e.g., spatial information about
the dilated ventricular regions). In this work, we aim to find associations
between ventricular regions (see Figure 6.1B) and cortical folding by incor-
porating into our analysis the ventricular surfaces. For this purpose, we pro-
pose a novel approach to jointly analyze the cortical and ventricular shapes
based on their growth patterns. The motivation for using growth patterns
is their ability to reflect the underlying micro-structural brain changes. The
main idea of our approach is to find a common underlying representation
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of the vertex-wise growth patterns of both cortical and ventricular surfaces
such that vertices with associated patterns from both anatomical surfaces
can lie close to each other. In this way, regional associations can be conve-
niently found by identifying clusters containing vertices from both surfaces
in the new latent space. The contributions of our work are threefold:

• We propose a novel approach for joint analysis of different anatomical
shapes based on their growth patterns.

• We identify, for the first time, spatially fine-scaled associations related
to in utero VM between ventricular surfaces and alterations in cortical
folding.

• We use fusion of similarity matrices to capture associations based on
multiple cortical features.

6.2 Method

Given P subjects and their corresponding cortical and ventricular surfaces
with Nc and Nv vertices respectively, for each subject, the growth patterns
xi for each vertex are represented by:

xi = [x1i , x
2
i , · · · , xPi ], (6.1)

where xki is the feature (e.g., local surface area) of the k-th subject at vertex
i. In this study, growth patterns were built using a cross-sectional dataset.
Although it is preferable to use longitudinal data, repeated in utero imaging
is difficult due to ethical and practical issues.

Cortical and ventricular growth patterns are not necessarily to be repre-
sented using the same feature (e.g., we can use area for ventricles while
curvature for cortices). We assume that there exists a common underlying
representation for these heterogeneous growth patterns, xi, such that ver-
tices of associated regions from both surfaces can lie close to each other and,
most likely, form dense clusters. Thus, we propose to find a shared repre-
sentation of cortical and ventricular growth patterns using joint projection
onto a common space:
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Y = argmin
Y

∑
i,j

‖Y c
i − Y c

j ‖2Sc(i, j) +
∑
i,j

‖Y v
i − Y v

j ‖2Sv(i, j)

+µ
∑
i,j

‖Y c
i − Y v

j ‖2Scv(i, j), (6.2)

where Y = [Y c, Y v]T is the common latent representation with N = (Nc +
Nv) rows such that the first Nc rows correspond to the embedded cortical
growth patterns (i.e., Y c) and the remaining Nv rows belong to the ventricle
(i.e., Y v), T stands for matrix transpose, Sc and Sv are the intra-structure
similarity matrices, Scv is the similarity matrix between cortical and ven-
tricular growth patterns, and µ is a trade-off parameter. Given two similar
(i.e., high Scv(i, j)) growth patterns, xci and xvj from cortex and ventricle
respectively, the third term in Eq. (6.2) enforces their projections (i.e., Y c

i

and Y v
j ) to fall close to each other. This also occurs for similar growth

patterns from the same surface (enforced by the first and second terms).

Since we are interested in identifying associations between the growth pat-
terns of both structures, similarity between the growth patterns is defined
in terms of correlation. First, we build the inter-structure similarity matrix
based on the correlations between the growth patterns of both surfaces as
follows:

Scv(i, j) =
1 + ρ(xci ,x

v
j )

2
, (6.3)

where ρ is Pearson’s correlation coefficient. Similarly, intra-structure simi-
larity matrices (Sc and Sv) are built to capture within surface correlations.
The joint similarity matrix is constructed by filling its block-diagonal with
the intra-structure similarity matrices and the off-diagonal with the inter-
structure similarity matrix:

S =

(
Sc µScv

µSTcv Sv

)
. (6.4)

Then, we compute the normalized Laplacian of the joint similarity matrix:

L = I −D−1/2SD−1/2, (6.5)

where D is the degree matrix of S (i.e., a diagonal matrix such that D(i, i) =∑
j S(i, j)), and I is the identity matrix. Laplacian eigenmaps (Belkin and
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Niyogi, 2003) can then be used to solve Eq. (6.2) based on the joint Laplacian
and find the common underlying space Y .

To discover the regional relationships induced by ventricular enlargement,
we cluster the embedded growth patterns using hierarchical clustering. As-
sociated regions are identified by clusters containing vertices from both
shapes.

Features for Cortical Growth Patterns

The area of ventricular surfaces increases dramatically with the enlarge-
ment and can be considered reliable in capturing the ventricular dilation.
However, alterations in cortical folding can be characterized by multiple
distinct features. Therefore, we extend our approach to include both area
and curvedness (derived from curvature) as features for cortical surfaces by
fusing the similarity matrices created for each of them with ventricular area:
S1 built using area for both structures, and S2 using curvedness for cortices.
For each similarity matrix, Sm, m∈ {1, 2}, we derive two matrices (Wang
et al., 2014a):

Pm(i, j) =

{
Sm(i,j)

2
∑

k 6=i Sm(i,k) i 6= j

1/2 otherwise.
(6.6)

Wm(i, j) =

{ Sm(i,j)
2
∑

k∈Ni
Sm(i,k) j ∈ Ni

0 otherwise,
(6.7)

whereNi denotes the neighborhood of the i-th vertex in terms of the vertices
with most correlated growth patterns. Fusion is then iteratively conducted:

P t+1
1 = W1P

t
2W

T
1 , P t+1

2 = W2P
t
1W

T
2 , (6.8)

where Pm and Wm are the dense and sparse similarity matrices derived
from Sm (i.e., S1 and S2). In this way, the reliable similarity information is
diffused across similarity matrices. Finally, the dense matrices are averaged
to obtain the fused matrix:

Pf = (P1 + P2)/2. (6.9)
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The fused similarity matrix, Pf , is able to capture common and comple-
mentary associations, and remove spurious and isolated correlations. We
use Pf (rather than S) to compute the joint Laplacian and project the
growth patterns.

6.3 Experiments

6.3.1 Data and Preprocessing

In our experiments, we used a fetal brain MRI dataset of 25 healthy con-
trols and 23 subjects with isolated non-severe ventriculomegaly (INSVM)
between 26 and 29 gestational weeks. The INSVM cohort was composed of
fetuses with unilateral or bilateral ventricular width between 10-14.9 mm,
with no abnormal karyotype, infections or malformations with risk of abnor-
mal neurodevelopment. T2-weighted MR images were acquired on a 1.5 T
scanner (SIEMENS MAGNETOM Aera) with an 8-channel body coil. For
each subject, multiple orthogonal 2D scans (i.e., 4 axial, 2 coronal, and 2
sagittal stacks) were collected, from which a high-resolution 3D image was
reconstructed using the method in (Murgasova et al., 2012).

Tissue segmentation was performed on the reconstructed images using a
learning-based method (Sanroma et al., 2016a). Then, cortical and ven-
tricular surfaces were extracted for each hemisphere. In order to establish
vertex-wise correspondences, for each structure, surfaces were co-registered
and resampled to the same number of vertices (Xia et al., 2018).

6.3.2 Experimental Setup

Ventricular growth patterns were built with area information from each
vertex, which was computed as one third of the total area of adjacent trian-
gles (Li et al., 2013). For cortices, we used both area and curvedness. Thus,
we conducted 3 different experiments, using: 1) correlations between ven-
tricular area and cortical area, 2) ventricular area and cortical curvedness,
and 3) fusing both similarity matrices (i.e., using both area and curvedness
from the cortices and area for the ventricles). For clustering, we used 2
to 25 clusters to illustrate the number of correlated regions identified with
different clusters. The optimal associations between ventricles and cortices
were determined by finding the most appropriate number of cluster using
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the silhouette coefficient:

s(i) = (b(i)− a(i))/max(a(i), b(i)),

where i indexes vertices in the embedded space, a(i) is the mean distance
between the i-th vertex to the rest of vertices in its cluster, and b(i) is
the minimum average distance computed with the vertices in the rest of
clusters.

6.3.3 Results

Although there may exist contralateral associations and unilateral ventric-
ular enlargement may be associated with alterations in the opposite hemi-
sphere, for this work, associations were only studied for each hemisphere
independently. Figure 6.2 shows the associations identified by our approach
in the left hemisphere between ventricular dilation and cortical folding. Sur-
faces are displayed such that cortical and ventricular regions found to be
associated are depicted with the same color code. From these results, re-
gardless of using area or curvedness to characterize the cortical growth
patterns, we can observe that, with 3 clusters, the posterior part of the
ventricular surface and the posterior part of the cortical surface fall into
the same cluster (blue for area and pink for curvedness). This pattern is
replicated for the anterior part (green for area and cyan for curvedness) and

Figure 6.2: Comparison of regional associations identified in the left hemisphere using
correlations between: a) cortical area and ventricular area, and b) cortical curvedness
and ventricular area. Associations between cortex and ventricle are color-coded, with
white depicting regions with no associations.
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further preserved with increasing clusters, as clusters emerge in the poste-
rior/anterior parts of both surfaces. As the number of clusters increases, we
obtain more localized and fine-grained associations (i.e., shared clusters),
which emphasizes the strength of the maintained associations.

Comparing the associations found when using area expansion and curvature
information for the cortex, we can see that, with 8 clusters, the anterior horn
and part of the ventricular body are associated with a region nearby the
anterior cingulate gyrus. This association is captured with cortical area
(green) for a larger number of clusters than curvedness (cyan). The most
important association found by curvedness is between the posterior (i.e.,
occipital) horn and the occipital lobe (pink). With 8 clusters, the association
includes the calcarine and the parieto-occipital fissures, although only a
small part of the latter fissure is preserved with 20 clusters. This association
is also found by cortical area with 8 (blue) and 15 clusters (yellow).

Figure 6.3: Regional associations identified using fused similarity matrix for left and right
hemisphere separately. Associations between cortex and ventricle are color-coded, with
white depicting regions with no associations.

Still, using a single feature to describe the growth patterns might not be able
to capture all putative associations or give rise to spurious ones. Results
using the fused similarity matrix for different number of clusters are shown
for both hemispheres in Figure 6.3. Noteworthy is that associations found
in both hemispheres are in large overlap, with the only difference being
the correlation between the ventricular body and the anterior horn with
the anterior cingulate gyrus (red) in the left cortex. Nonetheless, in both
hemispheres, the posterior horn and the occipital lobe belonged in the same
cluster (green in left hemisphere), and the inferior horn and the atrium (blue
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Figure 6.4: A: Associations between ventricular enlargement and cortical folding using
the fused similarity matrix corresponding to the optimal number of clusters in terms of
silhouette coefficient for left (top) and right (bottom) hemispheres. B: Silhouette scores
for different number of clusters for each hemisphere.

and cyan in left and right hemispheres, respectively) showed to be correlated
with the superior part of the parietal lobe. Associations corresponding to
the best clustering in terms of silhouette score are shown in Figure 6.4. The
highest values of silhouette coefficient were found with 17 and 14 clusters
for the left and right hemispheres, respectively. The atrium was identified
bilaterally (blue and pink for left and right hemispheres, respectively). Since
the atrium is the ventricular region used in clinical practice to diagnose
VM, this highlights the clinic relevance of our results. In the cortex, the
occipital lobe was found to be associated with the posterior horn (green
and pink) in both hemispheres, which is consistent with findings in the
literature (Benkarim et al., 2018; Scott et al., 2013). In association with VM,
our approach is able to identify meaningful cortical and ventricular regions.
Furthermore, it provides the means to establish relationships between these
regions and gain more insight into the fine-grained associations between
ventricular enlargement and cortical development.

6.4 Conclusions

In this work, we have presented a novel approach to identify spatially fine-
grained correlations between different shapes based on their growth pat-
terns. This is the first work that approaches the study of associations
between fetal VM and cortical folding alterations by jointly analyzing cor-
tical and ventricular shapes. Our results demonstrate that the proposed
approach is able to identify clinically relevant regions (e.g., atrium in the
ventricle and occipital lobe in the cortex) and further establish relationships
between these regions. For future work, instead of fusing similarity matrices
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from different features prior to performing the embedding, multi-view ap-
proaches can be explored. Also, additional features (e.g., local gyrification
index) can be used to identify other correlated regions.
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7.1. research summary

After a thorough review in Chapter 2 of the literature on neurodevelopment
in fetuses, this thesis has developed novel approaches to study the fetal
brain. Within the automatic pipeline to study in utero neurodevelopment,
our work was carried out in two important stages of this pipeline. First,
we proposed two segmentation frameworks, which are nonspecific to the
fetal brain albeit rather generic enough to be applied to any brain dataset,
and were evaluated on the segmentation of adult and fetal brains. Second,
we analyzed the deviations of in utero brain development from its norma-
tive course in the presence of ventriculomegaly, which is the most common
abnormal finding in the fetal brain.

7.1 Research summary

7.1.1 Segmentation of brain MRI

Beyond the well-known limitations inherent to MR imaging (e.g., inten-
sity inhomogeneity, noise and partial volume effects), the fetal brain poses
additional challenges due to its dynamic rapid growth that might degrade
segmentation quality and need to be carefully addressed to produce accu-
rate results. In the state of the art, these challenges are dealt with using
same or near-same gestational age atlases to the target subject to perform
the segmentation, which emphasizes the age-specific design of existing ap-
proaches. If we pay close attention to the target fetal brain, we can sur-
mise that this age-specific design is adopted to circumvent two important
challenges: 1) changes in tissue intensity due to myelination and the lami-
nar organization occurring in the fetal brain throughout gestation, and 2)
changes in size and shape caused by brain growth and cortical folding with
which the brain acquires its highly convoluted morphology. In this thesis,
we approached these challenges from different methodological perspectives:
registration accuracy and intensity similarity, which correspond to our two
proposed segmentation frameworks.

In Chapter 3, we focused on systematic errors caused by registration fail-
ures. We proposed a patch-based multi-atlas segmentation framework that
learns voxel-wise confidence estimators for each atlas to weigh its contribu-
tion in the final segmentation according to the spatially-varying quality of
registration between such atlas and the target image. In the case of fetuses,
using atlases with considerably different gestational ages to segment a given
subject will initially result in notable registration failures. Thus, in our
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framework, their contribution to the label fusion would be reduced. Even if
our framework does not target exclusively the fetal brain, the age-specific
character of the aforementioned approaches is implicitly incorporated into
our framework. Noteworthy is the fact that these spatially-varying confi-
dence maps prevent atlases with large anatomical differences with the target
image from contributing to the label fusion only in regions where registra-
tion potentially fails, as opposed to age-specific approaches that completely
drop atlases that are from different ages, irrespective of their anatomical
similarity. Furthermore, we proposed to additionally augment the intensity
information fed in the form of cubic patches to the voxel-wise estimators
with label-dependent features that have shown to provide superior discrim-
inative power to our supervised estimators, as reported in the results.

Fetuses with dissimilar gestational ages manifest dissimilar brain tissue
intensities in magnetic resonance imaging (MRI). After registration, age-
specific approaches tend to warp the atlases to the target image, forcing
atlas intensity images to acquire a similar appearance to the target image
as a result of interpolation. Warping the atlases, however, is an important
source of errors. First, because interpolation strategies used to warp the
atlas intensity images and labelmaps are different. Second, because atlas
appearance is distorted to best match the target’s, even though they could
be substantially different. The latter point is even more critical when work-
ing with fetal brains if we consider myelination and the transient nature
of some tissues such as the subplate and the intermediate zone. In Chap-
ter 4, we proposed a patch-based multi-atlas segmentation framework where
intensity and label information is extracted from the native spaces of the
atlases and target images, thus avoiding interpolation errors. In this frame-
work, training atlases are registered to a common template space, which is
used to establish correspondences between atlases and target images. How-
ever, no warping is performed. In this way, atlases, both intensity images
and labelmaps, do not suffer from interpolation errors and we avoid du-
plicating atlases due to warping. When using a fetal atlas with a notably
different gestational age from the image to be segmented, we are using the
intensity and label patches in the native space, whose contribution is to be
calibrated during label fusion, instead of some distorted version produced
after warping that tends to be more similar to the target patch.

In this framework, we further explore the similarities between weighted-
voting and a particular case of supervised label fusion using SVM with
RBF kernel. The support vectors found by the SVM during learning can
be related to patch pre-selection, and weighted-voting is carried out solely
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based on these relevant patches (i.e., support vectors). Our results highlight
the importance of patch pre-selection as the latter approach outperforms the
former.

7.1.2 Analysis of in utero neurodevelopment

In Chapters 5 and 6, we studied cortical folding alterations in the presence
of isolated non-severe ventriculomegaly. The dataset used in the analysis
of fetal ventriculomegaly is composed of fetuses within the age range of
26-29 gestational weeks, which corresponds to the mid-third trimester of
gestation, an intrauterine period that, to the best of our knowledge, has
not been covered in the literature. Thus, our work improves and extends
our knowledge base about in utero maldevelopment.

In Chapter 5, we analyzed the relationships of ventricular enlargement with
altered cortical folding on a regional basis by subdividing the cortical sur-
faces into several regions. Cortical folding for each region was characterized
with several curvature-based descriptors, while diagnosis and lateral ven-
tricular volume were used to characterize ventriculomegaly. This study was
carried out using two different approaches. First, global and hemispheric
analyses were performed to asses the association of ventriculomegaly with
regional folding measures. General linear models were used to analyze the
significance of diagnosis or ventricular volume in predicting each of the fold-
ing measures, accounting for gestational age and supratentorial volume as
covariates. Second, sparse linear regression approaches were used to predict
total lateral ventricular volume using all folding measures from every corti-
cal region. Our purpose was to focus on regional associations rather than a
particular folding measure.

From the findings of our first approach, we can conclude that ventricu-
lomegaly is better characterized by ventricular volume, which captures the
extent of dilation, than diagnosis. Moreover, these findings also suggest
stronger ipsilateral than global relationships, as our hemispheric analyses
showed to capture more significant associations. The second approach fur-
ther confirmed the findings of our statistical analyses, highlighting relevant
associations found between ventriculomegaly and altered cortical folding in
the insula, the parietal lobe and the posterior part of the temporal lobe.

In Chapter 6, we analyzed these associations from a completely different
perspective. We proposed a novel approach to study fine-grained associa-
tions between ventriculomegaly and cortical folding based on joint spectral
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embedding. In this work, ventriculomegaly is no longer characterized by
a single scalar value, but rather using the lateral ventricular shapes. Lo-
cal area was used to describe the ventricular surfaces, whereas curvedness
and local area were used to describe gyrification in the cortical surfaces.
After surface alignment, cortical and ventricular growth patterns for each
vertex were built to find the correlations between both sets of shapes. Our
proposed approach proceeds by first constructing the joint similarity ma-
trix based on vertex-wise growth patterns correlations, computing the graph
joint Laplacian and projecting the data to a common low-dimensional space
where associations between groups of vertices from both sets of shapes can
be identified using hierarchical clustering. In this underlying representation,
we assume that growth patterns would lie close to each other if they are
in strong correlation. Our findings suggest that the relationships between
ventricular dilation and alterations in cortical folding may obey a regional
pattern, although more research is needed in this direction.

Although a proof of concept study, our work, in Chapter 6, on incorporating
the lateral ventricular shapes, along with the cortical shapes, into the study
of ventriculomegaly represents an unprecedented novel approach to the joint
analysis of different anatomical shapes, which is not restricted to our case
study. Furthermore, instead of the cross-sectional dataset used in our work
due to the ethical and practical issues related to fetal brain imaging, our
approach can be used with longitudinal data. Note that, for fetuses, using
cross-sectional instead of longitudinal data is a common practice in the
literature to build, for instance, spatio-temporal atlases.

7.2 Future research directions

Most differences in morphology and appearance between fetal brains would
translate into registration errors. However, although our first segmentation
framework mainly targets these errors, it does not consider the correlations
between training atlases nor does it enforce spatial smoothness. In the case
of fetal brain segmentation, it is very clear that we do not need to include
young fetuses into the label fusion for segmenting very old fetal brains.
Therefore, atlas selection can play an important role. Also in targeting
the general brain population, atlas selection would considerably reduce the
computational complexity of our segmentation framework. Registration
errors are learned offline offering very fast segmentation runtimes. Still,
learning is performed in each of the atlases, thus learning times increase
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with the number of atlases in the training set. This can be reduced by
identifying the most representative atlases of the population and restricting
learning to these spaces. A potential line of future research could be to
explore clustering techniques to select such atlases. The first segmentation
framework also introduced a novel set of features to augment the intensity
information of the patches, the so-called label-dependent features. In this
work, a small number of hand-crafted features were computed based on
atlas label patches. Given their proven added discriminative value, another
direction of research would involve adopting a supervised approach to learn
these features instead of using feature engineering.

The computational burden required by this first segmentation framework is
vastly reduced in the second approach proposed in Chapter 4. This second
approach exploits the use of a common template space to perform offline
learning in its supervised version. Therefore, only one classifier is learned
regardless of the number of training atlases in the database. A promising
direction of work would be to integrate the ideas of both approaches into
a common framework, therefore, learning registration errors based on the
native patch and label information. This new framework would jointly
lessen the impact of registration errors and completely remove interpolation
artifacts from affecting the label fusion.

With regard to fetal brain segmentation, the short age range of our dataset
did not allow us to test our proposed frameworks with very difficult cases.
Although around half of the subjects in the dataset were diagnosed with
unilateral or bilateral ventriculomegaly, which makes their segmentation
challenging, these frameworks could be tested using subjects from a larger
age range database.

In the analysis of fetal ventriculomegaly, our first work investigated asso-
ciations of ventricular dilation with gyrification for each cortical region. A
given folding measure describing large cortical regions such as the frontal or
parietal lobes might not capture the subtle folding changes occurring along
the surface of such lobes. A vertex-wise analysis could be further performed
to reveal more localized areas within the aforementioned regions found by
this study. Furthermore, all folding measures were curvature-based. Mea-
sures of cortical folding such as sulcal depth and local gyrification index
could offer a different insight into cortical folding and help find other pos-
sible associations. This is also worth investigating as a continuation of our
second work on ventriculomegaly presented in Chapter 6. In this approach,
gyrification was characterized in terms of curvedness and local area, then
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correlations with ventricular vertex-wise area were computed. This pro-
duced two similarity matrices that we fused prior to projecting the data.
However, more sophisticated approaches could be proposed to merge both
the fusion and the projection steps, such as multiview manifold learning.

Hemispheric statistical analyses revealed more associations in terms of the
number of folding measures than global analysis. In the second work, only
ipsilateral associations were analyzed, working with each hemisphere sep-
arately. Two directions of work with important clinical significance could
be explored in this scenario. First, extending our second work to include
both hemispheres. Second, the overlap between hemispheric and global
findings encourages the research on contralateral associations. The clini-
cal significance of our findings requires more study to assess the prognostic
power of the folding measures and the cortical regions to be used as poten-
tial biomarkers to discern and identify those subjects that will have poor
postnatal neurodevelopment. Longitudinal analysis may shed more light on
this, by incorporating follow-up postnatal imaging into the study of fetal
ventriculomegaly.
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Discriminative Confidence
Estimation for Probabilistic
Multi-atlas Label Fusion
(Supplementary Tables)

In support of the overall results reported in Chapter 3, we further include
Tables A.1 and A.2 to show segmentation performance (in both SATA and
ADNI datasets) when using the affine (AF) and the coarse non-rigid reg-
istrations (NR1) for each subcortical structure separately. Analogously,
Tables A.3 and A.4 report segmentation results on our fetal dataset for AF
and NR1 registrations, respectively. Performance is reported in terms of
Dice overlap (top rows) and MHD (bottom rows) for each table.
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SATA ADNI
Acc Amy Cau Hip Pal Put Tha Hip

MV 0.608±0.087 0.670±0.086 0.715±0.164 0.720±0.056 0.770±0.078 0.820±0.063 0.858±0.046 0.635±0.068
Naive 0.609±0.087 0.669±0.086 0.714±0.164 0.721±0.056 0.767±0.078 0.821±0.063 0.858±0.046 0.632±0.068
STAPLE 0.605±0.095 0.681±0.084 0.712±0.175 0.724±0.057 0.770±0.077 0.821±0.057 0.854±0.045 0.670±0.072
STEPS 0.629±0.105 0.688±0.081 0.723±0.161 0.729±0.064 0.773±0.080 0.822±0.061 0.859±0.049 0.733±0.058
LWV 0.642±0.098 0.695±0.081 0.784±0.134 0.760±0.053 0.780±0.079 0.833±0.063 0.875±0.040 0.710±0.065
JOINT 0.776±0.054 0.791±0.048 0.860±0.103 0.851±0.032 0.876±0.034 0.917±0.028 0.916±0.024 0.835±0.043
SCMNF 0.751±0.077 0.759±0.056 0.878±0.068 0.831±0.036 0.868±0.040 0.911±0.038 0.914±0.019 0.811±0.039
SCMWF 0.767±0.072 0.770±0.055 0.881±0.060 0.836±0.037 0.869±0.040 0.911±0.034 0.913±0.021 0.818±0.040
SCMNF2 0.777±0.063 0.787±0.053 0.889±0.057 0.847±0.031 0.872±0.039 0.913±0.030 0.915±0.020 0.832±0.039
SCMWF2 0.788±0.056∗ 0.802±0.043∗ 0.896±0.054∗ 0.860±0.024∗ 0.877±0.033 0.917±0.028 0.919±0.018 0.843±0.038∗

MV 0.547±0.188 0.476±0.189 0.481±0.509 0.456±0.214 0.299±0.144 0.230±0.112 0.193±0.095 0.573±0.247
Naive 0.623±0.191 0.500±0.194 0.515±0.503 0.485±0.216 0.316±0.140 0.239±0.113 0.194±0.091 0.622±0.257
STAPLE 0.553±0.202 0.462±0.189 0.494±0.546 0.448±0.214 0.300±0.146 0.225±0.101 0.197±0.096 0.475±0.177
STEPS 0.487±0.204 0.431±0.172 0.457±0.498 0.425±0.230 0.287±0.145 0.224±0.109 0.190±0.103 0.358±0.130
LWV 0.371±0.169 0.345±0.144 0.317±0.451 0.283±0.110 0.224±0.120 0.159±0.084 0.140±0.090 0.368±0.209
JOINT 0.260±0.092 0.256±0.086 0.244±0.381 0.190±0.071 0.146±0.070 0.095±0.052 0.102±0.073 0.237±0.121
SCMNF 0.283±0.136 0.272±0.099 0.207±0.286 0.206±0.068 0.149±0.074 0.099±0.051 0.105±0.068 0.244±0.119
SCMWF 0.278±0.132 0.267±0.096 0.202±0.280 0.202±0.066 0.147±0.072 0.098±0.050 0.103±0.067 0.237±0.114
SCMNF2 0.263±0.108 0.260±0.095 0.194±0.271 0.195±0.065 0.145±0.064 0.098±0.047 0.104±0.068 0.235±0.113
SCMWF2 0.253±0.097 0.247±0.086 0.177±0.235∗ 0.186±0.058 0.143±0.064 0.095±0.044∗ 0.100±0.063 0.212±0.093∗

Table A.1: Subcortical structure segmentation. Mean Dice scores (top entries) and MHD (bottom entries) per structure, averaged left and
right. Results obtained using affine registration (i.e., AF). Bold type indicates the best segmentation performance in terms of Dice overlap or
MHD. The ∗ symbol indicates statistical significance difference with all remaining methods. Abbreviations: accumbens (Acc), amygdala (Amy),
caudate (Cau), hippocampus (Hip), pallidum (Pal), putamen (Put) and thalamus proper (Tha).



SATA ADNI
Acc Amy Cau Hip Pal Put Tha Hip

MV 0.697±0.085 0.760±0.052 0.776±0.103 0.789±0.045 0.860±0.037 0.888±0.035 0.885±0.039 0.693±0.055
Naive 0.693±0.081 0.759±0.053 0.777±0.101 0.789±0.044 0.860±0.037 0.888±0.035 0.886±0.038 0.694±0.055
STAPLE 0.712±0.101 0.771±0.054 0.784±0.114 0.796±0.050 0.864±0.038 0.889±0.036 0.886±0.044 0.711±0.065
STEPS 0.727±0.053 0.753±0.036 0.856±0.043 0.819±0.025 0.844±0.031 0.889±0.027 0.900±0.018 0.763±0.048
LWV 0.758±0.057 0.790±0.044 0.847±0.099 0.830±0.038 0.881±0.031 0.916±0.030 0.906±0.032 0.748±0.051
JOINT 0.794±0.046 0.823±0.029∗ 0.885±0.070 0.869±0.023 0.887±0.031 0.924±0.024 0.922±0.016 0.853±0.031
SCMNF 0.777±0.064 0.802±0.031 0.900±0.039 0.857±0.027 0.882±0.027 0.920±0.030 0.922±0.015 0.833±0.034
SCMWF 0.784±0.052 0.809±0.035 0.903±0.038 0.863±0.021 0.882±0.030 0.920±0.028 0.923±0.015 0.838±0.037
SCMNF2 0.785±0.048 0.811±0.035 0.902±0.036 0.867±0.021 0.884±0.029 0.921±0.026 0.925±0.014 0.848±0.037

SCMWF2 0.791±0.047 0.815±0.035 0.905±0.035† 0.871±0.020 0.885±0.029 0.923±0.026 0.925±0.013† 0.856±0.036

MV 0.359±0.131 0.290±0.069 0.307±0.224 0.288±0.123 0.150±0.038 0.124±0.049 0.148±0.080 0.439±0.166
Naive 0.415±0.117 0.311±0.075 0.321±0.209 0.301±0.110 0.160±0.037 0.129±0.050 0.148±0.073 0.476±0.167
STAPLE 0.367±0.148 0.290±0.069 0.327±0.261 0.289±0.125 0.155±0.038 0.128±0.049 0.159±0.093 0.379±0.124
STEPS 0.350±0.159 0.278±0.066 0.313±0.272 0.285±0.147 0.147±0.042 0.123±0.049 0.152±0.097 0.300±0.098
LWV 0.271±0.098 0.247±0.054 0.225±0.264 0.210±0.070 0.141±0.037 0.108±0.048 0.125±0.074 0.299±0.161
JOINT 0.212±0.061 0.199±0.038 0.159±0.228 0.156±0.045 0.119±0.031 0.080±0.035 0.092±0.055 0.188±0.099
SCMNF 0.229±0.070 0.204±0.044 0.150±0.186 0.158±0.037 0.121±0.033 0.083±0.038 0.092±0.038 0.205±0.104
SCMWF 0.225±0.068 0.202±0.043 0.148±0.180 0.156±0.036 0.120±0.032 0.083±0.038 0.091±0.036 0.200±0.100
SCMNF2 0.217±0.065 0.199±0.045 0.150±0.185 0.153±0.035 0.118±0.032 0.083±0.035 0.093±0.043 0.200±0.095
SCMWF2 0.214±0.060 0.195±0.042 0.137±0.153∗ 0.149±0.031 0.118±0.030 0.082±0.034 0.090±0.038 0.184±0.082∗

Table A.2: Subcortical structure segmentation. Mean Dice scores (top entries) and MHD (bottom entries) per structure, averaged left and
right. Results obtained using the non-rigid registration NR1. Bold type indicates the best segmentation performance in terms of Dice overlap or
MHD. The ∗ symbol indicates statistical significance difference with all remaining methods, and † indicates statistical significance difference with
all methods except SCMNF2 or SCMWF2. Abbreviations: accumbens (Acc), amygdala (Amy), caudate (Cau), hippocampus (Hip), pallidum
(Pal), putamen (Put) and thalamus proper (Tha).



Fetal
BS CB CSF CoGM LV WM

MV 0.874±0.031 0.878±0.036 0.836±0.025 0.642±0.048 0.679±0.096 0.917±0.016
Naive 0.874±0.031 0.878±0.036 0.836±0.025 0.639±0.049 0.678±0.097 0.916±0.016
STAPLE 0.866±0.031 0.868±0.043 0.824±0.024 0.664±0.042 0.657±0.127 0.906±0.013
STEPS 0.877±0.027 0.878±0.036 0.828±0.018 0.716±0.042 0.750±0.083 0.932±0.012
LWV 0.903±0.025 0.916±0.027 0.911±0.015 0.791±0.033 0.802±0.085 0.950±0.012
JOINT 0.925±0.015 0.943±0.017 0.941±0.008 0.875±0.014 0.865±0.074 0.967±0.009
SCMNF 0.930±0.016 0.947±0.016 0.944±0.008 0.883±0.016 0.884±0.068 0.970±0.008
SCMWF 0.931±0.015 0.948±0.015 0.944±0.008 0.885±0.015 0.887±0.066 0.971±0.008
SCMNF2 0.932±0.015 0.949±0.016 0.946±0.008 0.892±0.011 0.883±0.074 0.970±0.007

SCMWF2 0.932±0.015† 0.951±0.011† 0.950±0.009? 0.893±0.015† 0.902±0.057? 0.973±0.006?

MV 0.110±0.040 0.117±0.053 0.156±0.032 0.342±0.068 0.347±0.136 0.083±0.023
Naive 0.111±0.039 0.118±0.053 0.157±0.032 0.345±0.070 0.352±0.137 0.083±0.023
STAPLE 0.115±0.042 0.128±0.066 0.168±0.032 0.358±0.061 0.366±0.153 0.096±0.021
STEPS 0.104±0.034 0.117±0.054 0.151±0.023 0.257±0.050 0.236±0.088 0.062±0.016
LWV 0.081±0.030 0.079±0.039 0.076±0.017 0.178±0.038 0.205±0.119 0.047±0.016
JOINT 0.059±0.015 0.053±0.030 0.048±0.008 0.099±0.014 0.139±0.110 0.031±0.014
SCMNF 0.056±0.016 0.048±0.026 0.045±0.008 0.093±0.014 0.117±0.102 0.027±0.012
SCMWF 0.055±0.015 0.047±0.025 0.045±0.008 0.091±0.014 0.116±0.102 0.027±0.011
SCMNF2 0.054±0.018 0.047±0.027 0.044±0.007 0.086±0.011 0.125±0.114 0.027±0.011
SCMWF2 0.055±0.018 0.041±0.014? 0.040±0.008? 0.084±0.013? 0.092±0.078? 0.023±0.006?

Table A.3: Fetal brain tissue segmentation. Mean Dice scores (top entries) and MHD (bottom entries) per tissue. Results obtained
using affine registration (i.e., AF). Bold type indicates the best segmentation performance in terms of Dice overlap or MHD. The ∗
symbol indicates statistical significance difference with all remaining methods, and † indicates statistical significance difference with
all methods except SCMNF2 or SCMWF2.



Fetal
BS CB CSF CoGM LV WM

MV 0.914±0.012 0.918±0.017 0.879±0.023 0.654±0.054 0.816±0.048 0.927±0.015
Naive 0.914±0.012 0.918±0.017 0.879±0.023 0.650±0.054 0.814±0.048 0.926±0.015
STAPLE 0.914±0.014 0.913±0.021 0.874±0.021 0.675±0.053 0.801±0.090 0.921±0.014
STEPS 0.916±0.012 0.917±0.018 0.881±0.024 0.715±0.056 0.821±0.062 0.938±0.013
LWV 0.930±0.010 0.941±0.011 0.924±0.016 0.807±0.035 0.887±0.037 0.958±0.010
JOINT 0.935±0.006 0.955±0.005 0.943±0.011 0.880±0.017 0.916±0.032 0.971±0.006
SCMNF 0.940±0.007 0.957±0.006 0.946±0.011 0.887±0.020 0.921±0.033 0.973±0.006
SCMWF 0.940±0.007 0.957±0.006 0.947±0.010 0.888±0.020 0.922±0.032 0.973±0.006
SCMNF2 0.941±0.007 0.959±0.006 0.948±0.010 0.893±0.015 0.928±0.032 0.974±0.006

SCMWF2 0.942±0.007† 0.959±0.006† 0.951±0.010? 0.894±0.018† 0.922±0.038 0.974±0.006

MV 0.067±0.011 0.069±0.020 0.112±0.030 0.345±0.094 0.165±0.044 0.072±0.021
Naive 0.067±0.011 0.069±0.020 0.112±0.029 0.350±0.093 0.170±0.045 0.073±0.020
STAPLE 0.066±0.011 0.074±0.025 0.114±0.027 0.340±0.092 0.172±0.079 0.079±0.023
STEPS 0.065±0.010 0.071±0.022 0.104±0.029 0.269±0.091 0.152±0.050 0.058±0.020
LWV 0.054±0.008 0.049±0.015 0.066±0.022 0.167±0.049 0.094±0.034 0.039±0.013
JOINT 0.050±0.006 0.037±0.012 0.049±0.018 0.097±0.020 0.068±0.030 0.026±0.009
SCMNF 0.046±0.006 0.035±0.012 0.046±0.016 0.093±0.025 0.065±0.032 0.024±0.008
SCMWF 0.046±0.006 0.035±0.012 0.046±0.016 0.091±0.024 0.064±0.031 0.023±0.008
SCMNF2 0.045±0.006 0.033±0.012 0.045±0.017 0.087±0.021 0.059±0.031 0.023±0.008

SCMWF2 0.044±0.006? 0.033±0.012† 0.041±0.014? 0.085±0.020? 0.066±0.042 0.022±0.007?

Table A.4: Fetal brain tissue segmentation. Mean Dice scores (top entries) and MHD (bottom entries) per tissue. Results obtained
using the non-rigid registration NR1. Bold type indicates the best segmentation performance in terms of Dice overlap or MHD. The
∗ symbol indicates statistical significance difference with all remaining methods, and † indicates statistical significance difference with
all methods except SCMNF2 or SCMWF2.
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X. (2016). A review on brain structures segmentation in magnetic resonance
imaging. Artificial Intelligence in Medicine, 73:45–69.

Gorthi, S., Akhondi-Asl, A., Thiran, J.-P., and Warfield, S. K. (2014). Optimal
MAP parameters estimation in STAPLE - Learning from performance param-
eters versus image similarity information. In Proc. International Workshop on
Machine Learning in Medical Imaging (MLMI), MICCAI’14, LNCS vol. 8679,
pages 174–181.

Gousias, I., Edwards, A., Rutherford, M., Counsell, S., Hajnal, J., Rueckert, D.,
and Hammers, A. (2012). Magnetic resonance imaging of the newborn brain:
Manual segmentation of labelled atlases in term-born and preterm infants. Neu-
roImage, 62(3):1499–1509.

Gousias, I., Hammers, A., Counsell, S., Srinivasan, L., Rutherford, M., Heckemann,
R., and Edwards, A. (2013). Magnetic resonance imaging of the newborn brain:
Automatic segmentation of brain images into 50 anatomical regions. PLOS
ONE, 8(4):e59990.

Greenspan, H., Ruf, A., and Goldberger, J. (2006). Constrained Gaussian mix-
ture model framework for automatic segmentation of MR brain images. IEEE
Transactions on Medical Imaging, 25(9):1233–1245.

Griffiths, P., Reeves, M., Morris, J., Mason, G., Russell, S., Paley, M., and Whitby,
E. (2010). A prospective study of fetuses with isolated ventriculomegaly inves-
tigated by antenatal sonography and in utero MR imaging. American Journal
of Neuroradiology, 31(1):106–111.
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N., Eixarch E., Camara O., González Ballester M. A., and Piella G. (2017).
Toward the automatic quantification of in utero brain development in 3D
structural MRI: A review. Human Brain Mapping, 38:2772-2787.

xxiii



publications

Conference papers

1. Benkarim O. M., Sanroma G., Piella G., Rekik I., Hahner N., Eixarch E.,
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