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Abstract

Urban mobility is often considered as one of the main facilitators for greener and
more sustainable urban development. However, nowadays it requires a significant shift
towards cleaner and more efficient urban transport which would support for increased
social and economic concentration of resources in cities. A high priority for cities
around the world is to support residents’ mobility within the urban environments while
at the same time reducing congestions, accidents, and pollution. However, developing
a more efficient and greener (or in one word, smarter) urban mobility is one of the
most difficult topics to face in large metropolitan areas. In this thesis, we approach
this problem from the perspective of rapidly evolving ICT landscape which allow us to
build mobility solutions without the need for large investments or sophisticated sensor
technologies.

In particular, we propose to leverage Mobile Crowdsensing (MCS) paradigm in
which citizens use their mobile communication and/or sensing devices to collect, locally
process and analyse, as well as voluntary distribute geo-referenced information. The
mobility data crowdsensed from volunteer residents (e.g., events, traffic intensity, noise
and air pollution, etc.) can provide valuable information about the current mobility
conditions in the city, which can, with the adequate data processing algorithms, be
used to route and manage people flows in urban environments.

Therefore, in this thesis we combine two very promising Smart Mobility enablers
– MCS and journey/route planning, and thus bring together to some extent distinct
research challenges. We separate our research objectives into two parts, i.e., research
stages: (1) architectural challenges in designing MCS systems and (2) algorithmic chal-
lenges in MCS-driven route planning applications. We aim to demonstrate a logical
research progression over time, starting from fundamentals of human-in-the-loop sens-
ing systems such as MCS, to route optimisation algorithms tailored for specific MCS
applications. While we mainly focus on algorithms and heuristics to solve NP-hard
routing problems, we use real-world application examples to showcase the advantages
of the proposed algorithms and infrastructures.

Keywords: smart cities, smart mobility, urban mobility, mobile crowdsensing,
route/journey planning, route optimisation, heuristic algorithms
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Sammanfattning

Urban rörlighet anses ofta vara en av de främsta möjliggörarna för en hållbar stats-
utveckling. Idag skulle det dock kräva ett betydande skifte mot renare och effektivare
stadstransporter vilket skulle stödja ökad social och ekonomisk koncentration av re-
surser i städerna. En viktig prioritet för städer runt om i världen är att stödja medbor-
garnas rörlighet inom stadsmiljöer medan samtidigt minska trafikstockningar, olyckor
och föroreningar. Att utveckla en effektivare och grönare (eller med ett ord; smartare)
stadsrörlighet är en av de svåraste problemen att bemöta för stora metropoler. I den-
na avhandling närmar vi oss problemet från det snabba utvecklingsperspektivet av IT
landskapet i städer vilket möjliggör byggandet av rörlighetslösningar utan stora stora
investeringar eller sofistikerad sensortenkik.

I synnerhet föreslår vi utnyttjandet av den mobila rörlighetsavkännings, eng. Mobi-
le Crowdsensing (MCS), paradigmen i vilken befolkningen exploaterar sin mobilkom-
munikation och/eller mobilasensorer med syftet att frivilligt samla, distribuera, lo-
kalt processera och analysera geospecifik information. Rörlighetavkänningssdata (t.ex.
händelser, trafikintensitet, buller och luftföroreningar etc.) inhämtad från frivilliga i
befolkningen kan ge värdefull information om aktuella rörelsesförhållanden i stad vil-
ka, med adekvata databehandlingsalgoriter, kan användas för att planera människors
rörelseflöden inom stadsmiljön.

Såtillvida kombineras i denna avhandling två mycket lovande smarta rörlighets-
möjliggörare, eng. Smart Mobility Enablers, nämligen MCS och rese/ruttplanering.
Vi kan därmed till viss utsträckning sammanföra forskningsutmaningar från dessa två
delar. Vi väljer att separera våra forskningsmål i två delar, dvs forskningssteg: (1) ar-
kitektoniska utmaningar vid design av MCS-system och (2) algoritmiska utmaningar
för tillämpningar av MCS-driven ruttplanering.

Vi ämnar att visa en logisk forskningsprogression över tiden, med avstamp i mänsk-
ligt dirigerade rörelseavkänningssystem som MCS och ett avslut i automatiserade rut-
toptimeringsalgoritmer skräddarsydda för specifika MCS-applikationer. Även om vi
förlitar oss på heuristiska lösningar och algoritmer för NP-svåra ruttproblem förlitar
vi oss på äkta applikationer med syftet att visa på fördelarna med algoritm- och in-
frastrukturförslagen.

Nyckelord: smarta städer, smart rörlighet, rörlighetsavkänning, mobil publikmät-
ning, ruttplanering, ruttoptimering, heuristiska algoritmer
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Resumen

La movilidad urbana es considerada una de las principales desencadenantes de un
desarrollo urbano sostenible. Sin embargo, hoy en día se requiere una transición hacia
un transporte urbano más limpio y más eficiente que soporte una concentración de
recursos sociales y económicos cada vez mayor en las ciudades. Una de las principales
prioridades para las ciudades de todo el mundo es facilitar la movilidad de los ciudada-
nos dentro de los entornos urbanos, al mismo tiempo que se reduce la congestión, los
accidentes y la contaminación. Sin embargo, desarrollar una movilidad urbana más efi-
ciente y más verde (o en una palabra, más inteligente) es uno de los temas más difíciles
de afrontar para las grandes áreas metropolitanas. En esta tesis, abordamos este pro-
blema desde la perspectiva de un panorama TIC en rápida evolución que nos permite
construir movilidad sin la necesidad de grandes inversiones ni sofisticadas tecnologías
de sensores.

En particular, proponemos aprovechar el paradigma Mobile Crowdsensing (MCS)
en el que los ciudadanos utilizan sus teléfonos móviles y dispositivos, para nosotros
recopilar, procesar y analizar localmente información georreferenciada, distribuida vo-
luntariamente. Los datos de movilidad recopilados de ciudadanos que voluntariamente
quieren compartirlos (por ejemplo, eventos, intensidad del tráfico, ruido y contami-
nación del aire, etc.) pueden proporcionar información valiosa sobre las condiciones
de movilidad actuales en la ciudad, que con el algoritmo de procesamiento de datos
adecuado, pueden utilizarse para enrutar y gestionar el flujo de gente en entornos
urbanos.

Por lo tanto, en esta tesis combinamos dos prometedoras fuentes de movilidad inte-
ligente: MCS y la planificación de viajes/rutas, uniendo en cierta medida los distintos
desafíos de investigación. Hemos dividido nuestros objetivos de investigación en dos
etapas: (1) Desafíos arquitectónicos en el diseño de sistemas MCS y (2) Desafíos al-
gorítmicos en la planificación de rutas aprovechando la información del MCS. Nuestro
objetivo es demostrar una progresión lógica de la investigación a lo largo del tiempo,
comenzando desde los fundamentos de los sistemas de detección centrados en personas,
como el MCS, hasta los algoritmos de optimización de rutas diseñados específicamente
para la aplicación de estos. Si bien nos centramos en algoritmos y heurísticas para
resolver problemas de enrutamiento de clase NP-hard, utilizamos ejemplos de aplica-
ciones en el mundo real para mostrar las ventajas de los algoritmos e infraestructuras
propuestas.

Palabras clave: Ciudades inteligentes, movilidad inteligente, mobile crowdsen-
sing, planificación de viajes/rutas, optimización de rutas, algoritmos heurísticos





ix

Acknowledgements

This work has been supported by the Erasmus Mundus Joint Doctorate in Distributed
Computing (EMJD-DC) funded by the Education, Audiovisual and Culture Executive
Agency (EACEA) of the European Commission under the FPA 2012-0030.

I am deeply thankful to the following people, without the help and support of whom, I
would not have managed to complete this thesis:

My supervisors Mihhail Matskin and Josep-Lluís Larriba-Pey for their guidance, con-
stant feedback and encouragement throughout this work.

EMJD-DC programme coordinators, Vladimir Vlassov and Leandro Navarro, for their
guidance through this joint doctorate journey.

My co-authors, Bahaeddin Eravci, Burcu Kolbay, Elif Eser, Hakan Ferhatosmanoğlu,
and Nima Dokoohaki. Working with them has been a great pleasure and invaluable learning
experience.

My friends and colleagues, Edward Tjörnhammar and Pedro Herruzo, for translating
the summary of this thesis in Swedish and Spanish.

My friends, colleagues, and fellow PhD students at UPC and KTH, especially Ariel
Duarte, Arnau Prat-Pérez, Burcu Kolbay, Edward Tjörnhammar, Erol Kazancli, Joan
Guisado-Gámez, Pedro Herruzo, and Shatha Jaradat, for being supportive and for the
good times we spent hanging out together.

My EMJD-DC colleagues for sharing this joint doctorate experience.
My friends and colleagues at Sparsity Technologies. Working with them on challenging

real-world problems has been a great pleasure and learning experience.
My brother, Rudi Mrazović, for his love and encouragement.
My parents, Bosa and Slavko Mrazović, for their love, patience, continuous support, and

immeasurable understanding.
My soon-to-be-wife, Barbara Jelčić, for changing her life path to be closer to me and

help me finish my PhD.

Petar Mrazović
Stockholm, September 13, 2018





Contents

Contents IX

List of Figures XIII

List of Tables XV

List of Acronyms XVII

1 Introduction 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1. Smart Mobility in Smart City . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2. Mobile Crowdsensing Paradigm . . . . . . . . . . . . . . . . . . . . . 7
1.1.3. Route Optimisation Algorithms . . . . . . . . . . . . . . . . . . . . . 12

1.2. Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1. Architectural challenges in designing MCS systems . . . . . . . . . . 15
1.2.2. Algorithmic challenges in MCS-driven route planning applications . 16

1.3. Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4. Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1. Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2. Software and Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.3. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5. Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Conceptual architecture of application-independent MCS systems 23
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2. Conceptual architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1. Task modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2. Response modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3. Task allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4. Trust and reputation management . . . . . . . . . . . . . . . . . . . 27
2.2.5. Agent profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.6. Quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.7. Reward management . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.8. Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3. MCS platform prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Trajectory-based task allocation approach for MCS systems 37
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xi



xii CONTENTS

3.2. Framework overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3. Framework details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1. Trajectory data collection . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2. Stay point discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3. Stay point clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4. Data tensorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.5. Assessment of spatio-temporal competences . . . . . . . . . . . . . . 43
3.3.6. Ranking and grouping . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2. Constructing stay region tree . . . . . . . . . . . . . . . . . . . . . . 47
3.4.3. Constructing tensor hierarchies . . . . . . . . . . . . . . . . . . . . . 47
3.4.4. Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Analysis of crowdsensed mobility data 51
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2. Barcelona’s urban freight transport scheme . . . . . . . . . . . . . . . . . . 52
4.3. AreaDUM dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4. Parking availability estimation . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5. Historical availability profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1. Seasonality analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.2. Constructing HAPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.3. HAP clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6. Availability prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.1. Historical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.2. Last value model (LV) . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.3. Linear regression model (LR) . . . . . . . . . . . . . . . . . . . . . . 61
4.6.4. Linear regression model with aggregated HAPs (LR-A) . . . . . . . 62

4.7. Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.1. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Bi-objective route planning approach for sustainable urban mobility 69
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1. Formal problem description . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.2. Mixed-integer linear programming model . . . . . . . . . . . . . . . 71

5.2. Heuristic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.1. Transformation phase . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2. Search phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3. Experimental studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2. Ground truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.3. Baseline algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.4. Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.5. Application case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4. System pilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



CONTENTS xiii

5.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Multi-vehicle route planning approach for balancing urban freight trans-
port 89
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3. The proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1. Solution representation and objective function computation . . . . . 93
6.3.2. Construction phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.3. Improvement/Search phase . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.4. Complete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4. Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.1. Experiments on Synthetic Data . . . . . . . . . . . . . . . . . . . . . 102
6.4.2. Experiments on Real-world Data . . . . . . . . . . . . . . . . . . . . 103

6.5. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 An online framework for adaptive rebalancing of public bicycle sharing
systems 109
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.2. Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3. Demand forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.1. Input modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.2. Deep learning model . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4. Rebalancing target estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.5. Multi-capacitated vehicle routing . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5.1. Solution representation . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.5.2. Ruin procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.5.3. Recreate procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.6. Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8 Conclusion and future work 125

Bibliography 129





List of Figures

11. Typical resource organisation in MCS environments. . . . . . . . . . . . . . . . 10
12. Research path and methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

21. Conceptual architecture of the platform . . . . . . . . . . . . . . . . . . . . . . 24
22. Proposed task model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
23. Proposed trust (a) and reputation model (b) . . . . . . . . . . . . . . . . . . . 28
24. Quality control manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
25. MobiCS architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
26. Registered device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
27. Cross-platform mobile application . . . . . . . . . . . . . . . . . . . . . . . . . 33
28. MobiCS’s web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

31. Overview of proposed trajectory-based task allocation framework . . . . . . . . 39
32. Examples of ST-neighbourhood . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
33. Example of third-order tensor Xl . . . . . . . . . . . . . . . . . . . . . . . . . . 43
34. SRT climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
35. Distribution of time logged inside the stay regions over time slots . . . . . . . . 48
36. Correlation between computation time of tensor hierarchy construction and size

of the time slots, measured on a machine with a dual-core Intel Core i5-3320M
2.6 GHz CPU and 4 GB RAM running Linux Mint 17.1. . . . . . . . . . . . . . 48

37. Number of experts found with SRT-based approach and cell partitioning . . . . 49
38. Stay points from expert contributors found with SRT-based approach and cell

partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

41. Total number of check-ins per each day of the observed period between January
1st, 2016 and May 23rd, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

42. Distribution of check-ins among loading areas . . . . . . . . . . . . . . . . . . . 54
43. Occupancy data collected in field work . . . . . . . . . . . . . . . . . . . . . . . 55
44. ACF of the time series recovered for the example loading area located in La

Rambla street . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
45. Average ACF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
46. 12-hour (a) and 5-day (b) HAPs for example loading area located in La Rambla

street . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
47. 12-hour (a) and 5-day (b) global HAPs . . . . . . . . . . . . . . . . . . . . . . . 59
48. Loading areas clustered by normalised HAPs . . . . . . . . . . . . . . . . . . . 60
49. Example of rolling forecasting origin strategy . . . . . . . . . . . . . . . . . . . 63
410. MSE performance for different adoption rates . . . . . . . . . . . . . . . . . . . 64
411. MSE performance per time slots . . . . . . . . . . . . . . . . . . . . . . . . . . 65
412. MSE performance of the initial and adjusted LR model . . . . . . . . . . . . . 65

xv



xvi List of Figures

413. MSE performance of LR and LR-A model . . . . . . . . . . . . . . . . . . . . . 66

51. Problem formulation on an example subgraph. The table on the right contains
the city and tourist profit scores (Sc, St), visit durations (d) and travel times
(t) associated to nodes and edges. A possible segment of a solution path is
highlighted with lighter colour. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

52. Reducing the MOP to an equivalent AOP. Half of the node’s score/cost is added
to all of its incident edges. This way half of the score/cost will be collected by
traversing an edge when entering and half when leaving the node. . . . . . . . . 74

53. Example of a valid solution. Itinerary contains only three edges (〈e2, e5, e8〉),
while its corresponding path connects the gaps between the edges using the
cheapest paths (〈e1, e2, e3, e4, e5, e6, e7, e8〉). . . . . . . . . . . . . . . . . . . . . 75

54. Example of a swap move. Since nodes v3 and v7 are swapped, new corresponding
path augments the new itinerary by closing the gaps between nodes v2 and v7,
v7 and v4, v6 and v3, and v3 and v8. . . . . . . . . . . . . . . . . . . . . . . . . 78

55. Correlation between (a) computational time and size of the graph (number of
nodes) and (b) computational time and time budget constraint. . . . . . . . . . 81

56. Average accuracy of the heuristic algorithms when varying the graph size (a)
and the time budget restriction (b). . . . . . . . . . . . . . . . . . . . . . . . . 82

57. Accuracy of the heuristic algorithms when varying the graph size and the time
budget restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

58. Accuracy versus the elapsed time (a) and the number of iterations (b) . . . . . 83
59. Simulation of a real-world use case where a certain urban area is promoted. In

Figure (a) target area is highlighted. Figure (b) shows all the POIs selected in
itineraries. Figure (c) shows the accumulated amount of time spent by simulated
tourists in different areas around the city. . . . . . . . . . . . . . . . . . . . . . 85

510. PET example: Barcelona Official Guide mobile application . . . . . . . . . . . 85
511. Client Web application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

61. System components of the proposed multi-vehicle route planner . . . . . . . . . 91
62. An example of a route with a congested loading area. At the time vehicle hk

arrived at vi, the area was at its full capacity and thus hk was placed in a waiting
queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

63. Local search moves: (a) shift and (b) 2opt . . . . . . . . . . . . . . . . . . . . . 100
64. Accuracy improvement with respect to number of iterations (a) and computation

time (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
65. Accuracy improvement over whole synthetic dataset with different setups. . . . 104
66. Route improvement in terms of average (a-c) and relative (d-f) total, travel, and

waiting costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

71. System components of the proposed rebalancing framework . . . . . . . . . . . 111
72. An example snapshot of route plan at time point τx. . . . . . . . . . . . . . . . 114
73. Sequence-to-sequence architecture . . . . . . . . . . . . . . . . . . . . . . . . . 118
74. The proposed network architecture . . . . . . . . . . . . . . . . . . . . . . . . . 119
75. Effects of different parameters on the prediction accuracy . . . . . . . . . . . . 123
76. MAE of (a) pick-up and (b) drop-off demand at each time horizon for different

baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
77. Rebalancing targets in New York’s BSS . . . . . . . . . . . . . . . . . . . . . . 124

81. Mobility actors in the proposed general mobility management platform . . . . . 126



List of Tables

11. Central pillars of Smart Cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
12. Comparison between MCS and traditional wireless sensor networks (WSN) . . 9

21. Example of task description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

31. Structure of SRT obtained from GeoLife dataset . . . . . . . . . . . . . . . . . 47

61. Table of notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
62. Route improvement comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

71. Table of notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xvii





List of Acronyms

ACF Autocorrelation Function
AR(I)MA Autoregressive (Integrated) Moving Average
BRP Bicycle sharing Rebalancing/Repositioning Problem
BSS Bicycle Sharing System
BnB Branch and Bound Algorithm
BnC Branch and Cut Algorithm
BnCnP Branch and Cut and Price Algorithm
BnP Branch and Price Algorithm
ETC Electronic Toll Collection
EVP Emergency Vehicle Preemption
GLS Guided Local Search
GPS Global Positioning System
GRASP Greedy Randomized Adaptive Search Procedure
HAP Historical Availability Profile
HDC Highway Data Collection
HM Historical Mean
HPP Hamiltonian Path Problem
HPP Hamiltonian Path Problem
ICT Information and Communication Technology
ILS Iterated Local Search
ITS Intelligent Transport System
ITS Intelligent Transportation System
IoT Internet of Things
LR Linear Regression
LSTM Long Short-Term Memory
LV Last Value
MAE Mean Absolute Error
MCS Mobile Crowdsensing
MILP Mixed-integer Linear Programming Problem
MIMO Multi-Input Multi-Output
MOP Mixed Orienteering Problem
MSE Mean Squared Error
MTG Mobile Tourist Guide
MVRP Multi-Vehicle Route Planner
OP Orienteering Problem
PET Personalized Electronic Tourist guide
PGI Parking Guidance Information System
PNS Personal Navigation Systems

xix



xx LIST OF ACRONYMS

POI Point of Interest
R&R Ruin and Recreate
RCL Restricted Candidate List
SOP Arc Orienteering Problem
SRT Stay Region Tree
SVNS Skewed Variable Neighbourhood Search
TD-FC Time-Distributed Fully Connected layer
TMS Traffic Management System
TOP Team Orienteering Problem
TOPTW Team Orienteering Problem With Time Windows
TRP Travelling Repairman Problem
TSP Transit Signal Priority
TSPP Travelling Salesman Path Problem
TSPTW Travelling Salesman Problem with Time Windows
TTDP Tourist Trip Design Problem
VDC Vehicle Data Collection
VNS Variable Neighbourhood Search
VRP Vehicle Routing Problem
WSN Wireless Sensor Network



Chapter 1

Introduction

Today, more than a half of the world’s population (54%) lives in cities and urban areas
[1]. This proportion is expected to rise to 66% by 2050 which can have substantial implica-
tions for the world in terms of environmental impact and quality of life [1, 2]. Rapid and
unplanned urban growth puts intense pressure on city resources and infrastructures which
can threaten sustainable development if policies are not implemented to ensure that the
benefits of city life are equitably shared [1]. Since urban mobility is often considered as
one of the main facilitators for sustainable development, most of these policies encourage
a shift towards cleaner and more efficient urban transport which would support social and
economic concentration of resources in cities. Today, the world’s population makes more
than 64% of all travel kilometers within urban environments which accounts for 40% of
all CO2 emissions of road transport and up to 70% of other pollutants from transport [3,
4]. Furthermore, the travel within urban areas is expected to triple by 2050 [3] and it is
obvious that cities will not be able to absorb such amount of traffic without efficient urban
mobility management. Therefore, a high priority for cities around the world is to support
citizens’ mobility within the urban environments while at the same time reducing conges-
tions, accidents, and pollution. However, developing a more efficient and greener (or in one
word, smarter) urban mobility is one of the most difficult topics to face in large metropoli-
tan areas. Fortunately, science and technology naturally arise as a means to achieve these
goals.

In a recent survey [5], Benevolo et al. describe Smart Mobility as a pivotal component
of Smart City vision which greatly assists in achieving its most common long-term objec-
tives such as reducing the environmental footprint of the city and improving the citizens’
quality of life (by reducing traffic congestions and noise pollution, improving transfer speed
and costs, and increasing people safety). Obviously, as a crucial method for Smart City
development, Smart Mobility has been a focus of the many research studies in the last 10
years (e.g., [6–12]). Therefore, different ways to achieve Smart Mobility have been proposed
in the literature – from infrastructural projects which change the urban landscape to In-
telligent Transport Systems (ITS) which heavily rely on Information and Communications
Technologies (ICT). The rapid evolution of ICT and widespread accessibility of Internet
make it easy to adopt new solutions which can improve mobility in Smart Cities without
the need for large investments or sophisticated sensor technologies. In the wake of this,
throughout this work we further promote the extensive use of ICT in achieving Smart Mo-
bility. In particular, we propose to leverage Mobile Crowdsensing (MCS) paradigm in which
citizens use their mobile communication and/or sensing devices to collect, locally process
and analyse, as well as voluntary distribute geo-referenced information. The mobility data
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crowdsensed from volunteer citizens can provide valuable information about the current
mobility conditions in the city. Eventually, with the adequate data processing algorithms,
the collected information (e.g., events, traffic intensity, noise and air pollution, etc.) could
be used to route and manage people flows in urban environments. This way we may be
able not only to find the shortest or cheapest routes, but also to find "smarter" routes, while
being aware of the current mobility conditions. Therefore, in this work, we primarily focus
on route optimization and scheduling algorithms with the aim of extending the state-of-the-
art methods by integrating mobility data crowdsensed from volunteer citizens. However,
before discussing the research gaps and contributions of this thesis, in the next section we
give a brief introduction to each of the addressed topics. We first introduce the concept of
Smart City as a long-term vision of a green and efficient digital urban area. Thereafter, we
introduce MCS paradigm and discuss how it can be leveraged to achieve Smart Mobility.
Finally, we give a short introduction to state-of-the-art route optimisation algorithms.

1.1. Background

1.1.1. Smart Mobility in Smart City

Smart City Concept

ICT revolution has offered city governments the opportunity to reduce the scale of
environmental and quality of life issues caused by urbanization and rapid population growth.
Over the last decade, cities have become more digital and information-based, and ICT has
integrated into almost all aspects of modern city life. Such widespread technology and
Internet accessibility have not only introduced daily convenience to the urban population,
but also possibility to collect and process different data as a basis for sustainable city
evolution [13].

In recent years, different information technologies such as cloud computing, big data,
data visualisation, Internet of Things (IoT), and mobile computing have significantly speeded
up the process of city digitization and evolution of Smart City vision as we know it to-
day. The cloud computing paradigm delivers hardware and software resources over Internet
based on on-demand utility model, enabling developers to provide new smart urban ser-
vices without the need for large investments. At the same time, the distributed nature of
cloud computing infrastructures allows massive amounts of city data to be collected and
processed. Here, the big data analytics arise as a way to examine large and varied data sets
to uncover hidden patterns, unknown correlations, and other useful city information that
can help city governments make informed development decisions. Furthermore, advanced
data visualisation techniques enables decision makers to see analytics presented visually, so
they can grasp more difficult concepts or identify new patterns. Over the past few years,
the convergence of wireless technologies, micro-services, and Internet, gave rise to IoT, a
paradigm that relies on the identification and use of a large number of heterogeneous physi-
cal and virtual objects which are connected to Internet [14]. IoT makes it possible to control
physical world by accessing remote sensor data, meaning that cities can effectively sense
and manage essential city resources and infrastructures such as the water supply, building
operations, road and transport networks, etc. [13, 15]. Therefore, IoT and cloud computing
are often seen as two critical technologies for realizing the Smart City vision. The cloud
can provide large-scale and long-lived storage and processing resources for the ubiquitous
applications delivered through the IoT [16]. Finally, with the powerful multi-sensing capa-
bilities of mobile communication devices and user mobility, a new trend of development in
IoT is emerging – Mobile Crowdsensing (MCS). MCS allows everyday sensor-rich mobile de-
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vices to form interactive, participatory sensor networks that enable public and professional
users to gather, analyse and share local knowledge. The high population density of modern
cities and widespread availability of interconnected mobile communication devices encour-
age ordinary citizens to participate in community sensing and open up new possibilities for
effective city management.

The above information technologies, coupled with the urban challenges, have enabled
us to form the vision of Smart City and to develop a winning urban strategy to cope
with rapidly increasing urbanisation. However, since different technologies have been im-
plemented under the Smart City label, the definition of Smart City has evolved to mean
different things in different contexts. In their view on shift from intelligent to Smart Cities,
Deakin and Al Wear [18] listed four components that contribute to Smart City development:

1. the application of a wide range of electronic and digital technologies to communities
and cities,

2. the use of ICT to transform life and work within a region,

3. the embedding of such ICTs in government systems,

4. the territorialization of such practices in a way that bring ICTs and people together,
so as to enhance the innovation, learning, knowledge and problem solving which they
offer.

Table 11: Central pillars of Smart Cities

Smart Economy
(Competitiveness)

Smart People
(Social and Human Capital)

• Innovative spirit
• Entrepreneurship
• Economic image & trademarks
• Productivity
• Flexibility of labour market
• International embeddedness
• Ability to transform

• Level of qualification
• Affinity to life long learning
• Social and ethnic plurality
• Flexibility
• Creativity
• Cosmopolitanism/Open-mindedness
• Participation in public life

Smart Governance
(Participation)

Smart Mobility
(Transport and ICT)

• Participation in decision-making
• Public and social services
• Transparent governance
• Political strategies & perspectives

• Local accessibility
• (Inter-)national accessibility
• Availability of ICT-infrastructure
• Sustainable, innovative, and safe
transport systems

Smart Environment
(Natural Resources)

Smart Living
(Quality of Life)

• Attractivity of natural conditions
• Pollution
• Environmental protection
• Sustainable resource management

• Cultural facilities
• Health conditions
• Individual safety
• Housing quality
• Education facilities
• Touristic attractivity
• Social cohesion

Source: Giffinger et al. [17]



4 CHAPTER 1. INTRODUCTION

In short, Deakin and Al Wear see ICT as a crucial instrument for Smart City development,
however, the precise goals and challenges need to be further elaborated. Since Smart Cities
develop along many dimensions, Giffinger et al. [17] established six major characteristics
which can be thought of as a track of development or success indicator of Smart City
transformation. Since the proposed characteristics are measurable and well defined in scope
and nature, they were soon adopted by the European Union as the pillars central to the
existence of Smart Cities. These are: smart economy, smart people, smart governance,
smart mobility, smart environment, and smart living. The characteristics are summarised
in Table 11, along with the factors which define them. Smart economy gathers ICT-enabled
practices for increased productivity such as e-business and e-commerce, but also new ways
of enhancing and stimulating economy to secure local and global inter-connectedness and
competitiveness [19]. Smart people, i.e., social and human capital, is a critical segment of
Smart City development. Citizens in Smart Cities should be able to acquire e-skills, working
in ICT-enabled jobs, having access to education and training, human resources and capacity
management. Finally, smart people should be able to participate in city development by
engaging into transparent decision-making process as a part of smart governance strategy.
Besides citizens participation, the smart governance includes technologies to link public,
civil and national organisations, and to transparently share the city data between them.
Smart governance dimension to some extent overlaps with smart environment which ensures
sustainable urban development and resource management. Smart living includes different
aspects of quality of life such us culture, health, safety, housing, etc. In addition, ICT-
enabled life styles introduce daily convenience to everyday life. Finally, Smart Mobility is
only seen as one of the dimensions of Smart City, however, it is a crucial one, impacting on
numerous aspects of quality of life, sustainable development, and economy. In other words,
smart mobility is seen like a slice of Smart City, crossing almost all of the dimensions listed
above. In the rest of this subsection we will analyse the smart mobility initiatives in more
details and discuss the role of ICT in supporting Smart Mobility actions.

Smart (Urban) Mobility

Urban mobility is one of the most promising challenges faced by city governments,
presenting economic, social and environmental implications. Therefore, developments in
the field of Smart Mobility are occurring rapidly, and provide many opportunities in both
short and long term, such as the improvement of traffic flow and safety, as well as the
possibility to contribute to environmental sustainability. Smart Mobility is not a unique
initiative, but a complex set of actions, different in goals, contents and technology intensity.
In their survey on Smart Mobility [5], Benevolo et al. gathered the most important Smart
Mobility objectives and summarised them into six categories:

1. reducing pollution,

2. reducing traffic congestion,

3. increasing people safety,

4. reducing noise pollution,

5. improving transfer speed,

6. reducing transfer costs.

While these goals can be achieved in many different ways, here we will focus only on
those that heavily rely on consistent and systematic use of ICT. Below, we group the
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most promising technologically advanced services that enable Smart Mobility. Notice that
these services offer a wide range of capabilities that benefit all mobility stakeholders, i.e.,
travellers, transport operators, urban planners, and city governments.

Smart parking systems In traditional smart parking implementations, sensors are de-
ployed to detect the presence or absence of a vehicle, while local and global position-
ing technology is usually leveraged to navigate drivers to available locations. These
traditional systems are referred to as Parking Guidance Information Systems (PGI).
Other forms of smart parking implementation include Transit-Based Information Sys-
tems, Smart Payment Systems, E-parking, and Automated Parking. Transit-based
information systems are designed specifically for Park and Ride facilities, providing
parking space information and public transport schedules. This way commuters are
encouraged to park their vehicles and use public modes of transport for their tran-
sit, which in turn reduces traffic congestion, pollution, and fuel consumption. Smart
payment systems employ advanced technologies, such as contactless cards and mobile
communication devices, to allow faster and more convenient payment. On the other
hand, E-parking systems combine and streamline parking reservation and payment
systems. E-parking systems heavily rely on mobile communication technologies, al-
lowing travellers to find, reserve, and pay for parking from their cell phones. Finally,
the most technologically advanced form of smart parking include fully-automated me-
chanical systems for storing vehicles. So-called automated parking allow drivers to
avoid difficult parking maneuvers and instead to rely on computer-controlled system
which efficiently manages parking spaces.

Smart/Integrated ticketing Smart/Integrated ticketing allows travellers to make a jour-
ney that involves transfers within or between different transport modes (e.g., buses,
trains, subways, bicycles, ferries, etc.) with a single ticket that is valid for the complete
journey. Usually, integrated ticketing system relies on electronic ticketing technologies
such as magnetic stripe cards, contactless smart cards, or, lately, mobile communica-
tion devices. Such systems encourage travellers to use public transport by allowing
seamless payment for transport services across modes.

Real-time journey/route planners Since the 1970s, browser-based journey planners
have been widely used in the travel industry by airline companies and booking agents.
In recent years, ICT revolution, widespread access to Internet, and proliferation of
geospatial data opened new possibilities for mobile-based real-time journey planners.
Nowadays, mobile planners are designed to help users in their everyday commute
by providing real-time travel information across all transport modes. Since they are
usually used only for short-term travel planning, i.e., choosing the most convenient
route between two locations within the same city, they are often referred to as route
planners. Using the planners, travellers can re-gain control over their own journey
time and make adaptive choices to avoid congestions and overcrowding in busy urban
areas. Additionally, by being aware of different transport modes and their pricing,
travellers are able to optimise their travel costs. Finally, lower carbon travel options
are promoted through raised awareness about public transport options.

Driving guidance systems Also known as automotive navigation systems, driving guid-
ance systems typically use satellite navigation technology, i.e., GPS, to direct drivers
in a road network. Modern driving guidance systems are also connected to Inter-
net, thus having real-time information about traffic conditions on the road. This way,
drivers can be warned about congestions, traffic accidents, or road maintenance, while
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driving. Advanced systems also allow drivers to choose environment friendly routes
with lower fuel consumption and CO2 emission.

Intelligent Transport Systems Intelligent transport systems (ITS) provide digital, i.e.,
virtual, solutions in different fields of transport system, such as transport management,
control, infrastructure, operations, policies and control methods, etc. [20]. Over the
last decade, they have become an integral part of road infrastructure which play a
major role in reducing risks, high accidents rate, traffic congestion, carbon emissions,
air pollution, and, on the other hand, increasing safety, reliability, travel speeds,
traffic flow, etc. [20]. More notable examples of ITS applications include Electronic
Toll Collection (ETC), Highway Data Collection (HDC), Traffic Management Systems
(TMS), Vehicle Data Collection (VDC), Transit Signal Priority (TSP), and Emergency
Vehicle Preemption (EVP). etc. Since ITS comprises a wide range of applications,
different technologies have been adopted, e.g., computing hardware, local and global
positioning, sensor technologies, data processing, mobile communications, planning
techniques, etc. Over the past several years, research efforts have been focused on
integrating different ITS applications and exchanging real-time traffic information
between them. In other words, traffic data from various sources such as traffic lights
and signals, car parks, traffic monitoring station, air quality sensors, etc., are collected
and stored in a central database accessible to all deployed applications. Naturally, this
opens possibilities for new smart services which would rely on real-time traffic data.

Real-time ride-sharing systems In ride-sharing/carpooling, passengers with matching
itineraries and schedules share a ride in a personal vehicle. The passengers usually
share the associated costs (e.g. fuel, tolls, parking fees) so that each benefits from the
shared ride [21]. Additionally, passengers may save time because they are allowed to
use high-occupancy vehicle lanes reserved exclusively for carpooling. Real-time ride-
sharing systems utilize mobile communication technologies to add flexibility to ride-
share arrangements by allowing drivers and passengers to arrange occasional shared
rides ahead of time or on short notice [22]. Real-time ride-sharing systems typically
rely on global positioning systems (i.e., GPS) to determine passengers’ current loca-
tions. Additionally, they make use of social networks to establish trust and account-
ability between drivers and passengers. Finally, route optimisation and scheduling
algorithms are employed to match itineraries and plan the final route.

Taxi booking services Taxi booking systems (e.g., Uber, Cabify, MyTaxi) provide con-
venient access to taxi services at any place or time. They heavily rely on mobile
communication technologies, GPS, and routing and scheduling algorithms to offer
users the shortest, fastest, greenest or cheapest routes, depending on their taste or
need. Additionally, electronic and fully integrated payment solutions allow users to
seamlessly pay for their trips. On the other hand, taxi booking systems collect huge
volumes of data that reflect mobility trends in city and as such can be used to inform
infrastructure planning and public policy, or to directly influence other public transit
services.

Bicycle sharing systems Bicycle sharing system refers to one of the most sustainable
public transport service systems which offers short-term urban bicycle rentals by en-
abling bicycles to be picked up at any self-serve bicycle station and returned to any
other bicycle station [23]. Recent ICT advances allowed bicycle sharing system to be
smarter by providing real-time information about bicycle usage and availability.
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Car sharing systems Similar to bicycle sharing systems, car sharing systems allow people
to rent cars for short period of time, typically by hour. They can be classified into
"one-way" or "two-way" types, depending whether the users should return the rented
vehicle at a different or at the location they picked it up [24]. Obviously, the car-
sharing scheme decreases average vehicle kilometers travelled within a city, and thus
can improve traffic flow and reduce CO2 emissions. At the same time, users can
benefit from reduced personal transport cost and enhanced mobility [24].

Autonomous vehicles Autonomous vehicles are capable of sensing their surroundings and
navigating without human input. They make use of advanced technologies such as
computer vision, GPS, odometry, radars, etc., to sense the environment and to identify
appropriate navigation paths. It is likely that the technology of autonomous vehicles
will dramatically affect ride-sharing platforms. In other words, within a decade or two,
autonomous vehicles could completely displace conventional vehicles for ride-sharing,
while many citizens will not even own cars. Furthermore, it is believed that this trend
will reshape the car manufacturing industry and will disrupt the business models of
petrol stations, service centres, car rental companies, car park operators, and many
others.

Although very different in nature and scope, the above services and technologies are
developed with the same perspective - to build a greener and safer traffic system which
would improve transfer speeds and lower transfer costs. As such, the introduced services to
some extent rely on the same technologies and similar algorithms. The careful reader might
have noticed that most of the above services employ some form of route optimisation.
Indeed, reducing transfer speeds and costs can be only in rare cases achieved without
any route optimisation or scheduling algorithm. In this thesis, we will focus primarily
on such algorithms with the aim of extending the state-of-the-art methods by integrating
mobility data collected from citizens. Although most of the algorithms proposed in this
thesis will be designed for real-time journey/route planners, they can be easily tweaked
for different applications and employed in any of the above systems. Before discussing the
state-of-the-art algorithms, we will first explain how and what kind of mobility data can
be collected through mobile crowdsensing paradigm and used as an input to more informed
route optimisation.

1.1.2. Mobile Crowdsensing Paradigm

Modern mobile communication devices have matured as powerful and versatile comput-
ing platforms and they acquired high performance multisensing capabilities. The widespread
availability of sensor-enhanced mobile devices, such as smartphones, tablets, or smart-
watches, has opened a possibility for a participatory sensing. Burke et al. [25] introduced
the concept which allows everyday sensor-rich mobile devices to form interactive, participa-
tory sensor networks that enable public and professional users to gather, analyse and share
local knowledge. However, traditional participatory sensing infrastructures usually do not
consider device carriers as intelligent participants in a sensing process. Over the past few
years, the research efforts of combining human and machine intelligence in mobile sensing
systems have resulted in a novel exciting sensing paradigm called Mobile Crowdsensing
(MCS). As a people-centric evolution of participatory sensing, MCS involves both implicit
and explicit participation. In other words, MCS distinguishes two different data generation
modes: mobile sensing and user-generated data in mobile social network services [26]. The
integration and fusion of the two cross-space data sources is one of the main features (and



8 CHAPTER 1. INTRODUCTION

challenges) of MCS. MCS systems have gone beyond the traditional environmental monitor-
ing where humans are now the device carriers, the information sources, and the consumers
of collected data [27].

In their position paper [26], Guo et al. described the evolution of participatory sensing
and proposed the first formal definition of MCS: MCS is a new sensing paradigm that em-
powers ordinary citizens to contribute data sensed or generated from their mobile devices,
aggregates and fuses the data in the cloud for crowd intelligence extraction and people-centric
service delivery. Additionally, in order to better explain the main characteristics of MCS,
Guo et al. [26] used an example of route planning problem in urban environment, which fits
nicely with the topic of this thesis. As described in the previous subsection, journey/route
planning is one of the most common ICT approaches that enable Smart Mobility. However,
real-time planning requires up-to-date information about traffic conditions in the city. This
is usually achieved by deploying static sensor networks, or, more commonly, leveraging citi-
zens’ personal devices to gather traffic data (i.e., using participatory sensing). For example,
to answer a route query we can simply use traditional participatory sensing and collect GPS
trajectories from vehicles and compute the optimal route by taking in consideration traffic
intensity. However, to answer a more complex query, e.g., to generate an itinerary for a
visitor given the time and budget restrictions, single trajectory dataset will not be sufficient.
Additional information, such as points of interest (POIs) in the city, their operating hours
and popular visiting times, user preferences, recommendations, information about scenic
routes, etc., are further needed. This information can be obtained from user-generated
data from mobile social networks (e.g., FourSquare, Yelp, Twitter) or directly through a
route planning mobile application if adequate interface is provided. MCS arises as a result
of combining human and machine intelligence, and sensor and user-generated data. By
involving humans in the loop, MCS opens up new technological problems and numerous
research challenges, such as quality of user-generated data, data collection techniques, data
redundancy, users’ trust and reputation, privacy, incentive mechanisms, etc. However, be-
fore discussing them in more details, we first need to understand the unique characteristics
of MCS paradigm which differentiate it from traditional static sensor networks.

MCS characteristics and challenges

Compared to traditional sensor networks, MCS offers several very important advan-
tages. MCS leverages already existing sensing and communication infrastructures (i.e., mo-
bile communication devices and networks), and thus its deployment costs are significantly
lower. At the same time, mobile devices have significantly more computing, communication,
and memory resources than any of the traditional sensors. Furthermore, the widespread
availability of these mobile communication devices and the inherent mobility of their owners
provide large-scale spatiotemporal coverage. On the other hand, this also means that the
participating mobile devices, the type of sensor data they can produce, and the quality in
terms of accuracy, latency, and confidence can change constantly due to device mobility,
variations in communication channels, and device owners’ preferences [28]. Therefore, al-
locating sensing task to the right set of devices to produce the data of desired quality is
common problem in MCS settings. In traditional sensor networks, where the population of
sensors and the data they can produce are mostly known a priori, allocating sensing tasks
and controlling the quality of the collected data is usually straightforward. Nevertheless,
involving device owners in sensing processes also has its benefits. Human intelligence and
mobility allow us to gather higher-quality or semantically complex data that might other-
wise require sophisticated hardware and software resources [28]. For example, humans can
easily identify traffic conditions in the city (e.g., congestions, accidents, parking availability,
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road constructions, etc.) and report them by generating some form of participatory media
(e.g., pictures, texts, sound records). However, such active participation has also its impli-
cations. Mobile communication devices consume their own resources such as battery and
computing power. In addition, device owners are exposed to potential privacy threats by
voluntary sharing sensor data and personal information. Therefore, a user should receive
a satisfying reward to compensate resource consumption and potential privacy breach. An
incentive mechanism is needed to assure adequate user participation which is necessary for
successful sensing in MCS. Finally, the involvement of human participation in the sensing
and computing process leads to heterogeneous data collections and a mixture of machine
intelligence (e.g., machine learning, data mining) and human intelligence (e.g., cognition,
reasoning). Efficient integration of human and machine intelligence and fusion of cross-space
data are some of the most complex challenges to be faced by the research community. MCS
systems should be balanced hybrid human–machine systems in which human and machine
intelligence complement each other. The differences between MCS and traditional wireless
sensor networks (WSN) are summarised in Table 12.

MCS applications

Nowadays, traditional sensor networks are increasingly being replaced by MCS systems
which benefit a number of application areas regarding environmental monitoring, public
safety, healthcare, location services, mobile social recommendations, etc. However, in this
thesis we will only focus on Smart Mobility applications which rely on different types of
mobility data that can be collected in urban environments, and then used to measure
and map large-scale phenomena related to public traffic infrastructures. We also refer the
interested reader to recent surveys on MCS [28–30] for a more comprehensive list of MCS
applications.

In Figure 11 we illustrate a typical resource organisation in MCS environments. Raw
sensor data and user-generated data are collected on participating mobile devices and pro-
cessed by local analytic algorithms to produce consumable data for applications. Addi-

Table 12: Comparison between MCS and traditional wireless sensor networks
(WSN)

Operators Deployment
cost

Coverage Data quality

WSN Government
agencies, public
institutions

High: Expen-
sive sensors and
infrastructure to
deploy the net-
work

Limited cover-
age with static
sensor nodes

High, sound
level sensors

MCS Potentially
everyone

Low: Lever-
aging existing
infrastructure,
i.e., broad pro-
liferation of
cellular network
and mobile
device usage

The inherent
mobility of the
phone carri-
ers provides
unprecedented
spatiotemporal
coverage

Low, suffering
from issues such
as built-in sen-
sor performance
and the trust-
worthiness of
user-contributed
data

Source: Guo et al. [29]
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Figure 11: Typical resource organisation in MCS environments.

tionally, before being sent to a backend or cloud, the sensitive data can be modified and
protected to conserve privacy. Thereafter, in the cloud, the data is aggregated and fused.
Finally, depending on an application, different data mining techniques can be employed
to extract relevant information and eventually to deliver adequate people-centric services.
The illustrated organisation is basis of any MCS system, while the type of data or deliv-
ered service can differ depending on application scope. For example, in typical traffic MCS
applications, movement data collected from GPS sensors, accelerometers, and gyroscopes,
fused with user-generated data such as check-ins, reflects the mobility conditions in the
city and as such can be used for traffic forecasting, public transport, travel planning, traffic
monitoring, etc.

MCS paradigm is proved to be a valuable tool for achieving Smart Mobility. Over the
past several years, different MCS applications have been proposed to improve the mobility
conditions in urban areas. Early MCS deployments measured traffic dynamics and conges-
tion levels in cities, examples of which include MIT’s CarTel [31] and Microsoft Research’s
Nericell [32]. CarTel was a mobile sensor computing system designed to collect, process,
deliver, and visualize data from GPS sensors located on mobile units such as automobiles. It
has been deployed only on six cars, running on a small scale in Boston and Seattle for over a
year, but nevertheless it has been proved to be very successful in analysing commute times,
metropolitan Wi-Fi deployments, and automotive diagnostics. On the other hand, Nericell
was a system that performed richer sensing by exploiting multisensing capabilities of modern
mobile communication devices. In particular, Nericell used the accelerometer, microphone,
GSM radio, and/or GPS sensors to detect potholes, bumps, braking, and honking, and to
localize the phone in an energy-efficient manner. The effectiveness of the system has been
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evaluated on the roads of Bangalore, India. Another example of a similar application is the
Real Time Rome project [33], a real-time monitoring system that collected and processed
data provided by telecommunications networks and transport systems. In partuclar, the
proposed system interpolated the aggregate mobility of people according to their mobile
phone usage and visualised it synchronously with the flux of public transit, pedestrians,
and vehicular traffic. By overlaying mobility information on geographic references of the
city of Rome, the system was able reveal the relationships between fixed and fluid urban el-
ements. Similarly, Liu et al. proposed so-called Urban Mobility Landscape System (UMLS)
[34] which collected data from real-time sources (5,000 GPS-equipped floating cars and 5
million bus and metro smart cards). The system was deployed in a large urban area in the
city of Shenzhen in South China with the aim of examining urban mobility patterns and
providing real-time decision support for the city government.

Public transport is another interesting traffic application domain where MCS raises as
an efficient tool to improve its design and offer real-time traffic information to the travellers.
For example, Zhou et al. [35] managed to successfully predict bus arrival times by using data
from generally available and energy efficient sensing resources, such as cell tower signals,
movement statuses, audio recordings, etc. This way they brought less burden to the partic-
ipatory party and encourage their participation. Evaluation of the system performed over
7-week period in Singapore suggested that the proposed approach achieves outstanding pre-
diction accuracy compared with GPS-supported solutions. On the other hand, B-Planner
proposed by Chen et al. [36] uses crowdsensed GPS data and pick-up/drop-off records from
taxis to plan travel routes for night-buses.

In addition to traffic monitoring and public transport, MCS opens up new possibilities
for personal journey/route planners and guidance systems. As previously mentioned, such
systems, along with the supporting routing algorithms, will be in the main focus of this
thesis. Most of the previous works in this field investigated the optimal route generation
based on sensed traffic conditions in the city. For example, in one of the earlier works,
Thiagarajan et al. [37] proposed VTrack system which was able to detect hotspots and to
precisely estimate travel times for different road segments using positioning data from GPS
sensors, WiFi, and cellular triangulation. In order to reduce energy consumption, the system
was able to tolerate noisy data from less energy-consuming positioning sensors. Using
a hidden Markov model (HMM)-based map matching scheme, Vtrack could interpolate
sparse data to identify the most probable road segments driven by the users, and as such
was able to rely on streams of timestamped inaccurate position samples recorded at time-
varying periodicity. Finally, based on the sensed traffic information, VTrack recommended
the fastest travel routes which avoid hotspots and congested areas. Another interesting
MCS application was T-Share, a crowd-powered taxi ridesharing service proposed by Ma
et al. [38]. T-Share efficiently served real-time requests sent by taxi users and generated
ridesharing schedules that could significantly reduce the total travel distance. The system
has been evaluated using a GPS trajectory dataset generated by over 33,000 taxis. Costa
et al. [39, 40] proposed and developed SmartTrace, a distributed framework for finding
similar trajectories in a MCS networks. The purpose of the framework was to look for the
most common trajectories and thus provide more informed transit planning. SmartTrace
was able to successfully execute distributed similarity search queries on trajectories that
are stored in-situ on smartphones, without disclosing the traces of participating users to
the querying node. Another worth-mentioning example of MCS-powered route planning
application is personal travel itinerary recommendation platform proposed by Yu et al.
The platform extracts user preferences, discovers POIs, and determines location correlations
from check-in records. Thereafter, it generates personalized travel itineraries by considering
spatio-temporal constraints such as travel time and starting location.
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Described application examples suggest that the MCS paradigm has been raised as a
powerful and easily implementable tool for achieving Smart Mobility objectives. In this the-
sis we will introduce several new MCS applications within route planning domain, however,
we will mainly focus on algorithmic aspects of the proposed designs, rather than investi-
gating data collection and fusion techniques. To put it differently, throughout the thesis
we will use crowdsensed data as an already available input to different route optimisation
algorithms. We aim to demonstrate that a simple volunteer data collected from mobile
communication devices, such as check-ins or user preferences, can be efficiently processed
and used to improve mobility in urban areas.

1.1.3. Route Optimisation Algorithms

Network routing is often considered as one of the most intriguing areas of mathematical
optimisation and theoretical computer science. Network routing problems can be defined
on different kinds of networks such as roads, utilities, electricity, telecommunications, etc.
However, from a theoretical/mathematical point of view, a network is simply a graph with a
set of nodes and weighted edges representing locations and connections between them. Here,
network routing problems consist of finding a set of optimal paths or cycles between two or
more nodes in a graph in relation to total time, cost, or distance. Different configurations
of the underlying graphical structure, different objectives as well as different constraints
have lead to an immense number of problem formulations and developed algorithms [41].
However, in this thesis, we will mainly focus on a set of network routing problems that
commonly arise in transportation systems.

Since real routing problems in transportation systems involve finding efficient routes
for vehicles (e.g., cars, trucks, buses, etc.), they are often referred to as Vehicle Routing
Problems (VRP). Over the past several decades, many different variants of VRP have been
proposed in the scientific literature. The classical VRP, also known as the Capacitated VRP
(CVRP), is usually used to formulate new VRP variants. In CVRP, a fixed fleet of delivery
vehicles of uniform capacity must service known customer demands for a single commodity
from a common depot at minimum transit cost. Over the years, this classical VRP has been
extended in many different ways by introducing additional real-life aspects and constraints,
resulting in a large number of variants of the VRP. For example, it is possible to extend
CVRP by varying the vehicle capacities, which results in the Heterogeneous Fleet VRP
(HFVRP), also known as the Mixed Fleet VRP. In another popular extension, the VRP
with Time Windows (VRPTW), each customer is assigned with the specific time interval
(i.e., time window) within which she needs to be served by one of the vehicles from the fleet.
Further, in the VRP with Pickup and Delivery (VRPPD), goods need to be moved from a
certain pickup location and dropped off at another delivery location. A related variant is the
VRP with backhauls (VRPB) where only difference is that all deliveries for each route must
be completed before any pick-ups are made. The Multi-Depot VRP (MDVRP) assumes that
multiple depots are geographically spread among the customers. In the Open VRP (OVRP),
vehicles are not required to return to the depot. Recently, some of these variants have been
combined into even more complex VRP variants, simultaneously combining multiple real-
life aspects. However, instead of going through all possible VRP variants, we refer the
interested reader to some of the recent surveys on the VRP classifications (e.g., [42, 43]).
Later in this thesis, we will introduce several new routing problems and formulate them
based on some of the aforementioned VRP variants. The new formulations represent the
pivotal components of some of the novel MCS-driven route planners proposed in this thesis.
However, since we will mainly focus on finding efficient solutions to these problems, we
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continue by discussing the common solution methods and algorithms for network routing
problems in transportation systems.

Determining the optimal solutions to VRPs is NP-hard, so the size of the problems that
can be solved to optimality within reasonable computing time is limited. Therefore, modern
VRP solvers tend to rely on heuristics and metaheuristics due to the size and frequency of
real world VRPs they need to solve. We will discuss the most common solution approaches
for VRPs, which can be seamlessly applied to many other combinatorial optimisation prob-
lems. We group them into following four categories: exact methods, construction heuristics,
improvement heuristics, and metaheuristics.

Exact methods

As the name suggests, the exact methods propose to compute every possible solution
until the optimal one is reached. One of the most successful exact approaches for solving
large scale NP-hard combinatorial optimization problems, such as the VRPs, is the Branch
and Bound method (BnB) proposed by Land and Doig [44]. The BnB method is a divide-
and-conquer approach based on the principle that the total set of feasible solutions can be
partitioned into smaller subsets of solutions. These smaller subsets can then be evaluated
systematically until the best solution is found. The systematic enumeration of candidate
solutions is achieved by forming a rooted tree with the full set of solutions at the root.
The method then explores branches of this tree, which represent subsets of the complete
solution set. Before enumerating the candidate solutions of a branch (i.e., solution subset),
the branch is checked against estimated bound on the optimal solution, and is discarded if it
cannot produce a better solution than the best one found so far. In other words, the bound
represents the best possible solution that we can obtain if we follow the current branch.
Computing a bound on the optimal solution is usually achieved by relaxing the constraints
which are making the problem hard to solve in the first place. In order to improve the
bounds computed by such constraint relaxations, the Branch and Cut method (BnC) [45]
has been proposed as a special type of BnB method. The BnC uses so-called cutting planes
[46] to tighten the introduced relaxation by adding new linear constraints. Many other
similar exact methods have been proposed for different variants of the VRP (e.g., Branch
and Price (BnP) [47], Branch and Cut and Price (BnCnP) [48], etc.), but they were all based
on the same principles introduced by BnB method. Later in the thesis, we will employ the
BnB and BnC methods to find the optimal solutions to newly proposed route planning
problems, and then use these solutions to evaluate performance of the developed heuristics.

Construction heuristics

Starting with an empty solution, construction heuristics gradually extend the current
solution until a complete near-optimal solution is obtained. In case of VRPs and similar
network routing problems, a feasible solution is usually created by sequentially adding new
nodes (or edges) to the solution routes based on some cost optimisation criterion and subject
to a set of restrictions that make sure that the original problem constraints are not violated.

One of the best-known constructive heuristics for VRP is the Savings algorithm proposed
by Clarke and Wright [49]. The Savings algorithm starts with a solution in which each
customer is served in a separate route. At each iteration, the algorithm computes and sorts
the cost savings (e.g., time, distance) obtained by merging each pair of routes in the current
solution. The merging with the highest cost saving is carried out given that it produces a
feasible solution. These steps are repeated until no additional saving can be made. In [50],
Solomon proposed another very simple constructive heuristic based on the nearest-neighbour
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approach. The proposed method begins with an empty route containing only depot node,
and then iteratively searches for the customer closest to the last customer added into the
route and adds it at the end of the route. A new route is created whenever the search fails
to add a new customer without violating feasibility of the solution. In the same work ([50]),
Solomon proposed another successful heuristic algorithm called I1. The algorithm starts
with a route with a single "seed" customer, usually chosen to be geographically farthest
from the depot. At each iteration, I1 algorithm searches for an un-served customer that
can be inserted into the current route without violating any of the predefined constrains. If
it fails to find such customer, the algorithm creates a new route and chooses a new "seed"
customer. The algorithm stops when there are no un-served customers.

The aforementioned heuristics were later improved in many different ways, e.g., by mod-
ifying insertion criteria and selection strategies (e.g., [51–53]), by parallelizing the insertion
process (e.g., [54, 55]), by clustering the customers based on their geographical position
(e.g., [56]), etc. Even though these modifications improve the quality of the obtained solu-
tions, constructive heuristics are still incomparably inferior to more sophisticated heuristic
approaches such as the local search or metaheuristics. However, thanks to their simplic-
ity and low computational complexity, they are often employed in more complex heuristic
algorithms to find initial solutions in short computation time.

Improvement heuristics (Local search)

Local search methods are based on the concept of iteratively improving the solution to
a problem by exploring neighbouring ones. Starting from the initial feasible solution, local
search algorithms move from one solution to another in the space of candidate solutions
by applying local changes, until an acceptable solution is found. Here, the local changes
consist of a set of moves which create the neighbouring solutions by changing some of the
attributes of a given solution. For example, in the context of network routing problems,
a local search move could remove or replace some of the nodes or edges in the solution
routes. Once a new neighbouring solution is created, it is compared against the current
solution. If the neighbouring solution satisfies a certain acceptance rule (e.g., the cost
is reduced by some percentage), it replaces the current solution, and the search starts
over. Since local search methods sequentially accept solutions that reduce the objective
function value, they can easily stuck in the local optimum which can be far from the optimal
solution. Therefore, the success of local search methods depends heavily on initial solution
and the neighbourhood generation mechanism. In case of network routing problems, some
of the previously mentioned constructive heuristic are often employed to build initial feasible
solutions. These solutions are then modified by applying different edge-exchange moves and
algorithms, some of which we will discuss later in the thesis.

Metaheuristics

Metaheuristics are high-level problem-independent algorithmic frameworks that provide
a set of guidelines or strategies to develop heuristic optimization algorithms [57]. They
are not algorithms, but rather a consistent set of ideas, concepts, and operators that can
be followed to design algorithms. Similar to previously mentioned local search methods,
heuristics iteratively evaluate potential solutions and perform a series of operations on
them in order to find new, better solutions. However, metaheuristics are also composed
of different strategies for systematic neighbour exploration which prevent them to stuck in
local optima. Therefore, local search methods are often incorporated merely as a step in
much larger algorithmic framework. Some of the notable examples of metaheuristics include
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genetic/evolutionary algorithms [58], tabu search [59, 60], simulated annealing [61], vari-
able neighbourhood search [62], (adaptive) large neighbourhood search, greedy randomized
adaptive search procedure (GRASP) [63], and ant colony optimization [64], although many
other exist. Given that these metaheuristics are actually a general problem-independent al-
gorithmic frameworks, they have been successfully applied in many different domains. Over
the past decade, they have also showed outstanding results in solving various transportation
and scheduling problems. In this thesis, we will further promote the use of such tools in both
online and offline route planners that use MCS paradigm as a data-collection mechanism.
We will mainly rely on some of the well-known heuristics (namely, variable neighbourhood
search and greedy randomized adaptive search procedure, maybe some other) and pro-
pose our own implementations to solve network routing problems arising from new MCS
applications.

1.2. Research Objectives

In this subsection we summarise the main research objectives of this thesis. Each of
the objectives is addressed in a separated chapter, while the results of the conducted re-
search were published in at least one international research conference or workshop. Since
we aim to combine two very promising Smart Mobility enablers, MCS and journey/route
planning, and thus bring together to some extent distinct research challenges, we separate
our research objectives into two parts, i.e., research stages: (1) architectural challenges in
designing MCS systems and (2) algorithmic challenges in MCS-driven route planning appli-
cations. This way, we aim to demonstrate a logical research progression over time, starting
from fundamentals of human-in-the-loop sensing systems such as MCS, to route optimisa-
tion algorithms tailored for specific crowdsensing applications that can eventually improve
mobility in urban areas.

1.2.1. Architectural challenges in designing MCS systems

Objective A-1 : Conceptual architecture of MCS systems

Over the past several years, there have been several attempts to conceptualise general
MCS system architectures. However, these attempts were usually limited to certain appli-
cation scope, oriented to specific types of sensing tasks, or simply too general to address
current research trends in the field ([28–30, 65, 66]). Therefore, the first objective of this
thesis is to identify the main requirements for MCS and to design a conceptual architecture
which would meet these requirements and serve as extensible and open reference model and
guideline for implementing MCS systems.

Objective A-2 : Task allocation methods for improving the reliability of
user-generated data

Allocating sensing tasks to the right set of devices/users to produce the data of desired
quality has been a common problem in MCS settings. Recall from the previous section that
the type of data participating mobile devices can produce in MCS environments, and the
quality in terms of accuracy, latency, and confidence can change constantly due to device
mobility, variations in communication channels, and device owners’ privacy preferences.
Additionally, the anonymous participants in MCS systems very often "contribute" with
incorrect and low-quality data, and thus create the need for post-processing data selection
methods which would improve the quality of contributed data. As the second objective
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of this thesis, we aim to reduce such need by proposing recruitment strategy to identify
and encourage expert contributors in MCS systems. More precisely, we aim to model
participants’ spatio-temporal competences by analysing their mobility traces. By allocating
MCS tasks only to participant who are familiar with the target location we can significantly
increase the reliability of contributed data and reduce the total communication cost.

Objective A-3 : Data post-processing methods to improve the quality of
crowdsensed data

Although efficient task allocation algorithms can improve confidence and reliability of
the user-generated data, they cannot guarantee high level of quality. Therefore, the logical
extensions to the previous research objective is to investigate data post-processing methods
to further improve the quality of the collected data. However, given the wide range of
different data processing and filtering techniques, we focus our research on a specific use case
within Smart Mobility domain, and demonstrate how crowdsensed data can be processed
and used to predict traffic conditions in urban areas.

1.2.2. Algorithmic challenges in MCS-driven route planning
applications

Once we have investigated MCS system architectures and accompanying data collection
and processing techniques, we focus on putting the crowdsensed data into motion. We
study how the volunteer data can be used to route different actors in traffic (tourists,
citizens, freight vehicles, cyclists) and thus to achieve fluent mobility conditions and more
balanced city environments. While we mainly focus on algorithms and heuristics, we use
real world application examples to showcase the advantages of the proposed algorithms and
infrastructures.

Objective B-1 : Bi-objective route planning to find a trade-off between
travellers’ needs and city’s global mobility objectives

We first consider a MCS application in which route planning is regulated by city admin-
istrators. More precisely, we aim to allow the administrators to formulate mobility policies,
e.g. to promote or constrain certain city areas, POIs, or routes between them, and to allo-
cate them to the participating devices, thus influencing travellers’ journey planning. At the
same time, we want to make use of MCS paradigm and capture users’ interests and travel
preferences. The overall objective here is to find an algorithm to help both individuals in
planning their trips and city governments in achieving sustainable mobility objectives.

Objective B-2 : Multi-query route planning to balance the use of public traffic
infrastructures

While the previous objective aims to find individual routes which are conformant with
the city’s global mobility objectives, it does not consider batch queries, and as such it suffers
from lack of coordinated planning. In other words, different travellers can be in parallel
guided to the same parts of the city, and thus collapse them by creating congestions, which
is usually opposite to the city’s global mobility objectives. Therefore, as an extension
to the previous objective, we aim to balance the use of public traffic infrastructures by
developing multi-query route planning algorithms. As a case study we propose another
MCS application to improve the circulation of freight vehicles and to avoid congestions in
urban freight transport systems. An efficient algorithm needs to takes into consideration
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Figure 12: Research path and methodology.

capacity constraints imposed by dense urban environments and to respectively coordinate
a fleet of freight vehicles avoiding traffic jams and congestions.

Objective B-3 : Online route planning to support demand and supply
balancing in shared transport systems

Natural extension to the previous objective, which aims to balance the use of public
traffic infrastructures, is to consider a similar route planning approach which would balance
the use of moveable assets in shared transport systems. Shared transport systems usually
consist of vehicle (e.g., bicycles, electric mopeds) rental stations strategically distributed
over the service area. Various factors, such as daily commuting patterns or topographical
conditions, can lead to an unbalanced state where the numbers of rented and returned
vehicles differ significantly among the stations. This can cause spatial imbalance of the
inventory which becomes critical when stations run completely empty or full, and thus
prevent users from renting or returning vehicles. Therefore, public vehicles need to be
regularly redistributed between the stations using a fleet of freight vehicles. To support this
activities, we need to extend the previous objective and develop an online system which
will be able to compute optimal routes for a fleet of freight vehicles based on forecast user
demand and estimated stations’ inventory target levels.
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1.3. Research Methodology

The conducted research is empirical, i.e., based on evidence, data, or knowledge/expe-
rience from observation and experimentation. The complete research path, along with the
employed data sources and outcomes of each step, is shown in Figure 12. Notice that each
of the steps in the path corresponds to one of the research objectives covered in the previous
section. We started our path by analysing participatory sensing and MCS paradigms with
the goal of envisioning the main system requirements based on which we can conceptualise
the architecture of MCS systems (Objective A-1 ). As a proof of concept we developed Mo-
biCS system and put it under experiments to prove the potential benefits of the proposed
architecture. In the next step we focused on Objective A-2 and proposed trajectory-based
task allocator for reliable MCS systems. In order to evaluate the allocator and to show the
advantages of the proposed approach, we used the real-life trajectory dataset from Microsoft
Research’s GeoLife project. The GeoLife dataset ([67–69]) consists of 17,621 trajectories
collected by 182 users in a period of over five years (from April 2007 to August 2012). The
trajectories cover a total distance of about 1.2 million kilometers and a total duration of
more than 48,000 hours. In the final step of the first research stage dedicated to archi-
tectural challenges, we tackled the problem of data post-processing in MCS environments.
As a result, we collected and analysed data on urban freight deliveries and parking areas
towards an optimized urban freight transport system. We also built a predictor to fore-
cast the availabilities of parking infrastructures, and thus opened up new possibilities for
delivery route planning and better managing of public transport infrastructures.

The second stage of our research (Objectives B-1 to B-3 ) was dedicated to MCS-driven
route optimisation algorithms. However, the research activities were considerably applica-
tion oriented. Since the part of our research work was carried out at Polytechnic University
of Catalonia (UPC) in Barcelona, we introduced the city of Barcelona as a study case.
Therefore, the defined research problems and proposed solutions arise from real-life con-
texts. Additionally, we use real-world datasets related to the city of Barcelona to evaluate
the proposed algorithms and architectures. In the first step, we focused on Objective B-
1 and proposed crowdsourcing-driven route planning algorithm that can combine users’
preferences and city’s global mobility policies. To investigate the usability of the proposed
algorithm we developed a mobility management platform which allows city administrators
to formulate mobility policies, and thus to promote or reduce the traffic of people flows in
certain areas. In our pilot project, we upgraded the existing mobile application, Barcelona
Official Guide provided by Turisme de Barcelona and Triangle Postals S.L., and connected
it to the developed mobility management platform. In the second step of this research
stage, we focused on the drawbacks of the previously proposed bi-objective route plan-
ning algorithm, and propose a multi-query route planning approach to balance the use of
public traffic infrastructures (Objective B-2 ). Once again, we put the developed algorithm
in the real-life context of urban freight transport in Barcelona. The experimental studies
conducted on real-world dataset suggest that the proposed planner is able to significantly
reduce the amount of traffic in dense urban freight transport networks. Finally, in the last
step (Objective B-3) we considered an online route planning approach to support demand
and supply balancing in shared transport systems. As a case study we introduced two
public bicycle sharing system (Barcelona’s Bicing and New York’s Citibike). Therefore, we
were able to evaluate our demand forecasting and route planning algorithms on real-world
dataset from actual shared transport systems.

The results of the second research phase, i.e., set of route planning algorithms and
supporting infrastructures, were integrated into CIGO!, MCS-based mobility management
platform developed at Sparsity Technologies in Barcelona. We discuss CIGO! platform in
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more details in the last chapter of this thesis.

1.4. Research Contributions

1.4.1. Summary of Contributions
The contributions of this thesis are as follows:

Conceptual architecture for MCS systems. We identify the main requirements
for MCS, such as data representation, quality control, trust and reputation manage-
ment, task allocation, etc., and propose a conceptual architecture which meets these
requirements and serve as extensible and open reference model and guideline for im-
plementing MCS systems.

Trajectory-based task allocation approach for reliable MCS systems. We
propose a novel trajectory-based approach for task allocation in MCS environments
and model participants’ spatio-temporal competences by analysing their mobility
traces. By allocating MCS tasks only to participant who are familiar with the tar-
get location we significantly increase the reliability of contributed data and reduce the
total communication cost. We introduce novel metric to estimate participants’ compe-
tence to conduct MCS tasks and propose fair ranking approach allowing newcomers to
compete with experienced senior contributors. Additionally, we group similar expert
contributors and thus open up new possibilities for physical collaboration between
them.

Analysis of crowdsensed mobility data. We collect and analyse crowdsensed
data on urban freight deliveries and parking areas towards an optimized urban freight
transport system. We explore the relationship between areas’ availability patterns
and underlying traffic behaviour in order to understand the trends in urban freight
transport. By applying the detected patterns we predict the availabilities of load-
ing/unloading areas, and thus open up new possibilities for delivery route planning
and better managing of freight transport infrastructures.

Bi-objective route planning algorithm for sustainable city mobility. We
propose a MCS application in which route planning is based on user-generated data,
but at the same time regulated by city administrators. The planning problem is
modelled as an extension of the mixed orienteering problem and can be controlled by
deployment of mobility policies which put restrictions on points of interest and routes
between them. We propose an algorithmic approach and a software tool to solve
this hard combinatorial optimisation problem using Variable Neighbourhood Search
(VNS). The performance of the proposed algorithm and the tool is assessed over a
real-life dataset related to the city of Barcelona. Computational results confirm the
efficiency of the algorithm and ability to help both individuals in planning their trips
and city governments in achieving sustainable mobility objectives.

Multi-vehicle route planning algorithm for balancing public freight trans-
port infrastructures. We study the problem of coordinated route planning with the
aim of balancing the use of public traffic infrastructures. As a study case, we consider
urban freight transport, i.e., one of the least sustainable components of urban mo-
bility, and propose a novel multi-vehicle route planner that avoids congestions at the
loading/unloading areas and minimizes the total duration of the delivery routes. We
formally define the problem as a variant of the multiple minimum Hamiltonian Path
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Problem (HPP) where each deliverer needs to visit a set of predefined locations while
the route choice affects the delay of other deliverers in the system. Since the problem
is NP-complete, we propose an affective solution based on combining metaheuristic
frameworks - Greedy Randomized Adaptive Search Procedure (GRASP) and Vari-
able Neighbourhood Search (VNS). Experimental study conducted on a novel real-life
dataset collected from citizens and deliverers in the city of Barcelona confirms the
effectiveness of the proposed solution.

An online framework for adaptive rebalancing of public bicycle sharing
systems. We propose an online framework which takes in consideration the real-
time information from shared transport systems to estimate inventory target levels
and accordingly to plan and assign routes to rebalancing vehicles. This way, the
framework can efficiently adapt to unplanned events (e.g., weather changes, traffic
jams, system failures, etc.), and track repositioning progress of each vehicle in order
to balance their workload. Given that the optimal inventory levels aim at maximising
the time within which the stations remain balanced (i.e., with enough bicycles and
empty stands to meet the future user demand), we propose to forecast user demand
multiple time steps into the future. Such approach allows for more accurate long-
term inventory planning which can lower the number of redistribution runs and thus
significantly reduce the operating cost. As a study case, we consider two very different
public bicycle sharing systems and collect real-world data to evaluate the proposed
solutions.

1.4.2. Software and Platforms
The following software have been developed in the course of this thesis:

MobiCS platform1,2. To explore the opportunities and to prove the potential ad-
vantages of the proposed conceptual architecture of MCS systems, we developed Mo-
biCS, a prototype platform which allows users to formulate and distribute sensing
tasks to Android-powered mobile communication devices.

Itinerary recommender within Barcelona Official Guide mobile applica-
tion3,4,5,6. We upgraded the existing mobile application, Barcelona Official Guide
provided by Turisme de Barcelona and Triangle Postals S.L., by introducing a new
feature which allows users to express their preferences and builds custom-tailored
travel itineraries.

CIGO! mobility management platform7. CIGO! platform integrates mobility
data from various sources such as Open Data, mobile applications, sensors and gov-
ernment data, allowing for its visualisation and analysis while making it actionable
through associated third party mobile applications. We allow injection of the city
mobility policies to the third party mobile applications which provide services related
to the city resources. In this way we form a value chain which connects different actors
(city governments, mobile application providers, POI owners, companies that require

1github.com/pmrazovic/mobics
2github.com/pmrazovic/mobics-backend
3play.google.com/store/apps/details?id=cat.triangle.bcn
4itunes.apple.com/us/app/id594589405
5github.com/pmrazovic/ls-top-java
6github.com/pmrazovic/ls-top-objc
7www.smart-cigo.com

https://github.com/pmrazovic/mobics
https://github.com/pmrazovic/mobics-backend
play.google.com/store/apps/details?id=cat.triangle.bcn
https://itunes.apple.com/us/app/id594589405
https://github.com/pmrazovic/ls-top-java
https://github.com/pmrazovic/ls-top-objc
http://www.smart-cigo.com
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logistics in cities, and final users) who both take a part in improving the mobility in
urban areas, and benefit from the way mobility policies being executed. The platform
implementation was funded by the frontierCities accelerator programme under the
FP7.

1.4.3. Publications
Results presented in this thesis have been published in international conference and

workshop proceedings:

[1] P. Mrazovic and M. Matskin, “Mobics: Mobile platform for combining crowdsourc-
ing and participatory sensing”, in Computer Software and Applications Conference
(COMPSAC), 2015 IEEE 39th Annual, IEEE, vol. 2, 2015, pp. 553–562.

[2] V. Granfors, J. Waller, P. Mrazovic, and M. Matskin, “CrowdS: Crowdsourcing with
Smart Devices”, in Internet Computing & Internet of Things, 2018 International
Conference on, CSCE.

[3] P. Mrazovic, M. Matskin, and N. Dokoohaki, “Trajectory-Based Task Allocation
for Reliable Mobile Crowd Sensing Systems”, in Data Mining Workshop (ICDMW),
2015 IEEE International Conference on, IEEE, 2015, pp. 398–406.

[4] P. Mrazovic, I. De La Rubia, J. Urmeneta, C. Balufo, R. Tapias, M. Matskin, and
J. L. Larriba-Pey, “CIGO! Mobility management platform for growing efficient and
balanced smart city ecosystem”, in Smart Cities Conference (ISC2), 2016 IEEE
International, IEEE, 2016, pp. 1–4.

[5] P. Mrazovic, J. L. Larriba-Pey, and M. Matskin, “Improving mobility in smart cities
with intelligent tourist trip planning”, in Computer Software and Applications Con-
ference (COMPSAC), 2017 IEEE 41st Annual, IEEE, vol. 1, 2017, pp. 897–907.

[6] P. Mrazovic, B. Eravci, J. L. Larriba-Pey, H. Ferhatosmanoglu, and M. Matskin,
“Understanding and Predicting Trends in Urban Freight Transport”, in Mobile Data
Management (MDM), 2017 18th IEEE International Conference on, IEEE, 2017,
pp. 124–133.

[7] B. Kolbay, P. Mrazovic, and J. L. Larriba-Pey, “Analyzing Last Mile Delivery Oper-
ations in Barcelona’s Urban Freight Transport Network”, in Cloud Infrastructures,
Services, and IoT Systems for Smart Cities, Springer, 2017, pp. 13–22.

[8] P. Mrazovic, E. Eser, H. Ferhatosmanoglu, and J. L. Larriba-Pey, “Multi-vehicle
Route Planning for Efficient Urban Freight Transport”, in Intelligent Systems (IS),
2018 9th IEEE International Conference on, IEEE, 2018.

[9] P. Mrazovic, J. L. Larriba-Pey, and M. Matskin, “A Deep Learning Approach for
Estimating Inventory Rebalancing Demand in Bicycle Sharing Systems”, in 2018
IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
IEEE, 2018, pp. 110–115.

1.5. Thesis Organization

The rest of this thesis is organised as follows. In Chapter 2, we investigate the main
requirements of MCS paradigm and propose conceptual architecture to serve as a guideline
for implementing MCS systems. We address issues related to data representation, quality
control, trust and reputation management, and task allocation. Thereafter, in Chapter
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3, we propose the trajectory-based task allocation approach to improve the reliability of
user-generated data in MCS environments. Chapter 4 brings the first example of MCS
application within Smart Mobility initiative and deals with analysis of crowdsensed traffic
data. In Chapters 5, 6, and 7, we introduce three new MCS applications where each of them
serves as a case study for several research challenges related to MCS-driven route planning.
First, in Chapter 5, we consider the bi-objective route planning algorithm to find a trade-
off between satisfying travellers’ preferences and meeting city’s global objectives towards
achieving sustainable urban mobility. Next, in Chapter 6, we address the problem of coor-
dinated route planning with the aim of balancing the use of public traffic infrastructures. In
Chapter 7, we introduce time-dependent route planning algorithm for inventory rebalanc-
ing problems in bikesharing systems. In Chapter 8, we envision the mobility management
platform to integrate the technologies proposed in this thesis. Additionally, we discuss the
value chain which connects different actors (city governments, mobile application providers,
POI owners, companies that require logistics in cities, and final users) who both take a part
in improving the mobility in urban areas, and benefit from more balanced environment.

Most of the content in this thesis are based on material previously published in peer
reviewed conferences (see section 1.4.3 for the complete list of produced publications).



Chapter 2

Conceptual architecture of
application-independent MCS systems

This chapter is based on materials from the following peer-reviewed papers:

P. Mrazovic and M. Matskin, “Mobics: Mobile platform for combining crowdsourc-
ing and participatory sensing”, in Computer Software and Applications Conference
(COMPSAC), 2015 IEEE 39th Annual, IEEE, vol. 2, 2015, pp. 553–562.

V. Granfors, J. Waller, P. Mrazovic, and M. Matskin, “CrowdS: Crowdsourcing with
Smart Devices”, in Internet Computing & Internet of Things, 2018 International
Conference on, CSCE.

2.1. Introduction

The mobile sensing infrastructures have been discussed for a number of years in both
industrial and research communities, however, the major boost was enabled by recent tech-
nological advances in mobile communication. Widely available smartphones, smartwatches,
and tablets are replacing dumb sensors which are usually carried or attached to mobile
participants in traditional mobile sensing networks. At the same time, smart devices sig-
nificantly contribute to computation, memory and data resources in mobile sensing in-
frastructures. Such autonomous devices are programmable and thus offer access to cheap
embedded sensors in form of local sensing intelligence. Traditional mobile sensing infras-
tructures usually do not consider carriers of devices as intelligent participants in a sensing
process. However, smart devices can allow users to express their opinions and judgements
which can complement captured sensor data. We argue that such information can represent
sensing context and serve as a valuable resource for quality control, reputation management
and task allocation. Therefore, in this chapter we aim to put humans in the center of a
novel sensing infrastructure.

We adopt a concept of human intelligence task (HIT) typically designed by older web-
based crowdsourcing platforms to tackle problems that are difficult to solve for a machine
but should be easy for humans. Examples of such tasks include image tagging, media
transcription, poll answering, etc. We extend HITs with sensing context and physical inter-
action with mobile devices. This allows us to design a general mobile platform for versatile
context-aware sensing and we believe that powerful MCS platform needs to be able both
to efficiently deliver sensing tasks to mobile communication devices, and, when needed, to

23
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Figure 21: Conceptual architecture of the platform

treat their carriers as intelligent participants in sensing process. The diversity of crowdsens-
ing tasks in our platform presents a great challenge in conceptual architecture modelling.
Different types of tasks require distinct approaches to data representation, quality control,
trust and reputation management, and task allocation. Proposed conceptual architecture is
designed to eventually meet these requirements and serve as extensible and open reference
model and guideline for implementing MCS systems, regardless of their specific application.
To prove our concept, we implemented platform prototype which supports versatile mobile
sensing and conducted several experiments to demonstrate its potential benefits. However,
in this thesis we only briefly discuss the implementation, while we refer the interested reader
to [70] for more technical details and use case examples.

2.2. Conceptual architecture

There have already been some attempts to conceptualise general crowdsensing system
architectures, however these attempts were usually limited to certain application scope, or
oriented to specific types of crowdsensing tasks ([65, 71–73]). Korthaus and Dai [74] explored
opportunities and challenges of crowdsourcing in the heterogeneous network environments
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Figure 22: Proposed task model

and proposed a general conceptual architecture for mobile crowdsensing systems. They
successfully detected the key roles in such environments, however, they retained at a high-
level of abstraction. In this section we propose a detailed general architecture which brings
together traditional (web-based) crowdsourcing and participatory sensing.

Figure 21 shows conceptual architecture of our platform. At the top level it represents
a crowdsensing workflow. Requesters, as process initiators, formulate tasks (usually from
previously defined templates) which are handed to central coordinating component – the
crowdsensing engine. The engine translates tasks into persistent objects and distributes
them to potential contributors. The engine needs to carry out these responsibilities while
assuring high quality information harvesting. In order to support the quality, the engine
profiles and rates contributors. Obviously, contributors also play important role in the pro-
cess. They are programmable intelligent agents with sufficient computational and memory
capabilities. Additionally, modern mobile communication devices provide opportunity for
user interactions and thus include humans as resourceful participants in the sensing process.
Device carriers not only act as intelligent information providers, but also have ability to
initiate sensing processes by formulating new crowdsensing tasks. The crowdsensing engine
implements APIs which allow agents to act as both data contributors and process initiators
(i.e., requesters), and thus create a large pervasive community. Below we use top-down
approach to explore components of the proposed system architecture.

2.2.1. Task modelling

One of the major responsibility of the engine is to model a variety of crowdsensing
tasks which are stored, distributed, and interpreted by agents. The task model needs to
be both extensible and open to new types of sensing paradigms. Task modeller and task
interpreter are two highly dependent components whose responsibility is to meet these
requirements. The task modeller uses predefined models to provide guidelines for correct
task formulation. Properly formulated tasks are then stored by the task interpreter. The
common approach to task modelling is to classify tasks into groups by their content or
expected response format. The aim of such classification is to eventually assign a template
to each group which will serve as a guide in task formulation. Amazon, for example, defines
such templates for several answer formats in their Mechanical Turk crowdsourcing platform.
It is important to note that Amazon requires tasks to be presented as HTML forms, which is
apparently not applicable in MCS environments where we have plurality of sensor-enhanced
participants. We approach this problem by classifying crowdsensing tasks into two main
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categories – sensing tasks and human intelligence tasks. Sensing tasks only rely on agents’
sensor equipment and do not require active and conscious user involvement. Their purpose
is to simply capture sensor data. On the other hand, human intelligence tasks heavily rely
on humans as problem solvers, which makes them significantly more complex. However,
these two categories are not mutually exclusive since we sometimes want to use sensor data
to complement human intelligence tasks with information context and verify the results
with sensing data.

Figure 22 shows the proposed task modelling approach. Sensing tasks are defined as
a list of requested sensor data. For example, initiator can request temperature, location
and lightning data at the same time. Additionally, sensing task can be scheduled to collect
sensor data over some time period. Scheduling options can be used by crowdsourcing engine
to coordinate and synchronize agents by sending periodical requests. They can also be
distributed to agents and used as pattern for autonomously scheduled sensing. Sensing task
can as well be linked to human intelligence task and serve as a sensor context description.
Both sensing and human intelligence tasks are often assigned with scope to define set of
relevant contributors. Location is commonly used to narrow set of potential contributors,
but sensor-rich devices allow us be more accurate and define scope using sensor-specific
information. For example, we might want to distribute certain task only to agents in quiet
surroundings.

While modelling sensing tasks is relatively straightforward, modelling human intelligence
tasks requires expressing human judgements and opinions in crowdsensing environments.
Experience in traditional crowdsourcing with humans has shown that establishing social
belief is more effective when individual human opinions are collected as answers to multiple
choice questions. However, it is obvious that we can not always assume prior knowledge
of all possible outcomes of the tasks, and therefore it is impossible to formulate everything
as a simple multiple choice question. In such cases, it is necessary to use open questions.
The open questions assume free-form answers which are usually presented as unconstrained
textual content. Unfortunately this kind of questions is less suitable when deriving highly
reliable social beliefs. Finally, requester can ask agents to perform certain action which can
not be expressed as a direct response. An example of such tasks is "Create user account by

Table 21: Example of task description
Task What is the weather like at your current

location?
Task context Latitude = 45.840196

Longitude = 15.9643316
Radius = 20km

Response choices (1) Sunny, (2) Rainy, (3) Cloudy, (4)
Snowing

Open response fields Express it in your own words
Requested data Location, Temperature, Lightning

Scheduling options

Task Sensing weather data
Task context Latitude = 45.840196

Longitude = 15.9643316
Radius = 20km

Response choices
Open response fields
Requested data Location, Temperature, Lightning

Scheduling options Sampling frequency = 5 min
Interval = [1:00pm, 3:00pm]
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following link: www.mobics.com!". In this case it is impossible to directly prove that the
agent has taken the requested action. Looking back to Figure 22, human intelligence task
model enables different ways of expressing human judgements. For example, it can be for-
mulated with number of response choices. Our model also considers extra multimedia data
describing both task and response choices, which allows us to formulate such multimedia
tasks as transcription from video or sound, image tagging, categorization, moderation, etc.
In case of open questions, human intelligence tasks rely on number of open response fields
which describe free-form responses. For example, if we want agents to tag arbitrary number
of objects in an image, we will assign one open response field to each tag. Table 21 contains
some examples of tasks formulated using the proposed model.

2.2.2. Response modelling

Similar to the above modelled tasks, contributed data, i.e. task responses, need their
own structural representation. We use the same approach and distinguish two types of
task contributions – sensor data and human judgements. Each sensing response consists
of a number of sensor-specific data entities which together describe agent’s surrounding.
Additionally, sensor data can complement human judgements and serve as information
context which can be used for managing trust relations and assuring quality of contributions.
The response interpreter parses contributed raw data with respect to described model and
constructs logical entities which can be stored in a database.

2.2.3. Task allocation

Task allocator is a coordinating component whose responsibility is to identify a set of
task-relevant information providers. The task allocator relies on task-specific scope and
takes inputs from trust and reputation manager which greatly affects the quality of the col-
lected data. Task allocation also plays important role in agent load balancing and energy
conserving, and thus needs to take into consideration the real-time agent context. There-
fore, battery status, processing power, network connectivity and other valuable information
provided by user profiler are of great use. It is important to remember that primary usage
of mobile communication devices is reserved for the owners’ regular activities such as mak-
ing calls, Internet access, etc. Users will participate in crowdsensing process if it does not
consume significant resources by preventing access to usual services [75].

In the next chapter, we will learn more about task allocation mechanisms in MCS
systems and introduce a novel algorithm which is able to find expert contributors by profiling
them based on their movements.

2.2.4. Trust and reputation management

MCS systems should effectively attract new contributors to ensure high level of par-
ticipation. However, openness exposes systems to erroneous and malicious contributions.
Ensuring the quality of contributed data is a great challenge in heterogeneous systems. We
assume that managing of trust relations and a reputation mechanism can be seen as an
opportunity to provide resistance to errors and malicious behaviours. There has been many
works on trust and reputation management in both participatory sensing and traditional
crowdsourcing systems ([76–79]), but these works do not support the diversity of crowd-
sensing tasks. Therefore, it is necessary to design model which will separately evaluate
devices as autonomous agents and their carriers as biased human contributors. HaoFan



28
CHAPTER 2. CONCEPTUAL ARCHITECTURE OF

APPLICATION-INDEPENDENT MCS SYSTEMS

Figure 23: Proposed trust (a) and reputation model (b)

Yang et al. in [79] proposed novel approach to modelling trust and reputation in participa-
tory sensing systems. They emphasize the importance of willingness and precision as two
essential factors that affect the data quality. Their model involves both direct and indirect
measures of reputation, coupled with personal information to help in classifying individuals.
For more details of the proposed model we refer to [79], while here we present an extension
and adaptation of their model to our conceptual architecture.

Our architecture requires a flexible trust model which will support various trust assess-
ment approaches related to different types of crowdsensing tasks. Therefore, we extend
managed trust relations with the context defining the nature of agent and crowdsensing
task. For example, we might believe that a certain device will contribute with accurate
sensing data, i.e. we trust the agent in the context of conducting sensing tasks. However,
at the same time we might not believe that device’s owner provides trustful information,
i.e. we do not trust the agent in the context of conducting human intelligence tasks. The
context can be usually decomposed into several quality aspects for the purpose of quality
assessment or measurement. The context of conducting sensing tasks can, for example, be
decomposed into "sensor power", "sensor resolution", "maximum sensing range", etc.. With
each quality aspect, there is always a set of quality assessment criteria that can be used
to measure the quality aspect under a particular context [80]. For example we might addi-
tionally require that the resolution of the ambient temperature sensor needs to be less than
0.5◦C before we treat it as an accurate, i.e. trustworthy. Moreover, trust relations need to
be time-dependent as our trust to certain agent can change over time. We therefore extend
trust relations with the time dimension. Figure 23a illustrates the described trust model.

Assigning values to the trust relations will give us reliable measure of how much we
believe that the agent will conduct certain task truthfully. For this purpose a reputation
model is needed. The reputation information is usually computed from the past behaviour
of the targeted agent, its ratings and recommendations, or from their combination. Our
reputation model relies on the one proposed in [79], which derives trust from a combina-
tion of direct and indirect reputation measures, coupled with personal information (Figure
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23b). Direct reputation is derived from the previous data quality records and agent’s past
performance. Indirect reputation includes more subjective measures such as requesters’ and
community’s opinions. We introduce environmental context as an additional source of indi-
rect reputation which allows us to assess the influence of the current agent’s surrounding to
the quality of contributions. In this manner sensing context of contributions is used to learn
agents’ behaviour patterns. For example, it is possible that some agent usually contributes
low quality data in some detectable cases, e.g. at low temperature. This extension makes
our model more dynamic and context-aware which is desirable in unstable and heteroge-
neous networks such as MCS environments. Finally, the direct and indirect reputation is
coupled with agent’s personal information, e.g. device’s capability and carrier’s ability and
competence, which is usually collected during registration process.

Similarly to [79], we assign a weight to each component in our reputation model. How-
ever, the weights in the model present the quality aspects which define relevance of repu-
tation sources in each trust context. For example, it is obvious that we put more weight
to device’s capability than to carrier’s ability when assessing trust in the context of con-
ducting sensing tasks. Similarly, we will value carrier’s competence more in the context of
conducting human intelligence tasks. Figure 23 gives an overview of the proposed trust and
reputation model.

2.2.5. Agent profiling

Agent profiler is a component playing important role in various crowdsensing mecha-
nisms such as task allocation, trust assessment, reputation management, quality control
etc. Its primary responsibility is to construct agent profiles by analysing agents’ contribu-
tions and sensor context data. Inferring surrounding context and activities by discovering
patterns or correlations in large quantities of data is mainly a machine learning problem.
We emphasize the importance of this component by accommodating it into our concep-
tual architecture. As shown in Figure 21, the agent profiler has a central position in the
crowdsensing engine. Apart from providing categorized data to task allocator and trust
and reputation manager, the agent profiler directly handles the stream of context data from
agents.

2.2.6. Quality control

The main purpose of agent profiling, as well as trust and reputation management, is to
eventually assure better quality of contributed data. The diversity of crowdsensing tasks
in our approach involves different ways for controlling quality of contributions. The quality
control manager is presented as a modular component (see Figure 21). The quality of
sensor data in participatory sensing networks is usually assured by applying different outlier
detection algorithms, while the traditional crowdsourcing systems use weighted voting as a
more effective tool for improving the result quality of human intelligence tasks (Figure 24).
Additionally, we introduce the sensing context information as important source which can
directly inform about the contribution’s relevance to the certain task’s scope. For example,
we can ask contributors to describe traffic situation at a specific location, and then we can
value more the data coming from locations closer to the requested one. This simple extension
makes our quality control manager highly applicable in context-aware crowdsensing systems.
We also emphasize the importance of modularity in quality control management. It allows us
to easily extend the quality control with more advanced mechanism such as gold standards,
peer consistency [81], confusion matrices [82, 83], etc.
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Figure 24: Quality control manager

2.2.7. Reward management

While participating in crowdsensing tasks, mobile communication devices consume their
own resources such as battery and computing power. In addition, device carriers are ex-
posed to potential privacy threats by voluntary sharing sensor data and personal informa-
tion. Therefore, a user should always receive a satisfying reward to compensate resource
consumption and potential privacy breach. An incentive mechanism is needed to assure
adequate user participation which is necessary for successful sensing. While the most of
web-based crowdsourcing platforms offer fixed micropayments to attract contributors, more
advanced platforms employ game-theoretical approach to maximize the utility of the plat-
form and still attract enough participants.

2.2.8. Agents

Our MCS concept treats programmable mobile communication devices and their carriers
as highly intelligent and resourceful agents. This is why task handling, capturing sensor
data and user interaction require an intelligence on the client side . In Figure 21 we identify
main components implementing agents as autonomous information sources. Once again,
our model is designed with respect to different types of crowdsensing tasks. Task manager
handles allocated tasks and coordinates device carrier and sensor manager. The sensor
manager is modular component whose responsibility is to capture sensor data. Modules
are autonomous and sensor-specific which allows developers easily upgrade agents with new
sensing capabilities. Additionally, sensing tasks can be delivered with scheduling options
which are then interpreted and processed by task scheduler. In addition to task processing,
agent periodically reports its status to crowdsensing engine in the form of sensor data. This
data is usually processed by agent profiler which infers agent activities and surrounding
context.
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Figure 25: MobiCS architecture

2.3. MCS platform prototype

To investigate the advantages of the proposed conceptual architecture, we developed
MobiCS, a prototype platform for versatile MCS. MobiCS allows requesters to formulate
and distribute both sensing and human intelligence tasks to Android-powered mobile com-
munication devices. It consists of server-side crowdsensing engine, client web interface and
client mobile application (Figure 25). Requesters can use both mobile and web application
to formulate and publish arbitrary tasks associated with specific sensor context information.
Server-based engine stores tasks in database and distributes them to potentially relevant
contributors. Mobile application handles incoming tasks by capturing sensor readings and
carriers’ judgements and actions. In this section we only briefly discuss implementation in
order order to illustrate how the the proposed conceptual architecture can be realised in
practice. For more technical details and use case examples, we refer the interested reader
to [70].

The central and coordinating component of the system is a server-based crowdsensing
engine. The server-side is a Ruby-based platform consisting of a PostgreSQL database and
several RESTful web services used by mobile and web applications. The database includes
collections of all registered agents, i.e. mobile communication devices, crowdsensing tasks
and agents’ contributions. Each participant in MCS system needs to be properly registered
with enough information to be later used for successful allocation of crowdsensing tasks.
Therefore, our implementation collects information about device model, operating system
and built-in sensors. Each sensor is defined by Android sensor type constant, manufacturer,
version, power, maximum range and resolution. Additionally, device’s universally unique
identifier (UUID) is adopted for identification purposes. This information about device’s
capabilities is collected during registration process but it can also be updated later during
the system operation. Example screenshots of web interface in Figure 26 show information
collected during registration process for device HTC One M7.

Before storing registration information in database, the engine register device with ap-
propriate push notification services to enable sending tasks directly to applications on mo-
bile devices. The engine will register devices with Google Cloud Messaging service (GCM).
Push notification services return device token to be used for identification purposes in push
communication protocols. In Figure 26 the device token is shown in Push id field. Af-
ter successful registration, devices are assigned with the system’s unique ID which makes
them ready to communicate and participate in MCS process. Tasks are directly distributed
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Figure 26: Registered device information

to selected mobile agents via push messages, but can be also pulled on demand via web
services.

All the tasks in our MCS system are formulated through the web and mobile applica-
tions. However, server-based engine plays important role in task modelling as well. Domain
model of our solution is designed by following the concept proposed in 2.2.1. Each task
is specified by a set of properties including task ID, title, description, requester, list of re-
quested sensor readings, task scope and other information which closely describes specific
types of crowdsensing tasks. Both sensing and human intelligence tasks are modelled to be
stored in database and they are distributed as push messages among the crowd. The fol-
lowing JSON content presents an example of human intelligence task distributed to agents
via push message.

"id ": 3,
" created_at ": "2015 -01 -08 T14 :14:01.186 Z",
" published_at ": "2015 -01 -08 T14 :18:16.963 Z",
" question ": "What is the weather like

at your current location ?",
" description ": "Task is published for integration

testing purposes ..." ,
" choices ": [

{ " description ": " Sunny ", "id ": 9 },
{ " description ": " Cloudy ", "id ": 10 },
{ " description ": " Rainy ", "id ": 11 },
{ " description ": " Snowy ","id ": 12 } ],
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Figure 27: Cross-platform mobile application

" context_data_types ": [
" GeoLocationData ", " MotionData ",
" OrientationData ", " LightData " ],

" crowdsourcer_email ": " petar@mobics .com",
" crowdsourcer_name ": " Petar Mrazovic ",
" responded ": false

The push message contains all information needed by the devices to act as autonomous
agents and to contribute by conducting the crowdsensing task. Above example describes
simple human intelligence task with specified context sensor readings (GeoLocationData,
MotionData, OrientationData, LightData). Upon obtaining requested data, agents re-
spond to allocated tasks by calling designated web service. The example below shows
response data collected by one of the testing devices (Sony Xperia Z3).
" device ": { "uuid ": "1 b42bd6aea20ccde "},
" task_id ": 3,
" choice_id ": 10,
" sensing_response_items ":[

{ " LightData ": {" lumen ": 18} },
{ " OrientationData ":

{ " magnetic_heading ": 69.1845703125 } },
{ " MotionData ":

{ " acceleration_x ": -1.9742431640625 ,
" acceleration_y ": 7.86016845703125 ,
" acceleration_z ": 5.12249755859375 } },

{ " GeoLocationData ":
{ " latitude ": 45.79959 ,

" longitude ": 15.890267 ,
" accuracy ": 24.041000366210938 } }]

Client mobile application captures sensing context and enables carriers to express their
judgements and opinions. We developed a mobile application using cross-platform applica-
tion development framework Apache Cordova (Figure 27). Even though the implementation
heavily relies on web technologies (HTML5, CSS and JavaScript), each sensing module is
developed as native plug-in which makes the implementation open to new types of sen-
sors and mobile platforms. We developed native plug-ins for capturing device motion and
orientation, ambient light and temperature, surrounding noise level and global geographic
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Figure 28: MobiCS’s web interface
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position. The application has been initially tested on several Android-powered mobile de-
vices (HTC M8, Sony Xperia Z3, Samsung Galaxy S5, LG G3, etc.), but still might require
more extensive testing and evaluation. The application allows users to act as sensing ini-
tiators and contributors at the same time. The exposed web services enable mobile agents
to register in MCS system, pull published tasks, create new tasks and respond to accepted
tasks. The same web services are used by web applications which provide additional func-
tionalities such as filtering, statistical overviews, message sending etc. Figure 28 shows a
sensing context presented in web interface.

2.4. Conclusion

The proposed conceptual architecture is independent of any specific application domain,
and as such can be used as an extensible reference model and guideline for implementing
any MCS system. Although we focus on smart mobility applications, understanding the
general MCS paradigm is of great importance. Throughout the thesis will touch some of the
introduced components and discuss them in more details (e.g., task allocation and quality
control), but we will mainly concentrate on contributed data and study how it can be used
to solve practical mobility problems in urban areas. However, before doing so, in the next
chapter we study how to use MCS to collect this data by allocating crowdsensing tasks only
to reliable contributors.





Chapter 3

Trajectory-based task allocation
approach for MCS systems

This chapter is based on materials from the following peer-reviewed paper:

P. Mrazovic, M. Matskin, and N. Dokoohaki, “Trajectory-Based Task Allocation
for Reliable Mobile Crowd Sensing Systems”, in Data Mining Workshop (ICDMW),
2015 IEEE International Conference on, IEEE, 2015, pp. 398–406.

3.1. Introduction

In the previous chapter we introduced an application-independent conceptual architec-
ture for MCS systems which puts humans in the center of sensing process and allows for
their implicit and explicit participation. How to optimize the combination of human and
machine intelligence is another important and challenging research problem for MCS. In
this chapter we contribute to this problem by tackling one of the main issues of people-
centric infrastructures – the reliability of contributed data. The anonymous participants in
MCS systems very often "contribute" with incorrect and low-quality data, and thus create
the need for post-processing data selection methods which would improve the quality of
contributed data. Here, we try to reduce such need by proposing recruitment strategy to
identify and encourage expert contributors in MCS systems.

Expert user selection is a common technique for assuring higher quality of collected
data in crowdsourcing settings, but however it still has not been sufficiently explored in
MCS. The sensing tasks and campaigns in MCS systems are spatio-temporal correlative,
i.e. they typically refer to a certain location and time frame. By allocating such tasks only
to participant who are familiar with the target location and within specified time frame, we
can significantly increase the reliability of contributed data and reduce total communication
cost. Therefore a recruitment framework in MCS should rely on participants’ past expe-
rience with visited locations and discover their regularities. In this chapter we will model
participants’ spatio-temporal competences by analysing their mobile traces (GPS trajec-
tories) and learning their individual behaviour patterns. Unlike traditional recruitment
approaches in participatory sensing where participants’ current location is only criteria, we
also recruit participants who often visit specified location or spend there significant time.
Additionally, we propose fair ranking approach allowing new community members to com-
pete with experienced senior contributors. Finally, our framework groups similar expert
contributors and opens up new possibilities for physical collaboration between them.

37
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Despite all the studies on MCS and participatory sensing, only few works have focused
on task allocation and recruitment of workers. Reddy et al. [84] developed a recruit-
ment framework to enable requesters in participatory sensing environments to identify best
suited contributors based on their geographic and temporal availability. They transform
participants’ raw mobility information (GPS trajectories) into context-annotated mobility
profiles that model transportation mode, location, and time. The proposed recruitment
engine compares participants’ profiles to determine which individuals maximize coverage
over a specific area and time period. However, the coverage is evaluated on predefined area
split into a number of spatial blocks. Such pre-partitioned grids are not scalable and limit
sensing systems only to predefined geospatial areas. Therefore, in our work we replace grid
partitioning with hierarchical organized regions of interest.

Similar to our work, Hao et al. [85] propose trajectory-based recruitment strategy of
social sensors for participatory sensing. They collect participants’ GPS trajectories within
certain time frame and represented them with time-series of third-order tensors. Further-
more, the dynamic tensor analysis algorithm (DTA) algorithm is adopted to learn this time
series tensor and predict the future trajectory information. Again, the proposed recruit-
ment strategy works within a given monitoring area pre-partitioned into a number of cells.
Additionally, prediction of users’ locations and inferring their availability is not enough for
efficient task allocation in MCS systems. Location-based MCS tasks do not always require
real-time information from the field (opposed to participatory sensing), and thus we also
need to model users’ past experience and general familiarity with visited locations.

Cardone et al. ([66, 86]) started the ParticipAct Living Lab testbed, an experiment at
the University of Bologna involving 300 students for one year in crowd sensing campaigns
where it was possible passively access smartphone sensors and require active user collabo-
ration. To the best of our knowledge this is the first participatory sensing infrastructure to
consider humans as intelligent problem solvers and involves them into information retrieval
processes. Cardone et al. in [66] propose an algorithm to autonomously assign tasks to
well-suited participants. They propose three different task assignment policies: random
policy, attendance policy, and recency policy. The random policy selects random group of
available participants. The attendance policy relies on knowledge about the time previously
spent by participants in the task area. Finally, the recency policy favours participants who
have more recently traversed the sensing task area.

Our task allocation approach relies on discovering participants’ geospatial regions of
interest. In their inspiring work Li et al. [87] mine similarity between users based on
their geographic location histories, considering the sequential, hierarchical and popularity
properties of location. They show great advantages of hierarchical organized regions of
interest for inferring similarities between users. We adopt their concept of hierarchical
(multi-level) framework and define our own tree structure to infer participants’ spatio-
temporal competences. We treat regions of interest as tree nodes and employ a tree climbing
approach to find the most suited contributors from a large set of voluntary participants.

3.2. Framework overview

As shown in Figure 31, our task allocation framework contains the following six steps:
Step 1: Trajectory data collection. The trajectory data from volunteer participants

is the only input to our system. Luckily, the advances in positioning technologies make
it possible to seamlessly collect a large number of spatio-temporal points from modern
communication devices.
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Step 2: Stay point discovery. The discovery of participants’ regions of interest
involves obtaining the physical locations which matter to their daily life and routines. Here,
we refer to them as stay points. In the second step we search for the stay points in previously
collected trajectory data using spatio-temporal density-based clustering algorithm.

Step 3: Stay point clustering. Using OPTICS clustering algorithm [88], we hierar-
chically cluster stay point dataset from previous stage into a number of geospatial regions
in a divisive manner. The similar stay points from various participants are assigned to the
same stay regions on different layers in obtained cluster hierarchy.

Step 4: Data tensorization. The 3-dimensional correlations between participants,
stay regions and time of day are represented with third-order tensors. Stay region hierarchy
obtained in the previous step is used to build a hierarchy of third-order tensor. Correlations
on each level in stay region hierarchy are represented with one tensor.

Step 5: Assessment of spatio-temporal competences. Using tensor hierarchy we
estimate participants’ familiarity with each level’s stay regions in different times of day by
computing competence scores. We take in consideration personal significance of the stay
region, but also participant’s amount of experience with stay region in certain time period.

Step 6: Ranking and grouping. We use computed competence scores to rank par-
ticipants and identify experts for each stay region in different times of day. Additionally,
we compute cosine similarity between experts and group them into collaborative social net-
work. Finally, we allocate task to most suited group of experts with respect to assigned
stay region and time of day.

In the next section we describe in more details each stage of proposed task allocation
framework.

3.3. Framework details

The steps involved in proposed task allocation approach are detailed in this section. We
place extra emphasis on describing the underlying algorithms. We also explain the inputs
and outputs of each stage along with tuning parameters which affect the final outcome of
the task allocation process.

Figure 31: Overview of proposed trajectory-based task allocation framework
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3.3.1. Trajectory data collection
The research studies have shown high regularity in the human mobility behaviours,

suggesting that most individuals follow a simple and reproducible pattern [89]. In this
paper we rely on high resolution positioning data to build participants’ mobility profiles
and to find coverage areas in MCS systems. Global Positioning System (GPS) allows us
to track the movements and obtain trajectories that represent spatial paths followed by
individuals through certain time periods.

Definition 3.3.1 (GPS trajectory) GPS trajectory is a chronologically ordered sequence
of spatio-temporal points (p0, ..., pN ) where pi = 〈lati, lngi, ti〉 with ti as a time point and
(lati, lngi) as a GPS point.

3.3.2. Stay point discovery
Discovering regions of interest, i.e., coverage areas, starts with mining important loca-

tions from GPS trajectories. We employ spatio-temporal density-based algorithm to find
personal places of interest. The algorithm detects sequences of spatially close points in
GPS trajectories where individuals stay for a reasonable time. We refer to them as stay
sequences and treat them as locations of personal significance [67]. Participants are usually
familiar with these locations and can contribute with valuable information when conducting
location-based MCS tasks.

The proposed algorithm is based on density-based clustering. For more details we refer
reader to [90] where representative algorithm DBSCAN was introduced. We have chosen
density-based clustering approach for a number of its advantages. The extraction of stay
sequences in our approach depends on only two input parameters, a time threshold (εt) and
a distance threshold (εd). Second, the algorithm does not require prior knowledge of the
number of expected stay sequences. Finally, it can discover clusters of arbitrary shapes and
easily detect outliers.

We adopt the concept of neighbourhood from traditional density-based clustering ap-
proach and extend it by introducing temporal information. We define the spatio-temporal
neighbourhood (ST-neighbourhood) of a point pk as a set of points in the trajectory whose
spatial and temporal distances from pk are less than predefined thresholds.

Definition 3.3.2 (ST-neighborhood) Let (p0, ..., pk, ..., pN ) be a GPS trajectory, where
p = 〈lat, lng, t〉. The ST-neighbourhood of point pk is the set of points pi such that
distance((lati, lngi), (latk, lngi)) < εd and |tk − ti| < εt, where εd and εt stand for dis-
tance and time threshold.

By introducing the time threshold we can detect and ignore outliers in a subsequence of
spatially close GPS points. Figure 32 illustrates ST-neighbourhood of point p4. In the first
example ST-neighbourhood is consisted of points p3, p5 and p7. Since p7 was captured not
long after p4, i.e. t7− t4 < εt, distant point p6 is treated as outlier. However, in the second
example temporal distance between p4 and near p8 is greater than εt, and thus distant p6
and p7 are not treated as outliers and p8 belongs to another visit.

Below we use the ST-neighbourhood to formally define the stay sequence as the union
of ST-neighbourhoods and describe how we use them to compute the stay points.

Definition 3.3.3 (Stay sequence) A stay sequence Q of a trajectory T with respect to εd
and εt is a non-empty set of chronologically ordered trajectory points, such that ∀pi, pj ∈ T
if pi ∈ Q and pj ∈ ST-neighbourhood(pi) then pj ∈ Q.
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Figure 32: Examples of ST-neighbourhood

Definition 3.3.4 (Stay point) Stay sequence Q = {pi|0 ≤ m ≤ i ≤ n ≤ N} determines
the stay point s = (lat, lng, ta, tl) where lat = 1

n−m
∑n
i=m lati, lng = 1

n−m
∑n
i=m lngi stand

for the average latitude and longitude of the points in Q, ta = tm is the arriving time at s
and tl = tn is the leaving time.

The Algorithm 1 summarises our approach to extract stay sequences and compute stay
points. Obtained stay points usually occur when participants enter a building and lose a
satellite signal over a time interval t ≥ εt until coming back outdoors, or when they exceed
a time limit εt at a certain geospatial area. Therefore, the stay points represent both indoor
and outdoors locations of interest.

3.3.3. Stay point clustering
In the third step we put together detected stay points and hierarchically cluster them

into geospatial areas. By assigning similar stay points from various participants to the same
clusters, we can easily discover regions of interest which we refer to as stay regions. They
represent geospatial areas where participants spend significant amount of time. Obviously
these regions include a dozens of points of interest such as restaurants, supermarkets, hotels,
fuel stations, etc.

Definition 3.3.5 (Stay region) Stay region RC is a geospatial area that contains all of
the stay points s ∈ C where C is a geographically bounded cluster of stay points.

The relationship between stay regions can be read out from the tree structure obtained
as a result of hierarchical clustering. Here we refer to it as stay region tree (SRT) and use
it as a framework to effectively model participants’ competences to conduct location-based
MCS tasks. Task allocation problem boils down to assigning the task to the right stay region
and finding local participants who are familiar with the location and/or the surrounding
area. Later in this section we explain how we use SRT to build a hierarchy of third-order
tensor and represent correlations between participants, stay regions and time of day.

Definition 3.3.6 (Stay region tree (SRT)) Stay region tree (SRT) is a tree represen-
tation of a hierarchical clustering whose nodes represent clusters of stay points, i.e., stay
regions.

Selection of the right hierarchical clustering algorithm significantly affects the structure
of SRT. We have chosen OPTICS algorithm which generalize density-based clustering and
thus is capable of detecting clusters with irregular shapes [88]. It creates an augmented
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Algorithm 1: Stay point discovering
Input: set of GPS trajectories T , distance threshold εd, time threshold εt
Output: set of stay points S

1 S = ∅
2 for Ti ∈ T do
3 for GPS point pi ∈ Ti do
4 if pi not processed then
5 mark pi as processed
6 neighbors = ST_neighborhood(pi, εd)
7 for pj ∈ neighbors do
8 for pk ∈ ST_neighborhood(pj , εd) do
9 if pk unprocessed then

10 neighbors ← pk
11 end
12 end
13 end
14 mark pj ∈ neighbors as processed
15 set neighbors as stay sequence Q
16 if duration(Q) ≥ εt then
17 compute stay point s from Q
18 S ← s

19 end
20 end
21 end
22 end

ordering of the points in dataset representing its density-based clustering structure. The
output of the algorithm is reachability plot, i.e. a bar plot showing clusters as valleys in the
plot. Hierarchical structure of the clusters can be obtained easily from reachability plot. We
implement automatic cluster extraction algorithm proposed by Sander et al. in [91]. The
proposed method tries to find local maxima in reachability plot to separate valleys which
represents density-based clusters. Details of implementation has been introduced in [91].

3.3.4. Data tensorization
By introducing time domain into our framework, we can more accurately asses par-

ticipant’s ability to conduct MCS task at different times of day. To put it differently,
participants can be within different time frames in varying degrees familiar with the target
stay region. For example, participants who use public transportation are usually at the
same stations every morning. This means they are familiar with these locations, but only
in certain time frames. It is possible that they have never even been there at the different
time, and thus can not provide valuable information for the rest of the day. This is why
we introduce time domain and model participants’ competences for each stay region within
different time frames. More precisely, we split day into 8 time slots (0:00 am - 3:00 am, 3:00
am - 6:00 am, 6:00 am - 9:00 am, etc.) and use them to asses participants’ time-dependent
abilities to conduct MCS tasks.

We use SRT obtained in the previous step as a framework to build a hierarchy of third-
order tensors which represent 3-dimensional correlations between participants, stay regions
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Figure 33: Example of third-order tensor Xl

and time slots. Each tensor Xl ∈ RIp×Ir×It in tensor hierarchy XSRT = {X0, ...,XL}
represents relations between participants, time slots and stay regions on SRT level l ∈
{0, ..., L}. The value of each element x(pi, rj , tk) of third-order tensor Xl simply represents
the amount of time participant pi spent inside level’s l stay region rj within time slot tk
(Figure 33). Using the tensor hierarchy XSRT , in the next step we build another tensor
hierarchy YSRT whose elements represent competence scores.

3.3.5. Assessment of spatio-temporal competences

In this step we estimate participants’ familiarity with each level’s stay regions in different
times of day and compute so-called competence scores. MCS tasks are usually geolocalized
and refer to a specific time of day. Obviously, we would like to allocate such tasks to partic-
ipants who have the most extensive experience with the target location and/or surrounding
area at the designated time. Effectively this means we are looking for the participants
who spent the largest portion of their time inside the corresponding stay region and within
matching time slot. Therefore, for each participant we can simply compute her share in
the total amount of time logged inside the target region within target time slot (total being
the sum over all the participants). Hence, we use previously obtained hierarchy of tensors
XRST and define

a(pi, rj , tk) = x(pi, rj , tk)
P∑

m=0
x(pm, rj , tk)

(3.1)

where P is the total number of participants. Obviously this kind of measure does not
assure fair competition between newcomers and experienced participants. Additionally,
we also need to take into consideration the regularity of the target location in participant’s
location history. Therefore we use regularity measure b which is the measure of participant’s
personal significance of the target location. We define

b(pi, rj , tk) = x(pi, rj , tk)
R∑
n=0

x(pi, rn, tk)
(3.2)
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Figure 34: SRT climbing

where R is the total number of stay regions. Finally, we combine (3.1) and (3.2) and formally
define competence score as

c(pi, rj , tk) = γa(pi, rj , tk) + (1− γ)b(pi, rj , tk) (3.3)

where 0 ≤ γ ≤ 1 is a tuning parameter which determines proportion of the two measures
in the final score. Obviously, 0 ≤ c(pi, rj , tk) ≤ 1 and for this reason we will sometimes
express competence scores in percentages.

Finally, we compute competence scores for each level in the tensor hierarchy XSRT
and build new tensor hierarchy YSRT whose elements represent competence scores, i.e.
y(pi, rj , tk) = c(pi, rj , tk).

3.3.6. Ranking and grouping
In the final step of the proposed task allocation approach we use the SRT and tensor

hierarchy YSRT obtained in the previous steps to find the best suited contributors for
specific MCS tasks. This boils down to assigning MCS task to the right stay region in SRT
and ranking participants by corresponding competence scores.

Definition 3.3.7 (MCS task) MCS task g = 〈latg, lngg, tg〉 is geolocalized crowdsensing
task assigned to location 〈latg, lngg〉 and time slot tg. In other words, MCS task g requires
real-world information from location 〈latg, lngg〉 within time slot tg to be successfully solved.

Naturally we would like to allocate above defined MCS task to the contributors who are
familiar with the target location and/or the surrounding area within designated time slot.
Therefore, we first assign the target location 〈latg, lngg〉 to the right stay region, i.e. node
in SRT. We search SRT level by level for a stay region which contains location 〈latg, lngg〉.
If the target location can not be assigned to any stay region at the current level, we climb
the tree one level up and search among larger (and sparser) stay regions.

Once we have found target stay region rg on level l, we look up competences scores
yl(pi, rg, tg) in Yl ∈ YSRT for each participant pi. Obviously, participants with the highest
competence scores can be treated as preferred contributors for task g. However, they
are not the only good candidates in the system. Participants who are familiar with the
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close locations outside the stay region rg can also be treated as well-suited contributors.
Therefore, we also consider nearby stay regions by climbing the SRT from the node rg
and summing up competence scores for each of the visited target nodes rl. For example,
in Figure 34 region r8 is found as the target stay region. However, participants who are
familiar with close adjacent areas r7 and r9 should also be treated as reliable contributors.
Therefore, we climb the SRT from node r8 to r3 and refer to it as the new target stay region
on level 2. We then look up corresponding competence scores in Y2 and add them to level’s
3 competence scores from Y3. We continue climbing the SRT until we reach the root node
containing all the stay regions in the system. Additionally, we involve the level-dependent
factor α(l) to weigh the significance of participants’ competences on different levels. In
other words, we value more competence scores on lower levels where the stay regions are
smaller and denser. Hence, we can, for example, model α(l) using exponential function
f(x) = ax where a ≥ 0 (similar was proposed by Li et al. in [87]). Finally, we formally
define the accumulated multi-level competence score as

cm(pi, g) =
L∑
l=0

yl(pi, rg,l, tg)α(l) (3.4)

where rg,l is the target node on level l. The algorithm 2 summarises the process of calcu-
lating multi-level competence scores.

Algorithm 2: Computing multi-level competence scores
Input: MCS task g = 〈latg, lngg, tg〉, stay region tree (SRT), tensor hierarchy

YSRT
Output: multi-level competence scores cm(pi, g)

1 l = L // current level
2 while l != 0 do
3 for stay region rj ∈ SRT (l) do
4 if 〈latg, lngg〉 ∈ rj then
5 rg = rj
6 break
7 end
8 end
9 l -= 1

10 end
11 rl = rg // current stay region
12 while r != null or l != 0 do
13 foreach participant pi do
14 cm(pi, g) += yl(pi, rl, tg)α(l)
15 end
16 rl = rl.parent
17 l -= 1
18 end

Before we allocate task to the highest ranked participants, we try to group those who
usually visit the same areas at the similar times of day, and thus enable them to collabora-
tively conduct the MCS task. In other words, we try to identify high ranked participants
with the similar mobility patterns. This opens up new possibilities for establishing social
and trust networks between contributors and data collectors. However, instead of engaging
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with the issues of these large research fields, we stay within the scope of this work and
only present employed similarity measure. We take previously described hierarchical ap-
proach and accumulate similarity scores from different level levels of SRT. Hence, we define
similarity as

sim(u, v) =
L∑
l=0

siml(u, v)α(l) (3.5)

where siml(u, v) is a similarity score between participants u and v on level l. To esti-
mate similarities between participants’ spatio-temporal behaviours on each level of SRT we
adopt measure proposed by Yuan et al. in [92]. They extend the cosine similarity measure
by incorporating temporal influence and develop time-aware collaborative model for point-
of-interest recommendation. The cosine similarity between two vectors is a measure that
calculates the cosine of the angle between them. Since it takes in consideration only orienta-
tion of the vectors and not magnitude, we can efficiently estimate similarity between senior
and new contributors. Therefore, we use obtained tensor hierarchy XSRT and compute
similarity between participants’ spatio-temporal behaviours on level l as follows

siml(u, v) =

R∑
j=0

T∑
k=0

xl(u, rj , tk)xl(v, rj , tk)√
R∑
j=0

T∑
k=0

xl(u, rj , tk)2

√
R∑
j=0

T∑
k=0

xl(v, rj , tk)2

(3.6)

Finally, using the competences scores for MCS task g and similarities between partici-
pants we allocate task g to the highest ranked group of similar participants.

3.4. Experiments

MCS system are very difficult to experiment with given that they require a large number
of volunteer participants which are willing to invest their time, install required technology,
provide resources of their mobile devices when needed, and expose themselves to potential
privacy and security threats. Therefore, most of the experimental studies in the literature
are conducted on simulated MCS environments or already available datasets. Instead of
collecting a new trajectory dataset using the prototype platform introduced in the previous
chapter, in this section we will make use of the GPS trajectory dataset collected in GeoLife
project of Microsoft Research Asia [93].

3.4.1. Dataset

The GeoLife dataset ([67–69]) consists of 17,621 trajectories collected by 182 users in
a period of over five years (from April 2007 to August 2012). The trajectories cover a
total distance of about 1.2 million kilometres and a total duration of more than 48,000
hours. They were recorded by different GPS loggers and GPS-phones, and have a variety
of sampling rates. A GPS trajectory of this dataset is represented by a sequence of time-
stamped points, each of which contains the information of latitude, longitude and altitude.
91% of the trajectories are logged in a dense representation, e.g. every 1-5 seconds or every
5-10 meters per point. The dataset reflects a broad range of users’ outdoor movements, not
restricted to only simple life routines. The majority of trajectories are located in Beijing
(China).
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Table 31: Structure of SRT obtained from GeoLife dataset

Level Number of
stay points

Number of
stay regions

Number of
leaf stay re-
gions

1 7759 1 0
2 7694 24 21
3 7393 55 54
4 6857 23 21
5 6429 49 47
6 5459 138 134
7 3439 114 100
8 1824 61 53
9 613 14 13
10 197 12 12
Total 7759 491 455

3.4.2. Constructing stay region tree
For discovering stay points from GPS trajectories in GeoLife dataset we set εd to 50

meters and εt to 20 minutes (see Section 3.3.2). This results in detecting 7759 stay points in
GeoLife trajectory dataset. Obviously, the parameters εd and εt can significantly affect the
structure and size of the obtained SRT, i.e. total performance of the proposed task allocation
approach. However, here we naturally assume the time and size limits for stay points
and thus leave the scalability evaluation for the future work. Further, we hierarchically
cluster stay points using OPTICS density based clustering algorithm. The automatic cluster
extraction algorithm proposed by Sander et al. in [91] was used to find local maximas in
OPTICS reachability plot and to identify cluster candidates. Additionally, we adopted
parameter settings and heuristics from [91] to obtain a non-binary hierarchy tree from
iterative binary partitioning of cluster candidates. To ignore clusters that are too small we
also assume a minimum cluster size of 3 stay points.

Finally, we established a 10-level cluster hierarchy which we refer to as stay region tree
(SRT). The Table 31 details the structure of the obtained SRT in terms of the total number
of stay points and stay regions per each level. Additionally, it contains a number of leaf stay
regions (leaf nodes in SRT) which are initially assigned to geolocalized MCS tasks in the
recruitment process. Only 7.3% of stay regions are represented as internal nodes in SRT.
This can be explained by wide distributions of GPS points in GeoLife dataset. In other
words, the majority of trajectories are located in Beijing, but the GPS points are distributed
over a much larger geospatial area (more than 30 cities around the world). Therefore, only
denser areas in Beijing region are represented as internal nodes and further clustered on
lower levels of SRT.

3.4.3. Constructing tensor hierarchies
We introduced the time domain into our framework by defining 8 three-hour time slots

(0:00 am - 3:00 am, 3:00 am - 6:00 am, 6:00 am - 9:00 am, etc.) and use them to asses
participants’ time-dependent abilities to conduct MCS tasks. Size of the time slots mainly
depends on the nature of MCS task and mobility of participants. In other words, for the
MCS tasks that require time-sensitive information, we would normally shorten the time
slots. However, in our experiments we assume lower time-sensitivity of MCS tasks and
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Figure 35: Distribution of time logged inside the stay regions over time slots

Figure 36: Correlation between computation time of tensor hierarchy construction and size
of the time slots, measured on a machine with a dual-core Intel Core i5-3320M 2.6 GHz
CPU and 4 GB RAM running Linux Mint 17.1.

define three-hour time slots. Figure 35 shows total amount of time logged inside inferred
stay regions by 182 users from GeoLife dataset, per each of three-hour time slots. As
expected, the most of the stays were recorded in forenoon when people are usually stationed
around their workplaces.

Obviously, the number of time slots significantly affect the size of tensors in hierarchies
XSRT and YSRT , and thus the computation load performed in recruitment process. The
hierarchies constructed in our experiments contain 10 third-order tensor with dimensions
182×Rl × 8 where Rl is a number of stay regions on level l. Figure 36 shows computation
time required to construct tensor hierarchies XSRT and YSRT in a relation to different time
slot sizes.

3.4.4. Recruitment

We naturally assume that participants’ reliability to conduct MCS task is proportional
to their experience with the target location. To put it differently, participants who spent
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Figure 37: Number of experts found with SRT-based approach and cell partitioning

more time at the target location are likely to be more competent and contribute with high
quality information.

We compare our hierarchical SRT-based approach with traditional flat cell partitioning
used for inferring sensing coverage in mobile sensor networks. In participatory sensing
environments predefined monitoring areas are usually pre-partitioned into a number of fixed
rectangular cells. In our experiments we use 100 different partitioning configurations, i.e.
100 different cell sizes (0.10, 0.20, 0.30, ... , 10.00 km2). In other words, for each of 100 cell
configurations we create 1,000 randomly geolocalized MCS tasks (100,000 in total) and try to
assign them to expert contributors using both SRT-based approach and flat cell partitioning.
In the experiments we identify experts as a contributors with competence scores above 30%.
The tuning parameter γ is set to 0.5, i.e. we value equally participant’s personal significance
of target location and total experience compared to all other participants.

Figure 37 shows the average number or expert contributors found in 100 experimental
configurations. The proposed SRT-based approach finds 6-7 expert contributors for each
of randomly geolocalized MCS tasks. On the other hand, traditional cell partitioning ap-
proach depends heavily on cell configuration and therefore performs worse with smaller cell
sizes. However, powerful MCS system needs to efficiently allocate location-sensitive tasks
which are very often associated with exact GPS coordinates or very small geographic areas.
Therefore only a very fine cell partitioning approach can assure high quality information
harvesting.

As shown in Figure 37, if we increase enough the cell size (> 8 km2), cell partitioning
approach will perform as good as SRT-based approach in terms of the number of recruited
expert contributors. However, it is important to understand that the set of participants
identified as experts by the two compared approaches differ one from another. Obviously,
flat cell partitioning approach takes in consideration only participants who have been inside
the target cell. On the other hand, hierarchical SRT-based approach also considers partici-
pants with extensive experience with nearby locations. Therefore, proposed approach finds
expert contributors from a much larger set of candidates and thus outperforms traditional
cell partitioning with smaller and less populated cells. This effect can be seen as different
scatters of stay points in Figure 38 which shows all of the stay points from expert contrib-
utors found by the two compared methods in one of the conducted experiments. The stay
points represent candidates’ points of interest and thus are concentrated around the target
location. In Figure 38a they are spread over a larger area and denser around the target
location. This can be explained as a result of hierarchical competences assessment which
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Figure 38: Stay points from expert contributors found with SRT-based approach and cell
partitioning

values more candidates who are familiar with the areas closer to the target location.

3.5. Conclusion

In this chapter we investigated the correlation between users’ mobility and their role
as contributors in MCS systems. We find that human mobility significantly affects sensing
coverage and opens up new possibilities for task allocation and recruitment of contributors.
Sensing coverage can be to a large extent inferred from users’ history of visited locations.
Therefore, we modelled 3-dimensional correlations between participants, regions of interest
and time of day as a hierarchy of third-order tensors. Obtained structure allows us to
fast and efficiently asses participants’ competence to conduct location-based MCS tasks.
Finally, proposed competence scores assure fair ranking and allow newcomers to compete
with experienced participants.

Although efficient task allocation can improve confidence and reliability of user-generated
data, they cannot guarantee high level of quality. In the next chapter we will introduce an
example of a very simple MCS system which collects check-ins from drivers in Barcelona’s
urban freight transport and show that post-processing mechanisms are usually required to
improve the quality of crowdsensed data.



Chapter 4

Analysis of crowdsensed mobility data

This chapter is based on materials from the following two peer-reviewed papers:

P. Mrazovic, B. Eravci, J. L. Larriba-Pey, H. Ferhatosmanoglu, and M. Matskin,
“Understanding and Predicting Trends in Urban Freight Transport”, in Mobile Data
Management (MDM), 2017 18th IEEE International Conference on, IEEE, 2017,
pp. 124–133.
B. Kolbay, P. Mrazovic, and J. L. Larriba-Pey, “Analyzing Last Mile Delivery Oper-
ations in Barcelona’s Urban Freight Transport Network”, in Cloud Infrastructures,
Services, and IoT Systems for Smart Cities, Springer, 2017, pp. 13–22.

While so far we studied only general-purpose MCS systems, in this chapter we will
narrow our focus to their applications within smart mobility domain. In particular, we will
introduce the first of the three MCS systems proposed in this thesis. Recall that our research
is to large extent application-driven, meaning we will study real-world examples of MCS
applications which aim to solve specific mobility problems, and use them to demonstrate
and evaluate developed algorithms. In this chapter we will study a very simple MCS system
which collects check-ins from drivers in Barcelona’s urban freight transport network. This
system will help us demonstrate how simple user-generated data from MCS environments,
such as check-ins in this particular case, can be processed and analysed to produce valuable
insights into urban mobility trends. Notice here that even though we are trying to solve
very specific problem, the proposed data management techniques can be used in other
MCS systems to post-process crowdsensed data in order to improve its quality and obtain
meaningful results.

4.1. Introduction

High population densities in urban environments are responsible for increasing con-
sumption of goods and services that often need to be delivered from the less crowded city
periphery. However, the traffic infrastructures and the possibilities for their extension in
dense urban environments are limited, and thus deliveries tend to be made in smaller loads
and frequent trips which additionally increases the traffic in already crowded urban grids
of streets [94]. This also results in generating noise and pollutant emissions, increasing
congestion and posing a threat to the safety of road users [95]. The social and economic
concentration of resources in cities poses a strong need for efficient and sustainable freight
distribution processes.

51
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In this context, mobile data management and analytics arise as a means to achieve more
efficient freight distribution systems, without the need for large investments or sophisti-
cated technologies. In this chapter, we are taking the first step towards such a solution by
analysing and predicting usage of urban freight transport infrastructure over data collected
by a new MCS system developed for this purpose.

The provision of on-street and off-street loading/unloading areas designated for the
freight vehicles has been recognized as the most effective infrastructure measure for opti-
mising last-mile delivery operations and improving mobility conditions in urban areas [95].
Nevertheless, with the increasing urban population, urban transport demands are becom-
ing difficult to absorb due to limitations of the urban environments. The loading1 areas
are becoming over-occupied and can not meet high transport demands, and allocating new
spaces for logistics activities is not possible in already dense urban environments. There-
fore, the pervasive information and communication technologies naturally arise as a means
to improve circulation of the freight vehicles at the loading areas.

We will analyse data from a new MCS system that allows deliverers to check-in at the
designated loading area, and thus provide real-time occupancy information. The system
has been released as a part of Barcelona’s sustainable urban mobility plan. We will focus
on exploratory analysis of the check-in dataset collected from the system in order to detect
temporal and spatio-temporal patterns in urban freight transport. Discovered patterns
can allow us to detect hot spots in the city, as well as morning and evening rush hours
for individual loading areas. By applying the detected patterns we will develop several
availability prediction models for the loading areas in the city. In particular, we propose
linear regression (LR) based models to incorporate both the historical delivery trends for
the specific area and the current availability patterns for that specific day to better estimate
the current availability. This work naturally opens up new possibilities for delivery route
planning and better managing of parking spaces and freight transport infrastructure.

4.2. Barcelona’s urban freight transport scheme

Freight requires dedicated urban spaces, such as loading areas. Insufficient delivery
spaces transfer delivery activities on traffic lanes and pavements, which leads to congestions
and traffic accidents. Therefore, the city of Barcelona, as well as many other European
cities, has adopted land use planning and infrastructure measures for achieving a more
efficient integration of urban freight in the urban transport system. In 2015 Barcelona
city authorities launched a new scheme for urban freight transport which prescribes the
obligatory usage of newly regulated areas for delivery operations, locally known as areaDUM
(Distribució Urbana de Mercaderies in Catalan). Roughly 9,000 parking spaces across 2,000
areas have been designated for the freight transport purposes, while an estimated 45,000
parking manoeuvres take place in these zones each day. In other to improve the road
network and parking capacity, different parking regulations have been introduced for each
of the loading areas. For example, some of the lateral road lanes are devoted to traffic during
peak hours, deliveries during off peak hours, and residential parking during the night [96].
Additionally, different parking time limits have been prescribed for the different areas. The
parking enforcement unit was formed to ensure compliance of these parking regulations to
facilitate availability of the loading areas for freight vehicles.

In order to facilitate and regulate the usage of loading areas, and to improve the cir-
culation of vehicles, the city of Barcelona introduced a novel parking management solution
based on MCS paradigm. In order to use the designated areas, deliverers need to check-in

1We use "loading" in short while referring to both loading and unloading activities.
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Figure 41: Total number of check-ins per each day of the observed period between January
1st, 2016 and May 23rd, 2016

with their vehicle’s registration plate number using either mobile application or SMS ser-
vice. In addition, the mobile application, available for both Android and iPhone devices,
helps deliverers in managing their parking operations. The application informs deliverers
about the time remaining for parking and also includes a system of warnings to help them
avoid fines. The new service aims to offer more availability of spaces and, in the future,
recommend the areas in which deliverers are most likely to find parking in specific time
ranges.

4.3. AreaDUM dataset

In this section, we introduce the areaDUM check-in dataset, and give some basic char-
acteristics of it. To the best of our knowledge, this is the first dataset crowdsensed from
citizens and private and professional deliverers that reflects the usage of the urban freight
infrastructure. The dataset consists of 49,172 users, i.e. deliverers, 1,990 loading areas
and 3,014,610 check-ins over the period between January 1st, 2016 and May 23rd, 2016.
Each check-in consists of the ID of the deliverer who made the check-in, her vehicle’s plate
number (anonymised), the loading area to which the check-in was made, geographic coordi-
nates, and a timestamp. Each of the loading areas in the dataset is geocoded, and deliverers
could check in only if they were in the vicinity of the corresponding area. Therefore, the
check-ins’ geographic coordinates are introduced only to confirm their validity. Further,
the number of authorized parking spaces for each of the loading areas is known from the
dataset. There are total 8,491 parking spaces across 1,990 loading areas, while the average
number of parking spaces per loading area is 4.27.

In spite of the large amount of check-ins, the collected data is still sparse, as it is the case
for most ICT based data collection and smart city applications. The new system based on
mobile technologies was recently introduced to replace the old parking discs. However, the
two systems coexisted for a short period of time allowing users to adapt to the new system.
Nevertheless, during the observed time period, the estimated percentage of deliverers using
the new system has grown to around 60%. This trend could be seen in Figure 41 where
we plotted the total number of check-ins per each day of the observed period. Also notice
the occasional valleys in the plot which represent holidays and weekends when the delivery
operations were kept to minimum. However, in order to further address the issue of data
sparsity, we have to look at the distribution of these check-ins among the loading areas. As
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Figure 42: Distribution of check-ins among loading areas

we will see in the next section, not all of the areas have the same turnover, and thus some
of them stand out with a lower number of check-ins in the dataset. Figure 42 depicts such
unequal distribution of data among different loading areas. Each bar in the plot indicates
the number of areas with the certain amount of check-ins (plotted on the horizontal axis).
From the plot we can see there are almost 200 areas with less than 500 check-ins (~3.49
check-ins per day). Usage of these areas is harder to predict due to sparseness of collected
information, and thus one needs to put an extra effort to deal with the data sparsity.

4.4. Parking availability estimation

The new service aims to eliminate congestions at loading areas and balance the total
amount of traffic in urban freight network. The first step towards achieving these goals is
understanding how the parking availability changes over time and designing a prediction
algorithm which can help deliverers in planning their delivery routes. Therefore, we study
how to compute and predict real-life availabilities of loading areas.

We start by formally defining the availability of loading area as the total number of
unoccupied parking spaces.

Definition 4.4.1 (Availability of loading area) Availability of loading area â(di, tj) is
the total number of unoccupied parking spaces at area di at time tj. Formally,

â(di, tj) = cdi
− o(di, tj) (4.1)

where cdi
is the capacity of area di (i.e. total number of parking spaces), and o(di, tj) is the

total number of occupied parking spaces at area di at time tj.

Therefore, if we want to compute the real-life availability of a loading area di, we need
to know the total number of occupied spaces o(di, tj). However, since not all deliverers
have adopted the new system based on mobile technologies, this information cannot be
inferred directly from the check-in dataset. Additionally, authorized emergency vehicles
(e.g. police cars, fire trucks, ambulances, etc.) and vehicles with disabled parking permits
can be legally parked at loading areas without checking in. Finally, the parking spaces can
be also occupied by illegal parkers.

~
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Figure 43: Occupancy data collected in field work

Definition 4.4.2 (Occupancy of loading area) Occupancy of loading area o(di, tj) is
the total number of occupied parking spaces at area di at time tj. Formally,

o(di, tj) = o+
c (di, tj) + o−c (di, tj) + oa(di, tj) + oi(di, tj) (4.2)

where o+
c (di, tj), o−c (di, tj), oa(di, tj) and oi(di, tj) stand for the total number of parking

spaces occupied by checked-in commercial vehicles, not checked in commercial vehicles, au-
thorized vehicles and illegal parkers, respectively.

In order to estimate the real-life availability and occupancy of loading areas, Barcelona
City Council conducted a field research where parking behaviours in a representative sample
of loading areas have been observed. The collected data is reported in Figure 43. 73.1%
of parking spaces were occupied by commercial vehicles, 14.7% by authorized vehicles and
12.2% by illegal parkers. Additionally, notice that the ratio between checked in and not
checked in commercial vehicles depends on the system’s adoption rate (p) which slowly
increases with time (Figure 41). Therefore, when estimating and predicting real-life avail-
ability we will simulate different lifespan stages of the new system by adjusting adoption
rates.

Definition 4.4.3 (System adoption rate) We define the system adoption rate p(di, tj)
at loading area di at time tj as the ratio

p(di, tj) = o+
c (di, tj)

o+
c (di, tj) + o−c (di, tj)

(4.3)

However, we will assume that this ratio is the same for all the di and tj. Hence, we will
denote this universal quantity simply by p.

Using the above definitions and results from conducted field research we can estimate
availability of loading areas. Since the total number of checked in commercial vehicles
o+
c (di, tj) is directly observable from the check-in dataset, we use it to express other occu-
pancy variables. Using (4.3) we can express the total number of not checked in commercial
vehicles as follows

o−c (di, tj) = o+
c (di, tj)(1− p)

p
(4.4)
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Figure 44: ACF of the time series recovered for the example loading area located in La
Rambla street

Similarly, using the statistical result reported in Figure 43 we can express the total number
of parking spaces occupied by authorized and illegal vehicles as follows

oa(di, tj) + oi(di, tj) = 0.269
0.731(o+

c (di, tj) + o−c (di, tj)) (4.5)

After we substitute o−c (di, tj) in (4.5) with the right side of (4.4) we get

oa(di, tj) + oi(di, tj) = 0.368
p

o+
c (di, tj) (4.6)

Finally, by using (4.4) and (4.6) in (4.1) we obtain the availability estimation formula

â(di, tj) = cdi
− 1.368

p
o+
c (di, tj) (4.7)

In the next section we employ the derived formula in order to obtain the areas’ historical
availability profiles that reflect the trends in urban freight transport network.

4.5. Historical availability profiles

In this section, we study temporal delivery trends by computing individual historical
availability profiles for each of the areas. The historical availability profile (HAP) of a
loading area consists of the mean of the area’s parking availability as a function of time.
However, before computing the profiles, first we need to take a closer look at the dataset
and analyse the periodicity of the underlying process in order to choose the appropriate
duration of the profiles and the size of the discretisation bin.

4.5.1. Seasonality analysis
We treat the data as time series and analyse the autocorrelation functions (ACF) for

each of the loading areas. Initially, we sample the time-stamped data by accumulating the
number of check-ins over 1-minute sampling period. In Figure 44 we plot ACF of an example
time series recovered by sampling the data from the loading area located in La Rambla, one
of the most popular streets in Barcelona. The plot reveals the periodicities (seasonality) of
vehicle arrivals at the observed area. The AFC exhibits three significant peaks at lags of
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Figure 45: Average ACF

31, 10,188 and 1,394 minutes. The largest peak occurs at lag of 31 minutes which indicates
the strongest correlation caused by the present parking regulations. More specifically, for
the most of the loading areas, including the observed one, maximum allowed stay time is
30 minutes. Further, the areas are very often fully occupied and thus deliverers need to
wait for a parking space. Therefore, the strong 31-minute periodicity suggest that deliverers
tend to stay at the area for the maximum allowed time, whereupon the newly freed parking
space is immediately taken by another vehicle. The second largest peak occurs at lag of
10,188 minutes, i.e. 7.075 days, and indicates weakly seasonality of the process. The third
peak at lag of 1,394 minutes, i.e. 23.23 hours, indicates daily seasonality, while the rest of
the peaks in Figure 44 represent its harmonics. Due to the seasonal nature of the urban
freight demand and the established urban delivery routines, daily and weakly periodicities
in the dataset have been expected a priori. For example, shops, bars and restaurants are
replenished daily and weekly with stocks of fresh and dry food, and other retail goods.
Finally, the discovered periodicities can be observed more clearly in Figure 45 where we
average the ACFs computed for all 1,990 loading areas.

4.5.2. Constructing HAPs
For most of the loading areas, parking is permitted only during daytime, i.e. from 08:00

to 20:00. We refer to this period as operating cycle. Therefore, when constructing HAPs
we compute the parking availability only for the operating cycles, assuming that for rest of
the time all parking spaces are available. In other words, we split the time domain into a
number of operating (daily) cycles.

Definition 4.5.1 (Operating cycle) Operating cycle is time period in which parking at
loading area is permitted.

Definition 4.5.2 (Historical availability profile (HAP)) Historical availability profile
of a loading area di consists of the mean of the area’s parking availability as a function of
time,

ĥ(di, tj) =
∑m
k=1 âk(di, tj)

m
(4.8)

where m is the number of operating cycles for which parking availability is collected.

Since time is discrete we need to compute the parking availability for each time point
of the operating cycle. However, in order to capture the previously discovered periodicities
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Figure 46: 12-hour (a) and 5-day (b) HAPs for example loading area located in La Rambla
street

we use 15-minute discretisation bin. To put it differently, we first sample the time-stamped
check-in data by accumulating the number of checked in vehicles over 15-minute sampling
period. Thereafter, we compute the parking availability using (4.7) for each 15-minute time
slot. Finally, HAPs are obtained by averaging computed availabilities using (4.8). For
example, in Figure 46a a 12-hour HAP for previously observed loading area in La Rambla
street is obtained by computing the average availability for each of the 15-minute time slot
within 12-hour operating cycle (from 08:00 to 20:00) over the 20-week monitoring period.
Similarly, in Figure 46b we obtained a 5-day (weekly) HAP for the same area and operating
cycle by computing averages for each of the 384 time slots in 5-day window. The computed
availability patterns depend significantly on the area’s location and the surrounding urban
environment. For example, the observed area in La Rambla street is located next to the
famous market place La Boqueria, one of the Barcelona’s foremost tourist landmarks. The
market has a very diverse selection of goods, mostly fresh food that needs to be replenished
very frequently to avoid out-of-stock position. The 12-hour HAP plotted in Figure 46a
reflects the high turnover of deliveries throughout a whole day. However, notice that the
mornings and evenings are less busy due to the lower trading volumes and, consequently,
lower replenishment needs. Further, the popular visit times (12:00 - 14:00 and 16:00 - 19:00)
are reflected in the plot as the busiest delivery periods. The subtle availability increase in
the short period between 14:00 and 16:00 most likely reflects the lunch break and end of
the first delivery shift. As we will see later in this section, this increase is common for all
loading areas and can be observed more clearly in the global HAP aggregated for all loading
areas. The weekly HAP plotted in Figure 46b reveals very similar usage trends across all
weekdays. As we expected, morning hours on Mondays are slightly busier than on the rest
of the days due to the regular weekly stock replenishments.

As we previously noted, the usage trends depend on the loading areas, and thus we can
observe different patterns in the different areas. However, instead of analysing each of the
loading areas individually, we will take a look at the aggregated HAP computed by aver-
aging the individual HAPs across all 1,990 loading areas. Such global view on availability
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Figure 47: 12-hour (a) and 5-day (b) global HAPs

fluctuations will give us a better understanding of the global mobility and delivery trends
in the city of Barcelona. However, we noticed from the dataset that the parking availabil-
ity at the particular loading area is closely correlated to the total number of authorized
parking spaces, i.e. capacity of the area (plot is omitted to conserve space). Therefore,
instead of aggregating previously computed availabilities, we also take in consideration the
capacity of each of the areas and compute relative availabilities, i.e. â(di, tj)/cdi

. In Figure
47 we plot the aggregated, i.e. global, 12-hour and 5-day HAPs. Recall from Figure 42
that there a large number of less popular loading areas with only couple of check-ins per
day which explains high availability percentages in the plot. Nevertheless, the plot reveals
two repeating valleys between 09:00 and 14:00, and 16:00 and 19:00, which corresponds to
the first and second (i.e. morning and afternoon) delivery shift. As expected, the second
delivery shift is significantly shorter and less busy. Also notice that the second shift on
Friday is less active than on the other weekdays, most likely due to reduced working hours
in many workplaces in Barcelona. The shift change period and late lunch break can be now
observed more clearly as a sudden 30% availability increase between 14:00 and 16:00. Also,
notice that all of the weekdays have very similar usage patterns. However, in Figure 47a
relatively large standard deviation (red area) indicates instability of the observed HAPs.
To put it differently, the individual HAPs significantly differ one from another, especially
in busy time intervals.

4.5.3. HAP clustering
The geographic layout of the city of Barcelona is distinguished by its balanced mixture

of residential, commercial and touristic areas, and as such has a very strong influence
on the delivery operations and the underlying mobility patterns. In order to understand
them better, we group areas with similar HAPs and then analyse the geographic layout
of the obtained clusters. We again normalise the individual HAPs with respect to areas’
capacities (recall that we did the same in Section 4.5.2), and thereafter apply average-
linkage hierarchical clustering algorithm to partition loading areas based on their daily usage
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Figure 48: Loading areas clustered by normalised HAPs

trends. The algorithm starts with 1,990 clusters, one for each area. The clusters are then
sequentially combined into larger clusters until all loading areas end up being in the same
cluster. At each step, the two clusters separated by the shortest distance are combined. The
cluster-to-cluster distance is computed as the average pairwise Euclidean distance between
12-hour HAPs belonging to the areas in two different clusters. Finally, the result of the
clustering is illustrated in Figure 48. We cut the obtained dendrogram into 6 clusters. The
very small standard deviations of per-cluster aggregated HAPs indicate high intra-cluster
similarities. On the other hand, the aggregated HAPs exhibit very similar shapes with two
valley in morning and afternoon, however with the different magnitudes. Therefore, the
clusters mainly differ from each other by the usage intensity, i.e. the magnitude of the
availability rate. Consequently, we order the clusters based on the average availability rate,
i.e. from the least to the most occupied. The first cluster with 363 loading areas is the least
popular one. This corresponds to the plot in Figure 41 where we noticed the large number
of less popular areas with only couple of check-ins per day. Similarly, the sixth cluster is the
smallest, but the most popular one. It contains 16 most occupied loading areas. In order
to detect the busiest delivery areas in the city (hotspots), in Figure 48 (right) we plotted
location of each area on the map of Barcelona. Additionally, we coloured the markers based
on their belonging clusters. The most popular areas (coloured in darker reds) are located
in the central and the most developed part of the city. It is also interesting to notice that
most of these popular areas are spread across only two districts - Ciutat Vella and Eixample,
the most touristic and developed one. On the other hand, the less busy loading areas are
located in the peripheral part of the city.

4.6. Availability prediction

We focus next on the short-term prediction of loading area availability. In particular, we
are interested in predicting the total number of available parking spaces in the next time slot,
i.e. 15-30 minutes ahead of time. This setup corresponds to most of the delivery scenarios
in Barcelona where parking is planned on the fly, while all of the areas are reachable within
30 minutes from any part of the city. Additionally, for most of the loading areas maximum
allowed parking time is 30 minutes. The benefits of the availability prediction are threefold:
(1) it allows more accurate load balancing of loading areas, (2) it assists city governments in
mobility management by providing information about expected delivery activity, and (3) it
opens up new possibilities for mobile services such as delivery route planning. We compare
several simple prediction models, and establish them as baselines with which other (more
complex) models can be compared. We then present a more advanced prediction techniques
that combine both historical and online availability data.

We denote by x(di, tj) a random variable representing the true parking availability at
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loading area di at 15-minute time slot tj of an operating cycle. Similarly, we denote by
x̂(di, tj) the predicted parking availability for time slot tj of the same operating cycle.

4.6.1. Historical model
Historical prediction model (HM) x̂HM (di, tj) dynamically constructs a HAP based on

all observations until the current time slot tj−1, and returns the value at the corresponding
HAP’s time slot tj . More formally,

x̂HM (di, tj) = ĥ(di, tj) (4.9)

4.6.2. Last value model (LV)
Last value prediction model (LV) x̂LV (di, tj) predicts that the availability at the current

time slot tj − 1 remains constant as its last measured value â(di, tj − 1) for the next time
slot tj , i.e.

x̂LV (di, tj) = â(di, tj − 1) (4.10)

4.6.3. Linear regression model (LR)
This model uses a mixture of the online data we acquire from the application and past

averages of the availability data to train a linear regression model. The model formed for
estimation of availability at area di and timeslot tj , xLR(di, tj), is as follows

x̂LR(di, tj) = β1 â(di, tj−1) + β2 ĥ(di, tj) + γ (4.11)

This model incorporates both the historical model for the specific area and the current
availability patterns for that specific day to better estimate the current availability.

The parameters are estimated for each parking area and for each time slot using the
previous data for the particular day. The following matrix denotes the training matrix for
LR model for parking area :

Xdi,tj−1 =


â(di, t1) ĥ(di, t2)
â(di, t2) ĥ(di, t3)

...
...

â(di, tj−2) ĥ(di, tj−1)


Corresponding ground truth vector for training is as follows:

Ydi,tj−1 =


a(di, t2)
a(di, t3)

...
a(di, tj−1)


where t1 time slot value corresponds to first time slot of the operating cycle. We can find
the parameters of the model using regular solutions to linear regression problems such as
least-squares estimation.

Intercept value (γ) is also added to the model but from the results of our data we have
seen that a model without intercept seems to decrease the estimation error.

One also notes that we have scarce data to estimate from when tj is small, i.e. at the
beginning of operating cycle. This scarcity can cause unstable and unreliable results in
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the estimation phase. To tackle this issue we have used the p-value of the parameters to
measure the significance of the relations of the variables. We have chosen p = 0.05 as a
threshold for significance which is the value used generally in the literature. According to
the result of estimation if calculated significance is less than the threshold we use the the
historical model estimate, x̂HM (di, tj), instead. In summary:

x̂LR(di, tj) =
{
x̂LR(di, tj), if p <= 0.05
x̂(di, tj), otherwise (4.12)

4.6.4. Linear regression model with aggregated HAPs (LR-A)
Recall from Section 4.3 that for some of the loading areas we have very few observed

check-ins. The availability of these areas is harder to predict with the proposed models due
to sparseness of the observations. On the other hand, in Section 4.5.3 we saw that loading
areas can be efficiently clustered using normalised HAPs, and thus less sparse aggregated
HAP can be obtained for each cluster. Therefore, in order to overcome data sparsity issues,
we propose to extend previously defined LR model by aggregating historical availability
information. To put it differently, instead of using a single HAP of the specific area, we
cluster areas with similar HAPs and compute aggregated representative HAP. Forecasts are
then performed by applying LR model with the corresponding representative HAP to each
loading area in the cluster, individually. As we will see in the next section, in certain cases
these grouped models can avoid overfits, reduce the impact of outliers, and successfully
capture common trends.

We compute cluster representative HAP by averaging historical availabilities across all
loading areas contained in the corresponding cluster, i.e.

ĥ(Ck, tj) = 1
|Ck|

∑
di∈Ck

ĥ(di, tj) (4.13)

where Ck stands for arbitrary cluster. The ground truth vector Ydi,tj−1 remains the same,
while the training matrix Xdi,tj−1 is updated as follows

Xdi,tj−1 =


â(di, t1) ĥ(Ck, t2)
â(di, t2) ĥ(Ck, t3)

...
...

â(di, tj−2) ĥ(Ck, tj−1)

 ,∀di ∈ Ck
We experimented with different clustering algorithms and similarity measures, and we

found simple k-nearest neighbour method (kNN) and cosine similarity to give accurate
results. Therefore, we compute the similarity between areas as follows

sim(di, dj) =
∑48
k=1 ĥ(di, tk)ĥ(dj , tk)√∑48

k=1 ĥ(di, tk)2
√∑48

k=1 ĥ(dj , tk)2
(4.14)

4.7. Experimental evaluation

4.7.1. Experimental setup
Our simulations and experiments are based on real-world check-in data introduced in

Section 4.3. In order to simulate ground truth data we assume 100% adoption rate and
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Figure 49: Example of rolling forecasting origin strategy

estimate the true availabilities using (4.7), i.e.

x(di, tj) = cdi − 1.368o+
c (di, tj) (4.15)

However, we also generate the input data stream by sampling the original data with respect
to different adoption rates p. In other words, each check-in from the original dataset is
randomly selected in the input stream with the probability p. We use the generated input
stream to predict the true availability.

In order to estimate how accurately the prediction models will perform in practice, we
use time series cross-validation strategy known as rolling forecasting origin [97]. With a
rolling forecasting origin, we create an initial window that contains the first k data points
as the first training set to estimate the prediction model. We compute the error on the
forecast for the next data point k + 1, and then shift the window by one data point. We
repeat the procedure until no data point left. In our case, we use k = 3360 data points, i.e.
time slots, as training set window. This corresponds to 70 operating cycles and 80% of the
whole dataset. In Figure 49 we further illustrate the employed evaluation strategy.

Finally, we consider the mean squared error (MSE) between the estimated and true
availability as a performance measure for the proposed models, i.e.

MSE(di) = 1
n− k − 1

n∑
j=k+1

(x̂(di, tj)− x(di, tj))2 (4.16)

We have also considered looking at vacant parking space existence; a boolean variable
checking if the model has correctly identified the presence of at least one available parking
space. However, since users can make more confident decisions to use a parking place based
on the number of vacant places (a higher number of vacant space increases the probability
of at least one vacant space by the time user has arrived at the specific area) we have opted
to use the mean square error instead. Our methods have shown very high accuracy levels
in terms of estimation of vacant space existence and estimation of exact vacant space size
is more challenging when these two performance criteria are compared.

4.7.2. Results

We evaluate the performance of the proposed predictive models on five input streams
sampled from the original check-in dataset. The sampling was conducted using previously
described simple random method with p ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. This way, we simulate
different adoption stages of the new system in order to assess how the adoption rate reflects
on the performance of the models under evaluation.
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Figure 410: MSE performance for different adoption rates

Figure 410 shows the MSE performance of the models for different adoption rates. Here,
the total MSE is aggregated over all time slots in the test dataset. As expected, for all
models, the MSE decreases as the adoption rate increases. In other words, the models
perform better on less sparse input streams. However, the performance increase is not the
same for all models. Notice that the MSE for the LV drops from 1.125 for p = 0.5 to 0.638
for p = 0.9 (43.29% accuracy increase). On the other hand, the performance increase for the
HM is less significant, i.e. the MSE drops from 0.761 for p = 0.5 to 0.745 for p = 0.9 (2.10%
accuracy increase). Also notice that the LV outperforms the HM for p = 0.8 and p = 0.9.
The LV relies on the estimation of the current availability whose accuracy strongly depends
on the system’s adoption rate, i.e. sparsity of input stream. This is not the case with the
HM where the estimated availabilities are aggregated for each time slot of the operating
cycle over the entire input stream. Finally, from the plot it can be observed that the LR
significantly outperforms the other models for all input streams. In other words, the LR
is able to successfully combine online and historical prediction approach, and outperform
them both when applied separately. Similar to the LV and HM, the accuracy of the LR
increases with the adoption rate, i.e. the MSE drops from 0.672 for p = 0.5 to 0.576 for
p = 0.9 (14.29% accuracy increase).

In addition to the total MSE, we also compute the MSE for each of the 48 time slots of
the operating cycle and study how the prediction models perform with respect to different
times of day. In Figure 411 we plot the MSE per time slot for different adoption rates
p. All of the plots exhibit two distinct peaks, of which the higher (left-hand) peak occurs
between time slot 5 and 25 (09:00 - 14:00) which corresponds to morning delivery shift,
and the lower (right-hand) peak occurs between time slot 33 and 45 (16:00 - 19:00) which
corresponds to afternoon delivery shift. Notice that these patterns are negatively correlated
to the ones in Figure 47 where we plotted relative availabilities against different time slots
of the operating cycle. This means that all of the models perform slightly worse during busy
periods when check-in patterns are less stable. Since it is more difficult to find a parking
space during busy periods, deliverers tend to go from one loading area to another in search
for a parking space. Obviously, this makes deliveries to some extent disorganized and thus
harder to predict.

Figure 411 also shows that at most times of day the LR outperforms both LV and
HM. However, the exception to this can be observed at the beginning of the operating
cycle (time slots 1-10), i.e. in morning hours (08:00 - 10:00), for all adoption rates p. The
reason for this lies in the fact that the LR relies on current trends which can be difficult
to infer at the start of a day when we have only few data points at disposal. Recall
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Figure 411: MSE performance per time slots

Figure 412: MSE performance of the initial and adjusted LR model

from Section 4.6.3 that we tackle this scarcity problem by using p-values for the model
parameters to test the significance of the relation between the variables (i.e. online and
historical availability). If the p-value falls above 0.05 threshold, instead of using the trained
LR model for prediction, we use the HM model. As shown in Figure 412, with this simple
trick we managed to significantly improve the initial performance of the LR model at the
beginning of the operating cycle.

As we discussed in the previous section, the performance of the LR model can be further
improved in certain cases by grouping similar loading areas and computing aggregated HAP
(LR-A model). Recall from Section 4.3 that check-ins are unequally distributed among
loading areas, and thus for some of the less popular areas in city’s periphery, the collected
data can be sparse and bursty. In these special cases, clustering and aggregating arise as a
means to reduce the noise and avoid overfitting. We will demonstrate the performance of
the LR-A model on an isolated case depicted with Figure 413.

In Figure 413a we plot individual HAPs of 4 similar loading areas grouped together
using k-nearest neighbour (kNN) method. Interestingly, the typical 2-valley shape is harder
to observe in these unsmooth plots. This suggests that data recorded at these specific areas
is quite noisy and bursty. Additionally, we notice that the average number of check-ins per
day for the grouped areas is only 10.13. Therefore, instead of building 4 individual models
that might be vulnerable to overfitting, we compute aggregated HAP and use it to build a
single, but more robust, prediction model. In Figure 413b we compare the performance of
individual LR models and aggregated LR-A model. The plot shows that LR-A outperforms
LR for all of the grouped areas. More precisely, we reduce the MSE for 7.52% for area 8656,
6.65% for area 9463, 12.32% for area 9987, and 11.46% for area 10527.
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Figure 413: MSE performance of LR and LR-A model

4.8. Related work

In recent years, the mobility patterns in urban freight networks have attracted a certain
amount of attention in the research community (e.g. [98–101]). However, obtaining data
which would allow a large scale study is often very difficult (or impossible), mostly due to
privacy issues. Therefore, many studies relies on information gathered from surveys carried
out among freight distributors (e.g. [102, 103]). In our work, we use real-life check-in
dataset collected from the novel parking regulation system based on mobile technologies.

We use historical availability profiles (HAPs) of the loading areas in order to under-
stand daily and weekly delivery trends. The similar concepts can be often found in research
works that focus on analysis of human mobility patterns. For example, Froehlich et al. [104]
employ the concept of DayView to study bicycle station usage from Barcelona’s shared bi-
cycling system. A DayView is calculated by averaging station data that matches certain
criteria into a 24 hour window, discretised into five-minute bins (288 bins/day). Addition-
ally, in order to investigate how usage patterns are shared across stations and geographically
distributed in the city, Froehlich et al. cluster stations based on their DayViews. They show
that the spatial layout of a city has a strong influence on the movement patterns and so-
cial behaviours. A similar research has been conducted in [105], where the DayViews are
replaced with local ActivityCycles computed for each station and day of a week. Again, in
order to get a spatial picture of the mobility pattern in the city, these local ActivityCycles
are paired with the station’s geo-coordinates and visualised on a heat map.

In [106] Xu et al. introduce an algorithm to construct the historical availability pro-
files (HAP) by computing estimated values for the mean and the variance of true parking
availability for an arbitrary street block. The algorithm relies on PhonePark system which
is able to automatically detect parking events using drivers’ mobile phones equipped with
GPS and/or accelerometer. Here, detected parking events correspond to check-ins in our
case. Additionally, since not all drivers are equipped with PhonePark system, its market
penetration ratio is also considered in [106] (i.e. share of drivers with PhonePark enabled
phones). Similarly, we use adoption rate in our work to simulate different adoption stages
of the new system. Finally, while Xu et al. estimate the current availability of street blocks,
we focus on short-term availability prediction of loading areas using obtained historical and
current trends.

Several recent studies have investigated the problem of predicting parking availability.
In [107] and [108], a continuous-time Markov model is built to predict the parking avail-
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ability in ad hoc networks. In [109], a recurrent neural network is employed to forecast the
parking occupancy using data collected from a wide network of parking sensors installed
on-street in the city of Santander, Spain. Similarly, Zheng et al. [110] analyse the per-
formance of different machine learning methods (neural network, regression tree, support
vector regression) in predicting parking availability from the real-time car parking infor-
mation that has been collected and disseminated by the City of San Francisco, USA and
the City of Melbourne, Australia. Additionally, they consider several feature sets consist of
past observations, time of day and day of week. In [111], Chen et al. propose Generalized
Additive Models for availability prediction of shared bike and car parking lots in the city
of Dublin, Ireland. They consider even more features such as time of day, time of year,
day type, weather, temperature, humidity and past occupancy observations. Some other
studies (e.g. [105, 112]) view the parking data as a one-dimensional time series and explore
the use of time series models such as Autoregressive Integrated Moving Average (ARIMA).

4.9. Conclusion

In this chapter we introduced an example of MCS system which has been released as a
part of Barcelona’s sustainable urban mobility plan. The system allows urban deliverers to
check-in at the designated loading areas using a mobile application, and thus provide real-
time occupancy information. As such it eliminates the need for hardware based investments
or technologies such as sensor infrastructures for parking lots, and provides more information
about occupancy such as the licence of the trucks in the parking area. However, we showed
that in MCS environments user-generated data, or in this case, check-ins, can be unreliable,
uncertain, or insufficient to make conclusion based only on it. Therefore, different post-
processing techniques are usually required to improve the quality of the data and increase
its applicability.

For this particular MCS example, we presented an exploratory analysis of the crowd-
sensed data in order to detect temporal patterns in urban freight transport. Due to phased
adoption of the MCS system and illegal parking practices, we had to collect additional
occupancy information from the field to estimate the real availability of loading areas. We
built individual historical availability profiles (HAPs) for each parking area. We showed
that HAPs can provide valuable information about delivery trends and can be efficiently
used for detecting hotspots and rush hours, as well as forecasting the future availability for
any specific area.

Finally, we proposed a prediction model which incorporates both the historical model
(i.e. HAP) for the specific loading area and the current availability patterns for that spe-
cific day to better estimate the current availability. The estimated availability values are
considered accurate enough to efficiently utilize a parking area recommendation system in
Barcelona according to the city government. Later in Chapter 5 we will come back to the
problem introduced in this chapter and show how it can open up new possibilities for deliv-
ery route planning and itinerary generation for more effective urban freight transportation.





Chapter 5

Bi-objective route planning approach
for sustainable urban mobility

This chapter is based on materials from the following peer-reviewed paper:

P. Mrazovic, J. L. Larriba-Pey, and M. Matskin, “Improving mobility in smart cities
with intelligent tourist trip planning”, in Computer Software and Applications Con-
ference (COMPSAC), 2017 IEEE 41st Annual, IEEE, vol. 1, 2017, pp. 897–907.

While so far we studied fundamentals of human-in-the-loop sensing systems such as
MCS, we now move to the second topic addressed by this thesis and focus on algorithmic
challenges in MCS-driven route planning applications. We will study different route optimi-
sation algorithms tailored for specific crowdsensing applications that can eventually improve
mobility in urban areas. We first consider a MCS application in which route planning is
regulated by city administrators. More precisely, we aim to allow the administrators to
formulate mobility policies, e.g. to promote or constrain certain city areas, POIs, or routes
between them, and to allocate them to the participating devices, thus influencing travellers’
journey planning. In this particular example we will show how to put the crowdsensed data
into motion and make it actionable.

5.1. Introduction

Urban tourism becomes very popular nowadays and for many cities it is one of their
main pillars and economic drivers. The number of urban tourists increases every year and
this becomes one of the key factors in city development [113]. Obviously, the increasing
number of arriving tourists in already crowded urban areas requires efficient and sustainable
management. The massive amounts of tourists can collapse busy areas causing transport
inefficiency, unbalanced economic growth and nuisance among tourists and citizens. There-
fore, the city governments need to deliver expected touristic experience, but at the same time
assure balanced and efficient mobility in the city. In this chapter we study this challenging
bi-objective problem and propose a MCS-driven solution to achieve a balance between the
individual goals of the visitors and the global needs for an efficient citizen-oriented city.

Tourists are usually constrained in time and budget. For them, identifying Points of
Interest (POIs) worth visiting and planning their daily activities can be a daunting and
time consuming problem. The problem of generating personalized tourist itineraries has
been defined in the literature as the Tourist Trip Design Problem (TTDP) [114] and has
been extensively studied in the last decade (a recent survey can be found in [115]). The goal
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of the problem is to recommend a list of POIs and generate personalized tourist itineraries
by taking into consideration common constraints such as the time available for sightseeing,
the travelling distances between POIs, the visiting time for each POI, and the estimated
degree of satisfaction associated with the visit to each POI. However, to the best of our
knowledge, the attempt to use TTDP to influence and control tourist movements in urban
areas has not been addressed in research communities. In this chapter, by relying on MCS
technologies we propose a novel model of TTDP and open up new possibilities for city
governments to affect tourists’ trip planning by promoting or putting restrictions on certain
POIs or routes between them.

Finding personalized tourist itineraries that achieve also mobility goals of city govern-
ments is the challenging combinatorial problem which can be formulated as a variant of the
Mixed Orienteering Problem (MOP). MOP is an NP-hard combinatorial optimization prob-
lem and to the best of our knowledge there have not been many research studies focusing on
achieving a short response time for it. Furthermore, we consider the problem on complex
instances formulated on complete graphs and multigraphs. However, the state-of-the-art
approaches for solving MOP and its variants can only be efficiently applied on low degree
graphs usually employed to represent traffic road networks.

The problem of designing a single tourist itinerary can be considered as an Orienteering
Problem (OP) [116]. In an OP, a set of locations is given and it is associated with certain
benefit scores representing the estimated tourist’s satisfaction associated with the visit of
the locations. The goal is to determine a single path (itinerary) of limited length that visits
some of the locations and maximizes the total sum of collected scores. The OP has been
proven to be an NP-hard problem [117] and thanks to its algorithmic complexity, it has
been in the focus of many research studies. Therefore, different versions and extensions of
the OP have been successfully applied to model various trip design problems.

The arc routing version of the OP has been introduced by Souffriau et al. in [118] as
the Arc Orienteering Problem (AOP). AOP has been used to solve the problem of finding
personalized travel routes on large-scale road networks ([118–120]). In AOP each arc is
assigned with the profit score usually representing the personalized scenic value associated
with a segment of road. The goal of the problem is to construct an optimal travel route
by selecting a subset of edges. In this section, we combine the OP and the AOP and solve
the problem introduced under the name Mixed Orienteering Problem (MOP) in [121]. In
MOP, profit scores are associated both with the nodes and with the edges. MOP is usually
applied to solve TTDP when not all the attractions are represented POIs, but when a walk
along a scenic route between them can also be considered as an attraction.

We use MOP to formulate the variant of TTDP where each POI and route, i.e. node and
edge, are associated with two profit scores representing the importance of a visit or walk for
the tourist and the city government respectively. In this way, we enable city administrators
to control the tourists’ trip planning by assigning their own scores, i.e. representing mobility
policies, on POIs and routes between them. We also allow parallel edges between nodes
representing alternative routes between POIs. Similar to other orienteering formulations,
the goal of the problem is to find a single path limited in length, with favourable allocation
of collected city and tourist scores. Here we are primarily focused on solving the introduced
optimization problem, and therefore we omit any discussion on how the city and tourist
scores can be defined.

5.1.1. Formal problem description
Our problem can be formally defined as finding a path on an undirected multigraph

G = (V,E, sig : E → P2(V )), where V = {v1, ..., vN} is the set of nodes representing POIs,
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Figure 51: Problem formulation on an example subgraph. The table on the right contains
the city and tourist profit scores (Sc, St), visit durations (d) and travel times (t) associated
to nodes and edges. A possible segment of a solution path is highlighted with lighter colour.

and E = {e1, ..., eM} is the set of edges representing alternative routes between them.
Since the given multigraph G can have multiple edges along the same nodes, we define the
mapping sig : E → P2(V ) which tells us for a given edge e ∈ E, the two nodes it connects.
The travel time t(ei) and the visit duration d(vj) are associated with each edge ei ∈ E and
node vj ∈ V , respectively. Additionally, each edge and node are also associated with the
city and the tourist profit scores Sc, St : V ∪ E → IR+. The city profit score Sc represents
the importance of a visit to a certain POI (node), or a travel along a certain route (edge)
for achieving the city’s global mobility objectives. The tourist profit score St represents the
estimated degree of the tourist’s satisfaction with the visit or travel.

The goal of the proposed problem is to determine a path starting at v1 and ending at
vN , having a length not exceeding time budget (B), and maximizing the total city and
tourist profit scores collected over a path. Here we use the graph theory concept of path
to represent a single itinerary. Figure 51 illustrates the problem on an example subgraph
where a subset of edges, i.e. a segment of a solution path, are highlighted.

5.1.2. Mixed-integer linear programming model

We further formalize our problem as a Mixed-integer Linear Programming Problem
(MILP). We employed the commercial MILP solver (IBM ILOG CPLEX Optimizer v12.6.3)
to obtain optimal solutions for generated test instances. Due to its high computational time,
the following MILP model is not intended to be used as an efficient solution to the proposed
problem, but rather to better understand its complex structure. We first define the following
decision variables:

xi =
{

1 if node vi is visited in the solution path
0 otherwise

yi =
{

1 if edge ei is visited in the solution path
0 otherwise
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zij =

1 if, in the solution path, a visit to node vi is
followed by a visit to node vj

0 otherwise
ui =⇒ position of node vi in the solution path

Using the introduced notation we formulate our problem as follows:
Maximize

α

 N∑
i=1

Sc(vi)xi +
M∑
j=1

Sc(ej)yj

+

(1− α)

 N∑
i=1

St(vi)xi +
M∑
j=1

St(ej)yj

 (5.1)

subject to:
N∑
i=2

z1i =
N−1∑
j=1

zjN = 1 (5.2)

N∑
i=1

zik =
N∑
j=1

zkj ≤ 1; ∀k = 2, ..., N − 1 (5.3)

N∑
i=1

d(vi)xi +
M∑
j=1

t(vj)yj ≤ B (5.4)

2 ≤ ui ≤ N ; (5.5)

ui − uj + 1 ≤ (N − 1)(1− zij); ∀i, j = 2, ..., N ; i 6= j (5.6)
Objective equation (5.1) represents the city and tourist profit scores collected over the

entire solution path. Factor 0 ≤ α ≤ 1 is a tuning parameter which determines proportion
of the two measures (city and tourist scores) in the final score. Equation (5.2) ensures that
solution path starts at node v1 and ends at node vN . Equation (5.3) ensures the connectivity
of the path and guarantees that each node and each edge is visited at most once. Equation
(5.4) ensures that the length of the path is under preset time budget B. Finally, equations
(5.5) and (5.6) represent Miller-Tucker-Zemlin (MTZ) subtour elimination constrains [122].

The proposed model is an extension of MOP, i.e. a variant of OP which has been proven
to be NP-hard by Golden et al. in [117]. Therefore, finding the exact solution for even
smaller problems formulated with the proposed MILP model would be computationally
expensive and time consuming. However, using a heuristic algorithm may allow finding
near-optimal solution for this complex combinatorial optimization problem. In the next
section we discuss the proposed heuristics.

5.2. Heuristic algorithm

The proposed algorithm consists of two phases: (1) Transformation and (2) Search. In
the transformation phase, the initial problem is transformed to an equivalent AOP, where
the scores and time costs are associated solely to the edges (routes). In the search phase, we
employ the Variable Neighbourhood Search (VNS) metaheuristic [62] to find a near-optimal
solution to the transformed problem. Both phases are detailed in this section.
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5.2.1. Transformation phase
A special case of the proposed MOP variant where all the nodes have identical scores

and visit durations reduces to AOP as follows,

Sc(vi)− Sc(vj) = 0; ∀vi, vj ∈ V
St(vi)− St(vj) = 0; ∀vi, vj ∈ V
d(vi)− d(vj) = 0; ∀vi, vj ∈ V.

We define a reduction in which Sc(vi) = St(vi) = d(vi) = 0 for all vi ∈ V , and, hence,
all three the above AOP conditions are trivially satisfied. We do this in a way which ensures
that this modified problem is equivalent to the original one. Since each node in MOP can
be visited only once, its city and tourist scores can be collected by traversing a pair of its
incident edges contained in the solution path. Therefore, we take half of the node’s score
and add it to all of its incident edges. This way, half of the score will be collected by
traversing an edge when entering and half when leaving the node. However, two special
cases arise from the proposed method. Since the solution path neither enters the start node
v1 nor exits the end node vN , for these nodes we add the whole value of the associated
scores to all of their incident edges. In Figure 52 we illustrate the proposed approach on an
example subgraph. Finally, we formalize the reduction as follows:

Sc
′
(vi) =

{
Sc(vi) if vi = v1 or vi = vN

Sc(vi)/2 otherwise

St
′
(vi) =

{
St(vi) if vi = v1 or vi = vN

St(vi)/2 otherwise

d′(vi) =
{
d(vi) if vi = v1 or vi = vN

d(vi)/2 otherwise

Scnew(vi) = Stnew(vi) = dnew(vi) = 0; ∀vi ∈ V

Scnew(ei) =Sc(ei) +
∑

vj∈sig(ei)

Sc
′
(vj)

Stnew(ei) =St(ei) +
∑

vj∈sig(ei)

St
′
(vj)

tnew(ei) =t(ei) +
∑

vj∈sig(ei)

d′(vj)

We apply the same reduction to the nodes’ time costs, i.e. we take half of the node’s
visit duration time and add it to the travelling costs associated to its incident edges. Notice,
that in the case of a direct graph we would add the whole value of the node’s score/cost to
either all of its incoming or all of its outgoing edges.

5.2.2. Search phase
In the search phase we employ the Variable Neighbourhood Search (VNS) metaheuristic

proposed by Mladenovic and Hansen in [62]. The basic idea behind the VNS framework is to
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Figure 52: Reducing the MOP to an equivalent AOP. Half of the node’s score/cost is added
to all of its incident edges. This way half of the score/cost will be collected by traversing
an edge when entering and half when leaving the node.

search the solution space with a systematic change of neighbourhood, by both descending to
local optima and escaping from valleys which contain those local optima. VNS is often used
to find high-quality solutions to numerous combinatorial optimization problems thanks to
its basic structure which is still very simple and requires few, and sometimes no parameters.
First, we briefly explain the basic scheme of VNS. Then, we discuss how the solution to
our problem can be conceptually represented. Finally, we propose search heuristics and
implement VNS procedures for search intensification and diversification.

Algorithm 3: The basic VNS
1 Define neighbourhood structures Nk (k = 1, ..., kmax)
2 Generate initial solution s ∈ S
3 Choose a stopping condition
4 while stopping condition is not met do
5 k = 1
6 while k ≤ kmax do
7 s′ = Shake(s); s′ ∈ Nk(s)
8 s′′ = LocalSearch(s′); s′′ ∈ S
9 if Score(s′′) > Score(s′) then

10 s = s′′

11 k = 1
12 else
13 k = k+1
14 end
15 end
16 end

The basic scheme of VNS is given in Algorithm 12 where Nk, k = 1, ..., kmax, represents
the kth neighbourhood structure, S represents the set of all feasible solutions, and Nk(s)
represents the set of solutions in the kth neighbourhood of solution s. Starting from a chosen
initial solution s, the algorithm systematically explores solution space S and tries to find
the optimal one. First, the Shake procedure randomly selects a new solution s′ within a kth
neighbourhood Nk(s). Then, a descent from s′ is done by the LocalSearch routine which
leads to a new local optima s′′. At this point, the new solution s′′ is compared with the
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Figure 53: Example of a valid solution. Itinerary contains only three edges (〈e2, e5, e8〉),
while its corresponding path connects the gaps between the edges using the cheapest paths
(〈e1, e2, e3, e4, e5, e6, e7, e8〉).

incumbent solution s. If s′′ is better than s, the algorithm recenters the search by replacing
s with s′′, and starts all over from the first neighbourhood structure N1(s). Otherwise, the
algorithmmoves to the next neighbourhood structure and draws a new random solution from
Nk+1(s). Obviously, the choice of neighbourhood structures, as well as the implementation
of intensification and diversification routines (LocalSearch and Shake), are critical for the
performance of the algorithm. However, before we discuss them in detail, we need to define
how we conceptually represent solutions in our tourist itinerary.

We adopt the idea proposed by Souffriau et al. in [118] and represent the solution to
our tourist itinerary problem, as a list of visited edges or list of routes between POIs. These
edges are not required to be connected, and thus the score and the cost of an itinerary are
determined by the corresponding path which connects non-consecutive edges in the itinerary
with the cheapest paths. An itinerary is then a valid solution if:

1. Its corresponding path starts at node v1.

2. Its corresponding path ends at node vN .

3. Its corresponding path does not visit any node or edge more than once.

4. The cost of its corresponding path does not exceed the time budget B.

In Figure 53 we give an example of a valid solution. The itinerary contains three
edges (〈e2, e5, e8〉). Its corresponding path is created by augmenting the itinerary with the
cheapest paths between the non-consecutive edges (〈e1, e2, e3, e4, e5, e6, e7, e8〉). Therefore,
the total cost of the solution equals the sum of the travelling costs associated to the edges
contained in the corresponding path, i.e. cost(s) =

∑
ei∈Path t(ei). Similarly, the total score

of the solution equals the sum of the city and tourist scores associated to edges contained in
the corresponding path, i.e. score(s) = α

∑
ei∈Path S

c(ei) + (1− α)
∑
ei∈Path S

t(ei) where
α is the tuning parameter introduced in Section 5.1.2. Finally, it is worth mentioning that
in order to reduce the computational time needed to generate the corresponding paths,
the network can be preprocessed by computing all pairwise shortest paths within a certain
range.

The introduced model also allows us to easily insert a new edge between any pair of non-
consecutive edges in the itinerary. For example, in Figure 53 a new edge enew is inserted in
the itinerary between edges e5 and e8. The corresponding path is then updated by filling
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the gap between edges e5 and enew, enew and e8 with the cheapest paths, eliminating edges
e6 and e7. If the new itinerary is again a valid solution according to the above conditions,
we say that the applied insert move is valid.

Algorithm 4: Shake procedure
Input: Solution s, neighbourhood index k
Output: New random solution s′ ∈ Nk(s)

1 Procedure Shake(s,k)
2 s′ = s
3 i = 0
4 while i ≤ k do
5 remove edge from s′ at random
6 i = i + 1
7 end
8 CloseGaps(s′,RAND)
9 return s′

10

Algorithm 5: CloseGaps procedure
Input: Solution s, method of move selection mode ∈ {RAND,BEST}
Output: Updated solution s

1 Procedure CloseGaps(s,mode)
2 insertList = FindValidInsertMoves(s)
3 while insertList not empty do
4 if mode == RAND then
5 chosenMove = random move from insertList
6 else if mode == BEST then
7 chosenMove = best move from insertList
8 end
9 Apply chosenMove to s

10 insertList = FindValidInsertMoves(s)
11 end
12 s.itinerary = s.correspondingPath
13 return s
14

Using the described solution model and insert move, we can select our neighbour struc-
tures for VNS. We define the neighbourhood Nk(s) of a solution s as a set of all feasible
solutions created by removing k edges from solution s and then inserting new ones by apply-
ing a number of valid insert moves. Moving from one neighbourhood to another is achieved
in the Shake routine by generating a random solution within the Nk(s) neighbourhood.
In Algorithm 4 the Shake procedure first randomly removes k edges and then calls the
CloseGaps procedure (Algorithm 5). The CloseGap procedure keeps inserting new edges
until no valid insert move can be found. Notice that the selection of insert moves in the
CloseGap procedure depends on the input parameter. In the diversification phase (shaking)
the procedure randomly selects a move from the list of valid insert moves. However, in the
intensification phase (local search) CloseGap will, in each iteration, choose the best possi-
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ble insert move which maximizes the new score. In the FindValidInsertMoves procedure
(Algorithm 6), the list of valid insert move is generated by iterating over all possible insert
positions and non-included edges. For each position and edge the validity of the insert move
is checked by computing the new corresponding path. Notice that in Algorithm 6 the insert
moves are represented as triplets 〈edgeI, edgeJ, newEdge〉, meaning that newEdge has to
be inserted between edgeI and edgeJ .

Algorithm 6: FindValidInsertMoves procedure
Input: Solution s
Output: List of valid insert moves insertList

1 Procedure FindValidInsertMoves(s)
2 insertList = ∅
3 foreach edgeI in s.itinerary do
4 edgeJ = next edge
5 foreach newEdge not in s.itinerary do
6 if insert move 〈edgeI, edgeJ , newEdge〉 is valid then
7 insertList ← 〈edgeI, edgeJ , newEdge〉
8 end
9 end

10 end
11 return insertList
12

In order to iteratively improve the score of a solution constructed with the Shake pro-
cedure, and thus lead the search to local optima, we intensify the search by introducing
two local search heuristics: Replace and Swap. Heuristic Replace seeks to improve a given
solution by replacing a pair of consecutive edges in an itinerary with new non-included
edges. The choice of edges to be replaced is selected carefully, i.e each pair of consecu-
tive edges is considered for replacement. As shown in Algorithm 7, this is accomplished
by creating a temporary solution s′ where each pair of consecutive edges is removed and
then replaced by the CloseGap procedure. The solution with the highest score is chosen
at each iteration. The iteration stops when no improvement can be made by replacing any
of the non-consecutive edges in the incumbent solution sbest. In the intensification phase,
the CloseGap greedily selects the best insert move at each iteration until no valid move
can be found. This guarantees that the solutions found by replacing edges are valid. Also
removing two consecutive edges in the described process is equivalent to removing a single
node, i.e. POI, from an itinerary.

The second heuristic, Swap, has the objective to improve the solution by exchanging
positions of two nodes in the itinerary (Algorithm 8). However, a swap between a pair of
nodes can very often generate a solution where no valid corresponding path can be created.
For example in Figure 54 nodes v3 and v7 are swapped, and thus the corresponding path
augments the new itinerary by closing the gaps between nodes v2 and v7, v7 and v4, v6
and v3, and v3 and v8. However, it is possible that some of the nodes contained in the
shortest paths are already included in the itinerary. Therefore, in Algorithm 8, for each
pair of nodes the feasibility of swapping is checked by generating a new corresponding path.
If the new path is valid and its score is higher than the score of the incumbent solution,
the swap is carried out and the algorithm starts all over from a new incumbent solution.
The heuristic stops when no improvement can be made. Notice that in Swap we use the
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Algorithm 7: Replace heuristic
Input: Solution s
Output: Improved solution sbest

1 Procedure Replace(s)
2 sbest = s
3 improved = true
4 while improved do
5 improved = false
6 s′ = sbest
7 foreach edgeI in s′.itinerary do
8 edgeJ = next edge
9 s′′ = s′

10 Remove edgeI and edgeJ from s′′.itinerary
11 CloseGaps(s′′,BEST)
12 if Score(s′′) > Score(sbest) then
13 sbest = s′′

14 improved = true
15 end
16 end
17 end
18 return sbest
19

Figure 54: Example of a swap move. Since nodes v3 and v7 are swapped, new corresponding
path augments the new itinerary by closing the gaps between nodes v2 and v7, v7 and v4,
v6 and v3, and v3 and v8.
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first improvement strategy as opposed to Replace where we use the best improvement rule.
Finally, in Algorithm 13 we combine the two heuristics in the local search routine.

Algorithm 8: Swap heuristic
Input: Solution s
Output: Improved solution sbest

1 Procedure Swap(s)
2 sbest = s
3 improved = true
4 while improved do
5 improved = false
6 foreach nodeI in sbest.itinerary do
7 nodeJ = next node
8 s′ = sbest
9 Swap nodeI and nodeJ in s′

10 Update corresponding path for s′
11 if s′ valid && Score(s′) > Score(sbest) then
12 sbest = s′

13 improved = true
14 break
15 end
16 end
17 end
18 return sbest
19

5.3. Experimental studies

We implemented the basic variant of VNS where the Shake routine diversifies the search
with systematic change of neighbourhood, and the LocalSearch routine which intensifies
the search by moving to local optima. In the next section we experimentally evaluate the
proposed algorithmic approach.

5.3.1. Dataset
To evaluate the efficiency and accuracy of the proposed algorithm, we created a real-

life dataset1 related to the city of Barcelona. The dataset contains 800 test instances
with different graph topologies. To the best of our knowledge, this is the largest mixed
orienteering dataset in terms of the number of non-trivial problem instances with known
optimal solutions. The complexity of instances varies in terms of the number of selected
POIs and routes between them, the associated scores, and the time budget constraints. 10
test instances were generated for 10 different sized graph topologies (with 10, 20, 30, ... ,
and 100 POIs) and 8 different time budget constraints (180, 240, 300, 360, 420, 480, 540 and
600 minutes). Given that in TTDP only the most relevant POIs with the highest scores are
selected in graphs, the complete graphs with < 100 nodes can be efficiently used to produce

1We encourage researchers to freely use the dataset provided at https://github.com/pmrazovic/
BarcelonaMOP.

https://github.com/pmrazovic/BarcelonaMOP
https://github.com/pmrazovic/BarcelonaMOP
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Algorithm 9: LocalSearch routine
Input: Solution s
Output: Improved solution s′

1 Procedure LocalSearch(s)
2 s′ = Replace(s)
3 s′ = Swap(s′)
4 s′ = Replace(s′)
5 return s′
6

high-quality itineraries. The tourist scores assigned to POIs were computed for different
tourist profiles represented as random distributions of tourists’ interests in five categories:
Art, Architecture, Museums, Leisure and Shopping. The city scores, on the other hand,
were randomly generated for all POIs and routes between them. The cost of each visit to a
POI is set to 45 minutes, while the travelling cost between POIs is computed as a walking
time needed to traverse Euclidean distance between them. Finally, we randomly create up
to 3 alternative routes between each pair of POIs yielding high degree multigraphs where
all the edges are profitable (i.e. assigned with score).

5.3.2. Ground truth

In order to use the dataset as a benchmark to compute the accuracy of the proposed algo-
rithm, we obtained the optimal solutions to the test instances by implementing MILP model
(5.1)-(5.6) using the IBM’s commercial MILP solver ILOG CPLEX Optimizer (v12.6.3).
The computation is performed on a machine with 2.40 GHz Intel® Xeon® E5-2630 proces-
sor and 265 GB of RAM. Computing the exact solutions to even moderate sized NP-hard
problems such as MOP takes very long time. For some of the more complex test instances
in our dataset computational time exceeded 15 hours. Therefore, we limited computational
time per instance to 3 hours. Consequently, computing the optimal solutions for all 800
instances lasted 20 days in total. Nevertheless, 88% of the instances were optimally solved.
For the rest of the instances, solutions are proven to be within 3.54% from optimal (in
average), meaning there is high probability that these solutions are optimal since only a
small part of the solution space has been left unexamined. In order to demonstrate how
the instance complexity is affected by the graph topology and time budget restrictions, in
Figure 55 we show the correlation between (a) computational time and size of the graph
and (b) computational time and time budget constraint. Notice that computational time.
i.e. solving complexity, generally grows with graph size (number of nodes) and budget
constraint. However, occasional peaks indicate that computational time is also heavily in-
fluenced by the graph structure and distribution of scores among nodes and edges, which
both differ among generated instances.

5.3.3. Baseline algorithms

Since the MOP is reduced to AOP, we compared our heuristic approach with two recent
heuristic algorithms for AOP: Greedy Randomized Adaptive Search Procedure-based algo-
rithm (GRASP) [118] and Iterated Local Search (ILS) [119]. Since the baseline algorithms
were commercialized, we reimplemented them based on published descriptions. However,
in order to assure a fair comparison, we increased the allowed execution time to 30 seconds
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Figure 55: Correlation between (a) computational time and size of the graph (number of
nodes) and (b) computational time and time budget constraint.

for all algorithms. Additionally, we precomputed all pairwise shortest paths between all
the nodes in graphs using the Dijkstra’s algorithm. Finally, we measured the performance
of the algorithms with the accuracy percentage as accuracy = score

optimal_score · 100%, where
score and optimal_score stand for the score of the optimal solution found by the algorithms
under evaluation and CPLEX Optimizer, respectively. The algorithms were developed in
JAVA, and all experiments were conducted on the same machine with 2.50 GHz Intel® Core
i7® 4870HQ processor and 16 GB of RAM.

5.3.4. Computational results

We first present the experimental results on our novel dataset with respect to the com-
plexity of the generated instances. In Figure 65a we plot the average accuracy when varying
the size of the corresponding complete graph in terms of the number of nodes. Similarly, in
Figure 65b we plot the average accuracy when varying the time budget restriction. In Figure
57 we also show non-averaged accuracy results for the same experiments. The figures show
that the proposed heuristic approach (VNS) significantly outperforms the baseline AOP al-
gorithms GRASP and ILS. In this experiment VNS achieves 99.53% average accuracy within
30 seconds of computational time. On the other hand, GRASP and ILS achieve 92.22%
and 91.78% average accuracy, respectively. Additionally, the plots show better scalability
of VNS compared to baseline algorithms. In Figure 65a we see that accuracy of GRASP
and ILS drops 10.41% and 10.69%, respectively, when increasing the size of the complete
graph from 10 to 100 nodes. The performance of VNS drops only 0.65%. Similarly, Figure
65b shows an accuracy drop of 12.05% and 0.75% in case of GRASP and ILS, respectively,
when increasing the time budget restriction from 180 minutes to 600 minutes, and 0.54%
drop in case of VNS. However, in Figure 65b the average accuracy of ILS for instances
with 180-minute time budget restrictions (beginning of the ILS curve) stands out with a
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Figure 56: Average accuracy of the heuristic algorithms when varying the graph size (a)
and the time budget restriction (b).

Figure 57: Accuracy of the heuristic algorithms when varying the graph size and the time
budget restriction.

significantly lower percentage (88.77%). We explain this irregularity further in this chapter.
Besides that, GRASP and ILS perform similarly on our dataset. Their application scope is,
to some extent, limited to sparse (low degree) graphs typically used to represent travel road
networks. However, here we show their shortcomings when applied on completed graphs
with large number of edges, and thus we justify the need for a new algorithm.

In order to further explain the obtained results we briefly discuss implementation details
of GRASP and ILS algorithms, and experimentally show their effects in Figure 58. For more
information about the baseline algorithms we refer the reader to [118] and [119]. Figure 58
plots the accuracy versus (a) the elapsed time and (b) the number of iterations for each
of the algorithms under evaluation. We conducted 100 experiments on a medium complex
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Figure 58: Accuracy versus the elapsed time (a) and the number of iterations (b)

test instance with 70 nodes and 6-hour time budget. In Figure 58b we see that GRASP
performs worst in terms of accuracy per iteration, due to its independence of subsequent
iterations. Starting from an initial solution, GRASP generates a set of candidate solutions
in each iteration, and calculates their total score. The candidate solutions are generated by
inserting new non-included edges between pairs of adjacent edges in the current solution.
Then, among the candidate solutions whose score values are larger than a random threshold,
GRASP selects a new solution at random. Obviously, GRASP only remembers the best
solution, while every new iteration starts again from an empty solution. This means that
iterations in the GRASP approach can be too random for larger datasets, and thus they
slowly converge to optimal solutions. On the other hand, even though the VNS approach
also relies on random move selection, it does not ignore the previously detected promising
regions in the search space. On the contrary, using a local search procedure, it leads the
search to local optima. This effect can be seen as a rapid slope increase at the beginning
of the VNS curve in Figure 58b. Notice that VNS can find high-quality solutions (∼ 97%
accuracy) in only a couple of iterations (< 10). Additionally, in Figure 58a we see that VNS
needs only a couple of milliseconds to find such solutions.

The ILS algorithm was proposed in [119] to speed up iterations. However, as we see in
Figure 58a this was not the case in our experiments. Even though it performs better than
GRASP in terms of accuracy per iteration (Figure 58b), the high computational time of
ILS makes it unsuitable for online applications. In Figure 58a we see that 2 seconds was
not enough to complete any iteration, and therefore the accuracy is 0%. ILS implements
the iterated local search framework by searching for a new solution at each iteration using a
depth-first search (DFS) strategy. Namely, at each iteration ILS removes part of the current
solution and tries to close the created gap using DFS. To reduce the DFS search space, ILS
checks the feasibility for the edges to be inserted in the current solution. Additionally,
it also restricts the depth of the search. Nevertheless, the algorithm performs poorly on
complete and high degree graphs. The reason for this is the size of the search tree which is
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O(degreemax_depth) where degree is the average degree of node in graph and max_depth
is the parameter used to restrict the depth of the DFS tree. In [119] Verbeeck et al. explain
that ILS performs well on real-life road network, where usually only four roads come together
at a vertex, and thus the size of the search tree is O(4max_depth). Even though Figure 58a
does not tell us much about ILS except that it is not capable to produce a solution within 2-
seconds computational time, when measuring performance of each iteration in ILS (Figure
58b) we noticed that, in average, computational time exceeds 10 seconds per iteration
(max_depth = 20 [119]). Also notice that in each iteration DFS terminates after the first
improvement has been found. This means that the iterations in which the current solution
is close to optimal consume a lot of computational time, since a large part of the search tree
needs to be traversed in order to improve the current solution. This explains the beginning
of the ILS curve in Figure 65b. There are few feasible solutions under a 180-minute time
budget restriction, which is why iterations last longer and ILS does not succeed to improve
the solution significantly in 30 seconds.

5.3.5. Application case

In this experiment we illustrate how the proposed TTDP and MCS paradigm can be
used to achieve city administrators’ mobility objectives. We simulate a real-world use case
where a certain urban area is promoted by tuning the city scores assigned to corresponding
POIs and routes between them. The reasons for promoting a certain area can be various,
e.g. the area is not popular among tourists, traffic in city needs to be balanced, festivals are
organized in the area, local shopping stores need advertisement, etc.. In this example, we
want to promote the area of Montjuic within Sant-Montjuic district in Barcelona (Figure
59a). We first simulate a crowd of tourists with different interests by generating 1,000 new
problem instances using random user profiles. In this case the tourist scores in the range
[0,100] (%) correspond to interests of each simulated tourist. On the other hand, we assign
city scores at random in the range [40,60] (%). This way, we assure that the algorithm
respects the tourist’s interest to a greater extent. Thereafter, for each POI located in the
target area and for each route passing through the area, we increase the city score by 50%.
Notice that these scores are in real world crowdsensed from volunteer participants and city
administrators. Additionally, the parameter α introduced in Section 5.1.2 is set to 0.5,
meaning that we equally respect city’s and tourist’s interests. The start and finish locations
of an itinerary in each instance are chosen at random within Barcelona’s city boundaries.
Using the algorithm under evaluation we constructed 1,000 6-hour itineraries. The results
are presented in Figure 59.

Figure 59b shows all the POIs selected in at least one of the 1,000 generated itineraries.
Since the start and finish locations are chosen at random for each itinerary, these POIs are
distributed over the entire city’s area. However, the colour of each marker corresponds to
total number of POI occurrences in the generated itineraries. In other words, the darker
the colour, the more times a POI has been selected. Obviously, the most popular POIs are
located within the target area of Montjuic. In Figure 59c we assume that tourists follow
recommended itineraries, and using a heatmap we show the accumulated amount of time
spent by tourists in different areas around the city. The plot confirms the efficiency of the
proposed TTDP model. The most visited areas (in red) are located in the target area,
where 1,000 tourists spent 2,606 hours in total. This means that, in average, a tourist
spends 2.6 hours of her 6-hour trip (43.43 %) within the target area of Montjuic. Finally,
notice that the coloured areas are usually located around the popular POIs where tourists
usually spend most of their time.
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Figure 59: Simulation of a real-world use case where a certain urban area is promoted. In
Figure (a) target area is highlighted. Figure (b) shows all the POIs selected in itineraries.
Figure (c) shows the accumulated amount of time spent by simulated tourists in different
areas around the city.

Figure 510: PET example: Barcelona Official Guide mobile application

5.4. System pilot

To investigate the usability of the proposed TTDP we developed a MCS-driven mobility
management platform which allows city governments to formulate mobility policies, and
thus promote or reduce the traffic of people flows in certain areas. However, instead of
pushing the final users, i.e. tourists and citizens, to follow the created policies, the policies
are injected into Personalized Electronic Tourist Guides (PET) linked to the MCS platform.
Advantages of such approach are threefold: city governments can easily implement their
mobility goals, PET providers can upgrade their logistic and mobility services with respect
to the present mobility in the city, and final users can move in a less crowded and balanced
city.

In our pilot project, we upgraded the existing mobile application, Barcelona Official
Guide provided by Turisme de Barcelona and Triangle Postals S.L., and connected it to
the developed MCS-driven mobility management platform (Figure 510). We integrated
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Figure 511: Client Web application

*Sparksee2 mobile graph database locally into the application, containing POIs (represented
as nodes) and different travel routes between them (represented as edges). The graph
database can be easily updated remotely with new POIs, routes and mobility policies, while
its out-of-the-box graph algorithms make it suitable for routing and navigation purposes.
The mobility policies are represented as weights, i.e. city scores, assigned both to POIs and
routes between them, i.e. nodes and edges in the graph database. The policies are updated
by simply injecting new city scores to the graph database. Moreover, we also allowed
tourist scores to be assigned to POIs and routes between them, representing estimated
degree of tourist’s satisfaction with a corresponding visit or travel. The tourist scores
are computed and assigned dynamically after the user expresses her interest in several
POI categories (Figure 510a) in crowdsensing fashion. Finally, the introduced city and
tourist scores are used by the locally implemented algorithm to generate personalized tourist
itineraries (Figure 510b-c).

In addition to the client mobile application, we developed a Web application which pro-
vides insight into present mobility in the city using the data collected from several sources
(crowdsensed mobility data such as check-ins, GPS trajectories, or text reports, Open Data,
sensors, government data, etc.). This helps city administrators in making important mo-
bility decisions. The data is visualized using different interactive maps, also called mobility
reports, which suggest how the mobility policies should be formulated. Different maps re-
port on the people concentrations and mobility changes in different city neighbourhoods
(Figure 511). Additionally, the criminality records from external data sources are displayed
on the maps which allows city administrators to analyse street-level and neighbourhood-
level crimes in the city. The mobility tracking modules implemented within the Barcelona
Official Guide allow us to report tourist mobility and compare it with the recommended

2http://www.sparsity-technologies.com/#sparksee

http://www.sparsity-technologies.com/#sparksee
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itineraries. By understanding the current mobility trends in the city, city administrators
can more easily create and update the mobility policies. We employ interactive maps and
allow users to create the mobility policies by choosing a POI, street or neighbourhood from
the map and assigning weights to promote or to reduce the corresponding visits. The sys-
tem then automatically assigns introduced weights to nodes and edges of the underlying
graph database. The updated database is then pushed to the linked mobile applications,
i.e., MCS agents.

5.5. Related work

Recent technological advances in mobile and wireless communication, as well as the
rapid evolution of web technologies and social networking, have opened up new possibilities
for mobile tourist recommendation systems and personal electronic tourist guides. The
field has been gathering extensive attention from the research community, especially in the
last five years. However, similar systems are often proposed under different names, e.g.
mobile tourist guides (MTG) [114], personal navigation systems for tourism (PNS) [123],
personalised electronic tourist guides (PET) [124], etc. The recent surveys by Gavalas et
al. [125] and Borras et al. [126] manage to provide detailed and up-to-date overview of the
field. The surveys outline main functionalities offered by mobile recommender systems in
tourism and provide taxonomies relying on different classification criteria.

Personalized tour planning has been recognized as one of the key features offered by
recommender systems in tourism. The problem consists of identifying the most interesting
POIs and planning daily itineraries without violating tourist’s time and/or budget restric-
tions. In the literature, this problem is known as the Tourist Trip Design Problem (TTDP).
Thanks to its algorithmical complexity, TTDP has been in the focus of many research works.
A recent survey of TTDP can be found in [115].

In the last decade, a large number of combinatorial optimization problems in operational
research has been modelled as the Orienteering Problem (OP) [121]. In the OP, a set of
nodes is given, each with a score. The goal is to generate a path, limited in length, that
visits some of the nodes and maximises the total sum of the collected scores. Vansteenwe-
gen and Van Oudheusden [114] successfully formulated TTDP using the OP. Ever since,
researchers try to solve new TTDPs with additional restrictions and functionalities, while
using extensions of OP as modelling tools. The Team Orienteering Problem (TOP) [127]
extends the traditional OP and is used to model multiple tour TTDPs. Different algorithmic
approaches for solving TOP have been proposed in literature. Archetti et al. [128] proposed
two variants of a generalized tabu search algorithm and a variable neighbourhood search
(VNS) algorithm to solve the TOP. On the other hand, Ke et al. [129] proposed Ant Colony
Optimization (ACO) approach to find near-optimal solutions for TOP. Finally, Vansteen-
wgen et al. focus on improving the computational time needed to solve TOP instances.
They first implemented a Guided Local Search (GLS) framework [130] and later a Skewed
Variable Neighbourhood Search (SVNS) framework [131]. The proposed frameworks are
able to obtain good TOP solutions in only a few seconds. Another extension of (T)OP with
time windows (TOPTW), is used to model more realistic itinerary planning scenarios where
POIs’ working hours are considered using predefined time windows. Vansteenwegen et al.
[132] proposed fast and effective Iterated Local Search (ILS) meta-heuristic to solve the
TOPTW. Later, the time dependent (T)OPTW is proposed in [133] to model multi-modal
public transportation by taking into account time dependency in calculating travel times
between POIs. Gavalas et al. [134] tackle the same problem but with no assumptions on
periodic service schedules. Further extensions of TOP model more specific scenarios by
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assigning additional attributes to POIs such as entrance fee or type of visit [135, 136].
Obviously, orienteering problems proved to be a valuable tool in modelling a wide range

of realistic TTDP. However, to the best of our knowledge, the attempt to formulate and solve
TTDP with respect to global city needs has not yet been addressed in research communities.
In this work we propose to extend the OP by assigning scores both to POIs end edges
between them. This extended formulation has been described in [121] as a combination of
OP and Arc Orienteering Problem (AOP) where scores are associated only to edges (arcs).
Therefore, the formulation has been named Mixed Orienteering Problem (MOP). In [137]
Gavalas et al. present approximation algorithms for the AOP and show that MOP can be
reduced to AOP. However, in our model of TTDP we also allow parallel edges between POIs
in order to represent alternative routes between them. Additionally, we separate the city’s
and tourists’ goals by introducing bi-objective scores. Nevertheless, we manage to reduce
the proposed model to AOP and therefore we compare our solution approach with two
recent metaheuristic algorithms for AOP: Greedy Randomized Adaptive Search Procedure-
based algorithm (GRASP) [118] and Iterated Local Search (ILS) [119]. We point out the
impracticality of these state-of-the-art AOP approaches for solving proposed model, as they
can only be efficiently applied to low degree graphs usually employed to represent traffic
road networks. However, we adopt the conceptual representation of solutions from [118]
and build new heuristic approach for our problem by using variable neighbourhood search.

5.6. Conclusion

In this chapter we demonstrated that the tourist trip planning problem can be used
by the city government to manage the urban environment and achieve a balanced and
sustainable growth. The introduced problem was formulated as a variant of MOP where
each POI and route, i.e. node and edge, is associated with two profit scores representing
the importance of a visit or walk for the tourist and the city government. In this way we
allowed city administrators to control the planning process by simply assigning their own
scores to POIs and routes between them.

In order to find a good trade-off between helping tourists in planning their trips and city
governments in achieving mobility objectives, we proposed an algorithmic approach based
on the VNS framework. The algorithm is evaluated on a large real-life dataset related to the
city of Barcelona, one of the most visited cities in Europe. The proposed algorithm generates
an average error of 0.47% within 30 seconds of computational time, and thus outperforms
baseline AOP algorithms applied to the same dataset. The proposed algorithm can also
find high-quality solutions (∼ 97% accuracy) in fewer iterations (< 10) in only a couple of
milliseconds, which makes it suitable for online applications. Finally, developed pilot MCS
system demonstrates how city administrators can easily make informed decisions based on
travel preferences and mobility data crowdsensed from citizens and visitors.



Chapter 6

Multi-vehicle route planning approach
for balancing urban freight transport

This chapter is based on materials from the following peer-reviewed paper:

P. Mrazovic, E. Eser, H. Ferhatosmanoglu, and J. L. Larriba-Pey, “Multi-vehicle
Route Planning for Efficient Urban Freight Transport”, in Intelligent Systems (IS),
2018 9th IEEE International Conference on, IEEE, 2018.

In the previous chapter we focused on finding individual routes which are in line with the
city’s global mobility objectives. However, the proposed solution does not consider batch
queries, and as such it suffers from lack of coordinated planning. In other words, different
travellers can be in parallel guided to the same parts of the city, and thus collapse them by
creating congestions, which is completely opposite to the city’s global mobility objectives.
Therefore, in this chapter, as an extension to the previous problem, we aim to balance the
use of public traffic infrastructures by developing multi-query route planning algorithm. As
a case study we return back to our MCS system introduced in Chapter 4 and propose an
application to improve the circulation of freight vehicles and to avoid congestions in urban
freight transport systems. The accompanying routing algorithm will take into consideration
capacity constraints imposed by dense urban environments and respectively coordinate a
fleet of freight vehicles by avoiding traffic jams and congestions.

6.1. Introduction

As we previously mentioned in Chapter 4, provision of loading areas designated for
the freight vehicles has been often recognized as one of the most effective measures for
organizing last-mile delivery operations. However, we also explained that nowadays these
areas can hardly absorb rapidly increasing urban transport demands. They are becoming
over-occupied, and there is not much room left to improve the urban transport and parking
infrastructure. This requires new technologies for better managing shared loading areas and
planning urban freight transport activities. In this chapter we investigate computational
solutions for developing an efficient urban freight transport system without the need for
large investments or sophisticated sensor technologies.

In this chapter we want to address the problem of collective route optimization and
consider the time spent in the loading areas. We introduce a novel multi-vehicle delivery
route planner as a part of existing MCS systems in order to improve the circulation of
vehicles and avoid congestions at the loading areas. As opposed to traditional solutions,

89
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Table 61: Table of notations
Notation Description
G(V, E) graph model of an urban freight transport network
V node set representing delivery areas
E edge set representing shortest paths between loading areas
vi node representing a loading area, vi ∈ V
li capacity of node vi

eij edge representing a shortest path between vi and vj , eij ∈ E
cij travel time needed to traverse eij

H fleet of vehicles
hk delivery vehicle, hk ∈ H
Q set of route queries
qk route query for vehicle hk, qk ∈ Q
Dk delivery location list, i.e., list of nodes to be visited by vehicle hk, Dk ⊆ V
vk

s initial position (depot) of vehicle hk, vk
s ∈ Dk

tk
s delivery start time for vehicle hk

dk
i estimated duration of delivery performed by hk at vi

pk solution route for vehicle hk

wk
i amount of time vehicle hk waits at congested delivery area vi

cost(pk) total duration (time cost) of route pk

tk
i arrival time, i.e., time at which vehicle hk is scheduled to arrive at vi in route

pk

zk
i departure time, i.e., time at which vehicle hk is scheduled to depart from vi

in route pk

which merely compute individually optimal routes for each driver, the proposed system
focuses on the global requirements and identifies a set of routes which would collectively
achieve better overall mobility in the city. While traditional approaches focus only on
individual routes and look for minimizing individual travel costs, the waiting times at
parking/loading areas need to be considered as a first-class citizen in any traffic system. A
large number of vehicles in urban freight transport networks cause congestions both in the
edges (roads) and in the nodes (loading areas). Our solutions trades individual sub-optimal
routes when they together minimize the overall aggregate travel costs, and avoids cascades
of delays due to the limited capacities of loading areas. We formally define a new routing
problem as a variant of the Hamiltonian Path Problem (HPP) where each traveller, i.e.,
deliverer, needs to visit a set of predefined loading areas while her route choice affects the
delay of other deliverers in the system due to the limited capacity of the areas.

We will analyse freight transport data collected from citizens and deliverers, and illus-
trate our system within the urban freight transportation in the city of Barcelona. The
dataset contains 3,704,034 parking information for 49,172 deliverers. As we will see later,
the results confirm that the multi-vehicle delivery planner improves the circulation of ve-
hicles and avoids congestions at the loading areas. Therefore, our work makes the case
and show the need for a collective planning of urban freight transportation with a global
optimization task and fairness to all deliverers in the system.

6.2. Problem Statement

In this section, we summarize the main requirements and architecture of the routing
system, and define the underlying multi-route optimization problem. We first present the
used notations and introduce definitions that will be needed to formalize the problem under
study. Table 71 summarizes the notation of concepts and terms used throughout this
chapter.
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Figure 61: System components of the proposed multi-vehicle route planner

As illustrated in Figure 61, the developed multi-route planning system consists of (1)
urban freight transport network, (2) routing engine, and (3) route query set. The transport
network represents the underlying physical traffic network composed of loading areas and
roads between them. Naturally, the network can be formalized with the aid of directed
graph G(V,E) whose node set V = {v1, ..., vN} represent loading areas and edge set E =
{eij |vi, vj ∈ V } shortest path between them. Furthermore, vehicle capacity li and travel
cost cij are assigned to each node vi ∈ V and edge eij ∈ E, respectively. Urban freight
transport network, i.e., its graph model, is stored in a graph database and accessed by the
routing engine.

Definition 6.2.1 (Graph model) Let G(V,E) be a directed graph where V = {v1, ..., vN}
is the set of nodes representing loading areas, and E = {eij |vi, vj ∈ V } is the set of edges
representing the shortest paths between them. Each node vi ∈ V is assigned with the capacity
li representing the number of parking spaces at the loading area vi. Each edge eij ∈ E is
assigned with the travel cost cij.

The routing engine is the central component that consists of our solutions for near
optimal solving complex route optimization problems. It takes as input a set of route queries
Q = {q1, ..., qM} assigned to delivery vehicles H = {h1, ..., hM}. Each query qk consists of
the vehicle hk’s initial location vks , delivery start time tks , set of delivery locations (i.e.,
loading areas) to be visited along the planned route Dk, and estimated delivery durations
dki ∀vi ∈ Dk.

Definition 6.2.2 (Route query) Vehicle hk’s route query qk is composed of its initial
position vks ∈ V , delivery start time tks , set of predefined delivery locations Dk ⊆ V , and
estimated delivery durations {dki |vi ∈ Dk}.
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Route queries Q = {q1, ..., qM} are concurrent and their delivery location sets Dk ∀qk ∈
Q can intersect. The loading areas are limited in capacity, and thus can only accommodate
limited number of vehicles at the same time. This means that the route choice for a
particular vehicle affects the duration of routes planned for other vehicles in the system. In
other words, if a delivery area is at its full capacity, other vehicles need to wait in a queue
based on first-come-first-served policy before being parked at the congested area (Figure
62). Therefore, the goal is to build an optimal set of routes P = {p1, ..., pM} (one for each
query qk ∈ Q) which collectively minimizes the total time cost in the transport system
expressed as the sum of the durations of all the routes pk ∈ P .

Definition 6.2.3 (Route duration) The duration of a single route pk is computed as
the sum of the travel times along pk, delivery durations dki ∀vi ∈ Dk, and waiting times
wki ∀vi ∈ Dk. Formally,

cost(pk) =
∑
vi∈Dk

(
dki + wki +

∑
vj∈Dk

xkijcij

)
, (6.1)

where xkij ∈ {0, 1} is a decision variable defined to be equal to 1 if edge eij is traversed in
route pk, and equal to 0, otherwise.

Recall that for a particular route pk, the travel costs cij and estimated delivery durations
dki ∀vi ∈ Dk are known from the graph model G(V,E) and route query qk, respectively.
On the other hand, the queue waiting time wki at each loading area vi ∈ Dk needs to be
explicitly computed. However, such computation is not straightforward since it depends on
other routes in the system, while the delivery durations differ from route to route. Therefore,
in the next section we propose an efficient algorithm to compute the total waiting time in
O(n log(n)) time.

We formally define the goal of the proposed multi-vehicle optimization problem as fol-
lows:

Definition 6.2.4 (Problem goal) Given an urban freight transport network G(V,E) and
a fleet of vehicles H = {h1, ..., hM} with the corresponding set of route queries Q =
{q1, ..., qM}, the goal of the proposed problem is to determine the set of M routes P =
{p1, ..., pM} that collectively minimize the total time cost, while visiting all of the planned

Figure 62: An example of a route with a congested loading area. At the time vehicle hk
arrived at vi, the area was at its full capacity and thus hk was placed in a waiting queue.
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nodes vi ∈ Dk ∀qk ∈ Q. We further formalize it as follows,

min f(P ) =
∑
pk∈P

cost(pk)

=
∑
pk∈P

∑
vi∈Dk

(
dki + wki +

∑
vj∈Dk

xkijcij

)
,

(6.2)

where xkij is a decision variable introduced in Definition 6.2.3, and each route pk ∈ P visits
all of the planned nodes vi ∈ Dk starting at node vks and time tks .

Lemma 6.2.1 (NP-completeness) The proposed multi-vehicle routing problem is NP-
complete.

If the loading areas had unlimited capacities (and consequently no waiting queues), a
relaxed variant of the proposed optimization problem can be reduced to a set of separate
NP-complete HPPs [138]. The optimal solution, in this case, consists of a set of the shortest
travel routes computed individually for each route query. In real life, deliverers tend to seek
such routes in order to minimize their total travel time. However, in Section 7.6 we will
show that such approach in busy freight networks often leads to congestions and waitings
at the delivery areas which additionally increases duration of delivery routes. Therefore,
in this work we show that in dense urban environments delivery routes should be planned
collectively in advance with fair respect to all deliverers in the system.

Remark 6.2.1 (Size of a solution space) In order to further illustrate the complexity of
the proposed problem, we consider a case with only 10 route queries, i.e., Q = {q1, ..., q10},
each with 10 delivery locations that need to be visited along the solution route, i.e. |Dk| =
10,∀qk ∈ Q. Since the first node vks in each route pk ∈ P is predefined, there is 9! possible
ways to arrange the visits in a single route. Therefore, in this particular case, there are
(9!)10 = 3.96 · 1055 possible solutions. More generally, the size of a solution space can be
computed as follows,

|S(Q)| =
∏
qk∈Q

(|Dk| − 1)! . (6.3)

6.3. The proposed solution

We first introduce the concept of solution representation and propose an efficient algo-
rithm to compute the objective function values (i.e., the total time cost of a solution). We
then present the construction and improvement/search phases of the proposed solution.

6.3.1. Solution representation and objective function computation
A solution in our algorithm is represented as a combination of permutations of nodes in

each path pk ∈ P . Therefore, a single path pk ∈ P is represented as an ordered set (i.e.,
tuple) of nodes from delivery location list Dk. For example, a solution P = {p1, p2, p3}
where D1 = {v1, v2, v3, v4, v5}, D2 = {v2, v4, v6, v8}, D3 = {v1, v5, v6, v7, v9}, v1

s = v3
s = v1,

and v2
s = v2, is represented as a combination of ordered sets, i.e.,

P =

 p1 = (v1, v5, v3, v4, v2),
p2 = (v2, v6, v8, v4),
p3 = (v1, v7, v9, v5, v6)

 . (6.4)
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From the introduced representation we can compute the objective function value. As
duration of delivery differs from vehicle to vehicle, and from node to node, finding the
order in which vehicles leave the waiting queues is not obvious. Therefore, we introduce
the concept of events and develop a computationally inexpensive algorithm to compute the
objective function values.

The proposed algorithm tracks arrivals and departures at/from loading areas. In Algo-
rithm 10, each such event is modelled as a tuple containing the type of the event (arrival
or departure), corresponding node and route, and the scheduled time. For example, tuple
(Arrival, pk, vi, tki ) represents arrival at node vi in route pk scheduled at time tki . Simi-
larly, tuple (Departure, pk, vi, zki ) represents departure from node vi in route pk scheduled
at time zki . Notice that we use a different notation for a scheduled arrival time (tki ) and
departure time (zki ). This is due to the fact that these times are correlated, meaning that
one can be computed as a result of the other by knowing estimated waiting time, delivery
duration and travel cost. We formally define the arrival and departure times, and discuss
their relationship in Remark 6.3.1.

Definition 6.3.1 (Arrival/Departure time) Arrival time tki is the time at which vehicle
hk is scheduled to arrive at node vi in path pk. Departure time zki is the time at which vehicle
hk is scheduled to departure from node vi in path pk.

Remark 6.3.1 (Correlation between arrival and departure time) Since vehicles de-
part from loading areas after finishing their deliveries, departure time zki can be computed
from arrival time tki by adding waiting time wki and delivery duration dki . Formally,

zki = tki + wki + dki . (6.5)

On the other hand, arrival time tki can be computed from departure time zkj from vi’s pre-
decessor vj, by adding travel cost cji, i.e.,

tki = zkj + cji. (6.6)

Before we discuss Algorithm 10 in details, we need to introduce the concept of event
queue, which is a priority queue to store and process arrival and departure events.

Definition 6.3.2 (Event queue) Event queue T is a priority queue containing arrival
and departure events sorted by their scheduled times in ascending order. The queue is
implemented as an array indexed by priority, where each array cell contains an event with a
scheduled time as priority. By convention, we call the queue insert operation enqueue and
the remove operation dequeue.

Algorithm 10 uses the event queue as a buffer where scheduled events wait to be pro-
cessed one by one. In other words, until event queue T is emptied, at each iteration, the
algorithm will remove and process the earliest scheduled event from T (lines 8-34). If the
currently being processed event (e) is an arrival at node vi in route pk, the algorithm com-
putes departure time zki using (6.5), and inserts a new departure event into event queue T
(lines 13-23). However, in order to compute a new departure time zki we need to know the
exact time at which delivery area vi becomes available for vehicle hk. For that purpose, for
each node vi ∈ V we keep a list of departure times scheduled for the events contained in T
that still need to be processed (departures[vi] ∀vi ∈ V ). If the size of list departures[vi]
is larger than node vi’s capacity li, then vehicle hk will be placed in the waiting queue. In
this case, we compute the size of the waiting queue b (line 17) and retrieve the b-th ear-
liest departure time zbi at which loading area vi will become available for vehicle hk from
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Algorithm 10: Objective function computation
Input: Solution P = {p1, ..., pM}
Output: Objective function value, i.e., total time cost

1 Procedure ComputeCost(P )
2 departures[vi] ← [∅], ∀vi ∈ V
3 cost[pk] ← 0, ∀pk ∈ P
4 T ← [∅]
5 forall pk ∈ P do
6 T .enqueue(Arrival, pk, vks , tks)
7 end
8 while T not empty do
9 e← T .dequeue()

10 Let vi represent the node assigned to event e
11 Let pk represent the route assigned to event e
12 if event e is an arrival then
13 Let tki represent the scheduled time of event e
14 if departures[vi].length < li then
15 zki ← tki + dki
16 else
17 b← departures[vi].length - li
18 zbi ← departures[vi].get(b)
19 zki ← zbi + dki
20 cost[pk] ← cost[pk]+zki − tki
21 end
22 departures[vi].add(zki )
23 T .enqueue(Departure, pk, vki , zki )
24 else if event e is a departure then
25 Let zki represent the scheduled time of event e
26 departures[vi].remove(zki )
27 if vi is not the last node in pk then
28 Let vj represent vi’s successor in pk
29 tkj ← zki + cij
30 cost[pk] ← cost[pk]+cij
31 T .enqueue(Arrival, pk, vj , tkj )
32 end
33 end
34 end
35 return

∑
pk∈P

cost[pk]
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departures[vi] (line 18). zki is then computed from zbi by adding delivery duration dki (line
19). In line 20, time cost cost[pk] is increased by waiting time wki and delivery duration
dki computed as the time difference between tki and zki . However, if event e is a departure
from node vi in route pk and vi is not the last node in pk, the algorithm computes arrival
time tkj at vi’s successor vj using (6.6), and inserts a new arrival event into event queue T
(lines 25-32). Time cost cost[pk] is then increased by travel cost cij in line 30. Finally, the
total time cost of solution P is computed in line 35 by the summarizing time costs across
all the routes pk ∈ P . The event queue is initialized at the beginning of Algorithm 10 in
lines 4-7. For each route pk ∈ P , the arrival at the initial node vks is scheduled at delivery
start time tks and added to event queue T .

Remark 6.3.2 (Time complexity of Algorithm 10) We assume that the event queue
is implemented using a heap and the departure lists using self-balancing binary search trees.
This means that an event can be enqueued and dequeued in O(log(n)), with n being the total
number of events, and, similarly, a departure time can be inserted, removed and searched for
in O(log(n)). Since Algorithm 10 needs to process two events (i.e., arrival and departure)
for each node visited in P , its total time complexity is O(n log(n)).

6.3.2. Construction phase
In the construction phase of the proposed solution, we build an initial solution P0 in a

greedy fashion. Here, we focus only on travel time and aim to minimize it for each individual
route pk ∈ P . In other words, we seek for near-optimal solutions to a set of HPPs. Greedy
algorithms have the advantage of being fast and easy to implement. However, since the
purpose of the initial solution is to position the search in a promising area of the solution
space, a completely greedy algorithm can be expected to miss some potentially valuable
areas. Therefore, in the construction phase we combine greediness and randomness using
GRASP [63].

To obtain variability in the candidate set of greedy solutions, GRASP keeps the best-
ranked solution elements in a restricted candidate list (RCL) from where some of them are
randomly chosen when building up the solution. Usually, the size of RCL, α, is used as
a parameter to control the balance between greediness and randomness. In other words,
when α is small, the algorithm becomes greedier, but when α is large, the algorithm becomes
more random. In the extreme cases, restricting the size of RCL to only one greedy solution
element, i.e., α = 1, leads to a completely deterministic greedy search, whereas eliminating
the RCL size restriction altogether, leads to a completely random search. We refer the
interested reader to [139] for a more extensive description of GRASP.

The GRASP’s concept of RCL can be translated into many combinatorial optimization
problems. In order to obtain semi-greedy solutions to HPPs, we implement RCL using the
distance matrix containing pre-calculated travel costs between each pair of loading areas
(vi, vj) ∈ V ×V . For each path pk ∈ P , starting from initial node vks , RCL is populated with
the α closest loading areas, i.e. nodes, using the pre-computed distance matrix. Afterwards,
a random node vr is chosen from the current RCL. Now, a new RCL is populated with the
α nodes closest to vr, omitting any node that has been already selected in the previous
iterations. If the number of unselected nodes is fewer than α then the size of current RCL
is decreased. Therefore, instead of using the fixed size of RCL, we introduce a greediness
factor αg which represents the percentage of unselected nodes that can populate RCL. We
then dynamically compute the size of RCL as α = dαg · |Vu|e where Vu represents a set of
unselected nodes. Finally, the complete GRASP-based construction of the initial solution
is detailed in the Algorithm 11.
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Algorithm 11: The construction of initial solution
Input: Route query set Q = {q1, ..., qM}
Output: Initial solution P0 = {p1, ..., pM}

1 Procedure ConstructRandomSolution(Q)
2 P0 ← ∅
3 forall qk ∈ Q do
4 pk ← (vks )
5 vr ← vks
6 Vu ← Dk \ vr
7 while Vu not empty do
8 α← dαg · |Vu|e
9 RCL← α nodes from Vu closest to vr

10 vr ← random node from RCL
11 pk.add(vr)
12 Vu ← Vu \ vr
13 end
14 P0 ← P0 ∪ {pk}
15 end
16 return P0

6.3.3. Improvement/Search phase

In the improvement/search phase, we adapt a Variable Neighbourhood Search (VNS)
based approach [62, 140] to further improve the previously generated initial solution. We
search the solution space with a systematic change of neighbourhood, by both descending
to local optima and escaping from valleys which contain them.

The basic scheme of VNS is given in Algorithm 12. At the initialization of the algorithm,
a set of neighbourhood structures Nk (k = 1, ..., kmax) has to be defined for the solution

Algorithm 12: The basic VNS metaheuristic
1 Define neighbourhood structures Nk (k = 1, ..., kmax)
2 Generate initial solution s ∈ S
3 Choose a stopping condition
4 while stopping condition is not met do
5 k ← 1
6 while k ≤ kmax do
7 s′ ← Perturbate(s); s′ ∈ Nk(s)
8 s′′ ← LocalSearch(s′); s′′ ∈ S
9 if Score(s′′) > Score(s) then

10 s← s′′

11 k ← 1
12 else
13 k ← k + 1
14 end
15 end
16 end
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space S (line 1). In other words, for each solution, s ∈ S, Nk(s) represents a set of
neighbour solutions. In most implementations of VNS, successive neighbourhoods Nk are
nested, i.e., N1(s) ⊂ N2(s) ⊂ ... ⊂ Nkmax

(s). After the initialization, starting from the
initial solution s and the first neighbourhood structure N1(s), the algorithm systematically
explores solution space S by moving within chosen neighbourhood structures. At each
iteration, the Perturbate procedure (sometimes called Shake procedure) randomly selects a
new solution s′ within the current neighbourhood Nk(s) (line 7). Then, a descent from s′

is done by the LocalSearch routine which leads to a new local optimum s′′ (line 8). At this
point, the new solution s′′ is compared with the current solution s (line 9). If s′′ is better
than s, the algorithm re-centers the search around s′′ by replacing s with s′′ (line 10), and
starts all over from the first neighbourhood structure N1(s) (line 11). If s′′ is not better
than s, the algorithm moves to the next neighbourhood structure (line 13) and selects a
new random solution from Nk+1(s). The algorithm iterates until a predefined termination
condition is met. An example of the termination condition could be a number of iterations
until the solution has not been improved. The choice of neighbourhood structures, as well
as the implementation of local search and perturbation, affect the performance of VNS.
Therefore, we introduce our design of VNS. We first define the local search moves employed
to build solution neighbourhoods.

Search moves

We use two local search moves with combining: shift and 2-opt. We aim to minimize
waiting cost with one of them and try to minimize travel cost with the other. First, the
shift move generates a neighbour solution by relocating (i.e., rescheduling) a single visit
within one of the solution’s routes. For example, in Figure 63a, a new route p′k is created
from route pk by shifting visit to node vi two positions to the right (after visit to node
vi+2). Here, the newly created route p′k is part of a new neighbour solution P ′. Notice
that we denote by (vi, pk) a visit to node vi in route pk. The shift move can be efficiently
applied to reduce waiting times at congested nodes (i.e., loading areas). We can reschedule
costly visits to less busy times by simply shifting them using the introduced move. The
2-opt move, on the other hand, aims at reducing the travel time between selected nodes.
2-opt was originally proposed for solving the traveling salesman problem (TSP) [141], but
has been successfully applied in many other route optimization problems. The main idea
behind the 2-opt move in our solution is to reduce the total travel time by detecting and
then reordering non-optimal parts of a solution where its routes cross over themselves. 2-opt
move removes two edges from a route, and reconnects the two new created sub-routes. For
example, in Figure 63b, 2-opt removes edges e(i−2)(i−1) and e(i+1)(i+2) and reconnects the
route with a pair of new edges e(i−2)(i+1) and e(i−1)(i+2). Note also that 2-opt reverses a
segment of the route between the exchanged edges.

Neighbourhood structures and local search

Using the two-layer search moves together, we can reduce both waiting and travel time
of a solution. Therefore, we use them both to move from one solution to another in the
search for local optimum. This means that the neighbourhood of a solution s is composed
of all solutions that can be obtained by applying one shift and one 2-opt move to solution
s. However, such neighbourhood is far too large to be completely explored at each iteration
of VNS. For example, for a single route with n nodes, we can reschedule (i.e., shift) visits
to n − 1 nodes at n − 2 different positions in route s, yielding the total of (n − 1)(n − 2)
possible shift moves. On the other hand, we can exchange n(n − 3)/2 different pairs of
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Algorithm 13: Local search
Input: Random solution Pr, VNS depth k
Output: Improved solution P

1 Procedure LocalSearch(Pr,k)
2 P ← Pr
3 while P is improved do
4 Pc ← bestShift(P ,k)
5 Pc ← best2Opt(Pc,k)
6 if f(Pc) < f(P ) then
7 P ← Pc
8 end
9 end

10 return P
Input: Input solution Pr, VNS depth k
Output: Improved solution P

1 Procedure bestShift(Pr,k)
2 α← random size of RCL
3 RCL← α visits with the highest waiting time
4 RCLk ← k random visits from RCL
5 P ← Pr
6 foreach (vi, pk) ∈ RCLk do
7 foreach possible shift length m do
8 Pc ← shift(vi,pk,m)
9 if f(Pc) < f(P ) then

10 P ← Pc
11 end
12 end
13 end
14 return P

Input: Input solution Pr, VNS depth k
Output: Improved solution P

1 Procedure best2Opt(Pr,k)
2 α← random size of RCL
3 RCL← α traversed edge pairs with the highest travel cost
4 RCLk ← k random edge pairs from RCL
5 P ← Pr
6 foreach (edge pair (eij , emn), pk) ∈ RCLk do
7 Pc ← 2opt(pk,eij ,emn)
8 if f(Pc) < f(P ) then
9 P ← Pc

10 end
11 end
12 return P



100
CHAPTER 6. MULTI-VEHICLE ROUTE PLANNING APPROACH FOR

BALANCING URBAN FREIGHT TRANSPORT

Figure 63: Local search moves: (a) shift and (b) 2opt

edges in the 2-opt move. Finally, this means that by applying the search moves to only
one of the solution’s route, we can obtain a total of n(n − 1)(n − 2)(n − 3)/2 different
neighbour solutions. This is why in the local search procedure we choose to restrict the size
of neighbourhood in the following way. Since the goal of shift move is to reduce the total
waiting time of a solution, we select random k visits with the longest waiting times, and
consider only shift moves that reschedule the selected visits. Here, we again employ the
concept of RCL and randomly select k visits from the list of visits sorted by waiting times.
From the reduced neighbourhood, we then choose a solution with the lowest total time cost
(i.e., objective function value). This approach is outlined in the bestShift procedure of
Algorithm 13.

Since the goal of 2-opt is to reduce the total travel time of a solution, we randomly select
k edge pairs from RCL among the traversed edges with the highest relative travel cost. The
relative cost is computed by the relative distance between the current edge cost and the
cost of the shortest incoming edge to the directed node. We avoid to select the edges with
the largest cost directly because for a node, all incoming edges may have large costs. In
that case, the incoming edge with a large cost is less likely to indicate it is suboptimal.
After selecting, we construct new solutions by applying 2-opt moves to the selected edge
pairs only in the selected routes. Again, a solution with the lowest time cost is chosen
from the reduced neighbourhood. The approach is outlined in the best2Opt procedure
of Algorithm 13. Also in Algorithm 13, the local search procedure is executed until a
local optimum of the current neighbourhood is encountered, i.e., until current solution P
cannot be improved with the employed local search moves. Finally, notice that the size
of a neighbourhood depends on the current depth of VNS, k. This necessarily means that
employed neighbourhood structures Nk are nested, which helps VNS to avoid being trapped
in local optima by a systematic change of neighbourhood.

Perturbation

As we previously discussed, it is important for VNS implementations to balance intensi-
fication (i.e., local search) and diversification (i.e., perturbation) during the search process
to allow escaping from local optima. In our implementation of VNS, we perturbate solutions
by shuffling a certain percentage of their routes, based on the current depth of VNS, k. More
precisely, we randomly select dM/ke routes to be shuffled, where M represents the total
number of routes in the solution. Thereafter, the selected routes are shuffled by randomly
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rescheduling the visits using the shift move. Since our implementation of perturbation is
straightforward, we omit the algorithm pseudo code to save space.

6.3.4. Complete algorithm

Algorithm 14: Overall Approach
Input: Route query set Q, maximum number of successive iterations without

improvement maxIter, maximum number of neighbourhood degree kmax
Output: Optimal solution P

1 Procedure FindSolution(Q,maxIter,kmax)
2 iter ← 0
3 best← ConstructRandomSolution(Q)
4 while iter < maxIter do
5 iter ← iter + 1
6

}
Construction
phase (GRASP)P ← ConstructRandomSolution(Q)

7 k ← 1
8 while k ≤ kmax do
9 Pr ← Perturbate(P ,k)

10 Pc ← LocalSearch(Pr,k)
11 if f(Pc) < f(P ) then
12 P ← Pc
13



Improvement
phase (GRASP+VNS)k ← 1

14 iter ← 0
15 else
16 k ← k + 1
17 end
18 end
19 if f(P ) < f(best) then
20 best← P
21 end
22 end
23 return best

The overall approach which combines the construction and improvement phases is out-
lined in Algorithm 14. Both phases are repeated until solution P could not be improved in
maxIter successive iterations.

6.4. Experimental evaluation

We conducted extensive experiments on real-world data collected across Barcelona’s
urban freight transport network using MCS infrastructure introduced in Chapter 4. We first
present experiments on synthetic data to illustrate the trade-offs and parameters involved
in the accuracy of the proposed solution. We then present the analysis and results on
Barcelona data that provide useful insights and show practical applicability of our solution.
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6.4.1. Experiments on Synthetic Data
Experimental Setup

We randomly generated 50 test instances, each composed of 5, 10, 15, 20 or 25 concurrent
route queries (see Definition 6.2.2). In order to increase solving complexity, we provoked
more congestions by limiting the capacity of each area (li) to only one parking space. While
at first this dataset may seem insufficiently large, notice that the formulated test instances
are NP-hard problems and as such are computationally extremely expensive. Nevertheless,
we need to solve them to optimality in order to evaluate the accuracy of our approach.
Therefore, we developed an integer programming model for the problem under study and
solved them using IBM’s commercial solver CPLEX Optimizer. The computation was
limited to 6 hours and 220 GB of memory per test instance, and thus computing the
optimal solutions for all 50 test instances lasted more than 12 days in total on a machine
with 2.40 GHz Intel® Xeon® E5-2630 processor and 265 GB of RAM.

Finally, we assess the quality of our approach with the accuracy measure defined as
follows,

accuracy(P,Q) =
∑
p∈Popt

cost(p)∑
pk∈P cost(pk) , (6.7)

where P and Popt are sets of solution routes for the route queries in Q, obtained by our
algorithm and CPLEX solver, respectively.

In addition to the above comparison, we also compute the accuracy of the solutions
composed of individually optimal routes with the shortest travel times. The aim of such
comparison is to validate our hypothesis that, in urban transport networks with limited
parking facilities, delivery routes should be planned collectively, rather than individually,
and thus to efficiently balance waiting and travel cost. In the rest of this section, we refer to
the individually optimal solutions as HPP, and to the solutions obtained with the proposed
Multi-Vehicle Route Planner as MVRP.

Results

Figure 64 plots (a) the accuracy and (b) running time of MVRP iterations for different
number of nested neighbourhood structures kmax (see section 6.3.3). Figure 64a shows
that the proposed algorithm is able to obtain high quality solutions (> 90% accuracy) in
less than 50 iterations. It is also interesting to notice that with the smaller number of
neighbourhood structures (e.g., kmax = 5), MVRP is able to quickly find good solutions,
but it is unable to find the optimal one in 300 iterations for particular example. This is due
to very frequent change of search neighbourhoods, which are sometimes left insufficiently
examined. In Figure 64a, this can be observed as successive steps (i.e., jumps) in accuracy
line plot. On the other hand, larger number of neighbourhood structures (e.g., kmax = 20),
allows MRVP deeper to explore promising search areas and thus to find the optimal solution
(in this particular case). However, as shown in Figure 64b this comes at an expense of longer
computation time. For example, running 300 iterations took 748 ms with kmax = 5, while
with kmax = 20 took twice as much (1,667 ms). Obviously, as we increase the maximum
number of nested neighbourhood structures, the iterations become longer as the algorithm
needs to descend into deeper search areas. Finally, notice from Figure 64 that we are in
general able to find high quality solutions in less than 1.5 seconds for synthetic test instances.

In Figure 65 we plot the accuracy of MVRP and HPP approach for test instances of
different sizes (i.e., number of route queries). As shown in the figure, the accuracy of the
solutions with individually optimal routes (HPP) is significantly lower than the accuracy
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Figure 64: Accuracy improvement with respect to number of iterations (a) and computation
time (b)

of the solutions obtained by MVRP. For smaller test instances with 5 route queries, HPP
approach yields relatively good solutions with ∼ 96% accuracy. However, as we increase
the number of route queries, the accuracy drops to ∼ 88%. Notice here that as we increase
the number of concurrent route queries, we also increase the possibility for congestions and
longer waiting times at loading areas. Obviously, for larger test instances, HPP approach
fails to avoid congestions and reduce waiting times. On the other hand, MVRP can find
high quality solutions, even for more complex test instances with 10 and more route queries.
Further, as we increase the search depth (kmax) and iteration limit maxIter (see Algorithm
14), we can obtain even better solutions, however, at an expense of longer computation
time, as previously explained.

6.4.2. Experiments on Real-world Data

Experimental setup

We used MCS system introduced in Chapter 4 to collect real-world data for areaDUM
urban freight infrastructure [142]. The data is crowdsensed from citizens and deliverers
that reflects the usage of the urban freight infrastructure. It consists of 3,704,034 parking
check-ins by 49,172 users, i.e., deliverers, in 2,038 loading areas with the total of 8,707
parking spaces, over the period between January 1st, 2016 and July 15th, 2016. Each check-
in consists of the ID of the deliverer who made the check-in, her vehicle’s plate number
(anonymized), the loading area to which the check-in was made, geographic coordinates,
and a timestamp. Using the areaDUM dataset, one can discover the actual routes taken
by deliverers during the course of their work. We inferred the sequences in which the load-
ing areas were visited by grouping check-ins made in the same day by the same deliverer.
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Figure 65: Accuracy improvement over whole synthetic dataset with different setups.

However, the loading areas are often occupied by construction operators and casual deliv-
erers who usually perform only few stops per day [143]. Therefore, we filtered out shorter
routes and focused only on those with four or more stops. This way, we obtained the to-
tal of 181,454 routes. Further, in order to estimate durations of the deliveries performed
at each stop, we needed to find typical travel times between each pair of loading areas in
Barcelona’s urban transport network. Here, we assumed that deliverers act economically
and usually take the shortest path between loading areas. Therefore, we employed Open
Source Routing Machine (OSRM)1 with Barcelona’s road network to compute the shortest
travel times between each pair of loading areas. Thereafter, we estimated delivery durations
as dki = (tki+1 − tki )− ci,i+1 where tki and tki+1 are arrival times at loading area vi and vi+1,
respectively, and ci,i+1 is the travel time at the shortest path between them.

Finally, we generated 10,000 test instances by sub-setting the discovered delivery routes.
The complexity of the instances varies in terms of the number of routes, i.e., route queries,
and similarities between them. 1,000 test instances were generated for 10 different problem
sizes (with 10, 20, 30, ..., and 100 route queries). Obviously, in instances with highly
similar route queries, i.e., with frequent mutual stops, congestions at the delivery areas
occur more often and, thus, are harder to avoid. We solved all of the instances using
the proposed solution, and then compared the obtained solution routes with the real-world
routes traversed by actual deliverers in the city of Barcelona, as well as with the individually
optimal routes computed with CPLEX using the HPP formulation.

Results

Table 62 summarizes the pairwise comparison between solution routes obtained by our
algorithm (MVRP), actual routes derived from the areaDUM dataset (REAL), and individ-
ually optimal routes (HPP). The comparison was made in terms of the percentage of test
cases in which one route set is more efficient (i.e., less time consuming) than another. For
instance, for the smallest test instances (10 route queries), MVRP routes are better than
HPP in 7.1% of the cases, while HPP routes are more efficient in only 0.4% of the cases. In
the rest of the cases, MVRP and HPP routes were equally efficient.

In general, both HPP and MVRP routes were almost always less time consuming than
REAL routes, regardless of the instance size, i.e., number of route queries. However, in rare

1http://project-osrm.org/
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Table 62: Route improvement comparison

size REAL vs HPP vs MVRP vs
HPP MVRP REAL MVRP REAL HPP

10 4.1% 4.1% 95.9% 0.4% 95.9% 7.1%
20 1% 0% 99% 4.1% 100% 60.4%
30 0.7% 0% 99.3% 13% 100% 66.7%
40 3.5% 0% 96.5% 15.9% 100% 83.5%
50 1% 0% 99% 9.8% 100% 90.2%
60 5.4% 0% 94.6% 9% 100% 91%
70 0.7% 0% 99.3% 15.4% 100% 84.6%
80 1.1% 0% 98.9% 4.3% 100% 95.7%
90 2.1% 0% 97.9% 16.9% 100% 83.1%
100 3.91% 0% 96.09% 10.03% 100% 89.97%

occasions, REAL routes are still better than HPP routes. This was expected, since in HPP
we assume that deliverers act opportunistically and aim at minimizing the total travel time,
which can occasionally lead to congestions and waiting times at loading areas. On the other
hand, REAL routes were more efficient than MVRP routes in only 4.1% of the times for the
smallest test instance with 10 route queries. It is also worthwhile to note that MVRP routes
were in most cases more or equally efficient than HPP routes. This can be clearly observed
by comparing the percentages in columns HPP-vs-MVRP and MVRP-vs-HPP. However,
such similarity in performance is only observable for smaller test instances with fewer route
queries, where there is a low probability for congestions and waitings at loading areas. In
these cases, the most efficient route arrangement is composed of individually optimal (i.e.,
shortest in length) routes. For larger test instances with more than 30 route queries, MVRP
routes are in 90% of test cases more efficient than REAL and HPP routes.

While both arrangements improve over actual routes taken, we want to observe the
extent to which route arrangement provides superior improvements. We plot the average
time cost improvements compared to actual route arrangements inferred from the areaDUM
dataset (REAL routes) in Figure 66. In Figure 66a and d, we first plot the average overall
time cost reduction per route for different instance sizes in minutes and percentages, re-
spectively. At the beginning of the curve, HPP and MVRP perform similarly for smaller
test instances with up to 30 route queries. In such cases, the two methods can reduce the
total durations of real-world routes for up to 4% (5 minutes) in average. However, for larger
test instances, the difference between the performance of HPP and MVRP becomes more
observable. This can be seen in the plot as a separation of the curves for test instances
with more than 40 route queries. For example, for the largest test instances with 100 route
queries, MVRP reduced the average time cost per route by ∼ 11.5% (18.4 minutes) while
HPP performed at the same level as for smaller instances reduced the cost only for close to 3
% (4 minutes). Such behaviour can be explained by the fact that most of the loading areas
in Barcelona contain around 4 parking spaces, and as such, they are usually large enough to
accommodate vehicles scheduled in smaller test instances. On the other hand, congestions
and waitings at loading areas are more common in larger test instances, and thus the HPP
approach, which aims only at minimizing the travel costs, performed significantly worse
than MVRP.

Figure 66b-c and e-f separate travel and waiting cost improvements to further investigate
the performance of HPP and MVRP. Figure 66b and c suggest that both methods performed
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Figure 66: Route improvement in terms of average (a-c) and relative (d-f) total, travel, and
waiting costs.

comparably in terms of travel time reduction for test instances with up to 60 route queries.
For larger test instances this reduction is less significant for MVRP, since it aims to rearrange
routes to minimize waiting times. This can be clearly observed in Figure 66c and d. In the
same plot, we see that HPP is unable to reduce waiting costs, regardless of the instance
size, which was expected. The two plots show that MVRP is able to strike a balance
between travel and waiting costs, which directly confirms the effectiveness of the employed
shift and 2-opt search moves. Furthermore, the effectiveness of the proposed solution grows
with the number of concurrent route queries, which makes it especially suitable for routing
applications in dense urban environments.

6.5. Related work

To the best of our knowledge, the new multi-vehicle routing problem and its urban
freight delivery application have not been addressed before both in research and practice.
On the theoretical side, a minimum-weight Hamiltonian path problem is used to compute
individually optimal (i.e., shortest in length) delivery routes, by assuming that deliverers act
economically and try to minimize the total travel time. Travelling salesman problem (TSP)
is a special case of Hamiltonian cycle problem defined on edge-weighted graphs. A variation
of TSP, where the initial point does not have to be revisited at the end of the cycle, is known
as Travelling Salesman Path Problem (TSPP). A related combinatorial graph problem is
multiple TSP (mTSP) [144]. In mTSP, a set of routes needs to be determined as to visit all
of the planned nodes and minimize the total cost. Here, each node can be visited exactly
once in only one route, while each route needs to start and end at the same depot. The
problem is composed of both dividing the set of planned visits among multiple travellers
and solving TSP for each of them. Even though local search methods [145] can be employed
to solve mTSP, various metaheuristics such as genetic algorithms (GA) [146] and ant colony
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optimization [147] have been proposed. The proposed problem assigns each route with its
own set of nodes that need to be visited. We also introduce the time dependencies between
the routes by assigning capacities constraints to nodes, which, to the best of our knowledge,
have not been considered in the literature.

In a special case of TSP with time windows (TSPTW) [148], each node needs to be
visited within the given time interval [a, b]. Although arriving after b is not acceptable, a
vehicle can arrive to a node before a but it needs to wait until a. Kara et. al. formalize
the problem of minimizing the total tour cost including the waiting times [149]. Here, the
arrival to the next node is computed by summing the travel costs of previously traversed
edges and and waiting times. We also include delivery durations which provides a more
realistic model for the problem.

An VNS method that employs Greedy Randomized Adaptive Search Procedure (GRASP)
was proposed for Travelling Repairman Problem (TRP), to build initial solutions and thus
speed up the search convergence [150]. The GRASP’s concept of restricted candidate list
is utilized in our approach to combine randomization and greediness when selecting the
promising search moves in the local search phase. To build solution neighbourhoods at each
iteration, we use two local search moves: shift and 2-opt. 2-opt was originally proposed for
TSP [141], but has been successfully in other route optimization problems. We used 2-opt
to minimize the travel time of routes. On the other hand, the shift move was introduced
to reschedule visits to busy nodes, and thus to avoid congestions and reduce the waiting
times.

All of the aforementioned problems are NP-complete, and thus different heuristic algo-
rithms have been proposed in the literature. They can be categorized into three groups:
tour construction (e.g., nearest-neighbourhood, convex-hull), tour improvement (e.g., k-
opt, Or-opt), and metaheuristic-based algorithms (e.g., simulated annealing [151], variable
neighbourhood search (VNS) [150, 152, 153], tabu search [154, 155], genetic algorithms [156,
157]). We develop a greedy randomized constructive approach to build an initial solution
before the actual search process, and improve the search process by positioning the search
in the promising solution space areas. Also our approach for selecting the right node as well
as the shift position have not been addressed in research nor practice before.

6.6. Conclusion

A new problem formulation and practical solution are presented to solve the congestion
problem in real-world urban freight transport networks. The analysis and experiments on
data collected across Barcelona’s urban freight transport network confirmed their effective-
ness and ability to significantly reduce the average length of delivery routes. For example,
for moderately-sized problems with only 100 concurrent delivery routes, the proposed sys-
tem saves up to 19 minutes per route, which sums up to 1,900 minutes of idling2 time across
all 100 routes. According to [158], 1,900 minutes of heavy-duty vehicle idling can produce
146.8 kg of CO2 which can be a significant contribution to overall emission reduction. The
developed solution achieves a more effective urban freight mobility for 90% of cases com-
pared to both the individually optimal and real life traces of delivery. The improvement
achieved by the proposed solution grows with the number of concurrent route queries, which
makes it especially suitable in dense urban environments.

Our solution opens a new exciting direction of collective planning of traffic and urban
freight transport, and makes the specific case of improving transportation with a global

2Idling refers to running a vehicle’s engine when the vehicle is not in motion.
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optimization task and fairness to all vehicles in the system. On the other hand, MCS
paradigm naturally arises as a means to seamlessly collect mobility data to act upon.



Chapter 7

An online framework for adaptive
rebalancing of public bicycle sharing
systems

This chapter is based on materials from the following peer-reviewed paper:

P. Mrazovic, J. L. Larriba-Pey, and M. Matskin, “A Deep Learning Approach for
Estimating Inventory Rebalancing Demand in Bicycle Sharing Systems”, in 2018
IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
IEEE, 2018, pp. 110–115.

While in the previous chapter we focused on balancing the use of stationary traffic
infrastructure, i.e., public parking areas, in this chapter we focus on balancing rental stations
in shared transport systems. This problem may at first seem equivalent to the one studied
in the previous section, however, it requires a more advanced online approach which would
take in consideration the real-time information in order to balance supply and demand in
shared transport systems. In this chapter we will first study how to forecast user demand
in shared transport and estimate inventory target levels of rental stations, and then we
will use the results to route a fleet of freight vehicles to economically re-distribute mobile
assets among the stations. As a case study, we will investigate bicycle sharing systems as
the most popular form of shared transport, and make use of crowdsensed data containing
information about bicycle rentals and returns.

7.1. Introduction

Over the last decade, many cities around the world have introduced public Bicycle Shar-
ing Systems (BSSs) as a more sustainable and less dangerous alternative to motorized forms
of transport. BSSs offer a "green" solution to the first-and-last mile connection problem and
provide a mobility service where other modes of transport are not available. In addition,
BSSs contribute to public health by encouraging people to increase their physical activity
and, at the same time, to avoid congestions in motorized traffic. However, despite the sig-
nificant benefits from BSSs, their exploitation implies various problems among which the
most prominent one is to ensure high bicycle availability in order to satisfy customers’ needs
and meet contractual service level agreements.

BSSs consist of a collection of bicycle rental stations strategically distributed over the
service area. Each station is equipped with a self-service terminal and a number of bicycle
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stands. Using the self-service terminal, registered user can easily pick up a bicycle from
one of the station’s stands, and return it (usually within a certain time frame) to any
other station with an empty stand. However, over time, user behaviour results in spatial
imbalance of the bicycle inventory. In other words, various factors, such as daily commuting
patterns or topographical conditions, can lead to an unbalanced state where the numbers
of rented and returned bicycles differ significantly among the stations. Such state becomes
critical when stations run completely empty or full, and thus prevent users from renting or
returning bicycles, respectively.

In order to avoid described service disruptions, operators need to dynamically rebalance
BSSs by redistributing bicycles between stations using a fleet of maintenance vehicles. This
problem is known in the literature as the Bicycle sharing Rebalancing/Repositioning Problem
(BRP). BRP consist of (1) estimating the stations’ inventory target levels (i.e., redistribution
needs) and (2) computing optimal routes for a fleet of capacitated vehicles. Even though
BRP has been in focus of many research works over the past several years (e.g., [159–
162]), the online (adaptive) solutions to BRP have not been well studied. As opposed
to traditional approaches for solving BRP, which rely on an offline training phase during
which new inventory target levels are estimated, we propose to use an online approach which
would take in consideration the real-time information from BSSs to re-estimate inventory
target levels and accordingly to update (i.e., re-optimise) routes that were already assigned
to rebalancing vehicles. This way, we aim to find a solution which can efficiently adapt
to unplanned events (e.g., weather changes, traffic jams, system failures, etc.), and track
repositioning progress of each vehicle in order to balance their workload.

7.2. Problem Formulation

In this section, we summarize the main requirements for the envisioned rebalancing
framework, discuss its architecture, and formally define the underlying problem of multi-
ple capacitated vehicles route optimisation. However, before doing so, we first need to get
familiar with the notations used throughout this chapter and introduce several new defini-
tions that will be needed to formalise the problem under study. Table 71 summarises the
notation of concepts and terms used throughout this chapter. Keep in mind that not all of
the presented notations will be used in this section, but will appear later in the chapter.

7.2.1. Preliminaries
As illustrated in Figure 71, the proposed rebalancing framework consists of a station

network (1), a demand forecasting model (2), a redistribution model (3), and a routing
engine (4). The station network represents the underlying physical bike sharing network
composed of bike stations and connections between them. Naturally, the network can
be formalized with the aid of a directed graph G(V,E) whose node set V = {v1, ..., vN}
represents bike stations and edge set E = {eij |vi, vj ∈ V } the shortest connections between
them. Furthermore, maximum bike capacity cmaxi and travel cost cij are assigned to each
node vi ∈ V and edge eij ∈ E, respectively. The station network, i.e., its graph model, is
stored in a graph database and accessed by the routing engine.

Definition 7.2.1 (Graph model) Let G(V,E) be a directed graph where V = {v1, ..., vN}
is the set of nodes representing bike stations, and E = {eij |vi, vj ∈ V } is the set of edges
representing the shortest (or fastest) connections between them. Each node vi ∈ V is as-
signed with the capacity cmaxi representing the total number of bike stands (both occupied
and empty) at station vi. Each edge eij ∈ E is assigned with the travel cost cij.
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Table 71: Table of notations
Notation Description
G(V,E) graph model of a station network
V node set representing bike stations
E edge set representing shortest connections between bike stations
vi node representing a station, vi ∈ V
ci current capacity, i.e., inventory level, of station vi (total number

of bikes at vi)
cmaxi maximum capacity of station vi (total number of bike stands at

vi)
eij edge representing a shortest connection between vi and vj , eij ∈ E
cij travel time needed to traverse eij
P bicycle trip data
p bicycle trip record, p ∈ P
µi(t) pick-up demand at station vi and time t
λi(t) drop-off demand at station vi and time t
di rebalancing target of station vi, i.e., total number of bikes that

need to be delivered to or removed from vi
VR set of station that need to be re-balanced, VR ⊆ V
H fleet of rebalancing vehicles
hk rebalancing vehicle, hk ∈ H
vk0 current position of rebalancing vehicle hk
li number of bikes carried by a vehicle after visiting vi
lmax maximum vehicle capacity (total number of bike stands)
Tupdate re-optimisation period
R set of solution routes
rk route of vehicle vi

Figure 71: System components of the proposed rebalancing framework
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Definition 7.2.2 (Bicycle trip data) The bicycle trip data P consist of a set of bicycle
usage records p = (vo, τo, vd, τd) where vo and vd represent pick-up and drop-off station, and
τo and τd represent pick-up and drop-off time, respectively.

Historical and real-time trip data is fed into the demand forecasting model and the
redistribution model. The goal of the demand forecasting model is to predict the future
user demand. Since traditional bicycle-sharing scheme allows users to rent a bicycle from
any particular station and to return it back at any other station within some time frame,
the user demand at each station in BSS can be naturally expressed in terms of the total
number of pick-ups and drop-offs per time interval. Therefore, we define station pick-up
and drop-off demands as follows.

Definition 7.2.3 (Station pick-up and drop-off demand) Station pick-up demand µi(t)
is the total number of bicycle rentals (pick-ups) at station vi during time interval t. Sim-
ilarly, station drop-off demand λi(t) is the total number of bicycle returns (drop-offs) at
station vi during time interval t.

Notice from the above definitions that the station demands at past time intervals can
be easily computed from historical bicycle trip data. For example, station pick-up demand
µi(t) can be computed as the total number of trip records (vo, τo, vd, τd) where vo = vi and
τo ∈ t. On the other hand, station pick-up demand µi(t) can be computed as the total
number of trip records where vd = vi and τd ∈ t. We can formalise this computation as
follows,

µi(t) = |{p | p ∈ P ∧ vo = vi ∧ τo ∈ t}| (7.1)

λi(t) = |{p | p ∈ P ∧ vd = vi ∧ τd ∈ t}| (7.2)
Using the above equations (7.1) and (7.2), demand forecasting model is able to construct

time series of station demands and exploit them to forecast the future demands. Addition-
ally, the time series can be augmented with external data such as weather reports w(t), as
to introduce a context which can improve forecasting accuracy (we discuss the weather data
in more details in the next section).

Based on forecast pick-up and drop-off demands and stations’ current inventory levels
(i.e., number of available bikes), redistribution model computes the number of bicycles that
need to be removed from or delivered to each station, in order to balance the stations and
thus meet the predicted service demands. Similar to the definition proposed by Liu et al.
[160], we define the optimal inventory level as the one which maximises the time duration
within which the station remains balanced, i.e., with enough bicycles and empty stands to
meet the future demand.

Definition 7.2.4 (Station rebalancing target) Let ci be the current inventory level,
and cmaxi the capacity of station vi. The station rebalancing target di, i.e., the total number
of bikes that need to be removed from or delivered to vi, is decided by the following calcula-
tion which aims to maximise the total number of consecutive time intervals within which vi
remains balanced,

argmax
di

{j | 0 ≤ ci + di +
t0+j∑
t=t0

(λi(t)− µi(t)) ≤ cmaxi } (7.3)

Notice that rebalancing target di takes negative values when vehicles need to be removed
from vi, and positive values when they need to me delivered to vi.
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Notice again from Definition 7.2.4 that in order to maximize the total time during which
a station remains balanced, demand forecasting model needs to be able to forecast pick-up
and drop-off demands multiple steps ahead of time.

The vehicle route optimisation engine is the central component of the proposed frame-
work. Based on the computed rebalancing targets, the engine finds near optimal routes for a
fleet of rebalancing vehicles. However, at this point, we still treat the engine as a black box
and discuss it only in terms of its inputs and outputs. Later in this chapter, we will formally
define the underlying route optimisation problem and analyse the proposed solution. The
routing engine takes as input a set of stations to be rebalanced VR ⊆ V , along with the
corresponding rebalancing targets di, ∀vi ∈ VR, and a fleet of vehicles H = {h1, ..., hM} of
capacity lmax along with their current position in the bike station network vk0 ∈ V . It is
important to emphasize that the route engine takes the real-time vehicle information and
periodically (or on a request) re-optimises the routes through a feedback loop. This makes
the proposed framework highly adaptive to unplanned events (e.g., weather changes, traffic
jams, vehicle failures, etc.) and driver’s performance pace.

To better explain the introduced workflow, let us consider a toy example illustrated by
Figure 72. The figure shows a snapshot of route plan at some time point τx. Two routes
have been planned for a small fleet of vehicles H = {h1, h2}. Each line represents the route
of one vehicle, where at each stop (represented as horizontal line parts) the rebalancing
targets di are indicated. Journeys which have been already conducted by the time point
τx are indicated by a solid line, whereas journeys which should start after τx are indicated
by a dashed line, meaning they may be subject to change. As previously mentioned, the
routes are re-optimised periodically or on a request based on vehicles’ progress and updated
predictions from demand and redistribution models. Here, the next re-optimisation period
is denoted by Tupdate. At Tupdate the routing engine pulls the progress data (i.e., current
positions in the station graph) from the vehicles, and feeds them with updated routes.
Let us now assume that the snapshot shown in Figure 72 is taken at the re-optimisation
period Tupdate, i.e., τx = Tupdate. In this case, only part of the planned journeys have been
conducted ({v3, v10, v13, v19} by vehicle h1, and {v8, v4, v7} by vehicle h2). The routing
engine reads the vehicles’ current positions v1

0 = v19 and v2
0 = v7 and, based on updated

rebalancing targets, computes a new set of routes. This way, the route planning seamlessly
adapts to driver’s performance pace and unplanned traffic events.

7.2.2. Problem definition

In the rest of this section, we separately define three main goals, i.e., research problems,
of the proposed online bike sharing rebalancing problem. Notice below that each of the
problems corresponds to one of the previously introduced framework components - demand
forecasting model, redistribution model, and routing engine.

Problem 1 (Multi-step-ahead demand forecasting) Given the pick-up demands µi(t−
k+ 1), ..., µi(t), drop-off demands λi(t−k+ 1), ..., λi(t), and weather reports w(t−k), w(t−
k + 1), ..., w(t) for the past k time intervals, the goal of the first problem is to forecast the
future demands µi(t + 1), ..., µi(t + n) and λi(t + 1), ..., λi(t + n) for each station vi in the
next n time intervals.

Problem 2 (Rebalancing target estimation) Given the forecast demands for n future
time intervals, the goal of the follow-up problem is to compute rebalancing targets di for
each station vi using calculation (7.3) introduced by Definition 7.2.4.
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Figure 72: An example snapshot of route plan at time point τx.

Problem 3 (Multi-capacitated vehicle routing problem) Given a bike station net-
work G(V,E), a fleet of located vehicles H = {h1, ..., hM} with known current load (i.e.,
number of carried bikes), and rebalancing targets di ∀vi ∈ VR ⊆ V , the goal of the proposed
routing problem is to determine a set of M routes R = {r1, ..., rM}, i.e., one for each ve-
hicle, that collectively minimise the total travel cost while visiting (i.e., rebalancing) all of
the unbalanced stations VR. We further formalise it as follows,

Minimize
F(x) =

∑
vi∈VR

∑
vj∈VR

∑
rk∈R

xkijcij (7.4)

s.t. ∑
rk∈R

∑
vi 6=vj

xkij =
∑
rk∈R

∑
vi 6=vj

xkji = 1, ∀vj ∈ VR (7.5)

∑
vj∈VR

xk0j = 1, ∀rk ∈ R (7.6)

∑
vi∈VR

xki0 = 0, ∀rk ∈ R (7.7)

li +
∑
rk∈R

∑
vj 6=vi

xkijdj =
∑
rk∈R

∑
vj 6=vi

xkij lj ∀vi ∈ VR (7.8)

∑
vi∈VR

∑
vj∈VR

xkij ≤ |S| − 1 ∀rk ∈ R,∀S ⊆ VR, S 6= ∅ (7.9)

xkij ∈ {0, 1} ∀vi 6= vj ∈ VR,∀rk ∈ R (7.10)

where the decision variable xkij is defined to be equal to 1 if edge eij is traversed by the
vehicle hk (i.e., hk carries bikes from vi to vj), and equal to 0, otherwise.
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Objective equation (7.4) represents the travel time over the entire set of solution routes.
Constraint (7.5) ensures that vehicles enter and leave each of the unbalanced stations ex-
actly once. Constraints (7.6) and (7.7) indicate that each of the routes rk ∈ R starts at the
vehicle’s current position vk0 and does not revisit it. Equation (7.8) is employed to conserve
bike flow in the network. Here, we introduce a new variable li which represents a vehicle’s
load, i.e., the total number of carried bikes, after visiting station vi. Notice that initial
loads at the vehicles’ current positions li ∀vi ∈ {vk0 |hk ∈ H} are known beforehand from
the feedback loop introduced in the previous section. Constraints (7.9) are classical sub-
tour elimination constraints (GSECs) which impose the connectivity of a solution (see, e.g.,
[163]). However, they increase exponentially with the number of stations, making the prob-
lem practically unsolvable for even moderate number of bike stations. Finally, constraint
(7.10) ensures that employed decision variable xkij only takes values 0 or 1.

7.3. Demand forecasting

Given that the optimal inventory levels aim at maximising the time within which the
stations remain balanced (i.e., with enough bicycles and empty stands to meet the future
user demand), we propose to forecast user demand multiple time steps into the future.
Such approach allows for more accurate long-term inventory planning which can lower the
number of redistribution runs and thus significantly reduce the operating cost. However,
accurate multi-step-ahead time series forecasting is a very challenging problem which faces
growing amount of uncertainties such as the accumulation of errors, reduced accuracy, and
lack of information. While traditional strategies to multi-step-ahead forecasting rely on re-
cursive or direct use of one-step-ahead models [164] and thus suffer from the aforementioned
drawbacks, we model our task as a machine learning problem and propose a deep learning
approach to solve it efficiently. We introduce multi-input multi-output (MIMO) prediction
model based on Long Short-Term Memory networks (LSTMs).

7.3.1. Input modelling
Typical system data provided by BSS operators contains details about the trips between

bicycle stations taken by individual users. For example, the data can for each trip include
start and finish time, origin and destination stations (ID, name, and geolocation), total
duration, bicycle ID, and anonymised user information (gender, year of birth, and customer
type). However, since for many BSSs trip data is not this detailed, in this work, we restrict
ourselves to minimal feature set containing only trip’s start and finish time, and IDs of origin
and destination stations. This way, we can represent each trip with a 4-tuple (record) just
like described in Definition 7.2.2.

Given that each trip record represents one pick-up and one drop-off event at some
points in continuous time domain, we need to discretise time into fixed-size intervals and
count the total number of such events for each station. We choose 30-minute discretisation
interval, since in most BSSs users are allowed to rent bicycles in 30-minute increments.
After applying equations (7.1) and (7.2) over the entire trip data and all 30-minute intervals
within continuous data collection period, we obtain time series of the pick-up and drop-off
demands, µi(t) and λi(t), for each station si.

In order to apply deep learning to our forecasting problem, we transform the time
series data into a set of overlapping time-lagged sequences using time-delay embedding. To
illustrate this process let us consider time series of the pick-up user demand at station si,

... µi(t− 2), µi(t− 1), µi(t), µi(t+ 1), µi(t+ 2), ...
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where the values up to time interval t are known. Assuming that the next values of the time
series depend on at most k past values, and since we want to predict n steps into the future,
we transform the time series into pairs of input and output vectors (sequences) xt(µi) and
yt(µi) composed of k and n consecutive measurements of the original time series,

xt(µi) = [µi(t− k + 1), ..., µi(t− 1), µi(t)]
yt(µi) = [µi(t+ 1), µi(t+ 2), ..., µi(t+ n)].

We can now construct input and output matrices X(µi) and Y (µi) for each station si
simply by stacking all of the sequences as rows, i.e.,

X(µi) =

µi(0) µi(1) ... µi(k)
µi(1) µi(2) ... µi(k + 1)
... ... ...



Y (µi) =

µi(k + 1) µi(k + 2) ... µi(k + n)
µi(k + 2) µi(k + 3) ... µi(k + n+ 1)

... ... ...

 .
In the same way we construct input and output matrices X(λi) and Y (λi) for each station
si using the time series of the drop-off demand. Later in the chapter we will see how different
choices for embedding dimensions k and n affect the performance of the forecasting model.

Notice that for now our input data X(µi) and X(λi) is univariate, i.e., it depends
on past values of a single input variable – number of pick-ups/drop-offs. However, given
that the user demand varies strongly by time of day and day of week, by giving additional
temporal context to the input data, we can help our model learn such dependencies and
improve forecasting accuracy. Therefore, we augment the input matrices with the additional
temporal variables (features). Variable min(t) is introduced to represent time of day as a
number of minutes from midnight to the beginning of time interval t. Days of week are
represented as weekday numbers dow(t) ∈ [1, 7], where 1 encodes Monday, and 7 encodes
Sunday. Further, we also introduce variable mnt(t) ∈ [1, 12] to represent months of year. In
order to accommodate these new temporal features and still preserve sequential nature of
input matrices X(µi) and X(λi), we reshape the matrices into third-order tensors and stack
the temporal features along its third dimension. In other words, we transform X(µi) and
X(λi) intoN×k×M tensors whereN is the total number of input sequences, k is embedding
dimension (length of input sequence), and M is the total number of input features. The
following representation of input tensor X(µi) further illustrates this transformation.

mnt(0) mnt(1) ... mnt(k)

mnt(1) mnt(2) ... mnt(k + 1)

mnt(2) mnt(3) ... mnt(k + 2)

... ... ...
dow(0) dow(1) ... dow(k)

dow(1) dow(2) ... dow(k + 1)

dow(3) dow(4) ... dow(k + 2)

... ... ...
min(0) min(1) ... min(k)

min(1) min(2) ... min(k + 1)

min(2) min(3) ... min(k + 2)

... ... ...
µi(0) µi(1) ... µi(k)

µi(1) µi(2) ... µi(k + 1)

µi(2) µi(3) ... µi(k + 2)

... ... ...
feat

ure
s (M

)

time intervals (k)

se
qu

en
ce
s
(N

)
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Above input representation allows us to conveniently introduce new features by expand-
ing the third dimension (i.e., depth) of the tensor. In order to demonstrate this, let us
consider weather information as an additional input to the forecast. We assume that a
weather report w(t) is available for each time interval t. The report consists of typical
weather variables such as sky condition, temperature (◦C), humidity (%), visibility (km),
and wind speed (km/h), i.e., w(t) =

(
sky(t), temp(t), hum(t), vis(t), wind(t)

)
. Here it is

important to emphasize that all of the above variables are numerical except the sky condi-
tion sky(t) which is usually represented as a short phrase (e.g., sunny, mostly cloudy, light
rain, clear, etc.). To make it numeric-valued, we can use one-hot encoding, i.e., introduce
new variables for each possible condition phrase, setting them all to zero except for the one
which corresponds to current sky condition, which is set to one. However, the number of
possible sky conditions can be large, while most of them rarely take place. For example,
the weather provider that we use in this work (Weather Channel) specifies 133 different
condition phrase1 while only 16 of them appear among the weather reports collected in this
work. Therefore, in order to reduce the number of new condition variables, and thus prevent
the forecasting model from overfitting, we analysed the correlation between number of pick-
ups/drop-offs and sky conditions and then appropriately grouped possible condition phrases
into three groups – good, bad, moderate. Using this grouping, we can now replace sky(t)
with only three new binary variables sky_good(t), sky_bad(t), and sky_moderate(t).

Finally, we incorporate weather information by expanding the third dimension of the
input tensors X(λi) and Y (λi) for each weather variable in w(t). This leaves us with tensors
containing N sequences of k intervals and M = 11 features.

7.3.2. Deep learning model

Over the last several years, recurrent neural networks (RNNs) with hidden Long Short-
Term Memory (LSTM) units [165] have become the model of choice for learning from data
with sequential features. LSTM overcomes the problem of vanishing gradients [166], which
makes very difficult for traditional RNNs to learn to correlate temporally distant events.
This is achieved with carefully designed memory cells which protect their hidden activation
using special gating mechanism to control the information flow through the cell. We refer
the interested reader to [165] and [167] for a detailed description of LSTM units and memory
cell implementation.

In this work, we harness the sequential nature of RNNs and propose an LSTM-based
approach for user demand prediction in BSSs. In Figure 73 we illustrate an example of two-
layered LSTM architecture unrolled through time, which assists us in introducing sequence-
to-sequence (seq2seq) configuration [168] that allows us to forecast over multiple time steps.
Notice here that input x and output y are sequences whose time steps are revealed in
unrolled representation of the network. The illustrated network is composed of two LSTM
layers named encoder and decoder. The purpose of the encoder is to convert input sequences
of variable length and encode them in a fixed length representations, which is then used as
the input state (i.e., context) for the decoder. In our example, the encoder processes all
inputs in chronological order from t−k+1 to t and passes its hidden state to the decoder at
the final sequence step of t, whereupon the decoder starts to generate an output sequence.
The main advantage of this architecture is that it allows us to use inputs of arbitrary
length to predict for an arbitrary number of future time steps. The encoder-decoder LSTM
was developed for natural language processing problems where it demonstrated state-of-
the-art performance, specifically in the area of text translation. However, observe that

1https://www.wunderground.com/weather/api/d/docs?d=resources/phrase-glossary
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Figure 73: Sequence-to-sequence architecture

this architecture is particularly appropriate in our case where user demands for n future
time steps is predicted based on their values in k preceding time steps, where n 6= k. For
more details about sequence-to-sequence prediction we refer the reader to [168] where the
architecture was first introduced.

The encoder and decoder in the network in Figure 73 could easily have more layers to
empower the capability to learn more complex dependencies. A naïve approach to our fore-
casting problem would be to train such multi-layered network separately over X(µi),Y (µi)
and X(λi),Y (λi) for each station si. While this approach at first may seem as a good choice
given that the networks are trained for specific stations, we will see in Section 7.6 that with
the separate models we are essentially ignoring any correlation that might exist between
the stations. In addition, maintaining multiple models requires additional computation and
memory. Therefore, we propose to train a more advance network over data aggregated over
all stations in BSS. We construct new input and output tensors by concatenating X(µi)
and Y (µi) for each station si, i.e.,

X(µ) =


X(µ0)
X(µ1)

...
X(µS)

 ,Y (µ) =


Y (µ0)
Y (µ1)

...
Y (µS)

 ,∀si
where S is the total number of stations in BSS. In the same way we aggregate tensors X(λi)
and matrices Y (λi), ∀si, into X(λ) and Y (λ). Now, in order to track which sequences
belong to which station, we introduce an auxiliary input matrix Q which in each row t
contains non-sequential features, such as station ID, of the corresponding sequence (i.e.,
row) t in X(µ) and Y (µ) (and X(λ) and Y (λ)). In our case, in addition to station ID,
matrix Q will also contain information about holidays. For example, row qt = [123 1] of
matrix Q suggests that sequence t is recorded at station with ID = 123 during a holiday
(1).

Finally, in order to handle both sequential and non-sequential inputs we propose the
architecture illustrated in Figure 74. The architecture contains two input layers, one for
sequential inputs X(µ) and X(λ), and one for non-sequential inputs Q. Sequential inputs
are fed directly to encoder-decoder LSTM network configured as shown in Figure 73. To
obtain sequences of n future time steps, output of the decoder at each time step from t to
t + n is separately processed by fully-connected (inner product) layer. Given its temporal
dimension, we refer to this layer as time-distributed fully connected layer (TD-FC). At this
point, we introduce non-sequential data for each of the output sequences from the TD-FC
layer. In other words, we row-wise concatenate N × P matrix Q (where P is the total
number of non-sequential features) and N × n matrix R which is the output of TD-FC
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Figure 74: The proposed network architecture

layer. Finally, the merged data is fed to two-layered fully connected network to produce
final sequences of n future time steps.

7.4. Rebalancing target estimation

In the final step of the proposed framework, we use predicted user demands to compute
rebalancing targets for each of the stations in BSS. Recall from Definition 7.2.4 that this
computation consists of finding a rebalancing target di which would maximise the total
number of consecutive time intervals during which the station remains balanced. In order
to find such rebalancing target, Algorithm 15 iterates over all future horizons, i.e., time
intervals, and at each iteration it looks for a set of possible values for di (D̂) with respect
to time intervals considered in previous iterations. D̂ is determined in line 6 based on the
current inventory level ci, the station’s capacity li, and the total bicycle net flow (net)
represented as the difference between expected number of returned and rented bicycles up
until time interval of the current iteration (line 5). Thereafter, the algorithm restricts set
D̂ by selecting subset of rebalancing targets di (D) which keep the station balanced over
the current time interval, but also over all of the previous time intervals considered in past
iterations (line 8). If such subset does not exist, i.e., D is empty, the algorithm stops the
iteration (line 10). Finally, if there are several rebalancing target values left in D, the
algorithm takes one with the minimal absolute value (line 13) in order to minimize the cost
of rebalancing operation.

Notice that sets D̂ and D are connected, i.e., they are both intervals, which means that
the intersection between them (lines 7-8) can be found in constant time. This means that
the computation time of Algorithm 15 depends only on the number of future horizons n,
i.e., its time complexity is linear (O(n)).

7.5. Multi-capacitated vehicle routing

In Section 7.2.2 we introduced a very complex vehicle routing task (see Problem 3)
which calls for a more advanced optimisation paradigm with large, bold, search moves to
escape local optima. In Chapter 5 and 6 we were dealing with simpler-structured problems
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Algorithm 15: Rebalancing target estimation
Input: Predicted pick-up and drop-off demands µi(t+ j), λi(t+ j) ∀j ∈ [1..n],

current inventory status ci, capacity of the station li
Output: Rebalancing target si

1 Procedure EstimateRebalancingTarget(si)
2 net← 0
3 D ← ∅
4 for j ∈ [1..n] do
5 net← net+ λi(t+ j)− µi(t+ j)
6 Dj ← {di | 0 ≤ ci + di + net ≤ li}
7 if D ∩Dj 6= ∅ then
8 D ← D ∩Dj

9 else
10 break
11 end
12 end
13 return min{|di||di ∈ D}

where small search moves employed within VNS metaheuristic could deliver near-optimal
solutions. However, solutions to complex problems have to meet many constraints, and
often finding any kind of valid solution can be already very hard. Therefore, applying
small search moves may not always lead to valid neighbouring solutions. We approach
this "discontinuity problem" by using a very simple optimisation principle called Ruin and
Recreate (R&R). We ruin a large fraction of the solution which then gives as freedom to
restore it as best as we can. Hopefully, the new solution will be better than the previous
one. R&R principle is proved to be powerful all-purpose-heuristic which is able to deliver
high quality solutions to many well-known NP-hard problems. For example, [169] reports
on record braking results for related VRP using R&R principle. Therefore, in this section
we adopt R&R principle and propose slightly modified implementations of ruin and recreate
procedures proposed in [169] and [170]. For more information about the adopted methods,
we refer the interested reader to aforementioned works.

7.5.1. Solution representation
A solution to the proposed variant of VRP is represented as a combination of permu-

tations of nodes in each route rk ∈ R. Therefore, a single route rk ∈ R is represented as
an ordered set (i.e., tuple) of nodes with the corresponding rebalancing targets computed
in the previous section. For example, a solution R = {r1, r2, r3} with rebalancing targets
di ∀vi ∈ VR = {v1, ..., v11} can be represented as a combination of ordered sets, i.e.,

R =

 r1 = (v1
0 , v5, v3, v4, v2),

r2 = (v2
0 , v10, v6, v8),

r3 = (v3
0 , v1, v11, v7, v9)

 . (7.11)

Notice here that nodes v1
0 , v2

0 , and v3
0 represent current locations of vehicles h1, h2, and h3,

respectively. The feasibility of the above solution is defined by the following definition.

Definition 7.5.1 (Solution validity) Solution R with the above representation (7.11) is
valid if the following three conditions are satisfied:
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1. Each route rk ∈ R starts with the current location vk0 of the corresponding vehicle hk.
2. Each node vi ∈ VR is visited in exactly one route.
3. Vehicle’s load li after visiting each node vi ∈ VR is below vehicle’s capacity lmax.

7.5.2. Ruin procedure
Schrimpf et al. [169] introduced many different ruin strategies which can successfully

introduce search diversification into metaheuristic algorithms for VRP (e.g., radial ruin,
sequential ruin, random ruin). In this work we employ the random ruin strategy which will
remove A randomly selected nodes from VR and put them into the bag B. At this point
ruin procedure will not check the feasibility of the ruined solution as it can be significantly
changed after recreate procedure. Notice here that any node can be removed except the
starting ones which represent vehicles’ current locations. A random number of removed
nodes A is usually selected with A ≤ |VR| · f , where f is a fraction, i.e., f ∈ [0, 1], usually
determined experimentally. After A nodes have been removed and put into the bag B,
recreate procedure will re-insert one by one node from B with a specific strategy to maximise
the probability of improvement.

7.5.3. Recreate procedure
After ruin procedure we are left with a partial solution where not every node is visited.

To restore validity (see Definition 7.5.1), we apply repair procedure which will insert non-
visited nodes from B into exiting routes. There are many different ways to insert non-visited
nodes, but we will use best insertion strategy which will successively add all non-visited
nodes in the best possible way to the system. In other words, recreate procedure will
take one by one node from B and consider all possible insert positions (between each pair
of successive nodes) among all the routes in R. Finally, it will choose an insert position
which will create a new valid solution with the minimum cost. Of course, such greedy
approach may not always lead to optimal solution, however, re-applying ruin and recreate
procedures can increase the probability of obtaining an optimal or near-optimal solution.
In addition to ruin and recreate procedures, Dell’Amico et al. [170] define a set of local
search moves to further improve the solution after recreate procedure. Given that we have
already introduced some of this moves in previous chapters, we refer the interested reader
to [170] for more information. Finally, the overall framework of the algorithm is reported
in Algorithm 16.

7.6. Experimental evaluation

Our experimental study is based on real-world bicycle trip data collected in New York’s
BSS known as CitiBike. We used a subset of this data containing 12,246,450 trips with bi-
cycle pick-ups/drop-offs recorded at 750 stations over the period between January 1st, 2017
and October. 1st, 2017. Each pick-up and drop-off event is represented as a timestamp
and ID of the station where the event was recorded. We augmented this data with weather
information for each timestamp by obtaining historical weather data using Weather Chan-
nel’s API. This data consists of typical weather variables that we introduced previously
in Section 7.3.1. We constructed input sequences composed of k = {4, 8, 16, 24} past and
n = 8 future 30-minute intervals, and then randomly split them into a training set (80%)
and a test set (20%). Notice that 8 future time intervals corresponds to 4 hours, i.e., half
of a common 8-hour working shift. In order to measure the performance of the proposed
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Algorithm 16: Ruin & Recreate algorithm
Input: Set of nodes to be rebalanced VR, rebalancing targets di ∀vi ∈ VR, fleet of

vehicles H, vehicle capacity lmax, vehicles’ current locations vk0 ∀hk ∈ H,
ruin factor f

Output: Solution routes rk ∈ bestSolution
1 Procedure RuinAndRecreate()
2 Choose a random route rk ∀hk ∈ H with vk0 as a starting node
3 bestSolution← R
4 A← b|VR| · fc
5 while ! stopping condition do
6 B ← ∅
7 B ← randomly remove A nodes from R // Ruin
8 for vi ∈ B do
9 bestPos← ∅

10 bestCost← ∅
11 for rk ∈ R, insert position p do
12 Temporally insert vi at position p in route rk
13 newCost← compute new cost
14 if newCost < bestCost then
15 bestCost← newCost
16 bestPos← (rk, p)
17 end
18 Insert vi at bestPos // Recreate
19 end
20 if cost(R) < cost(bestSolution) then
21 bestSolution← R

22 end
23 return bestSolution

approach we use the mean absolute error (MAE) of user demands at each of the n = 8
predicted time intervals. In addition, we compare our approach with traditional neural
network, i.e., multilayer perceptron, simple linear regression, and two ensemble methods
that demonstrated competitive performance in previous related works [162, 171] – random
forest and gradient boosting machines.

We developed the proposed deep learning model using Keras neural networks API,
written in Python and running on top of TensorFlow machine learning library. The model’s
parameters were tuned manually by trial and error. The number of units contained in
encoder and decoder LSTM layers and two fully connected layer were 128, 256, 256, 256,
respectively. Given the very large number of training sequences (> 9 million) we trained
our model in batches of 1024 sequences over 100 training epochs. In Figure 75a we plot
MAE of pick-up and drop-off demand at each time horizon for different number of lagged
time intervals k. As expected, the prediction error decreases as we increase the number of
lagged observations, i.e. the model learns more complex dependencies. In the particular
experiment, average MAE over 8 time horizons decreases from 0.799 pick-ups for k = 4 to
0.713 pick-ups for k = 24 (and from 0.754 to 0.681 drop-offs). Also notice that prediction
error is lower at closer time horizons. For example, MAE of predicted pick-up demand in
the next 30 minutes (one step ahead) is only 0.667 for k = 24, while MAE of the same
prediction 4 hours (8 time steps) ahead of time is 0.741. This performance drop is more
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Figure 75: Effects of different parameters on the prediction accuracy

significant for smaller k values. For example, for k = 4, MAE increases 1.731% from first
to last time horizon, and 1.001% for k = 24. Similar can be observed in case of drop-off
prediction.

The guiding design principle behind our model was to separate sequential and non-
sequential data in order to train a single model for all stations in a BSS. We have previously
argued that this way we are not ignoring correlations that might exist between the stations,
which can significantly improve the overall prediction accuracy. To justify our design choice,
in Figure 75b we plot MAE of predicted pick-up and drop-off demands when each station
is trained on a separate model. Notice that these models are identical to the one proposed
in Figure 74 but without non-sequential input data and fully connected layers. The plot
clearly demonstrates the advantage of our approach. MAE averaged over 8 time horizons
is 0.882 pick-ups and 0.846 drop-offs in case of separate model training, and 0.713 pick-ups
and 0.681 drop-offs in case of collective model training.

In Figure 76 we compare the performance of our model against the baselines. Given
that the employed baseline models cannot handle sequential inputs, we represented each
time step as a set of additional features (i.e., columns) in 2D input. As expected, simple
linear regression model (LR) was not able to learn more complex nonlinear dependencies,
hence the largest MAE of 1.218 pick-ups and 1.192 drop-offs across all 8 time horizons. Here
we can also clearly observe the effect of error accumulation where MAE grows from 0.98
pick-ups and 0.95 drop-offs at the first time horizon to 1.32 pick-ups and 1.31 drop-offs at
the last time horizon. This effect is least noticeable in case of multilayer perceptron (MLP).
The employed MLP model was composed of 3 layers with 256 neurons each, and it was
trained in the same way as our deep learning model (in batches of 1024 samples over 100
training epochs). MLP performs significantly better than LR, and comparably to ensemble
models – random forest (RF) and gradient boosting machines (GBM). Our experiments
confirm the efficiency of the ensemble models reported in previous works. They manage to
successfully average out biases and reduce the variance. Finally, as can been seen in the
plot, our method outperforms tested baselines. In average, it performs 41% better than LR,
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Figure 76: MAE of (a) pick-up and (b) drop-off demand at each time horizon for different
baselines.

Figure 77: Rebalancing targets in New York’s BSS

11% better than MLP, 18% better than RT, and 13% better than GBM.
In order to demonstrate the applicability of our framework, in Figure 77 we visualize

rebalancing targets for the stations in New York’s BSS. Each rebalancing target is illustrated
as circle whose color represents the amount and type of redistribution, i.e., shade of red for
bicycle removals and shade of blue for bicycle restocking. In this particular example, we
computed the rebalancing targets (Algorithm 15) based on inventory snapshot recorded on
August 9th, 2017 at 5am (a) and 1pm (b), i.e., before morning and afternoon rush hours.
In Figure 77a stations located in business areas in Lower (1) and Midtown (2) Manhattan
are coloured red, meaning some number of bicycles need to be removed due to increased
drop-off demand in morning hours. On the other hand, stations in residential areas, for
example in East Village (3) and Upper East Side (4), are coloured blue, meaning increased
pick-up demand is expected in morning hours and additional bicycles need to be brought to
these stations. In Figure 77b, the color are reversed. Some stations in business dominant
areas (e.g., 1, 2) does not have enough bicycles to meet high pick-up demand in afternoon
hours (coloured blue), while some stations in residential areas (e.g., 3, 4) have to many
bicycle and cannot meet upcoming drop-off demand.



Chapter 8

Conclusion and future work
Mobility management of the future – without
environmental sensors or hardware

Some of the conclusions in this chapter were previously discussed in the following position
paper:

P. Mrazovic, I. De La Rubia, J. Urmeneta, C. Balufo, R. Tapias, M. Matskin, and
J. L. Larriba-Pey, “CIGO! Mobility management platform for growing efficient and
balanced smart city ecosystem”, in Smart Cities Conference (ISC2), 2016 IEEE
International, IEEE, 2016, pp. 1–4.

Throughout this thesis we learned that Smart Mobility can be achieved in many different
ways, from infrastructural projects which change urban landscape to Intelligent Transport
Systems (ITS) which heavily rely on Information and Communications Technologies (ICT).
One of the main goals of the thesis was to promote the extensive use of ICT in achieving
Smart Mobility. In particular, we aimed to demonstrate how to leverage MCS paradigm
to collect user-generated mobility data, process it, and finally, use it to route and manage
people flows in urban environments. We argued that such approach reduces the need for
large investments or sophisticated sensor technologies, while achieving common Smart Mo-
bility objectives such as reducing traffic congestions and noise pollution, improving transfer
speeds and costs, and increasing people safety.

In the second part of the thesis we introduced algorithmically challenging mobility prob-
lems which rely on simple mobility data crowdsensed from volunteer participants. We
showed that with the adequate data processing mechanisms and algorithm design we can
solve some common routing problems in MCS settings (e.g., multi-objective planning, re-
ducing congestions, balancing the use of public infrastructure, meeting user demands, etc.).
However, we also learned that mobility management problems are application-specific and
as such they require distinct algorithmic approaches. This naturally opens some interest-
ing technical and philosophical questions. Can we design and develop a general mobility
management system that can easily accommodate any application and completely rely on
MCS? How would such system attract so many volunteer participants and data contribu-
tors? Who are the main actors in such system and how do they form a value chain? Is this
a mobility management of the future, i.e., without environmental sensors or hardware? As
a conclusion to this thesis, we will try to answer some of these questions by presenting our
own attempt to develop such system.

As a part of our research, we designed an affordable MCS-driven mobility management
platform which can attract numerous mobility actors and still be orchestrated by the city
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Figure 81: Mobility actors in the proposed general mobility management platform

administrators. Our design allows city administrators (i.e., city governments) to formulate
mobility policies (to promote or reduce the traffic of people flows in certain areas) and
to motivate different actors to execute them while tracking how those policies are being
executed. However, instead of pushing the final users to follow the created policies, the
policies are injected into the specific third party mobile applications linked to the platform.
This way, logistic companies and providers of mobile applications, who provide services
closely tied to the city resources, become aware of how the city government would like
to organize the mobility. This makes their services conformant with the city mobility
policies. Obviously, advantages of such approach are threefold: city governments can easily
implement their mobility goals, companies and mobile application providers can upgrade
their logistic and mobility services with respect to the present mobility in the city, final
users can freely move in a less crowded and balanced city. Additionally, we include the POI
owners and allow them to promote their businesses through the adapted mobility policies.
In Figure 81 the proposed platform is represented as a black box in order to emphasize the
involved actors and to show how they interact using different information flows. Using the
scheme we can explain the role of each actor in the proposed model.

City governments – The city governments are the mobility supervisors and policies
makers, and thus are represented as main actors in the system. They need to alleviate
the number of people in certain areas of the city in order to reduce agglomerations and to
promote alternative urban areas to bring well economic growth. With the proposed plat-
form the city governments are able to formulate their mobility policies (1) and motivate the
final users, i.e. citizens, tourists and employees of the companies that utilize the platform,
to execute them through the linked mobile applications (2). Recall from Chapter 5 that,
depending on an application, mobility policies can be formulated as restriction values asso-
ciated to specific urban areas, traffic routes or POIs around the city. As shown in Figure 81
the platform also integrates the data from various sources such as Open Data, mobile ap-
plications (MCS), and government data (3) and use it to ease the mobility policies creation,
e.g., by visualizing the current mobility on the city map. Additionally, the data from the
associated mobile applications provides feedback on effectiveness of injected mobility poli-
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cies (4), and thus creates a virtuous cycle of creating, tracking and improving the policies
(1,5).

Mobile application providers and companies – Logistic companies and providers
of the third party mobile applications which offer services related to the city resources
(e.g. tourist applications, public transport applications, parking applications, navigation
systems, etc.) are hardly aware about what the mobility in the city or the city government’s
mobility objectives are. Therefore, the employed logistic and mobility services are non-
conformant with the strategies applied by the city to improve its mobility. By connecting
mobile applications to the proposed platform, companies and application providers are able
to adapt their services to injected mobility policies (2), and thus make their final users
conscious of the present mobility in the city and provide better quality of service (6).

POI owners – POIs (e.g. shops, bars, restaurants, museums, etc.) exist in different
economically developed areas of the city and they need to generate a growing business to
evolve. However, some street businesses are placed in parts of the city which do not have the
necessary turnover of people to grow and need to have a showcase to users. Our vision of a
modern mobility management platform can give shops and restaurants a better exposure to
the customers, either citizens or visitors, at the cost of making small discounts or business
deals for them (7). Using an arbitrary business model between POI owners and the city
government (8), the platform can allow city governments to inject new mobility policies
adapted to the advertised POIs to a specific group of users (2). POI owners, on the other
hand, attract new customers by offering discount coupons, and thus additionally motivate
the users to execute injected mobility policies (9).

Final users – The final users, i.e. citizens, visitors and employees of logistic companies,
are able to exploit less crowded, balanced and more liveable city at its maximum. Addi-
tionally, they can discover different POIs and new areas that were under cover before by
following discount offers tailored to their tastes and needs.

Even though the above value chain and business model may seem very optimistic given
that they gather numerous actors which should be properly coordinated and motivated
for participation, we still argue that the proposed design can be on track of achieving a
general mobility management system which can accommodate many different applications.
Therefore, in order to further investigate our view of such system, we developed a platform
prototype CIGO!1 which brings together aforementioned actors and tries to orchestrate
mobility in the city. We refer the interested reader to our position paper [172] where we
presented CIGO! platform and its logical architecture. As a study case we integrated into
CIGO! our bi-objective routing framework from Chapter 5. As a future work, we plan to
accommodate rest of the algorithms and frameworks proposed in this thesis. Obviously,
this calls for a modular and easily extendable design which we plan to study in the future.
Further, the proposed model of a general mobility management platform which mainly relies
on user-generated data opens up additional issues such as trust, reputation, and privacy of
volunteer participants, which all need to be addressed eventually. Another challenging task
is to develop quality control mechanisms which would assure high reliability of crowdsensed
data. As we can see, designing and developing a powerful mobility management platform
without environmental sensors or hardware calls for very ambitious, challenging, and time
consuming study which we are looking forward to conduct in the future.

1www.smart-cigo.com
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