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Abstract 
Present environmental changing conditions have large impacts on ecosystems in general and 

on vegetation conditions in particular. These changes are mainly induced by human activity, 

either directly or indirectly: global warming trends due to higher greenhouse gas atmospheric 

concentrations, deforestation and land cover changes due to agricultural expansion, or 

modified land, ocean and ice surface properties altering the Earth’s surface albedo, are some 

examples of these environmental changes. Additionally, natural hazards such as droughts and 

wildfires may increase their frequency and intensity in some regions of the globe due to 

climate shifts.  

In this context, remote sensing missions are needed to further our knowledge of the Earth’s 

system, monitor global ecosystems, and ultimately quantify changes in vegetation, carbon 

stocks and water resources. In particular, satellite passive microwave sensors provide a unique 

means to regularly obtain global maps of the Earth’s surface soil moisture (SM) and of the 

attenuation of the soil microwave emission through the vegetation canopy (represented by 

the vegetation optical depth parameter; VOD). VOD is linked to the vegetation water content 

(VWC) and can also be related to the above-ground carbon density. Importantly, low 

microwave frequencies (L-band) are more sensitive to high densities of vegetation canopy and 

to soil moisture than higher frequencies (e.g., C- or X-band). The first two space missions 

carrying an L-band radiometer on-board for measuring the Earth’s SM have been launched in 

the last decade: the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS, in 

2009) and the National Aeronautics and Space Administration’s (NASA) Soil Moisture Active 

Passive (SMAP, in 2015).  

The main goal of this Thesis is to assess the applicability of L-band satellite retrievals of SM 

and VOD on vegetation studies. The first part of this Thesis applies SM information –

complementarily to other data sources- to assess and prevent drought-derived impacts on 

vegetation in the Iberian Peninsula: 

 Soil moisture and land surface temperature (LST) data are applied to study the soil 

conditions before fire ignitions in the region. A fire risk index is developed to predict 

the potential extent of fires under particular SM-LST conditions. Results show that SM 

explains >30% of the predicted potential burned area. 

 The forest decline in Catalonia after a severe drought in summer 2012 is modelled as a 

function of species, climate variables and SM. The contribution of SM to the forest 

affectation is coherent with what is reported by other variables, and is shown to 

explain about 5% of the model variance. 

The second part of this Thesis presents the capacity to infer vegetation conditions and 

carbon density from VOD with two dedicated research studies:  

 The sensitivity of L-band VOD to carbon stocks in tropical regions is compared with 

VOD at higher frequency bands and with optical-infrared vegetation indices. The L-

band VOD shows enhanced sensitivity to carbon density in most regions, regardless of 
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altitude and vegetation types. The complementary use of VOD at different frequencies 

and optical-infrared vegetation indices should improve carbon estimates.  

 Seasonal metrics of VOD have been proposed for crop yield assessment. Results over 

the US Corn Belt show that VOD explains up to 78% of yield variance and can 

potentially be used to enhance crop yield forecasts.  

The results presented in this Thesis contribute to improve present capabilities of predicting 

wildfires, forest decline and crop yield, as well as of monitoring forest carbon stocks, using new 

global information from L-band Earth observation sensors.  SM and VOD are very valuable 

indicators to support food security and ecosystem preservation decision making, as well as to 

enhance present capabilities of mapping carbon stocks.  
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Abstract 

Present environmental changes induced by different factors, including human activity, land-

use pressure and climate change, have large impacts on vegetation conditions with inmediate 

consequences for forest health, vegetation carbon stocks, or crop productivity. In this context, 

new measurements at low frequency microwaves (L-band) from the SMOS and SMAP satellites 

provide a unique means to obtain global estimates of SM, as well as to infer vegetation hydric 

conditions and biomass from the VOD parameter, a variable linked to the vegetation canopy 

density. This PhD Thesis takes leverage of the first global datasets of L-band SM and VOD to 

assess whether recent episodes of wildfires and forest mortality are linked to droughts, to 

explore the capacity of L-band VOD to estimate carbon stocks, and to produce satellite-derived 

metrics for crop yield assessment. This chapter starts presenting the motivation of this work 

and describing the environmental risks and challenges under study. It then provides a review 

of the fundamentals of microwave remote sensing needed for a deeper understanding of SM 

and VOD retrievals. The chapter concludes providing an overview of scientific and societal 

applications that benefit from L-band measurements. 



1.1. Motivation: a changing world 

2 

1.1. Motivation: a changing world 

 Human activity, including fuel fossils use and land-use pressure, leads to higher atmospheric 

concentrations of greenhouse gases, modifies vegetation types, and changes land, ice and 

ocean surface properties altering the surface albedo. These variations have large impacts on 

the Earth’s radiation budget, increasing the irradiance retained in the Earth (Forster et al., 

2007; Hartmann et al., 2013). As a consequence, the average global surface temperature has 

increased during the last 100 years and heat waves have become more frequent in some 

regions (e.g., in Europe and in the Mediterranean; Hartmann et al., 2013). The rise of 

temperatures is expected to continue in present and future times and, in close relation with 

this trend, precipitation extremes could increase. Most predictions agree on the fact that the 

precipitation change would not be spatially uniform: while the tropics and Polar Regions could 

receive up to 50% more precipitation, major reductions of rainfall (between -10% and -30%) 

are forecasted in the Mediterranean, Central America, northern South America, and in west 

and south of Africa. Although these predictions are still uncertain, the severity of droughts is 

likely to increase in some regions (Hartmann et al., 2013; IPCC, 2013), as is the case of 

Southern Europe (EEA, 2008; IPCC, 2012).  

 Drier and warmer conditions, degradation of ecosystems (including continued 

deforestation), and natural hazards (e.g., wildfires), are among the main factors inducing 

environmental changes on Earth. They may threaten forest health and reduce areas of natural 

vegetation, affecting ecosystem services, and leading to biomass losses and carbon releases to 

the atmosphere, with the ultimate consequence of possible climate change reinforcing. Also, 

changing environmental conditions may have negative impacts on croplands and food security 

worldwide.  

In this context, Earth Observation (EO) satellites permit to exhaustively study the 

environment and to monitor vegetation and water resources. In particular, environmental 

monitoring for the threats and challenges addressed in this PhD Thesis requires to (i) 

accurately monitor the water content in soils and vegetation, in order to assess and prevent 

drought impacts; (ii) map carbon stocks in forests, which is essential to the global carbon 

assessment and to evaluate the actions oriented to the reduction of forest degradation; and 

(iii) enhance present cropland monitoring and yield assessment capabilities, in order to 

increase future capacity to forecast insecure food situations. 

 To achieve these purposes, passive microwave EO satellites can prove very useful as their 

measurements are sensitive to the water content in soils and vegetation. On one hand, 

microwave measurements allow retrieving information on surface soil moisture. On the other 

hand, the attenuation of the soil microwave emission through the vegetation canopies is 

expressed as the VOD, which is an ecological indicator related to vegetation water content and 

vegetation biomass. The first two space missions dedicated to soil moisture monitoring have 

passive L-band microwave radiometers on-board, and have been launched in the last decade: 

these are the Soil Moisture and Ocean Salinity (SMOS; launched in November 2009), and the 

Soil Moisture Active Passive (SMAP; launched in January 2015). In comparison with recent L-

band sensors, microwave sensors operating at higher frequency bands with longer heritage 

(e.g., C- and X-bands, operating since 1978) have a shallower soil sensing depth (top 1 cm at C-
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band vs. 5 cm at L-band) and have a larger attenuation in presence of vegetation (Ulaby et al., 

1986, pp. 1551–1596). At present, there is an increasing interest of the scientific community 

on L-band satellite information to monitor the Earth’s water and carbon cycles (e.g., Vittucci et 

al, 2016a and b; Konings and Gentine, 2017; Brandt et al., 2018). 

 

 This PhD Thesis is focused on the applicability of the SMOS and SMAP L-band microwave 

satellite measurements to (i) understand and prevent specific environmental risks which may 

increase due to warming trends, in particular wildland fires and forest decline; (ii) assess the 

feasibility of L-band VOD to improve present carbon stock estimates in tropical forests, which 

is crucial for monitoring forest degradation and for global carbon assessment; and (iii) provide 

VOD-based crop yield assessment in order to enhance our ability to monitor and forecast food 

resources to reduce food insecurity. 

 This PhD Thesis has been mainly developed at the Universitat Politècnica de Catalunya (UPC) 

Remote Sensing Laboratory, in close collaboration with the Barcelona Expert Centre (BEC). 

Both institutions are specialized on research activities involving the SMOS instrument and its 

scientific applications. The study on the capacity of L-band VOD to derive carbon estimates was 

conducted during a 3-month stay at the Joint Research Centre of the European Commission, 

sited in Ispra (Italy), under the supervision of Drs. Grégory Duveiller and Alessandro Cescatti. 

 

 

1.2. Environmental changes and risks  

 Present environmental changes impact human safety and livelihood conditions, increase 

economic losses, and threaten human health in many regions of the world. Such impacts are 

frequently associated to changes in ocean, cryosphere, and land systems of the Earth. Over 

land, hydrological systems have changed due to glaciers shrinking and permafrost thawing, 

water resources have been altered, and significant trends towards drier soils are observed in 

some regions (Jung et al., 2010; IPCC, 2013). Threatens on agricultural systems are increased 

by climate impacts on vegetation phenology and productivity, and by the loss of ecosystem 

services that permit to preserve the quality of water and soils, recycle nutrients, and pollinate 

crops, among other functions. Furthermore, ecosystem disturbances may become more 

frequent and/or intense in a near future, including droughts and floods, wind storms, fires, and 

pest outbreaks (Seidl et al., 2017). As previously mentioned, the focus of this PhD Thesis is the 

applicability of L-band observations to deal with particular threats: forest fires, forest 

degradation and loss of carbon stocks, and crop insecurity. The relationship of these threats 

with environmental changes is detailed hereafter. 

 

1.2.1. Wildfires  

 Drying conditions as well as the rising number of extreme temperature events have the 

potential to increase the risk of wildfires during this century (Settele et al., 2014). 
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Nevertheless, recent global fire patterns are dominated by human-driven shifts rather than by 

the climate context. This has led to a decrease of 24% of burned area worldwide during the 

period 1998-2015, which has been driven mainly by the expansion and intensification of 

agricultural activity. The global decline of burned area is mainly explained by a reduction on 

the number of fires rather than by a decrease on their average extent, and is mostly 

concentrated in tropical savannas of Africa and South America, in Asian steppes, in Australia 

and in the Sahel (Andela et al., 2017, and Figure 1.1).  

 

 

Figure 1.1. Examples of burned area trends (period 1998-2015) in all continents: 

(a) Africa, (b) Asia, (c) South America, (d) Europe and northern Africa, (e) North 

America, and (f) Oceania. Adapted from Andela et al. (2017). 

 

 Despite this trend, in several regions the yearly burned area has increased or maintained. 

Some remarkable increases have been found in large areas in southern Africa, in eastern 

China, in central Canada, in eastern Brazil, and in some regions with high forest dominance. No 

remarkable changes have been detected mainly in most of the Mediterranean coasts, in most 

tropical forests, in most central and western Europe, and in the eastern United States (Andela 

et al., 2017, and Figure 1.1). For this reason, the expected increase on fire risk associated to 

the changing climate may become particularly concerning in these regions, where no human-

driven declines in burned area are found. For instance, a raise in fire risk is expected in areas 

with extensive forest cover in the European Mediterranean countries, such as the Balkans, the 

Pyrenees, and the Alps (Moriondo et al., 2006). In addition, the fire weather season has 



Chapter 1 
Introduction 

5 

enlarged in most continents and biomes during the last four decades (Jolly et al., 2015). Hence, 

it is needed to improve our capacity to monitor drought and heat conditions leading to fire-

prone situations. 

 

1.2.2. Forest decline 

Changes in climate conditions and land use are putting forests under pressure (Bonan, 2008; 

Cohen et al., 2016). Droughts and high temperatures reduce soil water availability and increase 

evaporative demand, and have been associated with widespread events of drought-induced 

mortality in forests even in environments not considered to be water limited (Allen et al., 

2010; McDowell et al., 2011; Martínez-Vilalta et al., 2012a; Greenwood et al., 2017). Climatic 

changes, together with disturbances directly related to human activities, are putting many 

forests outside the ranges of conditions under which they developed, and may be too fast for 

evolutionary adaptation processes to keep pace (Trumbore et al., 2015). Forest decline events 

are generally defined as episodes with increased mortality and crown defoliation rates, which 

can have dramatic effects on forest ecosystem services and have the potential to modify the 

climate regulation and biogeochemical cycles at local and regional scales (Anderegg et al., 

2013a). Forest decline is predicted to increase as a result of climate change, especially in areas 

where the climate is expected to become hotter and drier, such as the Mediterranean basin 

(EEA, 2008).  

A growing number of forest decline events are being documented worldwide (Allen et al., 

2010; Cramer et al., 2014; Settele et al., 2014). However, the number of studies showing 

consistent increases in leaf loss or mortality over substantial (e.g., decadal) time scales (e.g., 

Carnicer et al., 2011; Cohen et al., 2016; Neumann et al., 2017) is still scarce. In addition, most 

studies have focused on relatively small spatial scales, showing that mortality frequently 

affects preferentially larger trees (Bennett et al., 2015) and tends to be associated with high 

tree density, and thus competition (Linares et al., 2010), and with shallow soils (e.g., Vilà-

Cabrera et al., 2013). Still, there is high uncertainty on the determinants of the spatial 

variability in forest mortality and further research is needed to assess the impact of droughts 

at regional scales. 

 

1.2.3. Forest degradation and carbon losses 

Terrestrial ecosystems act as global and significant carbon sinks, although the sink strengths’ 

show large variability among years and its future dynamic is uncertain (Le Quéré et al., 2009 

and 2016). In that sense, the forest’s carbon sink could increase due to enhanced plant growth, 

which may be caused by future warming conditions, by longer growing seasons, and by the 

rising CO2 concentration (Settele et al., 2014). However, this can be counterbalanced by land 

use changes converting forests to farmlands, which are particularly severe in tropical regions, 

where forests can turn into a net carbon source (Pan et al., 2011; Liu et al., 2015; Baccini et al., 

2017). In addition, severe regional droughts and heatwaves could lead to reductions on Gross 

Primary Productivity (GPP) throughout all major biomes of the Earth, having negative impact 
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on carbon sequestration (Reichstein et al., 2013; Sippel et al., 2018). This was found, for 

instance, during the unprecedented droughts and heatwaves occurring in Europe in 2003 (Ciais 

et al., 2005) and in Russia in 2010 (Barriopedro et al., 2011). 

Importantly, coupling among deforestation, drought episodes, and forest fires, diminish the 

amount of carbon uptake in forested areas. For instance, the Amazon rainforest may become 

gradually a drought and fire-adapted ecosystem with less vegetation density, leading to a 

decrease on carbon uptake in this region (Saatchi et al., 2013). Additionally, the global impact 

of tree mortality, fires, and pest attacks could cancel out the enhanced forest carbon 

sequestration. Consequently, the carbon stored in forests is vulnerable, and the atmosphere-

land CO2 flux is expected to weaken during this century. In this context, monitoring the land 

carbon stocks at global scale is essential to close the carbon budget, reduce uncertainties, gain 

precision on modelling future climate change scenarios, and contribute to appropriate 

strategies against forest degradation. 

 

1.2.4. Crop yields and food security 

During the last fifty years, concurrently to the doubling of human population, the global crop 

production has increased substantially due to improvement of techniques (e.g., 

mechanization, irrigation, fertilizers and pesticides) and to the expansion of croplands (Foley et 

al., 2011). In particular, most main crop grain stocks have tripled (e.g., wheat and rice) or 

quadrupled (e.g., corn) (Godfray et al., 2010; FAO 2017). Nevertheless, total consumption can 

exceed production when adverse weather conditions occur (Becker-Reshef et al., 2010a), 

leading to insecure food situations. The expected increase of adverse weather for crop 

production due to climate change has a negative impact on crops and may ultimately result in 

a future decline of most grain yields (Deryng et al., 2014; Asseng et al., 2015; Zhao et al., 2017).  

Furthermore, as the population is growing, a need for increased food supply in the coming 

decades is anticipated, at least until the middle of this century. Additionally, agriculture has 

important environmental impacts: the loss of biodiversity, the increase of deforestation, or the 

land and water degradation (Foley et al., 2005). In this context, agriculture faces a remarkable 

challenge: to fulfil the raising food demands improving food security, while reducing the 

environmental impacts. Hence, it is needed to rise food production and to do this without 

increasing impacts on the environment. This requires avoiding agricultural expansion causing 

deforestation and focus instead on increasing crop yields and reducing insecure crop 

situations. This will allow closing the so-called ‘yield gaps’ (i.e., reduce the difference between 

the potential and the real yield on croplands; Godfray et al., 2010; Foley et al., 2011; Tilman et 

al., 2011).  EO satellites allow monitoring agroecosystems and could contribute to enhance 

crop yieldassessment as well as to forecast insecure food conditions. 
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1.3. Microwave radiometry: estimation of water content in soils 
and vegetation from space 

1.3.1. Key concepts of microwave radiometry 

The Earth’s surface absorbs part of the electromagnetic radiation mainly received from the 

Sun, transforms it into thermal energy, and also emits radiation to keep the energy balance. 

This radiation depends on the surface properties and on the wavelength observed. Measuring 

it in the microwaves region of the spectrum provides mainly two advantages: (i) it allows 

sensing soil moisture and vegetation hydric conditions, as these parameters are directly linked 

to the soil microwave emission and to its attenuation; and (ii) these measurements are 

obtained regardless of weather conditions, as microwaves are almost transparent to clouds. 

Microwave soil emission can be measured with high accuracy by radiometers (tower-based 

or on-board airborne and satellite platforms). Specifically, radiometers are passive sensors that 

measure the amount of radiation emitted by a source –considering a solid angle- in terms of 

power by unit surface. This quantity is called radiance or brightness. This and other concepts 

necessary to understand the measurement of soil emissions are described hereafter:  

 

A. Black body radiation and the Rayleigh-Jeans law 

A black body is a theoretical concept which defines an ideal, perfectly opaque material that 

absorbs all the incident radiation regardless of its frequency and polarization. Consequently, in 

order to reach the thermodynamic equilibrium, it must be a perfect emitter. A black body 

radiates the energy omnidirectionally. 

To study the emission of a black body at microwave wavelengths, it must be considered that 

the brightness (𝐵𝑓) is approximately proportional to the physical temperature of the body (𝑇): 

𝐵𝑓~
2𝑓2𝑘𝐵𝑇

𝑐2
=

2𝑘𝐵𝑇

𝜆2
 , 

(1.1) 

where 𝑓 is the frequency in Hz, 𝑘𝐵 = 1.38·10-23 J/K is the Boltzmann constant, 𝑐 = 3·108 m/s is 

the speed of light, and 𝜆 = 𝑐/𝑓 is the wavelength. Eq. (1.1) is known as the Rayleigh-Jeans law, 

an approximation of the Planck’s radiation law for low frequencies (see Ulaby et al., 1981, pp. 

197-198, for more detail on the relationship between both laws).  

 According to the Rayleigh-Jeans law, the brightness of a black body (𝐵𝑏𝑏) at a physical 

temperature (𝑇) and a particular frequency bandwidth (∆𝑓) is expressed as: 

𝐵𝑏𝑏~𝐵𝑓 · ∆𝑓 =
2𝑘𝐵𝑇

𝜆2
∆𝑓 . 

 

(1.2) 
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B. Gray body radiation, brightness temperature, and emissivity 

Black bodies are useful for a conceptual description, but real objects or surfaces behave 

differently: they do not absorb all the energy received and consequently their emission is 

lower than that of blackbodies. To characterize the brightness emitted by a gray body, it is 

necessary to define the concept of microwave brightness temperature 𝑇𝐵(,). This is the 

temperature a blackbody would have to produce the brightness emitted by the gray body 

under study. The brightness temperature is not a real temperature, but an effective one. 

Hence, the brightness of a gray body is expressed as follows: 

𝐵(, )~
2𝑘𝐵

𝜆2
𝑇𝐵(,)∆𝑓 . 

(1.3) 

Importantly, the ratio between the brightness of gray bodies and that of black bodies is 

expressed by the emissivity 𝑒(, ): 

𝑒(, ) =
𝐵(, )

𝐵𝑏𝑏
=

𝑇𝐵(,)

𝑇
 . 

(1.4) 

The emissivity ranges between 0 (a perfect reflector) and 1 (a black body, which is a perfect 

absorber). Note that according to Eq. (1.4), the brightness temperature of a body cannot be 

higher than its physical temperature. 

 

C. Measuring brightness temperatures from space 

Similarly to the brightness temperature, the apparent temperature of an antenna 𝑇𝐴𝑃(,) 

is used to characterize the total brightness incident over the antenna of a radiometer 𝐵𝑖(, ): 

𝐵𝑖(, )~
2𝑘𝐵

𝜆2
𝑇𝐴𝑃(,)∆𝑓 . 

(1.5) 

The apparent temperature is linked to the power received by the antenna (see Ulaby et al., 

1981, p. 203) and it is a function of different contributions in the case of an Earth-looking 

radiometer: 

𝑇𝐴𝑃(, ) = 𝑇𝑈𝑃 +
1

𝐿𝑎

(𝑇𝐵 + 𝑇𝑆𝐶), 
(1.6) 

where 𝑇𝑈𝑃 is the atmospheric upwelling radiation, 𝐿𝑎 is the attenuation of the atmosphere, 

𝑇𝐵 is the brightness temperature of the observed scene, and 𝑇𝑆𝐶  is the downwelling 

atmospheric radiation scattered by the Earth’s surface. Importantly, the atmospheric effects 

are negligible at the L-band (1-2 GHz) microwave frequency range used in soil moisture remote 

sensing. 
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Imaging satellite radiometers transform the radiation collected by an antenna into 

brightness temperature maps. The performance of this process is determined by (i) the 

radiometric resolution or sensitivity, which is the smallest difference between brightness 

temperatures that can be distinguished; (ii) the radiometric accuracy, which is the degree of 

agreement between the measured antenna temperature and the real one or true value; and 

(iii) the spatial resolution, which is the closest distance at which the radiometer can obtain 

different measures coming from two different points. 

 

1.3.2. Soil emission 

The emission of natural surfaces depends on their dielectric constant (). This term refers to 

the impedance that a medium exerts to an electromagnetic wave passing through it, divided 

by the impedance exerted by the vacuum, which is used as a reference value. The dielectric 

constant of soils is expressed as a complex number (𝑠 =  ′𝑠 + 𝑗′′𝑠), where the real part (′𝑠) 

determines the propagation of the energy through the soil, and the imaginary part (𝑗′′𝑠) 

determines the energy losses. In the case of dry soils the dielectric constant is much lower 

(=4) than that of water (=80). This is crucial in soil moisture remote sensing, as the dielectric 

constant of soil-water mixtures rises with increasing water content: from =4 in dry soils to 

~40 in saturated soils. Consequently, at microwave frequencies, the emission of the soil is 

linked to the soil water content by the dielectric constant. The emissivity of dry soils 

(𝑒(, )~0.95) decreases with increasing water until soil saturates (𝑒(, )~0.60; Schmugge et 

al., 1986). Nevertheless, other factors influence the emissivity of soils and must be considered: 

 Soil texture and density: water in soils can be bounded to soil particles (bounded 

water) or allocated in the soil pores (free water). Bound water has little impact on the 

dielectric constant due to its less free molecular rotation in comparison with free 

water. Soils with the lowest percentages of bound water (sands; 2-3%) present higher 

dielectric constants than soils with the highest proportions of bound water (clay soils; 

20-40%). 

 

 Roughness: the soil roughness increases the soil emissivity, decreases the sensitivity of 

emissivity to soil moisture variations, and reduces the difference between the vertical 

(V) and the horizontal (H) polarizations. 

 

 Temperature: the dependence of the dielectric constant on temperature is weak for 

the range of temperatures found in the Earth’s surface. However, frozen soils present 

higher dielectric constants than unfrozen soils due to the different phases of water. 

 

 Salinity: at L-band, salinity has a large effect on the imaginary part of the dielectric 

constant, but the effect of typical field salinity can be ignored as emissivity is not 

particularly sensitive to ′′𝑠 (Jackson and O’Neill, 1987). 

 

 Wavelength: the real part of the dielectric constant increases –and the imaginary part 

decreases- for longer wavelengths (i.e., lower frequencies).  
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In addition, note that the penetration depth of microwaves diminishes when the soil 

moisture increases. At L-band, it is generally considered to be about 4 cm in a wet soil, but it 

can be deeper (approximately up to 75 cm) in very dry conditions. 

 

1.3.3. Vegetation effects 

The vegetation layers attenuate and scatter the soil emission, and also add their own 

contribution. The most commonly used model to account for the effects of vegetation is the 

model: 

𝑇𝐵𝑝 =  𝑒𝑝𝑇𝑠 + (1 − )𝑇𝑣(1 − ) + (1 − 𝑒𝑝)(1 − )𝑇𝑣(1 − ) , (1.7) 

where 𝑇𝐵𝑝 stands for the brightness temperature either at the vertical or horizontal 

polarizations, 𝑒𝑝 is the emissivity, 𝑇𝑠 and 𝑇𝑣 refer to the effective temperatures of soil and 

vegetation, respectively,   is the single scattering albedo, and  is the vegetation 

transmissivity. The first term of Eq. (1.7) represents the radiation of the soil when attenuated 

by the vegetation. The second term defines the upwards radiation directly emitted by the 

vegetation. The third term expresses the downwards radiation from the vegetation, once it is 

reflected upward by the soil, and then attenuated by the canopy. 

 The single scattering albedo () describes the scattering of the soil emission within the 

vegetation layer, and is a function of the soil geometry. The transmissivity of the vegetation is 

a function of the VOD  and the incident angle ( ): 

 = exp (−𝑉𝑂𝐷/ cos  ( ))  . (1.8) 

 The vegetation optical depth is related to the vegetation density through the vegetation 

water content (see Section 1.3.6), and is also linked to the frequency. Note that in this Thesis 

the vegetation optical depth is capitalized as VOD, while the term  is a synonym which is also 

common in the literature. 

 Importantly, note that the SMOS and SMAP orbits were designed to pass over the Equator at 

6 a.m. and 6 p.m. (see Section 1.4), when temperature gradients between soil and vegetation 

are minimized. Then, Eq. (1.7) can be simplified because  𝑇𝑣 = 𝑇𝑠 : 

𝑇𝐵𝑝 =  [𝑒𝑝 + (1 − )(1 − )(1 + (1 − 𝑒𝑝))]𝑇𝑠 . 

 

(1.9) 

1.3.4. Retrieval approaches 

Soil moisture retrievals need to take into account several of the geophysical variables 

involved in soil emission and vegetation attenuation. Different approaches have been used for 
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this purpose, including empirical relationships between the variables and the radiative transfer 

equation (Wigneron et al., 2003), neural networks (Del Frate et al., 2003), and the inversion of 

geophysical model functions (e.g., Wigneron et al., 2007). The latter is the approach used for 

the SMOS and SMAP passive soil moisture retrievals. It is based on a geophysical model which 

considers important variables affecting the soil emission: soil moisture, soil roughness, soil 

temperature, scattering albedo, and vegetation optical depth. The number of geophysical 

variables which can be inverted is linked to the independent information provided by the 

brightness temperature measurements. This can be quantified using the Degrees-of-

Information (DOI) metric (Konings et al., 2015), and depends on how many polarizations 

and/or incidence angles are observed, and on the number of satellite overpasses employed. 

The more information is used, the more variables of interest can be inferred, with the aim 

being principally on estimating SM and VOD. A cost function is defined considering the 

weighted square differences between the modelled and the observed brightness 

temperatures, and a minimization procedure is set-up to obtain the modelled brightness 

temperatures (and the parameters to be retrieved) which best match the brightness 

temperatures observed by the satellites’ radiometer. The variables which are not estimated 

(e.g.,soil roughness, vegetation albedo, soil temperature, soil texture) are derived from 

ancillary information, in order to be used also in this process.  

Main retrieval approaches applied for SMOS and SMAP are summarized here, with particular 

focus on the algorithms used for retrieving the datasets employed in this Thesis: 

 The SMOS multi-angular retrieval model: it consists on the inversion of the L-band 

Microwave Emission of the Biosphere forward model (Wigneron et al., 2007), which 

is mainly based on the function described in Eq. (1.7). The inversion allows 

obtaining the set of input variables (mainly SM, VOD, 𝑇𝑠,  and roughness), and is 

based on the observed and modelled brightness temperatures at different SMOS 

incidence angles (Camps et al., 2005; SMOS Algorithm Theoretical Basis Document, 

2007). 

 

 SMAP retrieval algorithms and the multi-temporal approach: the SMAP single-look 

angle configuration limits the possibility to extract soil moisture and VOD 

information with just one acquisition using a single-channel approach (i.e., only 

vertical or horizontal polarization). Consequently, the SMAP single-channel baseline 

algorithm retrieves only soil moisture at every acquisition and relies on auxiliary 

information of VOD, albedo, and roughness. In particular, VOD is estimated from the 

Normalized Difference Vegetation Index (NDVI) climatology, and albedo and 

roughness are fixed parameters per land-cover (Chan, 2013). In contrast, the SMAP 

dual-channel baseline algorithm provides simultaneous retrievals of VOD and SM. 

Nevertheless, Konings et al., (2015) introduced the concept of DOI to argue that the 

information content on single look-angle polarized brightness temperatures at a 

single time step does not allow for an accurate retrieval of two variables. Based on 

DOI analysis, the Multi-Temporal Dual Channel Algorithm (MT-DCA; Konings et al., 

2016) is proposed for the retrieval of soil moisture, VOD and effective scattering 

albedo using two consecutive overpasses of SMAP. The algorithm assumes that the 

vegetation conditions do not change among the consecutive overpasses. Note that a 
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single, constant value of albedo is obtained for an entire study period.  Konings et al. 

(2017a) show that the SMAP MT-DCA retrievals of VOD have very similar mean and 

seasonal amplitude in comparison with the SMOS multi-angular retrievals. 

 

 Land Parameter Retrieval Model (LPRM): the LPRM (Owe et al., 2008) has been used 

to retrieve the VOD datasets at C- and X-bands used in Chapter 4 of this Thesis. The 

LPRM is based on the Microwave Polarization Difference Index (MPDI; Meesters et 

al., 2005) parameter, which is used to normalize for temperature dependence and is 

highly related to the dielectric properties of the emitting surfaces. The relationship 

between MPDI, VOD and (Owe and Van de Griend, 2001; Meesters et al., 2005) is 

the basis for the LPRM, and allows retrieving SM and VOD data. 

 

1.3.5. Soil moisture 

Soil moisture was recognized as an Essential Climate Variable (ECV) in 2010 (GCOS, 2010). It 

influences the exchange of water and heat between the soil surface and the atmosphere and, 

consequently, it is a key variable in the land-atmosphere interactions, with great relevance in 

energy, water and carbon cycles. Soil moisture has great importance for vegetation as it 

determines water availability for plants. Hence, changes in soil moisture can have great impact 

on forests, agriculture and ecosystems in general.  

Global warming conditions may increase evaporation, decreasing soil water content and 

easing drought-prone conditions to happen. In addition, increase on the water evaporation 

from soils and oceans leads to a larger concentration of water vapor in the air. This is in turn 

reinforced by the fact that warmer air can contain more water vapor. As a consequence, the 

intensity of rainstorms may increase, which may augment the runoff and contribute little to 

moisten soils. Soil moisture information is essential to understand how precipitation is 

allocated into runoff, subsurface flows, and infiltration in soils. 

At present, there are various microwave-based soil moisture products available. These are 

mainly obtained from (i) the SMOS and SMAP missions (L-band radiometers; see Section 1.4); 

(ii) the Advanced SCATterometer (ASCAT; C-band) on board of Metop satellites (Wagner et al., 

2013); and (iii) the Advanced Microwave Scanning Radiometer 2 (AMSR2; C- and X-bands) on 

board of the Global Change Observation Mission 1st - Water (GCOM-W1; Kim et al., 2015). 

Importantly, longer soil moisture records are available from the ESA Climate Change Initiative 

(ESA-CCI) soil moisture dataset, which merges different past and present SM products to 

obtain a temporally and spatially consistent dataset ranging from 1978 to the present (Dorigo 

et al., 2015 and 2017). 

 

1.3.6. Vegetation optical depth 

 The VOD accounts for the attenuation that vegetation exerts over the soil microwave 

emissions (see Section 1.3.4). VOD is proportional to the vegetation water content and can be 

used as a proxy of above-ground biomass (Ulaby and Long, 2014; Jackson and Schmugge, 
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1991).  Some experimental studies have reported that VWC and VOD are linearly related 

through an empirical parameter b, which is dependent on frequency and polarization: 

𝑉𝑂𝐷 = 𝑏 · 𝑉𝑊𝐶, (1.10) 

 Also, it is generally assumed that VWC and VOD are tightly linked to the biomass of the life 

and woody parts of the plant, at least when considering relatively long-term averages of these 

variables (e.g., years). Consequently, VOD is used as a proxy of the carbon content of 

vegetation (see Section 1.5). In addition, VOD has been used to derive information on the 

vegetation hydric conditions and on the response of vegetation to droughts (Konings and 

Gentine, 2017; Konings et al., 2017b), and for crop yield assessment (e.g., Patton & 

Hornbuckle, 2013, Chaparro et al., 2018, and Chapter 5). 

 Nowadays, VOD data has been derived from several sensors at different microwave 

frequencies (Table 1.1). Also, Liu et al. (2011) have provided a merged long-term VOD dataset 

for the period 1987-2008. In this Thesis, VOD from SMAP (L-band) and from AMSR2 (C- and X-

bands) will be used. 

 

Table 1.1. The main sensors, satellites and frequencies for which VOD products 

are available. 

Sensors Satellites Frequency 

Scanning Multichannel Microwave 
Radiometer (SSMR) 

Nimbus 7 and Seasat C, X 

Special Sensor Microwave Imager 
(SSM/I) 

Defense Meteorological Satellite 
Program (DMSP) 

Ku 

Tropical Rainfall Measuring 
Mission's (TRMM) Microwave 

Imager (TMI) 

Tropical Rainfall Measuring Mission 
(TRMM) 

 
X 
 

Advanced Microwave Scanning 
Radiometer (AMSR-E) 

Aqua C, X 

Advanced Microwave Scanning 
Radiometer 2 (AMSR2) 

Global Change Observation Mission 
1st - Water (GCOM-W1) 

C, X 

Microwave Imaging Radiometer 
using Aperture Synthesis (MIRAS) 

Soil Moisture and Ocean Salinity 
(SMOS) 

 
L 
 

Soil Moisture Active Passive (SMAP) L 
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1.4. L-band satellite missions and products 

During the last decade, the interest of the scientific community for L-band microwave 

remote sensing has increased notably. There are two main reasons for this. On one hand, L-

band is sensitive to microwave emissions from the top 5 cm of soil (or even deeper for the 

driest soils). This is an advantage as compared to higher frequencies, which are only sensitive 

to the soil skin layer. On the other hand, the soil emission is less attenuated by vegetation at L-

band than at higher frequency bands, allowing L-band microwaves to penetrate denser 

vegetation canopies. Theoretical as well as experimental studies support that L-band 

radiometry is the most appropriate technique for measuring the water content in soil and 

vegetation. 

At the moment of writing, there are two L-band satellite missions in orbit: the SMOS (Kerr et 

al., 2010), launched by the ESA on November 2009, and the SMAP (Entekhabi et al., 2010), 

launched by the NASA on January 2015. Also, note that a third mission was operating an L-

band radiometer: the Aquarius satellite, a joint effort of the Argentinian Comisión Nacional de 

Actividades Espaciales (National Comittee for Space Activities) and the NASA (Le Vine et al., 

2010). It was launched on June 2010 and ceased its operations on June 2015. As the focus of 

this work is on SMOS and SMAP, these satellites and their main products are described in 

section 1.4.1. 

The continuity of L-band missions beyond SMOS and SMAP is ensured by the Water Cycle 

Observation Mission from the Chinese Academy of Sciences, expected to be launched in 2022, 

and by the Copernicus Imaging Microwave Radiometer, which is a high priority candidate 

mission to Sentinel Expansion (MET Norway and CIMR Expert Team, 2018). 

 

1.4.1. The SMOS mission and products 

A. Characteristics of the mission 

The SMOS satellite (Figure 1.2) is the first ever space mission dedicated to measuring surface 

SM and sea surface salinity (SSS) with an L-band radiometer. This satellite is part of the ESA’s 

Living Planet Program, being its second Earth Explorer Opportunity mission. Although SMOS 

was initially planned as a 3-year mission, the satellite is still in good health after almost 9 years 

of operations and unique datasets of global L-band microwave measurements and derived 

parameters (SM, VOD and SSS) are currently available. SMOS orbits the Earth at a mean 

altitude of 758 km, following a sun-synchronous orbit. It passes at 6 a.m. and 6 p.m. through 

the Equator, and has a revisit time of 3 days. The satellite swath is about 1,000 km and its 

spatial resolution is of ~40 km. 

The SMOS payload is the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS). 

This is an innovative, Y-shaped instrument containing 69 antennas regularly distributed along 

its three arms. The brightness temperature retrievals are obtained using a 2-D interferometric 

technique: the cross-correlation among the measurements from all the possible combinations 

of pairs of antennas is computed, and using a Fourier synthesis process, a brightness 
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temperatures image is obtained. Importantly, MIRAS estimates L-band soil emissions at 

different incidence angles (from 0 to 65°), and using dual- and full-polarimetric modes. The 

polarimetric and multi-angular SMOS characteristics allow obtaining multiple TB measurements 

per point and retrieve more than one variable at the same time (i.e., SM and VOD can be 

inverted simultaneously; Kerr et al., 2012). 

 

 

Figure 1.2. The SMOS satellite in orbit (artist’s view). Source: ESA, 2009. 

 

B. SMOS products 

The original products of the SMOS mission are classified in different levels (L) as follows: 

 L0: it consists of the sensor’s raw data. 

 

 L1: it is divided in three steps. First, L1A products are the calibrated visibilities (i.e., 

cross-correlations) grouped as snapshots. Second, L1B products are snapshots of 

radiometrically corrected and calibrated brightness temperatures. Third, L1C products 

are georeferenced swath maps of brightness temperatures. These products are 

produced separately for sea and land applications. Level 1C data are inputs for the 

SMOS baseline retrieval algorithm (Kerr et al., 2012). 

 

 L2: SM and SSS maps at ~40 km resolution. The products can be resampled at finer 

scales. This is the case of the ESA L2 SM product, which is a swath-based product 

provided in the Icosahedral Snyder Equal Area (ISEA) 4h9 grid with a gridding of 15km. 

VOD information can also be derived at this step (Kerr et al., 2012). 

 

 L3: L3 datasets filter and merge L2 swath data into global maps of SM and VOD and are 

provided in a regular grid (e.g., the Equal-Area Scalable Earth Grid 2; EASE2) and in 

standard format (e.g.,netCDF files; BEC, 2018).  
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 L4: L2 or L3 datasets with enhanced properties due to the addition of auxiliary 

variables. This includes downscaled datasets such as those described in Section 

1.4.1.C. 

Note that the SMOS L2/L3 SM products have been extensively validated (e.g., Albergel et al., 

2012; Dente et al., 2012; Kerr et al., 2012; Sánchez et al., 2012; Bircher et al., 2012 and 2013; 

Petropoulos et al., 2014; Rahmoune et al., 2014; González-Zamora et al., 2015; Polcher et al., 

2016). In addition, recently another version of SM and VOD retrievals has become available: 

the SMOS-IC product. It defines different values of albedo and surface roughness than the L2 

and L3 products, and is designed to be more independent of ancillary information. The 

application of the SMOS-IC VOD dataset to vegetation studies is promising (Fernández-Morán 

et al., 2017; Brandt et al., 2018). 

 

 

C. L4 high resolution soil moisture products 

SMOS L2/L3 soil moisture maps are provided at spatial scales which are too coarse to serve 

local or regional applications such as those proposed in this Thesis. In order to fill this gap, 

pixel downscaling or data disaggregation is a recognized modeling framework to improve the 

spatial resolution of available surface soil moisture satellite products (Peng et al., 2017). A 

number of studies to improve L-band SM resolution have emerged using different input 

ancillary data and different linking models. Several downscaling procedures take profit of 

optical and infrared information (Merlin et al., 2008, 2010 and 2013; Piles et al., 2011a, 2014 

and 2016; Sánchez-Ruiz et al., 2014; Portal et al., 2018). Others merge passive and active (i.e., 

radar) data, which is the case of algorithms taking leverage of both the active and passive 

SMAP sensors (Das et al., 2011 and 2014). Nevertheless, since the SMAP radar ceased 

operations, the combination of SMOS/SMAP L-band data with C-band radar backscatter from 

Sentinel-1 is envisaged as a feasible solution (Rüdiger et al., 2016). Also, downscaling methods 

can be based on physical models (e.g., Merlin et al., 2005 and 2013), on semi-empirical models 

(e.g., Piles et al., 2014), and others (Peng et al., 2017). 

 The soil moisture datasets used in this Thesis are L4 high-resolution (1 km) SM products 

(BEC, 2018), which are based on the algorithm described in Piles et al. (2014). This algorithm 

uses a semi-empirical approach combining SMOS data with LST and NDVI information, both 

estimated with the Moderate Resolution Imaging Spectroradiometer (MODIS; see NASA, 

2018), in order to obtain the finer scale (1 km) SM as follows:  

𝑆𝑀𝐻𝑅 =  𝑎0 + 𝑎1 · 𝐿𝑆𝑇𝑁 + 𝑎2 · 𝑁𝐷𝑉𝐼𝑁 +
𝑎3𝑖

3
∑ 𝑇𝐵ℎ𝑖𝑁

3

𝑖=1

+
𝑎4𝑖

3
∑ 𝑇𝐵𝑣𝑖𝑁

3

𝑖=1

 (1.11) 

where 𝑆𝑀𝐻𝑅 is the resulting SM at 1 km resolution, 𝐿𝑆𝑇𝑁 and 𝑁𝐷𝑉𝐼𝑁 are the normalized LST 

and NDVI, respectively, and 𝑇𝐵ℎ𝑖𝑁 and 𝑇𝐵𝑣𝑖𝑁 are the normalized brightness temperatures for 

the 𝑖 incidence angles at horizontal and vertical polarizations, respectively. The incidence 

angles used are 32.5, 42.5 and 52.5. Importantly, the NDVI information is a 16-day averaged 
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product, for which the time window length reduces the probability of working with cloud 

masked information. In contrast, LST is obtained daily and cloud masking is relatively frequent, 

impeding the high resolution SM data to be retrieved in some cases. To avoid the presence of 

clouds masking the L4 retrievals, a so-called “cloud-free” product has been developed in which 

ERA-Interim modelled LST data from the European Centre for Medium Range Weather 

Forecasts (ECMWF; ECMWF, 2018) are also used when clouds are masking the MODIS LST 

information. Recently, new work has improved the downscaling procedure including a spatially 

adaptive moving window (Portal et al., 2018) and substituting (in the cloud-free product) the 

ERA-Interim LST for the ERA5 LST (the new LST reanalysis product from ECMWF). 

 
Figure 1.3. High resolution (1 km) soil moisture products used in this PhD Thesis 

(10th March 2015; Iberian Peninsula). (a) SMOS-MODIS product, (b) SMOS cloud-

free product. The empty squared areas in the two images (i.e., in central Spain 

and in northern Africa) are due to RFI filtering.  

 

The BEC, a joint initiative of the Spanish Research Council (CSIC) and the UPC, provides the 

SMOS-derived products for scientific applications. At the time of writing, the BEC offers the 

following L4 high resolution soil moisture products for the Iberian Peninsula (BEC, 2018): 

 The high resolution (HR) SMOS-MODIS, described above and applied in Chapter 3 in 

this thesis (Figure 1.3a). 

 

 The HR near real time (NRT) SMOS-MODIS product (Piles et al., 2013) takes profit of 

immediate acquisitions of MODIS data, which are obtained and provided by the 

Remote Sensing Laboratory at the University of Valladolid. 
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 The HR SMOS cloud-free product which uses ERA-Interim LST data as described above 

(Figure 1.3b). This product is applied in Chapter 2 of this Thesis. 

The enhanced HR SM dataset based on Portal et al. (2018) will be operationally available in 

the BEC website in a near future. Also, note that BEC offers a fire risk L4 product which is 

developed in Chapter 2 of this Thesis. 

 

1.4.2. The SMAP mission and products 

A. Characteristics of the mission 

 The SMAP mission (Figure 1.4) was developed in response to the United States National 

Research Council’s Decadal Survey, and is devoted to measure the surface soil moisture and 

the thaw/freeze soil state (National Research Council, 2007). The SMAP platform carries a 

radar and a radiometer, with both instruments sharing a conically-scanning reflector antenna, 

which is designed as a deployable light-weight mesh in order to avoid size and weight 

problems due to its large diameter (6 m). Although the radar instrument failed five months 

after launch, the mission continues providing information on soil moisture and soil state 

conditions using the passive instrument. SMAP orbit is sun-synchronous, at an altitude of 685 

km. The satellite has a revisit time of between 2 and 3 days, depending on the latitude, and a 

swath of 1,000 km. The resolution of its real aperture radiometer is of approximately 40 km. 

Soil emission measurements are obtained at a constant incidence angle of 40, using both 

dual-polarization and full-polarimetric modes. 

 

 

Figure 1.4. The SMAP mission in orbit (artist’s view). Source: NASA, 2014. 
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B. SMAP products 

 The classification of SMAP radiometer products is similar to that for SMOS and also divided 

in different levels (L). Here, these products are briefly explained. More detailed information 

can be found in JPL (2018a): 

 L0: it consists of the raw instrument’s data. 

 

 L1A_Radiometer: it is the radiometer data for each half orbit in time order and 

considering vertical and horizontal polarizations. 

 

 L1B_TB: this level provides calibrated estimates of geolocated brightness temperatures 

in time order. 

 

 L1C_TB: it consists of the half orbit L1B_TB data resampled to a 36 km grid (EASE2). 

 

 L2_SM_P: TBs allow obtaining these half orbit SM products, which are provided in the 

36 km EASE2 grid. 

 

 L3_SM_P: this L3 product contains daily composites of global SM data resampled at 9 

km and 36 km scales using an EASE2 grid. 

 

 L4_SM: advanced products which include surface and root-zone soil moisture (RZSM) 

data resampled at 9 km gridding. 

VOD information can also be retrieved at levels L2 to L4. In Chapters 4 and 5 of this PhD 

Thesis, the SMAP VOD datasets used are retrieved using the MT-DCA algorithm, and provided 

at 9 km sampling. Figure 1.5 shows an example for this product. 

 

 

Figure 1.5. Mean SMAP VOD (9 km gridding; period April 2015-March 2016) 

retrieved using the MT-DCA. From Konings et al. (2017). 
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1.5. Applications of L-band land products for society 

 L-band land products can prove useful for a wide range of applications within environmental 

sciences as well as for monitoring essential resources (Brown et al., 2013; Petropoulos et al., 

2018). In the last years, they are becoming of great interest for society, in particular through 

the development of operational and near real time products. In that sense, the synergy 

between L-band data and several monitoring and forecasting tools (e.g., meteorological and 

hydrological models, forest and crop exhaustive databases, or other EO datasets) has great 

potential for developing such products. This section reviews current and potential L-band 

applications over land, and their synergies with other datasets. 

 

1.5.1. Weather, hydrology and flood forecasting 

 Weather forecasts ranging from mesoscale to global scale are addressed using numerical 

weather predictions (NWP). SMOS and SMAP data fit the spatial resolution requirements to be 

used as input variables in these models. In these tools, soil moisture information is appropriate 

to initialize the land component, as it reduces uncertainties occurring when moisture is 

estimated by auxiliary variables (i.e., temperature and relative humidity; Drusch, 2007). 

Nevertheless, the spatial resolution of NWP models is expected to improve in the near future. 

In such case the applicability of downscaled moisture information such as the BEC L4 SM 

products should be studied. Complementarily to this, microwave SM data has been used to 

improve or correct precipitation estimates from NWP and EO satellites, which present a 

limited accuracy if compared with in situ measurements (see Brocca et al., 2016 for an 

example). The enhanced precipitation data should be used, for instance, to estimate river 

discharge or surface fluxes in large watersheds.  

 At regional and local scales, the focus has been put mainly in flood forecasting. The 

availability of SM data from EO satellites provides important information to enhance the 

current flood prediction systems. In that sense, Wanders et al. (2014) have studied the 

capacity of microwave SM information from SMOS, ASCAT, and AMSR-E to improve flood 

predictions of the European Commission’s European Flood Awareness System (EFAS). To this 

purpose, the authors have integrated the SM datasets within the LISFLOOD hydrological model 

(which is the core of the EFAS system). Results show that the accuracy of flood forecasts 

improves and that time errors in flood prediction decrease. In addition, the applicability of 

SMOS SM data to assess flood risks has been explored in Morocco (Kerr, 2014). Although the 

results in this field have been satisfactory till now, the spatial and temporal resolution of SM 

need improvement in order to predict flash-floods often occurring at small scale basins in 

extremely short time periods. In that sense, SM products with enhanced spatial resolution 

should be appropriate. In contrast, the 3-days revisit time over small areas remains as a 

limitation. 
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1.5.2. Drought and associated hazards 

Drought conditions are usually monitored using precipitation-derived indices. 

Complementarily to this approach, L-band soil moisture data offers the possibility to quantify 

water depletion in soils, which has a direct impact on vegetation. In that sense, Scaini et al. 

(2015) have shown good correlation (r >0.6) between SMOS L2 soil moisture anomalies and 

two common drought indices: the Standard Precipitation Index (SPI) and the Standard 

Precipitation Evapotranspiration Index (SPEI). These correlation values are found for short time 

scales (≤1 month), and are smaller than those found between SPEI or SPI and the in situ SM 

values in the region. The study has been carried out in the Soil Moisture Measurement Stations 

Network (REMEDHUS network; Duero Basin, Spain).  

Droughts, as well as record-breaking heat waves, have large impacts on vegetation, 

particularly affecting vegetation conditions and its biophysichal mechanisms, endangering crop 

production, and triggering wildfires. Remotely-sensed soil moisture data is a potential tool to 

detect drought conditions posing a risk of wildfires. Chapter 2 in this Thesis reviews and 

explores the applicability of microwave-derived SM information for fire risk assessment, taking 

profit of a large and consistent fire database from the European Forest Fires Information 

System (EFFIS) to study the soil state before fire occurrences in the Iberian Peninsula. Surface 

soil moisture is a variable linked to weather conditions in general, and to the dead fuel water 

content in particular. Concerning to VOD, it is related to the life vegetation water content, 

which is of great importance in fire propagation. In that sense, Forkel et al. (2017) use C-band 

VOD as a proxy of biomass (i.e., fuel amount) and vegetation hydric state (i.e., fuel dryness) to 

improve predictions of burned area and fire activity at a global scale. 

Importantly, drought conditions may lead to forest decline episodes. In this Thesis, Chapter 

3 takes profit of one of the few forest yearly monitoring programs to explain forest decline as a 

function of SMOS soil moisture data and regional climate and weather information. 

Concerning VOD, to author’s knowledge, no work has been developed exploring its capacities 

to detect forest decline. Nevertheless, Konings and Gentine (2017) show an interesting 

approach to explore vegetation isohydricity (i.e., the amount of stomatal regulation over the 

leaf water loss) from SMAP VOD data. Isohydricity determines the behavior of vegetation 

under hydric stress. 

Also, droughts and high temperatures reduce the GPP of vegetation thus reducing the 

carbon sink (Ciais et al., 2005; Barriopedro et al., 2011). Teubner et al. (2018) have shown that 

absolute values of VOD and changes on VOD (VOD) are correlated with GPP globally, and 

suggest that VOD at different frequencies (L-, C-, and X-bands) could potentially be used for 

GPP estimates. In addition, Sánchez-Ruiz et al. (2017) have applied L-band SM data as a water 

stress factor to track light use efficiency and to assess GPP in water-limited ecosystems.  

 

1.5.3. Monitoring carbon stocks 

Long records of VOD information allow monitoring changes in vegetation carbon stocks, 

providing highly valuable information to estimate the global carbon trends and fluxes. This has 
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been mainly addressed using C-, X- and K-bands VOD (e.g., Liu et al., 2015; Van Marle et al., 

2016; Brandt et al., 2017). L-band VOD records are still short and the first study providing 

carbon trends in vegetation using this microwave frequency is recent: Brandt et al. (2018) 

report carbon losses in African drylands’ vegetation, and explain that L-band VOD shows not 

saturation at high carbon densities. Chapter 4 in this Thesis and Chaparro et al. (in review) 

provide further analysis on the capacity of L-band VOD to estimate carbon stocks, comparing it 

with higher frequency bands and with carbon maps derived from airborne LiDAR (Light 

Detection and Ranging) measurements.  

The carbon cycle is tightly coupled to the water cycle (see Sippel et al., 2018 for a detailed 

review on this topic). For this reason, information on soil moisture is also important to improve 

our understanding on the carbon cycle. Scholze et al. (2016) analyse the constraint of SMOS L3 

SM data on carbon fluxes within the Carbon Cycle Data Assimilation System. The authors 

demonstrate that the SMOS product contributes to reduce the uncertainties on the net 

primary production, and changes the carbon flux pattern. Also, including L-band VOD as an 

additional observation within this model is promising. Hence, L-band SM and VOD data are of 

great interest to carbon cycle studies. 

 

1.5.4. Agriculture 

In croplands, soil water content and vegetation hydric state determine production and are 

crucial for food security. Agricultural droughts endanger crop yields and must be monitored. In 

that sense L-band SM data have been applied to compute the Soil Water Deficit Index (SWDI), 

an agricultural drought index defined by Martínez-Fernández et al. (2015). The SMOS-based 

SWDI has shown good agreement with other indices monitoring agricultural droughts, the 

Crop Moisture Index and the Atmospheric Water Deficit index, in the Duero Basin (Spain) and 

in northeastern Brazil (Martínez-Fernández et al., 2016; Paredes-Trejo and Barbosa, 2017). The 

same index has shown good capacity to report drought conditions in the United States using 

SMAP SM data (Mishra et al., 2017; Liu et al., 2017). Also, the applicability of L-band SM to 

monitor agricultural droughts has been shown by Sánchez et al. (2016) building the remote-

sensing based Soil Moisture Agricultural Drought Index. This index takes profit of the inverse 

relationship between SM, LST, and vegetation conditions (e.g., measured by the NDVI), and 

has been applied recently at a global scale (Sánchez et al., 2018). Finally, the Agriculture and 

Agri-Food Canada (AAFC) uses SMOS SM to derive crop-related applications (e.g., drought risk 

assessment, flood prediction, and food production estimation). AAFC is working to also include 

SMAP data to this system (Champagne et al., 2015; AAFC, 2016).  

Despite satellite surface moisture has proven to be useful to detect drought conditions in 

croplands, agricultural droughts are generally defined in the root-zone of soils (~1 m depth). 

RZSM can be modelled from surface retrievals (Ceballos et al., 2005; Albergel et al., 2008; 

Renzullo et al., 2014; Martens et al., 2017; Pablos et al., 2018) and be used for agricultural 

applications. For instance, Chakrabarti et al. (2014) have improved yield predictions in a 

Brazilian agricultural area assimilating 1-km downscaled SMOS SM data into a crop growth 

model, estimating both surface SM (0 to 5 cm) and RZSM (5 to 120 cm). Also, vegetation 

information from spectral indices (e.g., NDVI) reports the vegetation vigor, which is linked to 
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the water content of the soil root-zone. However, such indices present a lagged response to 

soil drought conditions (Schnur et al., 2010; Sánchez et al., 2016).  

Microwave EO data could also improve irrigation assessments. Satellite SM has been used to 

account for irrigation in different studies (e.g., Ines et al., 2013; Qiu et al., 2016; Singh et al., 

2016). Although irrigation techniques need higher spatial resolution (at least <100 m) than the 

currently available from microwave remote sensing, it is feasible to generally approximate 

crop water requirements at coarse scales. On one hand, monitoring soil moisture deficit (SMD) 

can be useful for irrigation schedule. In that sense, in the United Kingdom the Met Office 

provides SMD information at 40 km resolution using meteorological data. The SMD data can 

be improved using SMOS SM information in combination with a land surface model (Srivastava 

et al., 2013). On the other hand, estimating the RZSM and evapotranspiration (ET) is another 

approach to account for the crop water requirements. Estimating ET involves a modelling 

approach using SM or combining SM and VOD information (Martens et al., 2016). 

Importantly, VOD has great applicability to agriculture due to its relationship with water 

content, which can be used to monitor vegetation hydric state, as well as vegetation 

phenology and biomass. In that sense, L-band VOD has been applied to study crop phenology 

in different regions of the world (Hornbuckle et al., 2016; Piles et al., 2017) and to estimate 

corn and soy yields in Iowa, USA (Patton and Hornbuckle, 2013). Chapter 5 in this Thesis and 

Chaparro et al. (2018) apply SMAP VOD to derive seasonal metrics for crop yield estimation in 

north-central United States. Chapter 5 also provides more detailed review on VOD applicability 

to monitor vegetation phenology and crop yields.  

In addition, note that one of the objectives of the SMAP mission is to contribute to the 

predictions of the Famine Early Warning Systems Network (FEWS-NET, 2018). Right now this is 

only based on weather forecasts, and the future application of L-band SM and VOD retrievals 

should be studied.  

 

1.5.5. Other applications 

 Several applications of L-band satellite data over land have been studied in this Thesis, and a 

review on the studied fields has been provided above. Nevertheless, the number of potential 

applications and derived research paths which could benefit and/or arise from the use of 

microwave remote sensing observations (including L-band) is very large (Brown et al., 2013; 

Petropoulos et al., 2018). A succinct review on some of these applications/paths that have not 

been covered by this Thesis is provided hereafter. 

 Concerning land applications, there is some evidence showing that SM data could be used to 

anticipate conditions prone to the outbreak of desert locust (Schistocerca gregaria) plagues, a 

species which needs moist soils and vegetation blooms to reproduce (Gómez et al., 2017; 

Escorihuela et al., 2018). Similarly, the presence of flooded areas and moist conditions may 

favour the expansion of mosquito-borne diseases (e.g., malaria), and SM information can 

contribute to detect regions under epidemiological risk. Also, the sensitivity of microwave 

measurements to water contents can be applied to monitor standing water (e.g., inland 
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surface waters extent), as well as to predict risks after floods (e.g., landslides; Brocca et al., 

2012). In addition, SM is also a useful variable to study biodiversity, as it is correlated with 

species richness in some habitats. This has been demonstrated both for in situ soil moisture 

measurements (Litaor et al., 2008) and for EO SM data from the European Remote Sensing 

satellites (ERS-1 and 2; Sass et al., 2012).  

 Finally, other land applications where L-band products could play a significant role include 

transportation of nutrients and contaminants, runoff simulations, monitoring water reservoirs, 

improving greenhouse gases’ emission assessments, and monitoring habitat conditions for 

animals and plants, among others (see Tebbs et al., 2016). 

 

 

1.6. Thesis outline 

 This PhD Thesis presents a suite of environmental applications in which L-band microwave 

satellite observations are shown to provide new perspectives to the study of vegetation status 

and dynamics within a context of threats and challenges associated to present environmental 

changes. The work is organized in the following chapters: 

 Chapter 1 explains the motivation of this work, presents the main concepts of 

microwave radiometry, and reviews applications of microwave remote sensing for 

vegetation, with specific focus on L-band missions and products. 

 

 Chapter 2 studies the soil conditions prior to fire occurrences in the Iberian Peninsula. 

It provides a fire risk model for the region using SMOS SM and LST data to estimate the 

potential extension of wildfires. Also, this chapter reviews the applicability of other EO 

products for fire risk assessment, to put in context the relevance of satellite SM 

information in this field. 

 

 Chapter 3 explains the occurrence of forest decline episodes in Catalonia as a function 

of climate variables, SMOS SM data, and summer drought conditions. The interaction 

among the studied variables and the affected species is analyzed to understand the 

impact of drought on each particular tree species. 

 

 Chapter 4 presents a comparative analysis of the sensitivity of different VOD products 

(at L-, C-, and X-bands) and the Enhanced Vegetation Index to the above-ground 

carbon density (ACD) of vegetation. The study is conducted in Peru, southern Colombia 

and Panama, and it is mainly focused on tropical forests. It quantifies the relative 

contribution of ACD and forest cover proportion to the VOD and EVI signals. 

 

 Chapter 5 provides seasonal SMAP VOD metrics to model crop yields in the United 

States Corn Belt. The effect of crop heterogeneity on the accuracy of these estimates is 
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studied, and the capacity of VOD to provide yield estimations for particular crops is 

assessed. 

 

 Chapter 6 provides the main conclusions of this PhD Thesis, lists the original 

contributions, and suggests future work to enhance the proposed applications. 
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Abstract 

This chapter analyses the applicability of soil moisture data for fire risk assessment over the 

Iberian Peninsula. Firstly, this work provides a review of the variables needed in fire risk 

prediction tools, and puts in context the importance of soil moisture in this field. Secondly, it 

studies the soil conditions prior to fire outbreaks in the Iberian Peninsula for the period 2010-

2014. The study uses SMOS soil moisture data and surface temperature information to capture 

drought episodes that can increase the risk of fires, and to determine thresholds of moisture 

and temperature that condition the fire spread. Results have been used in operational 

applications for fire prevention in the province of Barcelona. Finally, this chapter provides a 

linear regression model estimating the potential propagation of fires as a function of soil 

surface conditions, land cover, ecoregions, and months when fire outbreaks occur. The model 

explains 65% of potential burned area variability, and it has an overall accuracy of 83%. This 

suggests that the proposed methodology is valid for fire risk prediction in the region.  
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2.1. Introduction 

Wildfires are a multifaceted phenomenon involving interactions between human and 

environmental factors. A comprehensive framework to assess wildfires causes and risk should 

focus on anthropogenic causes, vegetation characteristics, topography, and weather. First and 

foremost, humans must be considered as the main component affecting wildfires behaviour. 

Human activities (e.g., land clearing, agriculture, resettlements, negligence, or arson, among 

others) are principal causes of fire ignition in most areas of the world. For instance, 95% of 

fires in the Mediterranean regions are directly or indirectly caused by humans (FAO, 2007, pp. 

111-118). Moreover, humans change the availability, continuity, and distribution of fuels as a 

result of land use changes, sprawl of urban areas, and systematic fire extinction. Consequently, 

most wildfires burn in patchy landscapes where forest, agricultural, and urban zones 

intermingle, representing a risk for human lives and beings. In particular, the expansion of 

wildland–urban interface (WUI) areas and the fuel accumulation due to systematic suppression 

of fires increase these risks (Cohen, 2008; Syphard et al., 2008). Importantly, vegetation, 

topography, and weather conditions strongly influence fire behaviour and extent (Syphard et 

al., 2008; Verdú et al., 2012). The abundance, distribution, and structure of vegetation are 

critical in wildfire ignition and spread and respond to natural and anthropogenic factors. 

Locally, topography influences climate and vegetation characteristics, fuel moisture, and wind 

effects (Whelan, 1995, pp. 29-44). Finally, weather determines the fire environment and the 

ignition conditions (Padilla and Vega-García, 2011). In particular, wind is the most important 

driver of fire spread (Whelan, 1995, pp. 29-44). Temperature and rainfall are crucial for fire 

ignition and propagation, as they condition the water availability for vegetation, and the 

moisture of dead fuels. In that sense, climate change could lead to more frequent and intense 

droughts in some regions (e.g., the Mediterranean basin) and to extreme temperature events, 

which facilitate drying and combustion of vegetation fuels. As a result, fire seasons have 

lengthened, and the area affected by anomalous long exposure to weather situations posing a 

risk of fire has increased globally (Oppenheimer et al., 2014; Jolly et al., 2015).  

 Due to the complexity of fires causality, assessing fire risk needs of timely and regular 

information on a wide range of variables, at different temporal and spatial scales. Nowadays 

EO satellites fulfil these requirements, providing large amount and diversity of data applicable 

to forest fires prevention. Nevertheless, most common fire risk indices are meteorological 

indices based on estimates of fuel moisture conditions, which, in turn, are derived from 

modelled and in situ information of temperature, precipitation, and wind. Instead, developing 

new fire risk assessment tools based on satellite data is still a work in progress, especially 

regarding those variables linked to the fuel moisture content, such as soil moisture. 

 In this chapter, the potential contribution of remotely sensed soil moisture data to fire risk 

prediction tools is assessed, and a fire risk model in part based on SMOS-derived soil moisture 

information is built. The chapter is structured as follows: Section 2.2 provides a review on fire 

risk assessment from remote sensing derived variables and fire risk meteorological indices. 

This section is mainly focused on the Copernicus programme, a European Union initiative 

aiming to monitor the Earth. Section 2.3 reviews previous research applying remotely sensed 

soil moisture in fire risk assessment. Sections 2.4 to 2.9 report the study of moisture and 



Chapter 2 
The role of soil moisture and surface temperature on wildfires in the Iberian Peninsula 

29 

temperature conditions previous to forest fires occurrences in the Iberian Peninsula, and detail 

the development of new fire risk indices based on SMOS SM and LST data from the ECMWF, 

which is the main objective of this work. Conclusions for this chapter are explained in Section 

2.10. 

  

 

2.2. An approach to fire risk assessment from the Copernicus 
programme 

2.2.1. An overview of the Copernicus Programme: monitoring the Earth 

 The Copernicus Programme aims to monitor the Earth from satellite, airborne, and in situ 

data. It provides a complete range of products from different thematic areas and at different 

spatial scales. Data are classified into six main services: land, marine, atmosphere, climate 

change, emergency management, and security. The Copernicus land service permits a multi-

scalar approach as it is structured in the local, pan-European, and global components. These 

components provide key data for fire risk studies, such as land cover and land use changes, 

topography, vegetation conditions, and soil moisture and surface temperature. The climate 

change service provides meteorological information through the ECMWF. Finally, concerning 

to the Copernicus emergency management service, it includes the EFFIS and the Global 

Wildfire Information System (GWIS), which provide fire risk forecasting and fire monitoring 

services. Hence, the structure of the Copernicus programme is particularly consistent with the 

comprehensive approach needed in fire risk assessment. More details on this structure and 

these products are provided in Figure 2.1, and examples of applications using Copernicus 

datasets are reviewed in Sections 2.2.2 to 2.2.5. 

 

2.2.2. Mapping land cover and land use from space: understanding fire-human 
interaction and fire behaviour 

 Satellite-derived land cover and land use data provide information on fuel types and their 

coexistence with human activities. This is required to evaluate fire ignition and propagation 

risks threatening human lives and beings, as well as agricultural and environmental services. 

 In WUI areas, the anticipation to fire danger situations is crucial to protect human 

populations and their economic activities. In that sense, the Urban Atlas (Copernicus, 2018a) 

provides an accurate picture of urban sprawl in the fringe of urban zones. It contains land 

cover and land use data for ~700 European cities (>50,000 inhabitants) and their surroundings. 

The Urban Atlas is built from very high-resolution satellite imagery (mainly from the “Satellite 

Pour l'Observation de la Terre – 5”; SPOT-5), which enhances its applicability in fire prevention. 

For instance, it has been used to detect urban structures, which could be endangered under 

extreme fire conditions (Mitsopoulos et al., 2015). 
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Figure 2.1. Copernicus programme services. Services, datasets and systems which 

can contribute to fire prediction applications are detailed, and those specifically 

mentioned in Sections 2.2.2 to 2.2.5 are written in italics. Note that the ESA-CCI is 

a project linked to Copernicus but not included in any particular service (dashed 

line). Adapted from Copernicus, 2018b. 

 

 Beyond urban zones, the density of human population decreases, and agriculture and 

natural vegetation lands predominate. Consequently, the number of fire ignitions is lower but, 

in contrast, fires may propagate throughout large areas. They can affect different vegetation 

covers and land uses, which can be classified from satellite-derived land cover maps. At a 

global scale, the ESA–CCI Land Cover supplies land cover data at 300 m resolution, with 

accuracy between 70.8% and 74.4% (ESA, 2016). In Europe, the Corine Land Cover map 

contains harmonized data of land cover and its changes since 1990. This information is used to 

estimate the effect of land covers on fire spread. Particularly, it has been found that larger 

fires burn coniferous forests and scrublands, whereas smaller ones burn broad-leaved forests, 

agroforestry areas, crops, and urban zones (Bajocco and Ricotta, 2008; Verdú et al., 2012).  

 

2.2.3. Digital Elevation Models account for topography effects on fire 
behaviour 

 Topography influences the local vegetation distribution and climate conditions due to 

altitudinal gradients, and affects the direction and speed of fire propagation (Whelan, 1995, 

pp. 29-44). Importantly to the scope of this chapter, topography influences solar radiation, 

which conditions moisture content of fuels and the vegetation density. Topography is 

considered in fire risk modelling using digital elevation models (DEM) from national databases 

(e.g., Verdú et al., 2012). Nevertheless, a European DEM (EU-DEM) is now available 

(Copernicus, 2018b). It is based on the fusion of different DEM sources, including the Global 
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Digital Elevation Model from the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (JPL, 2018b). The application of EU-DEM in fire risk studies is still a matter of 

future work. 

 

2.2.4. Spaceborne-derived measurements of fuel and soil conditions 

 Together with human-related factors, vegetation types, topography, and meteorology, fuel 

loads and vegetation hydric status are main factors in fire risk assessment. They condition the 

availability and flammability of fuels, and are usually assessed with optical and near infrared 

vegetation indices. For instance, Knorr et al. (2011) found that under homogeneous fire-prone 

meteorological conditions in Greece, large fires occurred majorly in areas with high fuel loads 

(i.e., vigorous vegetation). In that case, these areas were detected by high values of the 

fraction of absorbed photosynthetically active radiation (FAPAR), which is related to GPP. 

 Vegetation indices, such as the NDVI, have also been used as indicators of vegetation water 

stress in fire risk studies (Wang et al., 2013). Actually, NDVI has been applied to estimate live 

fuel moisture content (FMC), a crucial variable in fire ignition and propagation (Chuvieco et al., 

2014). Initially, the link between NDVI and FMC was established for grasslands (Hardy and 

Burgan, 1999). However, weak correlations between both variables were obtained in 

scrublands and forests (Chuvieco et al., 1999). To bridge this gap, the combined use of NDVI 

and LST was applied to estimate FMC and associated fire risk (Chuvieco et al., 2004). Note that 

an increase in LST can be interpreted as an increase in vegetation water stress and/or soil 

surface dryness (Chuvieco et al., 2004; Li et al., 2016). 

 Consequently, the study of the soil surface state is paramount to detect dry conditions 

increasing the risk of fire. LST and SM are directly related to live FMC and also to the moisture 

content of dead fuels (e.g., litter), which is as well a main driver of fire propagation (Chuvieco 

et al., 2014). SM and LST are variables which can be estimated at global scale using space 

borne sensors. Satellite-derived LST datasets can be obtained from several platforms (see 

Tomlinson et al., 2011 for a review, and Copernicus 2018b), but present the disadvantage of 

cloud masking. In contrast, modelled surface temperatures such as those provided by ECMWF 

have a continuous coverage, which will be necessary for the development of fire risk estimates 

presented in this chapter. Concerning SM state, Copernicus provides the Soil Water Index 

(SWI) as the percentage of water in the soil at different time lengths. This is currently derived 

from MetOp C-band radar backscatter measurements. MetOp satellites are planned to provide 

continuous data complementing the quantitative SM estimates from SMOS and SMAP missions 

(Naeimi et al., 2009).  

 

2.2.5. Meteorological fire risk indices and burned area mapping 

The Copernicus emergency management service encompasses the EFFIS and GWIS systems. 

EFFIS is devoted to support the European Union environmental policies providing a wide range 

of information related to fire (San-Miguel-Ayanz et al., 2012 and 2013). GWIS is the extension 
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of EFFIS at a global level, and is a joint initiative of Copernicus and the Group on Earth 

Observations (GEO, 2018). Among the information provided by these systems, the burned area 

product and the fire risk forecast are within the scope of this chapter. 

The burned area mapping is based on the MODIS images at 250 meters resolution. Burned 

areas larger than 30 ha can be mapped, although smaller fires may be included if they are 

detected (San-Miguel-Ayanz et al., 2012). The fire risk evaluation is based on the well-known 

Canadian Fire Weather Index (FWI; Van Wagner, 1987). This index uses meteorological data 

(temperature, relative humidity, wind, and rain), which are applied to derive the six 

components of the FWI (Figure 2.2). Three of these components are fuel moisture codes, 

which correspond to the moisture contents of surface, medium depth, and deep organic 

matter (Fine Fuel Moisture Code [FFMC], Duff Moisture Code [DMC], and Drought Code [DC], 

respectively). The combination of the latter two results on the Build Up Index (BUI), and the 

joining of the FFMC with wind speed data, builds the Initial Spread Index (ISI). Finally, ISI and 

BUI are grouped to obtain the FWI (Figure 2.2). In the case of EFFIS, the FWI information is 

derived from the ECMWF, which offers a wide range of weather forecast models and 

reanalysis products derived from in situ meteorological information (ECMWF, 2018). 

 

 

Figure 2.2. Diagram showing the six components of the FWI. Adapted from 

Government of Canada, 2016. 

 

It is also important to note that, outside the scope of Copernicus, many other fire risk indices 

are mainly based on dead fuels moisture estimation from in situ meteorological data. This is 

the case of the McArthur Forest Fire Danger Index (FFDI; McArthur, 1967), or the National Fire 

Danger Rating System (Deeming et al., 1977), which are mainly applied in Australia and the 

United States, respectively. These indices, as well as the FWI, afford reliable and widely used 

fire risk predictions, but could potentially be complemented with L-band estimates of soil 
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moisture. These estimates are obtained globally, in contrast to the limited distribution of 

meteorological stations in some regions of the world. Additionally to this advantage, the 

retrieved variable (SM) is directly linked to the water content of fuels and organic matter of 

soils. 

 

 

2.3. Review of fire risk assessment studies based on microwave 
remote sensing soil moisture data 

 Different authors have analysed the relationship between wildfires and satellite soil 

moisture estimates derived from microwave sensors. For instance, Aubrecht et al. (2012) 

compared monthly fire products for an especially dry year (2009) in Africa with the SWI from 

the ASCAT satellite. They reported seasonal spatial correlation patterns between dry soils and 

burned regions. Another study case was reported by Bartsch et al. (2009), who analysed 

satellite-derived soil moisture anomalies from ERS-1 and ERS-2 scatterometers, measuring at 

C-band (ESA, 2018a), and compared these data with forest fires burning in Siberia between 

1992 and 2000. The authors reported that 80% of fires occurred under dry soil conditions in 

summer and that wet soil surface limited the extent of burned area. 

 Further insight into the relationship among soil moisture and fires was presented by Forkel 

et al. (2012) in the region of Lake Baikal (Siberia). The authors studied fires for the period 

2003–2009, and used the surface moisture product derived from the AMSR-E. The authors 

mentioned that in 2003 fires occurred mainly in permafrost soils, which presented negative 

surface moisture anomalies. Interestingly, the authors concluded that lack of precipitation 

during the previous summer (2002) led to frozen soils storing an unusual low water content 

during winter 2002/2003. Consequently, the amount of water released by permafrost melting 

in spring 2003 was low, as detected by remotely sensed soil moisture products. Clearly, this 

situation favoured the extreme fires that occurred in June 2003. 

 Research has also been focused on the comparison between meteorological fire weather 

indices and remotely sensed soil moisture. Shvetsov (2013) compared the FWI with SMOS data 

in Siberia during 2011 and 2012, and found concordance between increasing soil moisture and 

decreasing risk (FWI) in some areas. However, a good FWI-SM relationship was difficult to 

obtain for the whole region under study. Also, Holgate et al. (2017) studied the link between 

SMOS data and risk indices. In this case, the authors replaced different FFDI components by 

SMOS-derived soil moisture. The resulting FFDI showed very close results with the original 

FFDI, when the component replaced was the Drought Factor (DF). The authors suggested that 

applying this replacement would simplify the FFDI calculation. 

 Concurrently to part of the above-mentioned research, our group at the UPC started 

preliminary studies on the applicability of SMOS data to wildfire risk prediction over the 

Iberian Peninsula. These studies considered the complementarity between SMOS-derived high 

resolution (1 km) SM data (L4 product) and MODIS LST information (also at 1 km resolution). 
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This was expected to provide accurate information on the soil state. Firstly, Piles et al. (2011b) 

compared moisture-temperature conditions prior to the occurrence of 12 fires (>35 ha) 

burning in 2010, with the same information obtained for randomly selected unburned zones. 

Soil moisture was found to be lower, and LST to be higher, in burned areas prior to fire 

occurrences. Using these differences between burned and unburned sites, it was concluded 

that high fire risk was found for SM < 0.04 m3/m3 and LST > 33°C. A validation test with 67 

randomly selected fires was done achieving an accuracy of 58%. Using a similar approach, 

Chaparro et al. (2014) analysed 63 fires occurring in Catalonia (NE Spain) for the period 2010–

2013. The methodology was the same as in the previous study, but the comparison between 

burned and unburned pixels ensured similar conditions in solar radiation and aspect, two 

variables that condition soil moisture. Results showed significant differences (p<0.05) between 

burned areas (median SM = 0.10 m3/m3) and unburned ones (median SM = 0.13 m3/m3). 

 This research demonstrated that the role of satellite-derived soil moisture in fire risk 

assessment is very promising, and that its operational applicability is feasible. First studies in 

the Iberian Peninsula were encouraging, and suggested that the combined use of surface 

moisture and temperature -together with the consideration of complementary variables-, 

could lead to obtain reliable fire risk indices based on L-band soil moisture data. Hence, 

focusing on the Iberian Peninsula and the Balearic Islands, this research line has been one of 

the main topics of this PhD.  

 

 

2.4. Study area 

 The Iberian Peninsula and the Balearic Islands are located in the southwest of Europe 

(−9.9°W – 4.4°E; 43.9°N – 35.9°N), and cover approximately 590,000 km2. Figure 2.3 shows the 

temperature and precipitation patterns in the region. In general terms, it can be classified in 

three main climatic areas: (i) the Mediterranean region, with hot and dry summers, mild 

winters, and annual precipitation generally below 900 mm; (ii) the central region, with 

continental climate (cold winters and hot summers) and low annual precipitation (<600 mm 

out of mountain ranges); and (iii) the Atlantic region, with high annual precipitation in 

northern Portugal and northern Spain (1,000 to 1,400 mm), but warm and dry conditions in 

southern Portugal and in the Atlantic coasts of Andalucía (southern Spain). In the Iberian 

Peninsula, mean annual temperatures are warmer in the south and in the Mediterranean coast 

(generally >15C), and colder in the northern half of the region (generally <15C, except for the 

Ebro valley). 

Due to the contrasting climatic conditions, different vegetation types and fuel loads are 

found through the Iberian Peninsula. In the north and the northwest, humid broadleaved 

forests are dominant, and high precipitations lead to the accumulation of large amounts of 

fuel. In contrast, drier conditions in the Mediterranean region reduce the fuel amounts, and 

forests coexist with scrublands. The central Iberian Peninsula is dominated by agriculture -in 
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the central plateau- and by mixed woodland-agriculture landscapes. Forests dominate the 

mountain ranges delimiting the plateau area. 

 

 

Figure 2.3. (a) Mean annual accumulated precipitation; (b) mean annual 

temperature. Reference period: 1951-1999. Source: Ninyerola et al., 2005. 

  

 The dry and warm summer conditions –especially in the Mediterranean-, the high fuel loads 

in the northern and northwestern region, and especially the frequent impact of droughts in the 

entire Iberian Peninsula, propitiate the occurrence and propagation of wildland fires. 

Consequently, the Iberian Peninsula is a high-fire risk region where extensive areas are burned 

causing important damage and economic loss (Pereira et al. 2005; Padilla and Vega-García, 

2011; San-Miguel-Ayanz et al. 2013). In particular, the countries of the European Union with 

the largest burned areas per year have been Spain (161,923 ha) and Portugal (107,396 ha), for 

the period 1980-2016 (San-Miguel-Ayanz et al., 2017, p. 117). 

 

 

2.5. Data 

 The following set of variables has been used to describe the conditions before fire 

occurrences in the Iberian Peninsula: fire burned area, SM and LST conditions before fire both 

in absolute and relative terms (i.e. anomalies), land cover information, the region where the 

fire burned, and the month of the fire outbreak. Complementarily, a database for moisture 

and temperature conditions in unburned pixels has been built in order to compare burned and 

unburned areas. 
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2.5.1. Fires dataset 

 A forest fires dataset containing fires affecting more than 10 ha for the period 2006–2014 

has been provided by the European Forest Fires Information System (San-Miguel-Ayanz et al., 

2012). The provided GIS layout includes wildfires’ perimeters, coordinates, and the date of 

occurrence. Data for the period 2006–2009 are used as complementary information for 

unburned cells selection (see Sections 2.2.5, 2.7 and 2.8). The dataset studied here (2010–

2014) contains 2,076 wildland fires larger than 10 ha. Approximately the 90% of those fires are 

smaller than 1,000 ha, while the remaining 10% is larger. Only six fires are larger than 10,000 

ha (see Table 2.1). 

 

Table 2.1. Number of fires classified by the size of burned area. 

Burned area Number of fires 

10 - 100 ha 968 

100 – 1,000 ha 971 

1,000 – 10,000 ha 131 

>10,000 ha 6 

Total 2,076 

 

2.5.2. Moisture and temperature information 

The cloud-free SMOS-derived soil moisture product at 1 km resolution (see Section 1.3) has 

been applied, as it allows robustly computing moisture trends and anomalies for the study 

period. This dataset is available at the BEC website (BEC, 2018). Only SMOS ascending passes 

(approximately at 6 a.m., local time) have been used, in order to detect conditions prior to 

forest fires (most of them burning before the afternoon pass of SMOS). Daily LST at 0.125° has 

been obtained from ERA-Interim models of the ECMWF (ECMWF, 2018). It is a reanalysis 

dataset for 12 a.m. (local time), which is interpolated to the SM 1 km grid using the nearest 

neighbour method. 

Moving averages and anomaly time series at 9-day and 30-day time scales are computed for 

both variables in order to detect drought periods involving risk of fire. To produce the 

anomalies, firstly monthly means of each variable are calculated. Secondly, in order to obtain 

continuous time series, a linear interpolation is performed between mean values of each pair 

of consecutive months. These time series represent the average moisture and temperature 

conditions. In the third and final step, the difference between the moving means and the 

corresponding average conditions is calculated from the day of interest to 9 and 30 days 

backwards. 
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2.5.3. Land cover information and ecoregions 

 Land cover data from the CORINE Land Cover Map (Copernicus, 2018b) at 250 m resolution 

is used to classify the fires depending on the type of vegetation burned. CORINE provides 44 

categories of land cover classified in 5 groups: artificial surfaces, agricultural areas, forest and 

semi-natural areas, wetlands, and water bodies. All the categories are treated separately, 

except for the group “agricultural areas” which is considered as a single cover category.  

 

 

Figure 2.4. Regions defined in the study. Black lines show the borders of the 

ecoregions and phytoregions used for Spain and Portugal, respectively. 

 

 Also, it has been necessary to classify fires as a function of their geographic region and its 

biogeophysical and climatic characteristics. The 53 ecoregions defined by the Spanish Forest 

Service have been useful to this purpose, as it has been previously shown in Padilla and Vega-

García (2011). In Portugal, the geographical division is based on the map of 24 

phytogeographic regions included in the environmental atlas of Portugal (Paes do Amaral, 

2000). Regions are grouped as shown in Figure 2.4 in order to simplify the study. Due to 

different climates and forest fire patterns, ecoregions in the north of Spain (28.9% of fires) and 

Mediterranean regions (4.8% of fires) are considered separately. A third group is formed with 

the central Spanish ecoregions (5.7%) located in the inland Peninsula and, in most cases, 

within the continental climate of the central plateau. In Portugal, the phytogeographic 

classification assembles the 24 regions in three general groups: North, Centre and South (Paes 

do Amaral, 2000). However, in order to consider different biogeographic characteristics within 

the country (Aguiar et al. 2008, Costa et al. 1998), here five regions are finally delimited: 

northwestern Portugal (43.2% of fires), northeastern Portugal (13.6%), Atlantic-Centre (2.8%), 

Alentejo (0.8%) and Algarve (0.2%). 
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2.5.4. Pre-fire conditions database construction 

 In order to obtain one single datum per variable and burn episode, the GIS layout containing 

forest fire perimeters has been clipped to the different data layers described above. The 

median SM and LST data before fire occurrences (as well as the median of the means and 

anomalies) are calculated using all pixels within a fire, and are assigned to each episode. These 

data have been considered only when at least one pair of moisture-temperature values is 

available from the fire date to three days backwards. In this case, the most recent data are 

included in the database. A 3% of fires have not accounted with moisture and/or temperature 

data for the day of occurrence to three days backwards, and have been therefore eliminated 

from the dataset. This leads to a final database containing 2,013 fires out of the 2,076 

contained in the EFFIS database (i.e., 97%). 

 Concerning to land cover, one single category is assigned to each wildfire, corresponding to 

the modal cover within the fire-affected area. Regions are also assigned to each forest fire. In 

the few cases in which a fire occurred across more than one region, the region assigned to the 

episode is the one containing the largest burned area.  

 

2.5.5. Database for unburned areas 

 A second database is built including SM and LST data in more than 50,000 unburned cells per 

year. These cells are chosen randomly after excluding (i) pixels without flammable soil uses 

(based on the CORINE Land Cover Map), and (ii) all the burned cells from 2006 to the study 

year. The latter criterion has been used as previously burned cells are less probably affected by 

wildland fires until vegetation recovers some years later. 

 

 

2.6. Fire distribution and moisture-temperature patterns in the 
Iberian Peninsula 

2.6.1. Spatial and temporal distribution of wildfires during the study period  

 During the period 2010–2014, approximately a total of 760,000 ha burned in the region 

(only considering the fires larger than 10 ha registered in EFFIS). Wildfires were irregularly 

distributed throughout the Iberian Peninsula. Most forest fires burned in Galicia, the 

Cantabrian coast, and the north of Portugal. In contrast, few fires occurred in other regions 

such as the Mediterranean area. These fires, however, were extremely large in 2012 (Figure 

2.5). 

 The number of fire occurrences and the burned area broadly varied among different years 

(Figure 2.5). In 2010, 2011, and 2013, the burned area ranged between 125,000 and 191,000 

ha. Rarely, only 33,500 ha burned in 2014. In contrast, in 2012 the burned area was very
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Figure 2.5. Wildland fires in the Iberian Peninsula and Balearic Islands (from EFFIS 

database) for the period 2010–2014. The number of fires for each year is shown. 
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Figure 2.6. Accumulated number of wildfires and accumulated burned area during 
2012. Two patterns are observed: (1) numerous small forest fires (mean area = 
608 ha) which mainly occurred in the northern Iberian Peninsula and Portugal, 
and (2) few but large wildland fires (mean area = 2,872 ha) which burned in few 
days in the Mediterranean region. 

 

 

 

Figure 2.7. Accumulated number of wildfires and accumulated burned area during 

2010, 2011, 2013, and 2014. 
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remarkable (>270,000 ha). This is probably due to the high temperatures (generally 2°C above 

the mean) and the low precipitations (15% below the average) during that year (AEMET, 2013). 

Figure 2.6 shows the evolution of burned area and the number of forest fires during the 

exceptional year of 2012, when the drought situation favoured the occurrence of big forest 

fires (up to 32,500 ha) especially in the Mediterranean region (see Figure 2.5 and Figure 2.6). 

During the study period, numerous fire outbreaks occurred in northern Spain and northern 

Portugal. Two fire periods in this area must be highlighted: October 2011 (see Figure 2.7; fire 

extensions up to 6,100 ha), and February-March 2012 (see Figure 2.6; fire extensions up to 

2,900 ha).  Finally, note that fires <10 ha (not studied here) are quantitatively important in the 

Iberian Peninsula (e.g., in the period 1984–2004, 25% of fires larger than 5 ha in Portugal did 

not exceed a size of 10 ha; Aguiar et al., 2008). 

 

2.6.2. Fire distribution in the Iberian Peninsula is linked to climate, soil 
moisture, and temperature patterns 

 To the scope of this chapter, it is important to stress the climate contrasting conditions 

between the Mediterranean area and the north-western Atlantic region (see Section 2.4). This 

led to important differences in moisture and temperature conditions between these two 

regions during the study period. In that sense, hot and dry soils prevailed in the Mediterranean 

(Figure 2.8 a and c), and presented little variability in terms of water content (Figure 2.8 b). In 

contrast, soils were wetter in average in the north-west (Figure 2.8 a). 

   The distribution and extent of wildfires in the Iberian Peninsula were coherent with these 

different patterns. On one hand, high moisture facilitates the accumulation of a lot of fuel in 

the forested landscapes of the northwest. However, this fuel is humid and its low flammability 

limits the spread of wildfires. Nevertheless, during drought periods large fires may burn in the 

region (see Figure 2.5). On the other hand, generally, a minor fuel accumulation due to more 

reduced water availability limits the number of ignitions in the Mediterranean. Still, in 

particular situations when fuel finally accumulates, the dry summer conditions can lead to the 

occurrence of very large forest fires, such as during 2012 (Pausas, 2004; Verdú et al., 2012; see 

Figure 2.5). 

 Besides the comparison between these two Iberian regions, note that the southwestern 

Iberian Peninsula was the most humid area in terms of average soil moisture (Figure 2.8a). This 

shows that fuel accumulation is possibly more dependent on precipitation (higher in the 

northwest; see Section 2.4). Actually, soil moisture is influenced by different factors and 

precipitation is not the only important variable conditioning moisture, as shown in recent 

studies (Polcher et al., 2016). Also, the high variability of moisture in the southwest (Figure 

2.8b) and the high temperatures in this area (Figure 2.8c) suggest that dry and hot soils occur 

in some periods and might restrict the availability of combustible. 

 Finally, note that the central plateau presented the largest variability in terms of surface 

temperatures, considering the period 2010-2014 (Figure 2.8d). This is coherent with its 

continental climate. The high summer temperatures and the lack of precipitation reduce the 
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availability of fuels in the region and the number and extension of fires, except for the 

mountain ranges which surround this area (Vecín-Arias et al., 2016). 

 

 

Figure 2.8. (a) Mean soil moisture, (b) standard deviation of soil moisture, (c) 

mean land surface temperature and (d) standard deviation of land surface 

temperature. All the variables are computed for the period 2010-2014. 

 

 

2.7. Pre-fire moisture and temperature conditions in the Iberian 
Peninsula 

  

To understand the conditions in which fires burned, moisture and temperature data for both 

burned and unburned cells have been compared. Figure 2.9 shows the results for year 2013 as 

an example. In order to simplify the interpretation, fires are classified in three groups (<500 ha, 

500–3,000 ha, and >3,000 ha). It can be seen that, although the range of conditions for both 

variables in unburned pixels is wide, generally days with dry and warm soils are frequent in the 

Iberian Peninsula (Figure 2.9). This facilitates the ignition and spread of wildfires, especially on 

the warmest and driest days which generally occur in summer. In that sense, the distribution 

of burned cells shows narrow ranges within the two studied variables. Most fires –and 

particularly the largest ones- burned in drier and warmer soils than the median of unburned 

cells (Figure 2.9).  

 To provide further detail on the fire outbreak conditions, this study has been carried out 

separately by years and months in order to identify the most important fire episodes and when 
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they occurred. For each fire, moisture-temperature data are coupled to take advantage of the 

complementarity between both variables, coherently with previous studies (Chaparro et al., 

2016a) and with results presented in Figure 2.9. Also, in order to determine which fires burned 

in dry and warm soils, reference values defining normal moisture-temperature conditions are 

stablished yearly. Following Figure 2.9, these values are calculated as the overall yearly 

medians of both variables for the unburned cells in the study region, and are used as an 

approximation to the general conditions of each year. Considering anomalies, obviously zero is 

the reference value. Finally, means and anomalies of SM and LST are plotted in Figure 2.10 and 

Figure 2.11, in combination with the month of occurrence and the burned area, respectively. 

Figures are plotted only for the 30-day time scale. Similar results have been obtained for 9-day 

periods (not shown). 

 

 
Figure 2.9. Comparison of SM-LST conditions between burned and unburned 

areas during 2013. Green points, red triangles, and black squares correspond to 

wildfires <500 ha, between 500 and 3,000 ha, and >3,000 ha, respectively. Black 

dashed lines show the median SM and LST during 2013 in unburned pixels. The 

distribution for both variables in not burned areas during 2013 is shown as ‰ of 

pixels and days presenting each pair of moisture-temperature values. White 

represents < 0.1‰. 

 

 Results show that the warmest (2011) and the driest (2012) years in the study region 

according to the median soil conditions (see Figure 2.10 and Figure 2.11) were the years with 

more fire outbreaks (618 and 496, respectively). High soil surface temperatures in 2011 reflect 

the prevailing high air temperatures in the Iberian Peninsula during that year (AEMET, 2012). 

In 2012, dry soils are related to the extremely low precipitations in the study area (AEMET, 

2013).  

 In contrast, the number of fire outbreaks in 2014 is unexpectedly low (n=96) regarding the 

median SM-LST values (similar to 2011 and 2013). Then, an overall yearly value for each 
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variable is not descriptive enough of the real situation in 2014, and a more detailed description 

is needed: in 2014, winter months were very hot (increasing the average temperature), but 

rainy, while summer was not markedly abnormal with respect to climatic air temperatures and 

precipitations (AEMET, 2015). This probably explains the low number of fire occurrences 

during that year. 

 Most wildfires burned when temperature was higher and moisture was lower than the 

reference values (i.e., yearly medians), which hereafter will be simply defined as fires occurring 

under dry and hot soils (Figure 2.10 and Figure 2.11). In particular, 75% of fires burned in these 

dry-hot conditions considering 30-day means (79% for 9-day, not shown). Regarding moisture 

and temperature anomalies, soils drier and hotter than the average preceded the 71% of fire 

outbreaks (30-day anomalies; 79% for 9-day, not shown), but this proportion changes for 

different fire sizes (Figure 2.11 and Table 2.2). 

  

 

 

 

Figure 2.10. (a) Mean SM and mean LST before fires. Dashed lines represent the 

yearly median of LST and SM in the region; (b) anomalies of SM and anomalies of 

LST before fires. In (a) and (b), fires are represented per year (columns) and 

month (colour bar). All the variables have been calculated at 30-day time scale. 
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Figure 2.11. (a) Mean SM and mean LST before fires. Dashed lines represent the 

yearly median of LST and SM in the region; (b) anomalies of SM and anomalies of 

LST before fires. In (a) and (b), black squares represent fires >3000 ha, red 

triangles represent fires between 500 and 3000 ha, and green dots represent fires 

<500 ha. 

 

 

Table 2.2. Percentage of fires burning in drier and hotter conditions than the 
median SM-LST (first row) and percentage of fires occurring under drier and 
hotter than usual conditions in the site (second row). Results are reported at 30-
day time scale. 

Pre-fire conditions 
Burned area (ha) 

<500 500-3,000 >3,000 

SM< annual median & LST > annual median 71% 83% 90% 

Anomaly SM< 0 & Anomaly LST > 0 68% 71% 84% 
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The percentages also vary depending on years and seasons. During 2010, 2011 and 2013, from 

77% to 88% of ignitions happened in dry and hot soils. This percentage was lower (58%) in 

2014. In 2012, 267 wildfires (54% of the fires studied that year) occurred in February and 

March, when soils were wet and cold in absolute terms (Figure 2.10a). However, the prone-to-

fire situation leading to this remarkable episode is detected by the 30-day moisture anomalies, 

as 99% of these wildfires occurred in drier than average conditions (Figure 2.10b). This 

percentage is lower for the 30-day temperature anomalies (66% of fires with positive 

anomalies). Considering other fire periods occurring in cold and wet soils (e.g.,February-April 

2011 and February-March 2014), they did not burn in anomalous conditions. In these 

particular cases only 89 and 24 fires are registered, respectively (Figure 2.10). Finally, an 

exceptional situation occurred during October 2011, when 304 fires burned. During the month 

prior to fires, soil water content was 0.09 m3/m3 below the average, and temperatures rose up 

to 10.9 K above the average conditions (Figure 2.10). This situation got worse in the 9 days 

before fires (-0.12 m3/m3 and +14.3 K). 

 Hence, results in this section show that surface moisture and temperature information allow 

detecting situations posing a risk of fire. Especially, dangerous conditions occur for soils drier 

and warmer than the year and/or the period averages. More specifically, moisture and 

temperature anomalies detect the conditions which led to the extraordinary fire episodes of 

October 2011 and February-March 2012 (Figure 2.10). Both episodes burned in the 

northwestern Iberian Peninsula and are studied specifically in Section 2.8. 

 

 

2.8. Study of time-series anomalies and wildfires in the north-
western Iberian Peninsula 

  

The fire episodes burning in October 2011 and February-March 2012 mainly occurred in the 

north of Portugal, Galicia, and the western Cantabrian coast. Hence, the study described in this 

section has been focused on the northwestern Iberian Peninsula. To specifically delimit the 

extent of the northwestern region, the map of ecoregions of Spain and the map of 

phytogeographic regions of Portugal are used again. Ecoregions 1 to 7 in Spain (sited in the 

north-west) and the northern phytogeographic regions of Portugal are grouped. Figure 2.12 

shows the study area where the relationship between wildfires and anomalies is studied. 

Surface moisture and temperature anomalies trends for the period 2010-2014 have been 

summarized calculating the median anomalies for the entire region each day, only considering 

flammable pixels. To that purpose, pixels located in artificial surfaces and water bodies have 

been excluded using the CORINE Land Cover Map (Copernicus, 2018a). Also, pixels affected by 

fire in previous years (2006-2009) and during the study period have not been considered. The 

resulting median anomalies time series at 9-day and 30-day time scales have been compared 

to the number of fires burning in the region every 9-days and each month, respectively. The 

sample studied in this region is 1,733 fires (83% of fires of the initial dataset). The number of 
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fires corresponding to the period October 2011 is 304 (15%) and the number of fire outbreaks 

registered in February and March 2012 is 267 (13%). 

 

 

Figure 2.12. Fires burned during the two wildfire episodes studied (October 2011: 

red; February-March 2012: black). The green shaded area delimits the north-

western region. 

 

Figure 2.13 a and b show the median SM and LST anomalies in the region (30-day time 

scale). Their values are compared to the number of wildfires burning each month (Figure 

2.13c). Considering the SM anomalies, five droughts occurred in the region during the study 

period: (i) August-November 2010, (ii) August-November 2011, (iii) December 2011-April 2012, 

(iv) August-November 2012 and (v) August 2013-January 2014 (Figure 2.13a). Generally, 

positive temperature anomalies coincide in time with these periods (Figure 2.13b). Results 

using 9-day time scale anomalies are coherent with that from 30-day timescale, although with 

more irregular patterns (Figure 2.14). 

 The exceptional number of wildfire outbreaks registered in October 2011 and February-

March 2012 matches with the droughts detected from August to November 2011, and from 

December 2011 to April 2012, respectively (Figure 2.13). For October 2011, abnormally high 

temperature conditions started in July and lasted until November. Driest soils (up to -0.09 

m3/m3) and highest surface temperature anomalies (up to +8 K) occurred in October, when the 

most extreme values of both variables matched in time and more than 300 fires burned (Figure 

2.13). Also, forest fire outbreaks of February and March 2012 burned in extremely dry 

conditions, as SM anomalies reached a minimum of -0.10 m3/m3 in March 2012 (Figure 2.13b), 
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coinciding with the highest values of temperature anomalies (+1.6 K). While soils were 

continuously dry for more than three months before this episode, the duration of high 

temperatures was only limited to the month of March (Figure 2.13).  

Interestingly, both fire periods coincided with meteorological anomalous situations. 

Particularly, abnormal anticyclonic activities in the western and central Iberian Peninsula 

occurred between 11th and 18th October, 2011 and between 21st February and 2nd March, 

2012. These produced above mean air temperatures and low air humidity (Amraoui et al., 

2014). In Figure 2.14, dark lines have been plotted on 18th October 2011 and 2nd March 2012, 

showing the moisture–temperature conditions during the anticyclonic situation. Figure 2.15 

shows the maps of the 9-day anomalies of both variables computed before, during, and after 

the anticyclone. The spatial distribution of high surface temperatures and low SM between 

 On 11th and 18th October 2011 (Figure 2.15 b and e) the spatial distribution of high air 

temperatures and low air humidity match. These extended from the central Iberian plateau to 

the Atlantic coast. The meteorological anomalies were especially intense in the north-western 

Iberian Peninsula (see Figure 2 in Amraoui et al., 2014). In addition, note that the drought 

intensity was lower between 2nd and 10th October (i.e., before the anticyclonic interval; Figure 

2.15 a and d), increased between 10th and 18th October (Figure 2.15 b and e; i.e. during the 

anticyclone), and clearly diminished after the anticyclonic period (19th  to 27th October 2011; 

Figure 2.15 c and f). This pattern matches the evolution of the number of wildfires during that 

month. Particularly, the occurrences of large fires (>500 ha) rose between 2nd and 10th October 

(8 fires) and between 11th and 18th October (20 fires; Figure 2.15). Hence, the anomaly time 

series from SM SMOS-derived data and LST ERA-Interim models demonstrate a coherent fitting 

with the atmospheric conditions and the number of fire occurrences on October 2011 and 

February–March 2012. 

 Nevertheless, not all the drought situations led to exceptional wildfire activity. From August 

to November 2010, the number of fire occurrences was important only in August and 

September, when summer conditions facilitated the ignition of wildfires (see Figure 2.10 and 

Figure 2.11). A similar situation was found from August to December 2013. In both cases, 

minimum moisture conditions (-0.06 m3/m3 in October 2010, and -0.09 m3/m3 in December 

2013) occurred later than maximum anomalies of temperature (Figure 2.13. a and b). Finally, 

in September 2012, the driest and warmest conditions occurred simultaneously. However, the 

drought was shorter and milder if compared to the periods August-November 2011 and 

December 2011-April 2012 (Figure 2.13a) and the number of fires was also smaller (87 

wildfires burned in the region in September 2012). 

 These results suggest that the most dangerous situations in terms of risk of fire ignition 

occur when moisture-temperature adverse conditions stretch on and when dry and warm 

peaks match on time. Nevertheless, this is only consistent out of summer season. Considering 

the studied summers, anomalies of both variables were generally close to 0 (Figure 2.13), 

while a large number of fires (>200) burned in August 2010 and August 2013. High 

temperatures and dry soils are frequent in the Iberian Peninsula during summer, and absolute 

values are better indicators of fire risk (and probably also of drought) during this season. 
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a) 

 

b) 

 

c) 

 

Figure 2.13. Dry and wet intervals compared to fire outbreaks in the north-

western Iberian Peninsula during the period 2010-2014. (a) Median anomalies of 

soil moisture at 30-day time scale, (b) median anomalies of land surface 

temperature at 30-day time scale and (c) number of fires grouped per month. 

Grey shaded areas represent the fire episodes of October 2011 and February-

March 2012. Red crosses represent periods when dry and warm soils did not lead 

to the occurrence of important fire episodes. 
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a) 

 

b) 

 

c) 

 

Figure 2.14. Dry and wet periods compared to fire outbreaks in the northwestern 

Iberian Peninsula during the period 2010-2014. (a) Median anomalies of soil 

moisture at 9-day time scale, (b) median anomalies of land surface temperature at 

9-day time scale and (c) number of fires grouped per each 9-day period. Dark lines 

in October 2011 and February-March 2012 correspond to the end of the 

anticyclone periods. 
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Figure 2.15. 9-day SM anomalies (up row) on (a) 10th October 2011, (b) 18th  

October 2011 and (c) 27th October 2011. 9-day land surface temperature 

anomalies (down row) on (d) 10th October 2011, (e) 18th October 2011 and (f) 27th 

October 2011. The period 11th – 18th October (red rectangle) matches in time with 

the abnormal synoptic anticyclone activity. Green dots correspond to fires larger 

than 500 ha in the northwestern Iberian Peninsula. 

 

   

2.9. Development of a fire risk model 

2.9.1. A preliminary model for operational applications 

 As shown in Section 2.7, the largest fires are associated to very dry and warm soil conditions 

prior to their ignition. In contrast, fires affecting smaller areas burn in a wider range of 

conditions, including cold and wet soils in absolute terms (Figure 2.11). These differences 

permit to configure fire risk thresholds associated with fire propagation, aiming to obtain fire 

risk maps in near real-time.  

 To that purpose, the study presented in Section 2.7 has been repeated using the LST at 6 

a.m. local time (instead of noon LST). This aims at providing fire risk information during the 
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first hours in the morning. Results are similar to those obtained for noon LST information 

(Section 2.7), and the same three burned area categories have been used: <500 ha, 500 to 

3,000 ha, and >3,000 ha.  

 To obtain empirical risk thresholds, the first quartile, the median, and the third quartile of 

SM and LST before fire occurrences are computed for each category of burned area. These 

statistics are calculated for a random selection of 70% of fires (period 2010-2014). The 

remaining 30% is allocated for validation. Additionally, SM and LST anomalies are used as 

complementary information. Then, a fire risk empirical model has been developed using these 

data in a two-step process: 

1. The third quartile of SM (i.e., the wettest) and the first quartile for LST (i.e., the 

coldest), for each burned area category (<500 ha, 500-3,000 ha, and >3,000 ha), are 

established as the minimum thresholds for a pixel to be classified in one of the 

following fire risk categories: risk of very large fire (>3,000 ha), risk of large fire (>500 

ha), risk of ignition (<500 ha), and low risk (for pixels with the coldest and wettest 

soils). Table 2.3 presents the SM-LST thresholds and the corresponding categories. 

 

2. Anomalies of SM and LST are used as complementary variables. Negative anomalies of 

SM increase risk category even when cold or wet conditions are found. Positive 

anomalies of LST contribute to determine the highest risk level (see Table 2.3). 

  

Table 2.3. Fire risk categories determined by SM-LST thresholds. Note that 

anomalies of SM and LST change the risk as follows: (1) low risk pixels are finally 

classified as ignition risk pixels when the SM anomaly is negative; (2) pixels where 

the risk of large fires (500–3,000 ha) is predicted are finally considered under risk 

of very large fire (>3,000 ha) when the LST anomaly is positive. 

Risk 

thresholds 
Low (1) Ignition (<500 ha) Large fire (>500 ha)(2) 

Very large fire 

(>3,000 ha) 

SM (m3/m3; 

3rd quartile) 
>0.11 ≤0.11 ≤0.09 ≤0.08 

LST (K; 1st 

quartile) 
<300 ≥300 ≥304 ≥306 

  

 An example of a final fire risk map is provided in Figure 2.16. The product has been validated 

using the remaining, randomly selected, 30% of fires. Results show that 87% of small fires, 59% 

of fires >500 ha, and 56% of fires >3,000 ha have been correctly predicted. The resulting 

information can be useful for the fire prevention services. In particular, collaboration with the 

Diputació de Barcelona (DiBa; the provincial government of Barcelona) has been explored, and 
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soil moisture information and the derived risk index here explained have been provided to the 

forest rangers of this institution during two summer fire prevention campaigns (2015 and 

2016). The resulting fire risk maps are also provided through the Barcelona Expert Centre 

website (BEC, 2018). 

 

 

Figure 2.16. Fire risk map for 11th July 2016. 

 

2.9.2. Development of a linear model to predict the potential extension of 
wildfires 

 The proposed empirical model is a first approach in the development of a fire risk index 

partially based in remotely sensed soil moisture. Nevertheless, to improve this preliminary 

index, a more in deep statistical analysis and the addition of other variables in the 

methodology are required.  To that purpose, soil moisture and temperature are plotted 

against burned area, which has been logarithmically transformed (decimal logarithm). Figure 

2.17 shows that the distribution results in triangle shaped plots where both moisture and 

temperature limit the fire extent.  

 

 

Figure 2.17. Decimal logarithm of the burned area (originally in hectares) for 

wildfires between 2010 and 2014, plotted as a function of (a) soil moisture and (b) 

land surface temperature. 
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 From the previous plots, the imaginary hypotenuse of each triangle delimits the maximum 

burned area at different values of SM or LST. As there is no strong redundancy between 

moisture and temperature (r = −0.54; Pearson correlation coefficient), the two variables can be 

combined to estimate the maximum burned area for particular SM-LST conditions. To that 

purpose, it has been necessary to define bins for SM and LST, and assign a value of maximum 

burned area to each bin. This approximation is founded on other studies based on triangular-

shaped relationships between environmental variables (Moran et al., 1994; Sandholt et al., 

2002). Here, in order to increase the sample, it has been decided to include in the regression 

all wildfires larger than the 90th percentile of burned area for each bin. Forest fires with 

moisture and temperature at the extremes of the variables’ ranges (i.e., beyond percentile 5 

for SM, and beyond percentile 95 for LST) are eliminated, as the sample of fires is reduced in 

these conditions and does not show a representative maximum according to the moisture-

temperature data. Model fitting is carried out randomly sampling a 70% of the dataset, while 

the remaining 30% will be used later for validation. The linear regression explored is:  

𝐿𝑜𝑔𝐴𝑟𝑒𝑎 ≈ 𝛼 · 𝑆𝑀𝐻𝑅 + 𝛽 · 𝐿𝑆𝑇,    (2.1) 

where 𝐿𝑜𝑔𝐴𝑟𝑒𝑎 corresponds to the decimal logarithm of burned area, 𝑆𝑀𝐻𝑅 stands for high 

resolution soil moisture, and LST for land surface temperature. Their corresponding 

coefficients are 𝛼 and 𝛽. Higher order models do not improve the fitting (results not shown). 

To study the impact of the bin width on the results, several binning possibilities (from [0.005 

m3/m3 – 0.5 K] to [0.02 m3/m3 – 2 K]) are explored. The best regression in terms of R2 is 

obtained for the [0.01 m3/m3 – 2 K] binning (R2 = 0.43). For this case, the sample is of 183 

wildfires and SM and LST values range from 0.03 to 0.17 m3/m3 and from 289.8 to 314.3 K, 

respectively. The relationship among the studied variables is shown in Figure 2.18, where the 

complementarity between SM and LST is observed again: the largest fires burn in the driest 

and the warmest soils. For instance, most of the bins with maximum spread ≥1,000 ha (ie. 

LogArea ≥ 3) present SM≤0.10 m3/m3 and LST≥300 K.  

 

Figure 2.18. Decimal logarithm of maximum burned area (originally in hectares; 

colorbar) per SM-LST bins. Bins of 2K and 0.01 m3/m3 led to the model in Eq. (2.1), 

with R2=0.43. 



Chapter 2 
The role of soil moisture and surface temperature on wildfires in the Iberian Peninsula 

55 

 Using the model in Eq. (2.1) as a basis, a linear model predicting the potential extent of 

forest fires is developed including land cover, the month when the wildfire occurred, and the 

region of burning as additional variables. The potential extent is defined here as the maximum 

area that a fire could reach under particular SM-LST conditions. The interactions soil moisture 

× month, soil moisture × region, and temperature × region are also included in the model as 

their effects are significant. The interaction soil moisture × land cover and the interactions 

combining land surface temperature with month and land cover are not significant and are 

therefore excluded. Eight land cover categories are considered: broadleaved forests, 

coniferous forests, mixed forests, heathlands and moors, sclerophyllous vegetation, natural 

grasslands, woodland-shrub transitions, and sparse vegetation areas. Concerning to months, 

the analyzed forest fires occurred in February, March, April, June, July, August, September, and 

October. Wildland fires occurring in other months, as well as those burning in agricultural 

areas do not reach a minimum sample (n ≥ 5) and are discarded. The same happens for the 

Portuguese regions of Alentejo, Algarve, and Atlantic-Centre regions (Figure 2.4), where the 

amount of data is insufficient. As a result, the model only takes into account the northernmost 

regions of Portugal. The final sample is of 168 forest fires (see Table 2.4). The resulting model 

can be expressed as: 

𝐿𝑜𝑔𝐴𝑟𝑒𝑎 ≈ 𝛿 + 𝑀 + 𝐿𝐶 + 𝑅 +  𝛼(𝑀,𝑅) · 𝑆𝑀𝐻𝑅 + 𝛽(𝑅) · 𝐿𝑆𝑇,    (2.2) 

where 𝛿 is the intercept corresponding to the logarithm of the potential burned area in the 

northern Peninsula, on February, for a broadleaved forest land cover. M, LC, and R correspond 

to the additive terms of month, land cover, and region, respectively. The term 𝛼(M,R) is the 

slope for 𝑆𝑀𝐻𝑅, which depends on the month and the region, and 𝛽(R) is the slope for LST, 

which depends on the region. The coefficients and terms of the model are reported in Table 

A.1 in Appendix A. 

 As some months have been excluded in the proposed model, it is necessary to provide a 

complementary equation without the variable month, which could be validated and later used 

in operational applications during January, May, November and December. This model 

contains the same terms and structure detailed in Eq. (2.2) with the only difference that 

months are eliminated: 

𝐿𝑜𝑔𝐴𝑟𝑒𝑎 ≈ 𝛿 + 𝐿𝐶 + 𝑅 +  𝛼(𝑅) · 𝑆𝑀𝐻𝑅 + 𝛽(𝑅) · 𝐿𝑆𝑇       (2.3) 

 Similarly, agricultural lands are not considered in the main model, so a complementary 

equation excluding the land cover variable is used for these areas: 

𝐿𝑜𝑔𝐴𝑟𝑒𝑎 ≈ 𝛿 + 𝑀 + 𝑅 + 𝛼(𝑀,𝑅) · 𝑆𝑀𝐻𝑅 + 𝛽(𝑅) · 𝐿𝑆𝑇       (2.4) 
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Table 2.4. Sample of the model in Eq. (2.2): number of wildfires studied for each 

variable and interaction. 

Variables Sample 

Soil Moisture 168 

Land Surface Temperature 168 

Month 

February 7 

March 33 

April 7 

June 7 

July 10 

August 58 

September 23 

October 23 

Land cover 

Broadleaved forests 10 

Coniferous forests 6 

Mixed forests 8 

Natural grasslands 26 

Heathlands and moors 33 

Sclerophyllous vegetation 16 

Wood-shrubland transition 51 

Sparse vegetation 18 

Region 

Central Peninsula 6 

Mediterranean 12 

North 50 

Northeastern Portugal 25 

Northwestern Portugal 75 

  

2.9.3. Results 

 The model defined in Eq. (2.2) explains 65.1% of the variance of the potential extension of 

wildfires. In particular, 33.1% of the variance is explained by soil moisture, 19.8% by land 

surface temperature, 2.5% by the month when the forest fire occurred, 6.6% by the majorly 

affected land cover, and 3.1% by the region where the fire took place. The complementary 

model excluding months (Eq. (2.3)) explains 60% of the variance, while the model without the 

land cover variable showed in Eq. (2.4) explains 61%. 

 Dry soils lead to an increased risk of forest fire propagation in most months (Figure 2.19) and 

regions (Figure 2.20), with the exceptions of northwestern Portugal and the month of 

September. High temperatures facilitate wildfire spread in the north of the Iberian Peninsula 

and in northwestern Portugal. Unexpectedly, the effect is opposed in the Mediterranean 

region (Figure 2.21). No significant effect of temperature is found in the other regions. 
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Figure 2.19. Modelled effect of soil moisture on the potential extension of 

wildfires for each of the significant interactions between soil moisture and month. 

Black lines show the modelled effects and dashed lines show 95% confidence 

intervals. Shaded rectangles show moisture values out of the range for each 

region, where effects are extrapolated. Top-right boxes show the significance of 

the effects for a given month, as p < 0.1 (.), p < 0.05 (∗), p < 0.01 (∗∗) and p < 0.001 

(∗∗∗). 
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Figure 2.20. Modelled effect of soil moisture on the potential extension of 

wildfires for each of the significant interactions between soil moisture and 

regions: northwestern Portugal (NWP), central Peninsula (Centre), northern 

Iberian Peninsula (North), and Mediterranean (Med). Black lines show the 

modelled effects and dashed lines show 95% confidence intervals. Shaded 

rectangles show moisture values out of the range for each region, where effects 

are extrapolated. Top-right boxes show the significance of the effects for a given 

region, as p < 0.1(.), p < 0.05(∗), p < 0.01(∗∗) and p < 0.001(∗ ∗ ∗). 

 

 

Figure 2.21. Modelled effect of the surface temperature on the potential 

extension of wildfires for each of the significant interactions between surface 

temperature and regions: northern Iberian Peninsula (North), Mediterranean 

(Med) and northeastern Portugal (NEP). Black lines show the modelled effect and 

dashed lines show 95% confidence intervals. Shaded rectangles show 

temperature values out of the range for each region, where effects are 

extrapolated. Top-right boxes show the significance of the effects for a given 

region, as p < 0.1(.), p < 0.05(∗), p < 0.01(∗∗) and p < 0.001(∗ ∗ ∗). 
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Figure 2.22. Coefficients showing the predicted logarithm of potential burned 

area (originally in hectares) for each of the studied months in the model. Central 

black dots indicate the median. Whiskers account for ±1.58 IQR (Inter-Quartile 

Range). 

 

 

 
Figure 2.23. Coefficients showing the predicted logarithm of potential burned 

area (originally in hectares) for each of the studied land covers in the model. Land 

cover acronyms represent: coniferous forests (ForC), sparse vegetation (Spar), 

mixed forest (ForM), sclerophyllous vegetation (Scl), broadleaved forests (ForB), 

wood-shrubland transitions (W-Shr), natural grasslands (Grass), and heathlands 

and moors (Hth). Central black dots indicate the median. Whiskers account for 

±1.58 IQR (Inter-Quartile Range). 
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Figure 2.24. Coefficients showing the predicted logarithm of potential burned 

area (originally in hectares) for each of region in the model: Mediterranean (Med), 

northern Iberian Peninsula (North), northeastern Portugal (NEP), central Iberian 

Peninsula (Centre), and northwestern Portugal (NWP). Central black dots indicate 

the median. Whiskers account for ±1.58 IQR (Inter-Quartile Range). 

 

 The highest propagation risk is reported on summer, especially during June (Figure 2.22). 

Coniferous forests are the land cover with the highest potential spread, while the risk is the 

lowest in broadleaved forests, grasslands, heathlands and moors, and woodland-shrub 

transitions (Figure 2.23). The Mediterranean region shows higher risk of large wildfires than 

other regions (Figure 2.24).  

 The validation of the model proposed in Eq. (2.2) shows that 83.3% of wildfires are under 

the predicted maximum extent. The remaining 16.7% shows a maximum error of 40.5 ha. The 

validation for the complementary model defined in Eq. (2.3) results in 83.5% of accuracy and a 

maximum error of 44.6 ha. Using the model in Eq. (2.4), the accuracy is of 84.8%. Only one out 

of the 86 episodes exceeding the extent predicted in Eq. (2.4) presents a very large error 

(1,487 ha), while the remaining fires have a maximum error of 40.8 ha.  

 

2.9.4. Discussion  

A. Soil moisture and land surface temperature condition wildfire spreading 

 SMOS-derived soil moisture is found to be an important explanatory variable in evaluating 

fire propagation, in particular the potential extent of wildfires. Results show that wet soils 
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strongly limit burned area in the Iberian Peninsula whereas drier soils increase the potential 

risk of large forest fires (Figure 2.17). This result is consistent with similar studies in other 

regions of the world (Bartsch et al., 2009). Also, as expected, an inverse effect is found for 

surface temperature (Figure 2.17).  

 A relationship among soil moisture, surface temperature and burned area is reported 

considering the largest fires in each combination of moisture-temperature conditions. Not 

surprisingly, a considerable percentage of fires occurred under high temperatures and dry 

soils, but low soil moisture and high temperatures did not directly determine fire ignition or 

burned area (Figure 2.17). In that sense, note that in high fire risk situations, the final burned 

area may not be in agreement with the extent predicted by fire risk indices (Moreno et al., 

2005), as other factors such as fire extinction capacity are not considered. Indeed, wildfire 

ignition and spreading are strongly linked to a wide range of variables related to human, 

weather and biogeographical factors not included in the model (see Whelan, 1995; Padilla and 

Vega-García, 2011; and Sections 2.1 and 2.2). For instance, the contribution of wind is essential 

in most cases, and the inclusion of this variable in combination with moisture and temperature 

must be a next goal in this research line (see Section 6.3).  

 Among the studied variables, land cover explains approximately a 7% of the potential 

burned area. The land cover which results more vulnerable to wildfire spread is coniferous 

forests (see Figure 2.23). The fact that conifers are prone to fire propagation is also found in 

previous works, which also stress that broadleaved forests are less dangerous areas (Bajocco 

and Ricotta, 2008; Verdú et al., 2012), coherently with the results here obtained. In contrast, 

unexpectedly, wildland fires burning in sparse vegetation covers reach important sizes (see 

Figure 2.23). We suggest that, possibly, part of this lands might correspond to abandoned 

crops intermingled with other vegetation areas. In that sense, it is interesting to note that 

burned area in the Iberian Peninsula during the last decades (1961–2005) is increasing in non-

forested areas and decreasing in forests (Moreno et al., 2005). Nevertheless, a more detailed 

analysis of this land cover type would be needed to understand this effect. Also, the median 

burned area in mixed forests and sclerophyllous vegetation is higher than in the remaining 

land covers. Finally, note that the described effects of land covers on fire extension can be 

related also to other factors affecting fire propagation. For instance, coniferous forests are 

partially located in areas where topography facilitates the rapid spread of fires, and limits the 

accessibility of fire extinction services.  

 The region accounting with the highest propagation risk is the Mediterranean (see Figure 

2.24), and the effect of dry soils increasing burned area is evident in this region (Figure 2.20). 

These results are coherent with the climate-fire link in the region. Nevertheless, the effect of 

temperature on fire spread is unexpected in the Mediterranean. Actually, the relationship 

between burned area and surface temperature is negative (see Figure 2.21). This might be 

explained by (i) the strong influence of soil moisture on the predicted potential burned area in 

the Mediterranean, (ii) the importance of other factors not considered in this study (e.g., wind 

and orography), and (iii) the fact that the studied forest fires in the region occurred in hot 

conditions (>297 K). The latter point suggests that surface temperature could be a factor 

weakly conditioning the extent of large wildfires burning in the warmest soils. A similar 

conclusion could be drawn in the central Iberian Peninsula, where no relationship is found 
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between burned area and temperature, and forest fires burned at temperatures higher than 

306 K. However, this is unclear as the sample for the central region is little (n = 6), and the lack 

of temperature effect is also observed in northeastern Portugal, where the range of 

temperatures prior to fire occurrences is wider (see Figure 2.21).  

 In the northern Iberian Peninsula and the north of Portugal, which are the more humid 

regions, warm and dry soils increase the potential burned area (with the exception of the 

northwestern Portugal, where only the moisture effect is significant). In these regions, wet 

soils prevail. Consequently, fuel is largely available, but its low flammability limits the spread of 

wildfires. Generally, large forest fires occur in humid regions when drought and/or heat events 

dry the available fuel (Verdú et al., 2012). This can explain the effect of dry soils and high 

temperatures increasing propagation risk in these regions. A similar effect is found in dry soils 

of the central Iberian Peninsula (see Figure 2.20 and Figure 2.21).  

 Finally, dry soils increase the potential extent of fires during most months, and especially in 

summer time (see Figure 2.19), possibly being a trigger factor at high temperatures. Also, 

summer months are the ones with higher burned area. However, the increased effect on June 

is probably due to a limited sample (n = 7; Figure 2.22). 

 

B. Predicting potential burned area as a risk of fire propagation 

 The model proposed in Eq. (2.2) explains that an important part of the variance (65%) of the 

potential burned area is a function of the moisture-temperature conditions, land cover, the 

region of occurrence, and the month when the fire burned. The validation shows 83.3% of 

agreement with a maximum error of 40.5 ha.  

 Soil moisture explains 33% of the variability of the potential burned area. This result 

suggests that the use of remotely sensed soil moisture at L-band could help anticipating forest 

fires extension in the Iberian Peninsula. In addition, the near real time availability of the SMOS 

dataset in the region facilitates its use in early warning systems. The applicability of land 

surface temperature in fire prevention services is promising, but future research is mandatory 

-especially in the Mediterranean region- to correctly quantify the relationship between surface 

temperature and fire extension. Additionally, exploring LST satellite-derived datasets to 

complement modelled temperature data would be desired. However, the cloud-masking of 

infrared data is a limitation to that objective. Possibly, observations from the Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) sensor on board of Meteosat Second Generation 

satellites could contribute to partially overcome this limitation. As LST data is provided every 

15 minutes by this sensor, the probability to avoid cloud masking during part of the day would 

increase. 

 Regarding land cover, region, and month, these variables are easy to obtain and apply. The 

simultaneous use of the three variables contributes in >10% of the prediction of the potential 

spread of fires.  

 A complementary model excluding the month of occurrence (Eq. (2.3)) has been developed 

for validation and future application in the months of January, May, November and December, 
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which account with small samples. Similarly, a model excluding land cover has been defined in 

Eq. (2.4) and it is applicable in agricultural areas. Both equations have been validated and the 

results obtained are similar to those from the main model. Also, note that most studied fires 

burned in the northwestern Iberian Peninsula (see Figure 2.5). The use of a longer fire record 

would be necessary to neutralize the shifting and to extend the final model to central and 

southern Portugal. Then, further research including a larger sample (more years of moisture, 

temperature and forest fires data) is recommended in order to improve the model usefulness. 

In addition, a longer dataset would help enhancing the reliability of the proposed model, which 

is limited by the availability of SMOS-derived data (5 years when the study presented in this 

chapter was conducted).  

 Despite these limitations, the proposed methodology is the starting point for future 

research. An updated version of this algorithm can be developed, considering the following 

recommendations. Firstly, it will be necessary to extend the studied sample with SM, LST and 

fires data beyond 2014. Secondly, it will be required to combine surface moisture-temperature 

data with wind information. Thirdly, the moisture-temperature data could be able to 

complement soil status information within the FWI. Going further, we can stand that the 

proposed methodology also sets the basis for future research that integrates soil moisture-

temperature with other weather-related variables, human-derived factors, orography, and 

vegetation information (see Section 6.3).  

 

2.9.5. Fire risk maps and future operational implementation 

 Results show how the suggested methodology provides good approximation to the 

maximum expected fire spread. Its applicability will increase with its integration in more 

complex fire spread prediction tools (see Section 6.3) and, as discussed above, future research 

should provide improved performance for the model. Nevertheless, at this point it is feasible 

to build the first fire risk maps based on the developed model. In that sense, an example was 

presented at the European Space Agency’s Living Planet Symposium (Prague, May 2016) and is 

reproduced here in Figure 2.25. To build the map, the predicted potential area was classified in 

different risk categories according to Table 2.5, in order to ease the interpretation. 

 

Table 2.5. Predicted potential burned area and the associated fire risk categories 
displayed in Figure 2.25. 

Predicted 

area (ha) 
<10 ha 10-100 ha 100-1,000 ha 1,000-10,000 ha >10,000 ha 

Risk category Low Moderate High Very high Extreme 
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Figure 2.25. Example of a fire risk map (24th June 2010) derived from the linear 
model built in this chapter. The colorbar shows fire risk categories. 

 

 

2.10. Conclusions 

 The European Union’s Copernicus programme encompasses the acquisition, management, 

and dissemination of a wide range of variables needed in fire risk assessment frameworks. The 

data provided by Copernicus allows a comprehensive approach to the study of fire risk, 

including information on WUI areas, land covers and land use, topography, vegetation 

conditions, soil status and weather conditions, among others. It is remarkable that Copernicus 

also provides fire risk information (FWI), which is in part based on estimating dead fuel 

moisture conditions from meteorological models. In this work, it is suggested that this 

information could be complemented –or even enhanced- by soil moisture data derived from L-

band microwave radiometry satellite missions. These missions offer global coverage of SM 

retrievals (overcoming the limited availability of meteorological stations in some regions), and 

provide a proxy to the water content in fuels. Recent research has demonstrated that the 

SMOS-derived soil moisture can replace fuel moisture information from other fire risk indices. 

In this context, this chapter has studied the relationship between high resolution SMOS SM 

and fire risk in the Iberian Peninsula, a high fire risk region. The study has been conducted for 

more than 2,000 fires burning between 2010 and 2014. The SMOS SM information has been 

complemented with LST modelled data to obtain a better approach on the soil surface state 
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both in normal conditions and in conditions prior to fire outbreaks. The main conclusions of 

this analysis can be summarized as follows: 

 

 Moisture-temperature patterns are coherent with climates in the region, and reflect 

the contrast between the northwestern area –colder and wetter- and the 

Mediterranean area –warmer and drier-. This is consistent with the different fire 

patterns in these two regions.  

 

 Dry and warm soils are frequent in the region, and this is captured by the studied 

variables. Fires burn usually –but not exclusively- in these conditions in summer. For 

this reason, yearly overall medians of moisture and temperature serve to detect the 

situations in which most fires (75% to 80%) occur, which are generally at SM<0.12 

m3/m3 and LST>295 K. 

 

 Soil moisture and temperature anomalies detect drought conditions posing risk of 

fires out of summer season. These variables are able to capture anomalous 

anticyclonic situations linked to long drought periods, which lead to important fire 

episodes. Anomalies of SMOS-derived SM show great potential to detect these 

adverse situations. 

 

 Differences in burned area can be explained in part by moisture and temperature in 

soils, as the largest fires are linked to the driest and warmest conditions.  

 Hence, the complementary application of high resolution SMOS soil moisture and modelled 

LST has great potential to develop new risk assessment tools. In that sense, a preliminary risk 

index has been built and has been put in operational service. SM-LST thresholds have served to 

distinguish four risk levels with accuracy between 56% and 87%, depending on the fire risk 

category. The most dangerous conditions (risk of fires >3,000 ha) have been stablished for very 

dry soils (<0.08 m3/m3) at high temperatures (>306 K). 

 Finally, an improved model has been built to estimate the potential burned area that a fire 

can reach under particular SM-LST conditions. The model has considered also information on 

land cover, region and month of the fire outbreak. Validation resulted on 83.3% of agreement, 

with a maximum error of 40.5 ha. From the model construction and its results, several 

conclusions can be drawn: 

 SMOS high-resolution data has shown high sensitivity to the potential extension of 

fires in the Mediterranean and in the northwestern Iberian Peninsula. 

 

 High temperatures increase the risk of fires in some regions, but have an unexpected 

negative effect in the Mediterranean. It is suggested that other factors (e.g.,moisture 

and wind) play a major role in fire extension in the region, but also that a larger sample 

should be studied to confirm or dismiss this result. 

 

 Results are generally consistent for the different land covers and regions studied. 
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 Future work should be directed to include wind data and remotely-sensed LST in the 

model, as well as to increase the sample of the model. It is concluded that SM-LST 

combined data is a potential candidate to include in the computation of the FWI. More 

details of future work are provided in Section 6.3. 

 In conclusion, the proposed approach is valid for estimating the risk of propagation of 

wildfires in the Iberian Peninsula, and has permitted to demonstrate and apply the high 

potentiality of L-band soil moisture data in fire risk assessment. This opens a new path for 

improving fire risk prediction tools in a context of changing climate conditions which could 

increase fire risk in some regions. 
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Abstract 

Droughts and high-temperatures have been associated to forest decline episodes in many 

parts of the world. These episodes are expected to become more common under climate 

change. Therefore, there is a need for monitoring and modelling of forest decline. In this 

chapter, a forest condition monitoring program (DEBOSCAT) is used to study the spatial 

distribution of decline events after the extraordinarily dry summer in 2012 in Catalonia (NE 

Spain). A logistic model to explain forest decline probability was fitted as a function of species, 

precipitation and temperature anomalies, SMOS soil moisture data, and solar radiation. The 

statistical model explained almost 40% of forest decline occurrence, wherein almost 50% of 

this variability was explained by species effect, with broadleaved trees being generally more 

sensitive to the studied factors than conifers. Climatically wetter areas and those more 

exposed to radiation were more likely to be affected, suggesting better adaptation of forests in 

dry areas. In general, more damaged forests were characterized by high-positive temperature 

anomalies, lower than average rainfall, and low soil moisture in summer 2012.  
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3.1. Introduction 

Disturbances associated to severe droughts and heatwaves, together with human activities 

(e.g., land-use pressure) endanger the health of the forestry regions on Earth. As a 

consequence, forest decline episodes have been detected in many regions and are projected 

to expand under changing climate conditions. Nowadays, the determinants of forest decline 

are still uncertain, and specific research on the effects of droughts on forest conditions is 

required (see Section 1.2.2). The lack of programs monitoring forest dieback at regional to 

global scales using standardized protocols and surveying exhaustively all forested lands greatly 

limits the capacity to draw strong conclusions on the vulnerability of different forest types or 

different areas within the distribution of a given species (Allen et al., 2010; Martínez-Vilalta et 

al., 2012a; Trumbore et al., 2015). At regional or continental scales, the available studies tend 

to use the databases assembled for national forest inventories (Klos et al, 2009; Vilà-Cabrera et 

al., 2011; Ruiz-Benito et al., 2013; Neumann et al., 2017). However, the applicability of large-

scale forest inventories to tree mortality research suffers from important limitations, including 

low temporal resolution (typically ∼10 years) and/or low number of trees sampled per plot, 

which limits the capability to detect and quantify relatively random and usually infrequent 

events (Stokland et al., 2005). 

In this chapter, one of the few existing yearly regional monitoring programs has been used. 

The DEBOSCAT (Forest Decline in Catalonia) program covers the forests of Catalonia 

(northeastern Spain) from 2010, registering areas >0.03 km2 in which trees are affected by 

mortality, and/or leaf loss, and/or discoloration. In this research, the decline occurrences 

detected by DEBOSCAT in 2012 have been associated with meteorological datasets and with 

the SMOS-MODIS L4 high resolution soil moisture product in order to detect drought 

conditions threatening forests. The fact that water availability to plants depends critically on 

soil water content and on the physical properties of soil suggests that the application of a soil 

moisture product should increase the capacity to explain the drought impacts on vegetation 

health. 

The study is conducted in Catalonia, which has several features that make it particularly 

suitable to explore the spatial determinants of forest decline: (i) droughts are common in the 

region and most of its forests are considered to be limited by water; (ii) its predominant 

Mediterranean climate determines high spatiotemporal variability in temperature and rainfall, 

which causes particularly severe and spatially complex drought events; (iii) the orography and 

climate of Catalonia are extremely variable for the size of the region (∼32,000 km2; see Section 

3.2.1); and (iv) Catalonia is at the boundary between Mediterranean and Euro-Siberian 

biogeographic regions, which determines that several species reach their southern (and dry) 

distribution limit in the area. Previous studies suggested that these species may be particularly 

vulnerable to increasing drought stress in the study area (e.g., see Jump et al. 2006 for Fagus 

sylvatica or Galiano et al. 2010 for Pinus sylvestris).  

The main objectives here are (i) to use the DEBOSCAT database together with GIS tools, 

climatic information and remote sensing soil moisture data to determine the main 

environmental drivers of recent forest decline in Catalonia in terms of climate, drought 

characteristics, and soil water availability, (ii) to establish the vulnerability to drought-induced 
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decline of the main tree species in Catalonia, and (iii) to evaluate the applicability of SMOS soil 

moisture data to explain forest decline occurrence. The main hypothesis in this chapter are: (i) 

forest decline will affect preferentially areas with high-temperature anomalies, high drought 

intensity, and low soil moisture; (ii) climatically drier sites will not necessarily be more 

vulnerable to drought-induced forest decline, due to the greater drought resistance of the 

dominant vegetation in these areas; and (iii) Euro-Siberian species reaching their southern 

distribution limit in the Iberian Peninsula (particularly Fagus sylvatica and Pinus sylvestris) will 

be more vulnerable than typically Mediterranean species (i.e., Quercus ilex, Quercus suber, or 

Pinus halepensis). 

 

 

3.2. Data and methods 

3.2.1. Study area 

The forested area of Catalonia (42° 51’N–40° 31’N, 0° 9’E–3° 19’E; Figure 3.1) has been 

studied. Most of the study area has a typical Mediterranean climate, with mild winters and hot 

dry summers, with an irregular pattern of precipitation among years. Mean annual rainfall 

ranges from 336 to 1,464 mm and mean annual temperature from 0 to 17.3 °C (see Figure 3.2 

a and b; Ninyerola et al., 2003; SMC, 2018). Different relief units influence climate and 

vegetation. Colder and wetter conditions are found in the Pyrenees mountain ranges (up to 

3,150 m), in the north of the region. Much drier climates occur along the coast and particularly 

in the central depression, where rainfall is <500 mm/year, and there is a noticeable continental 

influence (see Figure 3.2 a and b). Otherwise, coastal ranges (up to 1,700 m) present mild 

temperatures due to maritime influence, although conditions vary depending on elevation and 

distance to the coast. 

Severe drought events are common in the study area. The most recent ones were registered 

in 2012 and 2016, which were preceded by the period October 2004–October 2008, the driest 

and longest drought event registered in the last 100 years in northeastern Spain (Altava, 2010). 

This chapter focuses on the drought registered in 2012 which -although not as severe as its 

preceding period- was also important, especially in winter, when the accumulated 

precipitation was 70%–100% lower than the climatic mean (e.g., less than 25 mm in the west 

areas of the country; SMC, 2012a). The spatial distribution of precipitation during spring was 

irregular with northern and central areas above the mean (+10% to +100%) and northeastern, 

western, and southern areas being drier (10% to 70% lower than the climatic average; SMC, 

2012b). During summer, the accumulated precipitation registered values between −30% to 

−100% below the mean in almost all Catalonia, particularly in northeastern regions (SMC, 

2012c). Temperature and rainfall anomalies (the latter measured using the SPI) for summer 

2012 are given in Figures Figure 3.2d and Figure 3.3a, respectively. Mean summer temperature 

anomaly was +1.6 °C for 2012 and it was positive throughout the study area (Figure 3.2d). 
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Catalan forests occupy more than 11,400 km2 (nearly 40% of the territory). The most widely 

distributed species are Pinus halepensis (Aleppo pine; 2,430 km2) and Quercus ilex (evergreen 

oak; 2,004 km2; CREAF and Generalitat de Catalunya, 2005). Both are Mediterranean species 

typically coexisting in coastal forests, although Quercus ilex has a wider altitudinal range. Pinus 

sylvestris (Scots pine; covering 1,965 km2) and Fagus sylvatica (beech; 336 km2) are Euro-

Siberian species living close to its southern distribution limit (Lloret et al., 2009). Pinus nigra 

(1,070 km2) grows mostly in the pre-Pyrenees and Catalan inlands. Deciduous oaks are also 

abundant, mainly Quercus pubescens (820 km2) and Quercus faginea (325 km2) (CREAF and 

Generalitat de Catalunya, 2005; Lloret et al., 2009). 

  

 

 

 

Figure 3.1. Map of Catalonia showing the location (1 km × 1 km resolution) of 

forests affected by 2012 decline events (colors represent the dominant species 

within each episode) and unaffected forested areas (grey). Top right corner map 

shows the location of Catalonia in southern Europe. 
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Figure 3.2. (a) Mean annual accumulated precipitation (mm) for the period 1950–

1998; (b) mean annual temperature (°C) for the period 1950-1998; (c) mean daily 

solar radiation (10 kJ/m2·day) for the period 1950-1998 and (d) summer 

temperature anomaly (°C) in summer 2012. Data for panels (a)–(c) were obtained 

from the Climatic Digital Atlas of Catalonia (Ninyerola et al., 2003). Data for panel 

(d) was provided by the Catalan Meteorological Service (SMC). 

 

 



3.2. Data and methods 

72 

 

 

 

 

Figure 3.3. SPI (McKee et al., 1993; see Section 3.2.3) calculated for different time 

periods: (a) June–August 2012 (SPI3); (b) March–August 2012 (SPI6); (c) 

September 2011–August 2012 (SPI12) and (d) September 2010–August 2012 

(SPI24). SPI is a dimensionless variable. Positive values indicate precipitation 

above the mean and negative values indicate precipitation below the mean. 

Reference period: 1961–2013. Provided by the SMC. 
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3.2.2. Forest condition database (DEBOSCAT) 

DEBOSCAT is a monitoring program started in 2010 to assess health condition in all the 

forests in Catalonia. The project is coordinated by the Centre for Ecological Research and 

Forestry Applications (CREAF, Barcelona, Spain). All the forests in Catalonia are surveyed 

annually (in September) by forest rangers deployed by the Catalan Government in order to 

detect forest decline events after summer. Forest decline events are defined as areas >0.03 

km2 in which tree mortality is higher than 5% or the sum of leaf loss plus discoloration exceeds 

50% in the canopies of at least one abundant tree species (with >15% canopy cover). Each 

event is identified by a unique code, and the recorded information includes: (i) exact 

geographical location and perimeter of the affected area, (ii) the abundance of the dominant 

species (in terms of canopy coverage) and (iii) the percent of crowns affected and the type of 

damage (mortality, discoloration and/or leaf loss) for each species. All the registered events 

are transferred to a GIS layout with its corresponding database (Banqué et al., 2013). 

Validations of the DEBOSCAT survey have been conducted by an independent team showing 

good agreement between different observers, as the percentage of estimated non-damaged 

trees [i.e., 100 – (% mortality + % discoloration + % leaf loss)] is within 10% of the initially 

estimated value in 81% of cases (N = 20 resampled events; M. Banqué, unpublished results). 

In this study, the recent events detected in 2012 have been analysed, as the surveys from 

previous years (2010 and 2011) were preliminary and have been used here only to determine 

which events correspond to new 2012 occurrences. Additionally, events detected in 2014 have 

been also studied to assess forest recovery. DEBOSCAT registered more than 230 km2 newly 

affected in 2012, distributed in 340 events (see Table 3.1; Banqué et al., 2013) which are 

shown in Figure 3.1. Each event could contain more than one affected species, but this analysis 

only retains combinations of events by species for which mortality was >5% or (discoloration + 

leaf loss) occurred in >25% of the canopies to ensure that affectation was high in all instances 

(note that not all species within an event fulfilled the 50% criteria stated in the previous 

paragraph). Only 11.8% of the combinations of events by species in the database have a 

percentage of discoloration + leaf loss between 25% and 50%. This work focuses on the most 

affected species and merges all deciduous oaks into one single category (deciduous Quercus, 

including basically Quercus pubescens and Quercus faginea) due to the high morphological and 

ecophyisiological similarity of the species and due to the fact that they frequently hybridize in 

the study area (Sánchez de Dios et al., 2006). Hence, the studied species are deciduous 

Quercus, Quercus ilex, Quercus suber, Fagus sylvatica, Pinus sylvestris, Pinus nigra, Pinus 

halepensis, and Pinus pinea. These species dominate 75% of the forests in Catalonia and 

represent 99% of the events detected in 2012. Once all the episodes fulfilling the mentioned 

criteria have been chosen, the final database contains a total of 288 out of the original 340 

events (84.7%; see Table 3.1 and Figure 3.1). For deciduous species (deciduous Quercus and 

Fagus sylvatica), the timing of DEBOSCAT field surveys (early September) ensures that the 

events reported do not overlap with autumn leaf shedding (starting approximately in late 

October in the study region). 

In order to compare affected events with unaffected areas, the Land Cover Map of Catalonia 

(CREAF and Generalitat de Catalunya, 2005) has been used. A 1 km × 1 km grid has been 

created and each cell in the grid has been linked to the modal species of the land cover map. 
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Grid cells have been classified as affected, if at least 10% of its surface overlapped with a 

polygon affected by forest decline, or unaffected, if there are no events overlapping the 

corresponding cell, or they cover <10% of the cell’s surface. In the few cases in which an event 

does not cover more than 10% of the surface of any cell, the event has been assigned to the 

most affected cell. To assess the impact of this 10% threshold on the results, the analyses have 

been repeated using higher threshold levels (20%, 30%, 40%, and 50%), confirming that they 

do not change the main results (not shown). 

 

Table 3.1. Decline events detected in 2012 by species in terms of number of 

events, affected area, percentage in relation to total affected area, total area 

occupied by each species, and percentage of the total area occupied that was 

affected. Data on decline events were obtained from the DEBOSCAT survey, and 

species distribution areas were obtained from the land cover map of Catalonia 

(CREAF and Generalitat de Catalunya, 2005). 

Species 
Events 

Affected area 

(km2) 
% affected 

Occupied 

area (km2) 
% 

Dec. Quercus 219 100.10 42.39 1260.76 7.94 

F.  sylvatica 36 19.29 8.17 336.11 5.74 

Q. ilex 205 82.02 34.74 2003.50 4.09 

Q. suber 26 5.38 2.28 608.32 0.88 

Broadleaved species 486 206.79 87.58 4208.69 4.91 

P. nigra 39 9.87 4.18 1070.44 0.92 

P. sylvestris 42 8.05 3.41 1965.43 0.41 

P. pinea 18 0.90 0.38 332.25 0.27 

P. halepensis 38 4.51 1.91 2429.54 0.19 

Conifers 137 23.33 9.88 5797.66 0.40 

Other species 66 6.00 2.54 1397.43 0.19 

Total 340* 236.12 100.00 11403.78 2.04 

∗Total of events is lower than the addition of events for each species because one event might contain more than 

one species. The study finally contained a total of 288 events (the remaining 52 were not considered because they 

affected species that were not included in this study or the magnitude of the reported damage did not fulfil the 

criteria). 

 

3.2.3. Environmental databases 

Several explanatory variables are used to model the distribution of decline events in summer 

2012, including lithology, historical climate characteristics, and specific climatic conditions and 

soil moisture during summer 2012, which have been obtained as follows: 

 Lithology has been obtained from the geological map of Catalonia (ICGC, 2010) and has been 

reclassified in two categories: basic (calcareous) and acidic (siliceous) soils. Historical climate 

data have been used to characterize “long-term,” average conditions, and have been obtained 



Chapter 3 
The role of climatic anomalies and soil moisture in the decline of drought-prone forests 

75 

from the Climatic Digital Atlas of Catalonia (Ninyerola et al., 2003) for the period 1950–1998. 

This data include mean annual and summer (June to August) temperatures, mean accumulated 

annual and summer (June to August) precipitations, and mean annual solar radiation. All 

variables have been upscaled from 180 m × 180 m to 1 km × 1 km resolution using a bilinear 

interpolation method. 

 The SPI has been used to characterize drought intensity at different time scales. Essentially, 

the SPI for a given month is calculated as the difference between the mean precipitation for 

the previous n-months and the mean for a reference time period, divided by the standard 

deviation for that reference period (McKee et al., 1993). The SPI data used has been provided 

by the SMC for periods of 3 months (SPI3: June 2012–August 2012), 6 months (SPI6: March 

2012–August 2012), 12 months (SPI12: September 2011–August 2012), and 24 months (SPI24: 

September 2010–August 2012) (see Figure 3.3). The reference period corresponds to years 

1961–1990. Map resolution is 1 km × 1 km. Negative values indicate drier conditions than the 

reference (extremely drier below −2) and positive values reflect wetter conditions (extremely 

wetter above +2; McKee et al., 1993). The temperature anomaly in summer 2012 

(ΔT_summer) has been provided by the SMC at 1 km × 1 km spatial resolution, and has been 

calculated as the difference between mean summer temperature in 2012 and mean summer 

temperature for the period 1961–1990. 

 

 

Figure 3.4. Mean soil moisture in Catalonia for the summer 2012. No data are 

obtained in coastal areas due to inexact transition between SMOS measures. 
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 Daily SMOS-derived soil moisture maps at 1-km spatial resolution (SMOS-MODIS product; 

see Section 1.3) for summer 2012 (June 2012– August 2012) have been obtained from the BEC 

(BEC, 2018). For this study, the mean summer soil moisture over Catalonia has been obtained 

using SMOS afternoon passes (~17 h.; Figure 3.4). Mean values show the dry conditions of the 

soil during summer 2012, with moisture values ranging from 0.08 to 0.14 m3/m3. Although this 

range is narrow and near to 0.04 m3/m3 (the SMOS-derived soil moisture product expected 

accuracy), this is largely due to the fact that data have been averaged for a period of three 

months. Daily ranges of SMOS-derived soil moisture are wider than 0.04 m3/m3 for more than 

90% of the days, and at least twice the expected accuracy for more than 60% of the days. 

 

3.2.4. Statistical methods 

Forest decline probability for each species has been modelled as a function of lithology, 

climate characteristics, specific climatic conditions in summer 2012, and soil moisture, using 

logistic regression models. Pearson’s correlation coefficients (r) have been used to detect 

redundancy among the explanatory variables (Table 3.2). Whenever a pair of variables 

presents a correlation r > 0.51, the one resulting in a better model fit in terms of the Akaike 

Information Criterion (AIC) has been chosen and the other one has been rejected, to avoid 

multicollinearity.  

 

Table 3.2. Correlation matrix between pairs of variables. Each cell shows 

Pearson’s correlation coefficient (r). 
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T_an -0.64 0.98 -0.75 0.15 -0.10 -0.62 -0.70 0.02 0.02 -0.50 

P_an  -0.72 0.91 -0.17 0.04 0.33 0.18 0.23 0.46 0.51 

T_sum   -0.78 0.17 -0.05 -0.55 -0.61 -0.10 -0.12 -0.55 

P_sum    -0.14 0.11 0.49 0.37 0.04 0.33 0.45 

R_an     0.07 -0.11 -0.08 -0.11 -0.10 -0.14 

T_sum      0.00 0.18 -0.12 -0.03 -0.05 

SPI3       0.78 -0.05 -0.06 0.28 

SPI6        0.08 -0.08 0.30 

SPI12         0.78 0.28 

SPI24          0.24 

T_an: mean annual temperature (⁰C); P_an: accumulated annual precipitation (mm); T_sum: mean summer 

temperature (⁰C); P_sum: accumulated summer precipitation (mm); R_an: mean annual radiation 

(10·kJ/m2·day); T_sum: summer anomaly of temperature (⁰C); SPI3, SPI6, SPI12 and SPI24: Standard 

Precipitation Index calculated for 3, 6, 12 and 24 months, respectively; SM: soil moisture (m3/m3) derived 

from SMOS afternoon passes (~17h UTC). 
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The final set of explanatory variables is composed by species (Tables Table 3.1 and Table 

3.3), mean annual precipitation (Figure 3.2a), mean annual radiation (Figure 3.2c), summer 

2012 temperature anomaly (Figure 3.2d), SPI3 and SPI12 (Figure 3.3 a and c, respectively), and 

mean summer SM (Figure 3.4). All the quantitative predictors have been centred and 

standardized at a global level before fitting the models. As the main focus of this work is on the 

effects of the specific environmental conditions during 2012, the analysis also considers the 

interactions between species and summer 2012 temperature anomaly, SPI3, SPI12, and soil 

moisture. Additional models including the interactions of radiation and precipitation with 

species have been considered during model selection but do not improve model fit 

significantly and these interactions have been removed in the final analyses. Similarly, 

preliminary models have shown that the effect of lithology is not significant and this variable 

has not been included in the final models. 

 

Table 3.3. Number of unaffected and affected cells included in the final model for 

each species. 

Species 

Cells 

Unaffected Affected 

Quercus ilex 354 373 

Fagus sylvatica 55 108 

Pinus halepensis 627 40 

Pinus pinea 61 10 

Pinus sylvestris 483 59 

Pinus nigra 247 40 

Deciduous Quercus 164 422 

Quercus suber 163 24 

TOTAL 2154 1076 

 

 To avoid a highly unbalanced sample due to the higher number of unaffected entries in the 

dataset, only a random subset of unaffected entries corresponding to twice the number of 

affected ones has been used (Table 3.3). This random resampling has been done globally, and 

not per species, because the interest of the study is on the general capacity of the model to 

explain decline occurrence in the study area (with its current distribution of different forest 

types) and not necessarily in capturing the true decline probabilities by species. Although 

modelled decline probabilities do not necessarily represent the species’ absolute decline 

probabilities, the relative probabilities across species are conserved (see Albert and Thuiller, 

2008). The random selection has been repeated ten times to ensure that the main results are 

robust to this selection (see Table A.2 in Appendix A). The residuals of the final model have 

shown only moderate spatial structure at small spatial scales (below 20 km). The variance 

inflation factors (VIF) for the model variables have been used to quantify the severity of 

multicollinearity. VIF is >5 only for SPI3 (VIF = 6.48). To explore the potential effect of 

multicollinearity in this study, the model has been refitted without this variable. Results show 

that remaining model coefficients are similar to those in the original model in terms of 
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significance, sign, and magnitude (results not shown), implying that multicollinearity does not 

have a major influence in this case. In the final model, predicted probabilities of being affected 

have been compared with the binary information from the observed dataset, and model 

performance has been assessed using the area under the receiver operating characteristic 

curve (AUC). Significance for all statistical analyses has been accepted at p < 0.05.  

 

 

3.3. Results 

3.3.1. Overview of forest decline events detected in 2012 

A total of 340 new decline events were detected in September 2012, affecting 236.12 km2 

(2.1% of total forested area in Catalonia). These events impacted mostly broadleaved species, 

both in absolute terms (number of events and area affected) and in relative terms (in relation 

to the overall distribution area of each species). The percentage of the species’ distribution 

area affected ranged from 0.9% (Quercus suber) to 7.9% (deciduous Quercus) in broadleaved 

species, and between 0.2% (Pinus halepensis) and 0.9% (Pinus nigra) in conifers (see Table 3.1). 

Deciduous Quercus forests accounted for 42% of all affected areas, Quercus ilex accounted for 

35%, and Fagus sylvatica for 8.2%. Conifers were much less affected and, overall, accounted 

for only 10% of the impacted areas. In absolute terms, Pinus pinea and Pinus pinaster were the 

least affected species, whereas Pinus halepensis was the least affected in relative terms, as 

only 0.19% of its distribution area was damaged (Table 3.1). 

 

Table 3.4. Number of episodes per species and % of episodes with standing 

mortality >5%, in 2012. The number of decline episodes in 2014 is also shown. 

Species 
Episodes 

Number (2012) % Mortality (2012) Number (2014) 

Quercus ilex 205 62.0 228 

Fagus sylvatica 36 0 14 

Pinus halepensis 38 34.1 64 

Pinus pinea 18 54.5 43 

Pinus sylvestris 42 86.7 136 

Pinus nigra 39 56.1 84 

Deciduous Quercus 219 8.8 172 

Quercus suber 26 84 30 

 

 The percentage of events affected by mortality varied widely among species, independently 

of the differences in the amount of decline between broadleaves and conifers. In particular, 

most species showed mortality in >50% of the episodes, except for Pinus halepensis (34.1 %), 

Quercus suber (8.8%), and Fagus sylvatica, which was only affected by defoliation and/or 
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discoloration (Table 3.4). Finally, the amount of decline events increased two years later on 

most species (mainly on Pinus sylvestris), but decreased on deciduous Quercus and Fagus 

sylvatica (Table 3.4). 

 

3.3.2. Determinants of forest decline 

 The models explain 36% to 39% of the variance in the decline probability depending on the 

random selection of non-affected cells (Table A.2 in Appendix A). AUC for the final model is 

0.893 (AUC > 0.8 indicates an excellent fit; Hosmer and Lemeshow, 2000). All models give very 

consistent results in terms of the values of the estimated coefficients and the significance of 

the effects (Table A.2 in Appendix A) and the following results are based on the model with 

lowest AIC, which is the final model (39.3% of explained deviance, Table A.3 in Appendix A). 

Not surprisingly, considering what has been reported in Section 3.3.1, the model identifies 

species identity as the most influential factor explaining forest decline (Table 3.5). The ranking 

of species damage predicted by the model follows closely the results reported in Section 3.3.1 

(see Figure 3.5). Climatic radiation and precipitation have a positive effect on decline 

occurrence (Table A.3 in Appendix A). 

 

Table 3.5. Variance explained by the model and by different variables and 

interactions. The column “Percentage (model)” disaggregates model deviance and 

the column “Percentage (total)” disaggregates the percentage of total deviance 

explained by the variables included in the model. 

Variable/Interaction 
Percentage 

(model) 

Percentage 

(total) 

 
  Null 

R_an 0.20 0.08 

P_an 16.50 6.48 

Species 50.33 19.76 

T_sum 6.92 2.72 

SPI3 3.11 1.22 

SPI12 4.69 1.84 

SM 3.81 1.50 

Species x T_sum 3.27 1.28 

Species x SPI3 5.11 2.01 

Species x SPI12 5.01 1.97 

Species x SM 1.04 0.41 

  100.00 39.25 

P_an: accumulated annual precipitation (mm); R_an: mean annual radiation (10·kJ/m2·day); 

T_sum: summer anomaly of temperature (⁰C); SPI3 and SPI12 are Standard Precipitation Index 

calculated for 3 and 12 months, respectively; SM: soil moisture (m3/m3) derived from SMOS 

afternoon passes (~17h UTC). 
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 Regarding the variables characterizing the environmental conditions during year 2012, they 

all show significant interactions with species (Table A.3 in Appendix A). The effect of SPI3 and 

SPI12 on the decline probability is consistently negative, but not always significant, for all 

species, except for Pinus sylvestris. The negative effect of SPI3 on decline occurrence is 

significant for Pinus halepensis, Pinus nigra, and Fagus sylvatica (Figure 3.6), whereas SPI12 

presents significant negative effects for Pinus nigra, Quercus suber, Quercus ilex, and Fagus 

sylvatica (Figure 3.7). Thus, lower rainfall is associated with higher decline. Summer 

temperature anomaly (ΔT_summer) increases decline probability in most species and has 

strong and significant effects on all species except Pinus nigra, Pinus pinea, and Pinus 

halepensis (Figure 3.8). Finally, low values of soil moisture increase the probability of forest 

decline in all species, with significant effects for deciduous Quercus, Quercus ilex, Fagus 

sylvatica, Pinus nigra, and Pinus sylvestris (Figure 3.9). 

 

 

 

 

Figure 3.5. Modelled decline probability for each of the studied species in the final 

model of forest decline occurrence. Central black dots indicate the median 

probability of suffering decline per species as estimated by the logistic model. 

Note that these probabilities may not reflect species’ absolute decline 

probabilities (see Section 3.2.4). Whiskers account for +/-1.58 IQR (Inter-Quartile 

Range). 
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Figure 3.6. Modelled effect of the SPI3 on decline probability for each of the 

studied species. SPI3 is dimensionless. Values of SPI3 were back-transformed to 

the original scale for display purposes. Black curves show effects and dashed lines 

show 95% confidence intervals. Shaded rectangles show SPI3 values out of the 

range for each species, where effects are extrapolated. Top-right boxes show the 

significance of the effects for a given species, as p<0.05 (*), p<0.01 (**) and 

p<0.001 (***). A rug plot is shown giving the marginal distribution of the predictor 

on the horizontal axis. 
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Figure 3.7. Modelled effect of the SPI12 on decline probability for each of the 

studied species. SPI12 is dimensionless. Values of SPI12 were back-transformed to 

the original scale for display purposes. Black curves show effects and dashed lines 

show 95% confidence intervals. Shaded rectangles show SPI12 values out of the 

range for each species, where effects are extrapolated. Top-right boxes show the 

significance of the effects for a given species, as p<0.05 (*), p<0.01 (**) and 

p<0.001 (***). A rug plot is shown giving the marginal distribution of the predictor 

on the horizontal axis. 
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Figure 3.8. Modelled effect of the summer 2012 temperature anomaly 

(T_summer, in ºC) on decline probability for each of the studied species. Values 

of T_summer were back-transformed to the original scale for display purposes. 

Black curves show effects and dashed lines show 95% confidence intervals. 

Shaded rectangles show T_summer values out of the range for each species, 

where effects are extrapolated. Top-right boxes show the effect significance as 

p<0.05 (*), p<0.01 (**) and p<0.001 (***). A rug plot is shown giving the marginal 

distribution of the predictor on the horizontal axis. 
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Figure 3.9. Modelled effect of soil moisture (SM, in m3/m3) on decline probability 

for each of the studied species. Values of SM were back-transformed to the 

original scale for display purposes. Black curves show effects and dashed lines 

show 95% confidence intervals. Shaded rectangles show SM values out of the 

range for each species, where modelled effects are extrapolated. Top-right boxes 

show the significance of the effects for a given species, as p<0.05 (*), p<0.01 (**) 

and p<0.001 (***). A rug plot is shown giving the marginal distribution of the 

predictor on the horizontal axis. 
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3.4. Discussion 

3.4.1. Local climatic anomalies as determinants of drought effects on different 
forest species 

 Results show a remarkable coherence in the effects of the variables describing climate 

anomalies and soil moisture distribution. In general, an area was more likely to be affected 

wherever temperatures were particularly high and rainfall particularly low during summer 

2012, compared to long-term averages, resulting in low water content in surface soils. 

Interestingly, the effects of rainfall at the summer and whole-year timescales are spatially 

independent from each other, suggesting that rainfall accumulated at these different 

timescales might need to be accounted for separately in models of drought effects on forests 

(Vicente-Serrano et al., 2013). The positive relationship between temperature anomaly and 

decline occurrence observed in the study is consistent with reports highlighting the key role of 

high temperatures in drought-induced forest mortality (Williams et al., 2013; McDowell et al., 

2016; Neumann et al., 2017). Similarly, results are in agreement with the studies highlighting 

soil moisture as an important factor explaining the spatial distribution of forest decline. For 

instance, in Anderegg et al., 2013b it is shown that low shallow (<10 cm) soil moisture was 

associated to the spatial patterns of sudden aspen (Populus tremuloides) decline in Western 

USA. It should be noted, however, that the study species are likely to extract most water from 

deeper soil layers than those sensed by SMOS, and the relationship between L-band derived 

soil moisture data and soil water availability to plants requires further investigation, which 

should be focused on the application of root zone soil moisture products (see Section 6.3). In 

that sense, a recent study from Kharuk et al., 2017 shows that increased mortality of Siberian 

pine (Pinus sibirica) and fir (Abies sibirica) in the region of Lake Baikal (Siberia) was associated 

to negative anomalies of soil moisture for a depth ranging between 0 and 100 cm. 

 Results show that forests growing in sites under wetter mean climatic conditions and in 

areas more exposed to radiation were more likely to experience decline. Recent studies have 

shown that the vulnerability to drought may remain approximately constant across biomes 

(Choat et al., 2012), and that even species from very humid locations (e.g., tropical rainforests) 

are prone to suffer from drought (Engelbrecht et al., 2007). Similarly, populations from drier 

areas may be better adapted to drought, resulting in a similar or higher vulnerability in wetter 

areas even within the range of a given species (e.g., Martínez-Vilalta et al., 2012b). 

 

3.4.2. Broadleaved trees were more affected by the 2012 drought than 
conifers 

 Consistently with the higher susceptibility of broadleaved species, they tended to be more 

sensitive to the studied drivers of drought stress than conifers. This result agrees with the fact 

that conifers have wider safety margins from hydraulic failure in their xylem, both in general 

(Choat et al., 2012) and also in particular for the set of species studied here (Table A.4 in 

Appendix A). However, drought resistance in plants is complex and multifaceted, and 
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vulnerability to xylem embolism is by no means its only component, nor the only one differing 

between angiosperms and gymnosperms (Brodribb et al., 2012). Generally, broadleaved 

species tend to have deeper roots, and all the broadleaves included in this study are able to 

resprout, whereas the studied conifers are not. These differences might explain why the higher 

damage of broadleaves observed in summer 2012 was not observed in the previous DEBOSCAT 

surveys conducted in years 2010 and 2011 (Banqué et al., 2013). In 2013, a wet year in the 

study area, only 37 new decline events were recorded in the DEBOSCAT survey. Interestingly, 

however, the two species with higher area affected by new 2013 events were pines (Pinus 

halepensis and Pinus sylvestris). In addition, several decline events registered during 2012 

were recovered two years later in most broadleaved species, showing that the post-drought 

dynamics of the studied episodes should be a matter of study. In contrast, the increased 

number of decline events mainly in conifers on 2014 suggests that they may be more prone to 

suffer lagged mortality effects (e.g., Hereş et al., 2012 for Pinus sylvestris in the same study 

region, consistently with results shown in Table 3.4 for this species). Also, these results suggest 

that the differential vulnerability to drought of broadleaves and conifers might depend on the 

temporal development of drought and can vary from year to year even within a given location, 

perhaps providing an effective resilience mechanism over larger spatial and temporal scales 

(Lloret et al., 2012). 

 

3.4.3. Are Euro-Siberian species more vulnerable than Mediterranean species? 

The hypothesis that Euro-Siberian species at the southern (and dry) limit of their distribution 

would be more vulnerable to drought is only partially verified. Although Fagus sylvatica, a 

typical central European species, was highly impacted by drought in 2012 and was the most 

sensitive species to the majority of studied variables, another northern species, such as the 

mostly Boreal Pinus sylvestris, was much less impacted (in 2012) and this impact was poorly 

related to the studied drivers. This result for Pinus sylvestris contrasts with several decline 

events detected for this species in the study area (Martínez-Vilalta and Piñol, 2002; Galiano et 

al., 2010; Hereş et al., 2012; Vilà-Cabrera et al., 2013) and with the higher damage of the 

species reported on the 2010, 2011, 2013, and 2014 DEBOSCAT campaigns (Banqué et al., 

2013). For the 2012 effects studied here, the influence of the species’ biogeographical range 

was clearly less important than the type of species (broadleaved compared to conifers). Some 

typical Mediterranean species, such as Quercus ilex and Quercus suber, were highly affected, 

while Pinus halepensis was not. The high sensitivity of Fagus sylvatica to the studied factors 

suggests that increasing temperatures and droughts could strongly affect this species in the 

study region (Jump et al., 2006) and elsewhere in Europe (Meier et al., 2011). 

 

3.4.4. Towards a predictive monitoring of forest vulnerability to drought 

The fact that the species distribution and the climatic anomalies during the study year 

explain a substantial proportion of the spatial distribution of forest decline, and that climatic 

effects were largely consistent across species, offers a promising avenue in terms of predicting 
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forest decline at large spatial scales using GIS and remote sensing data. All the variables 

included in the study are relatively easy to calculate or readily available at different temporal 

and spatial resolutions for many regions of the globe (e.g., see Fick and Hijmans, 2017). At the 

same time, however, it must be noted that the proposed model explains ∼40% of the spatial 

variability in forest decline, and this percentage would be probably lower if the model is used 

to predict future decline events. This fact suggests that major determinants of the decline 

process are not accounted for in the study. The effect of previous droughts (such those 

occurred between 2004 and 2008 in the study area), for instance, might represent an 

important predisposing factor partially explaining the spatial distribution of current decline 

events. Although no large-scale pest effects were detected in 2012 in the study area, the 

impact of biotic agents is likely to be locally important (Anderegg et al., 2015). Patterns of tree 

death are often patchy at fine spatial scales across the synoptic drought-affected region, which 

suggests the need to include more detailed-scale factors in future editions of the DEBOSCAT 

survey. Actually, decline patterns depend on the combination of ecosite variability (e.g., soils 

or slope) and density-dependent processes (e.g., competition or insect outbreaks; Allen et al., 

2010). Stand development and structural characteristics have been related to forest decline in 

many studies (e.g., Carnicer et al., 2011; Vilà-Cabrera et al., 2011). Also, the combination of 

drought conditions with larger basal area (implying water-mediated competition) and with 

functional traits has been linked to increased mortality (Young et al., 2017; Greenwood et al., 

2017). Disturbance legacies, including past forest management practices, are the main 

determinants of current stand characteristics over most of the study region (Vilà-Cabrera et al., 

2011; Ruiz-Benito et al., 2013), and may explain the clustering of decline episodes in some 

areas (see Figure 3.1). Finally, fine scale soil characteristics such as texture or vertical 

development are also obvious contributors to forest decline occurrence (Vilà-Cabrera et al., 

2011), as root development is limited on shallow and/or rocky soils, obviously influencing 

water retention and availability independently of direct climatic effects. 

 High resolution soil moisture data obtained from remote sensing, such as the SMOS-derived 

dataset used in this study, offers a path forward for the predictive modelling of drought 

effects. The major limitation of SMOS downscaled data at present is the shallow soil depths at 

which SMOS is sensitive to, as it only captures a small fraction of the rooting zone of most tree 

species (Jackson et al., 1996). This drawback may explain the low explanatory power of soil 

moisture in this study. This issue could be improved using surface moisture models or by 

estimating water content in deeper layers from surface soil moisture (see Section 6.3). 

Concerning its spatial resolution, the downscaled product is applicable to regional studies 

(while the L2 product is not) but a better resolution would be desirable (see Section 6.3). 

Hence, satellite soil moisture data applicability and the possibility of improving its 

characteristics makes it a promising tool with many potential applications in forest ecology. 
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3.5. Conclusions 

The model proposed in this work is able to explain a substantial proportion (∼40%) of the 

spatial distribution of forest decline detected after the extremely dry summer of 2012 in 

Catalonia, using widely available environmental data. It has been concluded that precipitation 

anomaly at different time scales, anomalies of temperatures, and surface soil moisture, were 

important and complementary to explain forest decline patterns. These results are promising 

because they show that predicting forest decline is possible. At the same time, however, the 

substantial proportion of variance that could not be explained by our model indicates that 

other factors (e.g., soil properties, ecosite variability, stand structure and management history, 

or occurrence of previous droughts) are also likely to be important and need to be taken under 

consideration in future monitoring programs and decline models.  

In general, climatically wetter and more exposed forests were more vulnerable than those 

located in drier or more shaded areas. More affected forests were characterized by high 

positive temperature anomalies, low rainfall accumulated for the whole summer and for the 

previous year, and by low soil moisture in surface layers. However, species differed in their 

overall affectation and in their susceptibility to the studied drivers. Overall, broadleaved 

species were more affected than conifers. Interestingly, species at the southern limit of their 

distribution were not necessarily more sensitive to the studied explanatory variables, nor 

necessarily more affected (e.g., Pinus sylvestris) than species distributed over drier areas, at 

least in the short term.  

Finally, the applicability of satellite soil moisture data to forest decline assessment is 

promising, showing a coherent relationship between drier soils and larger forest affectation, 

especially in the more sensitive broadleaved species. Nevertheless, the capacity of this variable 

to explain a substantial proportion of forest decline spatial distribution is still scarce. Future 

work should be addressed to model and apply moisture information in deeper layers than 

those sensed by SMOS, in order to effectively estimate water availability in the root zone (see 

Section 6.3). Additionally, it is expected further development of soil moisture downscaling 

algorithms. This would increase the power of L-band soil moisture estimates to predict forest 

decline in particular, and to provide more detailed and valuable information for forest ecology 

applications in general. 
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Abstract 

Monitoring vegetation biomass is essential to the global carbon assessment. VOD data have 

been applied for biomass estimation using frequencies ranging from 1 to 30 GHz (L- to K-

bands). As lower microwave frequencies have greater penetration depths through canopy, the 

L-band VOD (1.4 GHz) should provide the best ability to estimate carbon stocks. This chapter 

compares the sensitivity of VOD at L, C, and X-bands, and of the EVI index, to the above-

ground carbon density (ACD) in Peru, southern Colombia and Panama. It quantifies the relative 

contribution of ACD and forest cover proportion (FC) to the VOD/EVI signals. Results confirm 

the enhanced sensitivity of L-band VOD to ACD, and show that ACD explains 34% and forest 

cover 30% of L-band VOD variance. These proportions gradually decrease for EVI, C-, and X-

band VOD, respectively. Results are consistent regardless of altitude, carbon density, and 

regions and forest types studied. Results also show that C-, X-band VOD and EVI provide 

complementary information to L-band VOD, especially in flooded forests and in mountains, 

indicating that synergistic approaches could lead to improved retrievals in these regions. 

Results from this study support the use of new L-band VOD estimates for mapping the carbon 

of tropical forests.  
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4.1. Introduction 

The quantification of carbon stocks in tropical regions is essential for global carbon 

assessment and is needed to support forest conservation initiatives. Intact tropical forests (i.e., 

not affected by human activities) are responsible for half of the carbon sequestration in 

woodlands across the world (Pan et al., 2011), and maintain forest resources and biodiversity 

(Foley et al., 2005). However, deforestation and disturbances in tropical regions (including 

drought, heat, and wildfires) cause tropical forests to be a net carbon source (Pan et al., 2011; 

Liu et al., 2015; Baccini et al., 2017; see Section 1.2.3). Despite this fact, globally terrestrial 

ecosystems act as carbon sinks. This has immediate consequences for the global carbon 

balance, and provides negative feedback to anthropogenic climate change.  

Satellites are the only means to provide an efficient and cost-effective monitoring of 

vegetation biomass changes over large areas and over extended periods (Goetz et al., 2009). 

Previous research on biomass estimation from space observations has been frequently based 

on the combination of diverse remote sensing sources and on complementing satellite data 

with field plots. The most widely used technique for vegetation monitoring is based on visible-

infrared (VIS/NIR) vegetation indices. These indices have been constructed to exploit the 

particular properties of green vegetation to strongly absorb red wavelengths and reflect in the 

near-infrared. Several studies have used such indices for biomass estimation. For example, 

data from MODIS has been applied to map carbon density in tropical regions (Baccini et al., 

2008; Baccini et al., 2017) and in China (Sun et al., 2015). Spectral vegetation indices, such as 

the NDVI and EVI, have also been combined with field measurements to estimate forest 

biomass (e.g., Myneni et al., 2001; Dong et al., 2003; González-Alonso et al., 2006; Blackard et 

al., 2008; Yuan et al., 2016). Despite their importance on vegetation studies, VIS/NIR 

vegetation indices have serious limitation for monitoring carbon stocks because (i) they are 

masked by clouds, (ii) can only monitor the top of the vegetation canopies, (iii) saturate at 

moderate and high levels of vegetation densities, and (iv) are poorly related to total biomass. 

Differently from –and complementarily to- the VIS/NIR datasets, optical remote sensing 

based on the reception of laser pulses (i.e., LiDAR) presents the unique advantage of capturing 

the vertical structure of vegetation. It can be used to map the forest height and architecture in 

detail. The application of LiDAR enhances the capacity to capture vegetation biomass at 

different spatial scales and, in that sense, new estimations of biomass and carbon fluxes 

throughout the Earth tropical regions have been obtained merging LiDAR satellite data with 

MODIS information and/or microwave datasets (Saatchi et al., 2011; Baccini et al., 2012 and 

2017). At present, LiDAR surveys of forest biomass are limited to airborne platforms, although 

the Ice, Cloud, and land Elevation Satellite (ICESat) provided LiDAR measurements between 

2003 and 2009. ICESat data was used for mapping forest canopy height (Simard et al., 2011), 

and future satellite missions like the ICESat-2 and the Global Ecosystem Dynamics Investigation 

mission (GEDI) will produce LiDAR retrievals of canopy structure from space. Importantly for 

the scope of this work, airborne LiDAR from the Carnegie Airborne Observatory (CAO) –in 

combination with field and modelled datasets- has been used to produce ACD maps at regional 

scales in Peru, southern Colombia and Panama (Asner et al., 2012, 2013 and 2014). 
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Microwave remote sensing, either from active or passive sensors (i.e., radars or radiometers, 

respectively), provides an alternative technique that has a double advantage: it is insensitive to 

cloud cover, and it is able to sense through the vegetation layers. Microwave sensors are 

responsive to soil moisture and vegetation water content (see Section 1.3). In order to derive 

biomass estimates, it is assumed that the vegetation water content to which microwaves are 

sensitive is tightly linked to the biomass of the plant. The relationship between measurements 

from space-borne radars and biomass in tropical forests has been widely demonstrated 

(Luckman et al., 1997; Kuplich et al., 2000; Hamdan et al., 2011; Morel et al., 2011; Sinha et al., 

2015; Viet Nguyen et al., 2016). Radar data have been used to provide vegetation biomass 

estimates either in synergy with LiDAR and VIS/NIR data (Saatchi et al., 2007; Lucas et al., 

2015) or as an independent data source (Thurner et al., 2014; Bouvet et al., 2018). The use of 

passive microwave measurements for biomass assessments relies on the estimation of the 

VOD. Different VOD products have been applied to study forests conditions and biomass (Liu 

et al., 2013; Lucas et al., 2015; van Marle et al., 2016; Brandt et al., 2017 and 2018). In 

particular, trends in global terrestrial biomass have been estimated using long-term retrievals 

of VOD at C-, X- and K-bands (>4 GHz; Liu et al., 2011 and 2015). In this regard, since the 

penetration depth of microwaves through the vegetation canopy is greater at lower 

frequencies, VOD at L-band (1 to 2 GHz) is expected to enhance the capacity to derive 

information on vegetation for a wide range of applications.  

L-band VOD datasets have been used in vegetation research to study GPP (Teubner et al., 

2018) and crop yields (Chaparro et al., 2018, and Chapter 4). L-band VOD has shown good 

agreement with vegetation biomass and forest height (Vittucci et al., 2016a and 2016b; 

Konings et al., 2017a). Brandt et al. (2018) have demonstrated its applicability to monitor 

carbon dynamics associated to weather trends in African drylands, and have shown reduced 

saturation for L-band VOD at high values of vegetation biomass as compared to higher 

frequency (shorter wavelength) microwaves. Vittucci et al. (2016b) have reported that on July 

2015 L-band VOD showed stronger relationship with biomass and forest height than C-band 

VOD, in tropical forests of South America and Africa. However, they have found low 

relationship of L- and C-bands VOD with biomass in Indonesian forests, with similar 

performance for biomass estimation at both frequencies. In this context, further work is 

needed to quantify and compare the relationship between above-ground carbon stocks and 

VOD at different frequencies and for different forest types. At present it is still unclear to what 

extent L-band VOD shows higher sensitivity to capture carbon patterns than other frequency 

bands and vegetation indices.  

The main goal of this chapter is to assess and compare the sensitivity of VOD (at L-, C-, and 

X-bands) to ACD, and benchmark it with respect to EVI. The study is conducted with a principal 

focus on tropical forests in Peru, southern Colombia and Panama. The chapter is structured in 

three parts. First, the relationship between satellite VOD and ACD derived from airborne LiDAR 

surveys is established and analysed. This shows the effect of vegetation density on the L-band 

VOD signal and compares it to the different microwave frequencies. Second, the relative 

contribution of ACD and FC to the VOD signal is studied. This allows understanding to what 

extent the VOD could depend on the changing forest cover within a region rather than on the 

carbon density variability per se. In this second part, the EVI is included to complement the 

study. Its dependence on ACD and FC is also presented and compared to VOD. And third, the 
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analyses presented are reproduced specifically for the Andes Mountains and for the flooded 

forests found in the study area, which exhibit distinct vegetation and VOD patterns.  

The comparisons among VOD frequencies and EVI will be presented at 25 km. Also, since 

SMAP L-band VOD is available on a 9 km grid (obtained from the enhanced brightness 

temperature product, but with the instrument’s native ~36 km spatial resolution; see Section 

4.2.2.A and Chaubell, 2016), dedicated analyses will be performed at 9 km.   

 

 

4.2. Materials and methods 

4.2.1. Study area 

The study area (Figure 4.1) is defined based on the availability of ACD maps. It encompasses 

Peru (~1.3 million km2), Panama (~75,000 km2) and part of the Colombian Amazon (~165,000 

km2). Peru and southern Colombia comprise the Amazon basin, crossed by the Amazon River 

and its tributaries. In western Peru, the Andes Mountains reach altitudes above 6,500 m.  

 The evergreen tropical rainforests in the region are the main target of this study. Near some 

rivers edges, and particularly in northcentral Peru, these forests are flooded forests (Figure 

4.1a). The Amazonian forests constitute one of the main land carbon reservoirs on Earth. 

Other land covers are found in the Andes, where a transition from dense forests to shrublands, 

grasslands, and bare soils occurs with increasing altitudes. Also, croplands, shrublands and 

grasslands are present in the north of the studied area of Colombia and in western Panama 

(Figure 4.1a). 

 

4.2.2. Datasets 

A. Vegetation Optical Depth 

The L-band (1.4 GHz) VOD is retrieved from the SMAP satellite using the Multi-Temporal 

Dual-Channel Algorithm, which allows estimating SM and VOD from single look-angle 

observations using two consecutive overpasses and no ancillary information on vegetation 

(Konings et al., 2016, and Section 1.4.2.B). SMAP VOD datasets retrieved using MT-DCA have 

shown good agreement with vegetation and land cover patterns at the global scale (Konings et 

al.,  2017a). Here, the first year of SMAP VOD data (April 2015 - March 2016) is used. This 

dataset is retrieved from SMAP Backus-Gilbert enhanced brightness temperatures using the 

MT-DCA and is provided in the 9 km EASE 2.0 grid (NSIDC, 2017a). Figure 4.1b shows the 

annual average of L-band VOD at 9 km gridding. Figure 4.2 shows its aggregation at 25 km scale 

(obtained using bilinear interpolation), which is used for comparison with the higher frequency 

VOD bands at their available grid scale (see below), and with EVI. 
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Figure 4.1. Description of the study area, which includes Panama, southern 

Colombia and Peru. (a) Dominant land cover constructed by selecting the modal 

class over 9 km grid cells from a 2015 land cover map (ESA-CCI, 2017), and major 

rivers (UNESCO, 2017); (b) Mean L-band SMAP 9 km VOD data (dimensionless; 

period April 2015-March 2016); (c) Above-ground Carbon Density (TC/ha) 

aggregated to 9 km (Asner et al., 2012, 2013 and 2014). Areas with insufficient 

VOD and/or ACD data (e.g.,rivers and coastlines) are not plotted. 

 

The VOD at C-bands (6.9 and 7.3 GHz, hereafter named C1 and C2 respectively) and X-band 

(10.7 GHz) are derived from AMSR2, on board of the Japan Aerospace Exploration Agency’s 

GCOM-W1 satellite. VOD is retrieved with the Land Parameter Retrieval Model (see Section 

1.3.4). The dataset is provided on a 25 km grid (Vrije Universiteit Amsterdam and NASA GSFC, 

2014), and is adapted to the EASE2 grid at the same scale using bilinear interpolation. The 

yearly averages are computed for each frequency band and are shown in Figure 4.2. 

 

B. Above-ground carbon density  

 The above-ground carbon density maps produced by the CAO (Asner et al., 2012, 2013 and 

2014) are used as a benchmark to assess the sensitivity of VOD to variability on carbon stocks. 
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The ACD dataset is based on intensive airborne LiDAR sampling carried out between years 

2010 and 2012. LiDAR measurements are converted to top-of-canopy height information 

which, in turn, is transformed to ACD data (100 m resolution) using calibration against field 

plots and information on topography, vegetation and precipitation. ACD ranges between 0 and 

140 TC/ha in the study area. The degree of uncertainty at the original ACD resolution reaches 

up to 28.3% in Colombia and 23% in Panama. This is computed in terms of error relative to the 

mean. In the case of Peru, the uncertainty in the vast majority of the tropical forest area is 

below 10%. It may increase in flooded regions and river areas ranging from <5% to 50% in most 

of these regions. Errors around 80% are found in the Andes, but this is largely due to the fact 

that the mean ACD values per pixel are close to zero in this area, causing large relative 

uncertainties with low ACD absolute errors. More details on the ACD datasets are provided in 

Asner et al. 2012 (Colombia), 2013 (Panama), and 2014 (Peru). In this work, the ACD datasets 

are aggregated to the 9 and 25 km scales to match the VOD layers, and are shown in Figure 

4.1, and Figure B.1 in Appendix B, respectively. 

 

 

Figure 4.2. Mean VOD data (dimensionless) for the period April 2015 – March 

2016, retrieved at (a) L-band (1.4 GHz); (b) C1-band (6.9 GHz); (c) C2-band (7.3 

GHz) and (d) X-band (10.7 GHz). Datasets are converted to a common 25 km grid. 

 

C. Enhanced Vegetation Index  

The EVI is a VIS/NIR index used as a proxy of vegetation condition, photosynthetic activity 

and biomass (Huete et al., 2002). Here it is used to provide comparison with the microwave 

datasets when their sensitivity to ACD and FC is studied. The EVI dataset is derived from 



Chapter 4 
Applicability of VOD to monitor carbon stocks in tropical forests 

95 

MODIS. Original EVI data is the 16-day MODIS/Terra MOD13C1 v.6 product, on a 0.05° 

latitude/longitude global grid. EVI is converted to the EASE2 grids using bilinear interpolation. 

 

D. Forest cover maps 

The ESA-CCI 2015 land cover map (ESA-CCI, 2017; 300 m resolution) is used in this work to 

produce a binary forest mask and to obtain maps of forest cover percentages and flooded 

forest proportion. The land cover categories considered as forests in this research are tree 

covers as well as vegetation mosaics with (tree + shrub) or (tree + shrub + herbaceous) covers 

occupying >50% of surface. Pixels at the study scales are classified as forests when this 

grouped category is dominant (modal class). Also, the FC variable is computed as the fraction 

of forests in the pixel and its contribution to the VOD is studied. Likewise, the proportion of 

flooded forests is also computed. 

 

E. Water fraction maps 

Information on water bodies is needed to provide a specific analysis of VOD sensitivity to 

carbon stocks in pixels with varying amounts of standing water. In this study, the water 

occurrence product from the European Commission Joint Research Centre’s Global Surface 

Water Explorer (Pekel et al., 2016; European Commission, 2017) is considered to be more 

appropriate than the land cover map. This product specifically provides information on the 

water bodies detected using Landsat for the period 1984-2015. The dataset shows the 

percentage of satellite acquisitions which detected water in each 30 m pixel (i.e., % of water 

occurrence) during the mentioned period (Pekel et al., 2016). Here, pixels exceeding 50% of 

water occurrence are considered as water pixels. The percentages of water at the study scales 

are computed once this reclassification has been applied. 

 

F. Digital Elevation Model  

To take into account the impact of increasing altitudes on ACD and VOD (mainly in the 

Andes) the ETOPO1 Global Relief Model (Amante and Eakins, 2009) is used. The ETOPO1 

provides global land elevation and ocean bathymetry at 1 arc-minute resolution. It is supplied 

by the National Oceanic and Atmospheric Administration (NOAA, 2017). This dataset is 

aggregated at the studied spatial scales. 

 

G. Data screening 

Only pixels containing >95% of ACD high resolution information are considered, in order to 

guarantee a highly representative sample of the carbon dataset. Regions without VOD data are 

also excluded. The overall area studied is of ~1.3 million km2, containing ~900,000 km2 of 

forests. More specific details are reported in Table A.5 in Appendix A. 
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4.2.3. Statistical methods 

A. Analysis of the VOD-ACD relationship 

VOD and ACD datasets are compared and their relationship is analysed for the entire study 

area. The spatial cross-correlation between VOD at each band and ACD is calculated and 

compared using the Lee’s Index, which is a bivariate spatial association method (Lee, 2001). 

This index is computed using the ‘spdep’ R package (Bivand et al., 2013; Bivand and Piras, 

2015) at 25 km and for increasing distances from 25 km to 1,250 km. Also, regressions of each 

VOD product as functions of ACD are estimated using Generalized Additive Models (GAM; 

Hastie and Tibshirani, 1990). GAMs have been previously used to explore the relationships 

between remote sensing data and biomass (Baccini et al., 2004) and forest structural 

attributes (Frescino et al., 2001).  The ‘gam’ R package (Hastie, 2018) is used to compute these 

regressions using cubic spline smoothing classes. GAM functions are applied both at 9 km scale 

(for L-band assessment) and at 25 km scale (for comparison among bands). To make the 

samples comparable between the finer and the coarser grids, 1,000 random replicas for the 

model at 9 km were made with the same sample used at 25 km (1,978 pixels). 

 The main focus of this work is on forests, which represent approximately 70% of the study 

region. Linear regressions of VOD as a function of ACD are computed for the entire forested 

area as: 

𝑉𝑂𝐷 =  𝛼 + 𝛽 · 𝐴𝐶𝐷, (4.1) 

where 𝑉𝑂𝐷 and 𝐴𝐶𝐷 stand for the vegetation optical depth at each band and the above-

ground carbon density (TC/ha), respectively, and 𝛼 and 𝛽 are constant terms. Samples for L-

band VOD regressions at 9 km gridding are also equalised to samples at 25 km gridding 

following the method explained above. Exponential and quadratic functions are also tested, 

but do not improve the fitting and are therefore discarded (results not shown). In addition, Eq. 

(4.1) is specifically applied in the densest forests, where the penetration capacity of 

microwaves through vegetation could be reduced. Two categories of dense forests are studied: 

ACD≥80 TC/ha and ACD≥100 TC/ha. 

 

B. Relative contribution of carbon density and forest cover to VOD and EVI 

The spatial variability of VOD may be affected not only by ACD, but also by spatial variations 

in FC. Furthermore, both can change markedly through different altitudes, as altitude strongly 

conditions vegetation characteristics. These relationships are studied for VOD, and are 

benchmarked to EVI in order to provide comparison between microwave and optical-infrared 

information. 

To understand to what extent the VOD variability in the different bands could depend on 

forest cover changes rather than on the inherent carbon density of forests, VOD datasets are 

studied as a function of ACD and FC using a multiple regression: 
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𝑉𝑂𝐷 =  𝛼 + 𝛽 · 𝐴𝐶𝐷 + 𝛿 · 𝐹𝐶, (4.2) 

where 𝑉𝑂𝐷 is the VOD at each band, 𝐴𝐶𝐷 and 𝐹𝐶 stand for above-ground carbon density 

(TC/ha) and forest cover proportion, respectively, and 𝛼, 𝛽 and 𝛾 are constant terms. Note that 

the equation terms will change for each band. This analysis is carried out in order to obtain the 

relative importance of ACD and FC on the VOD signal using the ‘relaimpo’ R package 

(Grömping, 2006), which provides the relative contribution of each variable in a linear 

regression. The analysis is extended also to the EVI for comparison. Additionally, this procedure 

is replicated separately for different areas, providing a geographical division in six regions 

including Panama (A), Colombia and northern Peru (B), and four latitudinal strips in Peru: 

north-central Peru (C), central Peru (D), south-central Peru (E) and southern Peru (F). A map 

with this division is shown in Figure B.2 in Appendix B. 

 

C. VOD-ACD study over the Andes and in flooded forests 

 Residuals for the L-band VOD – ACD regression in Eq. (4.1), computed as predicted minus 

observed VOD, are mapped to assess the impact of different geographical features on the VOD-

ACD relationship in forests. The map of residuals is compared to maps of flooded forest 

proportion, water fraction, and altitude. Also, the VOD-ACD residuals and the VOD values are 

plotted against altitude, water fraction, flooded forest proportion, and ACD data. 

 Distinct VOD-ACD relationships are found at different altitudes, as well as in flooded forests 

and in regions containing water bodies (see Section 4.3.3). For this reason, the analyses 

described in Eqs. (4.1) and (4.2) are reproduced specifically for: (i) three different altitude 

groups (1,000 to 2,000 m; 2,000 to 3,000 m; and >3,000 m), (ii) regions containing >3% of 

water fraction, and (iii) two groups of flooded forest proportion (5 to 50%; and 50 to 100%). 

These categories are chosen due to their geographical location (mountain or flooded forest 

regions), their positive or negative residuals with respect to the VOD-ACD regression model in 

Eq. (4.1), and their differences in terms of carbon density. T-tests are used to check that these 

criteria are accomplished for the different groups. In particular, T-tests are applied to study 

whether the proposed categories presented residuals significantly different from 0, and to 

compare the proposed categories with the remaining regions (i.e., altitude <1,000 m, water 

<3%, and flooded forest <5%) in terms of ACD. These regions contained the vast majority of 

pixels and are considered as reference groups. Significance for T-tests is stablished at p<0.05. 

 

 

4.3. Results 

The results section is divided in three parts following the structure explained in Section 4.1. 

The relationship between VOD and ACD is presented in Section 4.3.1. The study on VOD and 

EVI sensitivities to both ACD and FC is presented in Section 4.3.2. Finally, Section 4.3.3 

describes spatial patterns of the VOD-ACD relationship, and provides specific analyses in the 
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Andes and in flooded forests. Note that results are displayed at the original L-band 9 km grid 

except for those figures which present comparison among different VOD bands, or between 

VOD and EVI, for which the spatial scale used is 25 km. 

 

4.3.1. VOD-ACD relationship 

 VOD and ACD maps are shown in Figure 4.1, Figure 4.2, and Figure B.1 in Appendix B. The 

highest VOD and ACD values are found in the evergreen forests of Peru and Colombia, while 

both variables decrease in non-forested areas (especially in the Andes). At L-band, VOD is 

lower in the river edges and in flooded regions, partially reproducing reduced ACD in these 

areas. This qualitative pattern is less clear at C- and X-bands (Figure 4.2). L-band shows the 

highest spatial cross-correlation (Lee’s index; Lee, 2001) with ACD for approximately 0 to 300 

km distance. Both L- and C-bands show better spatial cross-correlation with ACD than X-band, 

independently of the distance analysed (Figure 4.3). Note that the decrease on the Lee’s index 

with distance (Figure 4.3) might be also due to the uncertainty of ACD estimates, which is not 

accounted for here. This is further discussed in Section 4.4.3. 

 Scatterplots in Figures Figure 4.4 and Figure 4.5 show the VOD-ACD relationships for the 

studied bands. The sensitivity of VOD to ACD decreases according to the increasing frequencies 

studied (i.e., L-, C-, and X-band, respectively). In particular, results for GAM functions (Figure 

4.4) show R2 values between 0.80 and 0.83 for L-band, between 0.71 and 0.72 for C-bands, and 

0.64 for X-band. Note that the term R2 must not be interpreted in this case as VOD explained 

variance in the context of a linear regression. GAM curves change from a portion with very 

steep slopes (for ACD<10 TC/ha and VOD<0.5, which correspond to non-forested regions) to 

gradually smoother slopes (for VOD>0.5 approximately, in forest areas). This change is 

continuous at L-band, but irregular at the other studied frequencies (Figure 4.4).  

Linear regressions in forest areas are shown in Figure 4.5. The percentages of VOD variance 

explained by ACD are 57% (L-band), 30 to 32% (C-band) and 1% (X-band). Results for both L-

band grids are consistent, although the finer scale shows slightly lower coefficients of 

determination (Figures Figure B.3 and Figure B.4 in Appendix B). Importantly, note that the 

shape of the VOD-ACD scatterplots suggests that the relationship between both variables is 

not exactly linear (Figures Figure 4.4 and Figure 4.5). In that sense, it must be taken into 

account that VOD shows decreased sensitivity to ACD changes in the densest forests (Table A.6 

in Appendix A). Still, linear regression has shown similar or improved fitting in comparison to 

exponential and quadratic functions (see Section 4.2.3.A). 
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Figure 4.3. Spatial cross-correlation (Lee’s Index) between ACD and each of the 

mean VOD datasets studied (25 km grid): L-band (green), C1-band (black), C2-

band (red) and X-band (blue). Lee’s Index is computed for each 25 km step from 

the common 25 km grid, to a maximum distance of 1,250 km. 

 
Figure 4.4. Regressions of VOD as a function of ACD using Generalized Additive 

Models (GAM). (a) L-band (1.4 GHz); (b) C1-band (6.9 GHz); (c) C2-band (7.3 GHz); 

and (d) X-band (10.7 GHz). Models are fitted on the basis of a cubic spline 

function. All regressions are significant (p<0.0001). 
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Figure 4.5. Linear regressions of VOD as a function of ACD (Eq. (4.1)) in forest 

areas. (a) L-band (1.4 GHz); (b) C1-band (6.9 GHz); (c) C2-band (7.3 GHz); and (d) 

X-band (10.7 GHz). All regressions are significant (p<0.001). Grey dots show pixels 

without forest dominant cover and are excluded from the regressions. 

 

4.3.2. Contribution of carbon density and forest cover to VOD and EVI 

Figure 4.6 shows the relationship of L-band VOD and EVI with ACD and FC, as well as the 

VOD-EVI and ACD-FC scatterplots. Note that the EVI is included here to provide a comparison 

between microwave and visible-infrared datasets in forested areas. Altitude is shown as a third 

variable in each subplot. In Figures Figure 4.6a and Figure 4.6b it is reported that L-band VOD is 

more sensitive to ACD (R2 = 0.51) than EVI (R2 = 0.37). In turn, EVI is more sensitive to ACD than 

VOD at C- and X-bands (Figure 4.5 and Figure 4.6b). Also, it is shown that VOD, EVI and ACD 

decrease for increasing altitudes. This effect is more evident for EVI than for VOD. Figure 4.6c 

shows VOD ranging from 0.5 to 1.25 in completely forested pixels, while its maximum 

decreases to 0.8 in pixels with less than 50% of forests. In the case of EVI, it is higher at low 

altitudes (especially <1,000 m), and its maximum also decreases at lower forest proportions. 

The latter pattern is clearer for higher altitudes, where EVI can drop below 0.2 (Figure 4.6d). 

Figure 4.6e shows a positive association between VOD and EVI in forests above 1,000 m. Note 

that ACD decreases with increasing altitude and decreasing forest cover proportion (Figure 

4.6f).  
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Figure 4.6. Relationships between: (a) ACD and L-band VOD (Eq. (4.1)); (b) ACD 

and EVI; (c) forest cover and L-band VOD; (d) forest cover and EVI; (e) EVI and L-

band VOD and (f) forest cover and ACD. In (a) and (b), linear regressions are 

significant (p<0.0001). Only forest pixels are plotted. Colour shows the altitude. 
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The relative contribution of ACD and FC to the VOD and the EVI variances is provided in 

Figure 4.7. ACD explains 34.2% of L-band VOD variability, while this percentage decreases for 

EVI (26.9%), C-band (18% and 19.4% for C1 and C2, respectively), and X-band (negative 

coefficient). FC explains similar proportions of EVI (32.5%) and L-band VOD (30%). This 

proportion is lower at C- and X-bands (17.3% for C1, 15.9% for C2, and 9.1% for X-band). 

Overall, the relative contributions of ACD and FC are consistent for most of the studied 

regions, although the absolute percentages change (Figure B.2 in Appendix B). Additionally, in 

the southernmost region of Peru, EVI shows higher sensitivity to ACD and FC than any VOD 

band (Figure B.2 in Appendix B). 

 

 
Figure 4.7. Relative importance of ACD and FC as predictors of VOD and EVI in Eq. 

(4.2). All effects are significant (p<0.0001). All effects are positive, except for the 

effect of ACD on X-band VOD which is negative (-).  Numbers represent relative 

importance (%) of each variable. All results are significant (p<0.0001). 

 

4.3.3. VOD residuals and VOD-ACD relationships in the Andes and in flooded 
regions 

Positive residuals are associated with decreasing ACD and increasing altitudes in the Andes 

Mountains. Nevertheless, above 3,000 m residuals seem to be equally distributed around zero 

(Figure 4.8a, Figure 4.8d and Figure 4.9a). Negative residuals of VOD at L-band are found in 

river edges and in flooded forest regions, where ACD is lower for pixels with dominant flooded 

forest cover (Figure 4.8a, Figure 4.8b and Figure 4.9c). In addition, the relationship between 

water proportion, VOD residuals and ACD is unclear (Figure 4.8a, Figure 4.8c and Figure 4.9b). 

Importantly, the relationship between the residuals and the fitted VOD values is shown in 

Figure B.5 in Appendix B. The observed patterns show how, as commented in Section 4.3.2, 

the VOD-ACD relationship is not completely linear. The geographical patterns for VOD 

residuals shown in Figure 4.8a might be also influenced by this fact. 



Chapter 4 
Applicability of VOD to monitor carbon stocks in tropical forests 

103 

 

Figure 4.8. (a) Residuals for Eq. (4.1); (b) percentage of flooded forest (grey=0%); 

(c) percentage of water cover (grey=0%) and (d) altitude (m). Areas without 

dominant forest cover and areas with insufficient VOD and/or ACD data are not 

plotted.  

 

 
Figure 4.9. Top: relationship between residuals for Eq. (4.1) and (a) altitude, (b) 

percentage of water and (c) percentage of flooded forest. Dashed red lines show 

residuals equal to 0. Bottom row: relationship between L-band VOD and (d) 

altitude, (e) percentage of water and (f) percentage of flooded forest.  
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Figure 4.10. Regression of VOD as a function of ACD (Eq. (4.1); blue line) for pixels 

within different categories (plotted with red dots): (a) altitude between 1,000 and 

2,000 m; (b) altitude between 2,000 and 3,000 m; (c) altitude above 3,000 m; (d) 

proportion of flooded forest between 5 and 50%; (e) proportion of flooded forest 

above 50%; (f) water proportion above 3%. Grey dots represent the VOD-ACD 

data for all the forest pixels in the region. 

 

Following the patterns described, T-tests for the different categories of altitude, water, and 

flooded forest proportion (see Section 4.2.3.C) report that VOD residuals are significantly 

different from 0, and/or that ACD shows significant differences with reference groups, for all 

the studied categories (Figure B.6 in Appendix B). This confirms that providing particular 

analyses for the proposed categories permits to study the VOD-ACD relationship in forests of 

different biomass, and in regions where the VOD, as a function of ACD, is overestimated or 

underestimated. 

Figure 4.10 a, b and c show regressions of L-band VOD as a function of ACD (Eq. (4.1)) at 

three altitude ranges. It can be seen that the regression slopes increase with altitude, with R2 

ranging from 0.42 to 0.55. Figure 4.11 a, b and c shows how the ACD relative importance for L-

band is higher than the ACD contribution to C- and X-bands and EVI in all cases. For L-band 

VOD, the ACD relative importance is similar regardless of the altitude group (30.6% to 34.4%). 

For VOD at C1- and X-bands, the relative importance of ACD is higher above 2,000 m than at 

lower altitudes. In C2-band and EVI the ACD contribution is higher for the 2,000 – 3,000 m 

category. 

Figure 4.10 d and e show regressions for flooded forest categories (5-50% cover: R2 = 0.48; 

50-100% cover: R2 = 0.35). In Figure 4.11 d and e the sensitivity of VOD to ACD in flooded 

regions is higher than the sensitivity found in the overall models shown in Figure 4.7, 

regardless of the frequency band. The relative contribution of ACD is higher than the relative 



Chapter 4 
Applicability of VOD to monitor carbon stocks in tropical forests 

105 

contribution of FC in these regions. L-band VOD shows the highest sensitivity to ACD (relative 

importance from 51% to 62.8%), followed by C-bands (39.7% to 42.9%), and by X-band (29.3% 

to 32.6%), in this order. In contrast, ACD and FC show low and not significant contribution to 

EVI in flooded forests. EVI has a very low variability in these areas (from 0.45 to 0.49). This 

illustrates the added value of using microwave over optical remote sensing in flooded forests. 

Finally, note that the category of water fraction >3% is not presented in Figure 4.11 due to a 

reduced sample (n<10). 

 

 

Figure 4.11. Relative importance of ACD and FC as predictors of VOD and EVI (Eq. 

(4.2)). Sign and significance for each variable are plotted if at least p<0.05. If no 

sign is plotted, this means not significance at 95% confidence level (i.e., p≥0.05). 

Results in top row show altitudinal ranges: (a) 1000 to 2000 m; (b) 2000 to 3000 

m;  (c) >3000 m. Results in the bottom row show flooded forest categories: (d) 5 

to 50%; (e) 50 to 100%. 
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4.4. Discussion 

4.4.1. L-band VOD shows enhanced sensitivity to carbon stocks 

The ability of remote sensing techniques to capture vegetation carbon density largely 

depends on the sensitivity of the studied signal to biomass. The VOD-ACD relationship shows 

the existing link between wet, green and woody biomass in nature, as the ability of VOD to 

capture ACD depends on its sensitivity to the VWC, and on its capacity to penetrate through 

the canopy. Both characteristics should be a function of the microwave frequency used for the 

VOD retrieval. The results presented in this work confirm this fact, as VOD shows a greater 

sensitivity to ACD up to higher canopy densities with decreasing frequencies (L-, C- and X-

bands, ordered by decreasing sensitivity). Results are also consistent with the lack of L-band 

VOD saturation at higher carbon densities (Figure 4.4), which has been previously reported in 

Brandt et al. (2018). This stresses the advantage of using L-band VOD for mapping carbon 

stocks at local and regional scales (up to ~300 km; Figure 4.3). 

The relationship between VOD and carbon density in the study area shows contrasting 

patterns between the forest and the non-forest regions, with non-forested pixels clustered at 

low VOD and ACD values. GAM functions have captured both patterns, and the continuity on 

the L-band GAM curve in the transition zone suggests that this microwave frequency could be 

the most appropriate to capture biomass on vegetation transitions to forests (see Section 4.3.1 

and Figure 4.4). The GAM functions fits (i) confirm the enhanced sensitivity of L-band VOD to 

ACD (R2 between 0.80 and 0.83), (ii) show that the scarce frequency difference between C1 

and C2 bands is not relevant to detect ACD changes, and (iii) confirm the lower sensitivity of 

the X-band to carbon variability. Nevertheless, it should be noted that GAM functions are a 

statistical method more appropriate for exploratory analysis than for predictive purposes 

(Hastie and Tibshirani, 1990; Frescino et al., 2001; Baccini et al., 2004) and therefore other 

statistical tools would be preferable for predicting carbon stocks from satellite data. 

In forest areas, results are also in agreement with the fact that the sensitivity of VOD to 

carbon density increases with decreasing microwave frequencies. This is also found in the 

densest forests, although with reduced sensitivity of VOD to carbon changes. Hence, further 

work is needed to stablish a more accurate VOD-ACD relationship in these forests. In that 

sense, (i) applying a mutual information analysis (Konings et al., 2015) would disentangle the 

VOD and ACD contributions and would provide a more robust estimate of their relationship; 

and (ii) complementarity among VOD bands, as well as among different datasets (e.g., EVI, 

LiDAR, or radar data) would increase the capacity to stablish an accurate relationship (see 

Section 4.4.4). In addition, ACD estimates from VOD data would benefit from multi-year 

observations. In other studies this has allowed providing estimates of carbon trends using VOD 

either at L-band (Brandt et al., 2018) or at C- and X-bands (Liu et al, 2015). 

The main results discussed in this section are consistent for L-band VOD at 9 and 25 km 

scales. ACD explains between 2% and 8% less of VOD variance using the more detailed grid, 

suggesting that the 9 km VOD dataset could be applicable to future carbon stock estimations in 

tropical regions without an important loss of the quality of these estimates. This is interesting 

as spatial detail is commonly regarded as the main limitation of VOD data in comparison with 
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very high resolution optical and active microwave techniques. In this regard, the use of 

oversampling measurements and latest advances in optimal interpolation techniques for 

image reconstruction are particularly promising for microwave radiometry (Chaubell, 2016; 

González-Gambau et al., 2016). 

 

4.4.2. Carbon density and forest cover contributions to VOD and EVI 

VOD changes can be explained by a combined effect of carbon stocks and forest cover (the 

latter limits the variability of VOD and ACD; Figure 4.6). Interestingly, the VOD variance 

explained by ACD in Eq. (4.2) is also decreasing with increasing microwave frequencies (Figure 

4.7, and Figure B.2 in Appendix B). This is consistent with the discussion provided in Section 

4.4.1. Furthermore, ACD and FC show similar contribution to the VOD variability at the studied 

bands (Figure 4.7), and the addition of the FC variable (see Eq. (4.2)) to the VOD-ACD 

regression shown in Eq. (4.1) does not result in an important increase of the explained VOD 

variance (only between 3% and 8% depending on the VOD frequency). Consequently, 

approximately half of the VOD variance initially explained by ACD (see Section 4.3.1) is due to 

the spatial variability in forest cover. Nevertheless, the relative importance of the ACD and FC 

variables changes among regions (Figure B.2 in Appendix B), possibly due to different 

variability of ACD or to different vegetation patterns (e.g., evergreen forest in Peru contrasts 

with vegetation mosaics in Panama; Figure 4.1a). 

 To explore the complementarity and differences between VOD and VIS/NIR indices, MODIS-

derived EVI has been included in the study. Results show that the sensitivity of EVI to ACD is 

lower than the sensitivity of VOD at L-band, and larger than the sensitivity of VOD at C- and X-

bands (Figure 4.5, Figure 4.6 and Figure 4.7). In particular, ACD and FC explain 59% of EVI and 

64% of L-band VOD variances. Nevertheless, forest cover has greater relative importance than 

ACD on the EVI signal, which is coherent to the low canopy penetration of VIS/NIR indices. In 

addition, it should be noted that (i) EVI shows no association with L-band VOD in forests below 

1,000 m, and (ii) EVI equals or enhances the sensitivity to ACD in regions D and F with respect 

to L-band VOD (Figure B.2 in Appendix B). In general, the results presented are in agreement 

with other studies reporting poor correlation between L-band VOD and VIS/NIR indices at the 

global scale, suggesting that these two metrics can complement each other (Grant et al., 

2016). 

 

4.4.3. Effect of different vegetation types on the VOD/EVI sensitivity to carbon 
stocks 

Different patterns are found throughout the studied region analysing the residuals of the 

VOD-ACD relationship. These patterns are linked to decreasing carbon density in mountain 

areas (which should be related to vegetation transitions through altitude), flooded forests, 

river edges, and vegetation mosaics. 
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Possible reasons for positive L-band VOD residuals found in the Andes Mountains include (i) 

a different response to other vegetation types in the mountains, (ii) uncertainties on the VOD 

retrievals in regions with sharp topography and/or sparse vegetation, and (iii) uncertainties in 

the carbon density map (Asner et al., 2012). Results show that the higher sensitivity of L-band 

VOD to ACD is consistent and similar across different altitude classes (i.e., among groups with 

different ACD; Figure 4.11, and Figure B.6 in Appendix B). To maintain this coherence, 

modelling carbon stocks in the Andean forests would need calibration considering different 

elevations (or different vegetation types linked to elevation), as slopes for the VOD-ACD 

regression increase with decreasing ACD at different heights (Figure 4.10). 

In the studied altitude groups, the joint ACD + FC contribution to the VOD at C- and X-bands 

and to the EVI signal (Figure 4.11) is higher than the observed in the entire study area (Figure 

4.7). This effect is not consistently increasing with altitude, nor significant in some cases, but in 

general it is consistent to the fact that higher VOD frequencies and EVI have a greater 

sensitivity to changes in canopy and biomass in less dense forests. Dividing altitude into three 

separate groups enables a more detailed analysis, but it also limits the ranges of the studied 

variables and thus reduces their resulting relative importance. This can explain why only the 

2,000 – 3,000 m category reports a high weight of ACD on EVI (Figure 4.11b), when positive 

EVI-ACD and EVI-VOD trends are found above 1,000 m (Figure 4.6 b and Figure 4.6e). These 

trends are in agreement with the results in Todd et al. (1998), which show that NDVI can be 

considered an accurate proxy of biomass in areas of low vegetation density. 

Flooded forests and river edges present negative residuals in the VOD-ACD regression. The 

higher proportion of water in these areas, which can be flooded up to ten months in a year 

(WWF, 2018), partially masks the soil emissions ultimately reducing VOD. Although the 

vegetation covers are very different, this effect has been found previously for rice fields in 

Thailand: VOD remains low while fields are inundated, but EVI increases following the 

vegetation growth (Piles et al., 2017). Consistently with previous results, in flooded forests the 

VOD at L-band shows higher sensitivity to ACD than the VOD at higher frequencies. 

Nevertheless, the high ACD contribution to VOD at L-band (>60%) in the category containing 

>50% of flooded forests is not coherent with results obtained at the finer grid (Figure 4.10e). 

This should be further explored using a larger sample. 

Interestingly, ACD in flooded forests explains an important proportion of VOD also at C- and 

X-bands (Figure 4.11). Flooded forests are complex ecosystems which include several 

vegetation stages (grasses, shrubs, and early and late successional forests; Daly and Mitchell, 

2000; WWF, 2018). This causes a complex structure in terms of vegetation distribution, height, 

and biomass, as well as lower ACD, which can explain the better response of VOD to carbon. In 

contrast, EVI has reached saturation and therefore shows very low variability in this area, and 

forest cover contribution  to the studied variables is marginal, as the forest proportion is high 

and homogenous (95% of flooded forest pixels present >90% of forest proportion). Hence, 

VOD could potentially contribute to the study of carbon balance in flooded forests, which 

remains poorly known and hard to investigate with classical spectral indexes (Davidson et al., 

2012). This analysis should be extended to river edges of the Amazon and its tributaries, which 

are flooded seasonally (and present accordingly negative residuals). The fact that the water 

occurrence product used has not detected water bodies in these regions is possibly due to the 
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limitation of the product to detect water bodies under dense vegetation covers (Pekel et al., 

2016). In this study the maximum water proportion is only of 15% (main rivers are not included 

in the analysis due to lack of ACD data), and therefore further analysis of the water occurrence 

product is unfeasible. 

Additionally, it should be noted that vegetation mosaics (southern Panama and northern of 

the Colombian study region) show negative residuals because the VOD-ACD regression is 

dominated by evergreen forests. These present larger ACD and VOD values if compared to 

those from vegetation mosaics. Further work is needed to provide specific analyses in these 

regions. 

Finally, note that the VOD residuals may respond partially to other factors which should also 

be mentioned. Firstly, the distribution of the residuals values shows that the VOD-ACD 

relationship is not completely linear (Figure B.5 in Appendix B). This may lead to 

overestimations and underestimations of VOD. Nevertheless, other fitting functions studied 

did not report different results (see Section 4.2.3.A; results not shown). Secondly, the 

uncertainty of ACD estimates may be a source of spatial variability which must be considered 

to calibrate carbon stock models. The main sources of uncertainty are the validity of the 

relationship between the LiDAR tree height measures and the ACD values, and the 

extrapolation of LiDAR ACD estimates to regional scales (Asner et al., 2012). 

 

4.4.4. Synergy of L-band VOD with multiple remote sensing sources to 
enhance carbon estimates 

The SMAP-derived L-band VOD information is sensitive to carbon density through most of 

the study area, and could improve the capability of EVI and VOD at higher frequencies to 

estimate carbon stocks. Nevertheless, the sensitivity of VOD is decreased at high vegetation 

densities (≥80 TC/ha). This represents approximately 60% of forests in the studied region. In 

this regard, future missions operating at lower frequency bands and therefore with greater 

penetration capacity through vegetation would probably be beneficial complementing current 

VOD estimates. This is the case of the BIOMASS mission (expected in 2020; Le Toan et al., 

2011; ESA, 2018b), specifically designed to measure forests and their biomass with a P-band 

(435 MHz) synthetic aperture radar (SAR). The combined use of L- and P-band sensors should 

provide improved assessments of carbon density in very dense vegetation. 

Remote sensing sources can be blended for more accurate carbon estimates, as the synergy 

among different remote sensing techniques can overcome the limitations from each data 

source (Goetz et al., 2009). In this study, it has been shown how EVI information could 

complement L-band VOD, especially in southern Peru and in montane forests. The L-band 

VOD-EVI joint application for mapping carbon stocks should be a matter of future work 

(Section 6.3). The synergetic use of VOD at different frequencies (at least L-, C- and X-bands) 

and EVI would be particularly appropriate for biomass studies in vegetation transitions of the 

tropical montane forests. In the case of flooded forests, VOD data at different bands could 

have great potential for biomass estimation if used in a synergistic fashion. In this forest type, 

the combined application of VOD and LiDAR should also be investigated, as flooded forests are 
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complex in terms of vegetation height variability, and LiDAR presents the unique capacity of 

capturing the vertical structure of vegetation. In that sense, the upcoming GEDI mission is 

expected to provide high resolution information of the forest canopy. Additionally, EVI has 

shown limited sensitivity to carbon changes in flooded forests, and SAR leads to biomass 

overestimation in flooded areas (Lucas et al., 2015). 

It is worth saying that recent research has provided carbon trend estimates at continental 

and global scales using VOD data at L-band (Brandt et al., 2018) and at C- and X-bands (Liu et 

al., 2015). Importantly, the application of C- and X-bands VOD, LiDAR, and VIS/NIR indices, has 

led to new global biomass datasets (Liu et al., 2011; Saatchi et al., 2011; Avitabile et al., 2016; 

Baccini et al., 2017). Hence, the synergy between L-band VOD and other remote sensing 

sources can contribute to enhance carbon mapping and reduce its uncertainties. 

 

 

4.5. Conclusions 

This chapter provides a comparison of SMAP-derived L-band VOD with other VOD products 

from higher frequencies (from AMSR2 C- and X-bands) and with MODIS-EVI, in terms of their 

sensitivity to vegetation carbon stocks in Peru, Panama and southern Colombia. To this 

purpose, the remote sensing variables have been analysed as a function of ACD data obtained 

by airborne LiDAR. L-band VOD has a higher sensitivity to carbon up to higher densities, and 

this sensitivity decreases progressively at C- and X-bands, consistently with their increasing 

frequencies. Therefore, results confirm a fundamental physical phenomenon: lower frequency 

bands allow capturing the attenuation of soil emissivity as it passes through the whole 

vegetation canopy. A spatial cross-correlation analysis has shown that the capacity to 

reproduce carbon spatial patterns at local and regional scales decreases following increasing 

frequencies. Generalized additive models and linear regressions of VOD as a function of ACD 

have confirmed the enhanced sensitivity of L-band VOD to carbon variability. The combined 

effect of the ACD and the FC on the VOD and the EVI signals has been disentangled and 

quantified analysing the relative importance of each variable in bilinear regressions. At L-band, 

ACD and FC explain 34% and 30% of VOD variance in tropical forests of the region, 

respectively.  

The study has been stratified by altitude and regions, and a particular analysis has been 

conducted in flooded forests. Results confirm that L-band VOD presents the strongest 

relationship to ACD regardless of altitude, vegetation covers and carbon density. These results 

are also consistent in the studied regions, except in southern Peru, where EVI shows higher 

sensitivity to ACD than L-band VOD. Also, it has to be noted that (i) ACD and FC partially 

represent an important contribution to EVI and VOD at C- and X-bands when lower density 

forests are studied in the Andes, (ii) VOD at all bands shows significant, positive stronger 

relationship with ACD and FC in flooded forests, and (iii) an important proportion of evergreen 

forests in the region (those with higher carbon densities) should be further analysed to stablish 

a more accurate VOD-ACD relationship. Hence, it is suggested that the complementary use of 
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L-band VOD with VOD at higher frequencies and with different remote sensing sources would 

be needed. In particular, (i) the future BIOMASS mission, with a P-band SAR on board (Le Toan 

et al., 2011; ESA, 2018b), would have higher penetration to canopy layers and therefore would 

improve or complement the present VOD estimates on dense evergreen forests; (ii) the 

combined application of L-band VOD and the future GEDI LiDAR measurements could provide 

accurate ACD estimates in flooded forests; and (iii) the synergetic application of VIS/NIR 

indices and L-band VOD could enhance biomass estimates in forests with lower carbon density, 

such as montane ones. This chapter presents evidence that L-band VOD is a promising 

ecological indicator that could help enhancing present global biomass estimates, thus 

providing a new step forward on understanding the Earth carbon budget. 
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Abstract 

VOD could be a valuable source of information on agroecosystems, especially at lower 

frequencies for which greater portion of the vegetation canopy contributes to the observed 

brightness temperature. This chapter proposes a series of L-band VOD metrics for crop yield 

assessment using the first annual cycle of SMAP data (April 2015 to March 2016) over north-

central United States. The yield-VOD relationship is explored using principal components 

regressions. Results show that 66% of yield variance is explained over the whole region by the 

first principal component (PC1). In corn-soy crops, PC1 explains 78% of yield amount, and 

maximum, standard deviation, and range of VOD capture the yield spatial patterns. Mixture of 

crops and scene heterogeneity weaken these relationships. Hence, in wheat and mixed crops, 

PC1 explains 42% of yield variance. Results suggest that complementary information on 

maximum biomass, growth rate, and VOD amplitude can provide robust yield estimates, and 

that the uncertainty of these estimates depends on crop heterogeneity. This study provides 

evidence that L-band VOD metrics can potentially be used to enhance crop yield forecasts.  
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5.1. Introduction 

Agriculture represents the most common human land use in the world, occupying ~38% of 

continental land. During the last fifty years, concurrently to the doubling of human population, 

the global crop production has increased substantially (Foley et al., 2011). In particular, most 

main grains have tripled (e.g., wheat and rice) or quadrupled (e.g., corn) their stocks (Godfray 

et al., 2010; FAO 2017). Nevertheless, total consumption can exceed production when adverse 

weather conditions occur (Becker-Reshef et al., 2010a). The possible increase of adverse 

weather for crop production due to climate change may result in decline of most grain yields 

(Deryng et al., 2014; Asseng et al., 2015; Zhao et al., 2017; see also Section 1.1). Furthermore, 

the population is growing, and there is a need for increased food supply in the coming 

decades, at least until the middle of this century. Additionally, agriculture has important 

environmental impacts: the loss of biodiversity, the increase of deforestation, or the land and 

water degradation (Foley et al., 2005). In this context, agriculture faces a remarkable 

challenge: to fulfil the raising food demands improving food security, while reducing the 

environmental impacts. Present and future EO missions are key to help achieving this goal, and 

close the so-called ‘yield gaps’ (i.e., reduce the difference between the potential and the real 

yield on croplands; Godfray et al., 2010; Foley et al., 2011; Tilman et al., 2011).  

Agricultural monitoring and yield forecasts are essential to mitigate the impacts of shortages 

in crop production. Information on crop status and yield are needed to be updated timely and 

regularly during the crop season. Satellite remote sensing can provide this information 

worldwide with reasonable costs. The complementarity between remote sensing tools and 

high quality survey data eases the development and calibration of remote sensing based crop 

yield models (e.g., Becker-Reshef et al., 2010a). Satellite data is the only means to obtain this 

information for developing countries were ground-based surveys are most needed but least 

available (Atzberger, 2013). 

Studies on crop phenology and crop yield forecasting from satellite information have been 

focused mainly on vegetation indices from the visible and the near-infrared spectral regions. 

These indices measure the amount of photosynthetic active vegetation, which depends on the 

biotic and abiotic conditions that affect crop status and, ultimately, determine final yield. In 

particular, the NDVI is the most widely used index for crop yield forecast (Rembold et al., 2013; 

Alemu and Henebry, 2013). The EVI, in turn, has also been shown useful for this purpose, with 

the advantage of being less sensitive than NDVI to atmosphere and soil effects (Huete et al., 

2002). A variety of yield modelling studies covering different crop types and regions have used 

these two indices (e.g., Quarmby et al., 1993; Maselli et al., 1993; Doraiswamy and Cook, 1995; 

Mika et al., 2002; Weissteiner and Kühbauch, 2005; Wall et al., 2008; Becker-Reshef et al., 

2010a; Son et al., 2014; Mosleh et al., 2016). Also, they are the basis for global operational 

agricultural monitoring systems such as the Global Agricultural Monitoring project (Becker-

Reshef et al., 2010b) or the European Commission’s Monitoring Agricultural Resources 

(European Commission, 2017).  

Despite the common use of visible-infrared indices, they present several limitations: (i) 

clouds and aerosols as well as seasonal decreases in solar light in high latitudes limit the global 

coverage and the accuracy of the indices; (ii) these indices saturate for dense crops with high 
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Leaf Area Index values; (iii) they are limited to monitor the top of the crops canopy; and (iv) 

the photosynthetic activity is not always the main factor conditioning the final yield (Liu et al., 

2011 and 2013; Jones et al., 2012). Alternatively, microwave remote sensors can be used to 

overcome the above-mentioned limitations (Ulaby et al., 1981, pp. 1-5). In active systems, 

radar backscattering allows obtaining microwave vegetation indices, which provide 

information on vegetation status and characteristics (see recent reviews of Vereecken et al., 

2012 and McNairn and Shang, 2016). In passive systems, the VOD is directly proportional to 

the VWC (see Section 1.2; Ulaby et al., 1986, pp. 1551-1596; Jackson and Schmugge, 1991), 

and is linked to the amount of living biomass as well as to the water stress experienced by the 

vegetation (Momen et al., 2017). VOD from passive microwave sensors at C- and X-bands has 

been applied to study biomass, carbon balance (Liu et al., 2011, 2013 and 2015), and 

isohydricity on forests (Konings and Gentine, 2017), to analyse vegetation phenology (Jones et 

al., 2011 and 2012; Guan et al., 2014), and vegetation dynamics in drylands (Andela et al., 

2013; Tian et al., 2016). Related to agriculture monitoring, VOD at C- and X-bands retrieved 

from AMSR-E has been studied as a predictor of yield in the United States, showing highest 

correlation for summer months, when the peak of season occurs. Still, this VOD dataset has 

shown less predictive capacity for yield than EVI and NDVI (Mladenova et al., 2017; Guan et al., 

2017). Interestingly, Guan et al. (2017) have found that VOD at X-band in the United States 

Corn Belt is linked not only to biomass, but also to environmental stresses driving yield in the 

region, providing essential information to improve crop yield predictability.  

Hence, VOD is a promising tool in crop phenology monitoring and in yield assessment. 

Nevertheless, three main limitations must be stressed in the latter sense. Firstly, VOD coarse (9 

to 36 km) resolution ideally requires relatively homogenous cropland regions to avoid the 

impact of fragmented landscapes in the VOD signal. Even so, major crop areas in the world 

with a crucial role in food supply are prone to be target regions for crop studies using VOD 

(e.g., the US Corn Belt, the Sahel region, central Eurasia, or India, among others). Secondly, the 

presence of standing water or bare land in agricultural fields (e.g., due to irrigation or crop 

rotation) may have an important impact on the VOD signal and subsequent crop analysis. The 

most significant case is rice fields when flooded, where standing water leads to a sharp 

decrease in VOD that impedes tracking the rice phenology (Piles et al., 2017). Thirdly, VOD 

allows infering the crop biomass, but its linkage to crop grain yields may depend on weather 

conditions (e.g., high temperatures during corn pollination may decrease final yield without 

affecting the total plant biomass and therefore the measured VOD). 

The sensitivity of VOD to vegetation water content and its relationship with biomass is 

higher at L-band than at higher frequency bands (see Chapter 4 for a study case in forests). In 

this regard, there is an increasing interest in recent SMOS and SMAP VOD retrievals, and in the 

continuity of L-band passive microwave observations, since they can contribute to quantify the 

dynamics of carbon stocks over forests and complement optical data in global vegetation 

monitoring.  

The SMOS retrieval algorithm is based on a multi-angular and dual-polarization approach 

obtaining simultaneous information of soil moisture and VOD (Kerr et al., 2012 and Section 

1.3.4). The performance of SMOS-derived VOD in the field of agriculture research has been 

assessed in previous studies showing that, despite of the presence of instrumental noise limits 
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detecting short-term changes, long-term and seasonal trends on SMOS VOD can be used to 

provide crop phenology and crop yield information. In that sense, Lawrence et al. (2014) found 

that SMOS VOD followed the increase of vegetation indices during the growing season, and 

their decrease during the crop senescence. The peak of VOD lagged the peaks of visible-

infrared vegetation indices, which can be explained by the fact that maximum greenness 

precedes maximum biomass. Similarly, Hornbuckle et al. (2016) found that the SMOS VOD 

followed the corn development in the region, and that the VOD peak corresponded to a 

specific development stage of this crop (i.e., the milk stage, when the maximum water content 

is reached). Furthermore, the relationship between the SMOS VOD and yield in Iowa was 

investigated by Patton and Hornbuckle (2013). They found that the increase of VOD during the 

crop season explained ~60% of yield variability in the region. Additionally, a new SMOS VOD 

product -the SMOS-IC- is now available. It has shown improved correlation with NDVI than the 

standard L3 SMOS VOD, and its applications to vegetation studies are promising (Fernández-

Morán et al., 2017). 

The SMAP radiometer measures terrestrial emission and provides brightness temperatures 

(TB) at ~40 km resolution (Entekhabi et al., 2010). The SMAP MT-DCA algorithm is proposed 

for the retrieval of soil moisture, VOD and effective scattering albedo from SMAP (Konings et 

al., 2016, and Section 1.3.4). The resulting SMAP MT-DCA VOD product has already showed 

potential for monitoring agro-ecosystems’ phenology in Iowa (USA), Nigeria, Argentina, and 

Thailand (Piles et al., 2017). The present study explores the relationship between the first year 

of SMAP MT-DCA VOD information and in situ crop yield data. It is hypothesized that: (i) L-

band VOD will reproduce temporal and spatial patterns of crop phenology and crop yield, 

respectively; and (ii) the capacity of VOD data to assess crop yields will depend on main crop 

types in the region. In order to infer end-of-season crop yields from the dynamics of VOD, a 

number of metrics of VOD need to be defined. This study introduces metrics that reliably 

predict yields for various crops using SMAP VOD and ground-based survey data from croplands 

in the north-central United States. 

 

 

5.2. Materials and methods 

5.2.1. Study area 

This study is focused on the extensive croplands of North Dakota (ND), South Dakota (SD), 

Nebraska (NE), Minnesota (MN), Iowa (IA), Illinois (IL), Indiana (IN), and Ohio (OH) (Figure 5.1). 

The center and southeastern areas of the study region are located within the US Corn Belt, 

which contributes to ~50% of corn and ~40% of soy production in the world (Guan et al., 

2017). In the USA, 73% of corn and 70% of soy production are obtained in this region. In 

contrast, other crops are planted in the northernmost regions of the study area, with 

predominance of spring wheat. In particular, 68% of spring wheat production in the United 

States is harvested in North Dakota, South Dakota, and Minnesota (USDA, 2015; data for the 

period 2010-2014). In the entire study area, the US Department of Agriculture routinely 

collects valuable and detailed crop cultivation and crop stages information based on surveys.  
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Figure 5.1. Land use in the United States according to IGBP (reclassified from 16 to 

10 categories). The study area includes croplands in North Dakota (ND), South 

Dakota (SD), Nebraska (NE), Minnesota (MN), Iowa (IA), Illinois (IL), Indiana (IN), 

and Ohio (OH). 

 

 

 

Figure 5.2. Clusters in the study area. In the center-southeastern region, (soy + 

corn) proportion is ≥95%. In the northern region the sum of both crops 

proportions is <95%. See Section 5.2.3. 
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Concerning the coexistence of different crops in the study region, note that yields for various 

crop types are dependent on the phenology of the plant as well as on environmental 

conditions such as available moisture and degree-days for growth. Within each crop, seed 

varieties can also influence the phenology. Therefore, the patterns of cultivation (crop and 

variety choices) and mixture of crops affect the metrics of plant growth based on optical and 

microwave remote sensing. To provide an accurate assessment of yield, the study area is 

analysed as a whole as well as divided in two clusters: a corn-soy region in the central-

southeastern area, and a wheat and mixed crops region in the north (Figure 5.2). These 

divisions are coherent with respect to the dominant cultivations (see Section 5.2.3).  

 

5.2.2. Datasets 

A. VOD data from SMAP 

The MT-DCA algorithm (Konings et al., 2016) provides estimates of soil moisture, VOD, and 

effective scattering albedo (time-invariant) from single look-angle observations using a number 

of consecutive overpasses (depending on the measurements mutual information; Konings et 

al., 2015). When applied to SMAP brightness temperatures, two consecutive observations can 

be used to retrieve two soil moisture estimates, one VOD estimate, and a single value of 

albedo for the entire study period (Konings et al., 2017a). SMAP VOD datasets retrieved using 

MT-DCA have shown mean values comparable in magnitude to those from SMOS data -

although with a larger dynamic range-, and good agreement with global vegetation and land 

cover patterns (Konings et al., 2016 and 2017a). 

In this study, the first year of SMAP-based VOD (from 1st April 2015 to 31st March 2016) was 

used. This dataset was provided in the EASE2 grid (NSIDC, 2017a) at 9 km posting. The 

following processing steps were applied in this study: (i) pixels with frozen soils were detected 

by SMAP radiometer-derived freeze/thaw flags and modelled surface temperature (NSIDC, 

2017b), and were screened out; (ii) a 7-day average moving window was applied to VOD in 

order to reduce high-frequency noise and focus on seasonal phenology; and (iii) missing data 

were interpolated using a linear fit (this only affected 1.3% of the studied pixels). Longer 15 

and 21-day average moving windows were also explored, but they were found to over-smooth 

the data such that the seasonal cycle was underestimated (results not shown). Note that the 7-

day smoothing window applied actually reduces the frequency observation of VOD 

measurements, which becomes comparable to the one obtained from optical-near infrared 

indices when affected by short periods of clouds. Still, it is important to stress that VOD and 

optical data explain different phenological traits on plants (see Section 5.4.1). 

A representative example of a resulting VOD time series is shown in Figure 5.3. Within the 

crop season, increasing and decreasing VOD correspond to growing and senescence of crops, 

respectively. Out of the crop season, a certain increase of VOD values is also found. This is 

discussed in Section 5.4.1. Considering the whole study region, the lag between minimum and 

maximum VOD (i.e., the period when vegetation grows) ranges between 1 and 118 days. To 

avoid inconsistency with plant phenology patterns, pixels with less than 19 days growth period 
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were not considered (0.9% of the studied pixels). The threshold of 19 days corresponds to the 

first percentile.  

 

 

Figure 5.3. Example of a VOD time series and VOD metrics for a pixel sited in 

northern Iowa. Crop season spans between beginning of season (SOS; ①) and 

end of season (EOS; ⑨). VOD metrics are computed between minimum (②) and 

maximum (⑥) VOD dates.  VOD metrics are: ③ range, ④ average, ⑤ standard 

deviation, ⑥ maximum, ⑦ small integral, and ⑦ + ⑧ large integral.  

 

B. Land cover 

The land cover classification data used by the SMAP Project (Kim, 2013) was also used here 

to identify croplands in the region. This dataset applies the International Geosphere-Biosphere 

Program (IGBP) land cover type classification. The land cover map was projected to the EASE2 

grid (NSIDC, 2017b) at 3 km resolution, and is shown in Figure 5.1. Only pixels classified as 

croplands (yellow areas in Figure 5.1) were considered in this study. 

 

C. Crops databases 

Information on area planted, yield, and phenology of crops was obtained from the United 

States Department of Agriculture – National Agriculture Statistics Service (USDA-NASS). It 

represents an exhaustive database containing crop information and crop production estimates 

based on hundreds of yearly sample surveys (USDA-NASS, 2017). This database has been 

applied in previous studies (e.g., Patton and Hornbuckle, 2013; Hornbuckle et al., 2016; Guan 

et al., 2017). The information used in this paper corresponds to the 2015 season and includes 

all the cultivated fields in the region: barley, beans, canola, corn, flaxseed, lentils, oats, peas, 

sorghum, soybeans, and wheat. 

Area planted and yield data from the USDA-NASS database are available for each crop type 

at a county scale (mean area of counties = 1,905 km2). This information was transferred to a 

georeferenced raster by assigning to each VOD pixel at 9 km resolution the information from 

the county where it was contained. The centre of the pixel was used in case of pixels covering 

more than one county.  
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Yield values for each crop type are shown in Figure B.7 in Appendix B. The original units 

(bushels/acre or lb/acre, depending on the crop) were converted to kg/m2 according to Table 

A.7 in Appendix A. To obtain a single yield datum for each pixel, a weighted value was 

calculated as a function of yield and area planted for each crop. Figure B.7 in Appendix B 

shows that corn is the most productive crop (median grain yield of ~1.06 kg/m2), with soy and 

wheat having a median grain yield of ~0.35 kg/m2. 

The USDA-NASS database provides weekly information on crop phenology progress. In 

particular, the percentage of area planted of each crop type that has reached each crop stage 

is available. These stages include planting, emergence, vegetative phase, reproductive phase, 

senescence, maturity, and harvest. This information is available at a state level. 

 

5.2.3. Crops distribution and heterogeneity 

Percentages of area cultivated per each crop type are displayed in Figure 5.4a. Corn and 

soybeans are the major crops in the central and southeastern areas, with corn dominating over 

soy (except Ohio, where soy occupies ~60% of croplands). In contrast, wheat predominates 

across North Dakota and northwestern Minnesota counties, where other species (referred to 

as mixed crops) are present in a lower proportion. The heterogeneity or mixture of crops was 

measured using the Gini-Simpson Index (GSI; Simpson, 1949). This index has been successfully 

used to measure heterogeneity of land cover conditions in previous studies (Piles et al., 2015; 

Konings et al, 2016). In this paper, the 𝐺𝑆𝐼 is calculated as follows: 

𝐺𝑆𝐼 = 1 − ∑ 𝑝𝑖
2, (5.1) 

where 𝑝𝑖  is the proportion of area planted of each crop. The heterogeneity of crops for the 

study region as measured by GSI is shown in Figure 5.4b. Note that values of GSI near 1 show 

high heterogeneity and values near 0 show high homogeneity. As expected, Figure 5.4b 

confirms that the highest heterogeneity (GSI>0.6) is found in the northernmost region, while 

values near 0.5 are found in the central and southeastern areas due to the presence of corn 

and soy in similar proportions.  Based on this crops distribution, two clusters were selected in 

the study area: (i) a central-southeastern region where (corn + soy) proportion sums ≥95%, 

and (ii) a northern region where this sum is <95% (Figure 5.2). This clustering is coherent with 

the GSI, showing higher heterogeneity in the north (median GSI = 0.59; maximum GSI = 0.74), 

than in the central-southeastern region (median GSI = 0.49; maximum GSI = 0.54). In addition, 

for each cluster, a linear regression was performed between corn proportion and yield. This 

aimed to provide information on the effect of the most productive crop on yield. 

 In order to provide a complementary analysis on the yield for specific crops, pixels where 

corn, soy or wheat exceeded 50% of area planted were chosen. As the VOD signal is dominated 

by corn, pixels with >50% of area planted with soy or wheat were considered only if the corn 

proportion was <20%. This led to a selection of 281 corn pixels, 19 soy pixels and 9 wheat 

pixels. Note that specific analyses for other crops were impossible due to lack of sample. 
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Figure 5.4. (a) Percentage of area planted for corn, soy, and other crops (mainly 

wheat). Each vertex in the triangle corresponds to 100%; (b) GSI of crop types 

showing high homogeneity for values near 0, and high heterogeneity for values 

near 1. Scale: 9 km. 

 

5.2.4. Crop season definition 

Daily percentages of crop phenology stages were calculated from the USDA-NASS weekly 

information using linear interpolation. Information on crop progress stages was used to 

calculate the beginning and the end of each crop season. The start of season (SOS) and end of 

season (EOS) were established as the dates when 50% of crop had emerged and had reached 

maturity, respectively, as suggested in Hornbuckle et al. (2016). Table A.8 in Appendix A 

reports the SOS and EOS obtained for the most common crops.  

Since a variety of crops coexist in the same state, SOS and EOS from the dominant crop were 

assigned only when that crop exceeded 50% of area planted. In cases where there was not a 

clear dominant crop, SOS and EOS from the two most extensive crops were compared, and the 

latest SOS and the earliest EOS were selected. The latter criterion was needed to discard the 

increasing VOD values that are found in some particular pixels out of the crop season (this is 

discussed in Section 5.4.1). Since information on the date of maturity for wheat, oats, and 
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barley in Minnesota was missing, the date when 90% of leaves had reached senescence was 

used instead, consistently with the phenology of these crops in other states. An example of a 

crop season within a VOD time series is provided in Figure 5.3. 

 

5.2.5. VOD during crop senescence and after harvest 

 Although the present study is focused on the crop growth period, it is necessary to fully 

understand the behaviour of the VOD signal during other periods. For this reason, the crops 

senescence has been investigated computing the difference of VOD between the maximum 

VOD during the crop season and the EOS date. Additionally, the spatial patterns of VOD after 

the crop season have been studied computing the maximum VOD after the EOS date. Using 

the Pearson’s correlation coefficient, these patterns have been related to (i) the proportion of 

winter wheat in the region, which has a different phenological cycle than the studied crops, 

and (ii) the proportion of corn and the final yield in the region, as crop residues left in the soil 

after harvest may affect the VOD signal. It is assumed that larger corn proportion and yield 

lead to a larger amount of crop residues. 

 

5.2.6. Data filtering and aggregation 

To ensure that this study is based on mostly homogeneous cropland regions, the SMAP (9 

km resolution) pixels were considered only when they were totally classified as croplands, 

following the IGBP 3 km map. Also, note that yield data was obtained originally at county scale, 

and should be compared to VOD metrics at a similar scale in order to avoid oversampling. To 

that purpose, crop and VOD datasets were averaged to 36 km to approximately match the 

county scale as well as the SMAP native instrument resolution. The resulting pixels were 

excluded when the sample for averaging was <5 finer (9 km) resolution pixels. Finally, 495 

pixels at 36 km resolution remained and form the basis for this study. The area covered is 

~640,000 km2. 

 

5.2.7. VOD metrics 

In this study, the following VOD metrics are proposed: maximum, average, range, standard 

deviation, small integral (i.e., integration of ranges), and large integral (i.e. integration of 

absolute values; see Figure 5.1). All metrics were calculated between the minimum and 

maximum VOD reached within the crop season (Table A.9 in Appendix A).  

Differences in crop and seed varieties result in different temporal patterns of phenology. 

Also, different crops and varieties respond differently to environmental stresses such as soil 

moisture deficit or abnormally high or low temperatures at different stages of growth. 

Therefore, different statistical metrics were defined as each should capture different 

characteristics in the VOD dynamics. Range and standard deviation capture the rate of growth. 
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Integrals of VOD in time capture accumulations. Maximum and average capture the level 

during growth and when growth ends.  

Principal component regressions (PCR) were used to optimally combine the metrics, taking 

profit of their ability to capture the VOD dynamics and its different traits. The different VOD 

metrics above were used to derive the principal components, using crop yield as the response 

variable. Regression models were tested for an increasing number of components, and they 

resulted in similar coefficients of determination. Only the dominant first principal component 

(PC1) was chosen. In order to facilitate the comparison between yield and VOD metrics, both 

were scaled between 0 (equivalent to minimum value) and 1 (equivalent to maximum value). 

For the entire region, the spatial patterns of yield and VOD metrics were compared, and the 

Pearson coefficient of correlation (r) between them was computed. 

PCR is expected to capture the maximum variability explained by the VOD metrics. Hence, 

regressions of yield as a function of 𝑃𝐶1 were fitted for each cluster, as well as for the corn, 

soy and wheat subsets. Linear and exponential fittings were tested, and the latter provided the 

best agreement with yield variability. The equation used was: 

𝑌𝑖𝑒𝑙𝑑 = 𝛼 + 𝛽 · (1 − 𝑒−𝛿·𝑃𝐶1), (5.2) 

where 𝛼, 𝛽, and 𝛿 are constant terms. Complementarily, the same regression was computed 

for each VOD metrics separately. For these regressions the Levenberg–Marquardt algorithm 

was used, and outliers were filtered applying bi-square weights. Results for regressions in each 

cluster are plotted, and the coefficient of determination is computed to provide the proportion 

of yield variability which is explained by VOD. 

 

 

5.3. Results 

5.3.1. Relationship of VOD with yield and crop composition 

Maximum, minimum and mean values for yield and for the proposed VOD metrics are 

provided in Table 5.1. Yield ranges from 0.13 to 1.08 kg/m2. VOD maximum reaches 0.48, and 

mean values range between 0.09 and 0.36 (Table 5.1). Corn leads to the largest yields (with 

median = 1.06 kg/m2), while wheat and soy are less productive (median ~0.36 kg/m2; Figure 

B.7 in Appendix B). Results for VOD during crop senescence and beyond the end of the crop 

season are shown in Figure B.8 in Appendix B.  

Figure 5.5 shows the spatial patterns for the VOD metrics and yield. It also shows Pearson 

correlation coefficients (r) between yield and VOD metrics, which range between 0.56 and 

0.81. Best results are obtained for PC1 (r = 0.81), and for maximum, both integrals, and 

average (r>0.7). Generally, highest yield values are found in the central-southeastern region, 

with a decreasing trend towards east. Most VOD metrics reproduce the high yields in the 



5.3. Results 

124 

centre of the study area and, in particular, PC1, maximum, standard deviation and range of 

VOD show the best agreement with yield in this area. Also, the decrease of yield in the 

easternmost states matches with the distribution of PC1, maximum, and average. The lowest 

yield found in the northern region is best reproduced by the small integral, although all the 

VOD metrics consistently display low values in this region.  

Figure 5.6 shows the relationship between yield and PC1, as well as its dependence on crop 

proportions (Figure 5.6a) and on heterogeneity (Figure 5.6b). Higher values of PC1 are 

associated with higher yields. Nevertheless, this relationship is weaker when high yield 

saturates in corn-dominated pixels (approximately at PC1 values > 0.7). Also, the plots show 

how corn proportion and crops diversity strongly conditions yield: pixels where soy and 

heterogeneous crops are planted show lower yield and lower VOD than corn-dominated pixels 

(Figure 5.6, and Figure B.9 in Appendix B). 

 

Table 5.1. Statistical scores (minimum, mean, and maximum) for reported yield, 

and the SMAP VOD metrics over the entire study region: first principal component 

(PC1), maximum (Max), average (Avg), large integral (LInt), small integral (SInt), 

range (VOD), and standard deviation (Std). 

 

Yield 

 (kg/m2) 

VOD metrics 

PC1 Max Avg LInt SInt VOD Std 

Minimum 0.13 -5.55 0.14 0.09 1.98 0.39 0.04 0.01 

Mean 0.66 0 0.32 0.23 15.17 7.07 0.19 0.05 

Maximum 1.08 4.65 0.48 0.36 27.60 16.25 0.37 0.12 

 

5.3.2. VOD metrics for yield estimation 

The first principal component (PC1) derived from PCR has the highest correlation with yield 

through the entire study area (r = 0.81), explaining 66% of yield variability. PC1 results from a 

linear combination of VOD metrics. Table A.10 in Appendix A details the coefficients used for 

the PC1 computation. Maximum and small integral have the highest weights, although in 

general terms coefficients are similar for all the metrics.  Regressions of yield as an 

exponential function of PC1 are provided in Figure 5.7 for the central-southeastern region, and 

in Figure 5.8 for the northern region. In the central-southeastern area, PC1 explains 78% of 

yield amount, while in the northern region it explains 42% of its variance. Intercepts (term 𝛼 in 

Eq. (5.2)) are not significantly different than zero (p>0.05) in these regressions. Terms 𝛽 and 𝛿 

in Eq. (5.2) are positive and significant in the central-south-eastern region, but they are not 

significantly different than zero in the northern region (i.e. their values are near to zero and 

consequently the shape is almost linear, as shown in Figure 5.8). Table 5.2 provides the 

coefficients of determination for the yield-VOD metrics regressions. 
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Specific results for corn, soy and wheat are provided in Figure B.10 in Appendix B. PC1 

explains 68% and 47% of corn and soy yield variance, respectively. For wheat, the yield 

variance explained is 50% for linear regression, and 75% for the model in (4.2). These 

differences might be due to the small sample (n=9). 

 

 

 

Figure 5.5. Maps of yield and the proposed VOD-derived metrics (scaled). 

Pearson’s correlation coefficient between yield and each VOD metric (r) is shown 

for each map. Resolution: 36 km. 
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a)  

 

b)

 

Figure 5.6. (a) Scatter plot showing the relationship between PC1 and yield, and 

its dependence on crop proportion. Both variables are scaled. Percentages of 

corn, soy, and other crops (mainly wheat) are represented using the triangle, 

where each vertex corresponds to 100%; (b) Scatter plot showing the 

relationship between PC1 and yield, and its dependence on GSI of crop types 

showing high homogeneity for values near 0, and high heterogeneity for values 

near 1. 
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Figure 5.7. Fitting of yield as a function of PC1 for the center-southeastern region. 

Both variables are scaled. Red dotted lines represent 95% confidence intervals. 

The inset panel shows the cluster map. 

 

 

Figure 5.8. Yield as a function of PC1 for the northern region. Both variables are 

scaled. Red dotted lines represent 95% confidence intervals. The inset panel 

shows the cluster map. 
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Table 5.2. Coefficients of determination for the yield-VOD metrics regressions for 

each cluster. 

VOD metrics 
Cluster 

Center-southeastern Northern 

Maximum 0.74 0.18 

Small integral 0.63 0.49 

Large integral 0.23 0.44 

Standard deviation 0.70 0.17 

Range 0.69 0.22 

Average 0.44 0.15 

 

 

5.4. Discussion 

5.4.1. VOD time series match crop season phenology 

VOD-derived vegetation phenology has been previously used to capture biomass changes in 

annual vegetation, both in natural landscapes (e.g., Tian et al., 2016) and in croplands (e.g., 

Patton and Hornbuckle, 2013). Here, the VOD dataset applied is shown to reproduce biomass 

and water content variability. In particular, VOD times series show that (i) minimum VOD 

values occur in June during crop emergence (SOS) and in October when crops are mature and 

dry (EOS); (ii) maximum VOD values occur in August, when the plant reaches the highest water 

content (Figure 5.3); (iii) VOD increases during the vegetative and reproductive phases of 

crops, when plants grow and water content rises; and (iv) VOD decreases during senescence 

and maturity, when crops dry. These patterns, as well as the SOS and EOS dates used for crop 

season delimitation, are very consistent with previous studies (Patton and Hornbuckle, 2013; 

Lawrence, 2014; Hornbuckle et al., 2016; Guan et al., 2017). Concerning to the maximum VOD, 

it is delayed by one month with respect to maximum greenness in the region (in July), as 

maximum biomass takes some weeks to grow after the greenness peak (Guan et al., 2017; 

Piles et al., 2017). Additionally, note that the decrease on VOD during senescence is consistent 

with previous research showing good correlation between this period and the VOD reduction 

(0.5 < r < 0.7; Piles et al., 2017). Here, this VOD reduction is lower (in absolute terms) than the 

VOD increase during crop growth (see Figure 5.5, and Figure B.8a in Appendix B). This possibly 

occurs because the VOD signal at the end of crop season responds not only to harvest, but also 

to VOD patterns after the EOS. 

 There are some unexpected VOD peaks out of the crop season, (i.e., before emergence and 

after harvest; Figure 5.3). These peaks do not affect the present study, which is limited to the 

crop season (see Section 5.2.4). Similar peaks are reported in previous studies (e.g., Patton and 

Hornbuckle, 2013; Lawrence et al., 2014; Hornbuckle et al., 2016; Guan et al., 2017). 
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Hornbuckle et al. (2016) attribute these anomalies to changes in soil roughness produced by 

tilling practices. However, tilling practices are decreasing in the region: in 2012, 60% of farmers 

used no tillage or reduced tillage in Iowa, and this proportion had risen in 2015 (Arbuckle, 

2016). Also, a sensitivity analysis on the effect of soil roughness in MT-DCA VOD retrievals 

showed that the impact of roughness on VOD was minor (Konings et al., 2016). Other plausible 

explanation to the changes on VOD occurring out of the crop season is the impact of changes 

on the scattering albedo and the fractional vegetation cover, which are not accounted for. In 

this regard, it is important to stress that a constant albedo value is retrieved per pixel for the 

entire study period. This value is relatively high (>0.15) in the US Corn Belt croplands (see 

Figure 5 in Konings et al., 2017a), and unrealistic when the crops are harvested. Future work 

should be directed to assess the impact of constant albedo and roughness on VOD retrievals, 

and to evaluate the possibility of dynamic estimations of albedo in croplands (Jagdhuber et al., 

2017). Finally, changes on VOD after crop harvest could be also due to: (i) crop residues left in 

the soil to maintain its ecological and agricultural functions; (ii) an incomplete filtering of 

frozen ground, due to errors in the SMAP frozen/thaw flags; and (iii) the growth of winter 

wheat in part of the study area. Considering crop residues, the moderate correlation between 

the maximum VOD after harvest and the crop yield and corn proportion datasets (Figure B.8a 

in Appendix B) suggests that larger crop yields could lead to higher amount of crop residues, 

which could be one of the factors explaining the VOD peaks found after the crop season. 

Regarding winter wheat, when all crops had reached EOS in the study region, only between 0 

and 25% of winter wheat had emerged. Hence, it had little effect on VOD measurements 

during the crop season. Although it could lead to VOD changes after harvest in particular 

pixels, there is no relationship between maximum VOD peaks after crop harvest and the winter 

wheat proportion. 

 

5.4.2. VOD metrics as suitable tools for crop yield assessment 

The relationship between VOD variables and yield shows moderate to high correlation (0.56 

≤ r ≤ 0.81) with remarkable spatial coherence and agreement between yield and VOD-derived 

variables. Most VOD metrics capture the high yield values in the relatively homogeneous 

central region –with PC1, standard deviation, and range showing the best agreement-. 

Seasonal integrals show better spatial agreement with lower crop production and higher 

heterogeneity in the north. This suggests that the metrics are complementary and that their 

composite is the most versatile and applicable predictor. Consequently, information on VOD 

maximum and mean values, amplitude (i.e., range), and growth rate (i.e., standard deviation 

and integrals), are all needed to obtain reliable yield estimates at a regional scale. This is 

confirmed by the fact that PC1 provides the best regional proxy of crop biomass (r=0.81), 

explaining a substantial proportion of final yield variability (66%), and capturing yield spatial 

patterns through the entire study region (see Figure 5.5). The fact that different crop types 

present diverse growth cycles explains why different VOD metrics are needed to capture yield 

variability throughout the region. 

Interestingly, previous research conducted by Guan et al. (2017) concluded that the VOD 

captured environmental stresses affecting final yield. Actually, ~40% of inter-annual yield 
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changes on corn, soy, and wheat in the United States depend on climate variability among 

different years (Ray et al., 2015). This indicates that using an L-band VOD record spanning 

through several years may result in a second principal component related to climate 

information. This should be a matter of future studies.   

The proposed VOD metrics capture the distribution of crop types as well as the crop 

proportion variability within the study region. This is not surprising, as VOD, yield, 

heterogeneity, and corn percentages are linked. As higher yields are found for corn-soy mixed 

crops, clustering has been based on the addition of corn and soy proportions. Note that under 

this criterion four pure soy pixels have been classified within the “high yield” region (i.e., the 

central-southeastern region) despite their low yield values (see Figure 5.6a). Still, some tests 

were conducted to ensure that their effect in the computed yield-PC1 regression is minor 

(results not shown).  

In the central-southeastern region, PC1 explains a substantial proportion (78%) of the overall 

yield variability. For corn and soy, 68% and 47% of the variances are explained, respectively. 

This shows that the complementary application of different VOD metrics can provide very 

reliable estimations of yields for the entire region and for corn crops in particular. Actually, the 

results in this region outperform those reviewed in research literature for mixed corn-soy 

croplands (Table A.11 in Appendix A). In this study area, it is also interesting to note that the 

maximum VOD captures the high productivity of corn crops in the central area better than 

seasonal integrals do (Figure 5.5 and Table 5.2). In contrast, the use of seasonal maximum 

from most common optical-infrared vegetation indices (e.g., NDVI) is usually limited by 

saturation and, in these cases, integrals are needed to improve fitting with vegetation patterns 

(Olsson et al., 2005; Tian et al., 2016). Here, maximum VOD overcomes the saturation effects, 

making it a promising index for vegetation and agriculture research. In this corn-soy dominated 

region, results also show that the seasonal amplitude of VOD and the crop growth rate are 

relevant for yield estimation in corn-soy crops, as range and standard deviation have good 

agreement with yield in the area (Figure 5.5 and Table 5.2). This is consistent with results 

reported by Patton and Hornbuckle (2013) and Chaparro et al. (2017) in Iowa, where the range 

of VOD explained more than half of yield variability. Additionally, in the central-southeastern 

region it is also remarkable that yield shows partial saturation for PC1 > 0.7. This saturation 

could be explained by a high density of the plant canopy cover when optimum yield is reached. 

This high density is explained by an excess of plant population, which limits the individual grain 

production due to competition. Hence, an increase on the number of plant individuals –and 

therefore a larger aboveground biomass- does not lead to a higher yield (Dobermann et al., 

2002; Overman and Scholtz, 2011), but can lead to higher VOD values. This is also consistent 

with the resulting shape of the regression in this cluster. 

In the northern region, PC1 can only explain 42% of yield variability. Although the specific 

analysis for wheat shows higher coefficients of determination (Figure B.10 in Appendix B), a 

larger sample should be studied to confirm this result. Both integrals and yield are correlated 

in the region and, actually, they provide better fitting than PC1 (Table 5.2) probably because 

other metrics reduce goodness of fit in the PC1 computation. This suggests that the length of 

the crop season and the VOD amplitude are important factors for crop yield estimation in this 

area, and that VOD metrics could be species-specific for yield forecasting purposes (integrals 
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for wheat crops, in this case). In addition, the heterogeneity of crops in the region possibly 

diminishes the capability of VOD-related information to report better yield estimations. This is 

in contrast to the more homogenous central-southeastern cluster. Interestingly, Lawrence et 

al. (2014) found lower correlation of SMOS VOD with NDVI and EVI in wheat and hay crops, 

than in corn-soy areas. Additionally, the goodness of fit reported in this region is lower than 

(considering the whole region) or similar to (considering only wheat) the one found in other 

research studies using visible and near infrared vegetation indices (Table A.11 in Appendix A, 

and Figure B.10c in Appendix B). These indices do not saturate for crops with low final 

production, such as cereals, and have shown good capacity to predict their yields (Rembold et 

al., 2013, and Table A.11 in Appendix A). Hence, the capacity of VOD to complement or 

outperform the yield estimates obtained with traditional vegetation indices seems to depend 

also on crop types. 

Finally, part of yield variability has not been explained by the proposed VOD metrics. This 

could be largely due to the fact that VOD is linked to plant biomass, but its relationship with 

crop grain yield is indirect or –even in some cases- it could be inexistent. This may occur when 

unfavourable weather conditions impact grain yield without affecting the final biomass of 

plants (e.g., when high temperatures difficult pollination in corn kernels). Also, part of the 

unexplained VOD variability could be due to the fact that grains are still filling when maximum 

biomass and VOD have been reached (note that VOD metrics are computed here until the 

maximum VOD is reached; see Figure 5.3).   

 

5.4.3. Contributions of microwave remote sensing to yield forecasts 

SMAP-based L-band VOD estimates provide highly valuable information for crop yield 

estimation mainly in corn, soy, and wheat crops, in the north-central United States. Similarly, 

previous studies (Patton and Hornbuckle, 2013) report good predictive capability with SMOS-

based L-band VOD for corn yield assessment in Iowa. Here, we show this extends across the US 

Corn Belt and for VOD from SMAP. Previous research using passive microwave measurements 

at higher frequencies (C- and X-bands) that do not sense as much of the vegetation canopy 

have reported slightly lower correlations between yield and VOD (Mladenova et al., 2017; 

Guan et al., 2017). Nevertheless, the dependence (if any) of yield prediction quality on the 

frequency band used still requires more quantitative assessments. Furthermore, the combined 

application of L-band data with C- and X-bands VOD may hold some potential to account for 

inter-annual climate variability and for information from different layers in the crop canopy as 

well as the soil. 

 VOD is also complementary to other microwave remote sensing products, as well as to other 

satellite and modelled datasets. Information on vegetation conditions and biomass can also be 

derived from a large number of active and passive microwave systems. Microwave radars have 

also been used to monitor crop phenology (e.g., Vereecken et al., 2012; McNairn and Shang, 

2016). Interestingly, Guan et al. (2017) found good relationship between Ku-band radar 

backscatter and yield-derived net primary production (0.62 ≤ r ≤ 0.66). The authors also 

reported that the combination of remote sensing and modelled information (VOD, radar 
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backscatter, fluorescence, evapotranspiration, EVI, and temperature, among others) allowed a 

comprehensive approach to study yield variability and its causes.  

In addition to VOD, passive microwave remote sensing at L-band can provide soil moisture 

information, which is crucial in agro-ecosystems and yield studies. Mladenova et al. (2017) 

presented a complete analysis on the correlation between yield and different satellite and 

modelled soil moisture and evapotranspiration products. Also, El Sharif et al. (2015) 

assimilated SMAP simulated soil moisture data in an agricultural model to improve yield 

predictions. The combined application of soil moisture and VOD products from passive 

microwave sensors should be addressed in future studies. 

 

 

5.5. Conclusions 

This study addresses the relationship between SMAP-based L-band VOD retrievals and crop 

yields in the north-central United States. The VOD time series follow crop progress and their 

phenological phases. VOD seasonal metrics have been proposed for the crop growth period, 

and have been compared to in situ yield information, showing good agreement with yield and 

crop proportion spatial patterns in the study region. Different metrics capture various aspects 

of the time-series dynamics. Different crop types result in various features in the dynamics. 

The metrics are each designed to capture these features.  

A principal components regression combining the different VOD metrics explained a 

substantial proportion (66%) of crop yield variability over the entire study area. The 

complementary application of maximum, integrals, range, standard deviation, and average of 

VOD are used for crop yield analysis. The maximum and the small integral of VOD are the 

metrics with the highest correlations with yield across crop types.  

Two clusters are defined in the study area: a homogeneous corn-soy region in the central-

southeastern study area and a mixed crops region with wheat predominance in the north. 

Regressions of yield as a function of the proposed VOD principal component are calculated for 

each cluster. For the corn-soy dominated cluster, 78% of yield variance is explained with 

principal components regression. In this area, maximum and seasonal variability in biomass 

show high spatial agreement with crop yields. This is coherent with previous studies (Patton 

and Hornbuckle, 2013). For wheat and mixed croplands characterized by high heterogeneity, 

the principal components regression explains 42% of yield variability. VOD integrals show the 

best agreement with yield in this cluster. The predictive capacity of VOD metrics improves with 

crop homogeneity allowing the development of crop-specific relationship between yield and 

VOD metrics. 

 L-band microwave information on vegetation biomass and phenology has potential synergy 

with other remote sensing products. They can complement one another resulting in potential 

for the development of still improved yield forecast methods. This study with focus on L-band 

VOD metrics is a step forward to achieve this goal. 
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Abstract 

This PhD Thesis has investigated the added-value of using satellite-based L-band SM and VOD 

data to assess environmental risks and to monitor vegetation state. This is of the outmost 

importance, since present environmental changing conditions involve drying and warming 

trends, forest degradation, or natural hazards, among other factors, which may threaten 

vegetation health and endanger livelihood conditions for humans. This chapter details the 

main conclusions and applications of this PhD Thesis, which has explored specifically: (i) the 

capability of combined SM-LST information to predict fire risk situations (Chapter 2); (ii) the 

ability of SMOS SM information to detect dry soils threatening vegetation health (Chapter 3); 

(iii) a sensitivity analysis of VOD to carbon stocks in tropical regions (Chapter 4); and (iv) the 

ability of VOD seasonal metrics to model crop yields (Chapter 5). In this chapter, the original 

contributions of this work and future research lines arising from this PhD Thesis are also 

detailed. 
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6.1. Main conclusions 

 Microwave radiometers on board the SMOS and SMAP missions measure the 

electromagnetic radiation emitted by the soil at low frequency microwaves (L-band). This 

emission is mainly a function of the soil water content, and its attenuation through the 

overlying vegetation depends on the vegetation water content and on the canopy density. In 

comparison to higher microwave frequencies, L-band has greater penetration capacity through 

soils and vegetation. Therefore, satellite L-band measurements provide a new and unique 

means to monitor the hydric conditions of soils and vegetation, and to infer information on the 

vegetation biomass at the global scale. This is of great importance to assess and prevent the 

impacts on vegetation caused by a changing environment.  

In this context, this PhD Thesis has investigated the use of L-band SM and VOD data as new 

remotely sensed ecological indicators for: (i) preventing and understanding specific drought 

impacts such as forest fires and forest decline episodes; (ii) quantifying the sensitivity of 

microwave and optical sensors to the above-ground carbon density in tropical regions; and (iii) 

providing crop yield assessment. The main conclusions and contributions of this Thesis are 

described hereafter. 

Chapter 2 studies the relationship between SMOS SM data at enhanced resolution (1 km) 

and fire risk in the Iberian Peninsula for the period 2010-2014. Importantly, rather than using 

SM information alone, SM is complemented with LST data to allow a more complete 

characterization on the soil surface state before fire occurrences. Results are summarized as 

follows: 

 Absolute SM-LST values detect the dry and warm conditions preceding ~80% of the 

registered fires. These conditions mainly occur in summer, with SM below and LST 

above their annual median. In particular, the occurrence of very large fires (>3,000 

ha) has been associated to very dry soils (<0.08 m3/m3) and high temperature (>306 

K) conditions. 

 

 SM-LST anomalies explain droughts and anticyclonic situations out of the summer 

season, which lead to an important number of fire episodes in the northwestern 

Iberian Peninsula. 

 

 Dry soil conditions are linked to the potential extension of wildfires both in the 

Mediterranean region and in the northwestern Iberian Peninsula. High 

temperatures, in turn, increase the expected burned area of fires in some regions, 

but have a negative effect in the Mediterranean. The latter should be assessed using 

a larger sample. 

Based on the above-mentioned studies, a fire risk model for the Iberian Peninsula built on 

SM-LST data was developed. To do so, a preliminary version was first built based on empirical 

thresholds. Fire risk maps at near real time produced with this first approach were provided to 

the DiBA for their 2015 and 2016 summer (i.e., mid-June to mid-September) fire risk 

prevention campaigns. An improved fire risk model has been proposed based on a regression 
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which also incorporates SM, LST, and ancillary information on land cover, ecoregions, and date 

of fire occurrence. This model estimates the potential burned area that a fire can reach 

applying a linear regression model. Results show high accuracy, with 83.3% of fires not 

exceeding the expected fire size, and with a maximum error of 40.5 ha. 

In Chapter 3 the forest decline occurrences associated to the severe 2012 summer drought 

in Catalonia are modelled as a function of climate variables and SMOS high-resolution SM. The 

model explains ~40% of the spatial distribution of forest decline, suggesting that this 

phenomenon is also dependent on specific ecosystem and soil characteristics which should be 

further studied. The main conclusions of this study are: 

 Forests impacted by high temperature anomalies, low rainfall, and dry soils during 

summer are the most affected by forest decline. Also, forests in climatically wetter 

regions and those more exposed to solar radiation are more vulnerable. 

 

 In the studied case, the vulnerability to forest decline is very dependent on the 

studied species. Broadleaved trees have resulted more affected than conifers. The 

most vulnerable species is Fagus sylvatica, a Euro-Siberian species, contrasting with 

Pinus halepensis, a typically Mediterranean species, which shows low sensitivity to 

drought. 

 

 Soil moisture data derived from SMOS shows a coherent pattern with increasing 

forest affectation when soils get drier, especially for broadleaved species. 

Nevertheless, SM has explained a little proportion of the modelled forest decline 

variance (<5%). Probably, root-zone soil moisture data would be very valuable to 

improve this result (see Section 6.3), as trees uptake water from deeper soil layers 

than those sensed by SMOS. 

Differently from –and complementarily to- soil moisture information, VOD data allows 

monitoring vegetation phenology, water content, and biomass. Research in Chapter 4 has 

investigated the applicability of L-band VOD to estimate carbon stocks on tropical forests. The 

work in Chapter 5 has explored the temporal signature of L-band VOD over agro-ecosystems 

and has proposed seasonal metrics for crop yield assessment.  

Chapter 4 compares the sensitivity of microwave VOD products (retrieved using L-, C- and X-

bands) and the optical-infrared index EVI to the ACD of vegetation in tropical regions. L-band 

VOD shows the best sensitivity to carbon changes and the lowest saturation at high biomass 

values. The sensitivity decreases with increasing microwave frequencies, confirming that low 

frequencies capture well the attenuation of soil emissivity through the canopy layer. The 

obtained results are consistent for the different regions, vegetation types, carbon densities 

and altitudes studied. Also, Chapter 4 quantifies the relative contribution of carbon density 

and forest cover proportion to the VOD and EVI signals, showing that 34% of L-band VOD 

variance is explained by carbon variability and that 30% of this variance is due to changes on 

the forest cover proportion. These percentages are lower for EVI, C-band VOD and X-band 

VOD, in decreasing order. Nevertheless, the capacity of EVI to monitor carbon changes in 

mountain forests (less dense forests) is higher than in tropical evergreen forests, suggesting 
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that EVI should complement L-band VOD measurements for low density vegetation. Also, VOD 

at C- and X-bands have higher sensitivity to carbon changes in flooded forests than in other 

regions, and should complement L-band data in flooded areas.  

In Chapter 5, six SMAP VOD metrics obtained during the crop growth season are studied in 

order to model crop yields in the United States Corn Belt. These metrics have good qualitative 

agreement with the spatial variability of crop yield in the region and with the distribution of 

the different crop types. The complementary application of these metrics using a principal 

components regression is able to explain 66% of crop yield variance through the study region. 

This percentage decreases (42%) for heterogeneous wheat-dominated crops, and increases 

(78%) in a more homogenous region with corn and soy crops. Results indicate that the 

predictive capacity of VOD metrics should improve with crop homogeneity, and that it can be 

applied to derive specific crop yield assessment for the major crops within the study area. The 

approach presented in Chapter 5 opens a promising path forward for the enhancement of 

present global crop yield assessment approaches, which are mainly based on optical satellite 

imagery. This would be especially important for developing countries, where crop insecure 

situations are frequent and may increase during this century.  

Importantly, in Chapters 4 and 5 of this Thesis it is stressed that the synergetic application of 

L-band VOD with other remote sensing products (e.g., different VOD frequencies, LiDAR data, 

VIS/NIR indices, fluorescence, or radar backscatter) could enhance our capacity to monitor 

vegetation biomass and phenology, both for tropical forests (Chapter 4) and for croplands 

(Chapter 5). The complementarity among VOD and SM data for the applications reported in 

this work is also an interesting research that should be subject of future studies (see Section 

6.3). 

As a final conclusion, it is worth saying that this PhD Thesis opens a path to new L-band 

remote sensing applications over land. Measuring soil and vegetation conditions from SMOS 

and SMAP has demonstrated highly applicable to assess and forecast increasing environmental 

risks over vegetation and human livelihood conditions, and to further explore present 

challenges concerning the need of monitoring forest carbon sinks and of improving crop 

security. Therefore, L-band missions have been shown in this PhD Thesis as potentially helpful 

tools to deal with present and future impacts derived from environmental changes. 

 

 

6.2. Original contributions 

The original contributions of this PhD Thesis are: 

 A new approach for fire risk assessment over the Iberian Peninsula based on the 

complementary application of satellite L-band soil moisture data and land surface 

temperature information. It assigns a fire risk category based on the modelled 

potential extension of wildfires. 
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 Development of the first fire risk maps based on SMOS-derived soil moisture 

information. The preliminary version of this product (see Chaparro et al. 2016b and 

Section 2.9.1) was operationally used by the DiBA during the 2015 summer fire risk 

prevention campaign. The final version is described in Chaparro et al. (2016a) and in 

Section 2.9.2, and will be available through the BEC website (BEC, 2018) in a near 

future. 

 

 New assessment of forest decline causes taking profit of climate information and of 

SMOS-derived soil moisture data. SM shows great potentiality to detect drought 

conditions threatening forest health. 

 

 A sensitivity analysis of different VOD products and EVI to carbon stocks of tropical 

vegetation, based on a quantitative assessment of the ACD contribution to VOD and 

EVI signals, and on specific analyses in the Andes region and in flooded forests. 

 

 L-band VOD seasonal metrics for crop yield assessment have been proposed using the 

first year of SMAP VOD data over the US Corn Belt and survey data from USDA-NASS. 

The metrics proposed explain an important proportion of crop yield variability and 

could be studied for crop yield prediction purposes. 

 

 

6.3. Future research lines 

 The future research lines opened by the work presented on this PhD Thesis are: 

 Expand the fire risk assessment approach presented in this PhD Thesis using other 

meteorological variables (mainly wind), as well as considering human factors, 

orography, and vegetation conditions. The application of VOD and EVI data to 

complement the presented risk index would be interesting in order to include the 

hydric conditions of life fuels. 

 

 Study the applicability of the SM-LST data in the FWI, which is used as the basis for the 

EFFIS fire risk assessment tool of the European Commission. 

 

 Use estimates of root-zone soil moisture obtained from SMOS/SMAP surface soil 

moisture data in fire risk assessment tools, forest decline modelling, and crop yield 

estimates. Study the benefit of using soil moisture vertical profiles with respect to the 

use of either surface or root-zone soil moisture.  

 

 Analyse the impact of using longer L-band satellite and in-situ/survey data records in 

the proposed applications. In that sense, expanding the study period in the fire risk 

analysis (e.g., to 2010-2018) would provide a larger sample, which is needed to 

strengthen the results obtained. Also, applying multi-year VOD records would allow 
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accounting for interannual variability in crop yield assessment, and would permit to 

analyse carbon gains or losses in forests. 

 

 Develop a modelling framework for the prediction of forest decline based on climate 

data and SM and VOD estimates to anticipate drought impacts on forests. 

 

 Develop crop yield prediction models using satellite VOD together with optical data 

(e.g., EVI) and other supporting information available (e.g., yield from previous years, 

or climatic information). 

 

 Explore synergies among different remote sensing products to enhance the 

applications and research here presented. In particular, study the complementarity 

between SM and VOD information for an accurate assessment of soil and vegetation 

hydric conditions in global biomes. 

 

 The applications presented in this PhD Thesis would benefit from future improvements 

in the SM and VOD products applied. This should include:  

o Enhance the spatial resolution of SM to the order of meters. 

o Explore the possibility of enhancing the spatial resolution of SMOS and SMAP 

VOD datasets. 

o Assess the impact of using a fixed global soil roughness parameter and a static 

vegetation scattering albedo in SMAP MT-DCA VOD estimates. 
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Appendix A 

Supplementary tables 
 

 

A.1. Supplementary tables for Chapter 2 

Table A.1. Summary of the model proposed in Equation (2.2) of potential 

extension of wildfires as a function of soil moisture, land surface temperature, 

month, region, and land cover. The significance of all effects is referred to the 

northern Iberian Peninsula (North), in broadleaved forests (ForB), on February 

(intercept). Estimates in shaded areas are additive to the intercept. Estimates in 

white areas correspond to slopes (SM and LST) or modify SM and LST slopes 

additively (interactions). Significance is given as p<0.1 (.), p<0.05 (*), p<0.01 (**) 

and p<0.001 (***). Further insight in similar models can be found in Fox (2003) if 

the reader is not familiar with this model output. 

Variable Estimate t value P-value Significance 

(Intercept) February, North, ForB -15.32 ± 3.66 -4.189 5.1E-05 *** 

Soil Moisture -4.03 ± 4.71 -0.855 0.394 

 Land Surface Temperature 0.06 ± 0.01 5.074 1.3E-06 *** 

March -0.19 ± 0.64 -0.291 0.772 

 April -0.51 ± 0.64 -0.805 0.422 

 June 2.39 ± 0.78 3.083 0.002 ** 

July 0.86 ± 0.66 1.309 0.193 

 August -0.06 ± 0.55 -0.104 0.918 

 September -0.63 ± 0.56 -1.114 0.267 

 October 0.08 ± 0.60 0.135 0.893 

 Central Peninsula 34.39 ± 35.06 0.981 0.329  

Mediterranean 67.09 ± 9.04 7.419 1.3E-11 *** 

NE Portugal 3.11 ± 5.58 0.558 0.578  

NW Portugal 19.44 ± 4.31 4.514 1.4E-05 *** 

Coniferous forest 0.49 ± 0.18 2.744 0.007 ** 

Mixed forest 0.15 ± 0.17 0.874 0.384 

 Natural grasslands -0.04 ± 0.14 -0.309 0.758 

 Heathlands-moors -0.05 ± 0.13 0.392 0.696 

 Sclerophyllous vegetation 0.11 ± 0.17 0.679 0.498 

 Woodland-shrub -0.04 ± 0.12 -0.318 0.751 

 Sparse vegetation 0.28 ± 0.14 1.988 0.049 * 
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Soil Moisture x March 

 

1.04 

 

± 

 

5.07 

 

0.204 

 

0.839 

 Soil Moisture x April 3.09 ± 5.18 0.598 0.551 

 Soil Moisture x June -18.09 ± 6.31 -2.866 0.004 ** 

Soil Moisture x July -8.39 ± 5.60 -1.497 0.137 

 Soil Moisture x August 2.23 ± 4.62 0.483 0.630 

 Soil Moisture x September 6.41 ± 4.69 1.368 0.174 

 Soil Moisture x October -2.19 ± 5.28 -0.414 0.680   

Soil Moisture x Central Peninsula -15.84 ± 10.59 -1.495 0.137 

 Soil Moisture x Mediterranean -21.67 ± 4.28 -5.059 1.4E-06 *** 

Soil Moisture x NE Portugal 4.64 ± 3.30 1.404 0.163 

 Soil Moisture x NW Portugal -6.77 ± 2.40 -2.816 0.006 ** 

LST x Central Peninsula 

 

-0.109 

 

± 

 

0.112 

 

-0.970 

 

0.334 

 

 

LST x Mediterranean -0.213 ± 0.029 -7.326 2.1E-11 *** 

LST x NE Portugal -0.012 ± 0.018 -0.652 0.516  

LST x NW Portugal -0.063 ± 0.014 -4.505 1.5E-05 *** 
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A.2. Supplementary tables for Chapter 3 

Table A.2. Summary of the final model of forest decline occurrence and ten 

similar models with different random selections for unaffected entries. Forest 

decline probability is modelled as a function of species, historic climate variables, 

and summer 2012 climatic conditions and soil moisture. For each effect and each 

model, + refers to positive effects and – to negative ones, referred to the 

reference species (Deciduous Quercus). Significance is represented as follows: 

p<0.1 (.), p<0.05 (*), p<0.01 (**), p<0.001(***). Rad_an: mean annual radiation 

(10kJ/m2·day); Prec_an: accumulated annual precipitation (mm); T_sum: 

summer anomaly of temperature; SPI3 and SPI12: Standard Precipitation Index 

calculated for 3 and 12 months, respectively; SM: soil moisture (m3/m3). 

Effects FINAL 1 2 3 4 5 6 7 8 9 10 

(Intercept)  
Q.deciduous 

+ 
*** 

+ 
*** 

+ 
*** 

+ + 
*** 

+ 
*** 

+ 
*** 

+ 
*** 

+ 
*** 

+ 
*** 

+ 
*** *** 

Rad_an 
+ 

n.s. 
+ + + + + + + + + 

* . ** ** ** ** * *** * . 

Prec_an 
+ + + + + + + + + + + 

*** *** *** *** *** *** *** *** *** *** *** 

T_sum 
+ + + + + + + + + + + 

*** *** *** *** *** *** *** *** *** *** *** 

SPI3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

SPI12 n.s. n.s. 
- - 

n.s. n.s. 
- 

n.s. 
- 

n.s. 
- 

** * * * . 

SM 
- - n.s. 

n.s. 
- - - - - n.s. 

 

- 

** ** * . ** * . *** 

F. sylvatica n.s. n.s. n.s. n.s. n.s. n.s. 
+ 
* 

n.s. n.s. 
+ 
* 

n.s. 

P. halepensis 
- - - 

*** 
- 

*** 
- 

*** 
- 

*** 

- - 
*** 

- 
*** 

- 
*** 

- 

*** *** *** *** 

P. nigra 
- - - - - - - - - - - 

*** *** *** *** *** *** *** *** *** *** *** 

P. pinea n.s. 
- 
. 

- 
. 

- 
. 

- 
. 

- 
* 

n.s. 
- 
* 

- 
. 

- 
. 

- 
. 

P. sylvestris 
- 

*** 
- 

*** 
- - - 

*** 
- 

*** 
- 

*** 
- - - - 

*** *** *** *** *** *** 

Q. ilex 
- 

*** 
- 

*** 

- - 
*** 

- 
*** 

- - 
*** 

- 
*** 

- - 
*** 

- 
*** *** *** *** 

Q. suber n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

F. sylvatica x T_sum 
+ + + + + + 

n.s. 
+ 

n.s. n.s. 
+ 

. ** * * * * * . 

P. halepensis x T_sum 
- - - - - - - - - - - 

*** *** *** *** *** *** *** *** *** *** *** 

P. nigra x T_sum 
- - - - - - - - - - - 

*** *** *** *** *** *** *** *** *** *** *** 

P. pinea x T_sum n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

P. sylvestris x T_sum n.s. n.s. n.s. n.s. n.s. n.s. 
- - - - 

n.s. 
. . * . 

Q. ilex x T_sum n.s. n.s. n.s. 
- 

n.s. n.s. 
- - - 

n.s. n.s. 
* * . *** 

Q. suber x T_sum n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
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F. sylvatica x SPI3 
- 

n.s. n.s. 
- - - - 

n.s. 
- - - 

** * ** . ** . * * 

P. halepensis x SPI3 
- - - - - - - - - - - 

*** *** *** *** *** *** *** *** *** *** *** 

P. nigra x SPI3 
- - - - - - - - - - - 

*** *** ** ** ** ** *** *** ** *** *** 

P. pinea x SPI3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

P. sylvestris x SPI3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Q. ilex x SPI3 n.s. 
- 

n.s. n.s. n.s. n.s. 
- - 

n.s. n.s. n.s. 
* * . 

Q. suber x SPI3 n.s. n.s. n.s. n.s. n.s. n.s. 
- - 

n.s. n.s. n.s. 
. . 

F. sylvatica x SPI12 
- - - - - - - - - - - 

** *** ** *** *** ** ** ** ** * ** 

P. halepensis x SPI12 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

P. nigra x SPI12 
- - 

n.s. n.s. 
- 

n.s. 
- - 

n.s. 
- - 

* ** * . * * . 

P. pinea x SPI12 n.s. 
- 

n.s. 
- 

n.s. n.s. 
- - 

n.s. n.s. n.s. 
* . . * 

P. sylvestris x SPI12 
+ + + + + + + + + + + 

* * *** *** * ** ** * ** * ** 

Q. ilex x SPI12 
- - - - - - - - - - - 

*** *** * ** *** ** ** *** ** *** ** 

Q. suber x SPI12 
- - - - - - - - - 

n.s. 
- 

* * * . . * * * . . 

F. sylvatica x SM 
- - - - 

n.s. 
- 

n.s. 
- - - 

n.s. 
. * ** * * *** * * 

P. halepensis x SM n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

P. nigra x SM 
- - - - - - - - - - - 

* ** *** ** ** ** ** ** *** ** * 

P. pinea x SM n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

P. sylvestris x SM n.s. 
- - - - - 

n.s. 
- - - 

n.s. 
. * ** . . * . * 

Q. ilex x SM n.s. n.s. 
- 

n.s. 
- 

n.s. n.s. n.s. 
- - 

n.s. 
* . * . 

Q. suber x SM n.s. 
- 

n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
. 

Explained deviance (%) 39.3 37.3 38.6 36.2 36.3 37.9 38.8 36.0 38.6 36.4 38.2 
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Table A.3. Summary of the final model of forest decline probability as a function 
of species, climate variables, and summer 2012 climatic conditions and soil 
moisture. The significance of all effects is referred to the reference species 
(deciduous Quercus). Sig.: significance, refers to: p<0.1 (.), p<0.05 (*), p<0.01 (**), 
p<0.001 (***). Rad_an: mean annual radiation (10kJ/m2·day); Prec_an: 

accumulated annual precipitation (mm); T_sum: summer anomaly of 
temperature; SPI3 and SPI12: Standard Precipitation Index calculated for 3 and 12 
months, respectively; SM: soil moisture (m3/m3). 

Effects Estimate z value Pr(>|z|) Sig. 

(Intercept) 0.6194 ± 0.12829 4.828 1.38E-06 *** 

Rad_an 0.13086 ± 0.05138 2.547 0.010872 * 

Prec_an 0.40513 ± 0.07582 5.343 9.13E-08 *** 

T_sum 0.85522 ± 0.12204 7.008 2.42E-12 *** 

SPI3 -0.02726 ± 0.13426 -0.203 0.839111 

 SPI12 -0.10558 ± 0.11875 -0.889 0.373919 

 SMOS -0.3398 ± 0.12248 -2.774 0.005532 ** 

F. sylvatica 0.54126 ± 0.40847 1.325 0.185145 

 P. halepensis -5.30047 ± 0.55687 -9.518 < 2e-16 *** 

P. nigra -3.30238 ± 0.36827 -8.967 < 2e-16 *** 

P. pinea -5.12607 ± 11.35899 -0.451 0.651789 

 P. sylvestris -2.83399 ± 0.25001 -11.336 < 2e-16 *** 

Q. ilex -0.69489 ± 0.14962 -4.644 3.41E-06 *** 

Q. suber -1.16642 ± 1.06172 -1.099 0.271936 

 F. sylvatica x T_sum 0.8688 ± 0.47195 1.841 0.065642 . 

P. halepensis x T_sum -1.25798 ± 0.28848 -4.361 1.30E-05 *** 

P. nigra x T_sum -1.24169 ± 0.34004 -3.652 0.000261 *** 

P. pinea x T_sum 0.20836 ± 0.99255 0.21 0.833726 

 P. sylvestris x T_sum -0.30563 ± 0.21836 -1.4 0.161613 

 Q. ilex x T_sum -0.20358 ± 0.15692 -1.297 0.194517 

 Q. suber x T_sum 0.9674 ± 0.73375 1.318 0.187358 

 F. sylvatica x SPI3 -2.24794 ± 0.76877 -2.924 0.003455 ** 

P. halepensis x SPI3 -2.34412 ± 0.40978 -5.72 1.06E-08 *** 

P. nigra x SPI3 -0.87807 ± 0.24422 -3.595 0.000324 *** 

P. pinea x SPI3 -2.17412 ± 2.44851 -0.888 0.374574 

 P. sylvestris x SPI3 -0.1012 ± 0.24923 -0.406 0.68472 

 Q. ilex x SPI3 -0.11847 ± 0.17051 -0.695 0.487172 

 Q. suber x SPI3 -1.91838 ± 1.25367 -1.53 0.125964 

 F. sylvatica x SPI12 -1.68399 ± 0.58131 -2.897 0.003769 ** 

P. halepensis x SPI12 0.02756 ± 0.25002 0.11 0.912237 

 P. nigra x SPI12 -0.67192 ± 0.29731 -2.26 0.02382 * 

P. pinea x SPI12 -0.83032 ± 0.90313 -0.919 0.357895 

 P. sylvestris x SPI12 0.52329 ± 0.20522 2.55 0.010776 * 
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Q. ilex x SPI12 -0.74201 ± 0.16143 -4.596 4.30E-06 *** 

Q. suber x SPI12 -2.41591 ± 1.14511 -2.11 0.034879 * 

F. sylvatica x SM -0.65057 ± 0.35447 -1.835 0.066458 . 

P. halepensis x SM 0.23788 ± 0.23502 1.012 0.311452 

 P. nigra x SM -0.63648 ± 0.25448 -2.501 0.012382 * 

P. pinea x SM -7.91707 ± 145.8026 -0.054 0.956696 

 P. sylvestris x SM -0.3111 ± 0.2155 -1.444 0.148839 

 Q. ilex x SM -0.01756 ± 0.16331 -0.108 0.914372 

 Q. suber x SM -0.26403 ± 0.38244 -0.69 0.489949 

 Deg. of freedom: 3040     AIC: 2493    AUC: 0.893    Explained deviance: 0.393   

 

 

 

Table A.4. Stem vulnerability to xylem embolism (ψ50), minimum midday leaf 

water potential (ψmin) and hydraulic safety margin (ψ50 SF) for the studied species. 

ψ50 SF is calculated as  ψmin - ψ50, where: ψ50 (MPa) is the xylem water potential at 

which 50% of hydraulic conductivity is lost, and ψmin is the minimum leaf water 

potential measured in natural conditions. Adapted from Choat et al. (2012) and 

references therein. 

Group Specie ψ50 (MPa) ψmin (MPa) ψ50 SF (MPa) 

Angiosperms Quercus pubescens1 -2.50 -4.60 -2.10 

Angiosperms Quercus ilex -3.19 -3.82 -0.63 

Angiosperms Quercus suber -5.20   

Angiosperms Fagus sylvatica -3.08 -2.21 0.87 

Gymnosperms Pinus nigra -3.27 -2.40 0.87 

Gymnosperms Pinus sylvestris -3.19 -1.99 1.20 

Gymnosperms Pinus halepensis -4.46 -2.95 1.51 

Gymnosperms Pinus pinea -4.00 -2.40 1.60 
            1This species is representative of deciduous Quercus. 
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A.3. Supplementary tables for Chapter 4 

 

Table A.5. Number of pixels studied for each country and scale. 

 
9 km scale 25 km scale 

Peru Colombia Panama Total Peru Colombia Panama Total 

All 14,488 1,768 552 16,808 1,730 209 39 1,978 

Forests 9,500 1,619 436 11,555 1,152 198 36 1,386 

 

Table A.6. Results (R2 and significance) for the VOD-ACD regression in Eq. (4.1), 

applied to dense forests. Significance is shown as follows: p<0.001 (***), p<0.01 

(**), p<0.05 (*), p≥0.05 (n.s.). 

Band 
ACD category 

≥80 TC/ha ≥100 TC/ha 

L (1.4 GHz) 0.12 (***) 0.05 (***) 

C1 (6.9 GHz) 0.04 (***) n.s. 

C2 (7.3 GHz) 0.05 (***) n.s. 

X (10.7 GHz) n.s. n.s. 
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Table A.7. Yield conversions, from bu/acre and lb/acre to kg/m2. 

Crop Kg per bushel* 

Barley 21.77 

Corn, flaxseed, sorghum 25.40 

Oats 15.42 

Soybeans, wheat 27.22 

Other conversions 

1 lb** = 0.45 kg 

1 acre = 4046,86 m2 

*Source for conversions: USDA, 1992. 

**Pounds have been converted to kg for beans, canola, lentils and peas. 
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Table A.8. Main crops’ phenology. Dark grey shows emergence dates (50% of crop 

has emerged) through all the study area. Light grey shows maturity dates (50% of 

crop has reached maturity) through all the study area. Abbreviations show the 

states with the highest proportion of each crop, and the dates of emergence and 

maturity in those particular states. Abbreviations: Iowa (IA), Nebraska (NE), North 

Dakota (ND), and Ohio (OH). 

 

 

 

Table A.9. Dates for minimum VOD after SOS, and dates for maximum VOD within 

crop season. Note that these dates mark the limits for the computation of the 

VOD metrics per pixel. 

 Earliest Percentile 5 Median Percentile 95 Latest 

Date of minimum 

VOD 
12th May 29th May 12th June 26th June 11th July 

Date of maximum 

VOD 
15th June 28th July 17th August 8th September 19th September 

 

 

Table A.10. Coefficients for the first principal component (PC1). 

 Metrics Coefficients 

Maximum 0.450 

Small integral 0.440 

Range 0.417 

Standard deviation 0.393 

Large integral 0.373 

Average 0.369 

 

 

 

5 12 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27

Corn IA,NE IA,NE

Soybeans OH OH

Spring wheat ND ND

CROP

CROP PHENOLOGY

apr-15 may-15 June 15 July 15 August 15 September 15
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Table A.11. Review on some of the previous studies modelling crop yield as a 
function of remotely sensed data and complementary information. 

Reference Site Crops Data 
Mean 

R2 
Scale N 

Patton &  

Hornbuckle, 2013 
Iowa (US) 

Corn,  

soybeans 
VOD (L-band) 0.58 County 99 

Guan et al., 2017 
US  

Cornbelt 

Corn,  

soybeans 

VOD (X-band) 0.18 

County ~300 
EVI 0.42 

Multiple  

observations(1) 
0.62 

Chaparro et al., 

2017 

US  

Cornbelt 

Corn,  

soybeans 
VOD (L-band) 

0.65 
SMAP  

pixels 

100 

Wheat,  

soybeans 
0.21 50 

Mika et al., 2002 Hungary 
Corn NDVI 0.62 District 

18 
Wheat NDVI 0.51 District 

Weissteiner & 

 Kühbauch, 2005 

SW  

Germany 
Barley NDVI, GDD 0.65 District 4 

Wall et al., 2008 S Canada Wheat 
NDVI, soil type,  

moisture index 
0.57 District 40 

Boken &  

Shaykewich, 2002 

Saskatchewan  

(Canada) 
Wheat 

NDVI,  

moisture index 
0.78 District 5 

Manjunath et al., 

2002 

Rajasthan  

(India) 
Wheat 

NDVI, 

 precipitation 

0.71 District 15 

0.41 State 1 

Labus et al., 2002 Montana (US) Wheat NDVI 0.70 State 1 

Becker-Reshef  

et al., 2010a 

Kansas (US) 
Wheat NDVI 

0.77 Years(2) 8 

Ukraine 0.55 Years(2) 8 

Diouf et al., 2016 Senegal 
Mixed  

herbaceous 

  

Field 

plots 
90 

FAPAR,  

agrometeorological 

 data 

0.69 

(1) X-band VOD, EVI, Ku-band radar backscatter and evapotranspiration. 

(2) One state or country aggregated value per year. 
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Appendix B 

Supplementary figures 

 
B.1. Supplementary figures for Chapter 4 

 

 

Figure B.1. The study area includes Panama, southern Colombia, and Peru. (a) 

Land cover mode for the year 2015 (ESA-CCI, 2017); (b) mean VOD data retrieved 

at L-band (dimensionless; period April 2015-March 2016) and (c) ACD (TC/ha). All 

subfigures are plotted using the 25 km grid. Areas with insufficient VOD and/or 

ACD data (e.g., rivers edges and coastlines) are not plotted. 
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Figure B.2. Relative importance of ACD and FC as predictors of VOD and EVI (Eq. 

(4.2)). Sign and significance for each variable are plotted if at least p<0.05. Results 

are reported for regions (A) Panama, (B) Colombia and northern Peru, (C) north-

central Peru, (D) central Peru, (E) south-central Peru and (F) southern Peru.  
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Figure B.3. Regression of L-band VOD as a function of ACD using a generalized 

additive model. The model is fitted on the basis of a cubic spline function. The 

regression is significant (p<0.0001).  
 

      

 

 

Figure B.4. Linear regression of L-band VOD as a function of ACD in forested areas. 

The regression is significant (p<0.0001). Grey dots show pixels without forest 

dominant cover and are excluded from the regressions. 
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Figure B.5. Fitted VOD values and residuals of VOD for the VOD-ACD linear 

regression. 

 

 

Figure B.6. Residuals for the model in Eq. (4.1) (using VOD at L-band, 9 km grid; 

top row), and ACD (bottom row), for different categories of altitude (left), water 

proportion (centre) and flooded forest proportion (right). It is tested if residuals 

are different from zero (top row), and if ACD for each group is different from the 

reference group (REF). Significance: REF (reference; not evaluated), ns (p>0.05), * 

(p<0.05), ** (p<0.01), *** (p<0.001). Numbers above the graph show the sample 

for each group. 
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B.2. Supplementary figures for Chapter 5 

 
 
 
 
 
 
 
 
 
 

 
Figure B.7. Yield for each crop type in the entire study area. Boxes represent yield 
quartiles including all the counties where each crop is planted. Whiskers represent 
percentiles 5 and 95. The number of counties where each crop is planted in the 
study region is shown for each box. 
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Figure B.8. (a) Difference between the maximum VOD and the VOD at EOS data 

(crops senescence) and (b) maximum VOD after crop season (colorbar). The 

Pearson’s correlation coefficient with corn proportion (r_corn; p<0.0001), yield 

(r_yield; p<0.0001) and winter wheat proportion (r_ww; p=0.67) are shown. 

 

 

Figure B.9. Relationship between corn proportion and yield in: (a) the center-

southeastern region and (b) the northern region. The coefficient of determination 

is shown (R2). 
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Figure B.10. Yield as a function of PC1 for (a) corn-dominated pixels; (b) soy-

dominated pixels and (c) wheat-dominated pixels. Both variables are scaled. Red 

dotted lines represent 95% confidence intervals. Linear regressions were also 

tested: corn (R2 = 0.48; p<0.0001), soy (R2 = 0.47; p<0.01) and wheat (R2 = 0.50; 

p=0.03). 
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Latin symbols 

𝑎𝑛, 𝑎𝑛𝑖 Regression coefficients for high-resolution SM estimation. Subindex 𝑛 refers to 

the number of the coefficient. Subindex 𝑖 refers to the angle observed. 

b Empirical parameter for the estimation of vegetation optical depth 

𝐵(,) Brightness or radiance [W·sr-1·m-2] 

𝐵𝑏𝑏 Total brightness of a blackbody [W·sr-1·m-2] 

𝐵𝑓 Spectral brightness: brightness per unit bandwidth [W·sr-1·m-2·Hz] 

𝐵𝑖(,) Total brightness incident over an antenna [W·sr-1·m-2] 

𝑐 Speed of light: 𝑐 = 3·108 [m/s] 

𝑒(, ) Emissivity 

𝑓 Frequency [Hz] 

𝑘𝐵 Boltzmann’s constant: 𝑘𝐵 = 1.38·10-23 [J/K] 

𝐿𝑎 Atmospheric attenuation 

𝐿𝐶 Land cover type 

𝐿𝑜𝑔𝐴𝑟𝑒𝑎 Logarithm of the potential burned area 

𝐿𝑆𝑇𝑁 Normalized LST 

𝑀 Month of the year when a fire burned 

𝑁𝐷𝑉𝐼𝑁 Normalized NDVI 

𝑝𝑖  Proportion of area planted for each crop 

r Pearson’s correlation coefficient 

𝑅 Region where a fire burned 

𝑆𝑀𝐻𝑅 High-resolution soil moisture [m3·m-3] 

𝑇 Physical temperature [K] 
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𝑇𝐴𝑃(, ) Apparent brightness temperature [K] 

𝑇𝐵(,) Brightness temperature [K] 

𝑇𝑈𝑃 Atmospheric upward radiation [K] 

𝑇𝑆 Effective soil temperature [K] 

𝑇𝑉 Effective vegetation temperature [K] 

𝑇𝑆𝐶  Downward atmospheric radiation scattered by the Earth’s surface [K] 

 

Greek symbols 

𝛼, 𝛽, 𝛿 Regression coefficients 

 Transmissivity of the vegetation 

∆𝑓 Bandwith [Hz] 

𝑠 Complex dielectric constant of soils 𝑠 =  ′𝑠 + 𝑗′′𝑠 

′𝑠 Effective permittivity (real part of 𝑠) 

 Incidence angle referred to nadir [°] 

𝜆 Wavelength 𝜆 = 𝑐/𝑓 [m] 

 Vegetation opacity or vegetation optical depth [Np] 

 Azimuth angle referred to nadir [°] 

ψmin Minimum water potential [MPa] 

ψ50 Xylem water potential at which 50% of hydraulic conductivity is lost [MPa] 

ψ50 SF Hydraulic safety margin [MPa] 

 Vegetation single scattering albedo 
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AAFC Agriculture and Agri-Food Canada 

ACD Above-ground Carbon Density 

AIC Akaike Information Criterion 

AMSR2 Advanced Microwave Scanning Radiometer 2 

AMSR-E Advanced Microwave Scanning Radiometer for Earth observation 

ASCAT Advanced SCATterometer 

AUC Area Under the Curve 

BEC Barcelona Expert Centre 

BUI Build Up Index 

CAO Carnegie Airborne Observatory 

CREAF Centre de Rercerca Ecològica i Aplicacions Forestals (Centre for Ecological 

Research and Forestry Applications) 

CSIC Consejo Superior de Investigaciones Científicas (Spanish National Research 

Council) 

DC Drought Code 

DEBOSCAT Decaïment dels Boscos a Catalunya (Forest Decline in Catalonia) 

DEM Digital Elevation Model 

DF Drought Factor 

DiBa Diputació de Barcelona (Provincial Government of Barcelona) 

DMC Duff Moisture Code   

DMSP Defense Meteorological Satellite Program 

DOI Degrees Of Information 

EASE Equal-Area Scalable Earth grid 

ECV Essential Climate Variable 

ECMWF European Centre for Medium-range Weather Forecasts 

EFAS European Flood Awareness System 

EFFIS European Forest Fires Information System 

EO Earth Obervation 

EOS End Of Season 

ESA European Space Agency 

ESA-CCI ESA Climate Change Initiative 

ET Evapotranspiration 

EU-DEM European DEM 

FAPAR Fraction of Absorbed Photosynthetically Active Radiation 

FC Forest Cover fraction 

FFDI Forest Fire Danger Index 

FFMC Fine Fuel Moisture Content 

FMC Fuel Moisture Content 
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FWI Fire Weather Index 

GAM Generalized Additive Models 

GCOM-W1 Global Change Observation Mission 1st – Water 

GEDI Global Ecosystem Dynamics Investigation mission 

GEO Group of Earth Observations 

GSI Gini-Simpson Index 

GPP Gross Primary Productivity 

GWIS Global Wildfire Information System 

ICESat Ice, Cloud and land Elevation Satellite 

IGBP International Geosphere-Biosphere Program 

ISI Initial Spread Index 

LiDAR Light Detection and Ranging 

LPRM Land Parameter Retrieval Model 

LST Land Surface Temperature 

MPDI Microwave Polarization Difference Index 

MIRAS Microwave Imaging Radiometer using Aperture Synthesis 

MODIS Moderate Resolution Imaging Spectroradiometer 

MT-DCA MultiTemporal-Dual Channel Algorithm 

NASA National Aeronautics and Space Administration 

NDVI Normalized Difference Vegetation Index 

NWP Numerical Weather Prediction 

PC1 First Principal Component 

PCR Principal Components Regression 

RZSM Root-Zone Soil Moisture 

SAR Synthetic Aperture Radar 

SM Soil moisture [m3/m3] 

SMAP Soil Moisture Active Passive 

SMC Servei Meteorològic de Catalunya (Catalan Meteorological Service) 

SMD Soil Moisture Deficit 

SMOS Soil Moisture and Ocean Salinity 

SOS Start Of Season 

SPI Standard Precipitation Index 

SPEI Standard Precipitation Evaptranspiration Index 

SSS Sea Surface Salinity 

SWDI Soil Water Deficit Index 

SWI Soil Water Index 

TMI TRMM Microwave Imager 

TRMM Tropical Rainfall Measuring Mission 

UPC Universitat Politècnica de Catalunya (Polytechnic University of Catalonia) 

USDA-NASS United States Department of Agriculture-National Agriculture Statistics Service 

VIF Variance Inflation Factor 

VIS/NIR Visible/Near Infrared 

VOD Vegetation Optical Depth 

VWC Vegetation Water Content 

WUI Woodland-Urban Interface  
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Appendix F 

Resum (summary in Catalan) 
 

Actualment, les condicions ambientals estan canviant i això amenaça els ecosistemes i, més 

concretament, la vegetació. Aquests canvis són induïts principalment per l’activitat humana, ja 

sigui directament o indirecta. En són exemples l’escalfament global causat per l’increment en 

la concentració atmosfèrica de gasos d’efecte hivernacle, la desforestació i els canvis en les 

cobertes del sòl provocats per l’expansió de l’agricultura, o els canvis en les propietats de les 

superfícies de la terra, dels oceans i del gel que alteren l’albedo de la superfície del planeta. A 

més a més, la freqüència i la intensitat de riscos mediambientals com les sequeres o els 

incendis forestals poden augmentar en algunes regions degut als canvis en el clima. 

En aquest context, els satèl·lits per a l’observació de la Terra són necessaris per a estudiar el 

medi ambient, mesurant la vegetació i els recursos hídrics, així com el carboni emmagatzemat 

en la vegetació. En concret, els sensors passius de microones permeten obtenir, de manera 

regular, mapes globals de la humitat del sòl i de l’atenuació de les microones (emeses pel sòl) 

quan travessen la coberta vegetal. Aquesta atenuació s’expressa com la profunditat òptica de 

la vegetació, o VOD per les seves sigles en anglès. El VOD està relacionat amb el contingut 

d’aigua de la vegetació, i també amb la densitat de carboni de la fracció aèria de les plantes. 

Les microones de baixa freqüència (banda L) són més sensibles per a mesurar les cobertes 

vegetals més denses i la humitat del sòl, i en canvi les microones de freqüències més altes ho 

són menys (per exemple les bandes C o X). Les primeres missions espacials que porten 

radiòmetres en banda L a bord per a mesurar la humitat del sòl s’han llençat en els darrers deu 

anys. Són la Soil Moisture and Ocean Salinity (SMOS; la missió per a l’estudi de la humitat del 

sòl i la salinitat dels oceans llençada per l’Agència Espacial Europea l’any 2009), i la Soil 

Moisture Active Passive (SMAP; la missió per a l’estudi de la humitat del sòl de forma activa i 

passiva, llançada per la NASA, l’agència espacial dels Estats Units, l’any 2015). 

L’objectiu principal d’aquesta Tesi Doctoral és valorar l’aplicabilitat de les dades d’humitat i 

VOD en banda L per a estudiar la vegetació. La primera part d’aquesta Tesi aplica informació 

d’humitat del sòl –complementàriament amb altres fonts de dades- per a analitzar i prevenir 

impactes de les sequeres en la vegetació de la Península Ibèrica: 

 S’apliquen dades d’humitat i de temperatura de la superfície del sòl per a estudiar 

l’estat dels sòls prèviament a la ignició dels incendis a la regió. Es desenvolupa un 

índex de risc d’incendis per a predir l’extensió que els focs poden arribar a tenir, sota 

determinades condicions d’humitat i temperatura. Els resultats mostren com la 

humitat explica més d’un 30% de l’àrea potencial dels incendis. 

 

 Es realitza un model per a explicar el decaïment forestal a Catalunya després d’una 

important sequera que va tenir lloc l’estiu de 2012. El decaïment s’estudia en funció de 
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les espècies, de la humitat del sòl, i de variables climàtiques. L’efecte de la humitat en 

el decaïment dels boscos és coherent amb l’efecte que mostren les altres variables 

estudiades, i explica aproximadament un 5% de la variància. 

La segona part d’aquesta Tesi Doctoral analitza la capacitat per a inferir les condicions de la 

vegetació i la densitat de carboni amb dos estudis específics: 

 Es compara la sensibilitat a la densitat de carboni del VOD de la banda L amb la de 

freqüències més altes i amb la d’índexs de vegetació en l’òptic i l’infraroig. El VOD en 

banda L mostra major sensibilitat en la majoria de regions, independentment de 

l’altitud i dels tipus de vegetació. L’ús complementari de VOD a diferents freqüències i 

d’índexs de vegetació en l’òptic-infraroig pot millorar les estimacions de carboni. 

 

 Es proposen mètriques estacionals de VOD per a avaluar el rendiment dels cultius. Els 

resultats en la regió del “US Corn Belt” (nord dels Estats Units) mostren com el VOD 

explica un 78% de la variància del rendiment, i que el VOD és una eina amb potencial 

per a millorar les prediccions en el rendiment dels cultius. 

Els resultats que es presenten en aquesta Tesi Doctoral contribueixen a millorar la capacitat 

de predir els incendis, el decaïment forestal, i el rendiment dels cultius, així com a millorar el 

monitoratge de la densitat de carboni als boscos, utilitzant nova informació a escala global 

provinent de sensors d’observació de la Terra que mesuren en banda L. La contribució de la 

humitat del sòl i del VOD en banda L pot ser una eina molt valuosa per a prevenir la degradació 

d’ecosistemes i les situacions de risc alimentari, i per a millorar les estimacions del contingut 

de carboni a la Terra. 
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Resumen (summary in 

Spanish) 
 

Actualmente, las condiciones ambientales están cambiando y esto amenaza los ecosistemas 

y, más concretamente, la vegetación. Estos cambios están inducidos principalmente por la 

actividad humana, ya sea directa o indirectamente. Son ejemplos de estos cambios el 

calentamiento global causado por el aumento de la concentración atmosférica de los gases de 

efecto invernadero, la deforestación y los cambios en las cubiertas del suelo provocados por la 

expansión de la agricultura, o los cambios en las propiedades de las superficies de la tierra, de 

los océanos y del hielo que alteran el albedo de la superficie del planeta. Además, la frecuencia 

y la intensidad de los riesgos medioambientales como las sequías o los incendios forestales 

pueden aumentar en algunas regiones debido a los cambios en el clima. 

En este contexto, los satélites para la observación de la Tierra son necesarios para estudiar el 

medio ambiente, midiendo la vegetación y los recursos hídricos, así como el carbono 

almacenado en la vegetación. En concreto, los sensores pasivos de microondas permiten 

obtener, de forma regular, mapas globales de la humedad del suelo y de la atenuación de las 

microondas (emitidas por el suelo) cuando atraviesan la cubierta vegetal. Esta atenuación se 

expresa como la profundidad óptica de la vegetación, o VOD por sus siglas en inglés. El VOD 

está relacionado con el contenido de agua de la vegetación, y también con la densidad de 

carbono de la fracción aérea de las plantas. Las microondas de baja frecuencia (banda L) son 

más sensibles para medir las cubiertas vegetales más densas y la humedad del suelo, y en 

cambio las microondas de frecuencias más altas lo son menos (por ejemplo las bandas C o X). 

Las primeras misiones espaciales que llevan radiómetros en banda L a bordo para medir la 

humedad del suelo se han lanzado en los últimos diez años. Son la Soil Moisture and Ocean 

Salinity (SMOS; la misión para el estudio de la humedad del suelo y la salinidad de los océanos 

lanzada por la Agencia Espacial Europea en el año 2009), y la Soil Moisture Active Passive 

(SMAP; la misión para el estudio de la humedad del suelo de forma activa y pasiva, lanzada por 

la NASA, la agencia espacial de los Estados Unidos, en el año 2015). 

El objetivo principal de esta Tesis Doctoral es valorar la aplicabilidad de los datos de 

humedad y VOD en banda L para estudiar la vegetación. La primera parte de esta Tesis aplica 

información de humedad del suelo –complementariamente con otras fuentes de datos- para 

analizar y prevenir impactos de las sequías en la vegetación de la Península Ibérica: 

 Se aplican datos de humedad y temperatura de la superficie del suelo para estudiar el 

estado de los suelos previamente a la ignición de los incendios en la región. Se 

desarrolla un índice de riesgo de incendios para predecir la extensión que los fuegos 
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pueden llegar a tener, bajo determinadas condiciones de humedad y temperatura. Los 

resultados muestran como la humedad explica más de un 30% del área potencial de 

los incendios. 

 

 Se realiza un modelo para explicar el decaimiento forestal en Cataluña después de una 

importante sequía que tuvo lugar en verano de 2012. El decaimiento se estudia en 

función de las especies, la humedad del suelo, y de variables climáticas. El efecto de la 

humedad en el decaimiento de los bosques es coherente con el efecto que muestran 

las otras variables estudiadas, y explica aproximadamente un 5% de la variancia. 

La segunda parte de esta Tesis Doctoral analiza la capacidad para inferir las condiciones de la 

vegetación y la densidad de carbono con dos estudios específicos: 

 Se compara la sensibilidad a la densidad de carbono del VOD de la banda L con la de 

frecuencias más altas y con la de índices de vegetación del óptico y del infrarrojo. El 

VOD en banda L muestra mayor sensibilidad en la mayoría de regiones, 

independientemente de la altitud y del tipo de vegetación. El uso complementario de 

VOD a diferentes frecuencias y de índices de vegetación en el óptico-infrarrojo puede 

mejorar las estimaciones de carbono. 

 

 Se proponen métricas estacionales de VOD para valorar el rendimiento de los cultivos. 

Los resultados en la región del “US Corn Belt” (norte de Estados Unidos) muestran 

como el VOD explica un 78% de la variancia del rendimiento, y que el VOD es una 

herramienta con potencial para mejorar las predicciones en el rendimiento de los 

cultivos. 

Los resultados que se presentan en esta Tesis Doctoral contribuyen a mejorar la capacidad 

de predecir los incendios, el decaimiento forestal, y el rendimiento de los cultivos, así como a 

mejorar el monitoreo de la densidad de carbono en los bosques, utilizando nueva información 

a escala global proveniente de sensores de observación de la Tierra que miden en banda L. La 

humedad del suelo y el VOD en banda L pueden ser herramientas muy valiosas para prevenir la 

degradación de ecosistemas y las situaciones de riesgo alimentario, y para mejorar las 

estimaciones del contenido de carbono en la Tierra. 
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