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0.1 Abstract - English Version

Quantum Brownian motion represents a paradigmatic model of open
quantum system, namely a system which cannot be treated as an iso-
lated one, because of the unavoidable interaction with the surrounding
environment. In this case the central system is constituted by a quan-
tum particle, while the bath is made up by a large set of uncoupled
harmonic oscillators. In the original model, the interaction between the
system and the environment shows a linear dependence on the particle
position. Such a particular form corresponds to a homogeneous envi-
ronment, inducing a damping and diffusion which depends on the state.
This is not the most general situation: often the environment shows an
inhomogeneous character given by a space-dependent density, involv-
ing a non-linearity in the coupling with the central system. One of the
main motivations of the thesis is the study of quantum Brownian mo-
tion in presence of this non-linear coupling. In particular we focus on
the case in which the bath-particle interaction depends quadratically on
the position of the latter. There exist several techniques aimed to treat
the physics of the model. For instance one could consider the master
equation, namely an equation ruling the temporal evolution of the state
of the Brownian particle, here represented by its reduced density matrix.
We derive such an equation in the Born-Markov regime and look into its
stationary solution, studying its configuration in the phase space. For a
non-linear quadratic coupling the stationary state may be approximated
by means of a Gaussian Wigner function, that experiences genuine po-
sition squeezing (i.e. the position variance of the particle takes a value
smaller than that associated to the Heisenberg principle, although this is
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fulfilled) at low temperature and as the coupling with the bath grows.
However, the Born-Markov master equation is not the most appropri-
ate tool to investigate the regime in which squeezing occurs, since the
underlying hypothesis in general fail at strong coupling and low tem-
perature, leading to violations of the Heisenberg principle. To overcome
this problem we recall alternative methods, such as a Lindblad equation,
namely a master equation constructed to preserve the positivity of the
state at any time, and Heisenberg equations. In particular we employ the
Heisenberg equation formalism to explore the behavior of the Bose po-
laron, i.e. an impurity embedded in a Bose-Einstein condensate. This ex-
perimentally feasible system attracted a lot of attention in the last years.
We derive the equation of motion of the impurity position showing that
it shows the same form of the famous equation derived by Langevin in
1909 in the context of classical Brownian motion. The main difference
lies in the fact that the impurity Langevin-like equation for the impurity
carries a certain amount of memory effects, while the original one was
purely Markovian. An important part of the work is devoted to the so-
lution of the motion equation for the impurity, in order to calculate the
position variance that can be measured in experiments. For this goal we
distinguish the case in which the impurity is trapped in a harmonic po-
tential and that where it is free of any trap. In the latter case the impurity
the position variance exhibits a quadratic dependence on time (i.e. ballis-
tic diffusion), as a consequence of memory effects. When the impurity is
trapped in a harmonic potential it approaches an equilibrium state local-
ized in average in the middle of the trap. Here, at low temperature and
for certain values of the coupling strength we detect genuine position
squeezing. When we consider a gas with a Thomas-Fermi profile we find
that such an effect is improved if we make the gas trap tighter. Genuine
squeezing plays an important role in the context of quantum metrology
and opens a wide range of possibility to design new protocols, such as
the quantum thermometer.

0.2 Abstract - Spanish Version

El movimiento Browniano cuántico es uno de los principales modelos de
sistema abierto, es decir un sistema cuyo comportamiento no se puede
tratar de manera separada de su entorno. Este modelo describe la física
de una partícula acoplada a un entorno de osciladores. En la versión
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original del modelo la interacción entre la partícula y el entorno manifi-
esta una dependencia lineal de la posición de ambos los sistemas. Esta
forma analítica del acoplamiento corresponde a un entorno homogeneo,
asociado a una fricción y una difusión que dependen del estado del sis-
tema. En todo caso, esta no es la situación más general: a menudo el
enorno es inhomogeneo, ya que la densidad no es constante, y esto pro-
duce una interacción cuya dependencia de la posición de la partícula no
es lineal. Una de las motivaciones principales de esta tesis es el estudio
del movimiento Browniano cuántico en presencia de acoplamiento non-
lineal. En particular, estudiamos el caso de dependencia cuadrática en la
posición de la partícula. Existen muchas técnicas para abordar el mod-
elo. Por ejemplo, se puede emplear la master equation, o sea un ecuación
que gobierna la evolución en el tiempo del estado de la partícula, rep-
resentado por el operador densidad reducido. Derivamos esta ecuación
en el régimen de Born-Markov, y estudiamos la forma del estado esta-
cionario en el espacio de las fases. Cuando el acoplamiento es cuadrático,
este estado se puede aproximar por medio de una función de Wigner de
forma Gausiana, cuya peculiaridad es la emergencia de genuine posi-
tion squeezing (la varianza de la posición adquiere un valor más bajo de
el asociado a la cota de Heisenberg) a temperaturas bajas y cuando el
acoplamiento crece. Sin embargo, la ecuación de Born-Markov no es la
herramienta más adecuada para tratar el régimen en el que detectamos
squeezing, porque las hipótesis subyacentes en general no valen a tem-
peraturas bajas e interacción fuerte, llevando a violaciones del principio
de Heisenberg. Para superar este obstáculo es posible emplear métodos
alternativos, por ejemplo la ecuación de Lindblad, es decir una ecuación
cuya forma sirve para preservar la positividad del estado en cualquier
instante, y las ecuaciones de Heisenberg. En particular, aplicamos el
formalismo de las ecuaciones de Heisenberg para investigar el compor-
tamiento del Bose polaron, o sea una impureza en un condensado de
Bose-Einstein. Es un sistema realista experimentalmente que ha atraido
mucha atención recientemente. Derivamos la ecuación del movimiento
de la impureza y mostramos que su forma analítica es la misma que la
de la ecuación de Langevin para el movimiento Browniano clásico. La
diferencia principal es que en este caso la dinámica acarrea efectos de
memoria. Una parte importante del trabajo consiste en solucionar esta
ecuación del movimiento para evaluar la varianza de la posición, que se
puede medir en experimentos. Aquí diferenciamos dos casos: cuando
la impureza está atrapada en un potencial armónico, y cuando no hay
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trampa armónica. En el segundo caso la varianza es proporcional al
cuadrado del tiempo (difusión balística), como consecuencia de los efec-
tos de memoria. Cuando la impureza está atrapada alcanza un estado de
equilibrio localizado en el medio de la trampa. En este estado, bajando
la temperatura y considerando valores del coupling más fuertes detec-
tamos otra vez squeezing. Si consideramos un gas con un densidad de
Thomas-Fermi se puede comprobar que este efecto se puede optimizar
aprietando la trampa del gas. El estudio del squeezing es muy impor-
tante en el marco de la metrología cuántica porque permite el desarrollo
de nuevo protocolos como el termometro cuántico.
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Chapter 1

Introduction

Brownian motion: from classical to quantum

Brownian motion refers to random dynamics of heavy particles suspended
in a liquid or a gas, generated by their collisions with the constituents of
the fluid around. This transport phenomenon is named after the botanist
Robert Brown. In 1827, while he was looking through a microscope at
pollen grains in water, he noted that the grains moved, but he was not
able to determine the mechanisms that caused this motion. Atoms and
molecules had long been theorized as the constituents of the matter, and
many years later, Albert Einstein explained in precise detail how the mo-
tion observed by Brown was a result of the pollen being moved by in-
dividual water molecules. So, Brownian motion became an important
model aimed to approach a large set of different contexts characterized
by a non-deterministic behavior, or where dissipative processes occur, as
result of the unavoidable interaction with the environment around (cf.
Mazo, 2002; Gardiner and Zoller, 2004; Breuer and Petruccione, 2007;
Weiss, 2008).

In his study of the Brownian motion, Albert Einstein considered both
the pollen grains and the water molecules as classical objects, because a
macroscopic particle in a viscous medium can be correctly described by
the classical theory. We refer to such system as classical Brownian mo-
tion. However, in many situations of physical interest, we are not able
to describe the dynamics of the system in a completely classical man-
ner. For instance, as the temperature starts to achieve very low values,
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we expect to encounter quantum effects. To address these issues, a the-
ory of quantum Brownian motion (QBM) was developed. The QBM de-
scribes the behavior of a particle coupled with a thermal1 bath made
up of a large number of quantum harmonic oscillators, satisfying the
Bose-Einstein statistics. It represents a paradigmatic example of open
quantum system, i.e. a system whose dynamics is affected by the sur-
rounding non-controllable degrees of freedom, and it has been studied
for decades (Caldeira and Leggett, 1983a; Caldeira and Leggett, 1983b;
Grabert, Schramm, and Ingold, 1988; Hu, Paz, and Zhang, 1992; Breuer
and Petruccione, 2007; Schlosshauer, 2007; Waldenfels, 2014; Vega and
Alonso, 2017).

First of all, QBM is often adopted to analyze some problems lying at
the core of the foundations of quantum mechanics. Here, one of the main
unsolved questions regards the so-called quantum to classical transition, i.e.
how the classical features, we experience every day in the macroscopic
world, arise from the underlying quantum domain. For instance, the
non-observability of interference: why is it so difficult to detect quantum
interference effects on mesoscopic and macroscopic scales? Moreover,
there is the famous problem of outcomes, also known as the measurement
problem: what, within a measurement process, selects a particular out-
come among the different possibilities described by the quantum proba-
bility distribution? Almost all the attempts to deal with these issues are
based on the idea that a quantum system cannot be considered as iso-
lated from the degrees of freedom around. Conversely, it continuously
interacts with these degrees of freedom, and the quantum effects are sup-
pressed, just as a consequence of such an interaction (Schlosshauer, 2007;
Zurek, 2009). In this framework, QBM is often employed to describe this
interaction concretely and in detail, in order to approach quantitatively
the problems mentioned above (Schlosshauer, 2007; Blume-Kohout and
Zurek, 2008; Tuziemski and Korbicz, 2015; Galve, Zambrini, and Manis-
calco, 2016).

In addition, QBM has been employed to investigate the origins of
friction, i.e. the force resisting the relative motion of solid surfaces, fluid
layers, and material elements sliding against each other. Friction is a
macroscopic phenomenon, but its microscopic mechanisms are still only
partially known and controversial. The theory of QBM has often been

1More generally, the bath can be initially in a non-necessarily thermal stationary state
of some dynamics.
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employed in this context, i.e. to construct a microscopic theory of the fric-
tion (Gardiner and Zoller, 2004; Caldeira and Leggett, 1983a; Caldeira
and Leggett, 1983b). Analogous theories have been devised in quantum
electrodynamics in order to explain the origins of radiation damping and
Lamb shift (Rzazewski and Zakowicz, 1971; Zakowicz and Rzazewski,
1974; Rzazewski and Zakowicz, 1976; Wodkiewicz and Eberly, 1971; Rzazewski
and Zakowicz, 1980; Lewenstein and Rzazewski, 1980).

Finally, QBM is also exploited for more practical purposes. For ex-
ample, in many physical situations it constitutes the default choice for
evaluating the decoherence and dissipation processes occurring in a sys-
tem due to the interaction with the surrounding non-controllable degrees
of freedom (Weiss, 2008). This task is particularly important in all exper-
iments aimed to build and detect macroscopic coherent superpositions.
In this context, it is very important to monitor decoherence, because it
destroys the interference effects, and QBM permits to analyze these pro-
cesses providing analytical expressions for the time scales ruling them
(Marshall et al., 2003; Gröblacher et al., 2015). Obviously, the importance
of decoherence and dissipation goes beyond this class of problems, and
plays a very important role also in other fields, such as quantum biology:
also in this case QBM provides a good scheme to describe the effects dis-
turbing quantum features in many biological processes (Abbot, Davies,
and Pati, 2008).

Quantum Brownian motion in an inhomogeneous environment

The vast majority of the literature on QBM is devoted to microscopic
models in which the coupling of the Brownian particle to the bosonic
bath is linear both in bath creation and annihilation operators, and in
position (or momentum) of the particle. The case when such coupling
is non-linear in either the bath or the system operators has been inves-
tigated, for instance, in the old papers of Landauer, 1957, who studied
non-linearity in bath operators, and Dykman and Krivoglaz, 1975, Hu,
Paz, and Zhang, 1993, Brun, 1993, and Banerjee and Ghosh, 2003, who
considered both situations. Physically, the case of a coupling that devi-
ates from linearity in the system coordinates, corresponds to a situation
where damping and diffusion are spatially inhomogeneous. Obviously,
this non-linearity might have both classical and quantum consequences,
and as such deserves careful analysis.
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The inhomogeneity mentioned above has been recently intensively
studied in the context of classical Brownian motion and other classical
diffusive systems. In particular, explicit formulas were derived for noise-
induced drifts in the small-mass (Smoluchowski, 1916; Kramers, 1940) and
other limits (Hottovy, Volpe, and Wehr, 2012a; Hottovy, Volpe, and Wehr,
2014; McDaniel et al., 2014). Noise-induced drifts have been shown to ap-
pear in a general class of diffusive systems, including systems with time
delay and systems driven by colored noise. Applications include Brow-
nian motion in diffusion gradient (Volpe et al., 2010; Brettschneider et
al., 2011), noisy electrical circuits (Pesce et al., 2012) and thermophore-
sis (Hottovy, Volpe, and Wehr, 2012b). In the first two cases the theo-
retical predictions have been demonstrated to be in an excellent agree-
ment with the experiments. Diffusion in inhomogeneous and disordered
media is presently one of the fastest developing subjects in the theory
of random walks and classical Brownian motion (Haus and Kehr, 1987;
Havlin and Ben-Avraham, 1987; Bouchaud and Georges, 1990; Klafter
and Sokolov, 2011), and finds important applications in various areas of
science. There is a considerable interest in the studies of various forms
of anomalous diffusion and non-ergodicity (Metzler and Klafter, 2004;
Klafter and Sokolov, 2011; Höfling and Franosch, 2013; Metzler et al.,
2014), based either on the theory of heavy-tailed continuous-time ran-
dom walk (Montroll and Weiss, 1965; Scher and Montroll, 1975), or on
models characterized by a diffusivity (i.e. a diffusion coefficient) that is
inhomogeneous in time (Saxton, 1993) or space (Hottovy, Volpe, and
Wehr, 2012a; Cherstvy and Metzler, 2013). Particularly impressive is the
recent progress in single particle imaging, for instance in biophotonics
(cf. Tolić-Nørrelykke et al., 2004; Golding and Cox, 2006; Jeon et al., 2011;
Weigel et al., 2011; Kusumi et al., 2012; Bakker et al., 2012; Cisse et al.,
2013 and references therein), where the single particle trajectories of a
receptor on a cell membrane can be traced. It is presently intensively
investigated how random walk and classical Brownian motion models
with inhomogeneous diffusion may be employed in the description of
such phenomena (Massignan et al., 2014; Manzo et al., 2014; Gil et al.,
2017).

The examples mentioned above are strictly classical, but the recent
unprecedented progress in control, detection and manipulation of ultra-
cold atoms and ions (Lewenstein, Sanpera, and Ahufinger, 2012) are giv-
ing us the possibility to perform similar kind of experiments (e.g., single
particle tracking to monitor the real time dynamics of given atoms) in
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the quantum regime (Krinner et al., 2013). Note that such experiments
were unthinkable 20 years ago (see the corresponding paragraphs about
difficulties to observe QBM in Gardiner and Zoller, 2004). Note also that
ultracold set-ups will naturally involve spatial inhomogeneities, due to
the necessary presence of trapping potentials and eventual stray fields.
This is in fact one of the motivation of this work: to formulate and study
theory of the QBM in the presence of spatially inhomogeneous damping
and diffusion.

Quantum Brownian motion in ultracold gases

An immediate application of our theory concerns ultracold quantum gases.
Quantum gases have sparked off intense scientific interest in recent years,
both from the theoretical and experimental point of view. They are an
excellent testbed for manybody theory, and are particularly useful to in-
vestigate strongly coupled and correlated regimes, which remain hard to
reach in the solid state field (Bloch, Dalibard, and Zwerger, 2008; Lewen-
stein, Sanpera, and Ahufinger, 2012).

In particular QBM may be useful to approach the polaron problem.
The concept of polaron has been introduced by Landau and Pekar to de-
scribe the behavior of an electron in a dielectric crystal (Landau and
Pekar, 1948). The motion of the electron distorts the spatial configuration
of the surrounding ions, which let their equilibrium positions to screen
its charge. The movement of the ions is associated to phonon excitations
that dress the electron. The resulting system, which consists of the elec-
tron and its surrounding phonon cloud, is called polaron. The concept of
polaron has been extended to describe a generic particle, the impurity, in
a generic material, e.g. a conductor, a semiconductor or a gas (Fröhlich,
1954; Alexandrov and Devreese, 2009). One important example is that of
an impurity embedded in an ultracold gas. This system has been widely
studied both theoretically and experimentally, in the case of a ultracold
Fermi (Schirotzek et al., 2009; Kohstall et al., 2012; Koschorreck et al.,
2012; Massignan, Zaccanti, and Bruun, 2014; Lan and Lobo, 2014; Levin-
sen and Parish, 2014; Schmidt et al., 2012) or Bose gas (Côté, Kharchenko,
and Lukin, 2002; Massignan, Pethick, and Smith, 2005; Cucchietti and
Timmermans, 2006; Palzer et al., 2009; Catani et al., 2012; Spethmann et
al., 2012; Rath and Schmidt, 2013; Fukuhara et al., 2013; Shashi et al., 2014;
Benjamin and Demler, 2014; Grusdt et al., 2014a; Grusdt et al., 2014b;
Christensen, Levinsen, and Bruun, 2015a; Levinsen, Parish, and Bruun,
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2015; Ardila and Giorgini, 2015; Volosniev, Hammer, and Zinner, 2015;
Grusdt and Demler, 2016; Grusdt and Fleischhauer, 2016; Shchadilova et
al., 2016b; Shchadilova et al., 2016a; Castelnovo, Caux, and Simon, 2016;
Ardila and Giorgini, 2016; Robinson, Caux, and Konik, 2016; Jørgensen
et al., 2016; Hu et al., 2016; Rentrop et al., 2016).

In the QBM framework, the impurity plays the role of the Brownian
particle, while the bath consists of the degrees of freedom related to the
gas. The main reason to study this system from the open quantum sys-
tems point of view lies in the possibility to better describe the motion
of the impurity, rather than its spectral quantities, such as ground state,
energy levels and so on, like in the majority of the literature nowadays.
The interest in the motion of the impurity is motivated by a recent class
of experiments aimed to measure observable related to the impurity dy-
namics, for instance that of Catani et al., 2012. Here, the physics of an
impurity in a gas in one dimension is considered, and its position vari-
ance is measured, evaluating in a quantitative manner important features
of the motion, such as oscillations, damping and slope. To evaluate this
kind of behavior a continuous-variable model such as QBM is appropri-
ate. The application of QBM to the Bose polaron system (an impurity in a
Bose gas) is another fundamental motivation of the present work.

Plan of the thesis

The thesis is organized as follows. In chapter 2 we resume the essen-
tials of classical Brownian motion. This part of the thesis does not con-
tain any original result and basically relies on the material presented in
Mazo, 2002, but it is important to present the main results of the clas-
sical Brownian motion in order to make the manuscript self-consistent.
We describe the experimental observation of Robert Brown and then we
proceed by going through the theoretical study of Einstein, who wrote
an equation for density probability of the pollen grains, termed Fokker-
Planck equation. In this way he computed the mean square displacement
of the pollen grains, predicting a linear dependence on time (diffusion ef-
fect). Actually Einstein was not the only one who tried to propose a theo-
retical explanation of Brownian motion. Other scientists, such as Marian
Von Smoluchowski and then Paul Langevin, dealt with the same prob-
lem, although with different techniques. In particular, Langevin treated
Brownian motion by means of a stochastic differential equation ruling the
temporal evolution of the grains position. He also found diffusion effect
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for the mean square displacement. This was detected in experiments in
1909 by Perrin, confirming theories of Brownian motion and providing a
convincing evidence of the corpuscular essence of the matter.

In chapter 3 we start to study QBM. The physics of QBM may be ex-
plored by means of different formal tools. Among these, the most com-
mon is the master equation, i.e. an equation ruling the temporal evolution
of the reduced density matrix of the central system, here represented by
the quantum Brownian particle. The master equation is a fundamental
object in the field of open quantum systems and permits to evaluate in
a quantitative manner both decoherence and dissipation, as well as the
average values of the observables. However, in many cases the struc-
ture of a master equation may result complicated and the procedure to
solve it is often not so easy. Therefore, one usually looks into a par-
ticular class of approximated master equations, allowing to deal with
a certain problem in a mathematical simple manner. An important ex-
ample is provided by the Born-Markov master equation, based on the
absence of self-correlations within the environment (Markov approxima-
tion) and the assumption that the global state of the system plus the bath
remains separable at all times (Born approximation). In the majority of
the situations this kind of equations can be solved analytically providing
a description of the behavior of the central system. Comparisons with ex-
periments suggested that the predictions of this model are reasonable in
many cases (Moy, Hope, and Savage, 1999; Kirton et al., 2012). We derive
the Born-Markov master equations for QBM, constituting the quantum
analogue of the equation derived by Einstein. We solve this master equa-
tion and we focus on its stationary solution, which can be represented
in the phase-space by means of a Gaussian Wigner function. We study
how its geometrical configuration in the phase-space varies as the system
parameters of the system, such as temperature and interaction strength,
change: In particular, as the temperature decreases and the interaction
strength grows, the quantum Brownian particle experiences cooling and
genuine position squeezing. The latter is particularly important: it occurs
when the position variance of the particle takes a values smaller than that
associated by the Heisenberg principle, although this is fulfilled. Thus it
corresponds to high spatial localization of the Brownian particle, namely
to a good knowledge of the particle position, compared with the charac-
teristic length scales of the systems.

In chapter 4 we translate the same analysis to the QBM with a non-
linear coupling. We exhibits the Born-Markov master equation for the
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most general non-linear coupling, paying special attention to the situa-
tion where the dependence on the Brownian particle position is quadratic.
Here, the Gaussian Wigner function just provides an approximation for
the stationary state. Also in this case, it is possible to detect squeezing
and cooling as the temperature approaches very low values and the bath-
system coupling gets more and more strong. In this regime, anyway, both
Born and Markov approximations are not fulfilled and the resulting mas-
ter equation is not appropriate. In particular it yields to violations of the
positivity of the density operator associated to the state of the central sys-
tem, related to violations of the Heisenberg principle. There exist several
methods to overcame this problem. For instance, one could recall a mas-
ter equation in a Lindblad form. This class of equations was proposed in
1976 in parallel and independently by both Lindblad, 1976a and Gorini,
Kossakowski, and Sudarshan, 19762. Lindblad master equations arise
from the requirement that the positivity of the reduced density matrix is
ensured at all times. This type of equations are currently used, for in-
stance to approach the dynamics of the spin-boson model (Leggett et al.,
1987). In chapter 5 we aim to treat the QBM model by means of a Lind-
blad master equation, in both the case of a linear and non-linear coupling.
We find that the Lindblad character of this equation induces a rotation in
the phase space of its stationary solution, depending, of course, on the
system parameters. Also in this case the stationary state exhibits gen-
uine position squeezing and cooling as the interaction strength increases.
When the coupling is non linear, anyway, we find that up a certain value
of the system-bath coupling the quantum Brownian particle does not ap-
proach a Gaussian stationary state.

Nevertheless, the fundamental problem of a Lindblad model in QBM
is that it cannot be derived from the microscopic model of quantum Brow-
nian motion. Accordingly, we look into Heisenberg equations formalism
in order to study QBM (chapter 6). We show that the temporal evolu-
tion of the position of the Brownian particle manifests the classical one
derived by Langevin. The treatment of QBM model by means of Heisen-
berg equations belongs to standard textbook material, in both the linear
(Ackerhalt and Rzazewski, 1975; Weiss, 2008; Breuer and Petruccione,
2007) and non-linear case (Barik and Ray, 2005). Our main contribution,

2Gorini, Kossakowski and Sudarshan submitted their paper on March 19th 1975, and
Lindblad one on 7th April 1975, about three weeks later. The former was published in
May 1976, while the latter in June 1976.
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which is actually the most important part of the thesis, is the applica-
tions of Heisenberg equations to the polaron problem (chapter 7). In
fact, the physical Hamiltonian associated to an impurity in a BEC may
be expressed as that of the QBM model: the impurity plays the role of
the quantum Brownian particle while the environment is represented by
the Bogoliubov modes. Accordingly, the theory of QBM may be em-
ployed to investigate the polaron problem. Here, Heisenberg equations
approach leads to a differential stochastic equation for the position im-
purity, representing the quantum analogue of that derived by Langevin.
The only difference lies in the fact that it is non-local in time, i.e. the
dynamics of the impurity carries a certain amount of the memory ef-
fects. The presence of memory effects affects the solution of the quantum
Langevin equation for the impurity. In fact we employ it to evaluate the
position variance, which has been measured by Catani et al., 2012. In
the case in which the impurity is untrapped position variance depends
on time (the impurity runs away) but not linearly, namely the impurity
does not experience diffusion. Precisely it is proportional to the square
of time. This super-diffusive behavior is a consequence of memory ef-
fects. The study of systems exhibiting a certain degree of memory effects
attracted in the last years a lot of interest because of the possibility to ex-
ploit non-Markovianity as a resource for quantum technology Liu et al.,
2011; Gröblacher et al., 2015; González-Tudela and Cirac, 2017. In partic-
ular the recent work of Guarnieri, Uchiyama, and Vacchini, 2016 shows
the relation existing between non-Markovian character of a special dy-
namics and the backflow of energy. In this context, super-diffusion rep-
resents an important result because it constitutes a witness of memory
effects on a measurable quantity.

When the impurity is embedded in a harmonic potential the impu-
rity oscillates collapsing in the middle of the trap. Accordingly, the po-
sition variance approaches at long-times a stationary value. In this case,
when temperature reaches very low values the position variance shows
genuine position squeezing, representing high-spatial localization of the
impurity. The detection of such an effect in a concrete measurable sys-
tem represents an important results, especially for quantum metrology
applications.

The results in chapter 7 concerns the situation in which the gas is
homogeneous. In chapter 8 we extend this discussion to the more realistic
case provided by a trapped gas. To consider a Bose-Einstein condensate
in a trapping potential is crucial to study this system in experimental
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realistic conditions. Precisely we consider a harmonic trap leading to a
parabolic density profile, called Thomas-Fermi density profile. Also in
this case the Hamiltonian of the system may be put in the form of that
of the quantum Brownian motion model. The main difference with the
homogeneous gas lies in the spectral density that exhibits a higher super-
ohmic degree, suggesting that the amount of memory effects is bigger.
We detail how, for the untrapped case, the diffusion coefficient, which
is a measurable quantity, depends on the Bose-Einstein condensate trap
frequency. Also, we show that, for the trapped case, the squeezing can
be enhanced or inhibited by tuning the Bose-Einstein condensate trap
frequency.
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Chapter 2

Classical Brownian motion

Brownian motion is the random movement of a particle suspended in a
fluid. This phenomenon played a very important role in the history of
science because it leaded to the idea that matter is made up by atoms. In
this chapter we briefly present the fundamental results concerning clas-
sical Brownian motion, focusing on a description of the original obser-
vations and of the main theoretical attempts to study it. This part does
not contain any original result and it is basically based on the material
published in Mazo, 2002. However, it is important to address this topic
in detail because it yields a physical insight concerning the main features
of the phenomenon, such as diffusion, arising also in its quantum coun-
terpart. Moreover, a dissertation on the classical Brownian motion is fun-
damental in order to make self-consistent the discussion of its quantum
extension, on which the thesis relies.

We start by going through the experiment of Robert Brown (Sec. 2.2),
who first detected the motion of the pollen grain in a fluid. In addition
to observe the movement, Brown recognized that it was not produced by
the living origin particle, but it was a matter of dynamics. On this trail,
a long time later, the first theoretical attempt to analyze in a quantitative
manner Brown’s experiment arrived. The author of this study was Al-
bert Einstein, who in 1905 constructed a statistical theory showing that
the random movement of pollen grains was due to fluctuations of parti-
cles constituting the fluid (Sec. 2.3). This was also argued by the polish
Marian von Smoluchowski, who developed a kinetic model to explain
Brownian motion in terms of the collisions of the constituents of the fluid
embedding the pollen grains. Precisely, both Einstein and Smoluchovski
computed the mean square displacement, predicting that it linearly de-
pends on time. Such a behavior is termed diffusion and it has been de-
rived also in another theory created a few years later by Langevin (1908),
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who proposed to describe Brownian motion by means of a stochastic dif-
ferential equation (Sec. 2.4). The diffusion behavior has been detected
experimentally by Perrin in 1908 and represents a strong confirmation of
the theories of Brownian motion (Sec. 2.5). Thanks to this result Perrin
won the Nobe prize in 1909 providing a strong evidence for the atomist
hyptohesis of the matter.

2.1 Historical background

In the year 1803, Napoleon sold France’s North American colonies to
the newborn United States, for the small sum of sixty million francs.
In the American history books, such a deal is known as “the Luisiana
Purchease”. President Thomas Jefferson, wishing to find out exactly what
he had bought, sent out an expedition of exploration under the leader-
ship of Meriweather Lewis and William Clark, which left in 1804, reached
the Pacific Ocean in November 1805, and returned in 1806. Among the
contributions of this mission, one of the least significant would have the
greatest impact, albeit indirectly, on science.

The story of the expedition, based on Lewis’ and Clark’s journal, con-
stitutes a fascinating adventure story. In addition to geographical and
ethnographical informations, the expedition also brought back botani-
cal specimens. A genus of plants from among these specimens, a wild
flower found in the Pacific Northwest of the United States, was named
Clarkia Pulchella in honor of Captain William Clark (see Fig. 2.1). In
1826, specimens of Clarkia Pulchella where brought to England by the
Scots botanists David Douglas.

By the year 1827, Robert Brown (1773-1858) was a renewed botanist.
As a young man, Brown studied medicine at Edinburgh, but never fin-
ished his studies nor took a degree. He enlisted in a newly raised Scottish
regiment and was posted to Ireland, where he was appointed Surgeon’s
Mate, although seems to have spent more time collecting botanical spec-
imens than attending to patients.

Brown acquired some reputation as a botanist, and he had come to
the attention of Sir Joseph Banks who was organizing an expedition to
Australia, or, as it was then called, New Holland. Banks had need of a
botanist for the expedition, and offered the position to Brown; Brown’s
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FIGURE 2.1: Clarkia Pulchella’s picture from Wikipedia

medical experience no doubt weighed in his favor. Robert Brown ac-
cepted as soon as he could in spite of his connection with the army, and
his formal career as a botanist begun.

Besides collecting and classifying, Brown made several important dis-
coveries in botany. Perhaps, the one most celebrated by biologists is
the achievement concerning the eukaryotic character of the plant cell,
namely that they have nucleus. Among the physicians and mathemati-
cians, anyway, he is known primarily for the eponymous motion associ-
ated with his name.

2.2 The Brown experiment

In 1827, Brown was investigating the way in which pollen acted during
impregnation. He wanted to employ non-spherical grains, in order to
be able to observe their orientation. The first plant he studied under the
microscope was just Clarkia Pulchella, whose pollen contains granules
varying from about five to six microns in linear dimension. It is these
granules, not the whole pollen grains, upon which Brown made his ob-
servations. Precisely, he detected the motion of the particles immersed in
water, and after frequently repeated observations he concluded that such
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a motion arose neither from currents in the fluid, nor from its gradual
evaporation, but belonged to the particle itself.

This inherent incessant motion of a small particles suspended in a
fluid is nowadays called Brownian motion in honor of Robert Brown.
Although similar observations had been made earlier by other scientists,
Brown was the first to treat the phenomenon in a quantitative manner,
showing that the motion was not due to the living origin of the parti-
cles: it is not a biological phenomenon, but a physical one. For instance,
Brown had strongly illuminated the specimens under his microscope and
hence had heated them. This caused evaporation of the ambient fluid,
and Brown asked whether this evaporation might be causing the motion
he observed. To answer this experimentally, he made a mixture of water
containing particles with an immiscible oil and shook the mixture; small
drops of water were formed in the oil, some containing only a single par-
ticle. These were stable and did not evaporate for some time. He realized
that, in all the drops formed, the motion of the particles takes place with
undiminished activity, although the principal causes assigned for the mo-
tion, namely, evaporation and their mutual attraction and repulsion are
either materially reduced, or absolutely nil.

Brown had his results printed in a pamphplet, entitled “A brief ac-
count of microscopical observations made in the months of June, July,
and August, 1827 on the particles contained in the pollen of plants; and
on the general existence of active molecules in organic and inorganic bod-
ies”. This work was originally intended for private circulation but was
reprinted in the archival literature shortly after its appearance (Brown,
1828). Brown used the word “molecule” in the title in a sense different
from its current one. It referred to earlier teaching of the Comte de Buf-
fon who introduced this word for the ultimate constituents of the bodies
of living beings. This had nothing to do with the later development of
Dalton’s atomic theory in which the word molecule took on its modern
meaning. Brown published a second paper on the motion in the 1829,
where he reported the experiments on the oil-water emulsion mentioned
above, and discussed previous observations which could have been in-
terpreted as prior to his (Brown, 1829).

After Brown’s experiment, thousand of similar systems, constituted
by particles suspended in several kinds of environments, have been ex-
amined and the motion still manifested the typical character detected by
Brown. An important feature of the Brownian motion is: The rapidity of
the motions are greater, the smaller the size of the suspended particles
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(note that the velocity of the Brownian particle does not represent a mea-
surable quantity, this point will be clarified in the next sections). Another
important property of the motion is its stability in time. The motion per-
sists as long as the particle remains suspended in the fluid. This has been
observed in preparations allowed to stand for over a year. Finally, a very
characteristic property is the independence of most external influences.
Electric fields, light (as long as it is not absorbed and does not heat the
system), gravity (as long as the particles do not settle out) and similar
disturbances from outside seem to have no effect. Moreover, the motion
exhibits a dependence on the nature of the fluid medium, and especially
on its viscosity. Temperature also has a marked effect, however. This
could be expected because of the dependence on the viscosity, which is
appreciably temperature dependent. Whether there is a residual temper-
ature effect, above that due to the temperature dependence of viscosity,
cannot be ascertained on experimental grounds alone. Without a theory
to tell how to determine the effect due to viscosity it is not possible see if
there is additional temperature dependence.

What is a mechanism showing these properties? The first answer that
comes to mind is molecular collisions. The kinetic theory of matter as-
serts that the molecules of a fluid are constantly in motion with a mean
kinetic energy proportional to the temperature. For systems at the equi-
librium such a kinetic motion is stable in time, and is independent of
external influences. Thus we conjecture that the observed irregular mo-
tions of a suspended impurity are due to irregular transfers of energy
and momentum from the fluid molecules to the particle because of the ir-
regularly occurring molecular collisions between the suspended particle
and the medium constituents.

There is a nuance which deserves to be clarified. Collisions increasing
the velocity of the heavy particle will, on average, be balanced by colli-
sions decreasing that velocity. Thus, the net mean change in velocity due
to many collisions will be much smaller than that due to an individual
collision. How then can the observed motion be due to collisions? Al-
though the average effect of the collisions will indeed be small, there will
be fluctuations about that average. Fluctuations large enough to lead to
observable effects, while relatively rare, are still common enough to ex-
plain the phenomenon. Precisely, as explained in Sec. 4.1 of the book of
Mazo, 2002, the fluctuations in velocity due to fluctuations in collision
numbers can therefore explain the observed Brownian motion qualita-
tively.
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2.3 Einstein’s theory

We now start to discuss the quantitative attempts to treat Brownian mo-
tion. Chronologically, the first relevant one was that of Albert Einstein1,
who published in 1905 a paper (Einstein, 1905) where he proposed an
explanation of the behavior observed by Robert Brown2. The theory de-
veloped by Einstein may be defined as a statistical one, namely it does
not relies on a microscopic kinetic model, but it refers to generic proba-
bility distributions. This is both its strength and weakness. The strength
is that it is applicable to a wide range of circumstances and is easily gen-
eralizable. The weakness is that it does not carry so much insight on what
is happening at the microscopic dynamical time scale.

In addition to its statistical character, we may define Einstein’s the-
ory as a mesoscopic one: it refers to timescales long enough to contain
many elementary events, yet short enough to be effectively infinitesimal
on an observational scale. Precisely, we introduce a characteristic time τr,
short compared to macroscopically observable times, yet long with re-
spect to the inverse collision frequency, such that the particle’s motions
in two consecutive time intervals of length τr are independent. Equiv-
alently, we state that successive collisions of the Brownian particle with
the surrounding degrees of freedom are independent events. Physically,
it means that after a collision between the Brownian particle and a con-
stituent of the environment, the latter interacts with a large number of
other constituents, in order to make its dynamical state scarcely depen-
dent on its state before the previous collision with the Brownian one. This
happens, for instance, when the density of the medium is sufficiently low
so that a collision between the Brownian particle and a given constituent
of the medium will be followed by a high number of collisions between
the former and other particles of the medium, before it scatters again
with the original constituent. In conclusion we may say that during τr a
large number of collisions occur, in order to destroy the suspended Brow-
nian particle dependence on its initial conditions. In other words we say

1Several studies on Brownian motion have been performed already of Einstein’s, but
they do not lead to brilliant conclusions. These works are mentioned in section 1.2 of
Mazo, 2002.

2Einstein also published a second paper (Einstein, 1906a). Apparently, in the period
between the two publications he had apparently been convinced of the relevance of his
considerations for the understanding of the phenomenon associated with the name of
Brown. Einstein published two additional short papers on Brownian motion (Einstein,
1907; Einstein, 1908).
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that the process described above is Markovian. Of course Einstein never
used such a term, because the famous work of Markov (Markov, 1907)
concerning Markov chains came two years later.

As we stated in the beginning of the section, Einstein’s framework is
not based on a kinetic model, but employs probability distributions. Let
p(x, t) be the probability density that the particle be at position x at time
t. There is no external force so the system is homogeneous, i.e. p(x, t) =
p(−x, t). Let φ(∆, δt) be the probability of the particle moving a distance
∆ in time δt. The hypothesis of a Markov process permits to write a
Chapman-Kolmogorov equation for it:

p(x, t+ δt) =

∫
p(x−∆, t)φ(∆, δt)d∆. (2.1)

From the Chapman-Kolmogorov equation, we immediately derive the
Fokker-Planck one:

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
, (2.2)

where
D = lim

t→0

1

2δt

∫
∆2φ(∆, δt)d∆. (2.3)

Equation (2.2) is the well known diffusion equation, and D has the phys-
ical significance of the self-diffusion coefficient of the Brownian particle.
The derivation of such an equation presented here follows Einstein’s very
close. Of course, he did not use the terms “Chapman-Kolmogorov” and
“Fokker-Planck” in his derivation. These equations had not yet been de-
rived by the authors from whom they are named.

Multiplying both sides of Eq. (2.2) by x2 and integrate over all space,
the left-hand side yields by definition∫

x2ṗ(x, t)dx =
∂〈x2〉
∂t

, (2.4)

while the right-hand side leads to 6D, because of the Green theorem. In
the end one finds

∂〈x2〉
∂t

= 6D, (2.5)

and consequently
〈x2〉 = 6Dt. (2.6)
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The constant of integration must vanish because 〈x2〉 has to be equal to
zero at t = 0. Since the starting time for observation (the time at which
we took the particle position to be at the origin) was arbitrary, this re-
sult shows that the sample paths of the random motion are differentiable
nowhere because ∆r ∼ t1/2. This conclusion applies for all times, be-
cause the process has independent increments. Of course, the conclusion
is absurd when considered as a microscopic description of the path. It
is the result of extrapolating a mesoscopic description down to a micro-
scopic level3.

We aim now to express the diffusion coefficient D as a function of the
system parameters, such as temperature, etc. Consider a suspension of
particles in a fluid with a spatially constant external field, for example
gravity, imposed upon it. We denote the external force by F , and choose
the z axis of the coordinate system in the direction of F . The potential
of the external field is −Fz. The suspended particle will move in the z
direction and attain a terminal velocity, v, given by

v = F/ξ, (2.7)

in which ξ is the friction constant. The suspension is supposed to be di-
luted enough so that the individual particles in it do not interact with
each other, but only with the constituents of the surrounding medium.
The system is bounded in the z direction; the container has a bottom, for
instance. Accordingly, the motion will build up a concentration gradi-
ent in the z direction, that produces a diffusion current in the opposite
direction to the current induced by the external force. Eventually, the
concentration gradient will become large enough that two currents will
cancel each other, and the system will reach equilibrium. If we denote
the local concentration of suspended particles by n(z), then the particle
current induced by the external force is nv; that induced by the concen-
tration gradient is −D ∂n

∂z . This quantity is equal, because of the Fick’s
law, to the flux current. We have:

nF

ξ
= −D∂n

∂z
. (2.8)

But at equilibrium n(z) is given by the Boltzmann law

n(z) ∼ exp[−Fz/kBT ], (2.9)

3This topic was discussed in Einstein, 1906b.
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which replaced in Eq. (2.8) leads to

D = kBT/ξ. (2.10)

This is the Einstein relation between the friction coefficient and the diffu-
sion one. Einstein actually did not write it down in this form, but imme-
diately assumed that the friction constant was given by Stokes’law:

ξ = 6πηa, (2.11)

where η and a are the viscosity and the radius of the suspended particles,
respectively. Replacing Eq. (2.11) into Eq. (2.10) one obtains the Stokes-
Einstein relationship:

D =
kBT

6πηa
. (2.12)

Accordingly, Einstein’s result for the mean square displacement takes the
form

〈x2〉 =
kBT

πηa
t. (2.13)

One year later, in 1906, Marian von Smoluchowski (1872-1917) proposed
another theoretical model (Smoluchowski, 1906) to study Brownian mo-
tion4. His attempt was based on a kinetic microscopic model, providing
a good insight of dynamical mechanisms underlying the phenomenon.
Just by studying the collisions by means of the conservation of the mo-
mentum and energy, and assuming no memory effects, Marian Smolu-
chowski derived an expression for the mean square displacement. How-

ever, his result was larger than the Einstein’s by a factor
√

32
27 ≈ 1. They

are remarkably close considering of all the approximations that went into
theory. Smoluchowski and many subsequent commentators claim that

his result was, in fact,
√

64
32 larger, but this was because of the error of

a factor of two in his formula for the friction constant of heavy particle
in a dilute gas. His result was actually closer than he thought. It is now
universally agreed, and was agreed even by Smoluchowski, that Einstein
result is the correct one.

4Smoluchowski approached the study of Brownian motion around 1900, but he pub-
lished his results only in 1906, under the impetus of Einstein’s paper.
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2.4 The Langevin theory

The Einstein and Smoluchowski theories look very different on the sur-
face. One employs the dynamics of the particle motion, while the other is
a purely statistical theory. A link between the two conceptions was pro-
vided in 1908 by P. Langevin (Langevin, 1908). A suspended particle in
a fluid is acted upon by forces due to the molecules of the solvent. This
force may be expressed as a sum of its average value and a fluctuation
around such an average value. Langevin’s idea was to treat the mean
force dynamically and the residual fluctuating part of the force proba-
bilistically.

We assume that the mean force on a particle moving slowly in a vis-
cous medium is given by

Fav = −ξv, (2.14)

where v is the velocity of the particle relative to the resting fluid. The
differences in sign between it and the relation in Eq. (2.7) is due to the
fact that the former refers to the velocity induced by an external force,
while the latter concerns the force caused by a given velocity. The two
are equal in magnitude and opposite in sign.

We shall denote the residual fluctuating force by X . We know little
about X in detail, so we shall make only a few statistically hypothesis
about its properties. First of all, X is a fluctuation about a mean, so it
must, itself, have zero mean

〈X〉 = 0. (2.15)

Second, we assume that X is a stationary process with a very short cor-
relation time:

〈X(t)X(t+ s)〉 = 〈X2〉φ(s), (2.16)

in which φ(s) is a function that is very sharply peaked about s = 0. The
correlation time is also short compared to M/ξ (the only characteristic
time of the system) that φ may be taken to be a Dirac delta function,
i.e. φ(s) ∼ δ(s). In other word this is the way in which Langevin im-
plemented in his approach Markov approximation. Moreover it is not
correlated with the position of the particle at time t, nor with the velocity
at any previous time:

〈X(t)x(s)〉 = 0, 〈X(t)ẋ(s)〉 = 0, t > s. (2.17)
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Newton’s second law of motion for this system reads

Mẍ = −ξẋ+X(t). (2.18)

This differential equation cannot be solved in the usual sense because we
do not know enough about X(t). Furthermore, in order that its correla-
tion time as short as assumedX must be a fluctuating function. Precisely
we require it is a Wigner measure.

We multiply both sides of Eq. (2.18) for x(t) and then we take the
mean value of the result. Recalling the average values in Eq. (2.18) we
get

M〈x∂v
∂t
〉 = −ξ〈xv〉. (2.19)

Since v = ẋ, such an equation may be put in the form

M

2

∂2〈x2〉
∂t2

+
ξ

2

∂〈x2〉
∂t

= 2kBT, (2.20)

where we have used the equipartition theorem 〈v2〉 = 3kBT/M . The
solution of this equation is very easy to find. Imposing 〈x2(0)〉 = 0 we
have

〈x2(t)〉 =
6kBT

ξ
t+B [exp(−ξt/M)− 1] , (2.21)

where B is an integration constant specified by 〈xv〉 = 0 at time zero.
Although we do not need to know it, the value of B can be computed to
be 6MkBT/ξ

2. Thus, after a time of the order of ξ/M , Einstein’s result is
valid. For typical situations, this time is indeed quite short, of the order
of 10−7 seconds. Consequently, Einstein’s result may be considered to be
valid for practical purposes for all time.

Why is this result equal to Einstein’s for practical purposes only, and
not for all time? Einstein worked completely in the configuration space
of the Brownian particle; he never introduced the velocity of the particle.
Thus he completely neglected the inertia of the particle and the possibil-
ity of the persistence of velocity. In other words, the short time, τ , after
which the displacements of the particle should be independent, should
be longer than M/ξ. Langevin, on the other hand, worked in the parti-
cle’s phase space and was able to treat the velocity relaxation. Langevin’s
description is on a finer scale than that of Einstein.
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2.5 The Perrin experiment

The scientific achievements we presented in this chapter had a great im-
pact on the vision of the nature in the beginning of the nineteenth century.
How can one explain the incessant movement of the particle detected by
Robert Brown, which seems to contradict the second law of thermody-
namics? The key of the answer provided by the theoretical studies of
Einstein, Smoluchowski and Langevin lies in fluctuations. Then, what is
fluctuating? This may be only explained on the basis of particles.

The idea of a corpuscolar reality is the most significant contribution
of the Brownian motion to the representation of the world in that pe-
riod. Actually, since the time of John Dalton (1766-1844) the intuition
that the matter was made up of elementary particles called atoms, and
their unions, now called molecules, took strong hold in the scientific com-
munity. Such a hypothesis became particularly popular especially after
the First International Chemistry Conference in Karlsruhe in 1860 where
Stanislao Cannizarro showed how the ideas of Amadeo Avogadro could
be used to construct a rational table of atomic weights. Even so, there
were skeptics. The most prominent of these where Wilhelm Ostwald
(1853-1932) and the physicist Ernest Mach (1838-1916), who argued that
there was not any experimental proof of the existence of atoms. Exner
(1900) and Svedberg (1906) already made quantitative analysis of Brow-
nian motion (Exner, 1900; Svedberg, 1906), but they did not have Einstein
of Smoluchowski results available; the experiments were not suitable for
a detailed verification of the theory. This had to wait for the experiments
of Jean Perrin (1870-1942), a convinced atomist.

Perrin aimed to study the dependence of the mean square displace-
ment on the radius of the particle. This kind of experiment was not so
easy: It was necessary to prepare a monodisperse suspension, not a triv-
ial task. In 1908 Perrin (and his PhD students) prepared a suspension of
particles of gamboge of mastic of uniform size and observed the particles
with a camera lucida, a device that projects an image on a plane sur-
face suitable for tracing. He made measurements of the displacements
for as many as 200 distinct granules, confirming the predictions of Ein-
stein and Langevin discussed above (Perrin, 1908a; Perrin, 1908b). Per-
rin published these results in a long paper (together with his student) in
1909 (Perrin, 1909), and became an energetic proselytizer for the reality
of atoms. He received the Nobel Prize in 1926 for his work on the discon-
tinuous structure of matter.
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FIGURE 2.2: Set-up of the Perrin’s experiment revisited
by Newburgh, Peidle, and Rueckner, 2006.
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Perrin was apparently also the first to realize that the path of a parti-
cle undergoing Brownian motion must have elements in common with a
graph of a function which is not differentiable. Such functions had pre-
viously been studied by mathematicians and regarded as pathological
cases, whose only importance was in illustrating what was really encom-
passed within the general concept of function. But now, according to
Perrin, these so-called pathological functions can be seen to have a phys-
ical realization. This idea was taken up by mathematicians and forms the
basis for a branch of the theory of stochastic, or random, processes, itself
a subfield of the theory of probability.

Perrin’s experimental verification of the Einstein-Smoluchowski the-
ory, together with the work of J.J. Thompson on the electron, was rapidly,
successful in persuading most of the anti-atomist that atoms really did
exist. Ostwald, one of the most prominent skeptics, recanted in a new
edition of his influential textbook. Only Mach was not convinced, and
continued to consider the existence of atoms as only a hypothesis.

2.6 Summary

In this chapter we presented a brief dissertation on classical Brownian
motion. We resume now the main contents of the chapter, according a
chronological order.

• 1827: Robert Brown observes the motion of pollen grains immersed
in water: Brownian motion was detected. After frequently repeated
observations he concluded that such a motion arose neither from
currents in the fluid, nor from its gradual evaporation, but belonged
to the particle dynamics.

• 1905: Einstein proposes a statistical mesoscopic theory to treat Brow-
nian motion, based on an equation for the density probability of the
pollen grains (Eq. (2.2)). He employed this equation to calculate
the mean square displacement in Eq. (2.13), finding a linear depen-
dence on time. Such a particular dependence on time is termed
diffusion effect.

• 1906: Marian von Smoluchowski treats Brownian motion by means
of a kinetic microscopic model. He also evaluates the mean square
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displacement recovering a diffusive behavior, although with a dif-
ferent coefficient in front of the time. He recognizes a few years
later that Einstein’s result was the correct one.

• 1908: Paul Langevin studies Brownian motion with a stochastic dif-
ferential equation (Eq. 2.18), leading to the same result of Einstein
for the mean square displacement, and extending it to generic in-
stants.

• 1909 Perrin publishes a paper where he presents experimental re-
sults confirming the result for the mean square displacement. This
was a strong proof for theories of Brownian motion, as well as for
atomist reality.
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Chapter 3

Quantum Brownian motion

In the previous chapter we described the main theoretical attempts to
treat the grains motion detected by Robert Brown. These theories are
purely classical and rely on phenomenological equations, i.e. equations that
are not derived in a Hamiltonian framework, but are proposed starting
from experimental results that one aims to interpret. In this chapter we
move our analysis to the quantum domain. The standard procedures
of quantization are based on the existence of Hamiltonians (or equiva-
lently Lagrangians) for the system in which one is interested. So, the first
step to approach the study of Brownian motion in the quantum regime
is to look for a Hamiltonian description of the phenomenon observed
by Robert Brown. Precisely, one has to write a Hamiltonian leading to
the phenomenological equations, such as those of Einstein [Eq. (2.2)] and
Langevin [Eq. (2.18)]. Then, by replacing functional variables with op-
erator ones it is possible to obtain a quantum Hamiltonian for Brownian
motion. This is the point of view adopted, for instance, by Caldeira and
Leggett, 1983a.

In Sec. 3.1 we introduce the Hamiltonian of QBM. It describes a quan-
tum particle, usually trapped in a harmonic potential, coupled to a set
of non-interacting harmonic oscillators. The Hamiltonian encodes all the
information to study the physics of QBM. There exist several tools to do
this. In the current chapter we consider the master equation formalism,
i.e. we use an equation for the reduced density operator of the central
Brownian particle. Such a topic belongs to standard textbook material,
but we present the re-examination published in the paper of Massignan
et al., 2015. Here we focused on the evaluation of the stationary state
of the system, and the analysis of its geometrical configuration in the
phase-space as the system parameters, such as temperature and interac-
tion strength, vary. This kind of analysis leads to the detection of special
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effects for the impurity, such as squeezing and cooling. We discuss the
regime of validity of the method adopted.

3.1 Hamiltonian

The QBM model describes the behavior of a quantum particle interacting
with a thermal bath made up by a huge number of harmonics oscillators,
satisfying the Bose-Einstein statistics. Despite its simplicity, QBM gained
popularity in condensed matter physics due to its very general nature,
and its convenience to describe dissipation in a quantum context. The
model is defined by the Hamiltonian

H = HS +HB +HI, (3.1)

where the system, bath and interaction terms are respectively

HS = Hsys + Vc(x) =
p2

2m
+ U(x) + Vc(x), (3.2)

HB =
∑
k

(
P 2
k

2Mk
+
Mkω

2
kX

2
k

2

)
− E0 =

∑
k

~ωka†kak, (3.3)

HI = −
∑
k

κkXkx. (3.4)

In the above expressions p is the particle momentum, m its mass, U(x)
the trapping potential depending on its position denoted by x. The ex-
pression

Vc(x) =
∑
k

κ2
k

2mkω
2
k

x2, (3.5)

represents the so-called counter-term, needed in the following to remove
unphysical divergent renormalizations of the trapping potential arising
from the coupling to the bath, as showed in the book of Breuer and
Petruccione, 2007. The bath bosons have masses Mk and frequencies
ωk, and their momenta and positions are denoted by Pk and Xk, respec-
tively. Alternatively, we describe them with the help of annihilation and
creation operators, ak and a†k. From the bath Hamiltonian, we have re-
moved the constant zero-point energy E0.
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The parameters in Eq. (3.4) denoted by κk characterize the coupling
of the bath modes to the system and refer to an interaction term depend-
ing linearly on the position of the Brownian particle, as well as on those
of the bath constituents. This situation is the conventional one, and cor-
responds to a quantum system undergoing state-independent damping
and diffusion, i.e. damping and diffusion independent on the position (or
other observables).

We will restrict our discussion in the following to the one dimensional
(1D) case, but generalizations to 2D or 3D are straightforward. Moreover,
we shall consider the impurity trapped in a harmonic potential, i.e.

U(x) = mΩ2x2/2, (3.6)

where Ω is the frequency of the trap.

3.2 Born-Markov master equation

The Hamiltonian introduced in the previous section embodies all the in-
formation one needs to describe the physics of QBM. The high number
of constituents of the bath often makes impossible an exact study of the
temporal evolution of the whole system. So, one usually proceeds by
tracing away the environment degrees of freedom to focus only on the
analysis of the quantum Brownian particle. In this framework, the parti-
cle represents a paradigmatic example of open quantum system, namely
a system which is not closed, but continuously affected by the presence
of the bath.

There exist several different techniques to handle with open quantum
systems and in particular with QBM. In this chapter we shall look into the
master equation formalism. A master equation is an equation for the re-
duced density matrix of the central system and can be considered as the
analogue of the Schrödinger equation for open systems. We will study
a very special kind of master equation: the Born-Markov master equa-
tion, allowing to treat many problems in a mathematically simple form.
Comparisons between the predictions of models based on this equation
and experiments have shown that the Born and Markov assumptions on
which the master equation is based are reasonable in many cases. How-
ever we emphasize already at this stage that there are various impor-
tant physical systems (for example, low-temperature solid-state system)
which do not obey to Markovian dynamics and which therefore cannot
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be appropriately modeled using the Born-Markov master equation. The
goal of the present section is the introduction of the general structure of
the Born-Markov master equation and the discussion of its regime of va-
lidity.

3.2.1 General structure of a master equation

In the ordinary formalism of open quantum systems, the reduced density
operator ρS(t) is computed via

ρS(t) = TrE

[
Ũ(t)ρSE(0)Ũ †(t)

]
, (3.7)

where Ũ(t) denotes the time-evolution operator for the whole composite
system SE. As is evident from Eq. (3.7), this approach requires that we
first determine the state of the total system at a generic instant, before
we can arrive at the reduced description through the trace operation. In
general this task is not so easy (sometimes impossible) to carry out in
practice for the majority of the systems.

In contrast, in the master equation formalism the reduced density ma-
trix ρS(t) is calculated directly from an expression of the form

ρS(t) = L(t)ρS(0), (3.8)

where the operatorL(t) is the so-called dynamical map ruling the temporal
evolution of the central system1. Expression in Eq. (3.8) is called master
equation for ρS(t), and it represents the most general structure that such
an equation can take.

Obviously, if the master equation is exact, then Eq. (3.7) and (3.8) must
be equivalent by definition, i.e. it ensues the identity

L(t)ρS(0) = TrE

[
Ũ(t)ρSE(0)Ũ †(t)

]
, (3.9)

and the master equation would amount to nothing else but a trivial rewrit-
ing of Eq. (3.7). The master equation approach, thus, is convenient only
if one imposes certain assumptions concerning the system-environment
states and dynamics, in order to evaluate the approximate time evolution

1Since L(t) constitutes an operator that in turns acts on another operator, it is com-
monly named superoperator.
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of ρS(t), even when it is not possible to compute the exact global dynam-
ics. In fact, here we shall restrict our attention to master equations (valid
under particular hypothesis) that may be written as first-order differen-
tial equations showing a local in time structure, namely which can be cast
in the form

ρ̇S(t) = L[ρS(t)] = − i
~

[HS, ρS(t)] +D[ρS(t)]. (3.10)

This equation is local in time in the sense that the change of the state
of the central system at time t depends only on the form of such a state
evaluated at t, but not at any other times s 6= t. The superoperator L
appearing in Eq. (3.10) acts on ρS(t) and typically depends on the ini-
tial state of the environment and different terms in the Hamiltonian. To
convey the physical intuition behind L, it has been decomposed into two
parts:

• A unitary part that is provided by the usual von Neumann commu-
tator with the self-Hamiltonian HS. In general, as we also stated in
Sec. 3.1, this term is not identical to the unperturbed free Hamilto-
nian we indicated by Hsys, generating the evolution of the central
system in absence of the interaction with the environment. This
coupling often perturbs the free Hamiltonian, leading to a renor-
malization of its spectrum through the introduction of a counter-
term, like that in Eq. (3.5). This effect (often termed Lamb-shift) has
nothing to do with the non-unitary evolution induced by the envi-
ronment but alters only the unitary part of the reduced dynamics.

• A non-unitary part D[ρS(t)] that embodies the action of the envi-
ronment (decoherence, dissipation and so on). Of course, if such
a term is equal to zero, the central system follows an unitary evo-
lution and the resulting master equation differs from the standard
Von Neumann one for closed systems only because of the possible
presence of a counter-term.

3.2.2 Structure of the Born-Markov master equation

The Born-Markov master equation is based on two core approximations
that may be stated as below:
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• The Born approximation, meaning that the coupling between the sys-
tem and the environment is sufficiently weak and the latter is rea-
sonably large such that changes of its state are negligible and that
related to the composite system remains separable at all times, i.e.

ρS(t) = ρS(t)⊗ ρE, (3.11)

with ρE approximately constant at all times.

• The Markov approximation, corresponding to a situation where mem-
ory effects of the environment are negligible, in the sense that any
self-correlation within the environment induced by the interaction
with the central system decay rapidly compared to the characteris-
tic timescale over which the state varies noticeably.

Assume now these assumptions hold. Suppose further that the system-
bath interaction is described by a Hamiltonian term of the form

HSE =
∑
k

Sk ⊗ Ek, (3.12)

where Sk andEk are self-adjoint operators acting on the Hilbert spaces of
the central system and the environment, respectively. Then the evolution
of ρS(t) is given by the Born-Markov master equation

ρ̇S(t) = − i
~

[HS, ρS(t)]− 1

~2

∑
k

{[Sk, BkρS(t)] + [ρS(t)Ck, Sk]}, (3.13)

with

Bk ≡
∫ ∞

0
dτ
∑
j

Ckj(τ)S
(I)
j (−τ) , (3.14)

Ck ≡
∫ ∞

0
dτ
∑
j

Ckj(−τ)S
(I)
j (−τ) . (3.15)
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Here S(I)
j (−τ) denotes the system operator Sj in the interaction picture2.

The quantity Ckj(τ) is given by

Ckj(τ) ≡ 〈E(I)
k (τ)Ej〉ρE , (3.16)

where the average is taken over the initial environmental state ρE (recall
that the Born approximation demands that such a state remains approx-
imately constant at all times). The quantity in Eq. (3.16) will be referred
to as the environment self-correlation functions in the following. The rea-
son for this terminology is easy to understand. The operators Ek can be
thought of as observables “measured” on the environment by the inter-
action with the central system. Self-correlation functions then tell us to
what extent the result of such a “measurement” of a particular Ek is cor-
related with the result of a “measurement” of the same observable carried
out a time τ later. Broadly speaking, these functions quantify to what de-
gree the environment retains information over time about its interaction
with the system. In fact, the Markov approximation corresponds to the
assumption of a rapid decay of these environment self-correlation func-
tions with respect to the timescale set by the evolution of the system.
Such a timescale is the relaxation one τS, namely that associated to dissi-
pation process, i.e. the transfer of energy from the central system and the
environment. Accordingly, we may state that the Markov approximation
relies on the following inequality

τB � τS, (3.17)

where the quantity in the left hand-side is the time according which en-
vironment self-correlation functions decay. The constraint in Eq. (3.17)
is appropriate if the environment is only weakly coupled to the central
system, and if the temperature of the bath is sufficiently high.

In conclusion the structure of the Born-Markov master equation of a
given system remains fixed by its Hamiltonian and the two approxima-
tions discussed above. A clear derivation of equation (3.13) goes widely
beyond the purpose of the present thesis. However it may be found in
section 4.2 of the book of Schlosshauer, 2007 and in section 3.3 of the that
of Breuer and Petruccione, 2007. Moreover, in section 9.1 of their book,

2The definition of interaction picture belongs to standard textbook material. A clear
explanation may be found in the Appendix of Schlosshauer, 2007.
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Breuer and Petruccione, 2007 show that the Born-Markov master equa-
tion may be derived even by the Nakajima-Zwanig equation. Precisely,
it follows from an expansion in the bath-system coupling constant at the
second order. This point of view will be useful to better understand the
results we shall present in the chapter.

3.3 The Born-Markov master equation of quantum
Brownian motion

In this section we present the Born-Markov master equation of the QBM
model, namely we specialize the structure in Eq. (3.13) to the Hamilto-
nian (3.1). Such a Hamiltonian shows an interaction term in Eq. (3.4) that
may be reduced to the decomposition in Eq. (3.12): x plays the role of
Sk (with only one index), while κkXk is the equivalent of Ek. Thus we
can start to evaluate the environment self-correlation function for QBM
which in this case remains defined as

C(τ) =
∑
ij

κiκj〈X(I)
i (τ)Xj〉ρE . (3.18)

The terms related to different indexes vanish because of the fact that the
environmental oscillators do not interact among them and are therefore
completely uncorrelated. Hence, for i 6= j,

〈X(I)
i (τ)Xj〉ρE = 〈X(I)

i (τ)〉ρE〈Xj〉ρE = 0, (3.19)

since the expectation value of the position coordinate of a harmonic os-
cillator is equal to zero.

Our task of evaluating C(τ) is now reduced to the computation of the
averages values referred to equal indexes, i.e.

C(τ) =
∑
i

κ2
i 〈X

(I)
i (τ)Xi〉ρE . (3.20)

This may be easily accomplished. Let us switch to the representation of
the position operators of the bath in terms of the creation and annihilation
ones:

Xi =

√
~

2miωi

(
ai + a†i

)
. (3.21)
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Then its time evolution in the interaction picture writes as

Xi(τ) = exp[− i
~
HEτ ]Xi exp[

i

~
HEτ ]

=

√
~

2miωi

(
aie
−iωiτ + a†ie

iωiτ
)
. (3.22)

Accordingly3

〈X(I)
i (τ)Xi〉ρE =

~
2miωi

[
〈aia†i 〉ρEe

−iωiτ + 〈a†iai〉ρEe
iωiτ
]
. (3.23)

But the quantity
Ni = 〈a†iai〉ρE (3.24)

is simply the mean occupation number of the ith oscillator of the environ-
ment. By assumption, the environment is in thermal equilibration, which
corresponds to assume that

Ni ≡ Ni(T ) =
1

exp[~ωi/kBT ]− 1
. (3.25)

Using this expression and the standard commutation relation for the cre-
ation and annihilation operators it turns

〈X(I)
i (τ)Xi〉ρE =

~
2miωi

{[1 +Ni(T )] e−iωiτ +Ni(T )eiωiτ}

=
~

2miωi
{[1 + 2Ni(T )] cos(ωiτ)− i sin(ωiτ)}

=
~

2miωi
{coth

(
~ωi

2kBT

)
cos(ωiτ)− i sin(ωiτ)}, (3.26)

where in the last step we employed the fact that

1 + 2Ni(T ) =1 +
2

e~ωi/kBT − 1

=
e~ωi/kBT + 1

e~ωi/kBT − 1
= coth

(
~ωi

2kBT

)
. (3.27)

3Note that the average values of aiai and its adjoint are zero, as can be easily proved
by hand.
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hence the environment self-correlation function can now be written as

C (τ) =
∑
i

~κ2
k

2miωi

[
coth

(
~ωi

2kBT

)
cos (ωiτ)− i sin (ωiτ)

]
≡ν(τ)− iη(τ), (3.28)

Here, the functions

ν(τ) =
1

2

∑
i

κ2
i 〈{Xi(τ), Xi}〉ρE

=
∑
i

~κ2
i

2miωi
coth

(
~ωi

2kBT

)
cos(ωiτ)

≡ ~
∫ ∞

0
dωJ(ω) coth

(
~ω

2kBT

)
cos(ωτ), (3.29)

η(τ) =
1

2

∑
i

κ2
i 〈[Xi(τ), Xi]〉ρE

=
∑
i

~κ2
i

2miωi
sin(ωiτ)

≡ ~
∫ ∞

0
dωJ(ω) sin(ωτ), (3.30)

are commonly named in the literature as noise kernel and dissipation kernel,
respectively.

The function J(ω), introduced in Eqs. (3.29) and (3.30), is defined as

J(ω) =
∑
i

k2
i

2miωi
δ(ω − ωi), (3.31)

and is called spectral density of the environment. Spectral densities play
an immensely important role in the theoretical and experimental study
of open quantum systems. They encapsulate the physical properties of
the environment once one traces away its degrees of freedom. In mod-
eling the environment, one often goes to a continuum limit in which the
description in terms of individual oscillators with discrete frequencies ωi
and massesmi is replaced by the density J(ω) corresponding to a contin-
uous spectrum of environmental frequencies ω.
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Having successfully determined the environment self-correlation func-
tion C(τ), we have completed the main step in the derivation of the de-
sired Born-Markov master equation for QBM. The rest of the derivation
is now straightforward. The operators in Eqs. (3.14) and (3.15) are imme-
diately written down as

B =

∫ ∞
0

dτC(τ)x(I)(−τ), (3.32)

C =

∫ ∞
0

dτC(−τ)x(I)(−τ), (3.33)

where

x(I)(τ) = exp[− i
~
HSτ ]x exp[+

i

~
HSτ ]

=x cos(Ωτ) +
p

mΩ
sin(Ωτ), (3.34)

is the position operator of the quantum Brownian particle in the interac-
tion picture. Inserting Eqs. (3.32) and (3.33) into the general expression
for the Born-Markov equation (3.13) we have

ρ̇S(t) =− i

~
[HS, ρS(t)] (3.35)

− 1

~2

∫ ∞
0

dτ{C(τ)
[
x, x(I)(−τ)ρS(t)

]
+ C(−τ)

[
ρS(t)x(I)(−τ), x

]
}.

Recalling the decomposition C(τ) = ν(τ)− iη(τ) involving the noise and
the dissipation kernels and the expression of the position of the Brownian
particle in Eq. (3.34), we obtain, rearranging terms properly,

ρ̇(t) =− i

~

[
ĤS + Cxx

2, ρ(t)
]
− iCp

~mΩ
[x, {p, ρ(t)}] (3.36)

− Dx

~
[x, [x, ρ(t)]]− Dp

~mΩ
[x, [p, ρ(t)]],
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with

Cx = −
∫ ∞

0
dτ η(τ) cos(Ωτ), (3.37)

Cp =

∫ ∞
0

dτ η(τ) sin(Ωτ), (3.38)

Dx =

∫ ∞
0

dτ ν(τ) cos(Ωτ), (3.39)

Dp = −
∫ ∞

0
dτ ν(τ) sin(Ωτ). (3.40)

The upper limit of the time integrals above is a consequence of the Marko-
vian approximation underlying the derivation of Eq. (3.36). Beyond such
an approximation, the upper limit of the integrals is t, rather than ∞,
and the coefficients of the master equation get time-dependent. The mas-
ter equation evaluated with these pre-Markovian coefficients is usually
called Redfield equation, and constitutes a middle-ground between the
equation (3.36) and the exact one, valid for arbitrary system-environment
interaction strengths. The analytical structure of this time-dependent co-
efficients have been studied in detail in the literature, for instance by Hu,
Paz, and Zhang, 1992. Of course, this time-dependent coefficients ap-
proach the form of the Markovian ones above at long-time.

Equation (3.36) is the master equation for QBM. It completely rules
the dynamics of the central Brownian particle, as well as the decoher-
ence and dissipation processes it undergoes because of the influence of
the environment. Moreover, as we will see in the following, it permits
to evaluate the observables of the system. Note that we indicated the re-
duced density matrix of the central Brownian particle by ρ, rather than
ρS in order to make the notation lighter.

In this chapter we focus on the case where the spectral density is
Ohmic (i.e. it is linear in ω at low frequencies) and has a Lorentz-Drude
(LD) cut-off,

J(ω) =
mγ

π
ω

Λ2

ω2 + Λ2
. (3.41)

The specific choice of cut-off function yields minor quantitative changes
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to the coefficients, but as physically expected, it does not alter their asymp-
totic behaviour. Exploiting the Matsubara representation

coth

(
~ω

2kBT

)
=

2kBT

~ω

∞∑
n=−∞

1

1 + (νn/ω)2
, (3.42)

with frequencies νn = 2πnkBT/~, the noise and dissipation kernels may
be evaluated analytically with the help of the Cauchy’s residue theorem4,

ν(τ) =
mkBTγΛ2

~

∞∑
n=−∞

Λe−Λ|τ | − |νn|e−|νnτ |

Λ2 − ν2
n

, (3.43)

η(τ) =
mγΛ2

2
sign(τ)e−Λ|τ |. (3.44)

The explicit form of the dissipation and noise kernels permits to evaluate
the analytical structure of the self-correlation function, and in particular
its time dependence. We observe that it involves basically the timescales
1/Λ and 1/νn = ~/2πnkBT for n 6= 0. The largest correlation time is thus
equal to

τB = Max{1/Λ, ~/2πkBT}. (3.45)

Accordingly the condition in Eq. (3.17) for the applicability of the Born-
Markov approximation becomes

~γ �Min{~Λ, 2πkBT}, (3.46)

where 1/γ represents the relaxation timescales.
The coefficients can be evaluated as follows:

Cx(Ω) = −mγ
2π

∫ ∞
−∞

dωP
(

1

ω + Ω

ωΛ2

ω2 + Λ2

)
= − mγΛ3

2(Ω2 + Λ2)
, (3.47)

Cp(Ω) =
mγΩΛ2

2(Ω2 + Λ2)
, (3.48)

Dx(Ω) =
mγΩΛ2

2(Ω2 + Λ2)
coth

(
~Ω

2kBT

)
. (3.49)

4In particular, the integrals defining both kernels may be reduced to the Fourier trans-
form of a Lorentzian function.
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In the first equation above we have used the identity

2i

∫ ∞
0

dτ sin(ωτ) =

∫ ∞
−∞

dτ sign(τ)eiωτ = 2iP
(

1

ω

)
, (3.50)

where P denotes the principal value of the integral.
The derivation of the anomalous diffusion coefficient Dp is more in-

volved5. One has

Dp(Ω) = −
∫ ∞
−∞

dω

2π
P
[
mγΛ2

ω + Ω

ω

ω2 + Λ2
coth

(
~ω

2kBT

)]
. (3.51)

To perform the principal part integration with the standard trick∫
dωP

[
f(ω)

ω

]
=

∫
dω

[
f(ω)− f(0)

ω

]
(3.52)

we need the numerator to be a polynomial in ω. Inserting the Matsubara
representation of the hyperbolic cotangent in Eq. (3.51), one finds

π(Ω2 + Λ2)

mγΩΛ2
Dp(Ω) = −π

~

∞∑
n=−∞

kBT

(Ω2 + ν2
n)

(Ω2 − Λ|νn|)
Λ + |νn|

=
πkBT

~Λ
+ DiΓ

(
~Λ

2πkBT

)
− Re

[
DiΓ

(
i~Ω

2πkBT

)]
. (3.53)

The function DiΓ(z) ≡ Γ′(z)/Γ(z) is the logarithmic derivative of the
Gamma function, and it is plotted in Fig. 3.1 for both real and imaginary
arguments.

The Cx term provides a term which strongly renormalizes the har-
monic potential frequency. The role of the counterterm Vc introduced
in the Hamiltonian is exactly to remove this spurious contribution, and
from Eq. (3.36) we see explicitly that a perfect cancellation is obtained by
choosing Vc(x) = −Cxx2. Regarding the other coefficients, as we will
see in the following, Cp provides momentum damping, Dx yields nor-
mal momentum diffusion, and Dp contributes to anomalous diffusion.
The Dx term may also be seen as the one responsible for decoherence
in the position basis, as widely discussed by Schlosshauer, 2007; Zurek,
2003; Schlosshauer, 2005. There, the density matrix may be represented

5The name of this coefficient will be explained later.
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FIGURE 3.1: Plots of the adimensional functions DiΓ(z)
(continuous) and Re[DiΓ[(iz)] (dashed). At large z, both

functions approach log(z) (dotted).

as ρ(x1, x2, t) = 〈x1|ρ(t)|x2〉, and one finds ∂tρ(x1, x2, t) = −Dx(x1 −
x2)2ρ(x1, x2, t)/~+ . . ., so that the off-diagonal components of ρ decohere
at a rate directly proportional to the square of the distance between them,
γ

(1)
x1,x2 = Dx(x1 − x2)2/~.

3.3.1 Caldeira-Leggett limit

We look now into the high-temperature and large cut-off limits

kBT/~� Λ� Ω. (3.54)

Here we may use the series expansions

DiΓ(z) = −z−1 − γ̃ + π2z/6 +O(z2) (3.55)

Re[DiΓ(iz)] = −γ̃ +O(z2), (3.56)
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with γ̃ the Euler gamma, and real dimensionless argument z, to find

Dp

~mΩ
= −kBTγ

~2Λ
+O

(
Λ

T

)
. (3.57)

Replacing it into Eq. (3.36), at high-T one finds

ρ̇(t) =− i

~
[Hsys, ρ(t)]− iγ

2~
[x, {p, ρ(t)}] (3.58)

− mγkBT

~2
[x, [x, ρ(t)]] +

γkBT

~2Λ
[x, [p, ρ(t)]].

Since p is of order mΩx in an harmonic potential, the last term may be
neglected as it scales as Ω/Λ, and in this way we have the usual Caldeira-
Leggett master equation:

ρ̇(t) = − i
~

[Hsys, ρ(t)]− iγ

2~
[x, {p, ρ(t)}]− mγkBT

~2
[x, [x, ρ(t)]]. (3.59)

Hereafter we will refer to the regime defined by the constraint in Eq.
(3.54) as the Caldeira-Leggett limit. Note that in the case of a harmonic po-
tential trapping the Brownian particle, or more generally upon neglect-
ing quantum effects for the general non-harmonic potential, the corre-
sponding time dependent equation for the Wigner function in this regime
has a particularly simple interpretation (Gardiner and Zoller, 2004): it
is a Fokker–Plank equation for the probability distribution in the phase
space of a classical Brownian particle undergoing damped motion with a
damping constant γ under the influence of a Langevin stochastic noise–
force F (t). The noise is Gaussian and white, but it fulfills the fluctuation–
dissipation relation, i.e. the average of the noise correlation satisfies

〈F (t+ τ)F (t)〉 = 2γkBT. (3.60)

This relation assures that the stable stationary state of the dynamics is the
classical Gibbs-Boltzmann state. In terms of the coefficients entering the
master equation the fluctuation–dissipation relation implies that

Dx/Cp = 2kBT/~Ω. (3.61)
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3.3.2 Large cut-off limit

We want to look at the limit

Λ� Ω, kBT/~, Ω ∼ kBT/~. (3.62)

This is motivated by the fact that, as we shall see in the chapters related
to the applications of QBM to real systems, the cut-off frequency has a
concrete physical meaning and it may be in general much larger than the
temperature. In this case we find

ρ̇(t) =− i

~
[Hsys, ρ(t)]− iγ

2~
[x, {p, ρ(t)}]

− mγΩ

2~
coth

(
~Ω

2kBT

)
[x, [x, ρ(t)]]− Dp

~mΩ
[x, [p, ρ(t)]]. (3.63)

For large z we have

DiΓ(z) ∼ log(z)− 1/(2z) +O(z−2) (3.64)

Re[DiΓ(iz)] ∼ log(z) + 1/(12z2) +O(z−3), (3.65)

and the anomalous diffusion coefficient is proportional to

Dp ∼
mγΩ

π
log

(
~Λ

2πkBT

)
. (3.66)

In this limit, we have moreover

Dx/Cp = coth (~Ω/2kBT ) . (3.67)

Equation (3.63), with the anomalous diffusion coefficient given in Eq.
(3.53), constitutes one of the main results of this section.

3.3.3 Ultra-low temperature limit

We finally consider the limit

Λ� Ω� kBT/~. (3.68)
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Since both DiΓ functions in Eq. (3.53) diverge logarithmically, the tem-
perature drops completely out of the QME, which reads now

ρ̇(t) =− i

~
[Hsys, ρ(t)]− iγ

2~
[x, {p, ρ(t)}] (3.69)

− mγΩ

2~
[x, [x, ρ(t)]]− γ

~π
log

(
Λ

Ω

)
[x, [p, ρ(t)]].

It is impossible to remark that the ultra-low temperature limit, as well
as that discussed above, have to be considered very carefully. In these
regime in fact the Markov approximation could not be properly fulfilled
because of the low value of the temperature, as shown in Eq. (3.46).

3.4 Wigner function approach and stationary solu-
tions

The master equation for the density matrix ρ can be particularly well
analyzed in terms of the Wigner function W . The Wigner function is a
quasi-probability distribution providing a representation of the density
matrix in the phase-space. In order to express Eq. (3.36) in terms of the
Wigner function it is useful to introduce the differential operators

x± = x± i~
2

∂

∂p
, p± = p± i~

2

∂

∂x
, (3.70)

that satisfy the commutation rules

[x+, x−] = [p+, p−] = 0, (3.71)
[x+, p−] = −[x−, p+] = i~.

The formal substitutions [see Eqs. (4.5.11) of Gardiner and Zoller, 2004]
are of great use in the following:

xρ→ x+W, pρ→ p−W, (3.72)
ρx→ x−W, p→ p+W.

We note here that, while in the previous Sections x and p stood for the
usual non-commuting operators, from now on the same symbols will
be used to represent the commuting variables of the Wigner function
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W (x, p). It turns, for general Ω, Λ and T , the following functional differ-
ential equation6

Ẇ=

[
mΩ2∂px−

∂xp

m
+

2Cp
mΩ

∂pp+ ~Dx∂
2
p −

~Dp

mΩ
∂x∂p

]
W. (3.73)

This is the equivalent of the Einstein’s equation (2.2): the Wigner func-
tion plays here the role of the density probability used by Einstein. The
fact that the Hamiltonian introduced in the beginning of the chapter per-
mits to recover an equation showing the same form of the classical one
derived by Einstein justifies the use of the name "Brownian motion" to
indicate the current quantum model. This shall be even clearer in chap-
ter 6.

The analogy with Einstein’s equation allows to better understand the
physical meaning of the coefficients (and so their name). For instance
it is possible to note that the coefficient Dx multiplies a term yielding a
diffusion with respect of the momentum. Similarly, Dp is proportional to
mixed diffusion term. For this goal is named anomalous diffusion term. The
physical meaning of the coefficient will be even clearer when we derive
motions equations.

The stationary solution of this equation may be found by inserting a
generic Gaussian ansatz

Wst ∝ exp

[
−
(
σp

p2

2m
+ σx

mΩ2x2

2

)
/(kBT̃ )

]
(3.74)

with real parameters σp and σx, and equating independently the coeffi-
cients of x2 and p2 to zero in the resulting equation.

In the oversimplified Caldeira-Leggett limit defined by the constraint
in Eq. (3.54), one would set

Dx = mγkBT/~, Dp = 0, (3.75)

and find in this way
σp = σx = 1, T̃ = T. (3.76)

By retaining instead the complete expression of all terms in the equation
(and, in particular, a non-zero Dp), we find that the stationary Wigner

6Note that [p, ρ]x̂ = [(p− − p+)ρ]x̂ = x−(p− − p+)W .
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FIGURE 3.2: Effective temperatures as obtained through
the complete quantum treatment, Eq. (3.78) (blue), and
by means of an oversimplified approximation discussed
in App. A, Eq. (A.7) (red). The green line is the high-T

result, T̃ = T .

function is obtained by choosing σp = 1 and

σx =
1

1− 2Dp/(mΩ2 coth[~Ω/2kBT ])
, (3.77)

yielding an effective temperature

T̃ =
~Ω

2kB
coth

(
~Ω

2kBT

)
. (3.78)

This result is shown in Fig. 3.2. A number of interesting conclusions may
now be drawn. First of all, a careful treatment of the equation at low-T
yields an effective temperature which saturates to the zero-point motion
energy. When σp = σx = 1, the Gaussian stationary solution with an ef-
fective temperature T̃ as given by the quantum result in Eq. (3.78) corre-
sponds to the exact quantum thermal Gibbs-Boltzmann density matrix of
an harmonic oscillator (the system) at the temperature T . In this case, the
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contours of the stationary distributions are circles of radius
√

2kBT̃ /~Ω

for arbitrary T (i.e. of radius 1 at T = 0).
More generally, in units of the normalized standard deviations

δx =2

√
mΩ2〈x2〉st

2~Ω
=

√
2kBT̃

~Ωσx
(3.79)

δp =2

√
〈p2〉st
2m~Ω

=

√
2kBT̃

~Ωσp
, (3.80)

the Heisenberg uncertainty relation requires that

δxδp ≥ 1, (3.81)

i.e. that the contour of the distribution encircles an area not smaller than
π. An important effect of Dp is that it allows for a contraction of the
distribution in x vs. p. The Heisenberg uncertainty principle then puts
an important constraint on our theory, forcing us to exclude the region
where the inequality is violated. In Fig. 3.3 we illustrate this region of va-
lidity, as obtained by inserting Eq. (3.77) in Eq. (3.81): for any Λ > Ω, we
find that there exists a critical temperature below which the Heisenberg
uncertainty principle is violated. Similar squeezing effects have been dis-
cussed in the literature, for instance by Haake and Reibold, 1984, in the
context of the so called Ullersma model (Ullersma, 1966). At T = 0, the
Heisenberg principle requires Λ < Ω.

Interestingly, there are no log-corrections to T̃ coming from the log-
divergent term Dp. Such coefficient grows with the cut-off, and at very
large values σx diverges (i.e. δ2

x approaches zero) and becomes negative,
yielding a non-normalizable solution. However, this bound always lies
beyond the one set by the Heisenberg principle, which requires δxδp ≥ 1.
We may say that the quantum particle immersed in the bath experiences
an effective “heating" if the phase-space area encircled by the normalized
standard deviations is larger than the one a quantum Gibbs-Boltzmann
(GB) distribution would occupy at the same temperature. Since

〈Ek〉GB〈Ep〉GB = (kBT̃ /2)2, (3.82)
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FIGURE 3.3: Minimal temperature for the fulfillment
of the Heisenberg uncertainty principle for an Ohmic
spectral function with Lorentz-Drude cut-off, for γ/Ω =
0.1, 0.5, 1 (from bottom to top). In the red region, the gas
displays effective “heating" and a quenched aspect ratio
in p relative to x (i.e. δx/δp > 1). The black, dot-dashed
line is the asymptotic approximation to the boundary of

unit aspect ratio, T = α(1)Λ.
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the system is effectively heated if

δxδp > coth

(
~Ω

2kBT

)
, (3.83)

or equivalently σxσp < 1. Since σp = 1, this amounts to requiringDp < 0,
which remarkably does not depend on γ. Asymptotically, we have

kBT/~ > α(1)Λ +O(Ω/T ), (3.84)

with α(1) ≈ 0.24 solution of the implicit equation

πα(1) + DiΓ(1/2πα(1)) + γ̃ = 0. (3.85)

Finally, we consider the aspect ratio of the phase-space contour de-
scribed by the standard deviations. Since σp always equals unity, it is
easy to see that we have a quenched aspect ratio in x, relative to p (i.e.
δx/δp < 1) in the “cooling" region, and the opposite situation (δx/δp > 1)
in the “heating" region. In fact the line separating “heating” region from
the “cooling” region corresponds to the regime whereDp = 0. In this case
the Wigner function is exactly given by a Gaussian with effective temper-
ature T̃ , and circular shape of the distribution (δp = δx); it corresponds
precisely to the quantum thermal Gibbs-Boltzmann density matrix.

It should be noted that, when deriving the stationary solutions from
a perturbative treatment of the master equation to order 2n in the bath-
system coupling constant κk, one gets a reduced equilibrium state which
is exact to order 2n − 2, and contains some (but not all) terms of the
order 2n solutions. The overall error is therefore of order (κk)

2n itself,
as pointed out by Fleming and Cummings, 2011 (for discussion of the
nature of exact reduced equilibrium states see also Subaşi et al., 2012).
Indeed, the violation of the Heisenberg uncertainty principle we observe
within our Born-Markov master equation, which is of second-order in
κk, is driven by the unphysical logarithmic divergence of Dp, which is
itself proportional to γ, i.e. to κ2

k. Obviously, if the exact master equa-
tion is used, then Heisenberg uncertainty violation cannot occur in any
parameter regime, ergo this violation is not physical, but is rather a re-
sult of applied approximations. On the other hand, it is to be expected
that both the degree of cooling and squeezing in the considered quantum
stochastic process should be bounded from below, and the Heisenberg
uncertainty violation gives a reasonable estimate of this bound.
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3.5 Near-equilibrium dynamics

We look now into the dynamics of the model in order to get some in-
sight about the motion of the central Brownian particle. For this goal
we derive the equations for the first and second moments of the Wigner
distribution, that can be easily obtained starting by Eq. (3.73). These mo-
ments characterize the Gaussian state fully, and form two closed systems
of linear equations:

˙〈x〉 = 〈p〉/m, (3.86)

˙〈p〉 = −mΩ2〈x〉 − 2Cp
mΩ
〈p〉, (3.87)

and

˙〈x2〉 =2〈xp〉/m, (3.88)

˙〈xp〉 =
〈p2〉
m
−mΩ2〈x2〉 − 2Cp

mΩ
〈xp〉 − ~Dp

mΩ
, (3.89)

˙〈p2〉 =− 2mΩ2〈xp〉 − 4Cp
mΩ
〈p2〉+ 2~Dx. (3.90)

The solutions of the equations above describe a damped oscillation
around their stable stationary values:

〈x〉st = 〈p〉st = 〈xp〉st = 0, (3.91)

and

〈p2〉st = ~mΩDx/2Cp, (3.92)

(m2Ω2)〈x2〉st = ~(mΩDx/2Cp −Dp/Ω). (3.93)

The only constraint is imposed by the Heisenberg principle

mΩ2〈x2〉
2

〈p2〉
2m
≥
(
~Ω

4

)2

. (3.94)

The equations for 〈x2〉st and 〈p2〉st and the resulting Heisenberg bound
coincides with the one found for σx, σp, and δxδp in Sec. 3.4, a fact which
should not surprise, as we have seen that a Gaussian Ansatz was provid-
ing an exact solution of the problem.
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The equations for the first and second moments highlight once more
the physical meaning of the coefficients of Eq. (3.36). For instance, Eq. (3.87)
shows an exponential decreasing of the average value of the momentum
induced by the interaction with environment. Here the coefficientCp pro-
vides an information about the timescale ruling such a process. We see
that it depends only on the spectral density, and so its parameters such
as cut-off and damping constant, but not on the temperature.

We already discussed in Sec. 3.4 the relation between coefficient Dp

and decoherence in the position basis which the particle undergoes. Now,
Eq. (3.90) sheds light on its role in the momentum diffusion. Focusing on
the time-dependence of 〈p2〉 due only to Dx we obtain

〈p2〉 ∝ Dxt, (3.95)

manifesting a normal diffusion in the momentum-space. Recall that such
normal diffusion is a signature of Brownian motion. In fact, it easy to
obtain by Eq. (3.88) that Dx also leads to normal diffusion on the posi-
tion variance, namely the width of the ensemble in the position space
asymptotically grows linearly in time.

3.6 Summary

We studied the quantum version of the Brownian motion. Here there is a
resume of the main contents of the chapter.

• Quantum Brownian motion model may be described by means of a
Hamiltonian [Eq. (3.1)], resulting by the sum of three terms: one
related to the central Brownian particle, usually considered as a
quantum harmonic oscillator, that related to the environment, mod-
eled as a sum of uncoupled harmonic oscillators, and an interaction
term showing a linear dependence in both the positions of central
system and the constituents of the environment [Eq. (3.4)].

• The Hamiltonian permits to write the master equation in the Born-
Markov regime [Eq. (3.36)], which is the main tool to characterize
the dynamics of the Brownian particle under the influence of the
environment, i.e. evaluate decoherence and dissipation processes
and compute the average values of the observables [see Sec. 3.5].
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• We focus on the stationary solution of the master equation. We
represent it in the phase-space by means of a Wigner function dis-
tribution, and we study its geometrical configuration as the system
parameters vary. Fig. 3.3 is the main result of the chapter, and high-
lights the areas where the quantum Brownian particle experiences
squeezing and cooling. We note the presence of forbidden zones
associated to the violations of Heisenberg principle, due to the non-
exact character of Eq. (3.36).
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Chapter 4

Non-linear quantum
Brownian motion

The previous chapter was devoted to the discussion of the QBM model.
We treated such a model by means of a Born-Markov master equation
and we studied its stationary solution. All the theory we developed in
chapter 3 refers to a Hamiltonian model where the interaction depends
linearly on the position of the central particle. This is the conventional
case, and we will refer to it in the following also as linear case. Now we
aim to extend our analysis to an interaction term that manifests a non-
linear dependence on the variables of the Brownian particle

HI = −
∑
k

κkXkf(x). (4.1)

The non-linear character of the coupling term above is related to state-
dependent damping and diffusion, arising for instance when the quan-
tum Brownian particle is embedded in an inhomogeneous medium, i.e.
a medium with a space-dependent density. To keep notation as close as
possible to the usual case of linear coupling, we take f(x) to have di-
mension of length, i.e. we write it as f(x) = af̃(x/a), with f̃(x) being
dimensionless, and a denoting a typical length scale on which f varies.
In this case the counter-term in Eq. (3.5) writes as

Vc(x) =
∑
k

κ2
k

2mkω
2
k

f(x)2. (4.2)
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In the first part of the chapter we focus on the most simple case provided
by an interaction term in the form

HI = −
∑
k

κkXk
x2

a
, (4.3)

which we will call quadratic interaction term. We derive the Born-Markov
master equation which corresponds to the dynamics induced by this Hamil-
tonian, focusing on the analysis of the stationary solution in the phase-
space. Here the Gaussian ansatz just constitutes an approximation. Still,
we present a quantitative analysis of the geometrical configuration of the
Gaussian Wigner function associated to the stationary state, highlighting
the forbidden areas and the range of the values of the system parameters
where the quantum Brownian particle experiences squeezing and cool-
ing. In the end, we will characterize the structure of the Born-Markov
master equation of the most generic function f in the interaction Hamil-
tonian in Eq. (4.1). The results we are about to present have been pub-
lished in the work of Massignan et al., 2015.

4.1 Born-Markov master equation with quadratic cou-
pling

In this section we derive the Born-Markov master equation associated
to the interaction Hamiltonian term in Eq. (4.3). We note that it differs
from the linear case only with respect of the variables related to the cen-
tral Brownian particle, namely the part associated to the bath operators
does not change. Accordingly, the self-correlation function of the envi-
ronment remains the same, and thus the noise and dissipation kernels,
too. Finally, in order to write the Born-Markov master equation we have
just to evaluate the time-dependence of the particle position in the inter-
action picture. It turns:

x2(−τ) =
[
x cos(Ωτ)− p

mΩ
sin(Ωτ)

]2

= x2 cos2(Ωτ)− {x, p}
mΩ

sin(Ωτ) cos(Ωτ) +
p2

m2Ω2
sin2(Ωτ), (4.4)
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so that (using the linearity of commutators and anti-commutators) one
finds

ρ̇(t) =− i

~
[HS , ρ(t)]− iCxx

~a2
[x2, {x2, ρ(t)}]− iCxp

~a2

[
x2,

{
{x, p}
mΩ

, ρ(t)

}]
− iCpp

~a2

[
x2,

{
p2

m2Ω2
, ρ(t)

}]
− Dxx

~a2
[x2, [x2, ρ(t)]]

− Dxp

~a2

[
x2,

[
{x, p}
mΩ

, ρ(t)

]]
− Dpp

~a2

[
x2,

[
p2

m2Ω2
, ρ(t)

]]
, (4.5)

with the coefficients C... given by

Cxx =−
∫ ∞

0
dτ η(τ) cos2(Ωτ), (4.6)

Cxp =

∫ ∞
0

dτ η(τ) sin(Ωτ) cos(Ωτ), (4.7)

Cpp =−
∫ ∞

0
dτ η(τ) sin2(Ωτ), (4.8)

and the D... by

Dxx =

∫ ∞
0

dτ ν(τ) cos2(Ωτ), (4.9)

Dxp =−
∫ ∞

0
dτ ν(τ) sin(Ωτ) cos(Ωτ), (4.10)

Dpp =

∫ ∞
0

dτ ν(τ) sin2(Ωτ). (4.11)

Using
sin(x) cos(x) = sin(2x)/2, (4.12)

and introducing the shorthand notation

c(Λ) = Λ2/(4Ω2 + Λ2), (4.13)

for the cut-off function evaluated at frequency 2Ω, we may exploit the
results for Cp and Dp of the previous chapter to find

Cxp =
1

2

∫ ∞
0

dτ η(τ) sin(2Ωτ) =
Cp(2Ω)

2
=
mγΩ

2
c(Λ), (4.14)
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Dxp =
Dp(2Ω)

2
=
mγΩ

π
c(Λ){πkBT

~Λ
+ DiΓ

(
~Λ/2

πkBT

)
}

−mγΩ

π
c(Λ)Re

[
DiΓ

(
i~Ω

πkBT

)]
. (4.15)

Similarly, noting that

cos2(x) = [1 + cos(2x)]/2, (4.16)

Iν ≡
∫ ∞

0
dτ ν(τ) = mkBTγ/~, (4.17)

and Dx for the linear case, it turns

Dxx =
Iν +Dx(2Ω)

2
=
mγΩ

2

[
kBT

~Ω
+ c(Λ) coth

(
~Ω

kBT

)]
, (4.18)

Dpp =Iν −Dxx =
mγΩ

2

[
kBT

~Ω
− c(Λ) coth

(
~Ω

kBT

)]
. (4.19)

Finally, recalling

Iη ≡
∫ ∞

0
dτ η(τ) = mγΛ/2, (4.20)

and the derivation for Cx in chapter 3, one also obtains

Cxx =− Iη
2

+
Cx(2Ω)

2
= −mγΛ(2Ω2 + Λ2)

2(4Ω2 + Λ2)
, (4.21)

Cpp =− Iη − Cxx = −mγΩ2

Λ
c(Λ). (4.22)

In analogy with the linear case, the coefficient Cxx diverges with the cut-
off Λ, but this poses no problems as

[x2, {x2, ρ}] = [x4, ρ], (4.23)

so this term may always be canceled exactly by an appropriate counter-
term

Vc(x) = −Cxxx4/a2, (4.24)

representing this time a Lamb-shift of the coefficient of the quartic term
in the confinement. All other coefficients remain bounded in the limit of
~Λ/kBT →∞, exception made forDxp which exhibits a mild logarithmic
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divergence, in complete analogy with Dp in the linear case. The gener-
alized master equation (4.5), together with the explicit forms of its coef-
ficients, represents a central result of the present chapter: it is the main
tool to study the dynamics of the central Brownian particle induced by
the interaction Hamiltonian (4.3). Here below, we analyze the behavior
of the various coefficients in three different limits.

4.1.1 Caldeira-Leggett limit

In the Caldeira-Leggett regime defined in Eq. (3.54), we have

Dxx ≈mγkBT/~,
Dxp ≈−mγ(kBT/~)(Ω/Λ) −→ 0,

Dpp ≈−mγ~Ω2/(6kBT ) −→ 0,

(4.25)

and therefore it results

ρ̇(t) =− i

~
[Hsys, ρ(t)]− imγ

2~

[
x2

a
,

{
{x, p}
ma

, ρ(t)

}]
− mγkBT

~2

[
x2

a
,

[
x2

a
, ρ(t)

]]
. (4.26)

In this limit, it is easy to identify Cxp as being proportional to the mo-
mentum damping coefficient, and Dxx to the normal momentum diffu-
sion coefficient. In analogy with the traditional QBM model, this latter
term may also be seen as the one responsible for decoherence in the po-
sition basis. The off-diagonal components of ρ are in this way found to
decohere at a rate

γ(2)
x1,x2 = Dxx(x2

1 − x2
2)2/~a2, (4.27)

This is an important result, providing a typical timescale for decoherence
of states entangled in position space in presence of a bath coupling of
the form f(x) ∝ x2. In the end of the chapter we will provide a general
formula which yields the position-space decoherence rate γ(n)

x1,x2 associ-
ated to a coupling with an arbitrary power of the system’s coordinate,
f(x) ∝ xn. Remarkably, and at odds with what found in Ref. Hu, Paz,
and Zhang, 1993, we find that superposition states which are symmetric
around the origin (e.g., sharply localized around both +x0 and −x0) will
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0 1 2 3
0

1

2

3

FIGURE 4.1: Plot of the coefficients Dn,0, which control
the decoherence rate of the off-diagonal elements of the
density matrix ρ(x1, x2) in the position basis. The lines
represent respectively D1,0 = Dx (blue), D2,0 = Dxx

(red), and D3,0 (green). Continuous lines are for Λ = 2Ω,
dashed lines for Λ = 100Ω. In the Caldeira-Leggett limit
kBT/~ � Λ � Ω, we find Dn,0 → mγkBT/~ (dotted

line), independent of n.

be protected by decoherence in presence of couplings containing only
even powers of n.

Note also that in this limit we recover again the classical Gibbs-Boltzmann
stationary states, and the dynamics satisfies the fluctuation-dissipation
relation. Namely, in the case of a harmonic potential, or more generally
upon neglecting quantum effects induced by an anharmonic potential,
the time dependent equation for the Wigner function has the interpre-
tation of a Fokker–Plank equation for the probability distribution in the
phase space of a classical Brownian particle undergoing damped motion
with an x–dependent damping γ(x/a)2 under the influence of a multi-
plicative Langevin stochastic noise–force F (t)(x(t)/a). The noise is Gaus-
sian and white, and it fulfills the fluctuation–dissipation relation, i.e. the
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average of the noise correlation yields

〈F (t+ τ)x(t+ τ)F (t)x(t)〉 = 2γkBT 〈x2〉. (4.28)

This relation assures that the stable stationary state of the dynamics is the
classical Gibbs-Boltzmann state. In terms of the coefficients entering the
master equation the fluctuation–dissipation relation implies that

Dxx/Cxp = 2kBT/~Ω. (4.29)

4.1.2 Large cut-off limit

Taking the limit

Λ� Ω,
kBT

~
, (4.30)

the quantity simply amounts to setting c(Λ) = 1 in the expression for
the various coefficients. Such a regime shows the following features i)
the coefficient Cpp (a term contributing to a Lamb-shift of the trap fre-
quency Ω) is suppressed as Ω/Λ; ii) the normal momentum diffusion (or
position-basis decoherence) coefficientDxx, which is analogous to theDx

of the previous chapter, develops a non-trivial quantum dependence on
~Ω/kBT ; iii) the coefficientDxp (which contributes to both the Lamb-shift
and the anomalous diffusion) becomes log-divergent in Λ, analogously
to Dp for the traditional QBM model; iv) there appears a new coefficient,
Dpp, which depends on ~Ω/kBT , and vanishes for kBT � ~Ω.

We note here that, in this limit, the coefficients of the master equation
satisfy the generalized fluctuation-dissipation relations

(Dxx +Dpp)/Cxp = 2kBT/~Ω (4.31)
(Dxx −Dpp)/Cxp = 2 coth(~Ω/kBT ). (4.32)

Finally, we note that the Caldeira-Leggett limit, should be taken with pre-
caution in the case of non-linear coupling. Indeed, as we will see in the
following (cf. Fig. 4.2), for strong damping the system in a purely har-
monic trap may become dynamically unstable at sufficiently large tem-
peratures.
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4.1.3 Ultra-low temperature

The master equation for

kBT/~� Ω� Λ (4.33)

reads:

ρ̇(t) =− i

~
[Hsys, ρ(t)]− imγ

2~

[
x2

a
,

{
{x, p}
ma

, ρ(t)

}]
− mγΩ

2~

[
x2

a
,

[
x2

a
− p2

m2Ω2a
, ρ(t)

]]
− mγ

~π
log

(
Λ

2Ω

)[
x2

a
,

[
{x, p}
ma

, ρ(t)

]]
. (4.34)

As expected the temperature drops out of the equation, and the Dxp

term is log-divergent in the cut-off Λ. The fact that the self-correlation
function writes in the same way for both quadratic and linear QBM im-
plies that the formal condition in Eq. (3.46) associated to the Markov hy-
pothesis shows the same form. According, also in this context the low-
temperature limit has to be studied carefully because it could affect the
approximations underling the derivation of the Born-Markov treatment,
on which discussion relies.
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4.2 Stationary solution

The equation of motion for the Wigner function of a harmonically con-
fined particle reads

Ẇ =− i

~

[
p2
− − p2

+

2m
+ V (x+)− V (x−)

]
W

− (x2
+ − x2

−)

 iCxp
(
{x+, p−}+ {x−, p+}

)
~mΩa2

+
iCpp(p

2
− + p2

+)

~m2Ω2a2

+
Dxx(x2

+ − x2
−)

~a2
+
Dxp

(
{x+, p−} − {x−, p+}

)
~mΩa2

+
Dpp

(
p2
− − p2

+

)
m2Ω2~a2

W
(4.35)

=

[
−∂xp
m

+mΩ2∂px+
8Cxp
mΩa2

(
∂ppx

2 +
~2

4
∂2
p(∂xx− 1)

)
+

Cpp
(mΩa)2

(
4∂pxp

2 − ~2∂p∂
2
xx+ 2~2∂p∂x

)
+

4~Dxx∂
2
px

2

a2
+

4~Dxp(∂
2
pxp− ∂p∂xx2 + ∂px)

mΩa2
− 4~Dpp(∂xx− 1)∂pp

m2Ω2a2

]
W

Interestingly, the Gaussian ansatz (3.74) would provide a stationary solu-
tion to the equation above if we neglected the terms proportional to Cpp
and Dxp. Remembering that

Dxx −Dpp = 2Cxp coth (~Ω/kBT ) , (4.36)

the stationary solution is found when

σp = σx = 1 (4.37)

and

kBT̃
(Cpp=Dxp=0)

=
~Ω

2
coth

(
~Ω

2kBT

)
, (4.38)

which coincides with the result found in chapter 3. Unfortunately how-
ever Dxp is generally not negligible, as for example it diverges logarith-
mically with the cut-off Λ. In order to incorporate the neglected terms,
one may try to generalize the ansatz by including in the exponent terms
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proportional to higher polynomials in x2 and p2 (i.e. terms such as x4,
x2p2, or p4), but no closed solution can be be found in this way, as mo-
ments of a given order always couple with higher ones.

The contributions higher than quadratic can, however, be reasonably
taken into account by means of the so-called self-consistent Gaussian (or
pairing) approximation (Gardiner, 2009; Risken, 2012). The Dxp term is
proportional to

∂2
pxp− ∂p∂xx2 + ∂px ' ∂2

p〈xp〉st − ∂p∂x〈x2〉st + ∂px

=− ∂p∂x
kBT̃

σxmΩ2
+ ∂px. (4.39)

As a general rule, averages of odd functions or partial derivatives vanish
when performed with respect to the Gaussian distribution (3.74). Simi-
larly, the Cpp term contributes

4∂pxp
2 − ~2∂p∂

2
xx+ 2~2∂p∂x ≈

4mkBT̃

σp
∂px+ 2~2∂p∂x, (4.40)

as (mixed) derivatives of order higher than two vanish in this approxi-
mation. In this way, we get the two equations

δ2
p =

δ2
x

ζ
+ Γcpp

(
δ2
xδ

2
p

2
− 1

)
(4.41)

δ2
xδ

2
p =

δ2
xdxx − δ2

pdpp

cxp
− 1. (4.42)

To simplify notation, we have introduced the normalized damping Γ ≡
2~γ/(mΩ2a2), the adimensional variables cxp = 2Cxp/(mγΩ) (and simi-
larly for cpp, dxp, . . .), and the quantity ζ = 1/(1 + 2Γdxp).

The two coupled equations (4.41) and (4.42) may be combined to ob-
tain a single quadratic equation determining, e.g., δ2

x, from which we may
then extract δ2

p . The quadratic equation has two solutions, and the correct
one may selected by looking at its behaviour in the regime Ω� kBT/~�
Λ. The (-) solution unphysically tends towards zero there. On the other
hand, the (+) solution correctly yields δ2

x ∼ 2kBT/~Ω, i.e. an effective
temperature T̃ ∼ T . At odds with the linear case, however, T̃ strongly
deviates from T when T ∼ O(Λ/Ω).

A detailed phase diagram for the present case of quadratic coupling
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FIGURE 4.2: Phase diagram of our equation for a
quadratic coupling, under the self-consistent Gaussian
approximation. From left to right, plots are for Γ =
0.1, 0.5, 1. Top (a): the gas experiences an effective “cool-
ing" in the blue regions, and an effective “heating" in the
red regions. Center (b): density plot of the logarithm of
the aspect ratio log(δ2x/δ

2
p). Bottom (c): maximum of the

real part of the eigenvalues of the matrix of coefficients
of the linear system defined in Eq. (4.54).
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is presented in Fig. 4.2. The Heisenberg principle requires δxδp ≥ 1, a
condition which gives rise to a minimal acceptable temperature which
grows as Tmin ∼ log(Λ) for large Λ/Ω, in close analogy to the linear case.
The Heisenberg bound is shown in Fig. 4.2a, together with the region
where the gas experiences an effective heating, or cooling, with respect
to its Gibbs-Boltzmann counterpart.

The corresponding degree of deformation of the phase-space distri-
bution, as measured by the logarithm of the aspect ratio log(δ2

x/δ
2
p) =

log(σp/σx), is shown in Fig. 4.2b. At small temperatures, we observe
the emergence of a region (below the magenta, dot-dashed lines) where
δ2
x < 1, i.e. of genuine quantum squeezing. Notice that, for damping

Γ & 0.1, at large temperatures the aspect ratio of the distribution dis-
plays a very sharp increase; beyond a certain point, the solution of Eqs.
(4.41) and (4.42) yields a value for the fluctuations δ2

x which diverges and
turns negative, a clearly unphysical feature signaling the breakdown of
the Gaussian Ansatz in that region.

It may be noticed by comparing Figs. 4.2a and 4.2b that, as in pre-
vious chapter, the Gibbs-Boltzmann boundary coincides with the one
of unit aspect ratio, a condition which again is independent of Γ. This
may be explicitly checked by employing the trial GB solution δ2

x = δ2
p =

coth(~Ω/2kBT ), which is an identical solution of Eq. (4.42) for every {Λ,Ω, T},
and a solution of Eq. (4.41) for every Γ provided that kBT/~ = α(2)Λ +
O(Ω/T ), with α(2) ≈ 0.189 satisfying the implicit equation

πα(2) + 2[DiΓ(1/2πα(2)) + γ̃] = 0. (4.43)

At odds with the linear case seen in the previous chapter, the equa-
tions for a quadratic coupling determine the two ratios δ2

x ∝ T̃ /σx and
δ2
p ∝ T̃ /σp, but do not provide an explicit expression for T̃ , σx and σp

separately, leaving therefore open various possible applications of this
theory.

As an example, we may fix T̃ in accordance to the standard formula
for the quantum mechanical harmonic oscillator, Eq. (3.78), and then in-
terpret σp and σx as quantum corrections to the inverse mass 1/m and
the spring constant mΩ2. Such “renormalization" should be used if we
considered the starting model as a fundamental quantum field theoretic
construct.

Alternatively, one may set, say, σp = 1, and consider quantum mod-
ification of the effective temperature, and the spring constant. From Eq.
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(4.41) one finds in this way

kBT̃ =
~Ω

2

δ2
x/ζ − Γcpp

1− Γcppδ2
x/2

. (4.44)

In the green regions, one of the validity conditions is violated, i.e. ei-
ther the Heisenberg principle is not satisfied, or one of the eigenvalues
of the stability equations becomes positive, or fluctuations δ2

x and δ2
p are

complex numbers. The black dashed lines are the boundaries of unity as-
pect ratio, where δ2

x = δ2
p . One needs to examine the nature of Heisenberg

uncertainty pathologies in the present quadratic case. Obviously, the
exact stationary state should not violate the Heisenberg uncertainty in-
equality. In the quadratic case, however, the exact solution is not known,
and the results of Fleming and Cummings, 2011 cannot be applied di-
rectly. The pathologies may result from solutions being of mixed order
as in Fleming and Cummings, 2011, or from the non-Gaussian form of
the unknown exact solution. In any case the pathologies signal the in-
validity of applied approximations and offer a reasonable bound for the
degree of cooling and squeezing in the considered quantum stochastic
process.

4.3 Near-equilibrium dynamics in self-consistent Gaus-
sian approximation

In this case, the Gaussian Ansatz provides only an approximate solu-
tion. Again, the first and second moments of the Wigner distribution
characterize the Gaussian state fully, but this time they couple to higher
moments, so that Wick (Gaussian) de-correlation techniques have to be
used. We obtain for the first moments

˙〈x〉 =〈p〉/m, (4.45)

˙〈p〉 =−mΩ2〈x〉 − 8Cxp
mΩa2

〈x2p〉 − 4Cpp
(mΩa)2

〈xp2〉

− 4~Dxp

mΩa2
〈x〉 − 4~Dpp

m2Ω2a2
〈p〉.

The Wick’s theorem allows to replace

〈x2p〉 = 〈x〉2〈p〉+ 2〈∆x∆p〉〈x〉+ 〈∆2
x〉〈p〉, (4.46)
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and similarly for 〈xp2〉, where we represent the Gaussian random vari-
ables

x = 〈x〉+ ∆x, p = 〈p〉+ ∆p. (4.47)

We obtain thus

˙〈p〉 =−mΩ2〈x〉 − 8Cxp(〈x〉2 + 〈∆2
x〉)

mΩa2
〈p〉

−
4Cpp(〈p〉2 + 〈∆2

p〉)
m2Ω2a2

〈x〉 − 4~Dxp

mΩa2
〈x〉

− 4~Dpp

m2Ω2a2
〈p〉 − 8〈∆x∆p〉

m2Ω2a2
(Cpp〈p〉+ 2mΩCxp〈x〉). (4.48)

These equations have a stable stationary solution 〈x〉st = 〈p〉st = 0, pro-
vided that they describe a damped harmonic oscillator. If such a solution
exists, in its vicinity we may identify

〈∆2
x〉st = 〈x2〉st = δ2

x~/(2mΩ), (4.49)

and
〈∆2

p〉st = 〈p2〉st = ~mΩδ2
p/2, (4.50)

since by hypothesis the first moments are zero, and we may neglect the
quadratic terms 〈x〉2, 〈p〉2 and the crossed fluctuation term 〈∆x∆p〉, to get
the two simultaneous conditions

1 + Γdxp + Γcppδ
2
p/2 ≥ 0, cxpδ

2
x + dpp ≥ 0 (4.51)

These, in turn, depend self-consistently on the equations for the second
moments,

˙〈x2〉 =
2

m
〈xp〉, (4.52)

˙〈xp〉 =
〈p2〉
m
−mΩ2〈x2〉 − 8

mΩa2

[
Cxp〈x3p〉+ ~Dxp〈x2〉

]
− 1

m2Ω2a2

[
Cpp

(
4〈x2p2〉 − 2~2

)
+ 8~Dpp〈xp〉

]
,

˙〈p2〉 =− 2mΩ2〈xp〉 − 4Cxp
mΩa2

(
4〈x2p2〉+ ~2

)
− 8Cpp
mΩa2

〈xp3〉+
8~Dxx

a2
〈x2〉 − 8~Dpp

m2Ω2a2
〈p2〉.
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From the first equation, we see that if a stable stationary solution exists
then 〈xp〉st = 0. The quartic terms may be decomposed as above, using
the Wick’s method, and in this way one may compute the stationary so-
lution. A straightforward calculation then shows that in the stationary
state described by the momenta 〈x2〉st and 〈p2〉st satisfy Eqs. (4.41) and
(4.42). To check the stability of the steady-state, we write

〈x2〉 = 〈x2〉st + ∆x2 , 〈p2〉 = 〈p2〉st + ∆p2 , 〈xp〉 = ∆xp, (4.53)

and perform linear stability analysis in ∆’s,

∂t(∆x2) =
2

m
∆xp (4.54)

∂t(∆xp) =
∆p2

m
−mΩ2∆x2 −

24Cxp〈x2〉st∆xp + 8~Dxp∆x2

mΩa2

−
4Cpp(〈x2〉st∆p2 + 〈p2〉st∆x2) + 8~Dpp∆xp

m2Ω2a2

∂t(∆p2) =− 2mΩ2∆xp −
16Cxp
mΩa2

[〈p2〉st∆x2 + 〈x2〉st∆p2 ]

− 24Cpp
m2Ω2a2

〈p2〉st∆xp +
8~Dxx

a2
∆x2 −

8~Dpp

m2Ω2a2
∆p2 .

The stability requires that the real parts of all eigenvalues of the matrix
governing the above linear evolution have to be negative, i.e. have to de-
scribe damping. Numerical analysis of the eigenvalues of this matrix is
presented in Fig. 4.2c. The plot indicates that all eigenvalues are negative
in most of the region of existence of the physically Gaussian stationary
solution, but at the same time the region of validity rapidly shrinks with
increasing damping Γ. To summarize, regions colored in green are not
accessible by the system because either the normalized standard devia-
tions δ2

x and δ2
p have an unphysical imaginary part, or they do not satisfy

the Heisenberg bound δ2
xδ

2
p ≥ 1, or the equations for the first moments

do not describe a damped harmonic oscillator (i.e. inequalities in (4.51)
are not satisfied), or at least one of the eigenvalues of the linear stability
matrix of the second moments (4.54) becomes positive.

Note that on top of the stability question, Eqs. (4.52) and (4.54) incor-
porate quantum dynamical effects: they describe dynamics clearly differ-
ent from their high T classical analogues, due to the quantum form/origin
of the diffusion coefficients Dxx, Dxp and Dpp.

Finally, let us comment about the large prohibited region we find in
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the quadratic case at large T . This region is generally dynamically un-
stable, and arises because of the diverging fluctuations in x caused by a
large Lamb-shift of the effective trap frequency, which turns the attrac-
tive harmonic potential into an effectively repulsive one. It is reasonable
to expect that this region would become allowed if we added a quartic
term to the confinement, on top of the usual quadratic one. Indeed, Hu,
Paz, and Zhang, 1993 considered only this case, for non-linear couplings.
However, traps for ultracold atoms are generally to a very high approx-
imation purely quadratic in the region where the atoms are confined, so
that the presence of a quartic component may be unjustified in a real ex-
periment.

4.4 General non-linear coupling

We consider here the interaction term with a completely general coupling
in the position of the particle in Eq. (4.1). If f ∈ C∞(I) and thus may be
expanded in Taylor series, the master equation can be written in the form:

ρ̇ = − i
~

[HS , ρ]−
∞∑

j,n=0

n∑
k=0

f̃ (j)f̃ (n)

aj+n−2j!n!(mΩ)k
Ln,k,j [x, p, ρ] (4.55)

with

Ln,k,j [x, p, ρ] =

[
xj ,

iCn,k
~
{σ(xn−kpk), ρ}+

Dn,k

~

[
σ(xn−kpk), ρ

]]
(4.56)

where σ(xmpk) is the sum of the (m+k)!
m!k! distinguishable permutations of

the m + k operators in the polynomial xmpk [e.g., σ(x2p) = x2p + xpx +
px2]. We have introduced here

Cn,k(Ω) =(−1)k+1

∫ ∞
0

dτ η(τ) cosn−k(ξ) sink(ξ) (4.57)

Dn,k(Ω) =(−1)k
∫ ∞

0
dτ ν(τ) cosn−k(ξ) sink(ξ)

where ξ = Ωτ . These integrals may be calculated by Laplace transfor-
mation, as detailed in Appendix B. Alternatively, we will outline in the
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same Appendix a simpler method which employs standard trigonomet-
ric identities to straightforwardly reduce every Cn,k to a linear combina-
tion of Cx and Cp (the ones computed in the linear case), and similarly
every Dn,k in terms of Dx and Dp. As an example, since

cos3(ξ) sin(ξ) = [2 sin(2ξ) + sin(4ξ)]/8, (4.58)

it is obvious that

D4,1(Ω) = [2Dp(2Ω) +Dp(4Ω)]/8, (4.59)

In complete analogy with the linear and quadratic cases, for a power
law coupling with f(x) = a(x/a)n the coefficient Dn,0 determines the
decoherence in the position basis, which for a quantum superposition of
two states centered respectively at x and x′ happens with a characteristic
rate

γ(n)
x1,x2 = Dn,0(xn1 − xn2 )2/~a2n−2. (4.60)

As a consequence, for an even more general coupling containing various
powers of (x/a), the total decay rate in position space reads

γx1,x2 =

∞∑
j,n=0

f̃ (j)f̃ (n)Dn,0(xn1 − xn2 )2

~j!n!aj+n−2
. (4.61)

In contrast with the work of Hu, Paz, and Zhang, 1993, we find here that
quantum superpositions which are sharply localized at positions sym-
metric with respect to the origin (e.g., in the vicinity of, say, x0 and −x0)
will be characterized by a vanishing decoherence rate (i.e. a diverging
lifetime) in presence of couplings which contain only even powers of n.
The decoherence rates in Eq. 4.61 are plotted in Fig. 4.1.

Large cut-off limit

In the limit Λ� kBT/~,Ω, we find:

• Cn,k ∝ Λ1−k, such that at every order n the only divergent term is
linear, and it is the one which may be re-absorbed in the Hamilto-
nian; indeed,Cn,0 is the coefficient in front of the term i[xn, {xn, ρ}] =
i[x2n, ρ], so that the divergent term is canceled by taking Hsys =
HS − Cn,0f(x)2. Moreover, for every n we have Cn,1 = mγΩ/2.
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• between the coefficients Dn,k, only the term with k = 1 diverges,

logarithmically as Dn,1 ∼ mγΩ
π log

(
~Λ

2πkBT

)
+ . . .. All terms with

k 6= 1 are instead finite.

High-temperature limit

In the high-temperature limit kBT
~ � Λ � Ω, the coefficients C are as

in the large-cut-off limit, as they do not depend on T . In the set of D
coefficients, only Dn,0 ∼ mγkBT/~ remains finite, while all others go to
zero. Using the identity σ(xn−1p) = n{xn−1, p}/2, it is easy to show that
the master equation (4.55) reduces at high temperatures to

ρ̇ = − i
~

[Hsys, ρ]− iγm

2~
[f(x), {ḟ(x), ρ}]− mγkBT

~2
[f(x), [f(x), ρ]], (4.62)

where

ρ̇ =− i

~
[Hsys, ρ]− iγm

2~
[f(x), {ḟ(x), ρ}] (4.63)

− mγkBT

~2
[f(x), [f(x), ρ]].

In this classical limit, we see that in presence of a non-linear coupling
the coefficients of the QME satisfy a generalized fluctuation-dissipation
theorem, since for any n we have Dn,0/Cn,1 ≈ 2kBT/~Ω.

4.5 Summary

We presented an analysis of QBM model with inhomogeneous damp-
ing and diffusion, relying on the material published by Massignan et al.,
2015. Here we resume the main contents of the chapter.

• The physics of a quantum Brownian particle in an inhomogeneous
medium may be treated switching from the linear dependence on
the particle position in the interaction Hamiltonian (3.4) to a non-
linear one. This situation is modeled by the coupling term in Eq.
(4.1).
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• We pay particular attention to the quadratic coupling in Eq. (4.3),
studying the dynamics described by the corresponding Hamilto-
nian by means of the resulting Born-Markov master equation in Eq.
(4.5).

• We look into the stationary solutions of this equation and we repre-
sent it in the phase space. In this case the Gaussian ansatz proposed
in the previous chapter only provides an approximation. We dis-
cuss how the geometrical configuration of this approximated Gaus-
sian Wigner function changes, as the system parameters are tuned.
The main result of this analysis is presented in Fig. 4.2, showing the
regime where the particle experiences cooling and squeezing.

• We also characterize the structure of the Born-Master equation for
the most general coupling (4.1). Its form is presented in Eq. (4.55).
We use it to evaluate the rates associated to the decoherence process
it induces. They are plotted in Fig. 4.1.
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Chapter 5

A Lindblad model for
quantum Brownian motion

In chapters 3 and 4 we investigated the QBM model and its extensions by
means of Born-Markov master equations. This approach leads to viola-
tions of the Heisenberg principle as the temperature decreases and inter-
action strength grows. Such a pathology avoids the possibility to study
the low-temperature regime, as well as that associated to certain values
of the system-bath coupling. Overcoming this problem is a fundamen-
tal step towards a correct description of the dynamics of the quantum
Brownian particle.

There are several possible manners to deal with the violations of the
Heisenberg uncertainty principle. First of all, one has to note that, obvi-
ously, if the exact master equation is used, violation of Heisenberg princi-
ple cannot occur in any parameter regime. Conversely, the master equa-
tion (3.36) (as well as that in Eq. (4.5)) is the result of a perturbative expan-
sion to the second order in the bath-particle coupling constant (actually,
expanding to second order requires weaker assumptions than the Born
and Markov ones; the resulting equation may still take into account some
non-Markovian effects which vanish in the limit of large times, as shown
in the book of Breuer and Petruccione, 2007). In the work of Fleming and
Cummings, 2011 it has been shown that Heisenberg principle violations
in the stationary state disappear if one performs a perturbative expansion
beyond the second order in the coupling constant.

In the present chapter we aim to cure the forbidden areas detected
in the Born-Markov approach by recalling a Lindblad master equation.
Such master equations preserve the positivity of the density operator at
all times (Lindblad, 1976a; Schlosshauer, 2007; Breuer and Petruccione,
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2007), and this in turn guarantees that the Heisenberg uncertainty prin-
ciple is always satisfied. A brief, self-contained demonstration of the lat-
ter is given in Appendix C. Various ways of addressing this difficulty
have been put forward by Lindblad, 1976b; Diósi, 1993; Isar et al., 1994;
Sǎndulescu and Scutaru, 1987; Gao, 1997; Wiseman and Munro, 1998;
Gao, 1998; Ford and O’Connell, 1999; Gao, 1999; Vacchini, 2000. We first
consider, in Sec. 5.1, the master equation (3.36), associated to the Hamil-
tonian with the linear interaction in Eq. (3.4). We shall refer in the fol-
lowing to this situation as linear case. We add a term to the Eq. (3.36),
that vanishes in the classical limit, bringing the equation to the Lindblad
form and, in particular, ensuring that the Heisenberg principle is always
satisfied (Lindblad, 1976a). We then rewrite it in the Wigner function
representation, deriving the time-dependent equations for the moments
of this distribution, showing that they have an exact Gaussian solution,
and study in detail its long-time behavior. Up to this point, the results
we present belong to well-known papers, such as that of Gao, 1997. The
original part of the chapter lies in the study of the stationary Gaussian so-
lution in the phase space, and has been published in the paper of Lampo
et al., 2016. In particular, we analyze the correlations induced by the
environment, which cause a rotation and distortion of the distribution,
as well as squeezing effects expressed by the widths and the area of the
distribution’s effective support.

In the second part of the chapter we move our analysis to the QBM
with a quadratic coupling in Eq. (4.3). We again modify the related mas-
ter equation to obtain a Lindblad one and we study its stationary solu-
tions in the phase space (Wigner) representation. For the quadratic QBM,
the exact stationary state is no longer Gaussian, but a Gaussian approx-
imation can be used in certain regimes. However, when the damping is
strong, the Gaussian ansatz does not converge for large times, showing
that it is not a good approximation to a stationary state.

5.1 Linear case

A Lindblad master equation has the form

∂ρ

∂t
=− i

~
[HS, ρ] +

∑
i,j

κij

[
AiρA

†
j −

1

2
{A†iAj , ρ}

]
, (5.1)
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where Ai are called Lindblad operators and (κij) is a positive-definite
matrix. The derivation of Eq. (5.1) goes widely beyond the goal of this
thesis, and it may be found anyway in Sec. 3.2.1 of the book of Breuer
and Petruccione, 2007 or in that of Rivas and Huelga, 2012.

Following the approach proposed by Gao, 1997 we will replace the
Born-Markov master equation (3.36), which cannot be brought to a Lind-
blad form, by an equation of the form Eq. (5.1) with a single Lindblad
operator of the form

A1 = αx+ βp, with κ11 = 1. (5.2)

Substituting this operator into Eq. (5.1) we obtain

∂ρ

∂t
=− i

~
[
H ′S, ρ

]
− iCXP

~
[x, {p, ρ}]− DXX

2~2
[x, [x, ρ]] (5.3)

− DXP

~2
[x, [p, ρ]]− DPP

2~2
[p, [p, ρ]] ,

with
H ′S = HS −

CXP
2
{x, p} ≡ HS + ∆H (5.4)

and

DXX =~2|α|2, DXP = ~2Re (α∗β) , (5.5)

DPP =~2|β|2, CXP = ~Im (α∗β) .

One could obtain the same result employing two Lindblad operators,
proportional to x and p respectively. Without loss of generality, we may
take α to be a positive real number since multiplying A1 by a phase fac-
tor does not change Eq. (5.1), and we will restrict ourselves to Imβ > 0,
because, as seen from Eq. (5.5), αIm(β) is the damping coefficient CXP ,
which must be positive.

Equation (5.3) differs from Eq. (3.36) just by two extra terms, involv-
ing DPP and ∆H . Equating the coefficients of the remaining terms with
those of the analogous terms appearing in Eq. (3.36), one finds

DXX = 2~Dx, DXP =
~Dp

mΩ
, (5.6)

CXP =
Cp
mΩ

, DPP =
(~CXP )2 +D2

XP

DXX
.
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In the Caldeira-Leggett limit defined in Eq. (3.54), these reduce to

CXP ≈ γ/2, (5.7)
DXX ≈ 2mγkBT,

DXP ≈ −γ
kBT

Λ
,

DPP ≈
γkBT

2mΛ2
.

Following Schlosshauer, 2007, since the quantities represented by P and
mΩX have generally the same order of magnitude, one can argue, as
in Eq. (5.56) of the book of Schlosshauer, 2007, that the terms propor-
tional toDXP andDPP are negligible in the Caldeira-Legget limit, recov-
ering the structure of the usual master equation. We may state so that the
Caldeira-Leggett equation (3.59) approximate the Lindblad master equa-
tion (5.3). This is in agreement with the fact that at large values of the
cut-off and at high-temperature (the Caldeira-Leggett limit) no violations
of the Heisenberg principle arise.

The operator ∆H can be absorbed into the unitary part of the dynam-
ics defined by Eq. (5.3), so it can be eliminated by introducing a counter
term into the system’s Hamiltonian. More generally, we will add to HS a
counter term

HC = (r − 1)∆H, (5.8)

which depends on a parameter r ∈ R, leading to the modified Hamilto-
nian

H ′S =HS − (rCXP /2){x, p} (5.9)

=
(p−mrCXPx)2

2m
+
m(Ω2 − r2C2

XP )x2

2
.

The effect of r is twofold: it introduces a gauge transformation which
shifts the canonical momentum p, and it renormalizes the frequency of
the harmonic potential. In the rest of the section we shall study the dy-
namics defined by Eq. (5.3), first for general values of r and then, for the
discussion of the stationary state, focusing on the case r = 0. We stress
that the introduction of a counter term in the Hamiltonian does not affect
the Lindblad character of Eq. (5.3), since it just enters in its unitary part.
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5.1.1 Solution of the Lindblad equation

We are interested in the study of the long-time dynamics of the Brownian
particle. In particular, we consider its configuration in the phase space,
employing the Wigner function representation. In terms of the Wigner
function, Eq. (5.3) becomes Ẇ = LW , with

LW =− p

m

∂W

∂x
+mΩ2x

∂W

∂p
(5.10)

+ CXP

[
r
∂

∂x
(xW ) + (2− r) ∂

∂p
(pW )

]
+

1

2

[
DXX

∂2W

∂P 2
+DPP

∂2W

∂x2

]
−DXP

∂2W

∂x∂p
.

Equivalently, one can look at the equations for its moments

∂〈x〉t
∂t

=
〈p〉t
m
− rCXP 〈x〉t (5.11)

∂〈p〉t
∂t

= −mΩ2〈x〉t − (2− r)CXP 〈p〉t

∂〈x2〉t
∂t

= −2rCXP 〈x2〉t +
2〈xp〉t
m

+DPP

∂〈xp〉t
∂t

= −mΩ2〈x2〉t − 2CXP 〈XP 〉t +
〈p2〉t
m
−DXP

∂〈p2〉t
∂t

= −2mΩ2〈xp〉t − (4− 2r)CXP 〈p2〉t +DXX ,

where the moments of the Wigner function are calculated as

〈f(x, p)〉t =

∫ ∞
−∞

dx

∫ ∞
−∞

dp f(x, p)W (x, p, t). (5.12)

These moments correspond to symmetric ordering of the quantum me-
chanical operators x and p (Schleich, 2001). In particular, note that the
time-dependence is solely contained in the Wigner function, in agree-
ment with the fact that we work in the Schrödinger picture.

The solutions for the first moments are

〈x〉t =e−CXP t
[
x0 cos(βrt) + x0

r sin(βrt)
]
, (5.13)

〈p〉t =e−CXP t
[
p0 cos(βrt)− p0

r sin(βrt)
]
, (5.14)
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where

x0
r =

mCXPx0(1− r) + p0

mβr
, (5.15)

p0
r =

CXP p0(1− r) +mx0Ω2

βr
, (5.16)

with
x0 ≡ 〈x〉0, p0 ≡ 〈p〉0, (5.17)

and
βr ≡

√
Ω2 − C2

XP (r − 1)2. (5.18)

Similar solutions have been presented in the works of Kumar, Sinha, and
Sreeram, 2009; Sǎndulescu and Scutaru, 1987; Isar et al., 1994. Eqs. (5.11)
may alternatively be written in terms of the kinetic momentum

〈p̃〉t = 〈p〉t −mrCXP 〈x〉t. (5.19)

It follows

∂〈x〉t
∂t

=
〈p̃〉t
m

, (5.20)

∂〈p̃〉t
∂t

= −m
[
Ω2 − r(r − 2)C2

XP

]
〈x〉t − 2CXP 〈p̃〉t,

or equivalently gathered in the compact form

∂2〈x〉t
∂t2

+ 2CXP
∂〈x〉t
∂t

+
[
Ω2 − r(r − 2)C2

XP

]
〈x〉t = 0. (5.21)

which, of course, can be derived directly from the equations Eq. (5.11).
For both r = 0 and r = 2 one obtains a damped oscillator with the orig-
inal frequency of the harmonic trap, Ω. For other values of r the fre-
quency is renormalized, with the maximal renormalization correspond-
ing to r = 1.

In Eqs. (5.11) we see that r introduces apparent damping in the posi-
tion, as already noted by Wiseman and Munro, 1998. Because of this, in
the following we will set r = 0. The extra term proportional to DPP , not
present in the starting Born-Markov master equation, appears only in the
equation for 〈ẋ2〉, without affecting the other equations, and in particu-
lar those for the first moments, so that it may be interpreted as a position
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diffusion coefficient.
We focus now on the stationary solution of Eq. (5.10). The latter may

be found by means of the following Gaussian ansatz

WST = ζ exp

[
1

2(ρ2 − 1)

(
x2

σ2
x

+
p2

σ2
p

+
2ρxp

σxσp

)]
, (5.22)

which is normalized to one taking

ζ ≡ 1

2πσxσp
√

1− ρ2
, |ρ| ≤ 1, (5.23)

with
σx =

√
〈x2〉, σp =

√
〈p2〉, ρ = − 〈xp〉

σxσp
, (5.24)

and, in the remainder of this Section, the variances are computed using
the time-independent Gaussian Ansatz in Eq. (5.22) of Weedbrook et al.,
2012. Inserting the Gaussian ansatz in Eq. (5.22) into Eq. (5.10) we find:

σ2
x =

DXX − 4mCXPDXP +m2(4C2
XP + Ω2)DPP

4m2CXPΩ2
(5.25)

σ2
p =

DXX +m2Ω2DPP

4CXP
σpσpρ = mDPP /2.

Again, we introduce the dimensionless variables

δx =

√
2mΩσ2

x

~
, δp =

√
2σ2

p

mΩ~
. (5.26)

With this parametrization, the Heisenberg inequality σxσp ≥ ~/2 reads
δxδp ≥ 1.

The Lindbladian character of Eq. (5.10) guarantees that the second
moments will satisfy the Heisenberg relation at all times. We further-
more note that the term with coefficient DPP , i.e. the extra term induced
by the Lindblad form of the ME, leads to a correlation between the two
canonical variables.

Geometrically, this correlation can be interpreted as a rotation of the
stationary solution in the phase space, see the black sketches in Fig. 5.1.
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FIGURE 5.1: Plot of the angle θ/π at γ/Ω = 0.8. This
angle is represented in the ellipse at the bottom of the
picture. Here, the orange-solid (green-dashed) line rep-
resents the minor (major) axis of the Wigner function, i.e.
that related to δl (δL). The axes X and P are those of the

phase space.

In the CL limit, the term with the coefficient DPP is negligible, and the
solution is an ellipse with its axes parallel to the canonical ones, repro-
ducing the well-known results.

To analyze the properties of the stationary state in the phase space,
we consider the variances of the major and minor axes of the Wigner
function. These axes are defined as the eigenvectors of the covariance
matrix

cov(X,P ) =

(
δ2
x −ρδxδp

−ρδxδp δ2
p

)
(5.27)
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FIGURE 5.2: Eccentricity of the Wigner function intro-
duced in Eq. (5.22), at γ/Ω = 0.8. The red dashed line
represents the values of T and Λ yielding δ2l = 1, and we

have genuine squeezing below it.

The smaller and larger eigenvalues of this matrix, δl and δL, are given
respectively by:

δ2
l,L =

1

2

(
δ2
x + δ2

p ∓
√(

δ2
x − δ2

p

)2
+ 4δ2

xδ
2
pρ

2

)
. (5.28)

We now aim to quantify such a rotation, calculating the angle θ be-
tween the major axis of the Wigner function (i.e. the eigenvector corre-
sponding to δL), and the x-axis of the phase space. In Fig. 5.1 we present
the behavior of θ as function of T and Λ, at fixed γ. At high Λ the major
axis aligns approximately with the p-axis of the phase space (θ = π/2),
while at low Λ, it is close to the x-axis (θ = π), in agreement with the
behavior of the Born-Markov master equation discussed by Massignan
et al., 2015, where 〈xp〉 was identically zero. On the other hand, at low
temperatures the Wigner function associated to the stationary solution
of the Lindblad equation may be significantly rotated with respect to the
axes of the phase space.

In the previous chapters it has been shown that, in the low tempera-
ture regime, the position of the Brownian particle governed by the Born-
Markov master equation experiences genuine squeezing along x in the
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FIGURE 5.3: Minimum value of δ2l over all temperatures,
as a function of the cut-off frequency, at several values of

the damping constant.

Wigner function representation, i.e. δx < 1. Similar squeezing effects
are pointed out by Maniscalco et al., 2004, by studying the numerical
solution of the exact master equation. In the case of the Lindblad equa-
tion, it was checked numerically that δx introduced in Eq. (5.25) is always
bigger than one. However, the minor axis of the ellipse describing the
Wigner function can display genuine squeezing. To quantify the degree
of squeezing of the Wigner function, Fig. 5.2 shows the values of eccen-
tricity defined as

η =
√

1− (δl/δL)2, (5.29)

computed for different values of temperature T and UV-cut-off Λ. The
eccentricity is larger at low temperatures. In particular, below the red
dashed line, we find an area where δl < 1, corresponding to genuine
squeezing along the minor axis of the Wigner Function, while in the
Caldeira-Leggett limit the eccentricity η approaches zero, and we obtain a
Wigner function with circular symmetry. In Fig. 5.3 we present the mini-
mal value of δ2

l obtained by choosing the appropriate (low) temperature.
This picture highlights the range of values of Λ and γ where genuine
squeezing occurs. We find that the eccentricity is an increasing function
of the damping constant, i.e. squeezing becomes more pronounced as γ
grows. In particular, at least γ/Ω > 0.5 is needed to obtain δl < 1.
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FIGURE 5.4: Cooling parameter χ introduced in Eq.
(5.30), plotted for γ/Ω = 0.8. The system exhibits cool-
ing to the right of the solid line, and heating to its left.
For comparison, the dashed line represents the cool-
ing/heating boundary obtained with the Born-Markov

master equation (3.36), which is independent of γ.
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FIGURE 5.5: Minimum value of the cooling parameter
χ over all temperatures, as a function of the cut-off fre-

quency, at several values of the damping constant.

We look now into the cooling effect introduced in chapter 3. Recalling
Eq. (3.83), we thus define the system to be cooled if1

χ =
δlδL

coth
(

~Ω
2kBT

) < 1, (5.30)

and heated otherwise. The degree of heating/cooling χ is shown in
Fig. 5.4. In Fig. 5.5 we present the minimal value achieved by χ as the
temperature is varied. We note that to obtain small values of χ one needs
to choose large values of both Λ and γ.

There is a difference between the configuration of the cooling areas
arising in the Lindblad dynamics studied here, and the ones produced by
Eq. (3.36) studied in chapter 3. In the latter, the cooling/heating bound-
ary coincides with the line defined by δx = δp, and this condition does
not depend on γ, while in the present Lindblad model, the location of
the boundary varies with γ. However, the boundary calculated within
the Lindblad approach converges to that predicted in the Born-Markov
one in the γ → 0 limit. Moreover, the Lindblad equation discussed here
displays heating at very low temperatures.

1For the Gibbs-Boltzmann distribution we have 〈X2〉GB〈P 2〉GB ∼ coth2 (~Ω/2kBT ).
So the denominator of Eq. (5.30) provides information regarding the area of the Gibbs-
Boltzmann distribution.
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In Figs. 5.3 and 5.5 we have not extended the range of values of the
damping constant beyond γ = 1. In fact, the expressions for the coeffi-
cients of Eq. (5.3) have been obtained by comparing it with the Eq. (3.36).
The latter is perturbative to second order in the strength of the coupling
between the Brownian particle and the environment. The square of the
coupling constant is proportional to the damping coefficient, so the va-
lidity of the perturbative expansion fails for γ large. In particular, in the
case of QBM this perturbative expansion holds for γ . Ω (Breuer and
Petruccione, 2007; Haake and Reibold, 1985).

Low temperature regime

We consider here in detail the stationary state in the low temperature
regime kBT < ~Ω. Such a study was impossible in chapter 3 because
solutions violated the Heisenberg principle there. Here, the Lindblad
form of Eq. (5.3) ensures the positivity of the density matrix at all times,
so no violations of the Heisenberg principle occur.

In the discussion above, we noticed that the time-dependent equa-
tions of motion of the Lindblad equation admit as an exact solution a
Gaussian with non-zero correlations between the two canonical variables
x and p. In the stationary state, in particular, one finds 〈xp〉 = −mDPP /2 6= 0.
This is a novelty in comparison with the stationary solution of Eq. (3.36),
which shows no correlations between x and p. In the range of Λ ex-
plored in Fig. 5.1, the correlation between x and p becomes noticeable
for kBT . 0.5~Ω. So, an important feature of the stationary solution of
the Lindblad equation at low temperature is that its major axis is rotated
with respect to those of the phase space.

In Fig. 5.2 we analyze the eccentricity of the stationary state. We point
out that as the temperature decreases, the distribution becomes increas-
ingly more squeezed. In particular, at low temperature we find a region
displaying genuine squeezing of the probability distribution in the direc-
tion of l. In Fig. 5.4 we also note the presence of a cooling area in the
low temperature regime. Nevertheless, in the zero-temperature limit the
stationary state shows again heating.

The zero-temperature limit of the Lindblad model deserves special
attention, as the two limits T → 0 and γ → 0 do not commute. Taking
first the zero-coupling and then the zero-temperature limit, one simply
finds δx = δp (in agreement with the general result for a free harmonic
oscillator), but no further information on their specific value. If instead
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one takes first T → 0 and then γ → 0, one finds δx = δp and the additional
condition

δxδp = δlδL =
5

4
+

[log(Λ/Ω)]2

π2
> 1, (5.31)

indicating that for the Lindblad model the Heisenberg inequality is not
saturated in the limit when the particle becomes free. This is in contrast
with the behavior of the non-Lindblad equation (3.36), for which, in this
limit, we have δxδp = 1. Summarizing, the effect of DPP is to introduce
extra heating at low temperatures and couplings, manifested by a small
constant, and a weak logarithmic dependence on the ultraviolet cut-off
Λ.

5.2 Quadratic case

5.2.1 The Hamiltonian and the Lindblad equation

In this section we consider the quadratic QBM, whose coupling is still
linear in the positions of the oscillators of the bath, but is quadratic in the
position of the Brownian particle

HI =
∑
k

gk
a
Xkx

2. (5.32)

Here a is a characteristic length related to the motion of the Brownian
particle and we set it to be a =

√
~/mΩ. The interaction term in Eq. (5.32)

describes an interaction of the particle with an inhomogeneous environ-
ment, giving rise to position-dependent damping and diffusion.

The dynamics induced by the interaction term in Eq. (5.32) has al-
ready been discussed in detail in chapter 4. There, the master equation
for the Brownian particle has been derived in the Born-Markov approxi-
mations, for a Lorentz-Drude spectral density. Nevertheless, this master
equation is not in a Lindblad form, nor is exact. Accordingly, the sta-
tionary solution is not defined for some values of the model parameters
because of violations of the Heisenberg uncertainty principle at low tem-
peratures.

In this Section, we aim to find a Lindblad equation as similar as pos-
sible to that derived in (4). Just like in the case of linear QBM, we expect
it to differ from the Born-Markov by some extra terms. To achieve this
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goal, we consider a single Lindblad operator

A1 = µx2 + ν{x, p}+ εp2, (5.33)

where µ, ν and ε are non-zero complex numbers. Substituting it into Eq.
(5.1) we obtain:

∂ρ

∂t
=− i

~
[HS + ∆H2, ρ] (5.34)

− Dµν

~2

[
x2, [{x, p}, ρ]

]
− Dµε

~2

[
x2,
[
p2, ρ

]]
− Dεν

~2

[
p2, [{x, p}, ρ]

]
− iCµν

~
[
x2, {{x, p}, ρ}

]
− iCµε

~
[
x2, {p2, ρ}

]
− iCεν

~
[
p2, {{x, p}, ρ}

]
− Dµ

2~2

[
x2,
[
x2, ρ

]]
− Dν

2~2
[{x, p}, [{x, p}, ρ]]− Dε

2~2

[
p2,
[
p2, ρ

]]
where

Dµ

~2
≡ |µ2|, Dµν

~2
≡ Re(µ∗ν),

Cµν
~
≡ Im(µ∗ν), (5.35)

and similarly for the other combinations of indices. We could have ob-
tained the same result by means of three Lindblad operators (rather than
a single one), each proportional to one of the terms appearing on the
right-hand side of Eq. (5.33). Similarly to the linear case, there is a term
which appears in the unitary part of the master equation

H2 = 2Dµνx
2 − 2Dενp

2 + 2Dµε{x, p} (5.36)

− 1

2
Cµν{{x, p}, x2} − 1

2
Cµε{p2, x2}

+
1

2
Cεν{{x, p}, p2}.

We eliminate it by introducing appropriate counter terms in the Hamil-
tonian.

Equation (5.34) is in a Lindblad form. Proceeding as in Sec. 5.1, equat-
ing the coefficients on the right hand side of Eq. (5.34) to the correspond-
ing ones in the Born-Markov master equation for quadratic QBM derived
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in chapter 3, we obtain:

Dµε =
Dpp

mΩ
, Dµν = Dxp, (5.37)

Cµε =
Cpp
~mΩ

, Cµν =
Cxp
~
,

and Dµ = 2mΩDxx. The remaining coefficients are then uniquely deter-
mined as

Dεν =
1

Dµ

[
DµνDµε + ~2CµνCµε

]
, (5.38)

Cεν =
1

Dµ
[CµνDµε −DµνCµε] ,

Dε =
1

Dµ

[
D2
µε + (~Cµε)2

]
,

Dν =
1

Dµ

[
D2
µν + (~Cµν)2

]
.

It is easy to check that in the limit kBT � ~Λ� ~Ω, the coefficients of all
extra terms vanish, and Eq. (5.34) recovers the structure of Eq. (4.5).

5.2.2 Stationary state of the quadratic quantum Brownian mo-
tion

We turn now to the study of the stationary state of the Brownian particle
in the case of quadratic coupling. To this end we express the Lindblad
master in Eq. (5.34) in terms of the Wigner function W , and obtain an
equation of the form Ẇ = LW , with:

L =− ∂xp

m
+mΩ2∂px+ 2Dµ∂

2
pX

2 + 2Dν (∂pp− ∂xx)2 + 2Dε∂
2
xp

2 (5.39)

+ 4Dµν(∂2
pxp− ∂p∂xx2 + ∂px)−4Dενp∂x (∂pp− ∂xx)

+ 8Cµν

[
∂ppx

2 +
~2

4
∂2
P (∂xx− 1)

]
+ Cµε

[
4∂pxp

2 − ~2∂P∂
2
xx+ 2~2∂p∂x

]
− 2Cενp∂x

(
4xp+ ~2∂p∂x

)
− 4Dµε(∂xx− 1)∂pp.

We now find the stationary solution of the above equation. In this
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case the Gaussian ansatz in Eq. (5.22) may at best provide an approxi-
mate solution, in contrast with the case of the linear QBM, since the sys-
tem of equations for the second moments is not closed. We approximate
higher-order moments by their Wick expressions in terms of second mo-
ments (which would be exact in a Gaussian case), obtaining the following
closed, non-linear system of equations in the variables δx, δp and ρ

1

2

∂δ2
x

∂t
= 4m~ΩCεν [1 + δ2

xδ
2
p(1 + 2ρ2)] + 2m2Ω2Dεδ

2
p (5.40)

+ 4Dνδ
2
x − Ωδxδpρ,

1

2

∂δ2
p

∂t
=

2Dµ

m2Ω2
δ2
x −

4~
mΩ

Cµν + 6~Cµεδxδ3
pρ+ Ωδxδpρ (5.41)

+4δ2
p

[
Dν −Dµε −

~Cµν
mΩ

(
1 + 2ρ2

)
δ2
x

]
, (5.42)

and

− 1

2

∂(δxδpρ)

∂t
= 4~Cµε + Ωδ2

p − 8mΩDενδ
2
p +

12~
mΩ

Cµνδpδ
3
xρ

+
(
8Dµε − 12m~ΩCενδ

2
p

)
δxδpρ−

[
Ω + 8

Dµν

mΩ
+ 2~

(
1 + 2ρ2

)
Cµεδ

2
p

]
δ2
x.

(5.43)

This system of equations could admit more than one stationary solution,
so we have to study the proper one. We choose the solution that coincides
with that obtained with the non-Lindblad dynamics in the Caldeira-Leggett
limit, since in this limit the coefficients of the extra terms of Eq. (5.34) van-
ish. In chapter 4 the stationary state in the case of the non-Lindblad dy-
namics has been studied in detail, and the variances have been calculated
analytically.

Similarly to the linear QBM studied in the previous section, we char-
acterize the stationary state in terms of the variances of the Wigner func-
tion, and define the eccentricity, the cooling parameter, and the angle
between the major axis and the position axis of the phase space as before.
These quantities are shown in Figs. 5.6, 5.7, and 5.8, as functions of Λ and
T , when γ/Ω = 0.1. In Fig. 5.6 we point out that the eccentricity tends to
zero in the Caldeira-Leggett limit, while it increases away from it. This
behavior is similar to that found for the linear QBM. We found that for
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FIGURE 5.6: Eccentricity η of the Wigner function at
γ/Ω = 0.1, for quadratic coupling.

γ/Ω ≤ 0.1 the Brownian particle experiences neither cooling nor genuine
squeezing.

In contrast to the linear case, we do not find a noticeable rotation at
low temperature in the quadratic one. We would expect to observe this
at larger values of γ, as in the case of linear coupling. However, for larger
values of the damping constant the many stationary solutions of the sys-
tem of Eqs. (5.40-5.43) cross, and therefore it is not straightforward to
determine the stationary solution of (5.39) that coincides with the one ob-
tained in the Caldeira-Leggett limit. Moreover, for larger values of γ the
Gaussian ansatz given in Eq. (5.22) may fail to approximate any station-
ary states. To show this point, in Fig. 5.9 we plotted the time dependence
of δ2

x for several values of γ, at fixed values of T and Λ. Above a certain
value of γ, the position variance does not converge to a stationary value.
This suggests that in these cases the Gaussian solution of Eq. (5.39) is not
stationary. Figure 5.9 is plotted for the initial conditions δ2

x = δ2
p = 1,

corresponding to the case when the harmonic oscillator is in its ground
state. The choice of the initial conditions is not crucial, as we observe a
very similar behavior with quite different initial conditions.
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FIGURE 5.7: Cooling parameter χ for quadratic cou-
pling, at γ/Ω = 0.1.
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FIGURE 5.8: Angle θ/π between the major axis of the
Wigner function, and the X axis of the phase space at

γ/Ω = 0.1, for quadratic coupling.
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FIGURE 5.9: Time dependence of δ2x for several values of
γ, at Λ/Ω = 16 and kBT/~Ω = 4. The thin solid lines rep-
resent the stationary value of δ2x in the state, namely the
stationary solution of Eqs. (5.40-5.43) for such a quantity.
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FIGURE 5.10: Plot of the product δxδp at γ/Ω = 0.1, for
quadratic coupling. This quantity is always larger than

1, in accordance with the Heisenberg principle.

We conclude this Section pointing out that, although in Eqs. (5.40-
5.43) we performed the Gaussian approximation at the level of the equa-
tions for the moments, it is possible to obtain exactly the same result ap-
plying the approximation directly on the original equation in Eq. (5.34),
or on that Lindblad equation expressed in terms of the Wigner func-
tion, Eq. (5.39). In Appendix D we show, by a very general analytical
demonstration, that the Gaussian approximation applied to the original
Lindblad equation yields again a master equation of the Lindblad form,
guaranteeing therefore that the approximated solutions will preserve the
Heisenberg principle at all times. We provide further numerical evidence
of this fact in Fig. 5.10, where we plot the product of the two uncertain-
ties δx and δp resulting by Eqs. (5.40-5.43), on which the Gaussian ap-
proximation has been carried out. As may be noticed in the figure, the
approximated equations do not produce any violation of the Heisenberg
principle.
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5.3 Summary

We present the main results obtained in the Lindblad approach to QBM.
This analysis relies on the material published in the work of Lampo et al.,
2016.

• Starting by the general form of a Lindblad equation and consid-
ering a particular expression for the Lindblad operator, we obtain
equation (5.3), which exhibits a Lindblad form and differs from that
of Born-Markov just for one extra-term.

• This term leads to a rotation in the phase space of the Gaussian
Wigner function associated to the stationary solution of the Lind-
blad equation (Fig. 5.1). We also detect the regime of the parame-
ters where the Brownian particle experiences cooling (Fig. 5.4) and
squeezing (Fig. 5.2).

• We repeat the analysis for the quadratic case. Also in this case it is
possible to derive a Lindblad equation [see Eq. (5.34)] differing by
the original Born-Markov one just by a few extra-terms. We study
the effects of such terms on the stationary state, focusing on the
angle (Fig. 5.8), the degree of cooling (Fig. 5.7), and the eccentricity
(Fig. 5.6). Here, up a certain value of the coupling the stationary
solution of the Lindblad equation does not approach a Gaussian
stationary state (Fig. 5.9).
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Chapter 6

Heisenberg equations
approach

In the previous chapter we have proposed a Lindblad model for QBM,
exploring both the cases of linear and non-linear coupling. Lindblad
equations differ from the original Born-Markov ones just for a few extra-
terms (only one term in the linear case), curing the forbidden area de-
tected in chapters 3 and 4. In this way, it is possible to evaluate the cor-
relation functions of both position and momentum at each temperature
and for each value of the bath-system coupling strength. The problem of
the Lindblad approach to QBM is that the corresponding equations can-
not be obtained microscopically by a Hamiltonian model. For instance,
in the context of Polaron physics, where will apply the model in the next
chapter, the physical Hamiltonian of the system does not lead to a master
equation in the Lindblad form.

We go through another approach to investigate the dynamics of QBM
model: Heisenberg equations formalism. We derive equations for the
observables of the quantum Brownian particle, as well as those for the
bath’s operators, describing the behavior of the system in the Heisenberg
picture. It is possible to note that they may be opportunely combined in
order to obtain an equation ruling the temporal evolution of the particle
position, where the influence of the bath appears in the form of noise and
damping: it is a quantum stochastic equation. In particular, considering
an ohmic Lorentz-Drude spectral density in the infinite cut-off limit, such
an equation takes the form of the Langevin one in Eq. (2.18), for the classi-
cal Brownian motion: it shows a white noise and a local in time damping.
The main goal of the chapter is to present in detail the procedure to solve
this quantum Langevin equation, aiming to calculate the position vari-
ance. Here, we distinguish two cases: the situation in which the particle
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is in a harmonic potential and that where it is untrapped. In the latter, the
particle runs away from the initial position. Such a behavior may be de-
scribed by means of the mean square displacement discussed in chapter
2, providing a signature of Brownian motion. We recover the traditional
diffusive behavior, constituting here a consequence of the local in time
form of the quantum Langevin equation, i.e. of the absence of memory
effect in the dynamical behavior of the Brownian particle. If the particle
is trapped in a harmonic potential, instead, it approaches an equilibrium
state localized in average in the middle of the trap. We evaluate position
and momentum variances related to such a long-time state, proving that
the Heisenberg principle is always fulfilled and a proper analysis of the
zero-temperature limit is finally possible.

This topic belongs to standard textbook material (Weiss, 2008; Breuer
and Petruccione, 2007), and has been recently considered by Boyanovsky
and Jasnow, 2017. We shall follow the revisited treatment published by
Lampo et al., 2017, discussing in detail the techniques we use. In the end
of the chapter, we will extend the Heisenberg equation formalism to non-
linear QBM, proceeding as in the work of Barik and Ray, 2005. In this
situation, to provide an analytical expression for the position variance is
not an easy task so we limit to present the form of the equation without
to solve it.

6.1 Derivation of the Heisenberg equations in the
linear case

In this section we consider the QBM Hamiltonian in the linear case, i.e.
that with interaction term in Eq. (3.4). Such a model leads to the follow-
ing exact Heisenberg equations of motion for the central particle and the
environmental oscillators

ẋ(t) =
i

~
[H,x(t)] = p(t)/m, (6.1)

ẋn(t) =
i

~
[H,xn(t)] = pn/mn, (6.2)

ṗ(t) =
i

~
[H, p(t)] = −H ′c(x(t)) +

∑
n

κnxn(t), (6.3)

ṗn(t) =
i

~
[H, pn(t)] = −mnω

2
nxn(t) + κnx(t), (6.4)
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with
Hc(x) = Vc(x) + U(x), (6.5)

where Vc is the counter-term introduced in Eq. (3.5) and U(x) is the bare
impurity potential. For sake of clearness we underline that, differently
by the previous chapters, the operators of the system are no longer in the
Schrödinger picture, but in the Heisenberg one. It is easy to find that the
equation for the coordinate of the Brownian particles is

mẍ(t) +H ′c(x(t))−
∑
n

κnxn(t) = 0, (6.6)

while the equations for the coordinates of the bath oscillators take the
form

mẍn(t) +mnω
2
nx

2
n(t)− κnx(t) = 0. (6.7)

The last equation shows that the nth bath oscillator is driven by the
force κnx(t) which depends linearly on the coordinate of the Brownian
particle. In order to get a closed equation of motion for x(t) the first step
is to solve Eq. (6.7) in terms of x(t) and of the initial conditions for the
bath modes. The solution of this equation is the sum of that of the related
homogeneous equation plus the particular one, that may be expressed
as convolution product of Green function and the particle position. This
calculation is very well known, but we specify it in Appendix E, where
the procedure is presented in detail for the concrete case of the polaron.
It results

xn(t) =

√
~

2mnωn

(
e−iωntbn + eiωntb†n

)
+

κn
mnωn

∫ t

0
ds sin [ωn(t− s)]x(s).

(6.8)

where we have introduced again the bath creation and annhilation oper-
ators

xn(t) =

√
~

2mnωn

(
bn + b†n

)
, pn(t) = −i

√
mnωn~

2

(
bn − b†n

)
. (6.9)

Replacing Eq. (6.8) in Eq. (6.6) we obtain

mẍ(t) +H ′c(x(t))−
∑
n

κ2
n

mnωn

∫ t

0
ds sin [ωn(t− s)]x(s) = B(t), (6.10)
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where we recall that the operator B(t) appearing here on the right-hand
side is

B(t) =
∑
n

κn

√
~

2mnωn

(
e−iωntbn + eiωntb†n

)
, (6.11)

representing the temporal evolution of the Schrödinger operator B =∑
n κnxn(0). With the help of the dissipation kernel (3.30) in Eq. (6.10)

may be cast in the form

ẍ(t) +
1

m
H ′c(x(t))− 1

~m

∫ t

0
dsη(t− s)x(s) =

1

m
B(t). (6.12)

In the theory of QBM it is useful to express the dissipation kernel in terms
of another quantity which is known as the damping kernel

Γ(t− s) =
1

m

∫ ∞
0

dωJ(ω) cos[ω(t− s)], (6.13)

fulfilling
∂Γ

∂t
= − 1

~m
η(t− s), (6.14)

and

Γ(0) =
1

m

∫ ∞
0

dω
J(ω)

ω
=
∑
n

κ2
n

mmnω2
n

, (6.15)

where J(ω) is the spectral density introduced in chapter 3 in Eq. (3.31).
With the help of the damping kernel we may write the dissipative term
in Eq. (6.12) as follows

− 1

~m

∫ t

0
dsη(t− s)x(s) =

∫ t

0
ds
∂

∂t
Γ(t− s)x(s) = (6.16)

=
∂

∂t

∫ t

0
dsΓ(t− s)x(s)− Γ(0)x(t). (6.17)

In view of Eq. (6.14) the last term−Γ(0)x(t) is seen to cancel the contribu-
tion from the counter-term contained in the potentialHc. Thus we finally
arrive at the following exact Heisenberg equation of motion,

ẍ(t) +
1

m
U ′(x(t)) +

∂

∂t

∫ t

0
dsΓ(t− s)x(s) =

1

m
B(t). (6.18)
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Equation (6.18) is the equation of motion for the coordinate of the Brow-
nian particle. It may be viewed as the quantum analogue of a classical
stochastic differential equation, involving a damping kernel Γ(t− s) and
a stochastic force B(t), whose statistical properties depend on the initial
distribution at t = 0. If we consider now the ohmic spectral density with
a Lorentz-Drude cut-off (3.41) we have

Γ(t− s) = γΛ exp(−Λt). (6.19)

In the limit Λ→∞ it takes the following form

Γ(t− s) = 2γδ(t− s). (6.20)

We recognize so the physical meaning of the constants introduced in
Eq. (3.41). The damping kernel in Eq. (6.19) induces a dependence of
the particle dynamics on its past history, decaying according a timescale
given by 1/Λ. We may say thus that it is the characteristic time ruling
the lost of memory effects, i.e. over which the behavior of the quantum
particle may be considered Markovian. The constant γ is the responsible
for the damping process, i.e. the lost of energy, we interpret therefore 1/γ
as the relaxation timescale associated to dissipation.

Replacing Eq. (6.20) into (6.18), the latter writes as

ẍ(t) +
1

m
U ′(x(t)) + γẋ(t) =

1

m
B(t). (6.21)

We recover so the equation derived by Langevin in the classical context,
presented in Eq. (2.18). This result justifies the name of the Hamiltonian
model we are dealing with: quantum Brownian motion. In fact, when in
chapter 3 we proposed a Hamiltonian to study the quantum version of
the phenomenon we looked for an operator yielding to dynamical equa-
tions manifesting the same form of the phenomenological ones discussed
in chapter 2. The fact that the operator in Eq. (3.1) with the bilinear inter-
action (3.4) leads to a Langevin-type equation endorses the appropriate-
ness of such a Hamiltonian to study the Brownian motion in the quan-
tum regime. Of course, to justify the Hamiltonian model we use, it is
not necessary to switch to the quantum regime. One could indeed work
in a classical framework with canonical equations, obtaining a functional
equation with the form in Eq. (2.18). This was actually the historical pro-
cedure: to write a functional classical Hamiltonian such that Brownian
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motion equations arise, and then, switching from canonical variables to
operator ones, one gets Hamiltonian (3.1).

Equation (6.21) is local in time, so it is free of memory effects, i.e. it
corresponds to a pure Markovian dynamics. This is not only consequence
of the ohmic character of the spectral density, because one has also to
consider the large cut-off limit. From the physical point of view such
a limit corresponds to focus on the long-time behavior of the particle,
thus we may state that the in the long-time the dynamics of the quantum
particle does not carry memory effects.

6.2 Solution of the Heisenberg equations in the lin-
ear case

The purpose of the present section is to solve Eq. (6.21). For this goal, we
distinguish between the cases in which the Brownian particle is trapped
in a harmonic potential and that where it is free of any trap.

6.2.1 Brownian particle trapped in a harmonic potential

We start by considering the situation where the particle is trapped in a
quadratic potential

U(x) =
1

2
mΩ2x2. (6.22)

Accordingly equation (6.21) takes the following form

ẍ(t) + Ω2x(t) + γẋ(t) =
1

m
B(t). (6.23)

This equation may be treated switching to the Laplace transform domain.
Here, its solution follows directly1:

x(t) = G1(t)x(0) +G2(t)ẋ(0) +
1

m

∫ t

0
G2(t− s)B(s), (6.24)

where G1 and G2 are defined by means of their Laplace transforms:

Lz[G1(t)] =
z + γ

z2 + Ω2 + γz
, Lz[G2(t)] =

1

z2 + Ω2 + γz
, (6.25)

1This calculation is explained in detail in Appendix E.
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fulfilling the initial conditions

G1(0) = 1, G2(0) = 0, (6.26)

Ġ1(0) = 0, Ġ2(0) = 1. (6.27)

The Laplace transforms in Eq. (6.25) maybe easily inverted, by calculating
the roots of the denominators and expressing the functions as sum of the
inverse of first degree polynomials. We obtain

G1(t) = e−γt
[
Ω̃ sinh

(
γΩ̃t

)
+ cosh

(
γΩ̃t

)]
, (6.28)

G2(t) =
e−γt

γΩ̃
sinh

(
γΩ̃t

)
, (6.29)

where we introduced the dimensionless parameter

Ω̃ =

√
1− (Ω/γ)2, (6.30)

ruling the qualitative behavior of the motion. In fact, if Ω > γ, the
quantity in Eq. (6.30) becomes imaginary and the particle performs os-
cillations. This does not occur if Ω ≤ γ. However, the presence of the
exponential e−γt in both expressions implies that, in any case, the contri-
bution of the initial conditions exponentially vanishes in a range equals
to the relaxation timescale: in general, oscillating or not, we have an ex-
ponentially damped motion. The long-time state is characterized by the
third term in the left hand-side in Eq. (6.24). It may be employed to cal-
culate the position and momentum variances related to the asymptotic
stationary state. For this goal one has to evaluate

〈x2(t)〉 =

∫ t

0
ds

∫ t

0
dσG2(t− s)G2(t− σ)〈{B(s), B(σ)}〉. (6.31)

We recall that

〈{B(s), B(σ)}〉 = ν(s−σ) =
mγ~
π

∫ Λ

0
dωω coth (~ω/2kBT ) cos

[
ω(t− t′)

]
,

(6.32)
where ν is the noise kernel introduced in Eq. (3.29) evaluated for an
ohmic spectral density. Replacing this expression in Eq. (6.31), and ex-
panding the cosine function in complex exponential one may relate, in
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FIGURE 6.1: Position variance in Eq. (6.35) for the ohmic
spectral density in Eq. (3.41) in the large cut-off limit. The
red dashed line represents the behavior predicted by the

Equipartition theorem.

the long time limit, the integral defining 〈x2〉 to the Laplace transform of
G2. It turns

〈x2〉 =

∫ Λ

−Λ
dω

~
2πm

γω

1 + (γ − 2)ω2 + ω4
coth

(
~ω

2kBT

)
. (6.33)

Similarly it is possible to find that

〈p2〉 =

∫ Λ

−Λ
dω
m~
2π

γω3

1 + (γ − 2)ω2 + ω4
coth

(
~ω

2kBT

)
. (6.34)

Position and momentum variances can be calculated by solving numer-
ically the integrals above, or analytically recalling the Jordan’s Lemma.
Still, we recover the dimensionless quantities we introduced in Eqs. (3.79)
and (3.80):

δx =

√
2mIΩ〈x2〉

~
, δp =

√
2〈p2〉
mI~Ω

, (6.35)

in terms of which the Heisenberg principle writes as

δxδp ≥ 1. (6.36)
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FIGURE 6.2: Momentum variance in Eq. (6.35) for the
ohmic spectral density in Eq. (3.41) in the large cut-off
limit The red dashed line represents the behavior pre-

dicted by the Equipartition theorem.
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FIGURE 6.3: Product of position and momentum vari-
ance in the left hand-side of Eq. (6.36) for the ohmic spec-
tral density in Eq. (3.41) in the large cut-off limit The
red dashed line represents the behavior predicted by the

Equipartition theorem.

These quantities are plotted in Figs. 6.1 and 6.2. Both variances show
an agreement with the equipartition theorem as the temperature grows.
At low temperature, instead, the position variance becomes smaller than
the value associated to the Heisenberg threshold, i.e. it exhibits genuine
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position squeezing. Such an effect, corresponding to high spatial local-
ization of the particle is enhanced increasing the value of the system-bath
coupling. In this approach, differently by those adopted in the previous
chapters, the low-temperature limit does not alter the Heisenberg prin-
ciple. This is clear in Fig. 6.3, where we plotted the product of position
and momentum variance. The fact that Heisenberg principle is preserved
at any temperature is one of the most important result of this chapter
and shows the vantage of the Heisenberg equations formalism to explore
concrete systems, for instance the polaron, as we shall do in chapter 7.
We finally mention that the analytical expressions we found for the cor-
relation functions of position and momentum could be derived also by
means of the fluctuation-dissipation theorem. A proof of this statement
is presented in Appendix G.

6.2.2 Untrapped Brownian particle

We move now to the situation where the central particle is untrapped, i.e.
we have Ω = 0. In this case the kernelsG1 andG2 may found by inverting
the Laplace transforms in Eq. (6.25) by putting Ω = 0. The calculation can
be done immediately: it follows that for an ohmic spectral density and
for a very large large cut-off the quantities in Eq. (6.25) take the following
form

G1(t) = 1, G2(t) =
1

γ

(
1− e−γt

)
, (6.37)

yielding to

x(t) = x(0) +
1

γ

(
1− e−γt

)
ẋ(0) +

∫ t

0
ds

1

γm

[
1− e−γ(t−s)

]
B(s). (6.38)

Remembering Eq. (6.1) one easily obtains the expression for the momen-
tum:

p(t) = e−γtp(0) +

∫ t

0
dse−γ(t−s)B(s). (6.39)

We aim to evaluate the mean square displacement, defined as

MSD(t, t′) = 〈
[
x(t)− x(t′)

]2〉. (6.40)
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We replace in this expression that in Eq. (6.38) obtaining

MSD(t, t′) =
1

mγ2

(
e−γt − e−γt′

)
〈p2(0)〉 (6.41)

+
γ~
mπ

∫ Λ

0

ω

ω2 + γ2
coth

(
~ω

2kBT

) ∣∣∣∣∣eiωt − eiωt
′

iω
+
e−γt + e−γt

′

γ

∣∣∣∣∣ .
(6.42)

The second term within the squared modulus may be suppressed by
looking into the limit in which t and t′ go to infinity, but their difference
τ = t − t′ is kept fixed. It deserves to be noted that such a term leads to
an integral that diverges in the limit of an infinite cut-off, as discussed by
Breuer and Petruccione, 2007. From the physical point of view it means
that the central particle can absorb an arbitrary amount of energy and
can travel an arbitrary distance within a finite time interval. This sin-
gular behavior, known as initial jolts, is clearly a result of the artificial
assumption of an uncorrelated initial state. We treat it considering the
long-time limit as stated above, where the initial conditions do not affect
the motion anymore. It results in

MSD(τ) =
γ~
mπ

∫ ∞
0

dω
ω

ω2 + γ2
coth

(
~ω

2kBT

)
4 sin2 (ωτ/2)

ω2
. (6.43)

For any finite temperature, considering large values of τ one may use the
relation

lim
τ→∞

sin (ωτ)

πω
= δ(ω), (6.44)

we finally get

MSD(τ) = 2
kBT

mγ
t. (6.45)

We recover so also in this case the result obtained in chapter 2 for classi-
cal Brownian motion. The approach presented in this chapter permits to
highlight the relation existing between the diffusive behavior in Eq. (6.40)
and the form of the spectral density: normal diffusion arises for an ohmic
spectral density. As we will see in the next chapter this is not the case for
the polaron problem. Here, in fact, starting by a the realistic Hamiltonian
we derive in an exact manner the analytical structure of the spectral den-
sity, finding a non-ohmic behavior. This induces us to generalize the pro-
cedure to solve Heisenberg equations, and in particular its result, such
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as the expression for position and momentum variance in Eqs. (6.33) and
(6.34).

6.3 Heisenberg equations for non-linear coupling

For sake of completeness we pay a little bit of attention to the form of the
equations arising if we consider the non-linear coupling. This problem
has already been treated by Barik and Ray, 2005. Starting by the Hamil-
tonian in Eq. (3.1) with the non-linear interaction (4.1), and following the
same procedure in section 6.1 one obtains:

ẋ(t) = p(t), (6.46)

and

ṗ(t) = −U ′(x)− f ′(x(t))

∫ t

0
f ′(x(t))Γ(t− t′)p(t′)dt′

+ f ′(x(t))η(t). (6.47)

where f ′(x) = 2x/a. The quantity

η(t) =
∑
n

 ωn(
g

(0)
n

)2xn(0)− f(x(0))


(
g

(0)
n

)2

ω2
n

cos(ωnt)

+
∑
n

gν
ωn
pn(0) sin (ωnt) , (6.48)

is the noise kernel, where ωn ≡ ωεn, while

Γ(t) =
∑
n

(
gn
ωn

)2

cos (ωnt) , (6.49)

is the damping kernel.
In conclusion, the dynamics of the impurity is ruled by the equations

(7.54) and (7.55). Their main feature is the position dependence of the
damping and the multiplicative noise. This is a consequence of the non-
linear coupling in the Hamiltonian, induced by the inhomogeneous char-
acter of the gas.
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6.4 Summary

We briefly summarize the main contents of the chapter:

• Starting by the Hamiltonian with the linear coupling and consider-
ing an ohmic spectral density one obtains in the large cut-off limit
an equation for the position of the Brownian particle in the Heisen-
berg picture representing the quantum counterpart of that derived
by Langevin (see Eq. (6.21)).

• Such equation shows white noise and local in time damping. These
features are consequences of the ohmic character of the spectral
density.

• One may solve this equation applying the Laplace transform oper-
ator. It is possible so to calculate position and momentum variance
related to the long-time stationary state. The most important result
is that now Heisenberg principle is always satisfied (see Fig. 6.3).

• If the particle is free of any trap the position variance exhibits a
diffusive behavior [Eq. (6.40)], as in the classical case: this is a con-
sequence of the ohmic spectral density.

• In conclusion (see Sec. 6.3) we present the form of the equation re-
sulting for non-linear coupling. This non-linearity induces a position-
dependent damping and a multiplicative noise.
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Chapter 7

Bose Polaron as an instance of
Brownian motion

In the previous chapter we presented a study of the QBM dynamics based
on Heisenberg equations. This formalism represents a suitable method to
evaluate the correlation functions of the central particle, providing an in-
formation about its motion. Moreover, differently from the master equa-
tion approach discussed in chapters 3-5 no violations of the Heisenberg
principle occur and a correct analysis of the low-temperature limit is fi-
nally possible.

We employ thus such a theoretical framework to deal with a concrete
real system: the Bose polaron. It consists of an impurity embedded in a
Bose-Einstein condensate. This system is usually realized in experiments
by considering a mixture of two different species, with a very low density
of one of the species. In this way, the interactions among the atoms of the
very diluted species are negligible and we may treat them as impurities
in a sea of a different species. In the current chapter we shall focus on a
homogeneous gas, i.e. a gas with a constant density, while the extension
to the trapped inhomogeneous one is discussed in the next chapter.

From the point of view of open quantum systems, the impurity may
be considered as a Brownian particle coupled to an environment made
up by the degrees of freedom of the gas. This approach was recently in-
troduced in the work of Lampo et al., 2017. Actually, the open quantum
systems approach has been used recently in the context of ultracold quan-
tum gases, although with different techniques and for different systems.
For instance, it deserves to mention the work of Efimkin, Hofmann, and
Galitski, 2016, focused on a bright soliton in a superfluid in one dimen-
sion, and that of Hilary M. Hurst, 2016 looking into the system of a dark
soliton in a one-dimensional BEC coupled to a non-interacting Fermi gas.
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Then, Keser and Galitski, 2016 dealt with the system of the component of
a moving superfluid, and the system of an impurity in a Luttinger liquid
has been treated by Bonart and Cugliandolo, 2012; Bonart and Cuglian-
dolo, 2013.

The possibility to employ the QBM model to investigate the Bose po-
laron relies on the fact that the physical Hamiltonian of the latter may be
cast in the form of the former once one performs a Bogoliubov transfor-
mation. This procedure is described in Sec. 7.1. The result is the so-called
Frölich Hamiltonian, describing the physics of the impurity under the in-
fluence of the Bogoliubov excitations. Importantly, in the open quantum
systems framework, the constituents of the environment are now repre-
sented by the Bogoliubov modes, rather than the atoms of the gas. So the
present approach permits one to study the effects induced on the impu-
rity by the surrounding Bogoliubov cloud.

It is important to note that in the Frölich Hamiltonian the coupling
term depends in a non-linear manner on the impurity position. One
could so recall the non-linear Heisenberg equations (6.46) and (6.47) de-
rived in the previous chapter, valid for the most general dependence on
the impurity position. The problem is that, in the case of the polaron, this
dependence changes for each oscillator of the environment and so the
coupling term may be not correctly factorized. Therefore we perform a
linear approximation that allows to approach the standard QBM Hamil-
tonian, with a bilinear interaction term. In Sec. 7.6 we discuss the validity
of such an approximation, finding that it is reasonable for realistic values
of the system parameters.

Once we express the physical Hamiltonian of the system in the form
of that of the QBM, we may use it to derive the spectral density. This task
is performed in Sec. 7.2 where we calculate such an object in d dimen-
sions. In all the cases it results in a super-ohmic behavior, responsible
of a certain amount of memory effects in the dynamics of the impurity.
In fact, a super-ohmic spectral density leads to a damping kernel which
is not reducible to a Dirac Delta, and therefore the equation for the im-
purity position is not local in time. Note that it still shows the form of
a Langevin one because it comes from the same Hamiltonian. Therefore
the procedure to solve Heisenberg equations we presented in the previ-
ous chapter has to be generalized to a generic spectral density: this is the
main aim of the work behind such a chapter, and contained in the paper
of Lampo et al., 2017.

Again, in order to solve the equation of motion of the impurity, we
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distinguish the situation where it is untrapped and that in which is con-
fined in a harmonic potential. In the former case, the position operator in
the Heisenberg picture exhibits, in the long-time limit, a ballistic depen-
dence on time. This is in agreement with the fact that, if there is not any
trap, the particle runs-away. Such a behavior may be characterized in a
quantitative manner by means of the mean square displacement intro-
duced in Eq. (7.75), providing a signature of the motion of the impurity.
We find that, differently from the case of an ohmic spectral density, the
mean square displacement is proportional to the square of time, i.e. the
particle experiences a super-diffusive behavior. This is a consequence of
the super-ohmic form of the spectral density associated to presence of
memory effects. The super-diffusive behavior we detected constitutes so
an important result because it represents a witness of memory effects on
a measurable quantity.

When we put the impurity in a harmonic potential, instead, it reaches
an equilibrium state localized on average in the middle of the trap. In
the long-time limit so the position variance does not depend on time
anymore. We thus study how it varies by tuning the system parame-
ters, such as temperature and interaction strength. We find that, as the
temperature decreases and the interaction gets stronger, the impurity ex-
periences genuine position squeezing. Such an effect is very important
because it corresponds to high spatial localization of the impurity. Even
more it may be detected in experiments.

In order to optimize genuine position squeezing we have to consider
the bath-impurity interaction strength as strong as possible. In this con-
text it is important to notice that the Frölich Hamiltonian on which our
treatment relies, is not valid for each value of the coupling. We will show
anyway that the results we find lie in the regime of the validity of the
model we deal with.

7.1 Hamiltonian

We consider a single impurity atom with massmI immersed in a d−dimension
gas of N bosons with mass mB. The interactions among the bosons are
described by a potential VB(x). Let Ψ(x), Ψ†(x) denote the annihilation
and creation operators of atoms at the position x. They fulfill the canon-
ical bosonic commutation relation, [Ψ(x),Ψ†(x’)] = δ(x − x’). Bosonic



112 Chapter 7. Bose Polaron as an instance of Brownian motion

density thus reads nB(x) = Ψ†(x)Ψ(x). The Hamiltonian of the system is

H = HI +HB +HBB +HIB, (7.1)

where:

HI =
p2

2mI
+ U(x), (7.2)

HB =

∫
ddx Ψ†(x)

(
p2

B

2mB
+ V (x)

)
Ψ(x) (7.3)

=
∑

k

εka
†
kak, (7.4)

HBB = gB

∫
ddx Ψ†(x)Ψ†(x)Ψ(x)Ψ(x) (7.5)

=
1

2V

∑
k,k’,q

VB(q)a†k’−qa
†
k+qak’ak, (7.6)

HIB = gIBnB(x) (7.7)

=
1

V

∑
k,q

VIB(k)ρI(q)a†k−qak, (7.8)

in which the operator ak (a†k) destroys (creates) a boson of massmB, wave
vector k, and energy εk = (~k)2/(2mB) − µ, measured from its chemi-
cal potential, µ. Equation (7.2) is the Hamiltonian for the free impurity.
Equation (7.4) is the Hamiltonian of non-interacting bosons in a potential
V (x). We consider in the following that the potential is homogeneous
and the system is enclosed in a box of volume V . The last two terms in
Eqs. (7.6) and (7.8) are the interaction among the atoms of the gas and
between them and the impurity, respectively. The quantities

VB(q) = Fq [gBδ(x− x’)] , VIB(q) = Fq [gIBδ(x− x’)] , (7.9)

represent respectively the Fourier transforms of the boson-boson and
impurity-boson interaction, with

gB = 4π~2aB/mB, gIB = 2π~2aIB/mR. (7.10)

Here aB is the scattering length between two identical bosons and aIB

represents that between the impurity and the BEC bosons. The reduced
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mass is mR = mBmI/(mB + mI) and the (dimensionless) density of the
impurity in the momentum domain is

ρI(q) =

∫ +∞

−∞
e−iq·x̃δ (x̃− x) d3x̃. (7.11)

In experiments, we usually have more than one impurity in the gas, so
one can include a term modeling the interaction between several impu-
rities in Eq. (7.1). Here we consider that the impurities concentration
is low enough as to neglect such an additional interacting term. This is
expressed by the following condition

1

NI

∑
i 6=j

(xi − xj)� n
− 1

3
0 , (7.12)

where NI.
It is important to realize that the Hamiltonian is positively defined,

and as such cannot lead to instabilities – this is clearly seen from the form
of the various parts of the Hamiltonian in the position representation.

To obtain the QBM form of the Hamiltonian we first replace the cre-
ation/annihilation operator in the fundamental state by its average value√
N0. For bosons below the critical temperature the atoms mainly oc-

cupy the ground mode, with negligible fluctuations to other modes, thus
forming a BEC. Consequently, we neglect the terms proportional to Nk
(k 6= 0), i.e. the number of particles out of the ground state. Then, we
apply the Bogoliubov transformation

ak = ukbk − vkb
†
−k, a−k = ukb−k − vkb

†
k, (7.13)

with

u2
k =

1

2

(
εk + n0VB

Ek
+ 1

)
, v2

k =
1

2

(
εk + n0VB

Ek
− 1

)
, (7.14)

in which

Ek = ~c|k|
√

1 +
1

2
(ξk)2 ≡ ~ωk (7.15)

is the Bogoliubov spectrum and n0 is the density of particles in the ground
state. Since we consider a homogeneous gas, the density n0 is constant.
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In Eq. (7.15) the quantities

ξ =
~√

2gBmBn0
, c =

√
gBn0

mB
=

~√
2mBξ

(7.16)

represent respectively the coherence length and the speed of sound. The
transformations (7.13) diagonalize the terms describing the condensed
atoms [see e.g. Pitaevskii and Stringari, 2003]

HB +HBB =
∑
k6=0

Ekb
†
kbk, (7.17)

apart of a few non-operator terms, simply providing a shift of the energy
levels of the atoms of the BEC.

We treat in the same manner the bosons-impurity interaction. We
are going now to keep only the terms proportional to

√
N0 – this is in

principle a well motivated approximation, since the condensate is macro-
scopically occupied and Ni 6=0 � N0. Unfortunately, this approximation
is dangerous. Our model generically has an ultraviolet divergence, like
most of models of the non-relativistic quantum field theory. We do all the
calculations with a physical cut-off, so that the ultraviolet divergences do
not really affect our theory. Still, at large values of the cut-off we might
expect large negative shifts of the impurity energy, that might cause un-
physical instability. After dropping out the terms bilinear in Ni 6=0 we
obtain

HIB = n0VIB +

√
n0

V

∑
k 6=0

ρI(k)VIB

(
ak + a†−k

)
. (7.18)

The first term on the right hand-side represents the mean field energy. It
is a constant just providing a shift of the energy of the polaron, so we will
neglect it in what follows. Inserting Eq. (7.13) into Eq. (7.18), one gets

HIB =

√
n0

V

∑
k6=0

ρI(k)VIB (uk − vk)
(
bk + b†−k

)
(7.19)

=

√
n0

V

∑
k6=0

ρI(k)VIB

√
εk

Ek

(
bk + b†−k

)
,
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where we again neglected the non-operator terms.
By some algebra, the expression in Eq. (7.19) reads

HIB =
∑
k 6=0

Vke
ik·x
(
bk + b†−k

)
, (7.20)

in which

Vk = gIB

√
n0

V

[
(ξk)2

(ξk)2 + 2

] 1
4

. (7.21)

The expression in Eq. (7.20) is known in the literature as the interaction
term of the Fröhlich Hamiltonian. We restrict to the limit

k · x� 1. (7.22)

Accordingly Eq. (7.20) assumes the form:

HIB =
∑
k 6=0

Vk (I + ik · x)
(
bk + b†−k

)
. (7.23)

Equation (7.22) is a crucial assumption of this paper. It allows for a linear
coupling between the impurities and the bosons, which will play the role
of an environment. This is crucial when considering this system from
an open quantum systems perspective. In Sec. 7.6 we justify when this
assumption is valid as a function of the relevant physical parameters in
the problem. A similar assumption is considered in the works of Efimkin,
Hofmann, and Galitski, 2016 to study the physics of a bright soliton in
a superfluid, and in that of Bonart and Cugliandolo, 2012 where QBM
has been employed to treat the dynamics of an impurity in a Luttinger
Liquid.

The resulting Hamiltonian of the impurity in a BEC is

H = HI +
∑
k 6=0

Ekb
†
kbk +

∑
k 6=0

~gkπkx, (7.24)

with
gk = kVk/~, πk = i

(
bk − b†k

)
. (7.25)

To get Eq. (7.24) we redefined the Bogoliubov modes operators as bk →
bk − Vk/EkI, in order to get rid of the term in Eq. (7.20) proportional to
the identity operator. This operation yields a non-operator term which
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has been neglected in agreement with the procedure above.
The Hamiltonian in Eq. (7.24) describes an impurity coupled to a bath

of Bogoliubov modes through an interaction term linearly dependent on
the impurity position. This is exactly the same situation of the QBM. Here
the impurity plays the role of the Brownian particle, while the Bogoli-
ubov modes represent the environment. The Hamiltonian in Eq. (7.24) is
in fact almost the same of that of the QBM model. The only difference
lies in the dependence of the interaction term on the Bogoliubov modes
operator: while in the QBM model it depends on their positions, for the
present system it depends on their (dimensionless) momenta, πk. We will
see in the following that the two situations are equivalent, and the theory
of the QBM can be exploited to investigate the impurity problem.

Unfortunately, the Hamiltonian in Eq. (7.24) is not positively defined
(note that at this point we match the situation described by Canizares
and Sols, 1994, where translational symmetry is broken). We could re-
pair this by taking into account bilinear terms in ak and a†k in Eq. (7.18), or
equivalently bk and b†k, as in the works of Bruderer et al., 2007; Rath and
Schmidt, 2013; Christensen, Levinsen, and Bruun, 2015b; Shchadilova et
al., 2016b; Shchadilova et al., 2016a. One way of curing it is to include
these terms in the theory in an exact manner, which is possible, but tech-
nically complex. It is much easier to use the same trick as Caldeira and
Leggett used in their seminal paper – i.e. complete the Hamiltonian to a
positively defined one by writing

H = HI +
∑
k6=0

Ek

(
b†k + i~gkx/Ek

)
(bk − i~gkx/Ek) . (7.26)

Clearly, Caldeira-Leggett remedy leads directly to the trapping harmonic
potential for the impurity that cancels the negative harmonic frequency
shift that appears in the absence of the compensation term. In Appendix E
it is shown how this negative contribution arises by evaluating its effect
directly in the equations of motion derived from Hamiltonian (7.24). The
equations of motion are presented in Sec. 7.3.

The Hamiltonian in Eq. (7.24) is the first step to put the Bose polaron
problem in the framework of quantum Brownian motion. This result has
been obtained by considering the Hamiltonian in Eq. (7.1), which is a con-
ventional choice in the context of polaron physics and it is largely used
in the literature, for example by Tempere et al., 2009; Shashi et al., 2014;
Casteels and Wouters, 2014. Nevertheless, this Hamiltonian is not fully
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appropriate if we push our analysis towards the strong coupling regime.
Here, the interaction term in Eq. (7.8) needs to be generalized by includ-
ing a quadratic dependence on the operators of the impurity. Accord-
ingly, when one introduces Bogoliubov operators, the interaction term in
Eq. (7.20) includes additional terms manifesting a quadratic, rather than
linear, dependence on these operators. In this way one goes beyond the
Fröhlich paradigm. Such a generalization is widely studied nowadays,
for instance by Bruderer et al., 2007; Rath and Schmidt, 2013; Christensen,
Levinsen, and Bruun, 2015b; Shchadilova et al., 2016b; Shchadilova et al.,
2016a. In particular there is still an open debate concerning the validity
regime of the Fröhlich Hamiltonian, i.e. for which values of the system
parameters the quadratic Bogoliubov operators terms can be dropped
out. We neglect these terms, looking to the traditional Fröhlich interac-
tion term in Eq. (7.20). Of course this choice does not allow us to explore
the strong coupling regime, but we shall explain in the following that it
is appropriate for the values of the system parameters we consider.

7.2 Spectral density

The last term of Hamiltonian (7.24) is a coupling between the impurity
position and the momenta of the bath oscillators, πk. This plays the role
of the interaction Hamiltonian between the system and the bath oscilla-
tors, when compared with the QBM Hamiltonian. The difference is that
the coupling occurs with the momenta of the oscillators rather than on
their positions. In the following, we show that both situations are equiv-
alent. In fact, the interaction with the Bogoliubov modes enters in the
dynamics of the system only through the self-correlation function of the
environment, defined as

C(τ) =
∑
k 6=0

~g2
k〈πk(τ)πk(0)〉. (7.27)

Replacing the expression for the dimensionless momenta πk in Eq. (7.25)
and recalling that the environment is made up by bosons,

〈b†kbk〉 =
1

exp (~ωk/kBT )− 1
, (7.28)
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we find

C(τ) =
∑
k 6=0

~g2
k

[
coth

(
~ωk

2kBT

)
cos (ωkτ)− i sin (ωkτ)

]
(7.29)

≡ν(τ)− iλ(τ), (7.30)

where

ν(τ) =

∫ ∞
0

J(ω) coth

(
~ω

2kBT

)
cos (ωτ) dω, (7.31)

λ(τ) =

∫ ∞
0

J(ω) sin (ωτ) dω = −mIΓ̇(t), (7.32)

are respectively the noise and dissipation kernel, representing the real
and imaginary part of the self-correlation function. The latter is related
to the damping kernel introduced in Eq. (6.13), which is defined as

Γ(τ) =
1

mI

∫ ∞
0

J(ω)

ω
cos(ωτ)dω, (7.33)

where
J(ω) =

∑
k 6=0

~g2
kδ (ω − ωk) (7.34)

is the spectral density already introduced in Eq. (3.31). Note that this
quantity depends on the square of the coupling constant. This is the rea-
son why, as we will see in the following, our theory does not depend on
the sign of the interaction.

The rest of this section is devoted to the derivation of the spectral den-
sity. We first assume that the environment is large, that is, the large num-
ber of oscillators within it allows to switch from a discrete to a continuous
distribution of Bogoliubov modes in the frequency domain. Then, in the
definition of the spectral density, Eq. (7.34), we turn the discrete sum into
an integral, ∑

k

→
∫

V

(2π)d
ddk. (7.35)

Using the relation

δ (ω − ωk) =
1

∂kωk|k=kω

δ (k− kω) , (7.36)
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one finds

J(ω)=
n0g

2
IB

~
Sd

(2π)d

∫
dkkd+1

√
(ξk)2

(ξk)2 + 2

δ (k− kω)

∂kωk|k=kω

, (7.37)

where

kω = ξ−1

√√
1 + 2 (ξω/c)2 − 1, (7.38)

is the inverse of the Bogoliubov spectrum in Eq. (7.15). The quantity Sd

is the surface of the hypersphere in the momentum space with radius k
in d−dimensions. For d = 1, 2, 3 it reads

S1 = 2, S2 = 2π, S3 = 4π2. (7.39)

Hereafter, we focus on d = 1, but the generalization to higher dimensions
is conceptually immediate. Thus, in one dimension the spectral density
is

J1d(ω) = mIτ̃ω
3χ1d(ω), (7.40)

τ̃ =
η2

2πmI

 mB

n0g
1
3
B

 3
2

, (7.41)

χ1d(ω) = 2
√

2

(
Λ

ω

)3

[√
1 + ω2

Λ2 − 1

] 3
2

√
1 + ω2

Λ2

, (7.42)

where τ̃ represents a relaxation time scale. We introduced the interaction
strength

η = gIB/gB, (7.43)

which expresses the strength of the impurity-bosons interaction in units
of the bosons-bosons one. The majority of our results are expressed as
a function of such a parameter because in experiments with ultracold
gases, such as that of Catani et al., 2012, it can be tuned. This parameter
is the crucial one to define the regime of validity of our theory. In fact, in
Sec. 7.1 we precised that the form of the Hamiltonian we use, showing a
linear, rather than quadratic, dependence on the Bose operators, does not
work for strong coupling. The parameter in Eq. (7.43) allows to quantify
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to which extent the coupling has to be weak. In particular, in the works of
Grusdt and Demler, 2016, and Grusdt, Astrakharchik, and Demler, 2017
have been shown that the standard Fröhlich Hamiltonian in Eq. (7.20)
without quadratic terms in the Bose operators holds if

η . ηc ≡ π
√
n0 |aB| = π

√
2n0

mBgB
. (7.44)

This equation has been derived for a gas in one dimension, but Grusdt
and Demler, 2016 also presented the corresponding 3D generalization.
We consider the same situation of Catani et al., 2012, i.e. a gas of Rb atoms
with

n0 = 7 (µm)−1 , gB = 2.36 · 10−37J ·m. (7.45)

Accordingly we obtain
ηc ≈ 7, (7.46)

providing an upper bound for the acceptable values for the coupling
strength.

The quantity
Λ = n0gB/~ (7.47)

is a characteristic frequency distinguishing the high-frequency domain
from the low-frequency one. The spectral density is ohmic when it de-
pends linearly on the frequency of the oscillators of the environment.
This is not the case of the physical system we are dealing with. For ω � Λ
we find

J1d ∼ ω3, (7.48)

namely the spectral density is proportional to the third power of the fre-
quency of the Bogoliubov modes: it is super-ohmic. Note that it is so also
in higher dimensions, as in general

Jd ∼ ω2+d. (7.49)

The super-ohmic dependence in Eq. (7.48) has been found by Bonart and
Cugliandolo, 2012; Peotta et al., 2013 for an impurity immersed in a Lut-
tinger liquid, and by Efimkin, Hofmann, and Galitski, 2016 for a bright
soliton in a superfluid. This behavior is associated to the linear part of
the Bogoliubov spectrum. Hereafter we shall focus on the former consid-
ering

J(ω) = mIτ̃ω
3θ(ω − Λ), (7.50)
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namely we introduce a sharp ultraviolet cut-off to regularize the spec-
tral density at high-frequency. We emphasize that the results we will
present are independent on this ultraviolet regularization. Indeed, we
reproduced the calculation by introducing an exponential, rather than a
sharp cut-off, and we obtained the same results [see Appendix F].

However, apart of its analytical form, the cut-off plays a crucial role.
The results we shall present in the following depend on its presence, be-
cause it allows us to focus on the low frequency portion of the spectral
density, forgetting about the high frequency one. Such a way to proceed
is absolutely fitting if one is interested in the long-time dynamics. In
this context the cut-off frequency in Eq. (7.47) is not an artificial quantity,
but it arises in a natural manner: it is the characteristic frequency distin-
guishing the phononic linear part of the Bogoliubov spectrum from the
quadratic one. This is more clear if we express it in terms of the tradi-
tional parameters of the Bogoliubov spectrum:

Λ = c/
(√

2ξ
)
. (7.51)

Precisely by considering ω/Λ � 1, the inverse of the Bogoliubov spec-
trum in Eq. (7.38) takes the following form:

kω ∼ ω, (7.52)

namely the Bogoliubov dispersion relation gets linear. Replacing it in Eq.
(7.37) we obtain the cubic behavior in Eq. (7.40).

Finally, the negligibility of the high frequency part of the spectral den-
sity, i.e. the ultraviolet cut-off, arises naturally if one looks to the phonon
linear part of the Bogoliubov spectrum, which is reasonable if we want
to study to long-time dynamics. It is important to highlight that in such
a regime our results do not depend on whether the cut-off is present or
not, as we proved in the end of Appendix F. The spectral density takes
thus the polynomial cubic structure in Eq. (7.40). Developing the theory
of QBM for such a cubic spectral density is a central part of the current
work. In the following section we shall show that such a super-ohmic
behavior is related to memory effects.
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7.3 Heisenberg equations

In this section we derive the Heisenberg equations of motion. For the
sake of simplicity, we focus on the case where the BEC is confined in
one dimension. We consider that the impurity is trapped in a harmonic
potential, i.e.

U(x) = mIΩ
2x2/2, (7.53)

which is a common set-up in ultracold atom systems. The Heisenberg
equations are

ẋ(t) =
i

~
[H,x(t)] =

p(t)

mI
, (7.54)

ṗ(t)=
i

~
[H, p(t)] = −mIΩ

2x(t)− ~
∑
k

gkπk(t), (7.55)

ḃk(t) =
i

~
[H, bk(t)] = −iωkbk(t)− gkx(t), (7.56)

ḃ†k(t) =
i

~

[
H, b†k(t)

]
= +iωkb

†
k(t)− gkx(t), (7.57)

where the Hamiltonian is given in Eq.(̃7.24). Equations (7.54)-(7.57) can
be combined to obtain

ẍ(t) + Ω2x(t) +
∂

∂t

∫ t

0
Γ(t− s)x(s)ds =

B(t)

mI
, (7.58)

as detailed in Appendix E. This is the equation of motion for the impu-
rity position. It may be viewed as the quantum analogue of a classical
stochastic differential equation, where

B(t) =
∑
k

i~gk(b†ke
iωkt − bke−iωkt) (7.59)

plays the role of a stochastic force, and Γ(t) is the damping kernel intro-
duced in chapter 6 and recalled in Eq. (7.33), which expression may be
obtained through an integration by parts:

Γ(t) =
τ̃

t3
[
2Λt cos (Λt)− (2− Λ2t2) sin (Λt)

]
. (7.60)

An important feature of such an equation is that it is non-local in time,
namely the temporal evolution of x at time t depends on its past history,
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i.e. x(s) with s < t. We can state that in general the dynamics of an im-
purity in a homogeneous BEC in one dimension, described by Eq. (7.58),
carries a certain amount of memory effects. Actually, there is one special
situation where this equation reduces to a local one, and in particular to
a traditional damped harmonic oscillator with a stochastic force. This is
the case constituted by a damping kernel proportional to a Dirac delta.
In chapter 6 we proved that this expression of the damping kernel results
by an ohmic spectral density, i.e. a spectral density depending linearly on
the frequency. As we showed in Sec. 7.2 this is not the case of the present
system, where the spectral density is super-ohmic. In conclusion we can
state that the dynamics of an impurity in a BEC always carries a certain
amount of memory effects.

Equation (7.58) is a second-order linear non-homogeneous differen-
tial equation. Its solution is the sum of a particular one and that of the re-
lated homogeneous equation. For the latter we can proceed by applying
the Laplace transform operator, in order to obtain the solution in terms
of the initial position and velocity. The particular solution, instead, is
the convolution product of the Green function and the position opera-
tor. Therefore, the solution for the impurity position in the Heisenberg
picture takes the following form

x(t)=G1(t)x(0) +G2(t)ẋ(0) +
1

mI

∫ t

0
G2(t− s)B(s)ds, (7.61)

where the functions G1 and G2 are defined through their Laplace trans-
forms

Lz[G1(t)] =
z + Lz[Γ(t)]

z2 + Ω2 + zLz[Γ(t)]
, (7.62)

Lz[G2(t)] =
1

z2 + Ω2 + zLz[Γ(t)]
, (7.63)

and satisfy

G1(0) = 1, Ġ1(0) = 0, (7.64)

G2(0) = 0, Ġ2(0) = 1. (7.65)

Equations (7.62) and (7.63) generalize the expressions in Eq. (6.25) to a
situation associated to a damping kernel induced by a generic spectral
density. They depend on the Laplace transform of the damping kernel
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which is calculated in Appendix F. Here we present only the final result

Lz [Γ(t)] = zτ̃ [Λ− z arctan (Λ/z)] . (7.66)

In order to find the expression of the position impurity as a function of
the time, and so to characterize its motion, we have to invert the Laplace
transforms in Eqs. (7.62) and (7.63). In the following two sections, we will
invert this transformations to obtain the complete solution both analyt-
ically and numerically, for the case of untrapped (Sec. 7.4) and trapped
impurity (Sec. 7.5).

7.4 Untrapped impurity

Here we consider an untrapped impurity, that is Ω = 0 in Eq. (7.53). In
this case the impurity position in the Heisenberg picture is described by
Eq. (7.61) with

Lz[G1(t)] =
z + Lz[Γ(t)]

z2 + zLz[Γ(t)]
= 1/z, (7.67)

Lz[G2(t)] =
1

z2 + zLz[Γ(t)]
. (7.68)

To completely characterize the motion of the impurity one has to invert
these Laplace transforms. For Eq. (7.67) this calculation can be performed
straightforwardly to get

G1(t) = 1. (7.69)

Thus the contribution of the initial position in Eq. (7.61) is constant in
time. We highlight that such a result may be found even without knowl-
edge of the form of the damping kernel, and therefore about the form of
the spectral density. Thus, Eq. (7.69) holds for any untrapped impurity,
regardless of the details of the coupling.

It is more difficult to handle with the Laplace transform in Eq. (7.68),
due to the arctangent in the Laplace transform of the damping kernel in
Eq. (7.66). We are interested in the long-time regime, which corresponds
to z � Λ. The asymptotic expansion of Eq. (7.66) in this limit reads

Lz [Γ(t)] = zτ̃Λ + o(z2), (7.70)
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and therefore
Lz[G2(t)] =

1

(1 + Λτ̃)z2
≡ 1

αz2
, (7.71)

which can be inverted providing

G2(t) = t/α. (7.72)

We note that such an expression does not fulfill the boundary conditions
in Eq. (7.65), in particular Ġ2(0) 6= 1, but this is justified by the fact that
Eq. (7.72) refers to a long-time behavior.

Equation (7.72) has been obtained by expanding the Laplace trans-
form of the damping kernel at the first order in z/Λ. In general one may
perform such an expansion to the nth order, and the Laplace transform
in Eq. (7.68) takes the form of the inverse of a polynomial of (n + 1)th

degree. The Laplace transform can be henceforth inverted by computing
the roots of such a polynomial, say z̄k, with k = 1, ..., n + 1, and finally
one gets

G2(t) =
n+1∑
k=1

ake
z̄kt, (7.73)

where the ak are constants depending on the roots z̄k. However, one has
to notice that some roots have a positive real part, corresponding to di-
vergent run-away solutions (Ford and O’Connell, 1991). These divergent
roots have to be dropped out. In fact it is possible to see that they do
not satisfy the condition z � Λ that we assumed in the beginning of the
calculation. Then, they are negligible in the long-time limit. One may
invert the Laplace transform in Eq. (7.68) through the general approach
of the Bromwich integral. Here the run-away roots remain out of the in-
tegration contour, and therefore the related residuous do not contribute.
We conclude that Eq. (7.72) represents the complete expression for the
Laplace transform in Eq. (7.68) in the long-time limit.

In order to go beyond any asymptotic expansion of Eq. (7.66), we
have to perform numerically the inversion of the Laplace transform in
Eq. (7.68). There exist several algorithms aimed to deal with this prob-
lem, as carefully discussed by Wang and Zhan, 2015. Here, we consider
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FIGURE 7.1: Inverse Laplace transform of Eq. (7.68). The
plot refers to a K impurity embedded in a gas of Rb atoms
with a density n0 = 7 · 106m−1 and a coupling constant
gB = 2.36 · 10−37J ·m. Here ω0 = ~n20/mI represents the
characteristic frequency. Solid lines refer to result of the
approximation in Eq. (7.74) forN = 5, while dashed ones
represent analytic long-time predictions from Eq. (7.72).

the Zakian method, where the inverse Laplace transform f(t) of a func-
tion F (z) is approximated as

f̃(t) =
2

t

N∑
j=1

Re [kjF (αj/t)] , (7.74)

with αj and kj constants that can be either complex or reals. In the limit
N → ∞ it turns that f̃(t) → f(t). Many studies show that the error in
the approximation is negligible in several situations already for N = 5,
and the parameters αj and kj are listed in Table 1 of the paper of Wang
and Zhan, 2015. Applying this method to our problem we invert the
Laplace transform in Eq. (7.68) without performing any asymptotic ap-
proximation. The result is presented in Fig. 7.1. We note that in the long-
time limit the numerical solution matches the analytic one presented in



7.4. Untrapped impurity 127

Eq. (7.72). This linear divergence is approached through damped oscilla-
tions, which characterize the short- and middle-time regimes. The same
behavior is detected by reproducing the calculation by means of other al-
gorithms in (Wang and Zhan, 2015), such as the Fourier and Week ones.

In conclusion, the position operator in the Heisenberg picture for an
untrapped impurity is described by the expression in Eq. (7.61), where
G1 is given by Eq. (7.69), while G2 is represented in Fig. 7.1. Only in the
long-time limit it is possible to exhibit an analytic expression for the sec-
ond function, Eq. (7.72). Such a term shows a ballistic form, namely it is
proportional to time. It means that, as time flows the position impurity
becomes larger and larger. The untrapped impurity does not approach
the equilibrium, but runs away from its initial position. This is a rea-
sonable behavior when we remove trapping. It is natural to character-
ize quantitatively the motion of the untrapped impurity with the mean
square displacement (MSD) already introduced in Eq. (6.40):

MSD(t) = 〈[x(t)− x(0)]2〉, (7.75)

which provides the deviation between the position at time t and the ini-
tial one. In experiments dealing with ultracold gases such a quantity can
be measured (Catani et al., 2012). In the long-time limit it is possible write

MSD(t) =

(
t

α

)2

〈ẋ(0)2〉

+
1

2 (αmI)
2

∫ t

0
ds

∫ t

0
dσ(t− s)(t− σ)〈{B(s), B(σ)}〉, (7.76)

where we considered a factorizing initial state ρ(t) = ρS(0)⊗ρB . The ini-
tial conditions of the impurity and bath oscillators are then uncorrelated.
Then, averages of the form 〈ẋ(0)B(s)〉 vanish. The second term on the
right-hand side of Eq. (7.76) can be treated noting that

〈{B(s), B(σ)}〉 = 2~ν(s− σ), (7.77)

and remembering the definition of the noise kernel in Eq. (7.31) it turns:

ν(s− σ) = mIτ̃

∫ Λ

0
dω cos [(s− σ)ω]ω3, (7.78)

where the hyperbolic cotangent in the noise kernel in Eq. (7.31) has been
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approximated to one assuming low-temperature. This is an important
assumption. It is possible to check that for realistic values of the physical
quantities such an approximation for the hyperbolic cotangent is reason-
able. Replacing Eq. (7.78) in the second term of the right-hand side of
Eq. (7.76), and integrating with respect of time and frequency, it turns

MSD(t) =

[
〈ẋ(0)2〉+ ~τ̃Λ2

2mI

](
t

α

)2

. (7.79)

When this quantity shows a linear dependence on time, the impurity ex-
periences normal diffusion as shown in Eq. (6.45). Conversely, the MSD
is proportional to the square of time in Eq. (7.79). Such a behavior is
termed super-diffusion and provides a key signature of the motion of the
impurity.

In this context super-diffusion is a consequence of the presence of
memory effects. In chapter 6 a similar calculation is performed consid-
ering an ohmic spectral density, associated to the absence of memory
effects, and leads to a diffusive behavior. Super-diffusion in Eq. (7.79)
arises due to the super-ohmic character of the spectral density. Therefore,
it represents a witness of memory effects for a measurable observable.

Apart from the position, the result we presented above permits to ob-
tain an expression for the momentum of the impurity in the Heisenberg
picture. In fact, by inserting within Eq. (7.54) the expression in Eq. (7.61)
with the G2 function in Eq. (7.72), one infers

p(t) =
1

α

[
p(0) +

∫ t

0
B(s)ds

]
. (7.80)

Equation (7.80) can be used to compute the average energy of an un-
trapped impurity

E(t) =
〈p2(t)〉

2mI
. (7.81)

Proceeding as in the derivation of the MSD we find in the low tempera-
ture limit

ELT (t) =ηgBn0 +
E(0)

α2
+

~τ̃
2α2

Λ2

− ~τ̃
(αt)2

[cos (Λt) + Λt sin (Λt)− 1] , (7.82)
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FIGURE 7.2: Average of the energy in the low tempera-
ture limit in Eq. (7.82) as a function of the time for differ-
ent values of the coupling strength. The plot refers to the
situation where the initial average energy E(0), as well as

the mean-field term, have been set to zero.

where we recover the mean-field energy term, represented now by the
first term on the right hand side. Such a quantity is plotted in Fig. 7.2,
where it is shown that the average of the energy oscillates initially and
after a long time approaches a constant value. These oscillations repre-
sent a non-monotonic behavior of the energy. Importantly, the increasing
parts correspond to a flow of energy directed from the environment to-
wards the impurity. In the work of Guarnieri, Uchiyama, and Vacchini,
2016 such a backflow energy has been studied for QBM and indicated as
a witness of memory effects.

We note that after a long time, in the weak coupling limit, the only
term surviving in Eq. (7.82) is the mean-field one. In fact the terms in the
second line vanish after a long time. The second term on the right hand-
side vanish in the weak coupling limit, since it is proportional to η2. In
the end, in the weak coupling limit, the asymptotic value of the energy
approaches the mean-field one.

In the high-temperature limit super-diffusion equally emerges, though
with a different coefficient. Also the energy shows qualitatively the same
behavior as in the low-temperature limit. Nevertheless, the linear ap-
proximation in Eq. (7.22) fails, as discussed in Appendix 7.6.
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7.5 Trapped impurity

In this section we restore the presence of a harmonic trap, i.e. we look to
the situation where Ω > 0 in Eq. (7.53). To investigate the dynamics of
the impurity we proceed as in the previous section, namely we invert the
Laplace transforms in Eqs. (7.62) and (7.63), in order to characterize the
expression of the position operator in the Heisenberg picture, given in
Eq. (7.61). Here, an important difference with Sec. 7.4 is that the expres-
sion for G1(t) cannot be obtained regardless of any information about
the analytic structure of the damping kernel. Conversely, for a trapped
impurity the calculation of G1 requires the same attention of G2.

We approach the problem from a numerical point of view, with the
Zakian method presented by Wang and Zhan, 2015, briefly described in
Sec. 7.4. The results are presented in Fig. 7.3. Both functions exhibit os-
cillations which get damped in the long-time regime. In particular, in the
long-time limit one gets

lim
t→∞

G1(t) = 0, lim
t→∞

G2(t) = 0. (7.83)

The boundary conditions in Eqs. (7.64) and (7.65) are satisfied. Employ-
ing alternative numerical methods described by Wang and Zhan, 2015 to
invert the Laplace transforms we obtain the same result. From the physi-
cal point of view it means that, after a long-time, the contributions of the
initial position and velocity vanish.

For a trapped impurity we are also interested in the long-time behav-
ior of the particle. We characterize it by means of the position variance,
which is a measurable quantity. Taking into account the behavior of G1

and G2 functions showed in Fig. 7.3, the expression for the position vari-
ance can be easily found starting from Eq. (7.61)

〈x2(t)〉 =

∫ t

0
ds

∫ t

0
dσG2(t− s)G2(t− σ)

ν(s− σ)

m2
I~−1

, (7.84)
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FIGURE 7.3: Inverse Laplace transforms of Eqs. (7.62)
(Up) and (7.63) (Down) obtained through the Zakian
method. The figures refer to an impurity of K with Ω =
2π ·500 Hz in a gas made up by Rb with a density of n0 =
7(µm)−1 and a coupling strength gB = 2.36 · 10−37J·m.
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where we used the first line in Eq. (7.78). Replacing the expression for
the noise kernel one gets

〈x2(t)〉= ~
m2

I

∫ Λ

0
J(ω) coth (~ω/2kBT ) dω

×
∫ t

0
ds

∫ t

0
dσG2(t− s)G2(t− σ) cos[ω(s− σ)]

≡ ~
m2

I

∫ Λ

0
J(ω) coth (~ω/2kBT )φ(t, ω)dω. (7.85)

We stress that once the long-time conditions in Eq. (7.83) are fulfilled, it
is not necessary to suppose that the state of the global system is initially
non-correlated, as we did in Sec. 7.4. Equation (7.85) turns into

φ(t, ω) =
1

2

∫ t

0
ds

∫ t

0
dσG2(t− s)G2(t− σ)

[
eiωse−iωσ + c.c.

]
=

1

2

∫ t

0
ds̃e−iωs̃G2(s̃)

∫ t

0
dσ̃eiωσ̃G2(σ̃) + c.c., (7.86)

where we introduced

s̃ = t− s, σ̃ = t− σ. (7.87)

We are interested in the long-time limit, t→∞. In this limit, one gets

φ(t, ω) = L−iω [G2(t)]L+iω [G2(t)] . (7.88)

Replacing Eq. (7.63) into Eq. (7.88), we obtain the final expression for the
position variance:

〈x2〉 =
~

2π

∫ +Λ

−Λ
dω coth (~ω/2kBT ) χ̃′′(ω), (7.89)

where

χ̃′′(ω) =
1

mI

ζ(ω)ω

[ωζ(ω)]2 + [Ω2 − ω2 + ωθ(ω)]2
, (7.90)
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and

ζ (ω) = Re{Lz̃ [Γ(t)]} =
πτ̃

2
ω2 + o

(ω
Λ

)5
, (7.91)

θ (ω) = Im{Lz̃ [Γ(t)]} = −τ̃Λω +
τ̃

Λ
ω3 + o

(ω
Λ

)5
. (7.92)

with z̃ = −iω + 0+. The expression in Eq. (7.89), endowed by Eqs. (7.90)
and (7.91), completely determines the position variance for an impurity
trapped in a harmonic potential. It generalizes that we presented in Eq.
(6.31) to generic spectral densities. We emphasize that such an expres-
sion has been obtained just by considering the long-time limit of the so-
lution of the Heisenberg equations in Eq. (7.61). It is possible to note,
however, that it corresponds to that achieved in the context of the linear
response theory by means of the fluctuation-dissipation theorem (Breuer
and Petruccione, 2007), as discussed in detail in Appendix G. Indeed, χ̃′′

can be seen as the imaginary part of the Fourier transform of the linear
response to an external force applied to the system, at the equilibrium.

In conclusion, in presence of a harmonic trap the impurity approaches
the equilibrium in the long-time limit. We describe such a state through
position and momentum variance (a similar expression to Eq. (7.89) is
also found for the momentum). In particular we recall

δx =

√
2mIΩ〈x2〉

~
, δp =

√
2〈p2〉
mI~Ω

, (7.93)

which represents the position and momentum variances regularized in
order to be dimensionless. In these units the Heisenberg principle reads
as δxδp ≥ 1, so the Heisenberg threshold is set to be equal to one. These
quantities do not depend on time, because they refer to an equilibrium
stationary state. We study the dependence of δx on the system parame-
ters, such as temperature and interaction strength, that can be tuned in
experiments.

In Fig. 7.4 we show the position variance for a trapped impurity as a
function of the temperature, for several values of the coupling strength.
Such a result follows from both a numerical and analytic integration. In
the second case, one may proceed by noting that the integrand function
rapidly vanishes as ω increases, so we approximate Eq. (7.89) with an in-
tegral over the whole real axis (also note that the integrand is an even
function). Therefore it is possible to apply the Residue theorem. We also
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FIGURE 7.4: Dimensionless position variance in
Eq. (7.93) as a function of the temperature, for several
values of the interaction strength. The red dashed line
represents the function

√
2T , associated to the equipar-

tition theorem. The figure refers to an impurity: of K
with Ω = 2π · 500 Hz in a gas made up by Rb with
a density of n0 = 7(µm)−1 and a coupling strength

gB = 2.36 · 10−37J·m.
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FIGURE 7.5: Dimensionless position variance in
Eq. (7.93) as a the interaction strength, for several values
of the temperature, satisfying kBT/~Ω � 0.5. The figure
refers to an impurity: of K with Ω = 2π · 500 Hz in a gas
made up by Rb with a density of n0 = 7(µm)−1 and a

coupling strength gB = 2.36 · 10−37J·m.

stress that Eq. (7.89) refers to the asymptotic expansion in Eq. (7.91), justi-
fied in the long-time limit. Such an expansion has been performed till the
fifth order in ω/Λ, but even going to higher orders we recover the same
result as in Fig. 7.4.

In physical grounds we note from Fig. 7.4 that for kBT/~Ω & 0.5, the
position variance grows as the square root of the temperature. Indeed,
we detect the behavior provided by δx ∼

√
2T (red dashed line), in agree-

ment with the equipartition theorem. We note that as the temperature
increases the value of the position variance turns to be less dependent of
the interaction strength.

In the other limit, that is when one approaches the zero-temperature
limit (for kBT/~Ω . 0.5), we find that δx < 1. This means that the posi-
tion variance is smaller than the value related to the Heisenberg thresh-
old in these units. This important effect is named genuine position squeez-
ing, and corresponds to high spatial localization of the impurity. This is
an important resource in quantum technologies, and therefore we would
like to find under which parameters such an effect is enhanced. In Fig. 7.5
we plot the value of the dimensionless position variance in Eq. (7.93) as
a function of the interaction strength, obtained by exploring values of
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the temperature as low as possible. We point out that genuine squeezing
is maximized, i.e. δx gets smaller, if the temperature tends to zero, and
the interaction becomes stronger. For instance, tuning η ≈ 5 and setting
T = 2nk it is possible to reach δx ≈ 0.7. This degree of squeezing may be
enhanced by increasing the value of η. In this case, our results would lie
at the border of the validity regime of our Hamiltonian model. Note that
in experiments the value of η may be pushed towards very high values,
for instance Catani et al., 2012 reach η = 30 . Of course, the present theory
cannot be employed to investigate such a regime. However, we remark
that for η . 7, where the theory is well defined, we already find a good
degree of genuine position squeezing. We underline, anyway, that even
for η . 7, the investigation of such a limit would be not possible through
the tools developed in the work of Massignan et al., 2015, basically due
to the violations of the Heisenberg principle at low temperature. Here,
instead, Heisenberg principle is fulfilled.

It is important to note that in the present treatment we considered
only one 1D BEC, but in real experiments such as that of Catani et al.,
2012 the set-up includes a large number of tubes. The gases confined
in these tubes present values of the physical quantities, for instance the
density, that in general are different for each tube. This has to be taken
into account in the analysis of the theoretical results in the attempt to
approach the experimental outcomes. In fact, one should in principle
perform a convolution of a particular result over the whole set of tubes,
i.e. to calculate the average of a result over the parameters associated to
each tube. This way to proceed is described for instance in the work of
Pagano et al., 2014.

Finally, we would like to underline that the genuine position squeez-
ing appears both for attractive and repulsive interactions. This is in agree-
ment with the results presented by Catani et al., 2012 [see Fig. 4], where
it has been shown that the position variance of the impurity does not de-
pend on the sign of the interaction. To understand this, let us first note
that in the presence of a trap confining the BEC, the density of the con-
densate, will be spatially changing and peaked in the center of the trap.
If impurity-boson interactions are repulsive, one should expect that the
impurity will be pushed away from the center and localized around the
distance D resulting from an interplay between the force trapping the
impurity and the force resulting from the mean field interactions. While
due to the parity symmetry 〈x〉 = 0, one should expect that 〈x2〉 ' D2

and, unless D is very small, there will be no squeezing of the position. In
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contrast, for attractive interactions the impurity will be localized in the
center of the trap and squeezing will be possible. In the work of Lim et
al., 2018 it is considered the model when the bath is coupled to the square
of the position of the impurity. This is the first step towards the study of
the full problem, in which impurity couples to a confined condensate
with spatially dependent density and complicated spatially dependent
Bogoliubov-de Gennes modes.

In contrast, in the present case we consider a spatially homogeneous
condensate with constant density and Bogoliubov-de Gennes modes, which
are plane waves. Moreover, we linearize the spatial dependence of modes,
assuming self-consistently that the impurity is localized in the region of
x allowing for such a linearization. The above arguments do not apply in
this case, and our results: i) do not depend on the sign of impurity-bath
interaction; ii) squeezing is thus possible for both repulsive and attractive
interactions.

7.6 Validity of the linear approximation

In Sec. 7.1 we proved that the Hamiltonian of an impurity in a gas may
be expressed in the form of that of the QBM. A crucial step to perform
this task consists of a linear expansion of the exponential appearing in
Eq. (7.20). The present Appendix is devoted to discuss the validity of
such an approximation, namely we wonder for which values of the sys-
tem parameters the condition

kx� 1, (7.94)

holds, allowing the expansion in Eq. (7.23). Here, k represents the wave
number of the Bogoliubov modes, depending on their frequency as showed
in Eq. (7.38). This function increases monotonically as

k ≈ ω/c for ω � Λ, (7.95)
k ∼
√
ω for ω � Λ, (7.96)

hence we can minimize the left-hand side of Eq. (7.94) by looking to the
small frequency regime in Eq. (7.95). Note that this is in agreement with
our treatment, because all the results presented here refer to the phonon
linear part of the Bogoliubov dispersion relation. In fact such a portion
of the Bogoliubov spectrum is embodied in the super-ohmic form of the
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spectral density we have considered [see Sec. 7.2]. Moreover, the ultra-
violet sharp cut-off, Λ, permits to get rid of the contribution due to the
non-linear part in Eq. (7.96). The condition in Eq. (7.94) is then

ω

c
x� 1, (7.97)

and recalling the expression

c =
√

2ξΛ, (7.98)

it turns into
ω

Λ

x

ξ
�
√

2. (7.99)

We point out that, in order to fulfill the condition, the position of the
impurity may acquire large values, provided we consider a frequency
much smaller than Λ.

The value of the frequency depends in general on the temperature.
For a system of bosons the energy at a given temperature T is

E(ω) =
~ω

e
~ω

kBT − 1
≤ kBT, (7.100)

accordingly one can evaluate Eq. (7.99) as

kBT

~c
x� 1. (7.101)

Note that, because of the inequality in Eq. (7.100), the condition in Eq. (7.101)
provides an upper bound for Eq. (7.94).

We have to evaluate now the position of the impurity. The quantity
appearing in Eq. (7.94) is an operator. The impurity is modeled as a har-
monic oscillator, so its state is Gaussian. Therefore it ensues

x = 〈x〉+ ∆x = ∆x, (7.102)

where we considered that, for a harmonic oscillator, the average value of
the position is zero. Finally, we can state that the linear approximation
underlying our analysis is fulfilled if it is satisfied that

kBT

~c
∆x � 1. (7.103)
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FIGURE 7.6: Behavior of χ(Tr) [see Eq. (7.104)] as a func-
tion of the temperature and of the frequency of the trap.
For χ(Tr) < 1 the linear approximation, Eq. (7.22), is ap-
propriate for the trapped impurity. The figure refers to
an impurity of K in a gas made up by Rb with a den-
sity of n0 = 7(µm)−1 and a coupling strength gB =

2.36 · 10−37J·m. The interaction strength is η = 1.

To evaluate ∆x, and thus Eq. (7.103), we have to distinguish again the
case of trapped and untrapped impurity.

For the trapped case we consider in Eq. (7.103) the fluctuation ∆x as
that given by δx in Eq. (7.93),

χ(Tr) ≡ kBT

~c
δx(T,Ω). (7.104)

If χ(Tr) < 1 it is possible to state that the linear approximation, Eq. (7.22),
is fulfilled. We plot in Fig. 7.6 the quantity in Eq. (7.104) as a function of
the temperature and the trap frequency. Note that δx depends also on the
interaction strength, but we focus on the case where η = 1. In general, as
the temperature grows the position variance approaches the value pre-
dicted by the equipartition theorem, so it gets coupling-independent. At
low temperature, instead, the value of the position variance approaches
one at weak coupling, i.e. η ≈ 1, while in general it is smaller (the impu-
rity experiences genuine position squeezing). Therefore, the value of the
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position variance at η = 1 represents an upper bound. Therefore, if the
linear approximation is fulfilled for η = 1, it also holds for other, smaller
or larger, values of η.

Figure 7.6 shows that the linear approximation for a trapped impurity
is fulfilled at low temperature. Moreover, it is very well satisfied as the
trap potential gets more and more steep, as pointed out also by Bonart
and Cugliandolo, 2012. In particular, we see that for the value we selected
to detect genuine position squeezing, i.e. Ω = 2π · 500 and T ≥ 2nm the
threshold in Eq. (7.104) takes a value smaller than 0.1, suggesting that the
condition allowing the linear approximation is very well satisfied.

Next we consider the untrapped impurity. In this case ∆x may be
evaluated by means of the MSD in Eq. (7.79). Considering the case in
which 〈ẋ2(0)〉 = 0, the left-hand side in Eq. (7.101) is

χ(Un) ≡ kBT

~c

√
~τ̃

2mI

tΛ

α(η)
. (7.105)

Again, in order to state that our linear approximation is satisfied the
quantity in Eq. (7.105) has to be smaller than one.

In Fig. 7.7 we plotted the value of the quantity χ(Un) introduced in
Eq. (7.105). Even in this case we find that the linear approximation un-
derlying our treatment is very well fulfilled at low-temperature. For an
untrapped impurity the validity of such an approximation holds until a
certain value of the time

t(cr) =
~c
kBT

√
2mI

~τ̃
α(η)

Λ
, (7.106)

corresponding to the instant in which the quantity in Eq. (7.6) is equal to
one, i.e. we have

χ(Un)(t(cr)) = 1. (7.107)

The critical time in Eq. (7.106) is plotted in Fig. 7.8 as a function of the
temperature, for different values of the interaction strength. Each line
corresponds to a different value of η. Once one fixes η, the corresponding
line determines the value of time and temperature for which the thresh-
old in Eq. (7.105) is equal to one. Accordingly, above the line we have
a forbidden area. Again, we find that this forbidden area is enlarged as
the temperature grows, suggesting that our approximation works at low
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FIGURE 7.7: Behavior of χ(Un) [see Eq. (7.105)] as a func-
tion of the temperature and of the time. For χ(Un) < 1
the linear approximation, Eq. (7.22), is appropriate for the
untrapped case. The figure refers to an impurity of K in a
gas made up by Rb with a density of n0 = 7(µm)−1 and
a coupling strength gB = 2.36 · 10−37J·m. The interaction

strength is η = 1.
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FIGURE 7.8: Critical time in Eq. (7.106) as a function of
the temperature for different values of the interaction
strength. Below the curves the linear approximation,
Eq. (7.22), is fulfilled. The figure refers to an impurity of
K in a gas made up by Rb with a density of n0 = 7(µm)−1

and a coupling strength gB = 2.36 · 10−37J·m.
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temperature.

7.7 Summary

The present chapter covers a very important part of the thesis. We have
applied the techniques developed in the previous chapters to a concrete
physical system, evaluating quantities that have been measured in ex-
periments. This treatment has been published by Lampo et al., 2017. Our
main results are:

• The physical Hamiltonian associated to an impurity in a homoge-
neous gas may be expressed in the form of that of the QBM model:
the impurity plays the role of the Brownian particle while the en-
vironment is represented by the surrounding Bogoliubov cloud. In
general the coupling between them depends non-linearly on the
impurity position, but we linearize it approaching the interaction
term of the standard QBM model [Eq. (7.24)]. Very importantly we
prove that this approximation is reasonable for the physical values
we consider. To this end we find and evaluate that a set of validity
relations (Sec. 7.6).

• Once we have the Hamiltonian, it is possible to derive the spec-
tral density of the system [see Sec. 7.2]. We calculate such an object
finding a super-ohmic behavior [Eq. (7.49)]. This form corresponds
to the presence of memory effects in the dynamics of the impu-
rity. In fact, the position particle is described by an equation of
the Langevin-type, but with a dependence on its past history [Eq.
(7.58)].

• We solve the equation of motion with both numerical and analytical
methods by distinguishing the case where the impurity is trapped
in a harmonic potential and that in which is free of any trap. In the
latter we calculate the mean square displacement [Eq. (7.79)] which
now is proportional to the square of time (super-diffusion). Such
an effect represents a witness of memory effect on a measurable
quantity.

• If the impurity is confined in a quadratic potential we detect gen-
uine position squeezing at low temperature (Fig. 7.4). This effect
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corresponds to high spatial localization of the impurity and maybe
detected in experiments.
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Chapter 8

Bose Polaron in an
inhomogeneous trapped gas

In the current chapter we extend the analysis of the previous one to the
case in which the gas is trapped by an external potential. The results
we are about to present are contained in the work of Lampo et al., 2018.
Here, the presence of the trap makes the gas inhomogeneous, i.e. its den-
sity exhibits a spatial dependence. In particular, by considering a har-
monic trap we have a Thomas-Fermi (TF) density profile. In this context
the spectrum of the Bogoliubov excitations differs from that of a homo-
geneous BEC, as showed by Öhberg et al., 1997; Stringari, 1996 for a BEC
confined in three dimension, and by D.S. Petrov, D.M. Gangardt, and
G.V. Shlyapnikov, 2004 in the particular situation of a gas in 1D, i.e. with
the shape of tube.

Regardless of the form of the spectrum, also in this case Bogoliubov
transformations permit to cast the Hamiltonian of the system in the form
of that of the QBM model: still, the impurity plays the role of the Brow-
nian particle while the environment is represented by the Bogoliubov
modes. In general, the interaction term shows a non-linear dependence
on the position impurity, that would lead to a dynamics characterized by
a multiplicative noise and a state-dependent damping. However, if we
look into the behaviour of the impurity in the middle of the BEC trap,
the interaction Hamiltonian can be expressed as a linear function of the
position impurity, approaching the form of traditional QBM model.

We may thus follow the procedure of the previous chapter because
the behavior of the impurity in this particular regime is ruled by a quan-
tum stochastic differential equation of the Langevin type. Again such
an equation is non-local in time, i.e. it depends on its past history, and
this may be also inferred looking into the spectral density, manifesting
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a super-ohmic form. The difference with the homogeneous case is that
now the spectral density exhibits a higher degree of super-ohmicity: four
rather than three. This does not affect the qualitative long-time behavior
of the MSD when the impurity is untrapped. In fact, if the super-ohmic
character of the spectral density leads to super-diffusive behavior, the
higher degree of ohmicity would suggest that the MSD is proportional
to a power of the time higher than two (what emerges in the previous).
Still, we find the MSD is proportional to the square of time, as in the
homogeneous case.

When the impurity is trapped in a harmonic potential it oscillates col-
lapsing in the middle of the trap. The long-time position variance is time-
independent and we may repeat the analysis of the previous chapter by
tuning the external parameters. We find again that the particle experi-
ences genuine position squeezing if we explore low-temperatures by in-
creasing the coupling.

It is important to underline that regardless of whether the impurity is
trapped or not, in all the chapter we consider the situation in which the
BEC is trapped. This leads to the presence of a new variable constituted
by the frequency gas trap that affects the physics of the system. The study
of the impurity dynamics as such a parameter varies represents the main
advance of the current chapter. In particular we describe the behavior
of the super-diffusion coefficients associated to an untrapped impurity
when the gas trap is made more (or less) tight. Mostly, we study how the
emergence of squeezing is related to the value of the gas trap frequency.
We find that such en effect result to be improved by making tighter the
gas trap.

8.1 Hamiltonian

We consider an impurity with massmI embedded in a Bose-Einstein con-
densate with N atoms of mass mB. The system is described by the fol-
lowing Hamiltonian

H = HI +HB +HBB +HIB, (8.1)
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with

HI =
p2

2mI
+ U(r), (8.2a)

HB =

∫
d3r Ψ†(r)

(
p2

B

2mB
+ V (r)

)
Ψ(r), (8.2b)

HBB = gB

∫
d3r Ψ†(r)Ψ†(r)Ψ(r)Ψ(r), (8.2c)

HIB = gIB

∫
drBΨ†(rB)Ψ(rB)δ(r− rB)

= gIBΨ†(r)Ψ(r), (8.2d)

where r and rB denote the position coordinate of the impurity and the
bosons, respectively. We assume contact interactions among the bosons
and between the impurity and the bosons, with strength given by the
coupling constants gB and gIB, respectively [see Eqs. (8.2c) and (8.2d)].
The impurity is trapped in a potential U(r) = mIΩ

2r2
2 . In this paper

we discuss both the untrapped (Ω = 0) and trapped cases (Ω > 0).
The bosons are trapped in a harmonic potential, namely the potential
in Eq. (8.2c) takes the form

V (r) =

3∑
i=1

mBω
2
i r

2
i

2
. (8.3)

This is the crucial difference with the analysis of the previous chapter.
The fact that the BEC is trapped gives rise to important consequences,
both in the analytical derivation and in the results, as we will discuss
throughout the rest of the paper.

In this section we express the Hamiltonian (8.1) in the form of the
QBM model. We first write the field operator as the sum of the conden-
sate state and the above-condensate part

Ψ = Ψ0 + Ψ′, Ψ0 ≡ 〈Ψ〉. (8.4)

We replace Eq. (8.4) in the Hamiltonian (8.1) and make the BEC assump-
tion, i.e. that the condensate density greatly exceeds that of the above-
condensate particles. In particular this amounts to omitting the terms
proportional to (Ψ′)3, and (Ψ′)4 in the resulting expressions. As showed
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by Öhberg et al., 1997, one obtains

HBB +HB = H0 +

∫
d3rΨ′†(r)Hsp

B Ψ′(r) (8.5)

+
gB

2

[
4 |Ψ0 (r)|2 Ψ′† (r) Ψ′ (r) + Ψ2

0Ψ′†(r)Ψ′†(r)
]

+
gB

2
(Ψ∗)2

0 Ψ′(r)Ψ′(r),

where

H0 =

∫
d3rΨ†0(r)

[
− ~2

2mB
∆ + V (r) +

gB

2
|Ψ0(r)|2

]
Ψ0, (8.6)

and where

Hsp
B ≡

p2
B

2mB
+ V (r), (8.7)

is the single-particle gas Hamiltonian [see Eq. (8.2b)]. Proceeding in a
similar manner with the impurity-gas interaction, Eq. (8.2d), one gets

HIB =gIB

[
Ψ†0(r) + Ψ′†(r)

]
[Ψ0(r) + Ψ(r)]

=gIB

[
|Ψ0(r)|2 + Ψ′†(r)Ψ0(r) + Ψ′(r)Ψ†0(r)

]
, (8.8)

where the term proportional to the square power of the above-condensate
state has been neglected.

In the QBM Hamiltonian, the environment is modeled as a set of un-
coupled oscillators. To establish the analogy between the QBM Hamilto-
nian and that of the impurity immersed in a BEC, we diagonalize the
part of the gas Hamiltonian, Eq. (8.5), to express it as a set of uncoupled
modes. With the Bogoliubov transformation

Ψ′(r) =
∑
ν

[
uν(r)bν − v∗ν(r)b†ν

]
, (8.9)

one gets to the diagonalized Hamiltonian

HB +HBB = H0 +
∑
ν

Eνb
†
νbν , (8.10)

where Eν is the energy of the Bogoliubov excitations, which constitute
the oscillating modes of the environment dressing the impurity, and b†

(b) the related creation (destruction) operators of these modes. Under
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the Bogoliubov transformations in Eq. (8.9) the interaction Hamiltonian,
Eq. (8.2d), reads

HIB =gIB

[√
n0(r)

∑
ν

(u∗ν(r)− v∗ν(r)) b†ν + c.c.

]

≡gIB

[√
n0(r)

∑
ν

f(ν,−)b
†
ν + c.c.

]
(8.11)

where we put Ψ0 ≈
√
n0.

To obtain the complete form of the Hamiltonian we need the expres-
sions of the functions uν and vν introduced in Eq. (8.9), as well as of the
energy modes in Eq. (8.10). An important difference with the homoge-
neous case is that, for the trapped BEC, they have to be obtained as the
eigenvectors and eigenvalues of the matrix associated to the Bogoliubov-
de-Gennes (BdG) equations

H
(sp)
B uν + gBn0(r) (2uν − vν) = (µ+ Eν)uν , (8.12a)

H
(sp)
B uν + gBn0(r) (2uν − vν) = (µ− Eν)uν . (8.12b)

The solutions of the BdG equations satisfy the orthogonality condition∫
dr (uνu

∗
ν′ − vνv∗ν) = δνν′ . (8.13)

In general, the solution of the BdG equations (8.12) does not constitute a
simple problem, and often requires the employment of numerical meth-
ods. For a BEC confined in one dimension and in the TF limit, one can
solve them analytically as showed in D.S. Petrov, D.M. Gangardt, and
G.V. Shlyapnikov, 2004. In the current work we focus exactly on the
aforementioned situation, namely a gas confined in one dimension with
a TF density profile

n0(x) =
µ

gB

(
1− x2

R2

)
, R =

√
2µ/mBω2

B, (8.14)
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where ωB is the trapping frequency in the direction x [see Eq. (8.3)]. Here,
R is the TF radius and the chemical potential is

µ =

(
3

4
√

2
gBNωB

√
mB

)2/3

. (8.15)

Then, the solution of the BdG equations (8.12) gives the following spec-
trum

Ej = ~ωB

√
j(j + 1) ≡ ~ωj , (8.16)

with corresponding Bogoliubov modes

f(j,−) =

√
j + 1/2

R

√
2µ

Ej

[
1−

( x
R

)2
]
Lj (x/R) . (8.17)

where Lj(z) represent the Legendre polynomials and j is the integer
quantum number labeling the spectrum.

Finally, we replace the expressions of the Bogoliubov modes, Eq. (8.17)
in Eq. (8.11) to get the Hamiltonian of an impurity embedded in a BEC in
1D with a TF density profile,

H = HI +HE +Hint, (8.18)

with
HE =

∑
j

Ejb
†
jbj , (8.19)

and

Hint =
∑
j

gIB

√
n0(x)f(j,−)(x)

(
bj + b†j

)
≡
∑
j

Fj(x)
(
bj + b†j

)
, (8.20)

Hamiltonian (8.18) is analogous to QBM Hamiltonian, where one identi-
fies the system Hamiltonian as HI, the environment set of oscillators as
HE, and the interaction between system and environment asHint. Impor-
tantly, the latter presents a non-linear dependence on the position impu-
rity. There exist different techniques aimed to deal with the QBM model
with this kind of non-linearity. For instance, one could recall the master
equation treatment in the Born-Markov regime in Massignan et al., 2015,
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or in the Lindblad framework Lampo et al., 2016. Beyond these approx-
imations, it is possible to look into the non-linear Heisenberg equations
derivation carried out in Barik and Ray, 2005, where a Langevin equa-
tion with a state-dependent damping and a multiplicative noise has been
obtained. Moreover, there is the procedure developed by Lim et al., 2018
relying on quantum stochastic calculation, valid for the small impurity
mass limit.

The problem in applying all these methods lies in the fact that the
interaction Hamiltonian (8.20) presents a dependence on the position
strictly constrained to the index j, i.e. we have a different analytical de-
pendence on x for each value of j. To overcome this difficulty, we restrict
to the regime defined by the condition x/R � 1, that is we study the
dynamics of the impurity in the middle of the trap. Here, it is possible to
expand the interaction term in Eq. (8.20) at the first order in x/R

HI =
∑
j

~gjx
(
bj + b†j

)
, (8.21)

in which

gj =
gIBµ

~π3/2

[
1 + 2j

~ωBgBR3

] 1
2 Γ
[

1
2 (1−j)

]
Γ
[

1
2 (1+j)

]
sin (πj)

[j(j + 1)]1/4
. (8.22)

This linear approximation is discussed in Sec. 8.4, where we show that
such an approximation is appropriate for realistic values of the system
parameters. The interaction Hamiltonian above shows a linear depen-
dence on the positions of both the impurity and the oscillators of the
bath. This is exactly the situation of the QBM model. A difference with
the homogeneous gas discussed in Lampo et al., 2017 is that here the en-
vironmental variables appearing in the interaction term are the positions
of the oscillators, while in the homogeneous case the variables appearing
in the analogous interaction term are the momenta of the oscillators. We
note here that this does not imply a qualitative change with respect to
the homogeneous case, because the bath variables only play a role in the
environmental self-correlation functions, which remain the same as those
presented in Lampo et al., 2017.
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8.2 Quantum Langevin equation

After expressing the Hamiltonian of an impurity in an inhomogeneous
BEC in the form of the QBM one, we are now in the position to provide
a careful quantitative description of the motion of the impurity using an
open quantum systems approach. First, we write the Heisenberg equa-
tions

ẋ(t) =
i

~
[H,x(t)] , ṗ(t) =

i

~
[H, p(t)] , (8.23)

ḃk(t) =
i

~
[H, bk(t)] , ḃ†k(t) =

i

~

[
H, b†k(t)

]
. (8.24)

These equations may be combined according the procedure presented by
Breuer and Petruccione, 2007; Lampo et al., 2017 to derive an equation
for the position impurity in the Heisenberg picture,

ẍ(t) + Ω2x(t) +
∂

∂t

∫ t

0
Γ(t− s)x(s)ds =

B(t)

mI
. (8.25)

Such an equation is formally identical to the Langevin one derived in the
context of classical Brownian motion, and completely rules the tempo-
ral evolution of the impurity motion. At this level, the influence of the
environment is contained in the term in the right hand-side

B(t) =
∑
j

~gj(b†je
−iωjt + bje

+iωjt), (8.26)

which plays the role of the stochastic noise, and in the damping kernel.
Both of them depend on the spectral density. In particular the noise term
fulfills the relation

〈{B(s), B(σ)}〉 = 2~ν(s− σ), (8.27)

in which

ν(τ) =

∫ ∞
0

J(ω) coth

(
~ω

2kBT

)
cos (ωτ) dω (8.28)

is the noise kernel.
Therefore, the influence of the environment on the impurity motion is

completely known once we exhibit an expression for the SD. This can be
done analytically according the same procedure showed in the previous
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chapter. In particular, one has to replace the expression of the coupling
constant in Eq. (8.22) into the definition (7.34). Then, we turn the discrete
sum in j into an integral in a continuous variable to get

J(ω) =
2g2

IBµ
2

gBR3(~ωB)2

(
ω

ωB

)4

θ (ω − ωB)

≡ mIγ
ω4

ω3
B

θ (ω − ωB) , (8.29)

with

γ =
2gB

mIωBR3

(
ηµ

~ωB

)2

, η =
gIB

gIB
. (8.30)

In Eq. (8.29), θ (ω − ωB) is the Heaviside step function, representing an ul-
traviolet cut-off, that has been put ad-hoc in order to regularize the diver-
gent character of the spectral density at high-frequency. This, however,
does not play any role in the dynamics of the system at long-times, as
nor the presence, neither the form, of the cut-off affects the dynamics of
the impurity at long times. This can be shown by recalling the Tauberian
theorem (Nixon, 1965; Feller, 1971).

Therefore, in the middle of the trap (x � R) and at long times (ω �
ωB) we obtain a super-Ohmic SD. Such a particular form implies the pres-
ence of memory effects in the dynamics of the system. In fact, only if the
damping kernel reduces to Dirac Delta, Eq. (8.25) acquires a local in time
structure, making the evolution of the impurity position independent on
its past history. Indeed, by replacing the SD, Eq. (8.29), in the definition
of the damping kernel, Eq. (7.33), one gets

Γ(t) =
γ
[
6 + 3

(
ω2

Bt
2 − 2

)
cos (ωBt)

]
t4ω3

B

(8.31)

+
γωBt

[
(ωBt)

2 − 6
]

sin (ωBt)

t4ω3
B

. (8.32)

The form of the damping kernel presented above shows that Eq. (8.25)
is non-local in time and the dynamics of the impurity carries a certain
amount of memory effects. We underline here an important difference
with the case in which the BEC is untrapped: in that situation the spectral
density is proportional to the third power of the frequency, while now it
goes as the fourth one. We conclude that the presence of the trap for the
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gas increases the super-Ohmic degree. This changes the details of the
derivation to be developed below, in comparison with the homogeneous
case.

The solution of Eq. (8.25) is

x(t)=G1(t)x(0) +G2(t)ẋ(0) +
1

mI

∫ t

0
G2(t− s)B(s)ds, (8.33)

where the functions G1 and G2 are defined through their Laplace trans-
forms

Lz[G1(t)] =
z + Lz[Γ(t)]

z2 + Ω2 + zLz[Γ(t)]
, (8.34)

Lz[G2(t)] =
1

z2 + Ω2 + zLz[Γ(t)]
, (8.35)

and satisfy

G1(0) = 1, Ġ1(0) = 0, (8.36)

G2(0) = 0, Ġ2(0) = 1. (8.37)

The Laplace transform of the damping kernel is what carries out the
properties of the environment in the solution of the position impurity
equation. Recalling the definition of the damping kernel we find

Lz[Γ(t)] =
1

mI

∫ ∞
0
dte−zt cos(ωt)

∫ ∞
0
dωJ(ω)/ω

=
zγ

ω3
B

∫ ωB

0
dω

ω3

ω2 + z2
, (8.38)

where we used the expression of the spectral density in Eq. (8.29) and the
formula for the Laplace transform of the cosine∫ ∞

0
e−zt cos(ωt)dt =

z

ω2 + z2
. (8.39)
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The integral (8.38) may be calculated straightforwardly noting that∫ ωB

0

ω3

ω2 + z2
dω =

∫ ωB

0
ω

(
1− z2

ω2 + z2

)
dω

=
1

2

[
ω2

B + z2 log

(
z2

z2 + ω2

)]
. (8.40)

In the end, replacing Eq. (8.40) into Eq. (8.38) we obtain

Lz[Γ(t)] =
zγ

2ω3
B

(
ω2

B + z2 log

[
z2

z2 + ω2
B

])
. (8.41)

Such a quantity completely fixes the kernels in Eqs. (8.34) and (8.35) and
thus the temporal evolution of the impurity position in the Heisenberg
picture. The problem of deriving an explicit expression for it reduces
now to the inversion of the Laplace transform in Eqs. (8.34) and (8.35).

8.3 Position variance

The motion of the impurity is described by the second-order stochastic
equation of the Langevin type (8.25). We proceed now to solve this equa-
tion in order to evaluate the position variance, which constitutes a mea-
surable quantity (Catani et al., 2012). For this goal we distinguish two
situations: the case where there is no trap for the impurity [Ω = 0 in Eq.
(8.2a)], and that in which there is a harmonic trap (Ω > 0).

8.3.1 Untrapped impurity

In Sec. 8.2 we showed that the problem of solving Eq. (8.25) reduces to
that of inverting the Laplace transforms (8.34) and (8.35). The former
may be inverted immediately since, when Ω = 0, it takes the form

Lz[G1(t)] = 1/z, (8.42)

and so
G1(t) = 1. (8.43)

This result holds regardless of the properties of the environment, namely
for any SD, and in fact corresponds to that derived in the homogeneous
gas.
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FIGURE 8.1: Time-dependence of the function G2, de-
fined through its Laplace transform in Eq. (8.35). The
solid lines represent the numerical calculation with the
Zakian algorithm. The dashed lines refer to the expres-

sion in Eq. (8.46), valid in the long-time limit.
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The situation is different for Eq. (8.35), where the properties of the
environment play a crucial role since they enter through the damping
kernel. Here, one cannot perform the inversion of the Laplace transform
analytically due the presence of the logarithm [see Eq. (8.41)]. Therefore,
we recall the Zakian numerical method, discussed in Wang and Zhan,
2015. Such a method relies on the fact that the inverse Laplace transform
f(t) of a function F (z) is approximated as

f̃(t) =
2

t

N∑
j=1

Re [kjF (αj/t)] , (8.44)

with αj and kj constants that can be either complex or reals.
The expression ofG2 as a function of time is presented in Fig. 8.1. The

kernel shows an oscillating behavior that diverges linearly in the long-
time regime. Such a long-time limit corresponds to Re[z] � ωB, where
the logarithm in the Laplace transform of the damping kernel, i.e. the
second term in the right hand-side of Eq. (8.41), is negligible. If we keep
only the linear term in z within such an equation it is possible to find an
explicit analytical expression for the Laplace transform of G2,

Lz[G2(t)] =
1

z2(1 + γ
2ωB

)
, (8.45)

that can be easily inverted

G2 =
t

1 + γ
2ωB

≡ t

α̃
. (8.46)

This expression represents the long-time behavior of G2 and is plotted
in Fig. 8.1 for different values of the damping (dashed lines). The figure
shows the agreement between the numerical solution and the long-time
analytical one.

The knowledge of G1 and G2 fixes the structure of the impurity po-
sition operator, providing a description of the motion of the particle.
The expression for G2 in Eq. (8.46) induces a ballistic term in the time-
evolution of the impurity position. This means that the impurity runs-
away from its initial position. Such a behavior can be characterized in a
quantitative manner by means of the mean square displacement (MSD),
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FIGURE 8.2: Super-diffusion coefficient in Eq. (8.51) as a
function of the interaction strength for different values of
the gas trap frequency. We present the results for an im-
purity of Yb embedded in a Rb gas of N = 50000 atoms
with coupling strength gB = 10−38J · m. In this context
the units of frequency are ωc =

mIg
2
B

~3 , while the units of
the length are lc = ~2

mIgB
.
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defined as
MSD(t) = 〈[x(t)− x(0)]2〉. (8.47)

In the long-time limit it is possible write

MSD(t) =

(
t

α̃

)2

〈ẋ(0)2〉

+
1

2 (α̃mI)
2

∫ t

0
ds

∫ t

0
dσ(t− s)(t− σ)〈{B(s), B(σ)}〉, (8.48)

where we considered a factorizing initial state ρ(t) = ρS(0)⊗ρB . The ini-
tial conditions of the impurity and bath oscillators are then uncorrelated.
Then, averages of the form 〈ẋ(0)B(s)〉 vanish. The integral in the second
line of Eq. (8.48) can be solved recalling the expression for the two-time
correlation function of the noise term (8.27) and that for the noise kernel
(8.28). Here, the hyperbolic cotangent can be approximated in two limits:
(i) in the zero-temperature limit, where it can be approximated to one;
and (ii) in the high-temperature limit, where it can be approximated to
the inverse of its argument. In these two limits we have, respectively,

MSD(LT )(t) =

[
〈ẋ(0)2〉+

~γ
3mI

]
(t/α̃)2 , (8.49)

MSD(HT )(t) =

[
〈ẋ(0)2〉+

kBTγ

mIωB

]
(t/α̃)2 . (8.50)

In both cases, the MSD is proportional to the square of time. This is a
consequence of the super-Ohmic form of the SD, and can be considered
as a witness of memory effects. The dependence on time is the same as
for the homogeneous case. This is due to the fact that, in the long-time
limit, the damping kernel and hence G2 approaches the same function.
Importantly, for a trapped BEC the diffusion coefficients exhibit a dif-
ferent dependence on the system parameters. This is very relevant for
the experimental validation of the current theory. In Fig. 8.2 we plot the
super-diffusion coefficient

D(LT ) =
~γ

3mIα̃
, (8.51)

related to the MSD in the low-temperature limit. Such a coefficient can
be interpreted as the average of the square of the speed with which the
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impurity runs away. The picture shows that the quantity in Eq. (8.51)
decreases as the interaction strength grows. This implies that the gas acts
as a damper on the motion of the impurity. Surprisingly, the value of the
super-diffusion coefficients takes larger values as the gas trap frequency
grows. One has to note that, as ωB grows, the density of the gas increases
as well, and therefore the number of collisions yielding the Brownian
motion also grows. The study of the super-diffusion coefficient at high-
temperature shows the same behavior.

8.3.2 Harmonically trapped impurity

We now study the dynamics of the impurity when it is externally trapped,
i.e. we look into the case in which Ω > 0. In this case the inversion of the
Laplace transforms constitutes a difficult task and it is not immediate to
get an analytical explicit expression even at long-time. We proceed so by
employing the numerical Zakian method introduced above. In Fig. 8.3
we show the functions G1 and G2, where one can observe an oscillating
behavior in both cases, which gets damped for long times. This damping
of the oscillation implies that the contribution of the initial condition van-
ishes in the long-time limit. Also, this damping implies that the impurity
reaches an equilibrium state where it sits on average on the center of the
trap, and its position and momentum variances are independent of time.
Thus, in the long-time limit, the variances can be represented by

〈x2〉 =
~

2π

∫ +ωB

−ωB

dω coth (~ω/2kBT ) χ̃′′(ω), (8.52)

〈p2〉 =
~m2

I

2π

∫ +ωB

−ωB

ω2dω coth (~ω/2kBT ) χ̃′′(ω), (8.53)

where

χ̃′′(ω) =
1

mI

ζ(ω)ω

[ωζ(ω)]2 + [Ω2 − ω2 + ωθ(ω)]2
, (8.54)

is the response function, and

ζ (ω) = Re{Lz̃ [Γ(t)]}, θ (ω) = Im{Lz̃ [Γ(t)]}. (8.55)

with z̃ = −iω + 0+. The expression in Eq. (8.52) can be obtained directly
by the solution of the Heisenberg equations in Eq. (8.33), according the
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FIGURE 8.3: Time-dependence of the function G1 (top)
andG2 (bottom), defined through the Laplace transforms
in Eqs. (8.34) and (8.35), respectively. The plots refer to
an impurity of Yb in a trap with a frequency Ω = 2π · 200
Hz, embedded in a Rb gas of N = 5000 atoms with trap
frequency ωB = 2π · 800 Hz and coupling strength gB =

0.5 · 10−37 J·m.
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FIGURE 8.4: Temperature dependence of the ratio δp/δp
between the variances introduced in Eq. (8.56). The plot
refers to an impurity of Yb in a trap with a frequency Ω =
2π ·50 Hz, embedded in a Rb gas ofN = 5000 atoms with
trap frequency ωB = 2π · 500 Hz and coupling strength

gB = 0.6 · 10−38 J·m.

procedure presented for a homogeneous case, and corresponds to the
contribution provided by the stochastic noise.

We next study the dependence of the position and momentum vari-
ances, Eqs. (8.52) and (8.53), on the system parameters, such as temper-
ature and coupling strength. These parameteres can be tuned in experi-
ments. To this end, we recall the dimensionless variables

δx =

√
2mIΩ〈x2〉

~
, δp =

√
2〈p2〉
mI~Ω

, (8.56)

in terms of which the Heisenberg principle reads as δxδp ≥ 1. In Fig. 8.4
we study the behavior of the ratio δx/δp as a function of the temperature
for different values of the coupling strength. This gives the eccentricity of
the uncertainty ellipse. Such an ellipse takes the form of a circle at high-
temperature, i.e. δx ≈ δp, for different values of the coupling strength.
Precisely, it approaches the circular Gibbs-Boltzmann distribution with
δx = δp ∼

√
T . At low temperature, instead, the uncertainties ellipse

exhibits position squeezing (δx < δp), that is enhanced as the coupling
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FIGURE 8.5: Temperature dependence of the position
variance introduced in Eq. (8.56), for different values of
the coupling strength. The plot refers to an impurity of
Yb in a trap with a frequency Ω = 2π · 200 Hz, embed-
ded in a Rb gas of N = 5000 atoms with trap frequency
ωB = 2π · 800 Hz and coupling strength gB = 0.5 · 10−37

J·m. The red dashed line represents the function
√

2T ,
related to the equipartition theorem.

strength increases. In particular, exploring lower values of the temper-
ature the impurity experiences genuine position squeezing, i.e. we detect
δx < 1, as shown in Fig. 8.5. The position variance approaches a value
smaller than that associated to the Heisenberg principle. This implies
that, in this regime, the particle shows less quantum fluctuations in space
than in momentum. In plain words, the particle is so localized in space,
that its position can be measured with an uncertainty which is smaller
than that fixed by the Heisenberg principle. This effect is improved by
increasing the value of the coupling strength, and in the regime of very
low temperatures. Note that in the opposite limit, namely at high tem-
perature, the position variance follows the behavior predicted by the
equipartition theorem, in agreement with the fact that the uncertainties
ellipse approaches the Gibbs-Boltzmann distribution. We underline that
in all the situations we described Heisenberg uncertainty principle is ful-
filled at any time and for each values of the system parameters, even
when the particle experiences genuine position squeezing. This may be
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FIGURE 8.6: Position variance introduced in Eq. (8.56)
as a function of the coupling strength, for different val-
ues of the gas trap frequency, in the low temperature
regime. The plot refers to an impurity of Yb in a trap
with a frequency Ω = 2π · 200 Hz, embedded in a Rb gas
of N = 5000 atoms with trap frequency ωB = 2π · 800 Hz

and coupling strength gB = 0.5 · 10−37 J·m.

checked quickly by evaluating the product between position and mo-
mentum variances.

In comparison with the squeezing predicted for the homogeneous
gas, for the inhomogeneous case, one has an extra dependence on the
additional parameter, the trapping frequency. This sets the possibility of
using the BEC trapping frequency to enhance or inhibit the squeezing. In
Fig. 8.6 we present the position variance as a function of the coupling for
several values of the gas trap frequency, in the low-temperature regime.
At weak coupling the gas trap does not play any role and the position
variance is approximately equal to one, in agreement with the fact that
the impurity approaches the free harmonic oscillator dynamics, collaps-
ing in the ground state (δx = δp = 1) in the zero-temperature limit. As
the coupling grows the position variance gets sensitive to the trap of the
BEC and we see that genuine position squeezing is enhanced as the BEC
trap frequency is made tighter. Of course, the dependence on the gas
trap frequency is negligible at high-temperature, since in this regime the
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FIGURE 8.7: Position variance in Eq. (8.56) as a function
of the gas trap frequency at several different values of
the temperature. The plot refers to an impurity of Yb in a
trap with a frequency Ω = 2π · 200 Hz, embedded in a Rb
gas of N = 5000 atoms with trap frequency ωB = 2π · 800

Hz and coupling strength gB = 0.5 · 10−37 J·m.

equilibrium correlation functions get independent on the coupling. This
may be seen in Fig. 8.7 where we note that, as the temperature grows the
position variance approaches a constant value (constant with respect of
the frequency) equal to that predicted by the equipartition theorem, in
agreement with the behavior presented in Fig. 8.5.

8.4 Validity condition

The results presented for both a trapped and untrapped impurity have
been derived by approximating the interaction Hamiltonian in Eq. (8.20)
as a linear function of the position impurity. Such a linear expansion is
valid in the middle of the trap, i.e. when

x� R (8.57)

In this part of the document we study the validity of the condition (8.57)
as the parameters of the system vary. For this goal we distinguish the
situation where the impurity is trapped (Ω > 0) and that in which it is
untrapped (Ω = 0).
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For the trapped impurity, in general, the condition in Eq. (8.57) may
be expressed as

x ≈ 〈x〉+ δx = ∆x � R, (8.58)

where ∆x is the Gaussian deviation of the position from its average value.
At low temperature such a condition is usually fulfilled because the posi-
tion variance of the impurity achieves very low values, since the particle
experiences squeezing. In order to evaluate Eq. (8.58) we recall the values
acquired by the dimensionless variance δx. For instance, for the system
parameters used in Fig. 8.5, it turns

δx � (R/aHO) . 11, (8.59)

where aHO =
√
~/mIΩ is the impurity harmonic oscillator length.

At high-temperature instead, the position variance approaches the
behavior predicted by the equipartition theorem, i.e.

δx ≈
√

2kBT

mIΩ2
. (8.60)

Accordingly, the condition in Eq. (8.58) induces maximum acceptable
temperature

Tcrit = mIΩ
2R2/kB. (8.61)

In particular, for the values of the physical quantities employed in Fig.
8.5

kBTcrit

mIΩ2a2
HO

. 122. (8.62)

We now study the validity condition in Eq. (8.58) for an untrapped
impurity. In this case it may be expressed as

MSD(t)� R2, (8.63)

inducing a constraint on the time and on the interaction strength. Pre-
cisely, replacing Eq. (8.49) in Eq. (8.63), we obtain, in the particular case
in which 〈ẋ2(0)〉 = 0, that the linear approximation when Ω = 0 is pro-
vided

1

3α̃2

(
~γ(η)

mI

)(
t

R

)2

� 1. (8.64)

The left hand-side of Eq. (8.64) is plotted in Fig. 8.8 as a function of the in-
teraction strength and the time. The area on the right of the black dashed
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FIGURE 8.8: Validity condition in Eq. (8.64) for an un-
trapped impurity of Yb in a gas made up by N = 5000
atoms of K with a coupling strength gB = 0.5 · 10−37J·m,
trapped in a harmonic potential with ωB = 2π · 800 Hz.

line is forbidden because the quantity we plotted gets larger than one.
The validity condition in the high-temperature regime is formally equiv-
alent, apart from a factor kBT/~ωB multiplying the left hand-side, induc-
ing a constraint also on the temperature.

8.5 Summary

We investigated the physics of an impurity in a trapped BEC by means
of open quantum systems techniques. Here there are the main results

• Also in this case it is possible to express the Hamiltonian of the sys-
tem in the form of that of QBM. In general the coupling is non-linear
but it may be approximated as a linear function [see Eq. (8.21)] of
the position if we restrict to the dynamics in the middle of the trap.
The validity of such a linear approximation is discussed in Sec. 8.4.
In this case the same situation of the QBM model occurs and we
can repeat the same analysis of the previous chapter.
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• We calculate the spectral density detecting again a super-ohmic be-
havior. By the way, while for a homogeneous gas such an object is
proportional to the third power of the frequency, for a trapped one
we have the fourth power [Eq. (8.29)].

• Nevertheless, the MSD still exhibits a dependence on the square
of time, as well as in the homogeneous case [Eq. (8.49)]. We find
that the super-diffusion coefficient increases as the frequency trap
grows (Fig. 8.2).

• Still, the particle exhibits genuine position squeezing at low tem-
perature. In the particular context of an inhomogeneous BEC we
find that as its trap frequency grows the impurity squeezing is max-
imized (Fig. 8.6).
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Chapter 9

Conclusions and perspectives

Main Conclusions

In this thesis we presented possible extensions, and consequent appli-
cations, of quantum Brownian motion, that represents a paradigmatic
model of open quantum system. Mainly, we looked into the possibility
to generalize the current model to a situation in which the coupling be-
tween the particle and the bath depends in a non-linear manner on the
position of the former. In this way we aimed to approach the physics of a
system interacting with an inhomgeneous environment, i.e. an environ-
ment with a space-dependent density, where state-dependent damping
and diffusion occur. In particular we focused on the situation in which
the interaction Hamiltonian depends quadratically on the particle posi-
tion.

In both the linear [Eq. (3.4)] and quadratic [Eq. (4.3)] case, the main
point of the analysis has been the study of the stationary state of the
Brownian particle, performed with different techniques. In chapters 3
and 4, where the dynamics of the system was treated by means of a Born-
Markov master equation, we detected the presence of genuine position
squeezing, i.e. the variance of the particle takes a value smaller than that
related to the Heisenberg principle. Such an effect, emerging at low tem-
perature and for large values of the coupling, is very important because it
corresponds to high spatial localization of the particle. Accordingly, the
subsequent work has been developed in order to improve the analysis
of the stationary state and so the squeezing detection, especially in the
attempt to look for it in experimentally realistic systems.

This task cannot be performed correctly in the Born-Markov frame-
work. For both linear and non-linear coupling, indeed, we found that,
as the temperature decreases and the coupling grows, forbidden areas
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emerge with such an approach. These are associated to regimes of pa-
rameters where the Heisenberg principle is not fulfilled, or the fluctu-
ations take complex values, or the central particle experiences instabil-
ity. The presence of forbidden zones makes impossible a correct study
of the low-temperature limit and so of genuine position squeezing effect,
constituting one of the main goals of the work. We recalled so several
alternative techniques to overcame this pathology.

The first method we considered (see chapter 5) was based on a Lind-
blad master equation, i.e. a master equation constructed in order to pre-
serve the positivity of its solution, and so Heisenberg principle, at any
time (Appendix C). It is well known that the master equation of quan-
tum Brownian motion cannot be cast in this form. We thus proposed a
Lindblad equation as close as possible to the original one studied in chap-
ter 3. In particular in the linear case the difference with the microscopic
Born-Markov master equation is constituted just by one extra term.

We analyzed the effect of such a new term on the dynamics of the sys-
tem, focusing again on the description of its stationary state in the phase-
space. Here, this state may be described by means of a Gaussian Wigner
function, which now is very well defined for each value of temperature
and coupling strength: no forbidden areas occur. We studied how the
geometrical configuration of the Gaussian stationary state changes by
tuning these parameters. In particular, we found that the extra-term en-
suring the Lindblad form of the master equation yields a rotation of its
stationary solution in the phase-space. Moreover, we highlighted the pa-
rameters regime where the particle experiences genuine position squeez-
ing, with respect to the rotated main axes.

Then, we moved such an analysis to the case in which the interac-
tion term depends quadratically on the particle position. Here, the corre-
sponding Lindblad equation differs from the original Born-Markov one
for a few extra terms. In the Wigner representation such a Lindbald
master equation takes the form of a functional differential equation, in-
cluding derivatives of order higher than two. Accordingly, the Gaussian
ansatz for its solution just constitutes an approximation. We proceeded
by retaining the Gaussian form for the stationary state and treating the
high order terms by means of the Wick theorem. For this purpose it is im-
portant to state that such an approximation does not alter the Lindblad
character of a master equation, and so it does not yield any violation of
the Heisenberg principle, regardless of whether it is performed on the
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equations for the moments or directly on the Lindblad equation. We de-
veloped this demonstration in Appendix D starting from a master equa-
tion related to a Lindblad operator which is just quadratic in the creation
and annihilation operators, because it is enough to cover the situation
analyzed in Sec. 5.2. In general, one could extend the proof to equations
associated to Lindblad operators containing nth powers of creation and
annihilation operators. This, to the best of our knowledge, has never
been shown and constitutes an interesting motivation for future projects.
Also, a generalization of this proof to Lindblad equations for fermionic
systems (Kraus et al., 2009) is possible and interesting.

However, in contrast to the linear case, we do not find a noticeable
rotation at low temperature in the quadratic one, nor a high degree of
squeezing. We would expect to observe this at larger values of the inter-
action strength, as in the case of linear coupling. Nevertheless, for larger
values of the damping constant it is not straightforward to determine the
stationary solution of the master equation. Moreover, for larger values of
the interaction strength the Gaussian ansatz may fail to approximate any
stationary state (Fig. 5.9).

Our procedure of adding extra terms to the Born-Markov master equa-
tion derived in chapters 3 and 4, so that the resulting equation is in a
Lindblad form, is just one of the ways to obtain a Markovian dissipative
equation. Other approaches have been presented, e.g., in the works of
Taj and Rossi, 2008; Pepe et al., 2012. Moreover, for Gaussian dynamics
an exact (non-Markovian) closed master equation with time dependent
coefficients can be derived (Diósi and Ferialdi, 2014; Ferialdi, 2016; Car-
lesso and Bassi, 2016). Another possible perspective is to derive a Lind-
blad equation describing quantum Brownian motion with a general class
of couplings, and study its various limiting behaviors, in particular the
small mass limit of the Brownian particle.

The method which we used to treat the Lindblad equation in this
manuscript is not the only suitable one. Another possible manner to
solve this kind of equations, and in particular to characterize the station-
ary solution has been presented by Englert, Naraschewski, and Schen-
zle, 1994. The core of this procedure is turning Lindblad equations into
partial first-order differential equations for a phase-space distribution
which generalizes well-known ones such as the Wigner function. The
main point lies in removing the evolution generated by the free Hamil-
tonian by including it in the interaction representation. Accordingly,
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the time dependence of the distribution originates solely from the in-
teraction term. Although the interaction picture adopted by Englert,
Naraschewski, and Schenzle, 1994 could be used in the context we are
treating, its usefulness is not guaranteed. In fact, the interaction picture
represents a suitable tool when the free part of the Hamiltonian describes
a dynamics much faster than that induced by the interaction term. In
general this is not the case for the Brownian motion of a trapped particle,
where the time scales related to both processes can approach the same
order of magnitude. On the other hand, employing this method is a very
interesting task, which maybe can allow us to go beyond the Gaussian
approximation underlying Sec. (5.2).

Nevertheless, the Lindblad approach we considered has a problem.
Lindblad equations we studied cannot be derived from a microscopic
Hamiltonian model. This is a problem, especially in the attempt of apply-
ing quantum Brownian motion model to concrete real systems. There are
other methods to correct the Heisenberg principle violations. The Born-
Markov equations derived in chapters 3 and 4 are based on a second or-
der perturbative master equations in the bath-particle coupling constant.
Going to higher orders permits one, in principle, to get rid of the viola-
tions of the Heisenberg relations. This task can be pursued by means of
the time-convolutionless method presented by Breuer and Petruccione,
2007. An advantage of this approach is that the resulting equation incor-
porates non-Markovian effects. The implementation of these techniques
constitutes a future possible perspective. Nevertheless, since the master
equation arises from a perturbative expansion, it does not allow to inves-
tigate the strong coupling regime γ > Ω, where cooling and squeezing
effects are expected to be stronger.

We looked so into a treatment of the quantum Brownian motion in
terms of Heisenberg equations. This way is particularly convenient to
evaluate the correlations functions, especially the position variance, and
so to look for genuine position squeezing. One could also consider a path
integral treatment, allowing to include the situation in which the initial
global state is not separable. However, such method could in general be
very laborious, while for a first approach Heisenberg equations consti-
tute an easy and almost complete tool.

This has been the subject of chapter 6 where we proved that such
a formalism preserves Heisenberg principle. Then, in chapter 7 we ap-
ply such method to the concrete case of an impurity in a Bose-Einstein
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condensate (Bose Polaron). This is possible because the physical Hamil-
tonian of such a system may be cast in the form of that of the quantum
Brownian motion model (8.1). In this new framework the impurity plays
the role of the Brownian particle while the environment is constituted by
the Bogoliubov excitations of the atoms of the gas. In principle the result-
ing interaction Hamiltonian manifests a non-linear dependence on the
impurity position, and this was the motivation for our study of the non-
linear quantum Brownian motion pursued in chapters 4 and 5. However,
we showed in Sec. 7.6 that for the realistic values of the physical quantity
we aim to treat a linear approximation is appropriate. We approach so
the same situation of the standard quantum Brownian motion model.

We describe the dynamics of the impurity by means of a stochastic
differential equation constituting the quantum counterpart of the Langevin
one for classical Brownian motion [Eq. (2.18)]. The main difference with
the original Langevin equation is that now, for the concrete case of the
Bose polaron, it is non local in time, i.e. it depends on its past history.
This may be inferred by the form of the spectral density, that has been
calculated in Sec. 7.2. In fact, once one knows the Hamiltonian it is pos-
sible to calculate the spectral density, embodying the information about
the environment. For the Bose polaron, such an object, shows the form
a super-ohmic behavior, leading to the presence of memory effects in the
dynamics of the impurity.

We solved the Langevin-type equation for the impurity, with both
numerical and analytical methods. For this goal we distinguished the
situation where the impurity is trapped in a harmonic potential and that
where it is free of any trap. In the latter case the impurity runs away from
the initial position, and the solution of the equation of motion exhibits a
ballistic term. The mean square displacement permits to characterize in a
quantitative manner such a behavior. Precisely, at long-time, it is propor-
tional to the square of time (super-diffusive behavior). This is a conse-
quence of the presence of memory effects in the dynamics of the system.
In fact, in chapter 6 the same calculation was performed for an ohmic
spectral density, which we proved to be associated to absence of memory
effects, and this leads to a normal diffusive behavior, as in the classi-
cal case. Thus the super-diffusive behavior mentioned above constitutes
a witness of memory effects on measurable quantity. The presence of
memory effects has also been related by Guarnieri, Uchiyama, and Vac-
chini, 2016 to a back-flow of energy, directed from the environment to the
impurity. We evaluated the average of energy for an untrapped impurity
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as a function of the time, and we found a non-monotonic behavior: the
impurity does not just release energy to the environment (dissipation),
but also acquires energy from it. It is an open question to understand if
such a back-flow of energy may be employed as a resource for quantum
technologies.

When the impurity is trapped in a harmonic potential, it reaches an
equilibrium states localized in average in the middle of the trap. In the
long-time limit the contribution on the initial condition vanishes and
the position variance gets time-independent. We may study its behav-
ior by tuning the system parameters such as temperature and coupling-
strength. We found genuine position squeezing for realistic values of the
physical quantity of the system. This effect corresponds to high spatial
localization of the impurity, namely to a good knowledge of the position,
and now, in the context of polaron may be detected in experiments.

The analysis of the Bose polaron through the quantum Brownian mo-
tion model in chapter 7 referred to the situation in which the impurity
was embedded in a homogeneous gas, i.e. a gas with an uniform density.
In chapter 8 we extended the relevant experimental case of a gas confined
in a trap. Here the presence of the trap makes the gas inhomogeneous,
namely it induces a space-dependence in the density profile. Precisely,
we considered a gas confined in a harmonic trap, that leads to a Thomas-
Fermi profile. This alters the spectrum of the excitations constituting the
environment around the impurity, and so the form of the impurity-bath
coupling constants. Therefore, the form of the spectral density changes
too. We have still a super-ohmic function, but with a higher degree of
super-ohmicity: four, rather than three. However, the calculation for
the mean square displacement in absence of trap (we mean the impu-
rity trap) still leads to a quadratic dependence on time. It is important to
underline that, although we do not consider any potential for the impu-
rity, this is still subject to trap of the gas. Such a trap affects the behavior
of the central particle. In particular we find that the super-diffusion co-
efficient increases as the frequency associated to trap harmonic potential
grows. The study of the context in which the impurity is in a harmonic
trap still lead to the emergence of squeezing. In the context of a trapped
BEC we find that such an effect result to be optimized if we consider a
tighter gas trap.
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Main Perspectives

Squeezed soliton

We highlight that the procedure we developed in this work can be ex-
ported to others ultracold gases systems. For instance, Efimkin, Hof-
mann, and Galitski, 2016 proved that the dynamics of a bright soliton in
a superfluid in one dimension is described by an equation showing the
same form of that in Eq. (7.58). The spectral density for the system is
in some circumstances proportional to the third power of the frequency
of the Bogoliubov modes, as well as for an impurity in a homogeneous
gas. Accordingly one may apply the techniques presented in chapters 7
and 8 and study the stationary state of the bright soliton. In particular
one could wonder if also the bright soliton experiences genuine position
squeezing at low-temperature.

Polaron thermometer

The detection of genuine position squeezing for a real concrete system,
such as an impurity in a Bose-Einstein condensate, represents an impor-
tant result of the current thesis. Squeezing effect has important applica-
tions in quantum metrology and its emergence in a realistic system sug-
gests interesting perspectives for the development of quantum technolo-
gies. For instance it is possible to study new protocols for quantum prob-
ing, where one aims to extract properties of a quantum system by means
of a probe. Here it is possible to employ the impurity as a probe in order
to infer characteristics of the surrounding gas. In particular, motivated
by the recent advances in quantum thermometry one could look into the
temperature of the gas. So, an important consequences of the present the-
sis is the possibility of creating a minimally-disturbing method to evalu-
ate temperature fluctuations. This issue has been treated in the work of
Mehboudi et al., 2018

Two impurities in a BEC

Beyond the squeezing issue, the derivation of a motion equation associ-
ated to the dynamics of an impurity may be extended to the so-called
bipolaron problem, namely a system compound by two particles in a
BEC. Particularly one could look into the very interesting problem of
whether the presence of the BEC induces an interaction between the two
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impurities. This self-induced interaction results to be a very interesting
effects in view of the possibility of generating entanglement. Such a prob-
lem has been developed in the work of Charalambous et al., 2018.

Impurity physics in a two species gas

One may also go through the specular point of view, namely to consider
an impurity in a two-species gas, which constitutes an experimental fea-
sible system. In the open quantum systems framework such a problem
may be treated by extending the quantum Brownian motion model to the
situation in which the central particle interacts with two environment. It
is possible so to apply the procedure developed in the current thesis to
study the physics of the impurity in a double-bath of Bogoliubov modes.
Precisely one could still look for squeezing effect and the possibility to
construct a thermometer.

Non-Markovianity in ultracold gases

Another important result of the current thesis is the detection of the non-
Markovian character of the Bose polaron physics. In our framework,
non-Markovianity arises because of the super-ohmic form of the spec-
tral density, leading to a non-local in time motion equation for the im-
purity. Recently, the control and manipulation of non-Markovian effects
attracted a lot of attention in the open quantum systems community, es-
pecially because of the analysis of the relation with the thermodynamical
properties, in the context of the design of new devices in quantum tech-
nologies. We already stated that in some circumstances a non-Markovian
dynamics is associated to a back-flow of energy, from the environment to
the central system. Moreover, there is a lot of interest in the study of
the possibility to extract work form the correlations with the past history.
The detection of non-Markovianity in a concrete real system, such as an
impurity in a BEC, opens the possibility to propose experiments to treat
the above mentioned issues.

Quantum foundations experiments with ultracold gases

In general, the possibility to employ quantum Brownian motion to inves-
tigate the physics of an impurity in a BEC opens a wide range of chances
for testing in a concrete physical system the multitude of effects detected
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for the present model at an abstract level. For instance, Maniscalco, Piilo,
and Suominen, 2006 pointed out the emergence of Zeno and anti-Zeno
effect for the quantum Brownian motion. We wonder if is it possible to
reveal such an effect for an impurity in a (homogeneous and inhomoge-
neous) gas. Similarly, one could also propose an experiment with ultra-
cold gases to test the emergence of spectrum broadcast structure for the
Bose polaron detected by Tuziemski and Korbicz, 2015 and Galve, Zam-
brini, and Maniscalco, 2016.

Smoluchowski-Kramers limit

Another interesting question concerns the Smoluchowski-Kramers (SK)
limit Smoluchowski, 1916; Kramers, 1940, which can be considered as a
regime of over-damped quantum Brownian motion, or the case where
the mass m of the Brownian particle tends to zero. This limit is already
highly non-trivial at the classical level, in the presence of the inhomo-
geneous damping and diffusion, and it requires a careful application of
homogenization theory (cf. Hottovy, Volpe, and Wehr, 2012a; Hottovy,
Volpe, and Wehr, 2014; Papanicolaou, 1977; Pavliotis and Stuart, 2008).
Of course, the theoretical approach here is based on the separation of
time scales, and has been in other contexts studied in the theory of clas-
sical and quantum stochastic processes Gardiner, 2009; Risken, 2012. In
particular, the theory of adiabatic elimination has been developed to in-
clude the short time non-Markovian “initial slip" effects and the effective
long time dynamics of the systems and the bath (“adiabatic drag") (cf.
Haake, 1982; Haake and Lewenstein, 1983; Haake, Lewenstein, and Rei-
bold, 1985 and references therein).

The Smoluchowski-Kramers limit was also intensively studied in the
contexts of Caldeira-Leggett model and quantum Brownian motion (cf.
Maier and Ankerhold, 2010; Ankerhold, Pechukas, and Grabert, 2001 and
references therein). The problem with this limit is that it corresponds to
strong damping, and evidently cannot be described using weak coupling
approach that is normally used to derive the master equation from the
microscopic model in the Born-Markov approximation. We envisage here
two possible and legitimate lines of investigation.

One can forget about the microscopic derivation, and takes the Born-
Markov master equation as a starting point. The SK limit corresponds
then to setting the spring constant mΩ2 and friction η to constants, and
letting the mass m→ 0, so that γ →∞ as 1/m and Ω→∞ as 1/

√
m. The
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aim is to eliminate the fast variable (the momentum) and to obtain the
resulting equation for the position of the Brownian particle; again, the
Wigner function formalism is particularly suited for such a task.

More ambitious and physically more sound is the approach in which
the microscopic model is treated seriously, and appropriate scalings are
introduced at the microscopic level. One can then start, for instance, from
the formally exact path integral expression for the reduced dynamics,
as pursued by Ankerhold and collaborators Maier and Ankerhold, 2010;
Ankerhold, Pechukas, and Grabert, 2001; Ankerhold and Grabert, 2008.
The other possibility is to use a restricted version of the weak coupling as-
sumption, only demanding that the system does not influence the bath,
and use the Redfield equation combined with Laplace transform tech-
niques and Zwanzig’s approach Zwanzig, 1961. To our knowledge, nei-
ther of the two above proposed research tasks has been so far realized for
the case of inhomogeneous damping.

Non-linear dynamics extension

We remark once more that, for both a homogeneous and inhomogeneous
gas, the polaron Hamiltonian shows an interaction term that depends
in a non-linear manner on the impurity position. The results we pre-
sented have been obtained by performing a linear approximation of the
interaction term, which results to be reasonable for realistic values of the
physical quantities. Nevertheless the extension of the mechanism we de-
veloped to the general case where the impurity-bath coupling retains its
original non-linear form remains an important perspective to extend our
analysis beyond the constraint associated to the linearization. Of course,
one could pursue this path by means of the techniques discussed in the
manuscript (master equations, Heisenberg equations) but we also point
out that studied by Lim et al., 2018, that highlights the emergence of a
quantum drift due to non-linearity.
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Appendix A

High-T limit with leading
quantum corrections

A.1 Linear case

Let us now apply the Wigner function formalism to the generalized mas-
ter equation, Eq. (4.63) valid in the oversimplified high-T limit, and ob-
tain1

Ẇ = − i
~

[
p2
− − p2

+

2m
+ V (x+)− V (x−)

]
W

− iγ

4~
[f(x+)− f(x−)]

(
{p−, f ′(x+)}+ {p+, f

′(x−)}
)
W

− γmkT

~2
[f2(x+) + f2(x−)− 2f(x+)f(x−)]W, (A.1)

In the case, when the potential V (x) is non-harmonic and/or f(x) is not
a linear or quadratic function of x, to proceed further we perform a Tay-
lor expansion in ~, and keep the leading terms only. In other words we

1Note that {ḟ(x̂), ρ}f(x̂) =
{p−,f ′(x+)}+{p+,f ′(x−)}

2m
ρf(x̂) =

f(x−)
{p−,f ′(x+)}+{p+,f ′(x−)}

2m
W .
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attempt to include the leading quantum corrections. One finds then

Ẇ =

[
−∂x

p

m
+ ∂pV

′(x)− ~2

24
∂3
pV
′′′(x) + . . .

]
W (A.2)

+ γ

[
∂pp[f

′(x)]2 +
~2∂2

p

8

(
2∂xf

′(x)f ′′(x)

− 2[f ′′(x)]2 − 4

3
∂ppf

′(x)f ′′′(x)

)
+ . . .

]
W

+mγkBT

[
∂2
p [f ′(x)]2 − ~2

12
∂4
pf
′(x)f ′′′(x) + . . .

]
W.

The above equation is the main result of this subsection – it combines the
(oversimplified) high-T limit with the leading quantum corrections. To
zeroth order in ~, the master equation for the Wigner matrix reads

Ẇ = LW , (A.3)

LW = − p

m
∂x + V ′(x)∂p + γ[f ′(x)]2∂pp+mγkBT [f ′(x)]2∂2

p . (A.4)

A.2 Quadratic case

As an example we consider the simplest non-linear coupling to the bath,
a quadratic one, which we write in the form f(x) = x2/a. We also take
the potential to be quadratic, V (x) = mΩ2x2/2. Since f ′′′(x) = 0, from
Eq. (A.2) truncated to O(~2) we have

Ẇ = L(2)
W W, (A.5)

L(2)
W = − p

m
∂x +mΩ2x∂p +

4γx2

a2

(
∂pp+mkBT∂

2
p +

~2

4x
∂2
p∂x

)
. (A.6)

A stationary solution of this equation is in the form of Eq. (3.74) with
σp = σx = 1 and

T̃ =
T

2

1±

√
1−

(
~Ω

kBT

)2
 . (A.7)
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Only the + solution is physically acceptable, as can be seen by looking at
large temperature kBT � ~Ω, where the + solution becomes

T̃ = T

[
1−

(
~Ω

2kT

)2
]

(A.8)

This result is plotted as a red curve in Fig. 3.2, and may be interpreted as
an effective cooling, since T̃ < T , or as a breakdown of the dissipation-
fluctuation relation, or as quantum localization in phase space. However,
as we have seen, this result is incorrect. Obviously, it cannot be correct
when kBT ' ~Ω, but it loses validity already at larger temperatures,
when kBT . ~Λ, since then neither Dxp nor Dpp terms can be neglected.
Looking from another perspective, this result contains a quantum correc-
tion of order ~Ω/kBT , which is simply non-systematic, and moreover it
depends on the order of limits: high temperature T →∞, and stationar-
ity, long time limit t→∞.





183

Appendix B

Laplace transforms and
trigonometric identities

B.1 Laplace transforms

Here we show how to compute the coefficients of the master equation
with a generic coupling by direct Laplace transform. We have

Cn,k(Ω) = (−1)k+1mγΛ2

2
L[cosn−k(ξ) sink(ξ)]Λ (B.1)

Dn,k(Ω) =
mkBTγΛ2

~

+∞∑
p=−∞

1

Λ2 − ν2
p(

ΛL[cosn−k(ξ) sink(ξ)]Λ − |νp|L[cosn−k(ξ) sink(ξ)]|νp|

)
, (B.2)

where L[a(ξ)]s =
∫∞

0 dξ a(ξ)e−sξ stands for the Laplace transform of a(ξ)
with respect to the variable s. Using the following identity, valid for s >
0,

L
[
cos(n−k)(ξ) sin(k)(ξ)

]
s

=

=
n−k∑
l=0

k∑
j=0

(−1)j+k
ik

2n

(
n− k
l

)(
k

j

)
L
[
ei[n−2(j+l)]ξ

]
s

=

=
n−k∑
l=0

k∑
j=0

(−1)j+k
ik

2n
Fnjl(s),
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with

Fnjl(s) ≡
(
n− k
l

)(
k

j

)
1

s− i[n− 2(j + l)]Ω
, (B.3)

one readily finds

Cn,k =
mγΛ2

2

n−k∑
l=0

k∑
j=0

(−1)j+1 i
k

2n
Fnjl(Λ). (B.4)

In the expression for Dn,k, the zero Matsubara-frequency term should
must be treated separately, so that one obtains:

Dn,k =
ik

2n
mkBTγ

~

n−k∑
l=0

k∑
j=0

(−1)j

{
ΛFnjl(Λ) (B.5)

+2
+∞∑
p=1

Λ2

Λ2 − ν2
p

[ΛFnjl(Λ)− νpFnjl(νp)]

}
.

B.2 Trigonometric identities

The identities presented here provide a very simple method (alternative
to the one described in the previous section) to compute the 2n + 2 co-
efficients needed to describe the master equation for an arbitrary cou-
pling f(x) ∝ xn in terms of just the two integrals Iν ≡

∫∞
0 dτ ν(τ) and

Iη ≡
∫∞

0 dτ η(τ), and of the four coefficients {Cx, Cp, Dx, Dp}we derived
for a linear coupling. Take p+ q = n.

Whenever p is even (or zero), we have

sinp(x) cosq(x) = [1− cos2(x)]p/2 cosq(x) (B.6)

=c0 +

F [(n−1)/2]∑
k=0

αk cos[(n− 2k)x],

where F(x) is the "floor" function (giving the greatest integer less than or
equal to x), and c0 and {αk} are constants which may be determined us-
ing the power reduction trigonometric formulas (Gradshteyn and Ryzhik,
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2000). As an example, we find

sin2(x) cos3(x) =
3 cos(x) + cos(3x)

4
(B.7)

−10 cos(x) + 5 cos(3x) + cos(5x)

16
.

This formula reduces high powers of the trigonometric quantity to a sum
of cosine-functions of multiples of its argument, thereby reducing the
desired integrals to known ones.

Similarly, whenever q is even (or zero), we have

sinp(x) cosq(x) = sinp(x)[1− sin2(x)]q/2 (B.8)

=c0 +

F [(n−1)/2]∑
k=0

αk sin[(n− 2k)x].

In the case where both p and q are odd integers, we may write

sinp(x) cosq(x) = sin(x) cos(x)[1− cos2(x)]
p−1
2 cosq−1(x) (B.9)

=
sin(2x)

2

c0 +

F [(n−3)/2]∑
k=0

αk cos[(n− 2k)x]

 ,
and the resulting integrals may be computed using the simple identity,
valid for n > 0,

sin(2x) cos(2nx) =
sin[(2n+ 2)x]− sin[(2n− 2)x]

2
. (B.10)
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Appendix C

Heisenberg uncertainty
principle for density operators

The purpose of this Appendix is to present a self-contained derivation
of the Heisenberg uncertainty principle for density operators. We start
from the pure state case. Consider an arbitrary state |ψ〉 and observables
A and B. Denoting by 〈A〉 the mean of the observable A in the state |ψ〉,

〈A〉 = 〈ψ|A|ψ〉, (C.1)

for the variance of A we have

σ2
A =

〈
ψ
∣∣∣(A− 〈A〉)2

∣∣∣ψ〉 , (C.2)

and similarly for B. For future reference, let us also note that for any real
number a, 〈

ψ
∣∣∣(A− a)2

∣∣∣ψ〉 ≥ σ2
A. (C.3)

The claim we want to prove is

σ2
Aσ

2
B ≥

1

4

〈
[A,B]

i

〉2

, (C.4)

where the right-hand side contains the mean value of the observable
[A,B]/i in the state |ψ〉. Introducing the vectors

|f〉 = |(A− 〈A〉)ψ〉 and |g〉 = |(B − 〈B〉)ψ〉 , (C.5)

we have
σ2
Aσ

2
B = 〈f |f〉 〈g|g〉 ≥ |〈f |g〉|2 , (C.6)
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where we applied the Cauchy-Schwarz inequality. The right-hand side
of the last inequality can be rewritten as

|〈f |g〉|2 =

(
〈f |g〉+ 〈g|f〉

2

)2

+

(
〈f |g〉 − 〈g|f〉

2i

)2

, (C.7)

with both terms on the right-hand side non-negative. Rewriting the sec-
ond term as the square of the mean of the observable [A,B]/2i, and leav-
ing the first term out (keeping it would lead to a stronger inequality,
called Robertson-Schrödinger inequality), we obtain the desired bound

σ2
Aσ

2
B ≥

1

4

〈
[A,B]

i

〉2

, (C.8)

in the pure state case. Now, if ρ =
∑

j pj |φj〉 〈φj | is an arbitrary density
operator, with pj non-negative coefficients summing up to 1, the mean of
A in the state ρ equals

〈A〉(ρ) = Tr (ρ̂A) . (C.9)

For the variance of A in the state ρ we have(
σ

(ρ)
A

)2
= Tr

[
ρ̂
(
A− 〈A〉(ρ)

)2
]
, (C.10)

and similarly for B. We thus have(
σ

(ρ)
A

)2
=
∑
j

pj

〈
φj

∣∣∣∣(A− 〈A〉(ρ)
)2
∣∣∣∣φj〉

≥
∑
j

pj

(
σ

(φj)
A

)2
, (C.11)

where
(
σ

(φj)
A

)2
denotes the variance of A in the state |φj〉, and in the last

step we used inequality Eq. (C.3). Similarly,(
σ

(ρ)
B

)2
≥
∑
j

pj

(
σ

(φj)
B

)2
, (C.12)
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By the (discrete version of) the Cauchy-Schwarz inequality (it is crucial
that pj ≥ 0 here!) we obtain

(
σ

(ρ)
A

)2 (
σ

(ρ)
B

)2
≥

∑
j

pjσ
(φj)
A σ

(φj)
B

2

, (C.13)

which, using the pure-state version of the uncertainty principle, is bounded
from below by

1

4

∑
j

pj

〈
φj

∣∣∣∣ [A,B]

i

∣∣∣∣φj〉
2

=
1

4

(〈
[A,B]

i

〉(ρ)
)2

. (C.14)

This is the desired mixed-state version of the inequality. In the last appli-
cation of the Cauchy-Schwarz inequality, it is crucial that we are dealing
with a density operator, so that the eigenvalues pj are non-negative.

In the most important case for us, when A = X is the position op-
erator and B = P is the momentum operator, the commutator of A and
B is a multiple of identity, [X,P ] = i~I . The mean value of [X,P ]

i in any
state is thus equal to ~ and in particular, for the density operators ρt, solv-
ing a Lindblad equation we obtain at all times the standard form of the
Heisenberg uncertainty principle,

σ2
Xσ

2
P ≥

~2

4
. (C.15)





191

Appendix D

Gaussian approximation

The purpose of this Appendix is to prove that the Gaussian approxima-
tion performed on the Lindblad equation for Quadratic QBM preserves
its Lindblad form. The demonstration we are about to present considers
a Gaussian approximation carried out directly on the master equation,
while in Sec. 5.2.2 it has been done on the equations for the moments. As
we will show, the two procedures are completely equivalent.

Theorem For a quadratic Lindblad operator:

L = α̃a2 + β̃(a†)2 + γ̃a†a+ δ̃a+ ε̃a† + η̃ (D.1)

the self-consistent Gaussian approximation preserves the Lindblad form
(and thus the positivity of ρ and Heisenberg principle).

The annihilation and creation operators are represented respectively
by a and a†, while α̃, β̃, γ̃, δ̃, ε̃, η̃ are complex parameters. It is immedi-
ate to prove that the Lindblad operator introduced in Eq. (5.33) can be
expressed in the form showed in Eq. (D.1). Note that it is possible to as-
sume 〈a〉 = 0, since it just shifts the parameters.

Lemma 1 The parameter η̃ in Eq. (D.1) can be shifted arbitrarily.

Proof: the core of the proof lies in the fact that any additive constant in the
definition of the Lindblad operator can be compensated by a re-definition
of the Hamiltonian, namely:

∂ρ

∂t
= − i

~
[H, ρ] +DL+∆η̃(ρ) (D.2)

= − i
~

[H + ∆H∆η̃, ρ] +DL(ρ),
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where:
DL(ρ) = LρL† − L†Lρ/2− ρL†L/2, (D.3)

is the Lindblad dissipator, and:

∆H∆η̃ = − i
2

[(∆η̃)L† − (∆η̃)∗L], (D.4)

with ∆η̃ ∈ C.
Of course changing of Hamiltonian is allowed, since it just modifies

the time dependence of a and a† in the interaction picture.

Lemma 2 It is possible to perform the factorization:

L = d1d2, (D.5)

with:

d1 = Ãa+ B̃a† + C̃, (D.6)

d2 = a+ D̃a† + Ẽ.

Proof: comparing Eqs. (D.5) and (D.1), one obtains:

Ã = α̃, ÃD̃ + B̃ = γ̃, ÃD̃ + C̃Ẽ = η̃ (D.7)

B̃D̃ = β̃, ÃẼ + C̃ = δ̃, B̃Ẽ + C̃D̃ = δ̃,

so that

D̃ = β̃/B̃, α̃β̃/B̃ + B̃ = γ̃. (D.8)

provide in general two solutions B̃1 and B̃2 for B̃, and

α̃Ẽ + C̃ = δ̃, B̃Ẽ + (β̃/B̃)C̃ = η̃. (D.9)

If we can solve these linear equations for Ẽ and C̃, we may plug the
solution into α̃D̃ + C̃Ẽ = η̃, and adjust η adequately (which we can do
according to Lemma 1).

It is easy to check that the two equations for Ẽ and C̃ cannot be solved
if B̃1 = B̃2 = 0, which implies γ̃ = 0 and α̃β̃ = 0, i.e. the non-generic case
L = α̃a2 + δ̃a+ ε̃a† + η̃, and the related one with α̃ = 0 , β̃ 6= 0. The case
α̃ = β̃ = 0 is trivial, as it corresponds to linear Lindblad operator: for
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such a case, the Gaussian approximation is not needed, since there exists
an exact solution of Gaussian form.

Now we prove the Theorem in the generic case:
Proof of the Theorem: We look to the Lindblad dissipator related to the
factorized Lindblad operator in Eq. (D.5):

DL(ρ) = d1d2ρd
†
2d
†
1 −

1

2
{d†2d

†
1d1d2, ρ}. (D.10)

In the Gaussian approximation, one replaces pairs of operators by their
mean values. “Anomalous" terms generate contributions that may be
reabsorbed in the Hamiltonian, such as

〈d1d2〉
[
ρd†2d

†
1 −

1

2
{d†2d

†
1, ρ}

]
= −1

2
〈d1d2〉[d†2d

†
1, ρ], (D.11)

and:

〈d†2d
†
1〉
[
d1d2ρ−

1

2
{d1d2, ρ}

]
=

1

2
〈d†2d

†
1〉[d1d2, ρ]. (D.12)

The non-trivial terms are:

〈d†2d1〉d2ρd
†
1 + 〈d†1d1〉d2ρd

†
2 (D.13)

+〈d†2d2〉d1ρd
†
1 + 〈d†1d2〉d1ρd

†
2

−
{(
〈d†2d1〉d†1d2 + 〈d†2d2〉d†1d1

)
,
ρ

2

}
−
{(
〈d†1d1〉d†2d2 + 〈d†1d2〉d†2d1

)
,
ρ

2

}
.

The resulting ME has a dissipator of the form:

DL(ρ) =
∑
i,j=1,2

Γ̃ij

(
diρd

†
j −

1

2
{d†jdi, ρ}

)
, (D.14)

where Γ̃ij = 〈d†j′di′〉, where 1′ = 2 and 2′ = 1. This matrix is evidently
positive definite, as follows from the Schwartz inequality, so that the dis-
sipator is again of Lindblad form.

Note that the generalization to many oscillators, many Lindblad op-
erators is straightforward. Note also that the non-generic case is simple
to treat. It requires, however, a direct calculation. The quartic Lindblad
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term in this case is treated as above, while the quadratic one does not
need to be touched, since it already describes a Gaussian quantum pro-
cess. The third order term on the other hand partially vanishes and par-
tially gives contributions to the Hamiltonian in the Gaussian approxima-
tion.

The remaining question is whether the approximation that we per-
form on the level of the ME is the same as the Gaussian de-correlation
we performed according to the Wick’s theorem prescription at the level
of the equations for the moments in Sec. 5.2.2. To illustrate this, we con-
sider an arbitrary operator 0 and we derive the dynamical equations for
its average value starting by the ME induced by the superoperator in
Eq. (D.10).

The dynamical equation for the average value of an operatorO presents
the following form:

∂〈O〉
∂t

= huO + h
(1)
O −

1

2

(
h

(2)
O + h

(3)
O

)
, (D.15)

in which

huO = − i
~

Tr (O [H, ρ]) (D.16)

h
(1)
O = Tr(Od1d2ρd

†
2d
†
1) = 〈d†2d

†
1Od1d2〉

h
(2)
O = Tr(Od†2d

†
1d1d2ρ) = 〈Od†2d

†
1d1d2〉

h
(3)
O = Tr(Oρd†2d

†
1d1d2) = 〈d†2d

†
1d1d2O〉.

Performing the Gaussian approximation at the level of the equation for
the moments means to carry out such an approximation on the average
values in Eqs. (D.16),

h
(1)
O = Tr(Od1d2ρd

†
2d
†
1) = 〈d†2d

†
1Od1d2〉, (D.17)

' 〈d†2d
†
1〉〈Od1d2〉+ 〈d†2d

†
1O〉, 〈d1d2〉 − 〈d†2d

†
1〉〈O〉〈d1d2〉,

+ 〈d†2d1〉〈d†1Od2〉+ 〈d†2Od1〉〈d†1d2〉 − 〈d†2d1〉〈O〉〈d†1d2〉,
+ 〈d†2d2〉〈d†1Od1〉+ 〈d†2Od2〉〈d†1d1〉 − 〈d†2d2〉〈O〉〈d†1d1〉,
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h
(2)
O = Tr(Od†2d

†
1d1d2ρ) = 〈Od†2d

†
1d1d2〉 (D.18)

' 〈d†2d
†
1〉〈Od1d2〉+ 〈Od†2d

†
1〉〈d1d2〉 − 〈d†2d

†
1〉〈O〉〈d1d2〉

+ 〈d†2d1〉〈Od†1d2〉+ 〈Od†2d1〉〈d†1d2〉 − 〈d†2d1〉〈O〉〈d†1d2〉
+ 〈d†2d2〉〈Od†1d1〉+ 〈Od†2d2〉〈d†1d1〉 − 〈d†2d2〉〈O〉〈d†1d1〉,

h
(3)
O = Tr(Oρd†2d

†
1d1d2) = 〈d†2d

†
1d1d2O〉 (D.19)

' 〈d†2d
†
1〉〈d1d2O〉+ 〈d†2d

†
1O〉〈d1d2〉 − 〈d†2d

†
1〉〈O〉〈d1d2〉

+ 〈d†2d1〉〈d†1d2O〉+ 〈d†2d1O〉〈d†1d2〉 − 〈d†2d1〉〈O〉〈d†1d2〉
+ 〈d†2d2〉〈d†1d1O〉+ 〈d†2d2O〉〈d†1d1〉 − 〈d†2d2〉〈OO〉〈d†1d1〉.

It is now tedious but easy to check that replacing the expressions
in Eq. (D.17-D.19) in Eq. (D.15) we get the dynamical equations gener-
ated by the terms in Eqs. (D.11-D.13), obtained by performing the Gaus-
sian approximation on the master equation related to a dissipator in Eq.
(D.10). This proves that performing the Gaussian approximation at the
level of the master equation is equivalent to doing it at the level of the
equations for the moments of an observable. Note that the equations
resulting by this approximation will always admit a Gaussian solution,
although it is not guaranteed that the latter is stationary.

The demonstration we developed holds for Lindblad operators which
are quadratic in the creation and annihilation operators. This case cov-
ers the situation studied in Sec. (5.2), but it is not the most general one.
In fact, one could consider also Lindblad equations with Lindblad op-
erators containing higher powers of creation and annihilation operators.
Extending the proof we presented to this general case is an interesting
perspective that we reserve for future works.
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Appendix E

Derivation of the equation for
the impurity position

In this Appendix we show in detail the calculation leading to Eq. (7.58).
The starting point is constituted by the Eqs. (7.54)-(7.57). The first step
is to derive both sides of Eq. (7.54) and to replace the result in Eq. (7.55),
thus obtaining an equation just for the position of the impurity

ẍ(t) + Ω2x(t) = −i
∑
k

~gk
mI

[
bk(t)− b†k(t)

]
. (E.1)

The time dependence of the Bogoliubov modes can be extracted from
Eqs. (7.56) and (7.57). They are linear but non-homogeneous first-order
differential equations. Therefore their solution is the sum of that of the
related homogeneous one and a particular integral. The former can be
easily obtained since it is just that of a harmonic oscillator,

bk(t) = bke
−iωkt + h−k (t), b†k(t) = b†ke

+iωkt + h+
k (t). (E.2)

The quantities h−k and h+
k represent the particular solutions of Eqs. (7.56)

and (7.57), that may be expressed as convolution product of the unknown
function x(t) and the Green function

h±k (t) =

∫ t

0
G±k (t− s)x(s)ds. (E.3)

Then, the problem of solving the Heisenberg equations for the Bogoli-
ubov modes reduces to that of finding the Green function of Eqs. (7.56)
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γ
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ωk-ωk
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Im [z]

Re[z]

FIGURE E.1: Path in complex plane to solve the integral
in Eq. (E.6).

and (7.57). The Green function is defined by the equation

Ġ±k (t)∓ iωkG±k (t) = −gkδ(t), (E.4)

which applying Fourier transform turns into

Fω̃
[
G±k (t)

]
= − igk

ω̃ ± ω
. (E.5)

Thus, the problem of determining the Green function is solved if one
performs the inversion of the Fourier transform in Eq. (E.5). Namely, one
has to calculate the following integral

G±k (t) = − igk
2π
P
∫ +∞

−∞

eiω̃t

ω̃ ± ωk
dω̃, (E.6)

where we introduced the principal Cauchy part P because otherwise the
integral is not well-defined in ω̃ = ±ωk. The integral in Eq. (E.6) can
be solved recalling the Jordan Lemma, selecting the path in Fig. E.1. It
follows

G±k (t) =
gk
2

exp (∓iωkt) . (E.7)
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In conclusion, Eq. (E.1) takes the form

ẍ(t) + Ω2x(t)− ~
mI

∑
k

g2
k

∫ t

0
x(s) sin [ωk(t− s)] ds (E.8)

=
B(t)

mI
,

where

B(t) ≡ −
∑
k

~gkπk(t) =
∑
k

i~gk(b†ke
iωkt − bke−iωkt). (E.9)

Equation (E.8) can be expressed in terms of the dissipation kernel, Eq. (7.32)

ẍ(t) + Ω2x(t)− 1

mI

∫ t

0
λ(t− s)x(s)ds =

B(t)

mI
. (E.10)

One can also introduce the damping kernel in Eq. (7.33). The third term
in the first hand-side of Eq. (E.8) so writes as

− 1

mI

∫ t

0
λ(t− s)x(s)ds =

∫ t

0
Γ̇(t− s)x(s)ds = (E.11)

=
∂

∂t

∫ t

0
Γ(t− s)x(s)ds− Γ(0)x(t).

Accordingly it is possible to express Eq. (E.10) as

ẍ(t) + Ω̃2x(t) +
∂

∂t

∫ t

0
Γ(t− s)x(s)ds =

B(t)

mI
, (E.12)

in which we introduced the renormalized frequency

Ω̃2 = Ω2 − Γ(0). (E.13)

Hereafter we neglect the contribution to the frequency provided by Γ(0).
This term grows as the interaction strength increases and could lead to
a negative renormalized frequency. In this context the impurity expe-
riences instability. By deriving the equations of motion directly from
Hamiltonian Eq. (7.26) one avoids the instability problem, at the cost of
introducing and additional counter term ad hoc. With the procedure here
presented we can identify in the equations of motion the effect of the
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absence of such a term.
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Appendix F

Laplace tranform of the
damping kernel

In this Appendix we derive the expression of the Laplace transform of
the damping kernel presented in Eq. (7.66). We perform the calculation
for a cubic spectral density with a general ultraviolet regularization

J(ω) = mIτ̃ω
3Θ(ω,Λ), (F.1)

with Θ(ω,Λ) > 0 specifying the dependence on the cut-off of the spectral
density. The spectral density in Eq. (7.66) corresponds to the particular
case when

Θ(ω,Λ) = θ(ω − Λ), (F.2)

with θ(·) the Heaviside step function. We will also compute the Laplace
transform considering an exponential cut-off

Θ(ω,Λ) = exp (−Λω) , (F.3)

showing that a much complicated expression turns out.
In general, we assume that Θ(ω,Λ) decays fast enough so that∫ ∞

0
e−zt

(∫ ∞
0
|ω2Θ(ω,Λ) cos(ωt)|dω

)
dt <∞. (F.4)

Note that such a behavior covers both the sharp and the exponential de-
pendence on the cut-off. Therefore, by Fubini-Tonelli theorem one can
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interchange the integrals in the following. For z > 0, it results in

L [Γ (t)]z= τ̃

∫ ∞
0

e−zt
(∫ ∞

0
ω2Θ(ω,Λ) cos(ωt)dω

)
dt (F.5)

= τ̃ z

∫ ∞
0

ω2

ω2 + z2
Θ(ω,Λ)dω, (F.6)

where we used the expression∫ ∞
0

exp (−zt) cos(ωt)dt =
z

ω2 + z2
, (F.7)

that is the result of an integration by parts.
Choosing the cut-off function in Eq. (F.2), we obtain

L [Γ (t)]z = zτ̃ [Λ− z arctan (Λ/z)] , (F.8)

as we presented in Eq. (7.66). If we consider the cut-off function in Eq. (F.3),
the Laplace transform of the damping kernel results to be expressed in
terms of the Mejer function. Such a function is not suitable to handle in
an analytic calculation. For the environment given by a BEC, the analyt-
ical behavior together with the form of the Bogoliubov spectrum justify
the consideration of a sharp cut-off.

Let us finally note that, regardless of its analytic form, the presence
of the cut-off introduced in Eq. (7.50) does not affect our results. This is
because our results refer to the long time limit, which is not influenced by
the high-frequency part of the spectral density. To prove this, one should
compare the Laplace transform of the damping kernel induced by the
spectral density in Eq. (7.50) (shown in Eq. (F.8)) with that induced by
the spectral density in Eq. (7.40), where there is not any cut-off. This
is enough because such a Laplace transform is the only object carrying
information about the spectral density along all the theory.

However, the calculation of the Laplace transform of the damping
kernel induced by the “uncutted" spectral density in Eq. (7.40) is not an
easy task, due to the very complicated form at high-frequency (see Eq.
(7.42)). It is given by:

L [Γ (t)]z = τ̃ z

∫ ∞
0

ω2

ω2 + z2
χ1d(ω,Λ)dω. (F.9)
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We may evaluate it at the first-order in z, which is the relevant one at long
times,

L [Γ (t)]z = τ̃ z

∫ ∞
0

χ1d(ω,Λ)dω + o(z/Λ)2. (F.10)

Since ∫ ∞
0

χ1d(ω,Λ)dω = Λ, (F.11)

we recover the expression in Eq. (F.8), derived with a sharp cut-off.
In the end, we conclude that at the long-times our results do not de-

pend on whether the spectral density is cut or not, i.e. on the existence of
the cut-off. This could also be inferred by recalling the Tauberian theo-
rem (Nixon, 1965; Feller, 1971) according to which the long time behavior
of a function (in the time domain) is determined by the low frequency be-
havior of its Laplace transform (in the frequency domain). Since the low
frequency behavior of the Laplace transform of the damping kernels for
both spectral densities coincides, the long time dynamics of the impurity
do not depend on whether there is a cutoff or not.
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Appendix G

Derivation of the position
variance by means of the
fluctuation-dissipation
theorem

In this Appendix we present an alternative way to derive the position
variance for a trapped impurity, employing the linear response theory.
For this goal we introduce the response function, χ(t) = i

~θ(t)〈[x(t), x(0)]〉,
describing the linear response of the system to an external force at the
equilibrium. Here θ(t) is the step function, specifying causality. The re-
sponse function defined here is also known as generalized susceptibility.
Taking the commutator with x(0) on both sides of (7.58) and then aver-
aging (note the initial slip term and the stochastic forcing term are absent
once a commutator of x(0) is applied to them), we obtain the following
c-valued equation for χ(t)

χ̈(t) + Ω2χ(t) +

∫ t

0
Γ(t− s)χ̇(s)ds = 0, (G.1)

with χ(0) = 0, χ̇(0) = 1/mI.
Next, consider the symmetric position autocorrelation function, de-

fined as
S(t) =

1

2
〈{x(t), x(0)}〉. (G.2)

We recall the fluctuation-dissipation relation of Callen-Welton (Breuer
and Petruccione, 2007), which relates the equilibrium fluctuation to the
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fluctuation-dissipation theorem

response function in the frequency domain as follows:

S̃(ω) = ~ coth

(
~ω

2kBT

)
χ̃′′(ω), (G.3)

where
S̃(ω) =

∫ ∞
−∞

dt cos(ωt)S(t), (G.4)

and
χ̃′′(ω) = Im{Fω [χ(t)]}. (G.5)

Using this, we can obtain the symmetric position autocorrelation func-
tion

S(t) =

∫ ∞
−∞

dω
~

2π
coth

(
~ω

2kBT

)
χ̃′′(ω) cos(ωt). (G.6)

from which the position variance at the equilibrium follows

〈x2〉 = S(0) =

∫ ∞
−∞

dω
~

2π
coth

(
~ω

2kBT

)
χ̃′′(ω) (G.7)

Note that χ̃′′(w) = Im{Lz̄[χ(t)]}, in which

Lz̄[χ(t)] =
1

mI
Lz̄[G2(t)] (G.8)

=
1

mI

1

(Ω2 − ω2)− iωLz̄[Γ(t)]
, (G.9)

where we used the expression in Eq. (7.63) for the Laplace transform of
G2, and z̄ = −ω + 0+ as defined in Sec. 7.5. Therefore, we have

χ̃′′(ω) =
1

mI

ωξ(ω)

[Ω2 − ω2 − ωθ(ω)]2 + [ωξ(ω)]2
. (G.10)

This expression has the same form as Eq. (7.90). Accordingly, the position
variance in Eq. (G.7), obtained recalling the fluctuation-dissipation theo-
rem, corresponds to that in Eq. (7.89), calculated by solving Heisenberg
equation and adopting the spectral density in Eq. (7.50). Therefore, we
prove that the two methods lead to the same result.

One can proceed in a similar way to evaluate the MSD for an un-
trapped impurity in the context of linear response theory, rather than
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solving Heisenberg equation. This method leads however to a very com-
plicated expression for the MSD, that does not provide a more conve-
nient alternative to Eq. (7.76). This topic is discussed in detail in Grabert,
Schramm, and Ingold, 1987.
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