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Abstract

Multiview data is defined as data for whose samples there exist sev-
eral different data views, i.e. different data matrices obtained through
different experiments, methods or situations. Multiview dimensionality
reduction methods transform a high-dimensional, multiview dataset into
a single, low-dimensional space or projection. Their goal is to provide a
more manageable representation of the original data, either for data visu-
alization or to simplify the following analysis stages. Multiview clustering
methods receive a multiview dataset and propose a single clustering as-
signment of the data samples in the dataset, considering the information
from all the input data views.

The main hypothesis defended in this work is that using multiview
data along with methods able to exploit their information richness pro-
duces better dimensionality reduction and clustering results than simply
using single views or concatenating all views into a single matrix.

Consequently, the objectives of this thesis are to develop and test
multiview pattern recognition methods based on well known single-view
dimensionality reduction and clustering methods. Three multiview pat-
tern recognition methods are presented: multiview t-distributed stochas-
tic neighbourhood embedding (MV-tSNE), multiview multimodal scal-
ing (MV-MDS) and a novel formulation of multiview spectral clustering
(MVSC-CEV). These methods can be applied both to dimensionality
reduction tasks and to clustering tasks.

The MV-tSNE method computes a matrix of probabilities based on
distances between samples for each input view. Then it merges the differ-
ent probability matrices using results from expert opinion pooling theory
to get a common matrix of probabilities, which is then used as reference
to build a low-dimensional projection of the data whose probabilities are
similar.

The MV-MDS method computes the common eigenvectors of all the
normalized distance matrices in order to obtain a single low-dimensional
space that embeds the essential information from all the input spaces,
avoiding redundant information to be included.

The MVSC-CEV method computes the symmetric Laplacian matri-
ces of the similarity matrices of all data views. Then it generates a single,
low-dimensional representation of the input data by computing the com-
mon eigenvectors of the Laplacian matrices, obtaining a projection of the
data that embeds the most relevant information of the input data views,
also avoiding the addition of redundant information.

A thorough set of experiments has been designed and run in order to
compare the proposed methods with their single view counterpart. Also,
the proposed methods have been compared with all the available results
of equivalent methods in the state of the art. Finally, a comparison
between the three proposed methods is presented in order to provide
guidelines on which method to use for a given task.

MVSC-CEV consistently produces better clustering results than other
multiview methods in the state of the art. MV-MDS produces overall
better results than the reference methods in dimensionality reduction
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experiments. MV-tSNE does not excel on any of these tasks. As a con-
sequence, for multiview clustering tasks it is recommended to use MVSC-
CEV, and MV-MDS for multiview dimensionality reduction tasks.

Although several multiview dimensionality reduction or clustering
methods have been proposed in the state of the art, there is no software
implementation available. In order to compensate for this fact and to
provide the community with a potentially useful set of multiview pat-
tern recognition methods, an R software package containg the proposed
methods has been developed and released to the public.

Unesco codes: 120304, 120804, 120110

Resumen

Los datos multivista se definen como aquellos datos para cuyas mues-
tras existen varias vistas de datos distintas, es decir diferentes matrices
de datos obtenidas mediante diferentes experimentos, métodos o situa-
ciones. Los métodos multivista de reducción de la dimensionalidad trans-
forman un conjunto de datos multivista y de alta dimensionalidad en un
único espacio o proyección de baja dimensionalidad. Su objetivo es pro-
ducir una representación más manejable de los datos originales, bien
para su visualización o para simplificar las etapas de análisis subsigu-
ientes. Los métodos de agrupamiento multivista reciben un conjunto de
datos multivista y proponen una única asignación de grupos para sus
muestras, considerando la información de todas las vistas de datos de
entrada.

La principal hipótesis defendida en este trabajo es que el uso de datos
multivista junto con métodos capaces de aprovechar su riqueza informa-
tiva producen mejores resultados en reducción de la dimensionalidad y
agrupamiento frente al uso de vistas únicas o la concatenación de varias
vistas en una única matriz.

Por lo tanto, los objetivos de esta tesis son desarrollar y probar
métodos multivista de reconocimiento de patrones basados en métodos
univista reconocidos. Se presentan tres métodos multivista de reconoci-
miento de patrones: proyección estocástica de vecinos multivista (MV-
tSNE), escalado multidimensional multivista (MV-MDS) y una nueva
formulación de agrupamiento espectral multivista (MVSC-CEV). Estos
métodos pueden aplicarse tanto a tareas de reducción de la dimension-
alidad como de agrupamiento.

MV-tSNE calcula una matriz de probabilidades basada en distancias
entre muestras para cada vista de datos. A continuación combina las
matrices de probabilidad usando resultados de la teoŕıa de combinación
de expertos para obtener una matriz común de probabilidades, que se usa
como referencia para construir una proyección de baja dimensionalidad
de los datos.

MV-MDS calcula los vectores propios comunes de todas las matrices
normalizadas de distancia para obtener un único espacio de baja dimen-
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sionalidad que integre la información esencial de todos los espacios de
entrada, evitando información redundante.

MVSC-CEV calcula las matrices Laplacianas de las matrices de simil-
itud de los datos. A continuación genera una única representación de baja
dimensionalidad calculando los vectores propios comunes de las Lapla-
cianas. Aśı obtiene una proyección de los datos que integra la información
más relevante y evita añadir información redundante.

Se ha diseñado y ejecutado una bateŕıa de experimentos completa
para comparar los métodos propuestos con sus equivalentes univista.
Además los métodos propuestos se han comparado con los resultados
disponibles en la literatura. Finalmente, se presenta una comparación
entre los tres métodos para proporcionar orientaciones sobre el método
más adecuado para cada tarea.

MVSC-CEV produce mejores agrupamientos que los métodos equiv-
alentes en la literatura. MV-MDS produce en general mejores resultados
que los métodos de referencia en experimentos de reducción de la di-
mensionalidad. MV-tSNE no destaca en ninguna de esas tareas. Conse-
cuentemente, para agrupamiento multivista se recomienda usar MVSC-
CEV, y para reducción de la dimensionalidad multivista MV-MDS.

Aunque se han propuesto varios métodos multivista en la literatura,
no existen programas disponibles públicamente. Para remediar este he-
cho y para dotar a la comunidad de un conjunto de métodos potencial-
mente útil, se ha desarrollado un paquete de programas en R y se ha
puesto a disposición del público.

Códigos Unesco: 120304, 120804, 120110
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Chapter 1

Multiview unsupervised
pattern recognition methods

1.1 Introduction

1.1.1 Multiview data

The development of information and communication technologies has led to
ever-increasing data production in most areas of human activity. The differ-
ence is not only quantitative, but it is also qualitative, as today it is relatively
easy to capture different aspects or features from a given entity or experiment.
New pattern recognition methods should be designed, not only to deal with
large amounts of information, in the sense of high number of data samples,
but also with information of heterogeneous nature even in a single dataset.

In the context of this thesis, focused on multiview datasets and methods,
a view of an entity is defined as a set of variables acquired by means of an in-
strument applied to the entity. In this sense, a view can be a picture, an audio
or video recording, the results of a poll, survey or interview, physical variables
of any kind, clinical variables, etc. Therefore, a multiview dataset is a
dataset that comprises data matrices (data views) from different instruments
or experiments on the same entities.

There are some concepts closely related that require a precise specification.
While a view is the most general term in this area, it actually specifies the data
directly acquired from an observation instrument (camera, microphone, x-ray
machine, interviewer, electronic survey, etc.). This is also known as sensory
information. On the other hand, when different characteristics are computed
from a given sensory input (for example, different image descriptors from a
picture), this data is usually defined as feature sets, and consequently the
dataset is qualified as a multifeature dataset. It is possible to have hybrid
datasets, with several sensory inputs (views) and several feature sets extracted
from them.

1
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Finally, in the context of multimedia information management and re-
trieval, it is often used the term multimodal dataset to refer to datasets
that combine data from different media, like video, audio, still image, etc.

The methods presented in this thesis are generical and do not depend on
a specific design or origin of the dataset, as they are conceived to process any
kind of multiview, multifeature, or hybrid datasets. Throughout this thesis,
the methods and the datasets used to test them will be qualified as multiview.

The relevance of multiview datasets is increasing due to the high avail-
ability of data acquisition instruments. However, most pattern recognition
methods are designed to process a single data view. A näıve option is to dis-
card all data views but one; a second option is to concatenate all the input
views into a single data matrix; the third option is to use a proper multi-
view pattern recognition method. Many experiments have shown that the
latter option renders better results [66, 62, 106, 11, 117, 106, 112, 70]. In
other words, using multiview data is a challenge, as it requires new processing
methods, but it is also an opportunity, as the potential results are better. As
a consequence, multiview processing methods have become an important tool
for data processing tasks. This is the goal of this work.

The multiview or multifeature quality is intrinsically heterogeneous, as the
different aspects of the entities or subjects under study can also be heteroge-
neous. Next, examples of multiview datasets are given in order to highlight
this heterogeneity and to illustrate the assortment of multiview dataset designs
and the varied nature of the data views.

1.1.1.1 Image datasets

The University of California at Irvine (UCI) multiple features digits dataset
[9], available at the UCI machine learning repository,1 is a multifeature dataset
created from a set of handwritten numerals (from ’0’ to ’9’), scanned as 15×16
grayscale pixels images. There are 200 samples of each numeral, resulting
in a total of 2,000 samples. The multifeature aspect of this dataset lies in
the different image descriptors that have been applied to the images. More
specifically, this dataset has six feature sets: (1) the pixel averages in 2 × 3
windows, (2) 76 Fourier coefficients of the character shapes, (3) 216 profile
correlations, (4) 64 Karhunen-Love coefficients [99], (5) 47 Zernike moments
[71], and (6) 6 morphological features (not specified). As each image descriptor
captures a different aspect of the images, having multiple views or feature sets
of the data is assumed to contain more information about the data samples.

Strictly speaking, this is a multifeature dataset, as several features have
been extracted or computed from the same sensory input (the digit images).
Figure 1.1 shows an example of the original digits of this dataset.

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Figure 1.1: Example handwritten digits from the ”Multiple features” dataset.

A similar multifeature image dataset is the Animal with attributes (AWA)
dataset[65]2. In this dataset the original data are 30, 475 photographies of ani-
mals, divided in 50 animal classes. As the input images have higher resolution
than in the case of the digits dataset and they are in color, the image descrip-
tors extracted from the pictures are different. However, the overall design of
the dataset is the same: compute a series of image descriptors from the input
images. These descriptors are: (1) 2, 688 color histogram features, (2) 2, 000
self-similarity features, (3) 252 pyramid histogram of oriented gradients fea-
tures (PHOG) [25], (4) 2, 000 scale-invariant feature transform values (SIFT)
[72], (5) 2, 000 colour SIFT values, and (6) 2, 000 speeded-up robust features
(SURF)[6]. Figure 1.2 shows an example of the original images from which
the dataset has been generated.

Another source of multiview datasets are hyperspectral images, where the
same location is photographed using cameras that can capture light wave-
lengths other than those of visible light. A known example of this kind of
datasets is the Hydice dataset 3, with a 191 band hyperspectral image of a
mall in Washington DC. In this case, each band of the image can be considered
a different view of the same entities, and therefore multiview methods can be
useful to process it. Figure 1.3 shows some fragments of this image.

A qualitatively different multiview image dataset are the Columbia object
image libraries (COIL-20 and COIL-100)[83]4, which respectively are collec-
tions of pictures of 20 or 100 objects. The multiview aspect in these datasets
lies in the fact that there are 72 pictures of each object in the collection, taken

2http://attributes.kyb.tuebingen.mpg.de/
3https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
4http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Figure 1.2: Example images from the ”Animal with attributes” dataset. Taken
from [65].

from different angles. Figure 1.4 shows an example of some of these pictures.
No image descriptors are provided in this dataset, but simply the images of
the objects with the backgrounds removed.

A similar dataset is the extended Yale face database B [42]5, that contains
gray level images of 28 human subjects, each with 9 poses and 64 different
lighting conditions. The goal of this dataset is to train face recognition sys-
tems robust to varying situations. Figure 1.5 shows some example images of
one of the subjects in the dataset.

1.1.1.2 Text datasets

There are multiple ways in which a text can be analyzed to extract features
from it. As a consequence, there are several approaches to text multiview
dataset. Some of the most well known among them are described next.

The BBC News multiview text collection [44, 43] 6 comprises 2, 225 news
articles from the BBC news website (years 2004-2005) labelled with one of
five possible topics (business, entertainment, politics, sport or tech). There
are several subsets, but the overall dataset design is to split each news article
in segments (ranging from 2 to 4) and use each of the segments as a different
data view. The features of a segment are the non-stop words it contains. The

5http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
6http://mlg.ucd.ie/datasets/bbc.html
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Figure 1.3: Example fragments from the Hydice dataset. Taken from [69].

complete feature matrix of each view is a matrix of documents× words.

A different approach to build multiview datasets is exemplified by the
Reuters multilingual corpus [3]7, a set of 18,758 news articles labelled in six
categories. In this case the multiview aspect lies in the fact that these articles
are available in five different languages (English, French, German, Italian and
Spanish).

7https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual+

Multiview+Text+Categorization+Test+collection
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Figure 1.4: Example images from the COIL-20 dataset.

Figure 1.5: Example images from one subject in the extended Yale face
database B.
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Figure 1.6: Excerpt from the phenotypic data in the ALL dataset.

The Citeseer dataset [73]8 consists of 3,312 scientific publications from the
Citeseer database [10] labelled with one of six classes according to their subject
area. It features two data views: (1) a binary dictionary of 3,703 words, where
each publication has a 1 if it contains the word or a 0 otherwise, and (2) a
symmetrical citation network, as a matrix of 3, 312 × 3, 312 elements whose
value cij = 1 if document i cites document j or vice versa, or cij = 0 if there
are no references between these documents. In this case, the dictionary view
is defined in feature space while the citation view is defined in graph space.

There exist several datasets with the same structure, as for example the
Cora dataset [79], which contains 2, 708 scientific publications classified into
one of seven classes. This dataset also has two views, one bag of words with
1, 433 words and a reference graph that represents 5, 429 links between docu-
ments.

WebKB [24] has a similar structure, but the source data are the words in
web pages from four universities and their hyperlinks.

1.1.1.3 Biological datasets

Biology, medicine and related areas are also a natural source of multiview
data, as the subjects themselves are of complex nature and there are numer-
ous kinds of tests and instruments that produce different data. Some examples
of these datasets are presented next.

The acute lymphocytic leukemia dataset (ALL) [18] 9 compiles informa-
tion from 128 subjects. One of the views includes 21 phenotypic features (age,
gender, including biological markers and clinical diagnosis). The other view
has the expression level of 12, 625 genes. Figures 1.6 and 1.7 illustrate the two
views of this dataset.

8http://www.cs.umd.edu/~sen/lbc-proj/LBC.html
9http://bioconductor.org/packages/release/data/experiment/html/ALL.html
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Figure 1.7: Partial heatmap of the gene expression data in the ALL dataset.

The Berkeley protein dataset for genomic data fusion [66]10 is a multiview
dataset whose samples are 1, 040 yeast proteins. The proteins are labeled
according to their location, as either membrane proteins, ribosomal proteins,
or other. This dataset comprises 8 data views or feature sets, intended to grant
knowledge on different aspects of the proteins so as to improve the predictive
power of machine learning methods. The 8 views of this dataset are:

• KSW: Smith-Waterman[93] distance kernel on protein sequences.

• KB: BLAST[2] distance kernel on protein sequences.

• KPfam: Pfam database [95] hidden markov model kernel on protein se-
quences.

• KFFT: fast fourier transform of the hydrophobicity profile [64] extracted
from the protein sequences. Useful to recognize membrane proteins.

• KLI: linear kernel on protein interactions.

• KD: diffusion kernel on protein interactions.

• KE: radial basis kernel on gene expression (microarray gene expression
on 441 genes).

• KRND: linear kernel on a matrix of random numbers, used as baseline
to compare the other kernels.

10http://noble.gs.washington.edu/proj/sdp-svm/
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Figure 1.8: Expression profiles of the ribosomal genes. Rows correspond to
the ribosomal genes, and columns to the microarray experiments. Taken from
[66]

.

An important aspect of these data views is that some are defined in feature
space (for example the expression levels) while others are relationships between
proteins and therefore are defined in graph space. Also, as the focus of [66]
is to present different kernel methods, some of the feature sets are different
kernel matrices of the same data (protein sequences or interactions). Strictly
speaking, this is a multiview dataset, as three different views of the proteins
are used (sequences, interactions, expression), and also a multifeature dataset,
as several features are extracted from the original views (the different kernels
applied).

Figure 1.8 shows the expression profiles of the ribosomal genes. Figure 1.9
shows the improvement on classification accuracy of using all the data views
relative to using only one view.

1.1.1.4 Multimodal datasets

Multimodal datasets combine information from different media sources, such
as image and audio, in order to increase the amount of information available
to the learning methods.
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Figure 1.9: Comparison of single-view versus multiview classification. The
first row shows the ROC classification score. The second row shows the per-
centage of true positives at one percent false positives. The third row shows
the relative weights of the kernel matrices for the linear combination used in
the experiments. Taken from [66].

The Wikipedia articles cross-modal dataset [22]11 contains both images
and texts from 2,866 Wikipedia articles, classified into one of ten categories.
This dataset is designed to test cross-modal multimedia retrieval methods,
where information from a single view is deemed insufficient for the task and
the combination of the different views is expected to increase the quality of
the results.

There exist several datasets composed of images and their associated anno-
tation tags. Among the most popular in the literature are: Corel5k [34], that
contains 5, 000 images from a Corel image CD that are manually annotated
with different tags; ESP Game [105], that includes 20, 000 images extracted
from the profiles of the users of an online game, along with user-defined textual
information; and NUS-WIDE [19]12, that contains 269, 648 extracted from the
social network Flickr, along with six image feature sets, and the ground truth
for 81 concepts or tags, where a given image can have more than one concept.
Figure 1.10 shows some example images and their tags from the NUS-WIDE
dataset.

11http://www.cs.umd.edu/~sen/lbc-proj/LBC.html
12http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Figure 1.10: Example figures and tags from NUS-WIDE dataset. Taken from
[17].

1.1.2 Unsupervised pattern recognition methods

”Development of unsupervised pattern recognition methods is the
most challenging and promising area of research today.” Andrew
Ng, NIPS Conference, Dec. 2016

Pattern recognition methods can be classified in two categories: supervised
and unsupervised. Supervised methods require the existence of some kind of
data sample labeling that indicates the class or other relevant property of
each sample. Building labeled datasets is usually expensive, as in most cases
a human expert (or a team of them) is required to generate the labeling. This
limits the number of samples that can be labeled by the availability of human
experts, usually in the thousands of samples. Moreover, labeling a dataset can
be intrinsically difficult or laborious, as in image partition tasks where each
object in the image has to be isolated, for example by drawing its contour, or
in medical diagnosis.

It is important to note that the nature of the labels depends on the task
that has to be solved. For example, on image processing there are numerous
tasks to be performed: image segmentation, identification of a specific object
type, identification of letters or digits, of faces, car models, etc. In each case,
the labeling will be different, even if the image set is the same.

Nowadays, in the era of the big data, it is possible to acquire millions or
even billions of data samples more easily than it has ever been. But in most
cases, this data is not labeled. In general, manually labeling millions of data
samples is unaffordable. Although hybrid methods exist that can use partially
labeled data, known as semi-supervised methods, they are not always suitable.

Unsupervised methods do not require any kind of human annotation on
the data in order to perform their pattern recognition tasks. Two of the most
relevant unsupervised pattern recognition tasks are dimensionality reduction
and data clustering.
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1.1.2.1 Dimensionality reduction

Dimensionality reduction methods, also known as data embedding methods
or data projection methods, have as their goal to transform an input dataset
with high dimensionality (i.e. high number of variables), into a lower dimen-
sionality space, i.e. with fewer variables. This process must keep as much
information as possible from the original dataset. Application of dimension-
ality reduction methods often is one of the first steps in the data analysis
workflow. The dimensionality reduction offers several advantages: it gives
researchers a better understanding of the data, it sometimes improves the
usefulness of the data (removing noise or irrelevant information), and it also
reduces the computational complexity of the next data processing steps.

Some dimensionality reduction methods, also called data projection meth-
ods, are specifically designed to generate a graphical representation of high
dimensional data. Reducing the data to a 2 or 3-dimensional space allows to
graphically display the data, giving researchers an insight into the structure
of the data that may be difficult to attain otherwise.

Among the most relevant dimensionality reduction methods are: principal
components analysis (PCA)[53], multidimensional scaling (MDS) [60, 61, 23],
t-distributed stochastic neighbour embedding (t-SNE) [102, 74, 75, 76], canon-
ical correlation analysis (CCA)[46, 47].

1.1.2.2 Clustering algorithms

The goal of clustering algorithms is to find groups or clusters of samples given
a data set of which no previous information about groups or classes is assumed.
This is one of the first steps when analyzing new data, as it suggests a structure
for initially unstructured data.

Most clustering algorithm have a parameter that controls the granularity
of the clustering, be it the number of clusters to be obtained, the minimum
distance to group two points together, or any other equivalent granularity
controlling parameter. There is no single solution of the clustering of a dataset,
but rather it can be done at different levels of detail or granularity.

There is a wide range of clustering algorithms of which some representa-
tive examples are: K-means[48, 81], hierarchical clustering[52, 82], partition
around medoids (PAM)[59, 31], DBScan [35], spectral clustering[87, 84].

1.2 State of the art: multiview dimensionality
reduction

The goal of multiview dimensionality reduction methods is to reduce a dataset
with multiple, high-dimensional data views {X1, X2, . . . Xv} into a single,
lower-dimensional space or data projection, while keeping the most relevant
properties of the original data.
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In general, dimensionality reduction methods are expected to preserve the
relative distances between the data samples. This is a relatively difficult prob-
lem to solve with a single data view, and it obviously becomes harder to solve
when there are several data views, as the distances between data samples may
vary from view to view and a consensus solution must be found.

When analyzing single-view dimensionality reduction methods, the qual-
ity of the resulting data space with respect to the original data is analyzed
from two points of view. First, the local data structure is evaluated: do
the points in the low-dimensional space have the same neighbours as in the
original, high-dimensional space? A method whose projections satisfy this
condition are said to keep the local data structure. However, this is not the
only desirable property of a dimensionality reduction method, as there is a
second question to be assessed: if points a and b are far from each other in
the input space, are they also far from each other in the output space? This is
also an important feature, and the methods that satisfy it are said to preserve
the global data structure.

These two properties (preservation of local and global data structure) are
also central to multiview dimensionality reduction methods, with the added
difficulty of greater computational complexity and potential conflicts between
views. A nave solution to this problem is to concatenate the input views into
a single feature matrix, but this method does not account for the intrinsic
structure of each data view and therefore does not fully exploit the richness
of the multiview data.

1.2.1 Multiview dimensionality reduction methods

1.2.1.1 Low-rank approximation methods

Laplacian eigenmaps[7], also known as spectral embedding, is a well known
single-view dimensionality reduction method. Multiview spectral embedding
(MSE)[108] is an extension of spectral embedding to multiview datasets. Its
goal is to find a low-dimensional and smooth embedding of the high-dimensional,
multiple input views. More specifically, if the multiview dataset X is com-
posed of V data matrices such that X = {X(v) ∈ Rn×mv}, ∀ 1 ≤ v ≤ V ,
then the resulting low-dimensional representation of X is Y ∈ Rn×d, where d
is a user defined parameter such that d < mv ∀ 1 ≤ v ≤ V . In other words,
the dimensionality of the low-dimensional representation has to be lower than
the dimensionality of any of the input views. MSE comprises three steps:
part optimization, global coordinate alignment, and alternating optimization.
The first stage, part optimization, is based on the patch alignment frame-
work described in [116]. The goal of this stage is to independently obtain
a low-dimensional representation of each view that preserves the locality of
each sample, i.e. the relationship with its closest neighbours. In order to find

the patch of the i-th sample in the v-th view, denoted as X
(v)
i , the following
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objective function has to be minimized

min
Y={Y (v)

i },α

V∑
v=1

αvtr
(
Y

(v)
i L

(v)
i Y

(v)T

i

)
(1.1)

where Y
(v)
i is the low-dimensional representation of X

(v)
i , L

(v)
i is the Laplacian

of X
(v)
i , and αv is a weight value associated to each view that increases with

the relative relevance of view v.

On the second stage, the different low-dimensional representations Y (v)

are aligned by assuming that they can be unified from the global coordinate
matrix Y by means of a selection matrix that encodes the spatial relationship

with the samples in the high dimensional space, such that Y
(v)
j = Y S

(v)
j . In

other words, the low-dimensional representations of each view are consistent
with each other globally. The solution to these transformations is given by
the following objective function

min
Y,α

V∑
v=1

αrvtr
(
Y L(v)

n Y T
)

s.t. Y Y T = I;

V∑
v=1

αv = 1; αv ≥ 0

(1.2)

The third and last stage of MSE is an alternating optimization algorithm
that minimizes the previous objective function in a computationally efficient
way. Matrix Y is the resulting global low-dimensional projection.

The method described in [88] aims at generating a common, low-dimensional
projection of several data views. The goal is to apply this projection with
cross-media document retrieval, looking for the nearest neighbours in the pro-
jection space, saving time and memory. Their premise is to make two samples
appear close to each other in the projection if and only if they are close in all
the input views. In order to obtain the common projection, a projection func-
tion is defined for each data view such that (two view case, such as described
in the paper; it can be extended to more views):

g1 : Rd1 → RD and g2 : Rd2 → RD (1.3)

where di is the dimensionality of view i and D is the dimensionality of the
desired common projection; in general it is assumed D � max(d1, d2). A
linear parametrization of the above functions is assumed, such that gw1 :=
〈w1, φ(xi)〉 and gw2 := 〈w2, ψ(yi)〉. Functions g1 and g2 are determined by
optimizing the following objective function
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L(w1, w2,X ,Y,S) :=
m∑

i,j=1

Li,j(w1, w2, xi, yj ,Sxi) + ηΩ(w1) + γΩ(w2)
(1.4)

where the loss function L is defined as follows

Li,j(w1, w2, xi, yj ,Sxi) =

Iyj∈Sxi
2

× Li,j1 +
1− Iyj∈Sxi

2
× Li,j2

(1.5)

with

Li,j1 = ‖gw1
1 (xi)− gw2

2 (yj)‖2F (1.6)

Li,j2 (βd) =


−1

2β
2
d + aλ2

2 , if 0 ≤ |βd| < λ

|βd|2−2aλ|βd|+a2λ2
2(a−1) , if λ ≤ |βd| ≤ aλ

0, if |βd| ≥ aλ

(1.7)

where a and λ are heuristically chosen constants. This optimization problem
is further decomposed in two lesser problems and resolver iteratively. The
resulting projection functions g1 and g2 can then be used to generated the
desired common projection.

The convex multi-view subspace learning method (MSL) [107] aims at
learning a subspace representation of a multiview dataset while assuming and
enforcing conditional independence between the different views. A convex
regularizer that finds the subspace is proposed. This method is also designed
to achieve the best possible reconstruction of the original data from the low-
dimensional representation. Summarizing the method, it applies an optimiza-
tion algorithm to the objective function

min
K∈convG

f(K), f(K) = ‖Ẑ −K‖2F (1.8)

where K is the desired low-dimensional representation, convG is the convex
hull of the set of possible subspaces for the input views, Ẑ = CH is the prod-
uct of the concatenated feature matrix C and its common 2, 1-norm H. Figure
1.11 compares the quality of an image reconstructed using MSL with respect
to the same image reconstructed using two alternative methods: local mul-
tiview subspace learning (LSL) [88] and single-view subspace learning (SSL)
[13].
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Figure 1.11: Reconstructed image comparison between different dimensional-
ity reduction methods. Taken from [107].

The ensemble manifold regularized sparse low-rank approximation (EMR-
SLRA) algorithm [114] uses the framework of least-squares component analysis
[27] to obtain a low-rank approximation of the concatenated multiview feature
matrix. This algorithm comprises three steps: first it computes the low-rank
approximation of the multiview matrix, second it regularizes the ensemble
manifold, and finally it determines and applies a group sparsity constraint.
Let X = {X1, X2, . . . XV } be the concatenated feature matrix. The low-rank
approximation Y of X is given by the following expression

min
U,Y
‖X − UY ‖2

s.t. UTU = I
(1.9)

On the second step, the low-rank approximation Y obtained has to be
regularized, as from its definition all the features in X have been processed
uniformly, and the intrinsic structure of each of the input views has not been
considered. EMR-SLRA uses ensemble manifold regularization [41] and heat
kernels [7] to find a vector of view coefficients β = {β1, β2, . . . , βV }, so that
input view Xi is multiplied by that factor in order to account for their different
relevance. The expression to find β is
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min
Y,β

V∑
v=1

(βv)
rtr(Y L(v)Y T )

s.t.

V∑
v=1

βi = 1, βv > 0

(1.10)

where L(i) is the Laplacian matrix of input view Xi and r is a user defined
parameter. Finally, a group sparsity constraint is introduced in order to min-
imize the potential noise introduced in Y from X. To minimize the effects of
that noise, an ideal multiview feature matrix X̂ is obtained by applying the
`2,1-norm fitting constraint [85], as it is robust against noise in the data [109].
The expression to compute X̂ is

min
X̂
‖X̂ −X‖2,1 (1.11)

The `2,1-norm regularized is defined as:

‖X‖2,1 =
∑
i

√∑
j

X2
ij =

∑
i

‖xi,:‖2 (1.12)

Replacing X by X̂ in Equation 1.9 along a number of iterations produces
a low-rank projection matrix Y that is more robust to the noise in the input
views.

Multitask multiview feature embedding (MMFE) [115] generates a low-
rank approximation matrix to the multiview data. The overall structure of
the method is similar to that of EMR-SLRA [114], although the integration of
the multiview data is now based on multitask learning methods [14, 36, 86, 33].
More specifically, each input data view is considered a different learning task.
The objective function used to find the integrated low-rank representation Y
is

min
U,U(v),Y,Y (v)

‖X − UY ‖2 +

V∑
v=1

‖X(v) − U (v)Y (v)‖2

+ α

V∑
v=1

‖Y − Y (v)‖2

s.t. UTU = I, U (v)TU (v) = I

(1.13)

where {X1, X2, . . . XV } are the input views, X is the concatenated feature
matrix, Y (v) is the low-rank representation of X(v), Y is the low-rank repre-
sentation of X, U (v) and U are the projection of the data points into the cor-
responding low-rank space, and α is a regularization user defined parameter.



18
CHAPTER 1. MULTIVIEW UNSUPERVISED PATTERN

RECOGNITION METHODS

The resulting low-rank matrix Y is the desired low-dimensional representation
of the original data.

1.2.1.2 Probabilistic methods

The multiview stochastic neighbor embedding method (m-SNE) [110] is a
multiview method based on stochastic neighbor embedding (SNE) [49] and
t-distributed SNE (t-SNE) [102, 74]. t-SNE computes a symmetric joint prob-
ability distribution from the pairwise distances of the data samples. The con-
ditional probability between points xi and xj in the input high-dimensional
space is

pj|i =
exp(−‖xi − xj‖2/2σ2)∑

k 6=l
exp(−‖xk − xl‖2/2σ2)

(1.14)

where σ is an hyperparameter of the method. The symmetric joint probability

distribution, designed to avoid the effect of outlier points, is pij =
pj|i+pi|j

2n ,
where n is the number of data samples. m-SNE generates one symmetric joint
probability matrix for each input view and combines them using the next
formula

pij =

V∑
v=1

α(v)p
(v)
ij (1.15)

where α(v) is a coefficient associated with each view and p
(v)
ij is the joint prob-

ability matrix of view v. This produces a single joint probability matrix that
is used as input for the standard t-SNE method.

1.2.1.3 Kernel-based methods

The kernelized multiview projection (KMP) [91] is a kernel method to reduce
a multiview dataset of human actions, where each frame of a video capture of
a subject performing an action is a view of the dataset. The approach of this
method is to use a kernel that reduces the multiple, high-dimensional input
views (video frames) to a single, low-dimensional space. Another requisite
of this method is that it should be computationally efficient. The method
comprises three steps. First, it applies an image filter called incremental nave
Bayes filter (INBF) to remove the noise in the frames and try to keep only
the information relevant to the task. This step is specific to the human action
recognition problem. Second, it computes a kernel matrix for each input view
using dynamic time warping (DTW)[8] using the following kernel function
between videos vp and vq in view i:
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ki(vp, vq) = exp
(
−

DTW(Xi
p, X

i
q)

2

2σ2

)
(1.16)

this produces a set of kernel matrices K1,K2, . . . ,KM , where M is the number
of views. After computing the Laplacian of these kernel matrices, L1, L2, . . . , LM ,
an iterative procedure is applied to compute the fused kernel matrix K =∑M

i=1 αIKi and the fused Laplacian matrix L =
∑M

i=1 αILi. The coefficients
initially are αi = 1

M 1 ≤ i ≤ M , but are iteratively adjusted by solving the
generalized eigenvalue problem

KLKp = λKDKp (1.17)

where D is the diagonal matrix of Kp. This process is repeated until Kp and
αi become stable; the final common projection P is derived from the stable
value of Kp.

1.2.1.4 Co-training methods

The method presented in [111] is specifically designed to improve image tag-
ging and classification. It assumes a two-view dataset, with images as one
view and annotation tags as the other. From the image view, several feature
sets can be extracted using different image descriptors. The main strategy of
this method is to have the information on each view guide the information
extraction from the other view, in order to obtain an improved set of image
tags. In the end, an improved common subspace Z is obtained, on which the
image tags are predicted. First, the geometric structure of the different views
is modeled by a corresponding k-nearest neighbour graph {W v}Vv=1, where
V is the number of image feature views. WS = T TT is used to model the
semantic structure of the images, where T is the matrix of image tags. The
common subspace Z is obtained by optimization of the following expression

min
Z
f(Z), s.t. ZTZ = I (1.18)

where f(Z) is defined as

f(Z) =
1

γ
log
{ V∑
v=1

exp[γ‖Z − (W h �WS)‖2F ]
}

+ η‖T − ZZTT‖2F (1.19)

where � is the Hadamard product [39] and ‖A‖F is the Frobenius norm of
matrix A. The common subspace Z is then used to train a classifier to decide
on the presence or absence of each possible image tag in the dataset.
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1.3 State of the art: multiview clustering

In general terms, clustering a dataset with multiple data views {V1, V2, . . . Vc}
involves the following steps:

1. Obtain a similarity matrix Si for each view Vi.

2. Compute a projection Pi of each Si into a space suitable for clustering.

3. Produce a clustering assignment.

The main structural difference between the multiview clustering methods
proposed in the literature lies in the step where the information from the
multiple views is collapsed into a single view in order to produce the final
clustering assignment.

The first category of multiview clustering methods merges the similarity
matrices to obtain a combined similarity matrix S′ that minimizes the differ-
ences between the input similarity matrices Si, i.e. views are merged in Step
1. Afterwards, a standard clustering algorithm is applied to S′ in order to
obtain the final clustering.

The second category of multiview clustering methods merge the input
views during Step 2 to generate a compatible projection for all views (P ′).
Afterwards, a standard clustering method is applied to the merged projection
P ′.

Ensemble clustering methods are designed to overcome the randomness
of clustering methods such as K-means by combining clustering assignments
from several runs in order to find a stable assignment. Although not strictly
considered as multiview clustering methods, they can be used for multiview
clustering if they are applied to the clustering assignments of different views.
Thus, they would produce a clustering assignment compatible with all views.
These methods merge the information from the different views after Step 3.

There exist several multiview clustering methods in the literature that
are described next, classified according to the step where they merge the
information in order to produce the final clustering assignment.

1.3.1 View merging methods

The first category of multiview clustering methods merge all the input views
into a single similarity matrix S′, then apply a standard clustering algorithm
to it.

The method described in [29] is designed to merge exactly two input views
by minimizing the disagreement between them, applying the Minimizing-
disagreement algorithm [28]. This method generates a weighted graph where
each data sample is a node and the edges between nodes i and j are weighted
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using a Gaussian function. The input value to the Gaussian function, i.e. the
similarity value, is high if nodes i and j are relatively close at least in one of
the input views. More specifically, the similarity between data points i and j
in the weighted graph is given by the expression

wij =
∑
k

exp(−
‖x(1)

i − x
(1)
k ‖

2

2σ2
1

) exp(−
‖x(2)

i − x
(2)
k ‖

2

2σ2
2

) (1.20)

where x
(v)
k is the vector of coordinates of data sample k in view v, and σ1 and

σ2 are two user defined parameters that control the radius of the Gaussian on
each of the input views. This gives as a result a combined adjacency matrix
A12. Then, a variant of spectral clustering [84] is applied to A12.

A co-training approach is proposed in [62] for multiview spectral clustering.
Co-training is a technique developed for semi-supervised methods, where the
method is first trained on labeled data, then run on unlabeled data in order to
suggest a possible label. In the co-training for multiview spectral clustering,
the co-training is trained first with the clustering assignment of one of the
input data views. The assumption of the method is that if points a and b
belong to the same cluster in a view Vi, then they should belong to the same
cluster in the remaining views; complementarily, if a and b do not belong to
the same cluster in a view Vj then they should not belong to the same cluster
in the other views. This method is designed to work on two data views V1 and
V2. First, standard spectral clustering is run on V1. The clustering assignment
obtained is used to adjust the geometry of the adjacency graph of V2. In
parallel, the same process is performed on the opposite views. This process
is repeated for a user-defined number of iterations, with the goal of obtaining
two adjacency matrices as similar as possible. Let S1 be the adjacency matrix
of input view V1; the update of S1 on iteration i, denoted by Si1, is given by

Si1 = sym
(
U i−1

2 U i−1T

2 Si−1
1

)
(1.21)

where the symmetrization operator sym(S) = (S + ST )/2, and U i−1
2 are the

eigenvectors of S2 computed on iteration i − 1. The expression to compute
Si2 is equivalent. This way, both adjacency matrices tend to converge on a
common adjacency matrix S′ on which standard spectral clustering is applied
in order to obtain the final clustering assignment.

The method proposed in [106] is both a multiview clustering method and
a multiview feature learning method. Its goal is to assign a weight to each
feature of each input view in order to induce a structured sparsity on the data
samples that reflects the underlying clustering structure. This method uses
the group `1-norm regularization [113] to learn the effect of each data view
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on each cluster, and the `2,1-norm regularization to learn the effect of each
data view on multiple clusters. This way, the task becomes an optimization
problem whose objective function is

min
W,FTF=I

‖XTW + 1nb
T − F‖2F + γ1‖W‖G1 + γ2‖W‖2,1 (1.22)

where W is a vector of feature weights, X is a data matrix with all the features
of all the input data matrices, 1n is a vector of n ones, b is an intercept vector
and γ1 and γ2 are user-defined parameters. The result of this optimization pro-
cedure is a vector of weights to be applied to the input features. Afterwards, a
standard clustering method can be applied on this modified matrix of features.

The method proposed in [112] comprises two steps. First, it uses the
prior information in all data views to generate a sparse representation for
each view of the data samples. More specifically, two constraints labelled
”must-link” and ”cannot-link” are defined to control the way each sample is
related to each other. The objective function designed to compute these sparse
representations is

min
Zv
i

‖xvi−Xv
−iZ

v
i ‖2 + α‖Zvi ‖1 + β

∑
w 6=v
‖Zwi Zvi ‖1

s.t. diag(Zv) = 0

(1.23)

where Xv is the v-th data view, a negative subindex means all rows in the
matrix except the one in the subindex, and α and β are parameters of the
method. The result of this optimization is the sparse representation Zv of
each input view Xv, with Z ∈ Rn×n, where n is the number of samples in the
dataset. Then, a unique affinity matrix is constructed using any of the Zv ma-
trices or their average (sic) according to the expression A = 1

2

(
|Zv|T + |Zv|

)
.

Standard spectral clustering is applied to A in order to find the clustering of
the input data.

1.3.2 Intermediate merging methods

An implementation of this approach using Canonical Correlation Analysis in
order to maximize the correlation of samples across the projected views can
be found in [16].

Co-regularized multiview spectral clustering [63] is a method that also
combines the adjacency matrices of the input views in order to produce a
single adjacency matrix on which to apply standard spectral clustering. This
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proposal is based on the semi-supervised technique of co-regularization [80],
where the clustering assignments from the different views are expected to be
equal. This produces an optimization problem whose objective function is

max
U(1),U(2),...,U(M)

M∑
v=1

tr
(
U (v)TL(v)U (v)

)
+

λ
∑

1≤v,w≤M,v 6=w
tr
(
U (v)U (v)TU (w)U (w)T

) (1.24)

where M is the number of input views, U (i) is the matrix of eigenvectors of
the input view Vi, and L(i) is the Laplacian matrix of the input view Vi. Stan-
dard spectral clustering is applied to the co-regularized matrix of eigenvectors.
This method can be applied to any number of input views.

A partial multiview clustering method is described in [70], by partial mean-
ing that it is able to process datasets with incomplete views. This method is
analyzed for two view datasets but it can also be applied to a larger number
of input views. For this case, the partial multiview dataset is split in three
subsets, X = {X̂(1,2), X̂(1), X̂(2)}, where X̂(1,2) contains the samples that ap-
pear in both input views, X̂(1) contains the samples that only appear on the
first input view, and X̂(2) contains the samples that appear only in the second
input view. The main idea behind this method is to try to learn a common
latent subspace for the two views. Applying non-negative matrix factorization
(NMF) [67], a basis matrix for each view’s latent space can be learnt, denoted
as U (1) and U (2). The representation of the data samples in these latent sub-
spaces are two matrices, respectively P (1) and P (1). In order to determine
U (1), U (2), P (1) and P (2), an iterative algorithm is proposed, where the goal
is to find a common data sample representation Pc. The first step of the al-
gorithm is to find an estimate of U (1) and U (2) applying NMF, as described
by the following objective function

min
U(1),U(2),Pc

‖X̂(1) − PcU (1)‖2F + ‖X̂(2) − PcU (2)‖2F + λ‖Pc‖1 (1.25)

where λ is a user defined parameter. This minimization stage produces the
initial values for U (1), U (2) and Pc. Afterwards, an iterative adjustment of
either {U (1), U (2)} or {P (1), P (2), Pc} is performed until all three sample rep-
resentations match, i.e. P (1) = P (2) = Pc. On each iteration, the first step
is to adjust P (1), P (2) and Pc by fixing U (1) and U (2) and optimizing the
following objective functions

min
P (1)≥0

‖X̂(1) − P (1)U (1)‖2F + λ‖P (1)‖1 (1.26)
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min
P (2)≥0

‖X̂(2) − P (2)U (2)‖2F + λ‖P (2)‖1 (1.27)

min
Pc≥0

‖X̂(1) − PcU (1)‖2F + ‖X̂(2) − PcU (2)‖2F + λ‖Pc‖1 (1.28)

afterwards, P (1), P (2) and Pc are fixed in order to adjust U (1) and U (2) by
optimizing the following objective functions

min
U(1)≥0

‖X̂(1) − P (1)U (1)‖2F (1.29)

min
U(2)≥0

‖X̂(2) − P (2)U (2)‖2F (1.30)

This iterative process is repeated until the aforementioned condition P (1) =
P (2) = Pc is met. The common and complete representation of the data sam-
ples Pc is then passed to a standard clustering method in order to obtain the
clustering assignment.

Large scale multiview spectral clustering via bipartite graph [70] is a pro-
posed method focused on processing large datasets and allowing out of sam-
ple operation, which standard spectral clustering does not allow. This method
works as follows. First, a set of m salient points U is selected from the dataset
using K-means on the concatenated features from all the input views. These
points are supposed to capture the structure of the manifold while requiring
much less data to represent it. Then, a bipartite graph is generated between
the complete set of data points and the points in U . This graph is constructed
as a k-NN graph between the original data points X and the salient points U .
The weight of each edge of such graph is given by the expression

wij =
K(xi, uj)∑

k∈Φi

K(xi, uk)
(1.31)

where xi ∈ X are the original data points, uj ∈ U are the salient points,
K is a kernel function (the Gaussian kernel in the experiments described in
the paper), and Φi are the indices of the s-nearest neighbours of points xi in
U . s is a user defined parameter. The result is a weight matrix W . Then, the
first n eigenvectors of the Laplacian matrix of W are computed and K-means
is applied to the matrix of eigenvectors in order to obtain the final clustering
assignment with n clusters.

1.3.3 Ensemble clustering methods

Ensemble clustering methods independently run a standard, single view clus-
tering algorithm on each of the input data views, and then merge the resulting
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clustering assignments. In other words, they merge the multiview information
in the last step of the clustering process. A survey of ensemble clustering
methods can be found in [104].

A multiview K-means algorithm is proposed in [11], where the `2-norm is
replaced by the `2,1-norm in order to avoid the influence of the outliers in the
performance of the K-means algorithm. The K-means problem is reformulated
into the following expression

min
F (v),G,α(v)

M∑
v=1

(α(v))γ‖X(v)T −GF (v)T ‖2,1 (1.32)

where M is the number of input feature matrices, X(v) are each of the input
feature matrices, α(v) is a weight coefficient associated to the v-th matrix,
F (v) is the matrix of centroids of the v-th matrix and G is the clustering as-
signment vector. Therefore, this algorithm requires solving an optimization
problem that requires finding the optimal values for α(v), G and F (v). More-
over, parameter γ has to be chosen by the user in order to tune the behaviour
of the algorithm.

1.3.4 Other multiview clustering methods

The method presented in [117] does not fall into the categories presented
above, as it iterates over the different multiview clustering phases (views,
projection, clustering) in order to achieve its goal. This method can only
process two-view datasets. The cotraining framework for multiview clustering
(CoKmLDA) algorithm is detailed in Algorithm 1.

The multi-feature spectral clustering with minimax optimization method
[106] tries to find a common feature embedding that unifies the different in-
put features while minimizing the disagreement cases among them. This is
performed in four steps. First, the normalized Laplacian matrix and stan-
dard spectral clustering is computed for each input view, obtaining a possibly
different clustering assignment per view V ∈ RN×K , where N is the number
of samples and K the number of input views. Second, the regularized data-
cluster similarity is computed as PV (U) = UUTV , where U are the K first
eigenvectors of the normalized Laplacian matrix of each input view as com-
puted in the first step. On the third step, an agreement among the different
PV matrices is searched. Deriving from the previous definitions,the normalized
Laplacian matrix of a specific view i with respect to view j is

Lij = I − sym(UiU
T
i UjU

T
j ) (1.33)
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Algorithm 1 . Cotraining framework for multiview clustering

Input: dataset X = {x1, x2},
expected number of clusters: K,

Output: clustering assignment vectors (one for each input view)

function CoKmLDA(X ,K)

Perform K-means on each view to obtain cluster assignments H(v)

For each view v, identify the data samples closest to each of the K cluster

centroids, obtaining S(v) = s
(v)
1 , s

(v)
2 , . . . , s

(v)
K

for t← 1 to numIters do

for v ← 1 to 2 do

Use X(v) and H(3−v) to train LDA; project the samples on LDA

space

Use S(v) to perform K-means on the projected samples to esti-

mate new cluster assignments H(v)

Update S(v)

end for

end for

end function

where sym(A) = (A+ AT )/2. Then the pairwise disagreement costs between
samples i and j are defined as

Qij = tr(V TLijV ) (1.34)

The objective function to find the optimal Qij is

min
{Um}Mm=1

max
{αij}Mj≥i

M∑
j=i

M∑
i=1

αγijQij

subject to αij ∈ R+,

M∑
j=i

M∑
i=1

αij = 1,

Um ∈ RN×K , UTmUm = I,

V ∈ RN×K , V TV = I

(1.35)

where γ is a user-defined parameter. The fourth and final step of the method
is an iterative algorithm to optimize the previous objective function and find
an optimal low-dimensional representation of all views V . Finally, k-means is
executed on V to obtain the final clustering assignment.
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1.4 Open issues in multiview unsupervised pattern
recognition methods

There exist a series of open issues regarding the application of unsupervised
pattern recognition methods to multiview data. These issues condition the
methods designed in this thesis, as well as the experiments performed therein.
The most relevant of these open issues are:

• There is no formal framework that demonstrates the advantages of using
multiview datasets and methods in front of using single-view datasets
and methods. The experimental comparisons in the state of the art are
not complete and general enough.

• There are no evaluation metrics specifically designed to evaluate the
performance of multiview pattern recognition methods. Moreover, there
is not even a consensus on which evaluation metric to use to evaluate
dimensionality reduction experiments.

• There are no clear criteria to decide, given a multiview dataset, which
views to use and which to exclude in order to achieve better results.
This would be an equivalent step to variable selection techniques, but
applied on a per-view basis.

1.5 Thesis objectives

The general objective of the present thesis is to develop a set of unsupervised
pattern recognition methods that can be applied to any multiview dataset,
and to study if these methods involve a meaningful improvement over existing
single-view methods. More specifically,

• To develop a multiview extension to the t-SNE dimensionality reduction
method so that it can be applied to multiview datasets.

• To develop a multiview extension to the MDS dimensionality reduction
method so that it can be applied to multiview datasets.

• To develop a multiview extension to the spectral clustering and Lapla-
cian eigenmaps methods (which are very closely related) so that they
can be applied to multiview datasets.

• To design and execute a set of experiments to properly test the proposed
multiview methods, including the selection of the proper datasets, eval-
uation metrics, baseline reference methods and comparable methods in
the state of the art.
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• To analyze the performance of the proposed multiview methods with
respect to single-view equivalent methods, in order to determine the
potential advantages of the multiview approaches.

• To analyze the performance of the proposed multiview methods with
respect to equivalent multiview methods in the state of the art, in order
to assess its usefulness for the community.

• To compare the performance of the three proposed methods, in order to
provide some guidelines for deciding which method is more suitable for
a given pattern recognition problem.

• To generate a software package that makes the proposed methods readily
available to the community using a widespread software environment.

1.6 Structure of this thesis

This thesis is organized into eight chapters plus three appendices. Although
three novel methods are proposed in this thesis, the experimental setup is the
same for all of them. Therefore, Chapter 2 explains the design and setup of
the experiments that will be applied to all the methods.

Chapter 3 describes the first proposed method, a multiview extension of
the t-SNE dimensionality reduction method, along with the results of this
method on the experiments and a discussion of these results.

Chapter 4 describes the second proposed method, a multiview extension
of the MDS dimensionality reduction method, along with the results of this
method on the experiments and a discussion of these results.

Chapter 5 describes the third proposed method, a multiview extension of
both spectral clustering and Laplacian eigenmaps, along with the results of
this method on the experiments and a discussion of these results.

After describing and analyzing the three proposed methods individually,
Chapter 6 presents a comparison between all three methods and a discussion
of these results.

The software package created to release the three proposed methods to the
community is described in Chapter 7.

The overall conclusions of the present thesis are presented in Chapter 8.
Finally, the three appendices contain the tables with the detailed results

of the different experiments performed throughout the thesis. As the number
of tables is considerable, they are presented in the appendices to keep the
corresponding chapters in a manageable size, clear and straightforward.



Chapter 2

Experimental setup

2.1 Motivation

In the present thesis three methods are presented. All three methods per-
form dimensionality reduction of multiview data into a single, low-dimensional
space, therefore condensing a considerable amount of information into a much
lower number of dimensions.

The fact that all three methods perform the same tasks makes it convenient
to run the same experiments on all of them. Moreover this will allow to make
a final comparison among all three methods, as presented in Chapter 6. These
are the reasons why the design of the experiments is presented first.

2.1.1 Description of the experiments

The methods presented in this thesis are, in essence, dimensionality reduction
methods of multiview data. Therefore, some of the experiments presented are
dimensionality reduction experiments on multiview datasets. However, the
unique, low-dimensional data representation that is produced by the methods
is also convenient for the clustering of the original data samples. As a con-
sequence, clustering experiments have also been made in order to assess the
validity of the methods in the multiview clustering problem.

The experiments presented in this thesis are divided in two categories.
The first category are the baseline experiments, where the proposed mul-
tiview methods are compared with the respective single-view versions of the
algorithms. More specifically, the single-view algorithms are applied to all the
input views of each dataset independently, plus to the concatenation of all the
input view matrices (referred as the stacked configuration). The goal of these
baseline experiments is to analyze if the multiview methods proposed involve
an improvement over their single-view counterparts, therefore justifying the
use of multiview data and methods. The design of these baseline experiments
is thoroughly described in Section 2.4.

29
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The second category of experiments are the state of the art experi-
ments, where the proposed multiview methods are compared with equivalent
multiview methods in the state of the art. The goal of these experiments is
to assess if the proposed multiview methods are an improvement over other
multiview methods in the state of the art. The design of these state of the art
experiments is described in Section 2.5.

2.1.2 Structure of this chapter

The remainder of this chapter includes the following contents. First, a descrip-
tion of the multiview datasets used in the experiments. Second, the evaluation
metrics used to assess the quality of the different results are presented. Third,
the detailed design of the baseline experiments and their goals is given. Fi-
nally, the design of the state of the art experiments is presented.

2.2 Dataset description

The multiview datasets used in the experiments belong to three categories:
text documents, image and biological. However, each of the datasets on each
category have different features that make them convenient to test different
aspects of the performance of the algorithms.

The criteria used to select these datasets have been the following. First,
they are multiview datasets, i.e. they are published with multiple views or
feature matrices, thus allowing anyone interested in reproducing the present
experiments to use exactly the same data. Second, they are provided to the
community by a recognized institution and research team and are backed by
peer-reviewed publications. Finally, they are used by other methods in the
state of the art so the results can be compared

2.2.1 Text datasets

Obtaining multiple views from text documents can be accomplished in several
ways, and the datasets used in the experiments reflect a different multiview
approach. Their quantitative details are given in table 2.1.

First, the BBC News multiview text collection [44, 43] 1. It comprises 2,225
news articles labelled with one of five possible topics (business, entertainment,
politics, sport or tech). The input texts are split into several segments. The
term frequencies on each segment become the different input views. There
are several subsets in the original data set. The two-segment subset has been
chosen to allow direct comparison with the results in the literature. The
number of terms in each view, i.e. the number of attributes, is 6,838 and
6,790 respectively, although only the 500 most frequent terms on each segment

1http://mlg.ucd.ie/datasets/bbc.html
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BBC Reuters Cora

View 1 Seg. A (500/6,838) English (500/21,531) Bag of words (1,433)
View 2 Seg. B (500/6,790) French (500/24,892) References (2,708)
View 3 — German (500/34,251) —
View 4 — Italian (500/15506) —
View 5 — Spanish (500/11547) —

No. of samples 2,112 18,758 2,708
No. of samples used 2112 6000 2,708
No. of classes 5 6 7

Feature name (used variables/number of variables in the feature matrix). A single number

means that all available variables have been used.

Table 2.1: Summary of the text multiview datasets

are used as the less frequent terms do not contribute to the quality of text
classification [51]. The tf.idf (term frequency / inverse document frequency)
[78] is computed on each of the input segments, and the cosine similarity
is used instead of the euclidean distance because of the high sparsity of the
feature matrices.

The second text dataset is the Reuters multilingual corpus [3]2, a set of
18,758 news articles available in five different languages (English, French, Ger-
man, Italian and Spanish). The subset of original English news articles has
been used; the term matrices of the remaining languages come from machine-
translated texts. The texts belong to one out of six news categories. For
each input view (language), a matrix with term frequencies is given. As with
the BBC news dataset, only the 500 most frequent terms of each language
have been used. Their tf.idf value has been computed and finally the cosine
similarity has been employed to find the similarity matrices.

The third text dataset used in the experiments is the Cora dataset [79]3,
which contains 2, 708 scientific publications classified into one of seven classes.
This dataset has two views. The first one is a bag of words with 1, 433 words.
The second view is a reference graph that represents 5, 429 links between the
documents.

2.2.2 Image datasets

Although the number of image datasets used in the literature is huge, few
of them are specifically multiview or multifeature in the sense of providing
different sets of features for each image; often these datasets simply contain
raw images. The two multiview image datasets selected, on the contrary, pro-

2https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual+

Multiview+Text+Categorization+Test+collection
3https://linqs.soe.ucsc.edu/
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Table 2.2: Summary of the image datasets

Digits AWA

View 1 Pixels (240) CQ (2,688)
View 2 Fourier coeffs. (76) LSS (2,000)
View 3 Profile correl. (216) PHOG (252)
View 4 Zernike coeffs. (47) SIFT (2,000)
View 5 Karhunen moments (64) RGSIFT (2,000)
View 6 Morph. feats. (6) SURF (2,000)

No. of samples 2,000 30,475
No. of samples used 2,112 4,000
No. of classes 10 50

Feature name (number of variables in the feature matrix).

vide different image features. The main difference between these two datasets
stems from the original images: the first dataset (Digits), derives from hand-
written numerals in grayscale tonalities, while the second dataset (Animal with
attributes, or AWA) contains features extracted from real-world, color pho-
tographs. As a consequence, the specific feature types extracted and their val-
ues greatly differ from one dataset to the other. The details of these datasets
are given in table 2.2.

The University of California at Irvine (UCI) multiple features digits dataset
[9], available at the UCI machine learning repository,4 is created from a set
of handwritten numerals (from ’0’ to ’9’), scanned as 15× 16 grayscale pixels
images. There are 200 samples of each numeral, resulting in a total of 2,000
samples. The data set provides six different views or feature sets of the original
image data: (1) the pixel averages in 2×3 windows, (2) 76 Fourier coefficients
of the character shapes, (3) 216 profile correlations, (4) 64 Karhunen-Love co-
efficients [99], (5) 47 Zernike moments [71], and (6) 6 morphological features
(not specified).

The other image dataset used in the experiments is the Animal with at-
tributes data set (AWA)[65], 5 which is a multiple feature data set with six
standard image features extracted from animal photographs. This dataset in-
cludes photographs from 50 different animal species, which become the classes
of the data samples. Due to the high number of classes, it is particularly hard
to achieve high evaluation scores with this dataset in its original configuration.

4https://archive.ics.uci.edu/ml/datasets/Multiple+Features
5http://attributes.kyb.tuebingen.mpg.de/
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Table 2.3: Summary of the biological dataset

Protein

View 1 Hydrophobicity FFT (fft) (1, 040)
View 2 Gene expression (expr) (1, 040)
View 3 Pfam hidden Markov model (pfam) (1, 040)

No. of samples 1, 040
No. of classes 3

Feature name (number of variables in the feature matrix).

2.2.3 Biological dataset

The Berkeley protein dataset [66] 6 is a multiview dataset of 1, 040 yeast
proteins. These proteins are labeled by their location, as either membrane
proteins, ribosomal proteins, or other. This dataset comprises 8 data views
or feature sets. In order to reproduce the experiments in the literature, only
three feature sets have been used: the hydrophobicity fast Fourier transform
(fft), the gene expression (expr) and the expectation values derived from hid-
den Markov models in the Pfam database [95] (pfam). All these feature sets
are expressed as relationships between proteins, therefore they are similarity
matrices of 1, 040 × 1, 040 values. Table 2.3 presents the details of the views
used in the experiments.

2.3 Evaluation of the experiments

As stated above, the methods presented in this thesis will be used as both
multiview dimensionality reduction methods and multiview clustering meth-
ods. This implies that the evaluation of the experiments has to use quality
metrics suited to each of these two tasks. In order to increase the coverage of
the evaluation tests, supervised and unsupervised metrics have also been used.
The set of evaluation metrics used in the experiments are described next.

2.3.1 Dimensionality reduction metrics

The quality of the low-dimensional projection of a dataset generated by a di-
mensionality reduction method can be assessed in several ways. If the data
samples are labeled, then a supervised evaluation method can be used. More
specifically a classifier is trained on the projection and the classification accu-
racy measured in order to produce an estimate of the quality of the projection
with respect to the labeling. The advantage of this method is that it can be
equally applied to multiview data and methods, as only the class labels are
considered.

6http://noble.gs.washington.edu/proj/sdp-svm/
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Another, unsupervised approach, measures some kind of similarity of the
low-dimensional projection to the original, high-dimensional data. Although
this is a straightforward procedure for single-view data, in multiview data the
similarity measure can be computed with respect to the different input views.
The solution adopted is to compute the similarity with respect to all the input
views and give the average similarity as overall quality measure.

The three methods to evaluate the quality of dimensionality reduction
results that are used in the experiments are described next.

2.3.1.1 One-vs-one classifier

The first method presented in this Section is one of the standard procedures
in the literature to evaluate the quality of a low-dimensional projection of a
dataset. It comprises two steps. First, a one-vs-one support vector machine
(SVM) [50] is used to classify all the points in the dataset. One-vs-one SVMs
train one classifier for each possible pair of classes in the dataset, i.e. they
train c(c− 1) classifiers, where c is the number of classes in the dataset. The
second step is to measure the classification accuracy. A point is well classified
if the majority of the c(c − 1) classifiers trained assign it to its true class.
The overall classification accuracy is the final evaluation metric for the low-
dimensional projection of the data. The value of the accuracy ranges from 0 to
1, with 1 being a perfect classification. This method will be referred as SVM
in the results. This evaluation method is used, among others, in [114, 115].

2.3.1.2 Cophenetic correlation

As the second evaluation method, the cophenetic correlation between the dis-
tances in the high-dimensional input space and the low-dimensional projection
space is computed. The cophenetic distance [94] measures how faithfully the
distances between a set of points is kept in an alternate representation. This
method was originally developed for distance in dendrograms, in the field of
biostatistics. Given two data points i, j, if the distance between them in
the input high-dimensional space is δij and the distance between them in the
projection low-dimensional space is dij , then the cophenetic correlation is

c =

∑
i<j

(δij − δ̄)(dij − d̄)√
[
∑
i<j

(δij − δ̄)2][
∑
i<j

(dij − d̄)2]
(2.1)

Given that the datasets used in the experiments have multiple views, the
average cophenetic correlation of all the input data views with respect to the
output projection is computed and referred as coph.
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2.3.1.3 Area under the local neighbourhood agreement curve

The third evaluation method is proposed by [68], and the implementation of
R package dimRed7 is used. Its goal is to measure the conservation of the
local K-ary neighbourhoods of the original data points in the low-dimensional
projection. The rank of data point pj with respect to point pi in the original
high-dimensional space is defined as

ρij = |{k : δik < δij or (δik = δij and 1 ≤ k ≤ j ≤ N}| (2.2)

where δij is the distance between points pi and pj in the high dimensional
space and N is the number of points in the dataset. The rank rij between
points pj and pi in the low-dimensional space is similarly defined, using the
corresponding distances in that space. The K-ary neighbourhood of point pi
in the high-dimensional space is the set of points defined by vKi = {j : 1 ≤
ρij ≤ K}. The K-ary neighbourhood nKi of pi in the low-dimensional space
is similarly defined using rij instead of ρij . The performance index QNX is
defined as

QNX(K) =
N∑
i=1

|vKi ∩ nKi |
KN

(2.3)

which gives a normalized average agreement between the neighbourhoods in
high and low-dimensional spaces, ranging from 0 (no agreement at all) to 1
(perfect agreement). Another index derived from QNX is given next, that
accounts for the random neighbour matches that may exist

RNX =
(N − 1)QNX(K)−K

N − 1−K
(2.4)

in this case, a random neighbourhood assignment (i.e. a random projection)
would produce anRNX value of 0. Iterating over different values ofK produces
a curve. The area under this curve (AUC) for 1 ≤ K ≤ κ, where κ is the
number of dimensions of the original data space, is proposed as a measure of
the quality and consistence of the dimensionality reduction method.

As this index depends on the points in the input space, a different index
will be obtained for each input view in a multiview setting. The results given,
referred as AUC-RNX, are the average area under the curve of the RNX
index of the low-dimensional space with respect to each of the input high-
dimensional spaces.

2.3.2 Clustering quality metrics

In order to evaluate the quality of a clustering assignment, two approaches are
possible. If the data is labeled then an external evaluation is feasible, where

7https://cran.r-project.org/web/packages/dimRed/index.html
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the clustering assignment produced is compared with the original class labels
of the data. On the other hand, internal clustering evaluation methods do
not rely on class labels but rather on the intrinsic properties of the data and
the clustering assignment. Both kinds of evaluation methods are used in the
present experiments.

As there are multiple input matrices on each dataset but a single class
labeling, external methods can be applied as they are, while internal methods
have to be applied to each input data view. In the latter case, the average
indices obtained are given as final result.

2.3.2.1 Clustering purity

Clustering purity [78] is an external measure of clustering quality that mea-
sures the agreement of the clustering assignment with the original classes. In
order to compute the clustering purity, each cluster wi is assigned to the class
most frequent in the cluster (cj). The accuracy of this assignment is measured
by counting the number of correctly assigned data samples, and dividing by
the number of data samples N :

purity(Ω,C) =
1

N

∑
i

max
j
|wi ∩ cj | (2.5)

where Ω = {w1, w2, . . . , wk} is the cluster assignment and C = {c1, c2, . . . , ck}
are the original class labels. The clustering purity is referred in the results as
purity.

2.3.2.2 Normalized mutual information

The normalized mutual information (NMI) [97] is another external clustering
evaluation metric. It is defined as

NMI(Ω,C) =
I(Ω,C)

[H(Ω) +H(C)]/2
(2.6)

where I is the mutual information, H is Shannon’s entropy, Ω = {w1, w2, . . . , wk}
is the cluster assignment and C = {c1, c2, . . . , ck} are the original class labels.
The mutual information numerator computes how informative is the clustering
assignment of the real classes. The problem is that larger numbers of clusters
produce better results. For this reason, the normalization denominator penal-
izes having a high number of clusters (as the entropy tends to increase with
the number of clusters). This way, a NMI of zero implies a random clustering
assignment, while a NMI of 1 implies a perfect clustering assignment.
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2.3.2.3 Davies-Bouldin index

The Davies-Bouldin index (DBI) [26] is an internal clustering quality mea-
sure that measures the compactness of each cluster with respect to the other
clusters in the assignment. It is defined as

DBI =
1

K

K∑
i=1

max
j 6=i

(
σi + σj
d(ci, cj)

)
(2.7)

where K is the number of clusters, cn is the centroid of cluster n, σn is the
average distance of the points in cluster n to its centroid, and d(ci, cj) is the
distance between centroids of clusters i and j.

Better clustering assignments yield lower DBI values. However, the re-
liability of the DBI is limited by the meaningfulness of the distance metric
(Euclidean by default) on the input data.

2.4 Design of the baseline experiments

The experiments required to test the methods presented in this work with the
baseline, single-view methods must account for several factors involved.

In general lines, the experiments presented in this thesis are designed with
the following objectives or principles in mind:

• Demonstrate the performance of the methods on an adequate number
of datasets. These datasets must have heterogeneous characteristics so
as to account for a wide range of cases.

• Thoroughly test the three methods presented in this work.

• Test the methods as both dimensionality reduction and clustering meth-
ods.

• Use several evaluation metrics to obtain more solid results.

• Test the response of the method with different dimensionalities of the
projections generated.

• Carefully design the experiments to account for possible sources of ran-
domness in the methods or the evaluation metrics.

• Properly compare the proposed methods with single-view counterparts,
either on individual views or on matrices of stacked or concatenated
features.

• Properly compare the proposed methods with other multiview methods
in the literature.
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Consequently, in order to fulfill these objectives the experiments presented
in this work are designed as follows. Table 2.4 summarizes the factors involved
in the design of the experiments.

Datasets Six datasets are used in the experiments, and their subjects are:
image, text and biology. Moreover, even if image and text categories have
more than one dataset, they are not redundant as on each dataset the design
of the multiview aspect is different, as explained in Section 2.2.

Methods The three methods presented in this thesis are used in all the
experiments, in order to perform a thorough experimental analysis and com-
parison of all three. Moreover, the methods are used in both dimensionality
reduction and clustering tasks to assess their performance on each of these
tasks.

Evaluation Six evaluation metrics, presented in Section 2.3, are used in all
the experiments in order to properly capture as many aspects as possible about
the quality of the output of each method. More specifically, three metrics are
used to evaluate the dimensionality reduction task, and other three metrics
are used to evaluate the clustering task. In each category, both supervised
and unsupervised metrics are used to increase the scope of the evaluation.

As a side note, the unsupervised evaluation methods cannot be applied
to the Cora dataset because they are not compatible with graph space input
views (Cora’s references between articles).

Dimensionality of the projection Both in dimensionality reduction and
clustering tasks, the dimensionality of the projection generated is a decisive
factor in the performance of the methods and the quality indicators obtained.
As a consequence, all the experiments are run on 20 different dimensionality
values, ranging from 2 to 100.

Account for randomness Some of the methods presented or analyzed in
this work have an intrinsically random behaviour, specifically SNE [49] and
their derivations. This causes them to output possibly different results on each
execution. On the other hand, some evaluation metrics also have a random
component, as 1vs1-SVM (Section 2.3), because it requires to partition the
data in train and test subsets. This partition is randomly executed, and
consequently the results of different executions may vary.

To account for the randomness of methods and evaluation metrics, the
affected experiments are repeated ten times and the mean and standard devi-
ation are measured to try to minimize the impact of the random factor in the
final results.
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Factor Magnitude

Datasets 6
Methods proposed ×(2 + 10× 1)
Baseline methods ×

(
(2 + 1) + (5 + 1) + (2 + 1) + (6 + 1) + (6 + 1) + (3 + 1)

)
= ×28

Tasks ×2
Evaluation metrics ×(5 + 10× 1)/2
Dimensions ×20

Total experiments 604800

Table 2.4: Factors in the design of the baseline experiments

Exhaustive comparisons The multiview methods presented in this work
are carefully compared with other methods in order to assess their performance
and potential usefulness. First, they are compared with their single-view
counterparts, either using a single view or using a matrix with the stacked
features of all the input views. As a consequence the number of experiments
is equal to the number of views in the dataset (each single view) plus one
(the stacked feature matrix). The goal of this comparison is to estimate if the
multiview approach is better than the standard single-view methodology, and
also to estimate if processing each view separately is better than concatenating
all the views and processing them as a single input view.

On the other hand, the proposed methods are compared with equivalent
multiview methods in the literature in order to measure their performance
with respect to existing multiview methods and to decide if they are a signi-
ficative contribution. This experiment design subgoal is addressed in the state
of the art experiments, described in Section 2.5.

The experiments performed for the present work result from the combina-
tion of the above factors. The results obtained by each method are presented
in the respective chapter where each method is described. Moreover, Chapter
6 includes a comparison between the three methods presented in this thesis.

2.5 Design of the state of the art experiments

In order to allow the comparison of the method presented in this thesis with
equivalent methods in the literature, a second set of experiments has been de-
signed. These experiments reproduce as faithfully as possible the experimental
setup of the reported papers in the state of the art.

The most frequently cited datasets in the literature are used for these com-
parison experiments. These datasets are the BBC News text collection, the
Reuters multilingual corpus, the multiple features digits and the animal with
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attributes (AWA) datasets. They are described in Section 2.2. However, the
AWA experiments in the state of the art differ from the general experiments
with AWA presented in this thesis as they follow the preprocessing proposed
in [106]: (1) use only the 10 most populated classes, and (2) use all available
samples, giving a total of 18, 450 samples. These changes cause the higher re-
sults yielded by these experiments, specially regarding supervised evaluation
metrics.

The multiview clustering papers in the literature follow the evaluation
methodology described in [78] and use the clustering purity and the cluster-
ing normalized mutual information as clustering evaluation metrics. These
supervised quality metrics are described in Section 2.3.

The proposed methods are compared with the most relevant multiview
clustering methods in the state of the art, namely: co-regularized spectral clus-
tering [62] (CoregSC), multi-modal spectral clustering [12] (MMSC), multi-
view clustering via structured sparsity [106] (MVC-SS), multiview K-means
clustering [11] (MV-KMeans), subspace co-training for multiview clustering
[117] (CoKmLDA), multi-feature spectral clustering with minimax optimiza-
tion [106] (MFSC-MO), multiview clustering via pairwise sparse subspace
representation [112] (MVC-PSS), and large-scale multiview spectral cluster-
ing via bipartite graph [70] (MVSC-BG).

No reproducible results have been found in the state of the art for multi-
view dimensionality reduction methods, and as a consequence no state of the
art comparison experiments on dimensionality reduction have been performed.



Chapter 3

Multiview t-distributed
stochastic neighbour
embedding

3.1 Motivation

t-distributed stochastic neighbour embedding (t-SNE) [101, 102, 74] is one of
the most popular dimensionality reduction methods among the community. It
is specifically designed to achieve good two or three dimensional projections
of complex data, intended for data visualization. Its goals are to keep both
the local structure (neighbourhood of each sample) and the global structure
(keep distant samples away in the low-dimensional representation).

t-SNE is itself an evolution of the stochastic neighbour embedding method
(SNE) [49] that solves some of its limitations by changing the method to
compute the output, low-dimensional space.

Given the popularity and usefulness of t-SNE, an extension of this method
to multiview datasets may be useful to the community. Its objective would
be to take several input data spaces on the same samples and generate a
single, low-dimensional output space while preserving both the local and global
structure of all the input views as much as possible.

In this chapter, two multiview extensions to t-SNE are proposed, one us-
ing multi-objective optimization techniques, the other using expert opinion
pooling theory methods. Although both proposals solve the given problem,
the first algorithm is too expensive in computational terms and consequently
only the second algorithm is considered at the experimenal phase.

41
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3.2 Related work

3.2.1 Stochastic neighbour embedding

Stochastic neighbour embedding (SNE)[49] is a non-linear dimensionality re-
duction method. The main intuitions behind SNE are (a) to view the dis-
tances between data points as probabilities of being neighbours, and (b) to
try to find a low dimensional space Y whose neighbouring probabilities are as
close as possible to the probabilities of the original, high dimensional space
X . The formal description of the method follows.

First step. SNE begins by converting the Euclidean distances between the
points of the original space X into conditional probabilities. Given two points
xi, xj ∈ X , the conditional probability pi|j is computed using a Gaussian
probability density centered at xi, with a variance σi whose determination is
described later in this section. pi|j can be interpreted as the probability that xi
would have xj as its closest neighbour. Closer points have a high probability,
while points far apart have an almost zero probability. The mathematical
expression of pi|j is:

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )
(3.1)

as a result, for each xi ∈ X a vector of probabilities Pi of length |X | is
obtained, where pi|i is set to 0; otherwise the high similarity of each point with
itself would dominate over the other neighbouring probabilities. Stacking the
vectors of probabilities produces a matrix P sof |X | × |X | probabilities whose
diagonal is zero.

As stated above, σi has to be defined for each datapoint xi. This value is
not defined directly, but through perplexity, a user-defined global parameter.
Intuitively, the perplexity is the average number of neighbours per point, with
typical values between 5 and 50. A different σi is chosen for each point to
account for the different density of points on the different areas of the input
space.

The perplexity is defined as follows:

Perp(Pi) = 2H(Pi) (3.2)

where H(Pi) is the Shannon entropy [90] of Pi measured in bits, i.e.

H(Pi) = −
∑
i

pj|ilog2pj|i (3.3)

SNE performs a binary search of each σi so that the perplexity condition
is satisfied. Points in sparse regions will naturally have a higher σi than points
in denser regions.
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Second step. On the low dimensional space to be produced, Y, a similar
conditional probability is computed for all the pairs of projected points yi
and yj , denoted by qi|j . The main difference with respect to pi|j is that

SNE computes qi|j using a constant σ = 1√
2

for all the points in the dataset.

Therefore the formulation of this conditional probability is:

qj|i =
exp(−‖yi − yj‖2)∑
k 6=i exp(−‖yi − yk‖2)

(3.4)

As in the previous case, qi|i = 0. The vector of conditional probabilities
associated with each projected point yi is referred to as Yi, and the whole
matrix of conditional probabilities is Y , with the elements in its diagonal
equal zero.

Third step. The hypothesis of SNE is that if the conditional probabilities
pi|j and qi|j are similar then the low dimensional space Y should be a faithful
representation of the original, high dimensional space X . A suitable measure
to compare probability densities is the Kullback-Leibler divergence (KL) [103]
between each probability density vector Pi and Qi. SNE has to find a Q that
minimizes the following the sum of such KL divergences, i.e. the following
cost function:

C =
∑
i

KL(Pi‖Qi) =
∑
i

∑
j

pj|ilog
pj|i

qj|i
(3.5)

SNE uses gradient descent optimization to minimize C, i.e. it has to find
the projection Y of the original data points whose conditional probability
matrix Q minimizes C. The gradient of the cost function defined in Equation
3.5 is:

δC

δyi
= 2

∑
j

(pj|i − qj|i + pi|j − qi|j)(yi − yj) (3.6)

The gradient descent algorithm is initialized by using a random Gaussian
distribution of points for yi, which progressively gets modified until either a
minimum is reached or a predefined number of iterations is executed.

Analysis of the algorithm. As a consequence of the asimmetry of the KL
divergence, not all differences between the pairwise conditional probabilities
in P and Q are equally relevant. More specifically, having two close points
xi and xj projected in distant positions yi yj has a higher cost than the
inverse situation, i.e. representing two separate points in relative proximity
in the projection space Y. In other words, SNE is designed to keep the local
structure of the data (close points remain close to each other) but not as much
the global structure (far points may be represented close to each other).
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SNE cost function is non-convex, what leads to the necessity of running
the algorithm several times in order to avoid local minima and possibly obtain
better data projections.

3.2.2 t-distributed stochastic neighbour embedding

An inherent problem when reducing the dimensionality from high-dimensional
spaces to low-dimensional spaces (often two or three dimensions if the objec-
tive is to plot the points) is the problem of point crowding. In high-dimensional
spaces there is much more room for points to be moderately apart from each
other. However, representing such intermediate distances in a low-dimensional
space implies using relatively large distances to properly represent the points
and avoid projecting them in nearby positions. In turn, neighbouring points in
the original space would have much smaller distances in the projected space,
leading them to be almost overlapped an irrealistically high concentration of
points in the center of the plot.

Several solutions have been proposed to address this issue. However none
of them focuses on the cause of the problem: the conditional neighbouring
probabilities in the low-dimensional space do not follow the same probability
density function as the probabilities in the high-dimensional space. This stems
from the fact that distant points are required to have a proportionally larger
distance in the low-dimensional space to avoid the crowding effect. Therefore,
[102, 74] proposed to use a different conditional probability density function
to model the low-dimensional distances. This improvement on SNE, called
t-Distributed Stocastic Neighbour Embedding (tSNE), uses a t-distribution
with one degree of freedom to model the conditional probabilities in the low-
dimensional space. The t-distribution has heavier tails than the Gaussian,
therefore it allows to model moderate distances in the original space as larger
distances in the low-dimensional space. In turn, this helps alleviate the crowd-
ing problem mentioned before, as in practice it provides more useable space
in the projection.

From a theoretical point of view, t-SNE also justifies the use of the t-
distribution in the low-dimensional space because it is an infinite mixture
of Gaussian distributions. Moreover, its computational cost is lower as it
elminates the exponential from the expression.

The conditional neighbouring probabilities in the low-dimensional space
using t-distribution are given by the following expression:

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

(3.7)

And the gradient of the new cost function, i.e. the Kullback-Leibler diver-
gence between P and the t-distribution based Q is:
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δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1 (3.8)

In order to improve the efficiency of the gradient descent optimization,
a momentum term is added to the gradient. Thus, an exponentially decay-
ing sum of the previous gradients is added to the current gradient, so that
improvement along consistent directions is enhanced. The expression that in-
corporates the gradient update with the momentum, considering the last two
gradient matrices, is given by

Y(t) ← Y(t−1) + η
δC

δY
+ α(t)(Y(t−1) − Y(t−2)) (3.9)

where Y(t) is the low-dimensional embedding of the data at iteration t, η
is the learning rate of the gradient descent algorithm, and α(t) is a coefficient
that regulates the desired amount of momentum at iteration t.

The algorithmic specification of tSNE is given in Algorithm 2. The main
source of computational cost in tSNE is found inside the main optimization
loop, more specifically in the computation of the Kullback-Leibler divergence
between P and Q, that is O(n2), where n is the number of points in the
dataset. Therefore the overall computational cost of the algorithm is O(n2T ).

Algorithm 2 . t-Distributed Stochastic Neighbour Embedding

Input: dataset X = {x1, x2, . . . , xn},
cost function parameters: perplexity Perp,

optimization parameters: number of iterations T , learning rate η, momen-

tum α(t)

Output: low-dimensional data representation Y(T ) = {y1, y2, . . . , yn}
function tSNE(X , P erp, T, η, α(t))

compute pairwise affinities pj|i with perplexity Perp (using Equation 3.1)

pij ←
pj|i+pi|j

2n

sample initial solution Y(0) = {y1, y2, . . . yn} from N (0, 10−4)

for t← 1 to T do

compute low-dimensional affinities qij (using Equation 3.7)

compute gradient δC
δY (using Equation 3.8)

Y(t) ← Y(t−1) + η δCδY + α(t)(Y(t−1) − Y(t−2))

end for

end function
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3.2.3 Optimization of multiple objectives

The dimensionality reduction algorithm tSNE, described in Section 3.2.2, uses
gradient descent optimization to find a reasonably good projection of the
points in their original, high-dimensional space into a low-dimensional space.
Gradient descent optimization is well defined for single objective problems
where the cost function is analitycally differentiable. However, when the prob-
lem at hand is multi-objective, i.e. there are several cost functions to minimize
that may be contradictory with each other, there is no clear solution for the
gradient descent optimization method.

A fundamental criterium in multi-objective optimization is the Pareto op-
timality [98]. Given a problem defined on a domain Υ ⊆ RN , with multiple
objective functions to be minimized Ji(Y )|Y ∈ Υ, 1 ≤ i ≤ n, solution Y 1

dominates Y 2 in efficiency, Y 1 � Y 2, if and only if

Ji(Y
1) ≤ Ji(Y 2)∀i = 1, . . . , n (3.10)

and at least one inequality is strict, i.e. all the objective functions on Y 1

are less or equal than on Y 2 and at least one of them is strictly minor. The
solution associated with point Y 1 is said to be Pareto efficient with respect to
the solution associated with point Y 2.

From the previous definition, a point Y o ∈ Υ is said to be Pareto optimal
if there is no other point that dominates it. The set of Pareto-optimal points
is referred to as the Pareto set. The Pareto front or frontier is the manifold or
shape defined by the points in the Pareto set. Most multi-objective gradient
descent methods are designed with the objective of finding the Pareto front,
that would be the equivalent of the set of minimal points in a single objective
problem.

Several multi-objective gradient descent methods have been proposed in
the literature, as described in [32], [77], and in [38]. There are alternative
solutions also, like the non-dominated sorting genetic algorithm (NSGA)[30]
that uses genetic algorithms to optimize a multi-objective problem.

The Multiple Gradient Descent Algorithm (MGDA) [32] is based on the
following definitions. Let Y 0 ∈ Υ be the current point in a multi-objective gra-
dient descent optimization problem. As it is a multi-objective problem, there
exists one gradient matrix for each objective function at point Y 0: ∇Ji(Y 0).
Each such gradients implies an optimization direction or vector ui. Let U be
the convex hull defined by the vectors ui:

U =
{
u ∈ RN/u =

n∑
i=1

αiui;αi ≥ 0(∀i);
n∑
i=1

αi = 1
}

(3.11)

then there exists a unique vector ω ∈ U with minimum norm:

∀u ∈ U : (u, ω) ≥ ‖ω‖2 (3.12)
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[32] demonstrates that using ω as descent vector on Y 0 guarantees the Pareto
efficiency of the new point Y 1 = Y 0 + ω. In this way, MGDA can optimize a
multi-objective problem using gradient descent steps that satisfy the Pareto
efficiency criterium.

At each iteration of MGDA, given that the current solution point of the
algorithm is Y t, determining ω implies finding the vector characterized by the
following expression:

min‖
n∑
i=1

αi∇Ji(Y t)‖2 (3.13)

where alphai ≥ 0∀i and
n∑
i1

αi = 1. In the case of a two objective problem

(n = 2), there exists an analytical expression that allows to determine ω.
However, in the more general case of n > 2, determining the ω that satisfies
Equation 3.13 implies solving an optimization problem in itself.

3.2.4 Expert opinion pooling

Let us imagine we have a decision problem where a certain entity θ has to
be classified into one among k classes. The opinion of an expert can be
requested, so that he or she provides a vector of k probability values pj , j =
1, . . . , k such that pj is the probability that θ belongs to class j. Moreover,∑
j
pj = 1. However, it may be the case that the opinion of several experts is

requested. Therefore each expert would provide a possibly different vector of
probabilities. Then a problem arises: what is the best way of combining the
different opinions, i.e. the different vectors of probabilities, in order to make
the best use of all the opinions available? This is the subject of the expert
opinion pooling or expert opinion aggregation problem, whose origins are in
the areas of economy and market studies.

The approaches to solve this problem are classified in two families accord-
ing to [20]: axiomatic and Bayesian. Bayesian methods compute a Bayesian
estimate from a set of expert opinions and usually yield good results, but
require a high number of experts to be considered. This makes them inappro-
priate for the problems to be treated here.

On the other hand, the axiomatic approaches assume a prior criterium and
apply a combination formula that does not take into consideration the actual
probability values. One of the most used axiomatic approaches is the linear
opinion pool ([4]):

p(θ) =
n∑
i=1

ωipi(θ) (3.14)
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where n is the number of expert opinions considered, pi(θ) is the vector of
probabilities given by expert i, and ωi is a weight or confidence value assigned

to expert i. In order to simplify the following operations,
n∑
i=1

ωi = 1.

Another common approach is the log-linear opinion pool [20], defined as:

p(θ) = r
n∏
i=1

pi(θ)
ωi (3.15)

where r is a normalizing constant in order to make p(θ) a probability distribu-
tion, and the remaining values have the same meaning as in the linear opinion
pool.

However an open question is the assignment and interpretation of experts’
weights (wi). A straightforward solution proposed by [21] is to assign the
same weight to all the experts. [5] propose to choose the weight combination
that minimizes the variance of the resulting probability distribution p(θ). [45]
propose to use the Kullback-Leibler divergence (KL) ([103]) to assign weights
to the experts, making them inversely proportional to the maximum KL with
respect to the other experts’ opinions. This way the more dissimilar an ex-
pert is from any other expert, the less weight its opinion has. [40] review
other expert weight assignment strategies. [15] propose a method to choose
the experts’ weights designed to be used with the log-linear opinion pooling
method. Their method (1) maximizes the entropy of the resulting probability
distribution p(θ) and (2) minimizes the KL divergence between p(θ) and the
individual expert probability distributions pi(θ).

Finally, [1] analyzes the criteria for choosing between the linear and the
log-linear opinion pooling method. Summarizing the results of his work, the
following expression has to be computed:

H(p(θ))−
n∑
i=1

ωiH(pi(θ))− log(r) (3.16)

where H is Shannon’s entropy function. If the value of this expression is pos-
itive then the log-linear pooling should be used; otherwise, it is recommended
to use the linear pooling. However, as it can be observed, the result of this
expression depends on the weights used, which in turn affect the entropy of
p(θ). Combining this criterium with the weight selection method proposed in
[15], it is safe to use the log-linear as default pooling method, as Equation
3.16 will be positive in most cases.

3.3 Multiview tSNE

There exist several possible approaches to design an extension to the t-SNE
algorithm that can process multiview data. Two approaches are presented in
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this thesis. The first solution proposed is to use a multi-objective optimiza-
tion gradient descent method to find a projection of the original data points
that minimizes the divergence between the projection and the different input
data views. The second solution uses expert opinion pooling to aggregate
the conditional probability distributions of all the input views and therefore
transform the multiview problem into a standard tSNE problem applied to
the pooled probability matrix. Both approaches are described next.

3.3.1 MV-tSNE as a multiobjective optimization problem

The tSNE dimensionality reduction method finds a reasonably good projec-
tion of a set of points in a high-dimensional space to a low-dimensional space
by minimizing the Kullback-Leibler divergence (KL) between two conditional
probability distributions, as explained in Section 3.2.2. It uses gradient de-
scent optimization in order to find the most convenient arrangement of points
in the low-dimensional space. On each iteration of the gradient descent, it
computes the gradient of the KL between the conditional probability distribu-
tion matrices with respect to the position of the points in the low-dimensional
space.

The multiview tSNE extension presented in this Section (MV-tSNE1) dif-
fers from the standard tSNE algorithm in the following aspects.

Conditional probability distributions. SNE and tSNE (see Sections 3.2.1
and 3.2.2) convert the Euclidean distances between the points of the input
space X into a matrix of conditional probabilities according to a Gaussian
distribution of the distances. In a multiview setting, there exist v input
spaces {X 1,X 2, . . . ,X v}. MV-tSNE1 computes the conditional probability
matrix of each X i using Equation 3.1, thus obtaining v probability matrices
P k, k = 1, . . . , v.

However, there is a single conditional probability distribution matrix Q
for the low-dimensional space Y, as the goal of MV-tSNE1 is to produce a
unique data projection common to all the input views X k. Q is computed as
in tSNE algorithm, using Equation 3.7.

Cost function. The cost function of MV-tSNE1 is the sum of the KL di-
vergences of all the input conditional probability matrices P k with respect to
the low-dimensional conditional probability matrix Q:

C =
v∑
k=1

n∑
i=1

KL(P ki ‖Qi) =
v∑
k=1

n∑
i=1

n∑
j=1

pkj|ilog
pkj|i

qj|i
(3.17)

however the gradient of the combined objectives is not required, as the multi-
objective optimization algorithm used works with the gradients of each objec-
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tive (each input view). As a consequence, equation 3.8 applied to each matrix
P k still holds in this algorithm.

Multi-objective gradient descent optimization. In order to minimize
the KL divergence of the low-dimensional points with respect to the high-
dimensional input views, this multiview dimensionality reduction problem re-
quires a multi-objective gradient descent method, more specifically the Mul-
tiobjective Gradient Descent Algorithm (MGDA) described in Section 3.2.3.
On each iteration of the optimization algorithm, the gradients of the differ-
ent input views are computed and combined in a way such that the Pareto
efficiency criterium holds. In other words, the change on each iteration never
worsens the partial cost value of a specific input view (problem objective).

The use of a momentum vector to improve the performance of the gradient
descent algorithm is not defined in MGDA, in fact applying a momentum
would often collide with the Pareto-compliant direction of change ω. Therefore
that improvement from tSNE is removed in MV-tSNE1. The specification of
MV-tSNE1 is presented in Algorithm 3.

Algorithm 3 . Multiview t-Distributed Stochastic Neighbour Embedding 1

Input: v data views of the same n entities X k = {xk1, xk2, . . . , xkn}, where

k = 1, 2, . . . , v,

cost function parameters: perplexity Perp,

optimization parameters: number of iterations T , learning rate η

Output: low-dimensional data representation Y(T ) = {y1, y2, . . . , yn}
function tSNE(X 1,X 2, . . . ,X v, P erp, T, η)

compute pairwise affinities pkj|i with perplexity Perp (using Equation 3.1)

for each X k, k = 1, . . . , v

pkij ←
pk
j|i+p

k
i|j

2n

sample initial solution Y(0) = {y1, y2, . . . yn} from N (0, 10−4)

for t← 1 to T do

compute low-dimensional affinities qij (using Equation 3.7)

compute gradients δCk

δY (using Equation 3.8 on the partial cost Ck

associated with each pkij)

compute vector of change ω as the minimum-norm vector in the

convex hull defined by the gradients δCk

δY (using algorithm MGDA)

Y(t) ← Y(t−1) + ηω

end for

end function
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Limitations of MV-tSNE1 MV-tSNE1 presents several practical limita-
tions that make it unusable in real datasets. The most relevant limitations
regard computational cost, caused by the following reasons:

• On each iteration the KL divergence between each input view and the
projection has to be computed. This multiplies by v the computational
cost of each iteration, as the KL computation is the most expensive
operation on each iteration as discussed in Section 3.2.2.

• The execution of the MGDA algorithm on each iteration also adds an
important computational cost per iteration. This is specially the case
in problems with more than two objectives (i.e. data views), where it
requires executing an optimization algorithm on each iteration to find
the common gradient, in order to find the descent vector characterized
by Equation 3.13.

• The fact that MGDA does not support the use of momenta in the op-
timization loop makes it necessary to run the main loop in Algorithm 3
for more iterations (an order of magnitude more as seen in experimental
trials).

• The strong Pareto condition makes MGDA halt very often in clearly sub-
optimal points, as it cannot find a ω vector that satisfies the Pareto effi-
ciency criterium and therefore stalls the optimization process. In other
words, the algorithm stops in a local minimum of the multi-objective
problem. As a consequence the whole MV-tSNE1 algorithm has to be
executed several times in order to hopefully find better solutions.

All these factors combined make MV-tSNE1 extremely expensive in com-
putational terms, what only allows it to be run on ”toy” datasets to test its
behaviour. Therefore it has been excluded from the main experiments pre-
sented in this work.

3.3.2 MV-tSNE as an expert opinion pooling problem

As seen in Sections 3.2.1 and 3.2.2, SNE and tSNE model the input, high-
dimensional space as a matrix of conditional distance probabilities according
to a Gaussian distribution. The expression for this matrix P is given in
Equation 3.1.

In a multiview scenario there are k input high-dimensional spaces instead
of only one. A viable strategy for extending tSNE to multiview datasets is
as follows. First, to compute a different matrix of conditional distance prob-
abilities P k for each input space X k, k = 1, . . . , n using Equation 3.1. These
k probability matrices can be seen as the probability opinions of k different
experts on the distribution of distances of the input samples. Therefore, the
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second step of the algorithm is to compute a pooled opinion probability ma-
trix P̂ using the log-linear method exposed in Section 3.2.4. From that point,
the problem is reduced to finding a low-dimensional space that minimizes
the KL divergence between P̂ and the conditional probability matrix of the
low-dimensional space Q using the approach in tSNE algorithm.

Therefore the cost function of the newly defined optimization problem is:

C =
∑
i

KL(P̂i‖Qi) =
∑
i

∑
j

p̂j|ilog
p̂j|i

qj|i
(3.18)

And its gradient with respect to the low-dimensional projection space Y
is:

δC

δyi
= 4

∑
j

(p̂ij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1 (3.19)

This multiview dimensionality reduction algorithm will be referred as MV-
tSNE2, and it is specified in Algorithm 4.

Analysis of the algorithm An important feature of MV-tSNE2 is that
it only requires to compute the pooled opinion matrix once, and from that
step on its complexity equals that of the single view tSNE algorithm, as all
the information from the different input spaces is condensed into a single
probability matrix, P̂ . This makes MV-tSNE2 computationally efficient. Also,
MV-tSNE2 is compatible with the use of momentum in the gradient descent
optimization stage, leading to better performance relative to the number of
iterations.

For the previous reasons, the method used in the experiments is MV-tSNE2
and for simplicity it will be simply referred to as MV-tSNE.

3.4 Results

Although MV-tSNE is a multiview dimensionality reduction method, its ap-
plication to multiview clustering tasks is straightforward. It simply requires to
use the single, low-dimensional projection generated as input to a standard,
single view clustering algorithm as K-means. The multiview dimensional-
ity reduction (1) reduces all input views into a single output view, and (2)
it summarizes the most relevant information of all input views into a low-
dimensional projection. As a consequence applying a clustering algorithm
to such projection is equivalent to finding a clustering assignment given the
common structure of the multiple input views.
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Algorithm 4 . Multiview t-Distributed Stochastic Neighbour Embedding 2

Input: v data views of the same n entities X k = {xk1, xk2, . . . , xkn}, where

k = 1, 2, . . . , v,

cost function parameters: perplexity Perp,

optimization parameters: number of iterations T , learning rate η, momen-

tum α(t)

Output: low-dimensional data representation Y(T ) = {y1, y2, . . . , yn}
function tSNE(X 1,X 2, . . . ,X v, P erp, T, η, α(t))

for k ← 1 to v do

compute pairwise affinities pkj|i of input matrix X k with perplexity

Perp using Equation 3.1

P k ←
pk
j|i+p

k
i|j

2n

end for

compute the weight ωk of each affinity matrix P k using the method

described in [15]

P̂ ←
v∏
k=1

(P k)ωk

P̂ ← P̂
sum(P̂ )

sample initial solution Y(0) = {y1, y2, . . . yn} from N (0, 10−4)

for t← 1 to T do

compute low-dimensional affinities qij (using Equation 3.7)

compute gradient δC
δY (using Equation 3.19)

Y(t) ← Y(t−1) + η δCδY + α(t)(Y(t−1) − Y(t−2))

end for

end function

3.4.1 MV-tSNE with respect to SC baseline

The first block of experiments compare the proposed MV-tSNE method with
the t-SNE baseline method, either applied to each input view independently,
or applied to all the input views stacked into a single data matrix. The goal
of these experiments is to assess the advantages of the multiview method
proposed with respect to single view approaches.

In order to synthesize the numerous results (different metrics, datasets
and embedding dimensionalities), the results of each evaluation metric are
summarized in a set of graph plots, one for each dataset in the experiments.
Therefore, six graphs per evaluation metric are produced (five on the un-
supervised metrics, as the Cora dataset has a graph space view that is not
compatible with these metrics).
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However, the detailed numerical results are given in Appendix A, with one
table for each combination of evaluation metric and dataset, in a total of 33
tables to evaluate the MV-tSNE method.

3.4.1.1 Dimensionality reduction evaluation

There are three evaluation metrics for the dimensionality reduction task: SVM
classification, cophenetic correlation (average on all the input views) and area
under the curve of the RNX value (average on all input views).

Figure 3.1 shows the two-dimensional projections of two example datasets
using MV-tSNE.

SVM classification (Figure 3.2). The results on the animal with at-
tributes (AWA) dataset are low and irregular in general, given the specific
difficulty of the task (there are 50 classes in this dataset). There is an ini-
tial peak and a posterior descent around K=10, probably induced by added
information that is not related to the classification task and misguides the
algorithm. The best single view performs slightly better than the others,
although all configurations are quite overlapped.

On the BBC segmented news dataset, both the stacked and the MV-
tSNE configurations give better results than the pure single view setups. This
dataset has two views that actually are two text segments of the same doc-
ument, and as a consequence both views are broadly equivalent. This is re-
flected in the SVM results for BBC, where MV-tSNE and stacked-SC results
overlap on most K’s, although stacked t-SNE shows higher peaks for some
dimensionalities.

On the handwritten digits dataset, there is a clear influence of the best
single view, that overlaps almost exactly with both the stacked view and the
MV-tSNE. The stability of the results is also remarkable. The Berkeley protein
dataset shows very similar results. On the Cora dataset there is also an almost
exact overlap of the best single view with MV-tSNE, although the results are
not as stable.

Finally on the Reuters dataset the highest score is achieved by the best
single view, also at low dimensionalities.

Cophenetic correlation (Figure 3.3). The cophenetic correlation mea-
sures the similarity of the distances of the new space with respect to the
original input spaces. The average cophenetic correlation on all input views
is provided. On the AWA and protein datasets, MV-tSNE matches the best
single view, while on the BBC, digits and Reuters datasets MV-tSNE tends
to the results of the stacked views. In general MV-tSNE does not produce the
best results except on the BBC dataset.
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Figure 3.1: MV-tSNE projection of two example datasets.
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Figure 3.2: MV-tSNE dimensionality reduction evaluation with SVM classifi-
cation.
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Figure 3.3: MV-tSNE dimensionality reduction evaluation with cophenetic
correlation (average on all input views).
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Area under the RNX curve (Figure 3.4). The area under the RNX
curve (AUC-RNX) also measures the similarity of the sample neighbourhoods
in the projected space with respect to the original input view. Here, the
average AUC-RNX over all input views is given.

The AUC-RNX results are mostly comparable to the cophenetic correla-
tion results, although here the highest value on the BBC dataset is achieved
by the stacked views.

3.4.1.2 Clustering evaluation

There are three evaluation metrics for the clustering task: the clustering pu-
rity, the clustering normalized mutual information (NMI), and the Davies-
Bouldin index (DBI) (average on all input views).

Clustering purity (Figure 3.5). On the AWA and BBC datasets MV-
tSNE initially shows the best results, although in general all results drop with
the dimensionality. On the digits dataset it is the stacked views configuration
that achieves the maximum values at low K’s.

On the protein dataset, the best single view is clearly above the stacked
views and MV-tSNE. The difference between single views is noticeable, al-
thogh the vertical scale is small.

On the Reuters dataset, the best single view produces the highest result.

Finally, on the Cora dataset MV-tSNE overlaps with the best single view
with the best results.

Clustering normalized mutual information (Figure 3.6). The clus-
tering NMI results are quite similar to the clustering purity results, with
MV-tSNE showing the best results on animal and BBC datasets. Again, the
stacked view performs better on the digits dataset, and also on the protein
dataset in this case.

On the Reuters dataset the best single view achieves the highest NMI. On
the Cora dataset, MV-tSNE matches the best single view on the top positions.

Davies-Bouldin index (Figure 3.7). The Davies-Bouldin index (DBI)
measures the internal properties of the clusters with respect to other clus-
ters, considering the distances in the input spaces. Here, the average Davies-
Bouldin index over all input views is given. For DBI, less is better.

On the animal, digits, protein and Reuters datasets, the best single view
is the best configuration. On the BBC dataset both MV-tSNE and stacked
views produce the best results, with a remarkable difference from the single
views configurations.
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Figure 3.4: MV-tSNE dimensionality reduction evaluation with area under
the RNX curve (average on all input views).
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Figure 3.5: MV-tSNE clustering evaluation with clustering purity.
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Figure 3.6: MV-tSNE clustering evaluation with clustering normalized mutual
information.
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Figure 3.7: MV-tSNE clustering evaluation with the Davies-Bouldin index
(average on all input views). Less is better.
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3.4.2 MV-tSNE with respect to the state of the art

Table 3.1 shows the most relevant clustering purity results in the state of the
art and compares them to the results of MV-tSNE on the same datasets and
configuration. The clustering purity measures the faithfulness of the produced
clustering assignments to the reference class assignments in the dataset. In
other words, higher values mean that the clustering assignment is more similar
to the class assignment, with a value of 1 meaning that both are identical.

There is no single method that clearly performs better than the others
according to the clustering purity on these datasets. Although in most cases
MV-tSNE is relatively close to the highest scores, it is never ranked in the
first position.

Method Digits BBC Reuters AWA

CoregSC 0.822 0.887 0.552 0.580

MMSC 0.758 NA 0.390 0.585

MVC-SS NA NA 0.531 0.629

MV-KMeans 0.825 NA NA 0.114

CoKmLDA 0.819 0.914 NA NA

MFSC-MO 0.800 NA NA NA

MVC-PSS 0.862 NA NA 0.325

MVSC-BG 0.844 NA 0.577 NA

MV-tSNE 0.789 0.902 0.295 0.607

“NA” means there are no available results of the method on the data set.

Table 3.1: Clustering purity wrt. the state of the art.

Table 3.2 shows the normalized mutual information (NMI) between the
clustering assignments produced by the multiview clustering methods in the
state of the art and the reference class labels in the dataset. A higher value
implies a more similar assignment, with NMI=1 meaning a perfect match.
However NMI measures the coincidence of the cluster assignments differently
from purity, as it uses the mutual information between both assignments.

As in the case of the clustering purity, there is no method clearly superior
to the others. Again, MV-tSNE scores near the best results in some datasets
(digits and BBC), although its score is lower on the others and does not
produce the best NMI on any dataset.

3.5 Discussion

When compared to the baseline methods on both the dimensionality reduction
and the clustering tasks, MV-tSNE shows an average performance. In many
cases its results overlap with the results of the stacked views configurations. In
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Method Digits BBC Reuters AWA

CoregSC 0.836 0.769 0.326 0.695

MMSC 0.792 NA 0.134 0.698

MVC-SS NA NA NA 0.751

MV-KMeans 0.807 NA NA 0.117

CoKmLDA 0.818 0.796 NA NA

MFSC-MO 0.785 NA NA NA

MVC-PSS 0.833 NA NA 0.213

MVSC-BG 0.832 NA 0.357 NA

MV-tSNE 0.797 0.756 0.024 0.621

“NA” means there are no available results of the method on the data set.

Table 3.2: Clustering NMI wrt. the state of the art.

some cases, it overlaps with the best single view. Otherwise, its performance
tends to be around the average single view, and rarely dominates the results
on any of the experiments.

Compared with other multiview clustering methods in the state of the
art, the method described in this chapter (MV-tSNE) shows an average per-
formance, although it never ranks in the first positions. According to these
results, MV-tSNE is not an improvement over other methods in the state of
the art.



Chapter 4

Multiview multidimensional
scaling

4.1 Motivation

The multidimensional scaling algorithm (MDS) [23] is one of the standard tools
for dimensionality reduction and data visualization, where a high-dimensional
data matrix is transformed into a low-dimensional projection matrix, usually
in two or three dimensions in order to produce a graphical display of the data.

Reducing the dimensionality of multiview datasets poses new challenges,
as the task becomes twofold: (1) combining the information in the different
data views in an appropriate way, and (2) reducing the dimensionality of the
common information found. In turn, efficient multiview dimensionality reduc-
tion methods may prove useful tools that let their users synthesize extremely
complex data into a single representation while keeping the essential proper-
ties of the data. For instance, being able to visualize in a 2D plot the structure
of data as complex as some of the multiview datasets described in Chapter 1.

For this reason, the development of a multiview equivalent of the MDS
algorithm has been deemed as a potential and useful addition to the arsenal
of dimensionality reduction methods. Multiview MDS (MV-MDS) produces
a single, low-dimensional representation of the multiview, high-dimensional
input data while keeping the essential information. This allows to use the low-
dimensional matrix as input to a standard clustering method, thus creating a
potentially useful multiview clustering method.

This Chapter explains some prior works related with the method, then
describes MV-MDS itself, and finally presents and analyzes the results of
several experiments on different multiview datasets.

65



66 CHAPTER 4. MULTIVIEW MULTIDIMENSIONAL SCALING

4.2 Related work

4.2.1 Multidimensional Scaling

Multidimensional Scaling (MDS), proposed in [23], is one of the dimensionality
reduction methods with more widespread use both for data dimensionality
reduction and for data visualization. Although there are several revisions of
MDS, such as Metric MDS ([60]) and Non-metric MDS ([61]), the original
version of MDS is presented here, often referred to as Classical MDS.

Given an high-dimensional input space X ⊆ Rp×Rn, the main idea behind
MDS is to obtain a low-dimensional representation of the p points in X , Y ⊆
Rp × Rm, with m < n, so that each point xi ∈ X has a representation in a
new point yi ∈ Y and the distance between points is preserved as much as
possible. The correspondence of the distances between points in X and in Y
is named stress, and it is defined as follows:

Stress(x1, x2, . . . , xp) =

√√√√∑ij(d̂i,j − di,j)2∑
ij d̂

2
i,j

(4.1)

∀i, j = 1, 2, . . . , p, where dij is the Euclidean distance between points xi and

xj , i.e. the original or input points, and d̂ij is the Euclidean distance between
points yi and yj , i.e. the projection of points xi and xj in the low-dimensional
space Y.

The dimensionality reduction problem can be viewed as an optimization
problem where the stress function stated above is the cost of a given solution.
The problem with this specific cost function can be solved by finding the
eigenvectors of matrix B = XX T , as described in Algorithm 5.

4.2.2 Stepwise common principal components

Common principal components (CPC) analysis, first proposed by [37], is a
statistical method of simultaneously diagonalizing a set of positive-definite
symmetric matrices. This method, also known as joint diagonalization, at-
tempts to diagonalize the input matrices under the hypothesis of common
components H, which states that there exists an orthogonal matrix W such
that the C input matrices have the same diagonal form, as formulated in
Equation 4.2.

H : L′k = W T Lk W, c = 1, 2, ..., C (4.2)

where Lc is the positive-definite symmetric matrix of input matrix c, and
L′c is its diagonalized form, obtained from the linear transformation defined in
matrix W . Note that the resulting eigenvectors (columns of W ) are common
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Algorithm 5 . Classical Multidimensional Scaling

Input: dataset X = {x1, x2, . . . , xp}, with xi ∈ Rn,

desired number of dimensions in the output space: m

Output: low-dimensional data representation Y = {y1, y2, . . . , yp}, with

yi ∈ Rm.

function MDS(X ,m)

Compute the squared distance matrix: D(2) ← [d2(xi, xj)], with i, j =

1, 2, . . . , p, where d is the Euclidean distance function

Compute the centering matrix: J ← I − 1
pO, where I is the identity

matrix and O is a p× p matrix of ones

Apply double centering to the squared distance matrix: B ← −1
2JD

(2)J

Compute them largest eigenvalues ofB and their associated eigenvectors

e1, e2, . . . , em.

Y ← {e1, e2, . . . , em}T , with Y ∈ Rp × Rm

end function

for all the input matrices, while the eigenvalues are specific to each input ma-
trix. In other words, the input matrices are projected into the same subspace
defined by the eigenvectors, with the relative weight of each subspace axis for
each input matrix given by the associate eigenvalue.

The stepwise common principal components algorithm (referred here as
S-CPC), described in [100], finds an approximate solution to this problem
in an incremental manner. More specifically, it first computes the common
components (common eigenvectors) with highest eigenvalues. Therefore it can
stop after computing a given number of common principal components. This
has a dramatic impact on the performance of the method presented in this
paper, as explained in Section 4.3. S-CPC can be applied to any number C
of input matrices.

4.3 MV-MDS description

The method presented here, called Multiview Multidimensional Scaling (MV-
MDS), is an extension of classical MDS designed to work with multiview
datasets. Therefore, instead of a single input space X , the p input examples
are sampled from v different input spaces, thus having as net input to the
method a set of data matrices X1,X2, . . . ,Xv. However, MV-MDS is expected
to produce as its output a single projection space Y. The goal of MV-MDS is
to find such space Y so that the distances between points in it are as similar as
possible to the distances between points in all v input spaces. Obviously this
may not always be possible, for the simple reason that the distances in one
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input space Xi may be in contradiction with the distances in another input
space Xj . However, MV-MDS is designed to try and produce the projection
space that more faithfully preserves the distance relations common to all the
input spaces.

Note that the input spaces may have different dimensionality.

Given the fact that there exist v input spaces, the stress or cost function
for MV-MDS, adapted from the stress definition in Equation 4.1, becomes
the stress of the low-dimensional space Y with respect to all the input, high-
dimensional spaces X1,X2, . . . ,Xv, and it is characterized by the following
equation:

StressMV (x
(k)
1 , x

(k)
2 , . . . , x(k)

p ) =
1

v

v∑
k=1

√√√√∑ij(d̂i,j − d
(k)
i,j )2∑

ij d̂
2
i,j

(4.3)

∀i, j = 1, 2, . . . , p, ∀k = 1, 2, . . . , v, where x
(k)
i is the vector with the coordi-

nates of point i in input space k, d
(k)
ij is the Euclidean distance between points

x
(k)
i and x

(k)
j , i.e. the distance in input space k, and d̂ij is the Euclidean

distance between points yi and yj , i.e. the projection of points xi and xj in
the low-dimensional space Y.

Given that there are v input matrices X1,X2, . . . ,Xv, now the dimension-
ality reduction problem characterized by Equation 4.3 requires finding the
eigenvectors of the matrices B(k) = X (k)X (k)T , k = 1, 2, . . . , v. More specif-
ically, if the desired projection space Y should be m-dimensional, then the
m largest eigenvalues and their corresponding eigenvectors need to be deter-
mined.

Solving this problem directly would produce a set of m eigenvectors for
each input matrix, invalidating the whole procedure. However, if the stepwise
common principal components method (S-CPC, see Section 4.2.2) is applied
on B(k) = X (k)X (k)T , k = 1, 2, . . . , v then the m largest common eigenvalues
and their eigenvectors can be computed.

For each input matrix, S-CPC computes an associated eigenvalue. How-
ever, the eigenvectors are unique, common to all input matrices. S-CPC guar-
antees that the eigenvectors produced are ordered by highest sum of the corre-
sponding eigenvalues (i.e. the eigenvalues associated to all the input matrices).
This satisfies the condition of MDS, where the highest eigenvalues must be
computed and their eigenvectors returned as the resulting projection space.

The resulting MV-MDS algorithm is presented in Algorithm 6.
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Algorithm 6 . Multiview Multidimensional Scaling

Input: v datasets X (1),X (2), . . . ,X (v), withX (k) ⊆ Rp × Rnk ,

desired number of dimensions in the output space: m

Output: low-dimensional data representation Y ⊆ Rp × Rm.

function MDS(X (1),X (2), . . . ,X (v),m)

Compute the centering matrix: J ← I − 1
pO, where I is the identity

matrix and O is a p× p matrix of ones

for k ← 1 to v do

Compute the squared distance matrix: D(k)(2) ← [d2(x
(k)
i , x

(k)
j )],

with i, j = 1, 2, . . . , p, where d is the Euclidean distance function

Apply double centering to the squared distance matrix: B(k) ←
−1

2JD
(k)(2)J

end for

Compute the m largest common eigenvalues of {B(1), B(2), . . . ,(v) } and

their associated eigenvectors e1, e2, . . . , em using S-CPC.

Y ← {e1, e2, . . . , em}T , with Y ∈ Rn × Rm

end function

4.4 Results

4.4.1 MV-MDS with respect to SC baseline

The first block of experiments compare the proposed MV-MDS method with
the single-view MDS baseline method, either applied to each input view inde-
pendently, or applied to all the input views stacked into a single data matrix.
The goal of these experiments is to assess the advantages of the multiview
method proposed with respect to the original, single view approach.

In order to synthesize the numerous results (different metrics, datasets
and embedding dimensionalities), the results of each evaluation metric are
summarized in a set of graph plots, one for each dataset in the experiments.
Therefore, six graphs per evaluation metric are produced (five on the un-
supervised metrics, as the Cora dataset has a graph space view that is not
compatible with these metrics). The dimensionality of the results (x axis on
the plots) will be referred as K for simplicity.

Due to their considerable extension, the detailed numerical results are
given in Appendix B, with one table for each combination of evaluation metric
and dataset, in a total of 33 tables to evaluate the MV-MDS method.



70 CHAPTER 4. MULTIVIEW MULTIDIMENSIONAL SCALING

4.4.1.1 Dimensionality reduction evaluation

There are three evaluation metrics for the dimensionality reduction task: SVM
classification, cophenetic correlation (average on all the input views) and area
under the curve of the RNX value (average on all input views).

Figure 4.1 shows the two dimensional projections of two example datasets
using MV-MDS.

SVM classification (Figure 4.2). The results on the animal with at-
tributes (AWA) dataset are low in general, given the specific difficulty of the
task (there are 50 classes in this dataset). There is an initial peak and a
posterior descent around K=10, probably induced by added information that
is not related to the classification task that misguides the algorithms. There
are considerable differences among single views. MV-MDS produces the ab-
solute maximum on K=40, and is consistently better than the stacked views
configuration.

The BBC segmented news dataset has two views that actually are two text
segments of the same document, and as a consequence both views are mainly
equivalent. This is reflected in the SVM results for BBC, where MV-MDS and
stacked-MDS results overlap as there is no practical difference between both
approaches in this dataset. MV-MDS (and stacked-MDS) perform consistently
better than single-view MDS, showing the usefulness of adding more text
content to the method.

On the handwritten digits dataset, MV-MDS performs slightly better than
stacked-MDS on most dimensionalities. In turn, they perform slightly better
than the best single view, and clearly better than the average of single views.

The performance of the different configurations with the Berkeley protein
dataset shows high variation along the values of K, with some single view
configurations dropping while others improving with K. MV-MDS shows the
highest SVM accuracy, and is consistently higher than stacked view for all
K’s.

On the Reuters dataset there is a single view that is clearly better than the
other configurations. This means that one of the input languages (Reuters has
news documents on five languages) is more suited for document classification
according to the topic given in the dataset. MV-MDS has a better than
average performance.

Finally, on the Cora dataset MV-MDS is clearly superior to the baseline
options, achieving the best results with a relatively low dimensionality (around
25). Probably the information added with further dimensions is noise from
the classification point of view. It is interesting to observe how, in this case,
the stacked-MDS is attracted by the worst single view, while the MV-MDS
seems more robust and generates better results.
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Figure 4.1: MV-MDS projection of two example datasets.
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Figure 4.2: MV-MDS dimensionality reduction evaluation with SVM classifi-
cation.
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Cophenetic correlation (Figure 4.3). The cophenetic correlation mea-
sures the similarity of the distances of the new space with respect to the
original input spaces. The average cophenetic correlation on all input views is
provided. On the AWA dataset, MV-MDS shows clearly higher values. Note
the considerable difference between the worst and best single views.

On the BBC dataset there is an initial peak and a posterior descent. Al-
though MV-MDS performs well with low dimensions, its cophenetic correlation
drops with more dimensions. Apparently it is producing a different distance
structure than those present in the original data views. A similar behaviour
appears with the digits dataset.

On the digits, protein and Reuters datasets, MV-MDS shows a lower
cophenetic correlation than the other configurations, generally starting with
average results, then dropping to lowest values.

Area under the RNX curve (Figure 4.4). The area under the RNX
curve (AUC-RNX) also measures the similarity of the sample neighbourhoods
in the projected space with respect to the original input view. Here, the
average AUC-RNX over all input views is given.

On the animal and BBC datasets MV-MDS shows AUC-RNX values above
the average. However, in digits, protein and Reuters MV-MDS starts on
average values but then drops to lowest values.

4.4.1.2 Clustering evaluation

There are three evaluation metrics for the clustering task: the clustering pu-
rity, the clustering normalized mutual information, and the Davies-Bouldin
index (average on all input views).

Clustering purity (Figure 4.5). On the AWA dataset the results are low
in general, due to the high number of classes (50). However, MV-MDS per-
forms better that the baseline MDS configurations. Both in AWA and digits,
MV-MDS performance is intertwined with best single and stacked configura-
tions.

On the BBC, protein and Cora datasets MV-MDS shows an irregular per-
formance, although in all these cases it achieves the best absolute results.

On the Reuters dataset, both MV-MDS and stacked perform worse than
single views in general.

Clustering normalized mutual information (Figure 4.6). On the dig-
its dataset, the clustering normalized mutual information (NMI) of MV-MDS
is clearly superior to the other methods. On the AWA, BBC and protein
datasets it also achieves the best overall performance at specific K’s.

On the Reuters and Cora datasets, MV-MDS performs around or below
average.
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Figure 4.3: MV-MDS dimensionality reduction evaluation with cophenetic
correlation (average on all input views).
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Figure 4.4: MV-MDS dimensionality reduction evaluation with area under the
RNX curve (average on all input views).
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Figure 4.5: MV-MDS clustering evaluation with clustering purity.
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Figure 4.6: MV-MDS clustering evaluation with clustering normalized mutual
information.
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Davies-Bouldin index (Figure 4.7). The Davies-Bouldin index (DBI)
measures the internal properties of the clusters with respect to other clus-
ters, considering the distances in the input spaces. Here, the average Davies-
Bouldin index over all input views is given. For DBI values, less is better (less
distance).

On the AWA, BBC and Reuters datasets, MV-MDS produces the lowest
DBI value, although its behaviour is quite irregular.

On the digits dataset, best single, stacked and MV-MDS show an equiva-
lent performance, alternating with K. Finally on protein dataset, stacked and
MV-MDS have higher (worse) values than average single view configurations.

4.4.2 MV-MDS with respect to the state of the art

Table 4.1 shows the most relevant clustering purity results in the state of the
art and compares them to the results of MV-MDS on the same datasets and
configuration. The clustering purity measures the faithfulness of the produced
clustering assignments to the reference class assignments in the dataset. In
other words, higher values mean that the clustering assignment is more similar
to the class assignment, with a value of 1 meaning that both are identical.

The clustering of the handwritten digits dataset shows high clustering
purity (> 0.8) on most methods, with MV-MDS producing a higher value
than the other methods. The BBC segmented news dataset is only used on
two papers in the state of the art, with quite high values in all cases. Here,
MV-MDS also produces a better clustering than the other methods. On the
Reuters multilingual dataset, MVSC-BG shows the highest clustering purity
value. Finally, the animal with attributes dataset shows a high variability in
the results in the state of the art, with MV-KMeans probably using a different
preprocessing (it is not specified in the paper). Again, MV-MDS produces the
best clustering assignment according to the purity result.

Table 4.2 shows the normalized mutual information (NMI) between the
clustering assignments produced by the multiview clustering methods in the
state of the art and the reference class labels in the dataset. A higher value
implies a more similar assignment, with NMI=1 meaning a perfect match.
However NMI measures the coincidence of the cluster assignments differently
from purity, as it uses the mutual information between both assignments.

The clustering of the handwritten digits dataset has, in general, high NMI
values. MVC-PSS and MVSC-BG show the highest NMI result on this dataset,
with MV-MDS slightly below them. All NMI results on the BBC segmented
news dataset are relatively similar, with CoKmLDA slightly higher. On the
Reuters multilingual dataset, MVSC-BG shows higher NMI value than the
other methods. Finally, on the animal with attributes dataset the results
are mostly around 0.7 and above, with MV-MDS having NMI=0.843, clearly
above the other methods.
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Figure 4.7: MV-MDS clustering evaluation with the Davies-Bouldin index
(average on all input views). Less is better.



80 CHAPTER 4. MULTIVIEW MULTIDIMENSIONAL SCALING

Method Digits BBC Reuters AWA

CoregSC 0.822 0.887 0.552 0.580

MMSC 0.758 NA 0.390 0.585

MVC-SS NA NA 0.531 0.629

MV-KMeans 0.825 NA NA 0.114

CoKmLDA 0.819 0.914 NA NA

MFSC-MO 0.800 NA NA NA

MVC-PSS 0.862 NA NA 0.325

MVSC-BG 0.844 NA 0.577 NA

MV-MDS 0.887 0.921 0.534 0.775

“NA” means there are no available results of the method on the data set.

Table 4.1: Clustering purity wrt. the state of the art.

Method Digits BBC Reuters AWA

CoregSC 0.836 0.769 0.326 0.695

MMSC 0.792 NA 0.134 0.698

MVC-SS NA NA NA 0.751

MV-KMeans 0.807 NA NA 0.117

CoKmLDA 0.818 0.796 NA NA

MFSC-MO 0.785 NA NA NA

MVC-PSS 0.833 NA NA 0.213

MVSC-BG 0.832 NA 0.357 NA

MV-MDS 0.821 0.788 0.280 0.843

“NA” means there are no available results of the method on the data set.

Table 4.2: Clustering NMI wrt. the state of the art.

4.5 Discussion

First, MV-MDS is compared with the baseline methods (single view and
stacked views MDS). In the dimensionality reduction task, MV-MDS shows an
overall better performance than the baseline methods, reflected in the highest
absolute SVM score on five datasets as well as a superior performance on the
majority of dimensionalities and datasets. In general it performs better than
the average single-view and the stacked-view MDS configurations, which are
more realistic than the best single-view, as in a real task it probably will not
be known which is the single best view in a multiview dataset.

The unsupervised metrics for dimensionality reduction evaluation (cophe-
netic correlation and AUC-RNX) give an average or lower than average score
to MV-MDS. These metrics measure the similarity of the low-dimensional
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space generated by the method with the original input space; in the case of
multiview datasets, the average measures over all the input views has been
computed. It is expected that the projections using the original views (one by
one or stacked) resemble the original data very closely. The fact that MV-MDS
scores in middle or lower positions in these metrics suggests that the projec-
tion it generates has an internal structure that differs from the structure of the
original input views. This is reasonable, as MV-MDS has to include informa-
tion from all the views and as a consequence it has to produce an innovative
data structure.

Regarding the clustering performance of MV-MDS, its performance is on
the top on some of the datasets (3 or 4 depending on the metric considered).
However, its average performance is not clearly superior to the average single-
view or stacked views configurations. This is to be expected, as neither MDS
nor MV-MDS are specifically designed as clustering methods, but as dimen-
sionality reduction methods.

Compared with other multiview clustering methods in the state of the art,
the method proposed in this thesis (MV-MDS) shows better overall clustering
results when measured with clustering purity in three datasets, while its results
with NMI are only slightly below the best ones in two datasets and clearly
above the other methods in AWA dataset. This makes MV-MDS a reasonable
alternative for multiview clustering, comparable or slightly better than other
methods in the state of the art. This result is specially remarkable given
the fact that neither MDS or MV-MDS are initially conceived as clustering
methods, but as dimensionality reduction methods instead.

A possible explanation for these results is that the dimensionality reduc-
tion produced by MV-MDS condenses the most relevant information of the
multiview datasets, while discarding noise or contradictory data. As a conse-
quence, the posterior clustering performed on the low-dimensional projection
generated by MV-MDS is of high quality.

MV-MDS computes the common eigenvectors of the normalized distance
matrices of the input data views. The distance matrices of the different views
of a multiview dataset are supposed to contain a considerable amount of shared
information, as the distances between samples in different views are likely to
be coherent in general. The probable cause of the good results of MV-MDS as
a multiview clustering method may be the fact that, when computing the com-
mon eigenvectors, the redundant information from the distance matrices is (1)
retrieved first as it has a stronger signal, and (2) is only retrieved once, leaving
room for other useful information in the common subspace matrix generated.
This behaviour may be making MV-MDS better at synthesizing the informa-
tion contained in the multiple views, therefore feeding richer information into
the clustering stage.

On the other hand, the qualitative advantages of MV-MDS over other
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multiview clustering methods in the state of the art are the following.

• Some methods, like CoregSC [62] and MMSC [12], can only work with
two input data views. MV-MDS can work with any number of input
views.

• CoregSC [62], MV-KMeans [11] and MVC-SS [106] can only work with
feature space input data. MV-MDS can work with either feature or
graph space input data, or with any combination of both.

• CoKmLDA [117] requires all data views to have the same dimensionality,
while MV-MDS can work with data matrices of different dimensionality.



Chapter 5

Multiview spectral clustering
and Laplacian eigenmaps

5.1 Motivation

Spectral clustering (SC) [92] is a well-known clustering algorithm that is based
on spectral graph theory [96]. One of its distinctive features is that it clus-
ters samples by connectivity, not merely by distance, and therefore it allows
the clustering of data sets with concave or nested clusters. It is one of the
most frequently used clustering methods when such complex data has to be
processed and clustered.

Laplacian eigenmaps [7] is a dimensionality reduction algorithm that is
very closely related to spectral clustering, in fact in some formulations the
Laplacian eigenmaps algorithm is included in the SC algorithm. As a conse-
quence, Laplacian eigenmaps show most of the properties of SC, as the fact
that it groups points by connectivity, being able to identify sets of contiguous
samples.

This Chapter presents a novel multiview spectral clustering algorithm,
MVSC-CEV (multiview spectral clustering by common eigenvectors) that ex-
tends the features of spectral clustering to multiview datasets. The experi-
ments on standard multiview data sets show that the MVSC-CEV algorithm
has a better overall clustering performance than existing multiview clustering
algorithms.

The development of MVSC-CEV also allows to develop a multiview version
of Laplacian eigenmaps. Thus, a new multiview dimensionality reduction
method is proposed, multiview Laplacian eigenmaps. However, for the sake
of simplicity both algorithms will be referred simply as MVSC-CEV, either
applied to clustering or to dimensionality reduction tasks.

83
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5.2 Related work

The MVSC-CEV algorithm is mainly based on two well known algorithms: the
Ng, Jordan and Weiss (NJW) spectral clustering algorithm [84] and stepwise
common principal components method [100]. In this Section, we outline both
algorithms in order to provide a theoretical background for the MVSC-CEV
algorithm described in Section 5.3.

5.2.1 Spectral clustering

Spectral graph theory gives the conditions under which a graph can be parti-
tioned into non-connected subgraphs. The spectral clustering algorithm [92]
is an application of spectral graph theory to the task of graph clustering,
which can be further applied to any data expressed as a matrix of similarities
between samples.

There are several variants of the spectral clustering algorithm. The method
presented in this paper is based on the variant described in [84], as it is a well
accepted and proven variant and it allows a reduction in the computational
cost of the MVSC-CEV algorithm, as will be explained in Section 5.3. As a
reference for the definition of MSCV-CEV on Section 5.3, the NJW spectral
clustering algorithm is shown in Algorithm 7.

Algorithm 7 Spectral Clustering - NJW variant

Input: a set of data samples P = {p1, . . . , pn} and the number k of desired
clusters.

1. Build a similarity matrix S ∈ Rn×n from P using the Gaussian similarity
function Gij = exp(−‖pi − pj‖2/2σ2).

2. Construct the normalized symmetrical Laplacian matrix L =
D−1/2SD−1/2, where D is the diagonal matrix whose (i, i) element is
the sum of the i-th row of S.

3. Create a matrix X ∈ Rn×k with the k largest eigenvectors of L disposed
in columns.

4. Normalize X so that each row has unit length, obtaining Y ∈ Rn×k.

5. Apply K-means or another clustering algorithm to Y .

Output: a clustering assignment in k clusters of the n samples in P .

The only parameter besides the desired number of clusters k is σ, which
controls the influence of the distance between two points pi and pj on their
similarity sij . By default, the heuristic proposed in [87] is used to choose
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σ. However, the similarity matrix S built in Step 1 can be obtained using a
different similarity function.

Note that the algorithm is formulated to receive data in feature space
(observations/features matrix) as input. However, it can also be applied to
data in graph space (adjacency or similarity matrix).

An important feature of spectral clustering is that it groups points by
connectivity, not merely by distance, i.e. if point a is connected to b and b
to c then a and c will be assigned to the same cluster, even if the distance
between a and c is relatively large. This allows clusterings on data sets with
concave groups of points to be found, identifying clusters similarly to how
humans identify connected shapes.

5.2.2 Laplacian Eigenmaps

Laplacian Eigenmaps is a method of dimensionality reduction described in
[7] that tries to find a low-dimensional manifold supposedly embedded in a
high-dimensional space. Laplacian Eigenmaps algorithm comprises three main
stages: (1) computing an adjacency matrix between the input points, (2)
computing the Laplacian matrix of the adjacency matrix, and (3) computing
the eigenvectors of the Laplacian matrix. The detailed Laplacian Eigenmaps
method is presented in Algorithm 8. Although the original formulation by
[7] proposes the use of a heat kernel to compute the adjacency matrix, other
adjacency functions have been proposed for this method, for example Gaussian
radial basis functions.

Algorithm 8 . Laplacian Eigenmaps

Input: dataset X = {x1, x2, . . . , xn},
Output: low-dimensional data representation Y = {y1, y2, . . . , yn}, yi ∈ Rk

function laplacianEigenmaps(X )

compute adjacency matrix A using the Gaussian similarity function, so

that Aij = exp(−‖pi − pj‖2/2σ2).

compute the normalized Laplacian matrix L = D−1/2SD−1/2, where D

is the diagonal matrix whose (i, i) element is the sum of the i-th row of S.

let Y be the first k eigenvectors of L

end function

Laplacian Eigenmaps are very closely related to Spectral Clustering. Ac-
cording to their authors, the application of a standard clustering algorithm
(as K-means) to the space generated by Laplacian Eigenmaps would produce
the same clustering as in the Spectral Clustering algorithm. This is specially
clear if a Gaussian similarity function is used to compute the adjacencies in
the Laplacian Eigenmaps algorithm.
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5.3 MVSC-CEV description

5.3.1 Description of the algorithm

The multiview spectral clustering algorithm by common eigenvectors pre-
sented in this paper (MVSC-CEV), detailed in Algorithm 9, has an struc-
ture that resembles that of the NJW spectral clustering algorithm (described
in Section 5.2.1). The main difference lies in the fact that MVSC-CEV re-
places the single input data matrix with a set of C input data views V̄ =
{V1, V2, . . . VC}. In turn, for each input matrix in V̄ , a similarity matrix
and its corresponding Laplacian matrix are computed. Then the eigenvectors
common to all C Laplacian matrices are computed and used to obtain the
clustering.

Algorithm 9 Multiview spectral clustering by common eigenvectors (MVSC-
CEV)

Input: C view matrices V̄ = {V1, V2, . . . VC} of the data (with n samples
each) and the number k of desired clusters.

1. For each data view Vc ∈ V̄ , compute a similarity matrix Sc ∈ Rn×n using
the Gaussian similarity function Gij = exp(−‖pi − pj‖2/2σ2). The final
result is a set of similarity matrices S̄ = {S1, S2, . . . SC}

2. For each similarity matrix Sc ∈ S̄ construct the normalized symmetrical
Laplacian matrix Lc = D−1/2SD−1/2, where D is the diagonal matrix
whose (i, i) element is the sum of Sc’s i-th row. The result is a set of
Laplacian matrices L̄ = {L1, L2, . . . LC}

3. Create a matrix X ∈ Rn×k with the k largest common eigenvectors of
the matrices in L̄, computed using the S-CPC algorithm (Section 4.2.2).

4. Normalize X so that each row has unit length, obtaining Y ∈ Rn×k.

5. Apply K-means or another clustering algorithm to Y .

Output: a single clustering assignment of the n input data samples in k
clusters.

A consequence of using the NJW spectral clustering formulation is that
only the k largest eigenvectors have to be computed. S-CPC algorithm makes
this possible in an efficient way, thus reducing the computational complexity
of Step 3 of Algorithm 9 from O(Cn2) to O(Ckn), with k � n in the vast
majority of cases.

MVSC-CEV can operate on both feature space and graph space input
views, and on any combination of both. Input matrices in feature space can
have any dimension, possibly differing across the different matrices.
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5.3.2 Ideal clustering case

To show why Algorithm 9 works as expected, let us consider first an ideal case,
where there are k = 3 perfectly separated clusters, i.e. the points in different
clusters are infinitely far apart from each other. Moreover, all C data views
have the same clustering structure. In order to simplify the discussion, let
us also assume that the points in the data views are ordered according to
the cluster they belong to, so points belonging to cluster 1 appear first, then
points of cluster 2 and finally the points of cluster 3.

Consequently, the similarity matrices of this example will be block-diagonal:
∀S ∈ {S1, S2, . . . SC}, Sij = 0 if data points i and j do not belong to the same
cluster, or greater than zero otherwise. Representing each non-zero subblock
of the similarity matrices with a parenthesized superscript:

Sc =

S(1) 0 0

0 S(2) 0

0 0 S(3)

 ∀Sc ∈ S̄ (5.1)

On the next step of the algorithm, for each similarity matrix Sc a Laplacian
matrix Lc is computed, whose block-diagonal structure will be the same:

Lc =

L(1) 0 0

0 L(2) 0

0 0 L(3)

 ∀Lc ∈ L̄ (5.2)

In step 3 of Algorithm 9, the set of Laplacian matrices L̄ defined in (5.2)
is passed to the S-CPC algorithm along with k in order to compute their
common eigenvectors. According to [100], S-CPC finds the k eigenvectors
whose sum of eigenvalues is highest. Each such eigenvector is located on
the Rn sphere, where n is the number of samples in the input data. The
common eigenvectors are mutually orthogonal. Given the common structure
of the Laplacian matrices in Lc ∈ L̄, they have the same eigenvectors, which
therefore are the common eigenvectors computed by S-CPC. Following [84],
the k largest eigenvectors of the Laplacian matrices in Lc ∈ L̄ are the first

eigenvectors (i.e. those with largest eigenvalue) x
(i)
1 of each submatrix L

(i)
c ,

properly padded with zeros to complete the missing elements:

X =

x
(1)
1

~0 ~0
~0 x

(2)
1

~0
~0 ~0 x

(3)
1

 ∈ Rn×k (5.3)

Finally, the normalization of the rows of X to make them of unit length
results in a matrix Y , of the form:
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Y =

y(1) ~0 ~0
~0 y(2) ~0
~0 ~0 y(3)

 ∈ Rn×k (5.4)

where y(i) is a vector of ones with as many values as the number of elements
in cluster i. Applying K-Means to Y produces the clustering assignment of
the input data samples common to the C input views.

5.3.3 Deviations from the ideal case

On multiview clustering problems there are two possible sources of deviation
from the ideal case discussed in Section 5.3.2.

The first possible situation occurs when the off-diagonal blocks in the
similarity matrices S ∈ S̄ are not zero, i.e. the clusters are not perfectly
separated from each other. This case is discussed in [84] for a single similarity
matrix, but its extension to several similarity matrices with the same structure
is straightforward.

The second possible deviation from the ideal case stems from structural
discrepancies across data views, where not all similarity matrices share the
same structure. Obviously this second deviation implies the former one, as
at least some of the views cannot exhibit a perfect block-diagonal structure if
there are differences between them.

In this case, the eigenvalues associated to each of the different Laplacian
matrices in L̄ may not decrease simultaneously; but even in such a case, S-CPC
guarantees that the sum of the eigenvalues associated to each successive

common eigenvector is decreasing. Let λ
(i)
c be the eigenvalue associated to

Laplacian matrix Lc obtained on iteration i of S-CPC, i.e. associated with
the i-th eigenvector. Therefore, the following relation holds:

C∑
c=1

λ(i)
c ≥

C∑
c=1

λ(i+1)
c ∀i = 1, 2, . . . k (5.5)

in other words, the eigengaps (difference between consecutive eigenvalues) are
conserved:

δ(i) =
C∑
c=1

λ(i)
c −

C∑
c=1

λ(i+1)
c ≥ 0 ∀i = 1, 2, . . . k (5.6)

This satisfies the matrix perturbation theory condition [96], that guaran-
tees the stability of the subspace defined by the first k eigenvectors a matrix
as long as the eigengaps are conserved.
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5.3.4 Multiview Laplacian Eigenmaps

Given the close correspondence between Spectral Clustering and Laplacian
Eigenmaps described in Section 5.2.2, an equivalent correspondence can be
established between the Multiview Spectral Clustering algorithm presented
here (Section 5.3) and a multiview extension to Laplacian Eigenmaps. The
Multiview Laplacian Eigenmaps algorithm (MV-LE) proposed is a variation of
Algorithm 9, where the resulting low-dimensional projection is the normalized
common eigenvector matrix Y . MV-LE is detailed in Algorithm 10.

Algorithm 10 Multiview Laplacian Eigenmaps

Input: C view matrices V̄ = {V1, V2, . . . VC} of the data (with n samples
each) and the number k of desired dimensions of the projection.

1. For each data view Vc ∈ V̄ , compute a similarity matrix Sc ∈ Rn×n using
the Gaussian similarity function Gij = exp(−‖pi − pj‖2/2σ2). The final
result is a set of similarity matrices S̄ = {S1, S2, . . . SC}

2. For each similarity matrix Sc ∈ S̄ construct the normalized symmetrical
Laplacian matrix Lc = D−1/2SD−1/2, where D is the diagonal matrix
whose (i, i) element is the sum of Sc’s i-th row. The result is a set of
Laplacian matrices L̄ = {L1, L2, . . . LC}

3. Create a matrix X ∈ Rn×k with the k largest common eigenvectors of
the matrices in L̄, computed using the S-CPC algorithm (Section 4.2.2).

4. Normalize X so that each row has unit length, obtaining Y ∈ Rn×k.

Output: a single k-dimensional projection (Y ) of the multiview input sam-
ples.

5.4 Results

Strictly speaking, MVSC-CEV is a multiview clustering algorithm and MV-
LE is a multiview dimensionality reduction algorithm. However, given that
they are so closely related (their code is almost identical) and for the sake of
simplicity, the results from MV-LE when applied to dimensionality reduction
maps will simply be referred to as results for MVSC-CEV.

5.4.1 MVSC-CEV with respect to SC baseline

The first block of experiments compare the proposed MVSC-CEV method
with the spectral clustering baseline, either applied to each input view inde-
pendently, or applied to all the input views stacked into a single data matrix.
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The goal of these experiments is to assess the advantages of the multiview
method proposed with respect to single view approaches.

In order to synthesize the numerous results (different metrics, datasets
and embedding dimensionalities), the results of each evaluation metric are
summarized in a set of graph plots, one for each dataset in the experiments.
Therefore, six graphs per evaluation metric are produced (five on the un-
supervised metrics, as the Cora dataset has a graph space view that is not
compatible with these metrics).

However, the detailed numerical results are given in Appendix C, with one
table for each combination of evaluation metric and dataset, in a total of 33
tables to evaluate the MVSC-CEV method.

5.4.1.1 Dimensionality reduction evaluation

There are three evaluation metrics for the dimensionality reduction task: SVM
classification, cophenetic correlation (average on all the input views) and area
under the curve of the RNX value (average on all input views).

Figure 5.1 shows the two dimensional projections of two example datasets
using MVSC-CEV.

SVM classification (Figure 5.2). The results on the animal with at-
tributes (AWA) dataset are low and irregular in general, given the specific
difficulty of the task (there are 50 classes in this dataset). There is an ini-
tial peak and a posterior descent around K=10, probably induced by added
information that is not related to the classification task and misguides the
algorithm. Then the results rise again around K=50, which happens to be the
number of classes in the dataset and as such a recommended dimensionality for
this dataset. Apparently one of the single views shows a better performance
than the other configurations.

The BBC segmented news dataset has two views that actually are two text
segments of the same document, and as a consequence both views are mainly
equivalent. This is reflected in the SVM results for BBC, where MVSC-CEV
and stacked-SC results overlap as there is no practical difference between
both approaches in this dataset. MVSC-CEV (and stacked-SC) perform con-
sistently better than single-view SC, showing the usefulness of adding more
text segments to the dataset.

On the handwritten digits dataset, MVSC-CEV performs slightly better
than stacked-SC on most dimensionalities. Here there is a considerable differ-
ence of performance between single views, what leads to thinking that some
views are not so useful in the classification task.

On the Berkeley protein dataset, MVSC-CEV clearly performs above the
baseline methods for all dimensionalities ≤ 30. This is specially interesting as
it is the range where most information compression is achieved. Interestingly,
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Figure 5.1: MVSC-CEV projection of two example datasets.
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the worst single-view configuration ends performing the best in very high
dimensionalities (≥ 70).

On the Reuters dataset, the best single view SC performs better than the
other methods. MVSC-CEV, however, performs clearly better than stacked
and average single view configurations on most K’s.

Finally, on the Cora dataset the stacked-SC performs better for low di-
mensionalities, achieving the absolute maximum. The best single-SC performs
better at higher dimenensionalities. In this case, the worst single view seems
to attract both MVSC-CEV and stacked-SC, as they closely follow its curve
of results.

Cophenetic correlation (Figure 5.3). The cophenetic correlation mea-
sures the similarity of the distances of the new space with respect to the
original input spaces. The average cophenetic correlation on all input views is
provided. On the AWA and digits datasets, MVSC-CEV shows a performance
around the average single view SC.

On the BBC dataset, its cophenetic correlation is consistently above sin-
gle view SC, although overlapped with stacked-SC due to the design of this
dataset.

On the Berkeley protein dataset, MVSC-CEV shows the higher correlation
on low dimensionalities, although then it drops with dimensionalities ≥ 20.

Finally, on the Reuters dataset all methods start with a high value to drop
with K. MVSC-CEV and stacked rank below average single views.

Area under the RNX curve (Figure 5.4). The area under the RNX
curve (AUC-RNX) also measures the similarity of the sample neighbourhoods
in the projected space with respect to the original input view. Here, the
average AUC-RNX over all input views is given.

In the AWA and BBC datasets, MVSC-CEV shows the highest AUC-RNX
values. On the other hand, it shows values around the average on the digits
and protein datasets.

On the Reuters dataset, MVSC-CEV and stacked show intertwined results,
with MVSC-CEV in general slightly above and showing the absolute maximum
AUC-RNX values.

5.4.1.2 Clustering evaluation

There are three evaluation metrics for the clustering task: the clustering pu-
rity, the clustering normalized mutual information, and the Davies-Bouldin
index (average on all input views).

Clustering purity (Figure 5.5). MVSC-CEV consistently shows the high-
est clustering purity on the animal dataset, and also on most dimensionalities
on the Cora dataset.
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Figure 5.2: MVSC-CEV dimensionality reduction evaluation with SVM clas-
sification.
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Figure 5.3: MVSC-CEV dimensionality reduction evaluation with cophenetic
correlation (average on all input views).
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Figure 5.4: MVSC-CEV dimensionality reduction evaluation with area under
the RNX curve (average on all input views).
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On specific dimensionalities, MVSC-CEV produces the highest purity val-
ues on the BBC, digits and proteins datasets. The first and last of these
datasets show quite irregular results, with a tendency on the protein dataset
of attracting the purity values to 0.70.

Finally, on the Reuters dataset the best single view shows the best perfor-
mance. MVSC-CEV is clearly better than stacked and average single views.

Clustering normalized mutual information (Figure 5.6). The clus-
tering NMI results are quite similar to the clustering purity results, with
MVSC-CEV showing the best results on animal, BBC, digits, protein and
Cora datasets.

On the Reuters dataset, the best single view configuration performs better
than the other methods. MVSC-CEV, however, performs better than stacked
and average single views.

Davies-Bouldin index (Figure 5.7). The Davies-Bouldin index (DBI)
measures the internal properties of the clusters with respect to other clus-
ters, considering the distances in the input spaces. Here, the average Davies-
Bouldin index over all input views is given. For DBI, less is better.

On the animal and protein datasets, there is a wide difference between
the best single view SC and the other configurations. Both MVSC-CEV and
stacked show a DBI around that of the worst single view.

On the BBC dataset, MVSC-CEV and stacked DBI results overlap on
most K’s and show the best results. On the digits dataset, the best single
view overlaps and finally improves over MVSC-CEV and stacked views.

Finally, on the Reuters dataset all results are mixed and irregular, with
best single view showing the absolute minimum DBI value.

5.4.2 MVSC-CEV with respect to the state of the art

Table 5.1 shows the most relevant clustering purity results in the state of the
art and compares them to the results of MVSC-CEV on the same datasets and
configuration. The clustering purity measures the faithfulness of the produced
clustering assignments to the reference class assignments in the dataset. In
other words, higher values mean that the clustering assignment is more similar
to the class assignment, with a value of 1 meaning that both are identical.

The clustering of the handwritten digits dataset shows high clustering pu-
rity (> 0.8) on most methods, with MVSC-CEV producing a clearly higher
value than the other methods. The BBC segmented news dataset is only used
on two papers in the state of the art, with quite high values in all cases. Here,
MVSC-CEV also produces a better clustering than the other methods. The
Reuters multilingual dataset renders lower purity values in general, as it ap-
pears to be a harder task. In any case, MVSC-CEV still holds the best purity
result. Finally, the animal with attributes dataset shows a high variability in



5.4. RESULTS 97

0 20 40 60 80 100

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

0.
14

Animal (AWA) dataset

●

●

●

●

●
●

●

●●

●
●

●
●

● ●

●

●
● ●

●

●

●●●
●●●

●
●

●

●
● ● ●

●

● ●
●

●

●

●●
●
●
●
●●

●●
●

●
●

●

●

● ●

●

●
●

●

●
●
●
●●●

●
●
●

●

● ●
●

●

● ●

● ●
●

●

●●●
●
●●●●● ● ●

● ● ●
●

●

●
●

●

●

MVSC−CEV
Stacked
Best single
Average single
Worst single

0 20 40 60 80 100
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

BBC dataset

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

● ●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

MVSC−CEV
Stacked
Best single
Average single
Worst single

0 20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Digits dataset

●

●

●●

●

●

●
●

●

● ●
●

● ● ●

● ● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●
●●

●

●
●

●
●

●
●

●
●

●
●

●

●
●●

●

●

●●●● ● ●

●

●

●

●
●

●
●

●

●

MVSC−CEV
Stacked
Best single
Average single
Worst single

0 20 40 60 80 100

0.
70

0.
72

0.
74

0.
76

0.
78

0.
80

Protein dataset

●

●

●●●●●●● ● ● ● ● ● ● ● ● ● ● ●●

●

●

●

●●●●● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●●

●

● ●

● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●●

●
● ●

● ● ● ● ● ● ● ●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ●

MVSC−CEV
Stacked
Best single
Average single
Worst single

0 20 40 60 80 100

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Reuters dataset

●

●

●●

●●

●●●

● ●

●

●
●

●

●
●

● ●

●

●

●

●
●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●
●

●

●
●

●

● ●

●
●

●

●

●

●●●

●

●

●
●

● ●

●

●
●

● ●

●

MVSC−CEV
Stacked
Best single
Average single
Worst single

0 20 40 60 80 100

0.
30

0.
35

0.
40

0.
45

Cora dataset

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●
●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ● ●

●

●

●●●●●●●●●

●

● ● ●

●

● ●

● ●

● ●

●

●
●

●

●
●●●

●

●

● ● ●
●

●
●

● ●
●

●
●

●

●

●

●

●●
●

●

●

● ● ● ●

●

● ● ● ●

●

MVSC−CEV
Stacked
Best single
Average single
Worst single

K (dimensions)

C
lu

st
er

in
g 

pu
rit

y

Figure 5.5: MVSC-CEV clustering evaluation with clustering purity.
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Figure 5.6: MVSC-CEV clustering evaluation with clustering normalized mu-
tual information.
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Figure 5.7: MVSC-CEV clustering evaluation with the Davies-Bouldin index
(average on all input views). Less is better.
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the results in the state of the art, with MV-KMeans probably using a different
preprocessing (it is not specified in the paper). Again, MVSC-CEV produces
the best clustering assignment according to the purity result.

Method Digits BBC Reuters AWA

CoregSC 0.822 0.887 0.552 0.580

MMSC 0.758 NA 0.390 0.585

MVC-SS NA NA 0.531 0.629

MV-KMeans 0.825 NA NA 0.114

CoKmLDA 0.819 0.914 NA NA

MFSC-MO 0.800 NA NA NA

MVC-PSS 0.862 NA NA 0.325

MVSC-BG 0.844 NA 0.577 NA

MVSC-CEV 0.946 0.940 0.619 0.795

“NA” means there are no available results of the method on the data set.

Table 5.1: Clustering purity wrt. the state of the art.

Table 5.2 shows the normalized mutual information (NMI) between the
clustering assignments produced by the multiview clustering methods in the
state of the art and the reference class labels in the dataset. A higher value
implies a more similar assignment, with NMI=1 meaning a perfect match.
However NMI measures the coincidence of the cluster assignments differently
from purity, as it uses the mutual information between both assignments.

The clustering of the handwritten digits dataset has, in general, high NMI
values. MVSC-CEV shows the highest NMI result on this dataset. The two
results on the BBC segmented news dataset are relatively similar, while the
NMI result of MVSC-CEV is slightly higher. MVSC-BG [70] shows the high-
est results on the Reuters multilingual dataset, although the values are in
general lower than in other datasets. Finally, on the animal with attributes
dataset the results are mostly around 0.7 and above, with MVSC-CEV having
NMI=0.833, clearly above the other methods.

5.5 Discussion

When compared to the baseline methods on the dimensionality reduction task,
MVSC-CEV shows the best performance (SVM classification accuracy) on four
out of six datasets. On the Reuters dataset, it performs better than stacked or
average single views, which are a more realistic reference than the best single
view, which probably is not known beforehand. Finally on the animal dataset
the overall results of all methods are low and irregular so they may not be
of much relevance to evaluate this task. On the unsupervised dimensionality



5.5. DISCUSSION 101

Method Digits BBC Reuters AWA

CoregSC 0.836 0.769 0.326 0.695

MMSC 0.792 NA 0.134 0.698

MVC-SS NA NA NA 0.751

MV-KMeans 0.807 NA NA 0.117

CoKmLDA 0.818 0.796 NA NA

MFSC-MO 0.785 NA NA NA

MVC-PSS 0.833 NA NA 0.213

MVSC-BG 0.832 NA 0.357 NA

MVSC-CEV 0.892 0.826 0.341 0.833

“NA” means there are no available results of the method on the data set.

Table 5.2: Clustering NMI wrt. the state of the art.

reduction evaluation metrics, MVSC-CEV shows the best performance on
half the datasets and an average perfomance on the other three. This is
likely caused by the fact that these metrics measure the likeliness of the low-
dimensional projection to the original input data, and MVSC-CEV probably
has to perform deeper transformations of the data in order to embed the
different input views into a single projection space. Each single view SC only
has to embed one input space, and the stacked view configuration simply adds
the different input spaces into a large data matrix, without a profound change
in its structure.

Regarding the clustering task, MVSC-CEV achieves the best performance
on five out of six datasets, both on clustering purity and NMI. This evidences
its usefulness as multiview clustering method with respect to using single view
or stacked view solutions on standard spectral clustering. On the remaining
dataset (Reuters), it shows better performance than both the stacked views
and the average single view, which as it has been argued before is a realistic as-
sessment of its practical advantages when processing new multiview datasets,
where it is unknown if one of the views is better than the others and as a
consequence all views or a concatenation of all views has to be used instead.

Compared with other multiview clustering methods in the state of the art,
the method proposed in this thesis (MVSC-CEV) shows better overall clus-
tering results. This has been tested with four well known multiview datasets
and two supervised clustering evaluation metrics, where MVSC-CEV produces
better clusterings in all cases except one. This suggests that MVSC-CEV may
be a better multiview clustering method than the other methods in the state
of the art.

MVSC-CEV computes the common eigenvectors of the Laplacian matrices,
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computed in turn from the similarity matrices of the input data views. The
similarity matrices of the different views of a multiview dataset are supposed
to contain a considerable amount of shared information, as the similarities
between samples in different views are likely to be coherent in general. The
probable cause of the advantage of MVSC-CEV over other multiview cluster-
ing methods may be the fact that, when computing the common eigenvectors,
this redundant information is (1) retrieved first as it has a stronger signal,
and (2) is only retrieved once, leaving room for other useful information in the
common subspace matrix generated. This behaviour may be making MVSC-
CEV better at synthesizing the information contained in the multiple views,
therefore feeding richer information into the clustering stage.

On the other hand, the qualitative advantages of MVSC-CEV over other
multiview clustering methods in the state of the art are the following.

• Some methods, like CoregSC [62] and MMSC [12], can only work with
two input data views. MVSC-CEV can work with any number of input
views.

• CoregSC [62], MV-KMeans [11] and MVC-SS [106] can only work with
feature space input data. MVSC-CEV can work with either feature or
graph space input data, or with any combination of both.

• CoKmLDA [117] requires all input data to have the same dimensionality,
while MVSC-CEV can work with input matrices of different dimension-
ality.



Chapter 6

Method comparison

6.1 Motivation

The previous Chapters included the description of the three methods pro-
posed in this thesis, as well as the exposition of results and analysis of the
experiments comparing them with their single-view counterparts and equiva-
lent methods in the state of the art. However, no direct comparison between
the three proposed methods has been done yet. The goal of this Chapter is to
directly compare the three proposed methods, analyze their respective results
and, if possible, suggest which one to use given a certain task.

6.2 Multiview dimensionality reduction

SVM classification (Figure 6.1). On the AWA, protein and Cora datasets,
MV-MDS shows better results than the other methods. On the BBC, dig-
its and Reuters datasets, MV-MDS and MVSC-CEV are fairly balanced, al-
though on the Reuters dataset MVSC-CEV seems to dominate. MV-tSNE
remains below on all the datasets, although its behaviour is more stable in
some datasets.

Cophenetic correlation (Figure 6.2). MV-MDS shows better results on
the AWA, digits, protein and Reuters datasets, in all or most dimensionalities.
On the BBC dataset MV-tSNE begins with the better cophenetic correlation,
although with higher K’s MVSC-CEV has better results.

Area under the RNX curve (Figure 6.3). Again MV-MDS shows better
AUC-RNX values on the AWA, digits, protein and Reuters datasets. As in
the case of the cophenetic correlation, on the BBC dataset MV-tSNE has the
best results at low K’s but afterwards MVSC-CEV increases its AUC-RNX
and surpasses it.

103
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Figure 6.1: Dimensionality reduction evaluation with SVM classification.
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Figure 6.2: Dimensionality reduction evaluation with cophenetic correlation.
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Figure 6.3: Dimensionality reduction evaluation with AUC-RNX.
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6.3 Multiview clustering

Clustering purity (Figure 6.4). MVSC-CEV shows the highest purity
values on AWA, BBC, digits and Reuters, although in some cases only at
specific dimensionalities. On the protein dataset MV-MDS shows the best
purity result. Finally, on the Cora dataset, MV-tSNE has the highest purity.

Normalized mutual information (Figure 6.5). MV-MDS and MVSC-
CEV are quite balanced on AWA and digits datasets. MVSC-CEV has a
slightly higher value on the BBC dataset, and clearly dominates on the Reuters
dataset. The protein dataset maximum is achieved by MV-MDS, while the
best NMI results on Cora are obtained by MV-tSNE.

Davies-Bouldin index (Figure 6.6). MV-tSNE gives the lowest (best)
DBI values on AWA, BBC, Digits and Reuters datasets. On the protein
dataset, the minimum is achieved by MV-MDS.

6.4 Discussion

According to the evaluation metrics used in the experiments, MV-MDS seems
the best option for dimensionality reduction tasks, as it produces the best
results on most metrics and datasets. However, it is important to analyze
the behaviour of the different methods along the number of dimensions of the
output space, as the specific application may require a concrete dimension-
ality. For example, for data visualization the dimensionality of the output
space should be 2 or 3. In general, both MV-MDS and MVSC-CEV seem
to produce the best results with a number of dimensions between 10 and 30;
adding more dimensions, in general, makes the quality indicators drop. This
is probably caused by the fact that the intrinsic dimensionality of the manifold
that is being captured is of that order, and adding more dimensions simply
adds noise to the representation.

Regarding the multiview clustering task, in general MVSC-CEV shows
better results than the other methods, although in some cases MV-MDS per-
forms better. It is also relevant to recall the results of the methods proposed
with respect to the multiview clustering methods in the state of the art, where
MVSC-CEV showed the best results on most comparisons.

As a guideline for the potential users of the methods proposed in this
thesis, MV-MDS seems the best option for dimensionality reduction tasks,
while MVSC-CEV would be the first option on multiview clustering tasks.
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Figure 6.4: Clustering purity.



6.4. DISCUSSION 109

0 20 40 60 80 100

0.
05

0.
10

0.
15

Animal (AWA) dataset

●●●●
●●●●● ● ● ● ●

●

●

●

●

●
●

●

●
●

●

●
●●

●●
● ● ●

● ●
●

● ●

●
●

●
●

●

●●

●●●●
●●

●
●

●

● ●
●

●
●

●
● ●

MV−tSNE
MV−MDS
MVSC−CEV

0 20 40 60 80 100
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8

BBC dataset

●

●

●

●

●●
●●● ● ●

●

● ● ●
● ●

●
● ●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●
●

●
●

●

●
●

MV−tSNE
MV−MDS
MVSC−CEV

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Digits dataset

●

●

●●
●

●●●● ● ● ● ● ● ● ● ● ● ● ●

●

●●
●

●

●

●●
●

●
●

●
●

●

● ●
●

● ● ●

●

●

●

●●●
●

●

●

●
●

●
●

●

●

●

● ● ● ●

MV−tSNE
MV−MDS
MVSC−CEV

0 20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

Protein dataset

●

●

●

●●●●●● ● ● ● ● ● ● ● ● ● ● ●

●●

●

●●
●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●● ● ●

● ●
●

●

●

●

●
●

●

MV−tSNE
MV−MDS
MVSC−CEV

0 20 40 60 80 100

0.
00

0.
10

0.
20

0.
30

Reuters dataset

●●●●●●
●●● ●

●
●

● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●
●●

●●● ●

●

●

●
●

● ●

● ●

●

●

MV−tSNE
MV−MDS
MVSC−CEV

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Cora dataset

●

●●
●●

●●

●

●

●
●

● ●

●

●

●

●
●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●
● ●

● ●
●

●

●

● ●

●

●

MV−tSNE
MV−MDS
MVSC−CEV

K (dimensions)

C
lu

st
er

in
g 

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n 
(N

M
I)

Figure 6.5: Clustering normalized mutual information.
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Figure 6.6: Clustering evaluation with Davies-Bouldin index (less is better).
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Multiview software package

7.1 Motivation

Currently there are no multiview dimensionality reduction or clustering meth-
ods freely available to the community. This fact has conditioned the exper-
iments presented in this thesis, as the comparisons have only been possible
with respect to the published results in the state of the art.

The reasons for creating a software package with the methods presented
in this thesis are:

• Given that the proposed methods have been found better alternatives
than their single view counterparts and that other methods in the state
of the art, providing these methods to the community seems a desirable
contribution.

• Let fellow researchers reproduce the experiments presented here or run
their own experiments.

• Provide with sample data and documentation to let users new to multi-
view methods learn to use them and take advantage when possible.

• Make multiview data and methods knowledgeable to the community, so
that their use spreads and the area evolves accordingly.

7.2 Package “multiview”

A software package named “multiview” [57] has been created to satisfy the
objectives listed above. The language of choice is the R language for statistical
computing [89], given its widespread use in the scientific community, and
specially in the bioengineering and bioinformatics areas.

Package “multiview” includes the following features:
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• An implementation of MV-tSNE, that accepts multiple data views and
produces a single, low-dimensional projection of the original data.

• An implementation of MV-MDS, that accepts multiple data views and
produces a single, low-dimensional projection of the original data.

• An implementation of MVSC-CEV, that accepts multiple data views
and produces both a single, low-dimensional projection of the original
data and a single clustering assignment for the input data samples.

• Synthetic multiview datasets that allow the users to get familiar with
the different methods in the package.

• A user’s manual describing the different methods provided, their param-
eters, and their return values, along with examples with the datasets
provided.



Chapter 8

Conclusions and main
developments

A multiview extension of the t-distributed stochastic neighbour embedding
algorithm (t-SNE) has been developed (MV-tSNE). This algorithm is based
on the generation of a common matrix of distance probabilities using expert
consensus theory. Afterwards, the embedding optimization of t-SNE can be
applied to the common matrix, therefore taking advantage of the different
optimization strategies included in t-SNE. MV-tSNE shows an average per-
formance both on dimensionality reduction tasks and on clustering tasks.

A multiview extension of the multidimensional scaling algorithm (MDS)
has been developed (MV-MDS). This algorithm computes the common eigen-
vectors of the normalized distance matrices of the input views, therefore pri-
oritizing the extraction of information common to all input views. In turn
this is expected to produce a single high-quality, low-dimensional representa-
tion of the multiview, high-dimensional input data. MV-MDS shows better
performance than the baseline methods (single view MDS) on dimensionality
reduction tasks. MV-MDS also shows performance above the average on clus-
tering tasks, with better overall results than other methods in the state of the
art.

A mutiview extension of the spectral clustering algorithm has been de-
veloped (MVSC-CEV). This algorithm computes the common eigenvectors of
the normalized Laplacian matrices of the similarity input matrices. This is
expected to condense the most relevant bonds among samples over the dif-
ferent input spaces in a single representation that is both useful as a reduced
dimensionality projection and as a space to apply clustering on it. Actually
this algorithm also includes a multiview extension of the dimensionality reduc-
tion method Laplacian eigenmaps. MVSC-CEV produces the best clustering
assignments on the vast majority of experiments run, both with respect to
baseline single-view spectral clustering configurations as well as to other mul-
tiview clustering methods in the state of the art. MVSC-CEV also shows the
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best performance on most datasets on dimensionality reduction tasks.

A thorough set of experiments has been designed and run on all three
methods proposed in this thesis. For each of the tasks analyzed (dimension-
ality reduction and clustering), three evaluation metrics have been carefully
chosen, giving special relevance to the fact that both supervised and unsu-
pervised metrics be used on each task. From the extense variety of multiview
datasets, six of them have been selected according to their relevance in the
state of the art and their different multiview design, as well as their different
area of interest.

The proposed methods have been compared with their single-view counter-
parts, with different configurations: either processing each view independently,
either concatenating all views into a single matrix and using it as a single in-
put view. The goal of these experiments has been to assess the usefulness of
multiview methods in front of single view methods. MV-tSNE does not show
any improvements over baseline methods. MVSC-CEV has proved clearly a
better clustering method than the single view baseline methods. MV-MDS has
proved a better dimensionality method than the single view baseline methods.

Also, the proposed methods have been compared with all the available
results in the state of the art. There is no software available that implements
neither the multiview dimensionality reduction methods nor the multiview
clustering methods in the state of the art. For this reason, the comparison
with the methods in the state of the art has been based on the published
results. The dataset and experimental setups have been carefully chosen in
order to reproduce as faithfully as possible those described in the literature.
MVSC-CEV has consistently shown better multiview clustering performance
than the methods in the state of the art.

The comparison of the three proposed methods among them confirms that
MVSC-CEV is the most suited method for multiview clustering tasks, while
MV-MDS is the most suited method for multiview dimensionality reduction
tasks.

Finally, a software package that includes all three proposed methods along
with some test data and a proper documentation has been created and released
to the public. Given the good results obtained by the methods presented,
making them publicly available may help the research community, specially
given the lack of any public multiview methods. The language of choice is
the R language, as it is one of the most relevant languages in the biomedical
engineering and bioinformatics fields.

As a final conclusion, the methods and results exposed in this work show
that using multiview data along with multiview methods in general improves
the results in dimensionality reduction and data clustering tasks. As a con-
sequence, using the methods proposed here can be useful when dealing with
such tasks on multiview data.



115

Articles and conferences

Samir Kanaan-Izquierdo, Andrey Ziyatdinov, Raimon Massanet, and Alexan-
dre Perera. Multiview approach to spectral clustering. In Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBS, pages 1254–1257, 2012

Samir Kanaan-Izquierdo, Andrey Ziyatdinov, and Alexandre Perera-Lluna.
Multiview and multifeature spectral clustering using common eigenvectors.
Pattern Recognition Letters, 2017 (Under review)

Samir Kanaan-Izquierdo, Andrey Ziyatdinov, and Alexandre Perera-Lluna.
Multiview: an R package for multiview pattern recognition. Technical report,
B2SLAB - CREB - UPC, 2017

Samir Kanaan-Izquierdo and Alexandre Perera-Lluna. Multiview t-distributed
stochastic neighbour embedding. Technical report, B2SLAB - CREB - UPC,
2017

Samir Kanaan-Izquierdo and Alexandre Perera-Lluna. Multiview multidi-
mensional scaling. Technical report, B2SLAB - CREB - UPC, 2017





Appendix A

Results of MV-tSNE
experiments

In this appendix, the detailed results of the experiments with the MV-tSNE
method are presented. There is a results table for each combination of dataset
and evaluation method, yielding a total of 36 tables. The methods are com-
pared with the counterpart single view method, either applied to single views
individually or to all views stacked on a single matrix. For single views, the
worst, average and best views (on average) are given.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.488 ± 0.002 0.835 ± 0.409 0.972 ± 0.002 0.978 ± 0.002 0.967 ± 0.002
3 0.490 ± 0.001 0.838 ± 0.410 0.973 ± 0.001 0.978 ± 0.001 0.970 ± 0.001
4 0.492 ± 0.001 0.838 ± 0.406 0.971 ± 0.001 0.976 ± 0.001 0.972 ± 0.001
5 0.490 ± 0.001 0.839 ± 0.409 0.971 ± 0.001 0.980 ± 0.001 0.973 ± 0.001

6 0.490 ± 0.001 0.838 ± 0.409 0.971 ± 0.001 0.978 ± 0.001 0.973 ± 0.001
7 0.492 ± 0.001 0.839 ± 0.408 0.971 ± 0.001 0.979 ± 0.001 0.973 ± 0.001
8 0.493 ± 0.001 0.839 ± 0.406 0.972 ± 0.001 0.978 ± 0.001 0.973 ± 0.001
9 0.492 ± 0.001 0.839 ± 0.408 0.971 ± 0.001 0.978 ± 0.001 0.972 ± 0.001

10 0.492 ± 0.001 0.839 ± 0.409 0.972 ± 0.001 0.981 ± 0.001 0.973 ± 0.001
15 0.491 ± 0.000 0.840 ± 0.410 0.972 ± 0.000 0.982 ± 0.000 0.974 ± 0.000
20 0.493 ± 0.001 0.840 ± 0.407 0.973 ± 0.001 0.980 ± 0.001 0.973 ± 0.001
25 0.491 ± 0.001 0.840 ± 0.410 0.973 ± 0.001 0.982 ± 0.001 0.974 ± 0.001

30 0.493 ± 0.000 0.840 ± 0.407 0.972 ± 0.000 0.981 ± 0.000 0.973 ± 0.000
40 0.491 ± 0.001 0.840 ± 0.409 0.972 ± 0.001 0.979 ± 0.001 0.972 ± 0.001
50 0.492 ± 0.001 0.840 ± 0.409 0.973 ± 0.001 0.980 ± 0.001 0.973 ± 0.001
60 0.492 ± 0.000 0.839 ± 0.409 0.973 ± 0.000 0.978 ± 0.000 0.973 ± 0.000

70 0.492 ± 0.000 0.839 ± 0.408 0.973 ± 0.000 0.979 ± 0.000 0.973 ± 0.000
80 0.492 ± 0.000 0.839 ± 0.408 0.972 ± 0.000 0.980 ± 0.000 0.972 ± 0.000
90 0.490 ± 0.000 0.838 ± 0.409 0.972 ± 0.000 0.978 ± 0.000 0.972 ± 0.000
100 0.489 ± 0.000 0.839 ± 0.411 0.973 ± 0.000 0.981 ± 0.000 0.972 ± 0.000

Table A.1: One-vs-one SVM classification accuracy on the digits dataset of
MV-tSNE compared with single view and stacked views tSNE. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.206 ± 0.109 0.236 ± 0.248 0.321 ± 0.136 0.223 ± 0.075 0.223 ± 0.075
3 0.260 ± 0.115 0.304 ± 0.268 0.383 ± 0.148 0.296 ± 0.084 0.296 ± 0.084
4 0.280 ± 0.123 0.329 ± 0.284 0.412 ± 0.148 0.321 ± 0.093 0.321 ± 0.093
5 0.282 ± 0.121 0.347 ± 0.303 0.424 ± 0.155 0.344 ± 0.104 0.344 ± 0.104

6 0.283 ± 0.121 0.356 ± 0.307 0.426 ± 0.154 0.357 ± 0.107 0.357 ± 0.107
7 0.291 ± 0.123 0.364 ± 0.310 0.427 ± 0.154 0.367 ± 0.109 0.367 ± 0.109
8 0.293 ± 0.123 0.367 ± 0.312 0.427 ± 0.153 0.370 ± 0.112 0.370 ± 0.112
9 0.291 ± 0.124 0.365 ± 0.314 0.429 ± 0.156 0.368 ± 0.111 0.368 ± 0.111

10 0.292 ± 0.122 0.367 ± 0.309 0.429 ± 0.155 0.370 ± 0.109 0.370 ± 0.109
15 0.292 ± 0.122 0.371 ± 0.320 0.429 ± 0.156 0.376 ± 0.116 0.377 ± 0.116
20 0.295 ± 0.122 0.374 ± 0.316 0.428 ± 0.156 0.380 ± 0.113 0.380 ± 0.113
25 0.293 ± 0.122 0.374 ± 0.321 0.429 ± 0.156 0.381 ± 0.116 0.381 ± 0.116

30 0.293 ± 0.123 0.376 ± 0.320 0.429 ± 0.156 0.382 ± 0.116 0.383 ± 0.115
40 0.293 ± 0.122 0.376 ± 0.318 0.429 ± 0.155 0.382 ± 0.115 0.383 ± 0.115
50 0.293 ± 0.123 0.376 ± 0.319 0.429 ± 0.155 0.384 ± 0.115 0.384 ± 0.115
60 0.294 ± 0.123 0.376 ± 0.320 0.429 ± 0.156 0.383 ± 0.115 0.382 ± 0.115

70 0.293 ± 0.123 0.375 ± 0.320 0.429 ± 0.156 0.381 ± 0.115 0.381 ± 0.115
80 0.293 ± 0.122 0.375 ± 0.319 0.429 ± 0.156 0.382 ± 0.115 0.382 ± 0.115
90 0.293 ± 0.123 0.375 ± 0.319 0.429 ± 0.156 0.382 ± 0.115 0.382 ± 0.115
100 0.294 ± 0.123 0.376 ± 0.319 0.429 ± 0.156 0.383 ± 0.115 0.383 ± 0.115

Table A.2: Cophenetic correlation on the digits dataset of MV-tSNE compared
with single view and stacked views tSNE. K is the dimensionality of the
projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.202 ± 0.088 0.237 ± 0.183 0.270 ± 0.118 0.238 ± 0.049 0.238 ± 0.048
3 0.213 ± 0.095 0.251 ± 0.194 0.283 ± 0.125 0.254 ± 0.051 0.253 ± 0.051
4 0.216 ± 0.097 0.255 ± 0.198 0.289 ± 0.127 0.257 ± 0.052 0.256 ± 0.052
5 0.215 ± 0.097 0.258 ± 0.203 0.292 ± 0.130 0.260 ± 0.055 0.260 ± 0.055

6 0.214 ± 0.097 0.258 ± 0.204 0.292 ± 0.130 0.260 ± 0.055 0.261 ± 0.055
7 0.216 ± 0.097 0.260 ± 0.205 0.292 ± 0.130 0.263 ± 0.056 0.263 ± 0.056
8 0.216 ± 0.097 0.260 ± 0.206 0.292 ± 0.130 0.263 ± 0.057 0.263 ± 0.057
9 0.216 ± 0.097 0.259 ± 0.206 0.293 ± 0.131 0.261 ± 0.056 0.261 ± 0.056

10 0.216 ± 0.097 0.258 ± 0.204 0.292 ± 0.131 0.261 ± 0.055 0.260 ± 0.055
15 0.216 ± 0.097 0.260 ± 0.207 0.292 ± 0.131 0.263 ± 0.057 0.263 ± 0.057
20 0.217 ± 0.097 0.260 ± 0.207 0.292 ± 0.131 0.263 ± 0.058 0.263 ± 0.058
25 0.216 ± 0.097 0.260 ± 0.207 0.293 ± 0.131 0.263 ± 0.058 0.262 ± 0.058

30 0.216 ± 0.097 0.260 ± 0.208 0.293 ± 0.131 0.263 ± 0.058 0.263 ± 0.058
40 0.216 ± 0.097 0.260 ± 0.207 0.293 ± 0.131 0.263 ± 0.058 0.263 ± 0.058
50 0.216 ± 0.097 0.260 ± 0.207 0.293 ± 0.131 0.263 ± 0.058 0.263 ± 0.058
60 0.216 ± 0.097 0.260 ± 0.208 0.293 ± 0.131 0.263 ± 0.058 0.263 ± 0.058

70 0.216 ± 0.097 0.260 ± 0.208 0.293 ± 0.131 0.263 ± 0.058 0.263 ± 0.058
80 0.216 ± 0.097 0.260 ± 0.208 0.293 ± 0.131 0.263 ± 0.058 0.263 ± 0.058
90 0.216 ± 0.097 0.260 ± 0.207 0.293 ± 0.131 0.263 ± 0.058 0.263 ± 0.058
100 0.216 ± 0.097 0.260 ± 0.208 0.293 ± 0.131 0.263 ± 0.058 0.263 ± 0.058

Table A.3: Area under the curve of the RNX index on the digits dataset
of MV-tSNE compared with single view and stacked views tSNE. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.442 ± 0.035 0.766 ± 0.373 0.825 ± 0.037 0.929 ± 0.035 0.810 ± 0.035
3 0.458 ± 0.030 0.754 ± 0.334 0.852 ± 0.030 0.923 ± 0.030 0.800 ± 0.030
4 0.472 ± 0.014 0.762 ± 0.324 0.872 ± 0.003 0.926 ± 0.014 0.804 ± 0.014
5 0.453 ± 0.019 0.755 ± 0.338 0.871 ± 0.004 0.917 ± 0.019 0.797 ± 0.019

6 0.451 ± 0.018 0.752 ± 0.340 0.874 ± 0.001 0.912 ± 0.018 0.793 ± 0.018
7 0.452 ± 0.018 0.754 ± 0.340 0.872 ± 0.004 0.915 ± 0.018 0.796 ± 0.018
8 0.449 ± 0.020 0.751 ± 0.340 0.874 ± 0.000 0.908 ± 0.020 0.790 ± 0.020
9 0.453 ± 0.018 0.754 ± 0.339 0.872 ± 0.003 0.916 ± 0.018 0.797 ± 0.018

10 0.449 ± 0.018 0.750 ± 0.340 0.873 ± 0.003 0.907 ± 0.018 0.789 ± 0.018
15 0.456 ± 0.015 0.759 ± 0.338 0.873 ± 0.003 0.926 ± 0.015 0.804 ± 0.015
20 0.457 ± 0.015 0.759 ± 0.337 0.874 ± 0.000 0.925 ± 0.015 0.804 ± 0.015
25 0.458 ± 0.015 0.760 ± 0.337 0.874 ± 0.000 0.927 ± 0.015 0.805 ± 0.015

30 0.450 ± 0.034 0.752 ± 0.345 0.874 ± 0.000 0.911 ± 0.034 0.792 ± 0.034
40 0.412 ± 0.011 0.712 ± 0.356 0.874 ± 0.000 0.725 ± 0.011 0.725 ± 0.011
50 0.412 ± 0.014 0.712 ± 0.357 0.874 ± 0.000 0.725 ± 0.014 0.725 ± 0.014
60 0.416 ± 0.010 0.716 ± 0.354 0.874 ± 0.000 0.732 ± 0.010 0.732 ± 0.010

70 0.414 ± 0.010 0.714 ± 0.355 0.874 ± 0.000 0.727 ± 0.010 0.728 ± 0.010
80 0.411 ± 0.008 0.711 ± 0.357 0.874 ± 0.000 0.724 ± 0.008 0.724 ± 0.008
90 0.416 ± 0.010 0.716 ± 0.354 0.874 ± 0.000 0.731 ± 0.010 0.731 ± 0.010
100 0.412 ± 0.024 0.712 ± 0.358 0.874 ± 0.000 0.726 ± 0.024 0.726 ± 0.024

Table A.4: Clustering purity on the digits dataset of MV-tSNE compared with
single view and stacked views tSNE. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.423 ± 0.017 0.722 ± 0.330 0.771 ± 0.021 0.911 ± 0.017 0.789 ± 0.017
3 0.454 ± 0.021 0.735 ± 0.311 0.789 ± 0.017 0.914 ± 0.021 0.793 ± 0.021
4 0.467 ± 0.011 0.745 ± 0.305 0.805 ± 0.003 0.925 ± 0.011 0.802 ± 0.011
5 0.453 ± 0.015 0.742 ± 0.319 0.804 ± 0.004 0.926 ± 0.015 0.802 ± 0.015

6 0.451 ± 0.013 0.741 ± 0.319 0.807 ± 0.002 0.921 ± 0.013 0.798 ± 0.013
7 0.453 ± 0.011 0.742 ± 0.318 0.805 ± 0.004 0.925 ± 0.011 0.801 ± 0.011
8 0.451 ± 0.016 0.739 ± 0.317 0.806 ± 0.000 0.918 ± 0.016 0.796 ± 0.016
9 0.452 ± 0.014 0.742 ± 0.319 0.805 ± 0.003 0.925 ± 0.014 0.801 ± 0.014

10 0.447 ± 0.014 0.739 ± 0.321 0.805 ± 0.003 0.920 ± 0.014 0.797 ± 0.014
15 0.455 ± 0.014 0.746 ± 0.320 0.805 ± 0.003 0.931 ± 0.013 0.807 ± 0.014
20 0.456 ± 0.011 0.746 ± 0.319 0.806 ± 0.000 0.932 ± 0.011 0.808 ± 0.011
25 0.457 ± 0.011 0.748 ± 0.319 0.806 ± 0.000 0.935 ± 0.011 0.810 ± 0.011

30 0.450 ± 0.026 0.741 ± 0.323 0.806 ± 0.000 0.921 ± 0.026 0.799 ± 0.026
40 0.422 ± 0.013 0.710 ± 0.322 0.806 ± 0.000 0.746 ± 0.013 0.746 ± 0.013
50 0.420 ± 0.017 0.709 ± 0.325 0.806 ± 0.000 0.745 ± 0.017 0.746 ± 0.017
60 0.426 ± 0.010 0.715 ± 0.321 0.806 ± 0.000 0.755 ± 0.010 0.754 ± 0.010

70 0.423 ± 0.010 0.712 ± 0.322 0.806 ± 0.000 0.750 ± 0.010 0.750 ± 0.010
80 0.421 ± 0.008 0.710 ± 0.322 0.806 ± 0.000 0.747 ± 0.008 0.746 ± 0.008
90 0.425 ± 0.010 0.714 ± 0.321 0.806 ± 0.000 0.753 ± 0.010 0.753 ± 0.010
100 0.424 ± 0.016 0.712 ± 0.322 0.806 ± 0.000 0.750 ± 0.016 0.751 ± 0.016

Table A.5: Clustering normalized mutual information on the digits dataset
of MV-tSNE compared with single view and stacked views tSNE. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 1.882 ± 0.209 1.739 ± 0.493 1.681 ± 0.209 1.673 ± 0.209 1.662 ± 0.209
3 1.876 ± 0.252 1.731 ± 0.569 1.678 ± 0.252 1.668 ± 0.252 1.643 ± 0.252
4 1.876 ± 0.273 1.727 ± 0.610 1.677 ± 0.273 1.672 ± 0.273 1.635 ± 0.273
5 1.865 ± 0.269 1.723 ± 0.600 1.678 ± 0.268 1.658 ± 0.268 1.633 ± 0.269

6 1.858 ± 0.290 1.718 ± 0.639 1.677 ± 0.290 1.650 ± 0.290 1.627 ± 0.290
7 1.851 ± 0.295 1.716 ± 0.646 1.678 ± 0.295 1.645 ± 0.295 1.621 ± 0.295
8 1.855 ± 0.289 1.719 ± 0.636 1.678 ± 0.289 1.652 ± 0.288 1.628 ± 0.289
9 1.857 ± 0.289 1.717 ± 0.635 1.677 ± 0.289 1.647 ± 0.288 1.626 ± 0.288

10 1.853 ± 0.289 1.718 ± 0.636 1.677 ± 0.289 1.653 ± 0.289 1.628 ± 0.290
15 1.856 ± 0.281 1.719 ± 0.622 1.678 ± 0.281 1.651 ± 0.282 1.627 ± 0.281
20 1.858 ± 0.279 1.719 ± 0.619 1.678 ± 0.279 1.651 ± 0.280 1.628 ± 0.280
25 1.856 ± 0.280 1.717 ± 0.621 1.678 ± 0.281 1.648 ± 0.281 1.625 ± 0.280

30 1.867 ± 0.267 1.724 ± 0.598 1.678 ± 0.267 1.664 ± 0.267 1.638 ± 0.267
40 1.912 ± 0.234 1.633 ± 0.876 1.007 ± 0.233 1.702 ± 0.234 1.677 ± 0.234
50 1.913 ± 0.234 1.742 ± 0.551 1.670 ± 0.234 1.701 ± 0.234 1.676 ± 0.234
60 1.909 ± 0.231 1.741 ± 0.546 1.667 ± 0.231 1.696 ± 0.231 1.674 ± 0.231

70 1.905 ± 0.236 1.741 ± 0.552 1.672 ± 0.236 1.699 ± 0.236 1.673 ± 0.236
80 1.909 ± 0.240 1.742 ± 0.561 1.666 ± 0.240 1.699 ± 0.240 1.673 ± 0.240
90 1.907 ± 0.231 1.742 ± 0.545 1.670 ± 0.231 1.697 ± 0.231 1.674 ± 0.231
100 1.911 ± 0.229 1.745 ± 0.541 1.676 ± 0.229 1.705 ± 0.228 1.679 ± 0.229

Table A.6: Davies-Boulding index on the digits dataset of MV-tSNE compared
with single view and stacked views tSNE. K is the dimensionality of the
projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.165 ± 0.162 0.176 ± 0.467 0.196 ± 0.228 0.180 ± 0.213 0.182 ± 0.223
3 0.162 ± 0.187 0.180 ± 0.501 0.203 ± 0.260 0.172 ± 0.227 0.188 ± 0.231
4 0.147 ± 0.179 0.177 ± 0.495 0.196 ± 0.253 0.190 ± 0.202 0.182 ± 0.223
5 0.179 ± 0.143 0.234 ± 0.395 0.287 ± 0.195 0.263 ± 0.167 0.243 ± 0.180

6 0.214 ± 0.122 0.256 ± 0.331 0.301 ± 0.184 0.284 ± 0.148 0.280 ± 0.155
7 0.242 ± 0.101 0.288 ± 0.292 0.335 ± 0.153 0.304 ± 0.128 0.308 ± 0.136
8 0.311 ± 0.067 0.361 ± 0.208 0.403 ± 0.097 0.381 ± 0.077 0.382 ± 0.084
9 0.399 ± 0.034 0.435 ± 0.116 0.489 ± 0.047 0.453 ± 0.038 0.443 ± 0.042

10 0.455 ± 0.008 0.469 ± 0.085 0.533 ± 0.011 0.472 ± 0.010 0.490 ± 0.010
15 0.355 ± 0.005 0.432 ± 0.113 0.479 ± 0.008 0.494 ± 0.006 0.474 ± 0.007
20 0.166 ± 0.185 0.182 ± 0.527 0.211 ± 0.264 0.199 ± 0.248 0.194 ± 0.237
25 0.148 ± 0.194 0.187 ± 0.507 0.203 ± 0.278 0.191 ± 0.225 0.195 ± 0.239

30 0.165 ± 0.196 0.187 ± 0.505 0.210 ± 0.265 0.188 ± 0.244 0.194 ± 0.238
40 0.166 ± 0.192 0.195 ± 0.511 0.221 ± 0.259 0.178 ± 0.234 0.198 ± 0.245
50 0.140 ± 0.175 0.173 ± 0.519 0.203 ± 0.277 0.188 ± 0.243 0.189 ± 0.239
60 0.142 ± 0.178 0.175 ± 0.465 0.190 ± 0.240 0.184 ± 0.213 0.193 ± 0.220

70 0.147 ± 0.159 0.175 ± 0.460 0.201 ± 0.244 0.190 ± 0.215 0.186 ± 0.218
80 0.163 ± 0.168 0.180 ± 0.464 0.198 ± 0.244 0.190 ± 0.209 0.185 ± 0.226
90 0.139 ± 0.210 0.171 ± 0.511 0.185 ± 0.256 0.193 ± 0.253 0.182 ± 0.229
100 0.130 ± 0.192 0.169 ± 0.512 0.204 ± 0.261 0.186 ± 0.210 0.179 ± 0.232

Table A.7: One-vs-one SVM classification accuracy on the Reuters multilin-
gual corpus dataset of MV-tSNE compared with single view and stacked views
tSNE. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 -0.075 ± 0.086 -0.066 ± 0.172 -0.055 ± 0.066 -0.064 ± 0.082 -0.067 ± 0.084
3 -0.069 ± 0.089 -0.062 ± 0.175 -0.054 ± 0.065 -0.058 ± 0.079 -0.064 ± 0.080
4 -0.057 ± 0.073 -0.049 ± 0.142 -0.039 ± 0.054 -0.056 ± 0.073 -0.054 ± 0.068
5 -0.061 ± 0.061 -0.054 ± 0.119 -0.047 ± 0.044 -0.059 ± 0.059 -0.054 ± 0.058

6 -0.062 ± 0.064 -0.052 ± 0.113 -0.042 ± 0.038 -0.053 ± 0.050 -0.054 ± 0.052
7 -0.063 ± 0.050 -0.051 ± 0.096 -0.045 ± 0.036 -0.055 ± 0.047 -0.054 ± 0.047
8 -0.059 ± 0.039 -0.052 ± 0.079 -0.046 ± 0.029 -0.053 ± 0.033 -0.054 ± 0.035
9 -0.063 ± 0.027 -0.053 ± 0.058 -0.044 ± 0.022 -0.055 ± 0.023 -0.054 ± 0.025

10 -0.064 ± 0.019 -0.052 ± 0.041 -0.047 ± 0.013 -0.052 ± 0.017 -0.054 ± 0.017
15 -0.064 ± 0.020 -0.054 ± 0.044 -0.040 ± 0.014 -0.059 ± 0.018 -0.056 ± 0.018
20 -0.027 ± 0.035 -0.021 ± 0.066 -0.017 ± 0.025 -0.024 ± 0.033 -0.023 ± 0.031
25 -0.028 ± 0.041 -0.026 ± 0.081 -0.023 ± 0.033 -0.030 ± 0.037 -0.028 ± 0.036

30 -0.032 ± 0.040 -0.026 ± 0.077 -0.022 ± 0.026 -0.026 ± 0.037 -0.028 ± 0.036
40 -0.029 ± 0.038 -0.026 ± 0.079 -0.020 ± 0.032 -0.027 ± 0.036 -0.027 ± 0.035
50 -0.031 ± 0.038 -0.027 ± 0.074 -0.024 ± 0.027 -0.028 ± 0.033 -0.028 ± 0.035
60 -0.032 ± 0.039 -0.028 ± 0.077 -0.022 ± 0.031 -0.027 ± 0.039 -0.028 ± 0.036

70 -0.029 ± 0.042 -0.025 ± 0.083 -0.020 ± 0.028 -0.026 ± 0.041 -0.026 ± 0.038
80 -0.032 ± 0.043 -0.026 ± 0.081 -0.023 ± 0.030 -0.026 ± 0.037 -0.027 ± 0.037
90 -0.031 ± 0.040 -0.025 ± 0.076 -0.020 ± 0.029 -0.025 ± 0.033 -0.027 ± 0.036
100 -0.027 ± 0.035 -0.024 ± 0.069 -0.021 ± 0.028 -0.026 ± 0.031 -0.026 ± 0.031

Table A.8: Cophenetic correlation on the Reuters multilingual corpus dataset
of MV-tSNE compared with single view and stacked views tSNE. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.022 ± 0.027 0.026 ± 0.073 0.030 ± 0.036 0.028 ± 0.037 0.027 ± 0.033
3 0.021 ± 0.026 0.024 ± 0.069 0.027 ± 0.036 0.024 ± 0.030 0.026 ± 0.032
4 0.023 ± 0.030 0.027 ± 0.073 0.031 ± 0.038 0.026 ± 0.034 0.027 ± 0.033
5 0.030 ± 0.023 0.035 ± 0.058 0.039 ± 0.030 0.037 ± 0.028 0.036 ± 0.027

6 0.036 ± 0.018 0.042 ± 0.051 0.050 ± 0.026 0.042 ± 0.023 0.042 ± 0.023
7 0.036 ± 0.017 0.044 ± 0.046 0.048 ± 0.022 0.049 ± 0.021 0.046 ± 0.021
8 0.050 ± 0.010 0.054 ± 0.032 0.064 ± 0.017 0.054 ± 0.013 0.057 ± 0.013
9 0.053 ± 0.007 0.062 ± 0.025 0.073 ± 0.009 0.064 ± 0.007 0.066 ± 0.008

10 0.061 ± 0.002 0.069 ± 0.018 0.076 ± 0.003 0.071 ± 0.003 0.073 ± 0.003
15 0.056 ± 0.003 0.067 ± 0.019 0.079 ± 0.004 0.070 ± 0.003 0.071 ± 0.003
20 0.023 ± 0.030 0.027 ± 0.077 0.029 ± 0.037 0.027 ± 0.037 0.029 ± 0.035
25 0.021 ± 0.026 0.025 ± 0.068 0.028 ± 0.034 0.028 ± 0.033 0.027 ± 0.033

30 0.021 ± 0.026 0.025 ± 0.072 0.028 ± 0.035 0.028 ± 0.033 0.027 ± 0.033
40 0.023 ± 0.029 0.026 ± 0.072 0.030 ± 0.035 0.030 ± 0.034 0.028 ± 0.034
50 0.024 ± 0.025 0.026 ± 0.071 0.030 ± 0.036 0.027 ± 0.036 0.027 ± 0.034
60 0.022 ± 0.030 0.026 ± 0.073 0.032 ± 0.038 0.029 ± 0.035 0.028 ± 0.036

70 0.024 ± 0.027 0.026 ± 0.072 0.031 ± 0.036 0.026 ± 0.034 0.027 ± 0.034
80 0.024 ± 0.027 0.028 ± 0.072 0.034 ± 0.036 0.028 ± 0.034 0.030 ± 0.032
90 0.022 ± 0.023 0.028 ± 0.066 0.035 ± 0.034 0.030 ± 0.028 0.029 ± 0.030
100 0.022 ± 0.023 0.026 ± 0.059 0.031 ± 0.031 0.026 ± 0.025 0.028 ± 0.028

Table A.9: Area under the curve of the RNX index on the Reuters multilingual
corpus dataset of MV-tSNE compared with single view and stacked views
tSNE. K is the dimensionality of the projection.



127

K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.102 ± 0.133 0.123 ± 0.345 0.135 ± 0.173 0.138 ± 0.168 0.133 ± 0.163
3 0.105 ± 0.126 0.125 ± 0.347 0.141 ± 0.171 0.124 ± 0.165 0.131 ± 0.160
4 0.103 ± 0.127 0.126 ± 0.343 0.144 ± 0.175 0.129 ± 0.140 0.128 ± 0.156
5 0.135 ± 0.112 0.156 ± 0.282 0.169 ± 0.141 0.155 ± 0.118 0.167 ± 0.129

6 0.160 ± 0.086 0.176 ± 0.236 0.213 ± 0.111 0.190 ± 0.111 0.191 ± 0.112
7 0.163 ± 0.073 0.195 ± 0.217 0.240 ± 0.111 0.225 ± 0.111 0.209 ± 0.099
8 0.213 ± 0.056 0.240 ± 0.150 0.279 ± 0.069 0.268 ± 0.067 0.256 ± 0.066
9 0.255 ± 0.033 0.284 ± 0.111 0.324 ± 0.042 0.281 ± 0.037 0.295 ± 0.038

10 0.242 ± 0.012 0.298 ± 0.111 0.384 ± 0.020 0.305 ± 0.017 0.325 ± 0.017
15 0.268 ± 0.005 0.306 ± 0.066 0.326 ± 0.007 0.340 ± 0.007 0.321 ± 0.007
20 0.109 ± 0.151 0.129 ± 0.384 0.150 ± 0.201 0.140 ± 0.177 0.136 ± 0.166
25 0.097 ± 0.126 0.119 ± 0.343 0.132 ± 0.173 0.142 ± 0.162 0.129 ± 0.158

30 0.109 ± 0.130 0.127 ± 0.365 0.155 ± 0.190 0.124 ± 0.155 0.137 ± 0.167
40 0.114 ± 0.153 0.135 ± 0.408 0.155 ± 0.208 0.129 ± 0.203 0.133 ± 0.190
50 0.116 ± 0.148 0.118 ± 0.416 0.121 ± 0.225 0.130 ± 0.183 0.126 ± 0.199
60 0.099 ± 0.158 0.119 ± 0.437 0.138 ± 0.202 0.135 ± 0.218 0.126 ± 0.207

70 0.095 ± 0.180 0.120 ± 0.469 0.137 ± 0.239 0.126 ± 0.229 0.127 ± 0.216
80 0.099 ± 0.156 0.116 ± 0.453 0.138 ± 0.240 0.118 ± 0.214 0.126 ± 0.214
90 0.091 ± 0.165 0.119 ± 0.472 0.138 ± 0.231 0.112 ± 0.226 0.124 ± 0.212
100 0.115 ± 0.165 0.129 ± 0.454 0.154 ± 0.233 0.140 ± 0.219 0.134 ± 0.211

Table A.10: Clustering purity on the Reuters multilingual corpus dataset
of MV-tSNE compared with single view and stacked views tSNE. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.010 ± 0.011 0.012 ± 0.031 0.014 ± 0.016 0.013 ± 0.014 0.012 ± 0.015
3 0.007 ± 0.008 0.008 ± 0.021 0.009 ± 0.010 0.007 ± 0.010 0.008 ± 0.010
4 0.005 ± 0.007 0.006 ± 0.017 0.006 ± 0.008 0.006 ± 0.007 0.006 ± 0.008
5 0.008 ± 0.006 0.009 ± 0.015 0.011 ± 0.007 0.009 ± 0.007 0.010 ± 0.007

6 0.010 ± 0.005 0.012 ± 0.015 0.012 ± 0.008 0.012 ± 0.007 0.012 ± 0.007
7 0.009 ± 0.005 0.012 ± 0.015 0.015 ± 0.008 0.013 ± 0.007 0.013 ± 0.007
8 0.012 ± 0.005 0.016 ± 0.014 0.020 ± 0.007 0.018 ± 0.006 0.018 ± 0.006
9 0.017 ± 0.004 0.020 ± 0.013 0.023 ± 0.006 0.022 ± 0.006 0.021 ± 0.006

10 0.020 ± 0.004 0.022 ± 0.012 0.025 ± 0.006 0.024 ± 0.005 0.024 ± 0.005
15 0.014 ± 0.004 0.019 ± 0.012 0.022 ± 0.006 0.023 ± 0.005 0.020 ± 0.005
20 0.010 ± 0.013 0.012 ± 0.034 0.014 ± 0.016 0.014 ± 0.016 0.013 ± 0.016
25 0.006 ± 0.008 0.007 ± 0.020 0.008 ± 0.010 0.007 ± 0.010 0.007 ± 0.009

30 0.010 ± 0.011 0.012 ± 0.034 0.015 ± 0.018 0.013 ± 0.016 0.013 ± 0.016
40 0.011 ± 0.012 0.013 ± 0.033 0.014 ± 0.017 0.013 ± 0.017 0.014 ± 0.016
50 0.011 ± 0.013 0.014 ± 0.033 0.016 ± 0.017 0.015 ± 0.015 0.014 ± 0.015
60 0.011 ± 0.014 0.013 ± 0.035 0.016 ± 0.017 0.015 ± 0.016 0.015 ± 0.016

70 0.011 ± 0.011 0.014 ± 0.035 0.016 ± 0.018 0.014 ± 0.016 0.014 ± 0.016
80 0.010 ± 0.013 0.013 ± 0.036 0.015 ± 0.018 0.014 ± 0.016 0.014 ± 0.017
90 0.011 ± 0.014 0.013 ± 0.039 0.016 ± 0.020 0.014 ± 0.019 0.014 ± 0.018
100 0.011 ± 0.013 0.013 ± 0.035 0.015 ± 0.019 0.014 ± 0.019 0.014 ± 0.017

Table A.11: Clustering normalized mutual information on the Reuters mul-
tilingual corpus dataset of MV-tSNE compared with single view and stacked
views tSNE. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.851 ± 0.745 0.742 ± 2.056 0.620 ± 0.996 0.829 ± 0.973 0.793 ± 0.971
3 0.879 ± 0.757 0.764 ± 2.095 0.684 ± 1.113 0.725 ± 1.002 0.796 ± 0.975
4 0.821 ± 0.771 0.741 ± 2.045 0.666 ± 1.070 0.775 ± 0.994 0.797 ± 0.976
5 1.226 ± 0.622 0.977 ± 1.737 0.801 ± 0.853 1.007 ± 0.804 1.034 ± 0.781

6 1.315 ± 0.542 1.127 ± 1.475 0.928 ± 0.755 1.273 ± 0.650 1.176 ± 0.665
7 1.373 ± 0.491 1.235 ± 1.345 1.057 ± 0.659 1.263 ± 0.597 1.283 ± 0.578
8 1.694 ± 0.263 1.492 ± 0.781 1.328 ± 0.388 1.522 ± 0.334 1.568 ± 0.345
9 1.912 ± 0.121 1.760 ± 0.691 1.380 ± 0.171 1.819 ± 0.163 1.805 ± 0.151

10 2.235 ± 0.004 1.857 ± 0.566 1.595 ± 0.006 2.038 ± 0.005 1.983 ± 0.005
15 2.298 ± 0.004 1.872 ± 0.684 1.526 ± 0.005 1.880 ± 0.005 1.980 ± 0.005
20 0.908 ± 0.739 0.753 ± 2.089 0.642 ± 1.094 0.830 ± 0.946 0.789 ± 0.966
25 0.898 ± 0.846 0.745 ± 2.057 0.588 ± 1.078 0.831 ± 0.968 0.793 ± 0.971

30 0.850 ± 0.780 0.753 ± 2.039 0.715 ± 1.022 0.765 ± 0.956 0.773 ± 0.947
40 0.893 ± 0.774 0.761 ± 2.202 0.604 ± 1.178 0.837 ± 1.025 0.839 ± 1.007
50 0.896 ± 0.741 0.837 ± 2.062 0.750 ± 1.099 0.964 ± 0.985 0.874 ± 0.968
60 0.802 ± 0.738 0.703 ± 2.024 0.547 ± 1.149 0.784 ± 0.959 0.767 ± 0.956

70 0.785 ± 0.674 0.671 ± 1.986 0.578 ± 1.045 0.721 ± 0.894 0.703 ± 0.950
80 0.711 ± 0.859 0.621 ± 2.075 0.486 ± 0.976 0.713 ± 0.953 0.674 ± 0.967
90 0.798 ± 0.854 0.708 ± 2.088 0.604 ± 1.047 0.746 ± 0.992 0.737 ± 0.963
100 0.872 ± 0.708 0.741 ± 1.962 0.584 ± 0.976 0.781 ± 0.878 0.791 ± 0.918

Table A.12: Davies-Boulding index on the Reuters multilingual corpus dataset
of MV-tSNE compared with single view and stacked views tSNE. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.875 ± 0.005 0.890 ± 0.021 0.904 ± 0.004 0.859 ± 0.014 0.857 ± 0.014
3 0.871 ± 0.005 0.887 ± 0.023 0.903 ± 0.004 0.905 ± 0.007 0.907 ± 0.007
4 0.872 ± 0.002 0.889 ± 0.024 0.905 ± 0.002 0.920 ± 0.004 0.917 ± 0.004
5 0.871 ± 0.002 0.889 ± 0.026 0.907 ± 0.001 0.929 ± 0.002 0.922 ± 0.002

6 0.869 ± 0.003 0.888 ± 0.027 0.907 ± 0.001 0.921 ± 0.002 0.923 ± 0.002
7 0.869 ± 0.004 0.887 ± 0.027 0.906 ± 0.002 0.918 ± 0.002 0.922 ± 0.002
8 0.868 ± 0.003 0.887 ± 0.027 0.906 ± 0.001 0.931 ± 0.002 0.924 ± 0.002
9 0.869 ± 0.002 0.888 ± 0.026 0.906 ± 0.001 0.925 ± 0.002 0.923 ± 0.002

10 0.868 ± 0.002 0.887 ± 0.028 0.907 ± 0.001 0.925 ± 0.002 0.923 ± 0.002
15 0.873 ± 0.002 0.890 ± 0.025 0.907 ± 0.001 0.924 ± 0.002 0.922 ± 0.002
20 0.874 ± 0.001 0.890 ± 0.023 0.906 ± 0.002 0.924 ± 0.001 0.922 ± 0.001
25 0.874 ± 0.003 0.891 ± 0.023 0.907 ± 0.001 0.828 ± 0.277 0.830 ± 0.277

30 0.874 ± 0.001 0.890 ± 0.023 0.906 ± 0.001 0.837 ± 0.001 0.842 ± 0.001
40 0.875 ± 0.002 0.890 ± 0.022 0.905 ± 0.001 0.848 ± 0.001 0.848 ± 0.001
50 0.875 ± 0.001 0.889 ± 0.021 0.904 ± 0.001 0.848 ± 0.001 0.847 ± 0.001
60 0.874 ± 0.001 0.888 ± 0.021 0.903 ± 0.001 0.831 ± 0.001 0.830 ± 0.001

70 0.874 ± 0.001 0.888 ± 0.021 0.903 ± 0.001 0.830 ± 0.001 0.829 ± 0.001
80 0.875 ± 0.001 0.889 ± 0.020 0.902 ± 0.001 0.848 ± 0.001 0.847 ± 0.001
90 0.875 ± 0.001 0.888 ± 0.019 0.901 ± 0.001 0.854 ± 0.001 0.855 ± 0.001
100 0.876 ± 0.001 0.888 ± 0.018 0.901 ± 0.001 0.833 ± 0.001 0.839 ± 0.001

Table A.13: One-vs-one SVM classification accuracy on the BBC segmented
news dataset of MV-tSNE compared with single view and stacked views tSNE.
K is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.288 ± 0.010 0.290 ± 0.012 0.292 ± 0.006 0.218 ± 0.019 0.218 ± 0.019
3 0.327 ± 0.013 0.331 ± 0.015 0.336 ± 0.003 0.293 ± 0.012 0.294 ± 0.012
4 0.356 ± 0.016 0.364 ± 0.020 0.372 ± 0.001 0.342 ± 0.010 0.342 ± 0.010
5 0.376 ± 0.019 0.386 ± 0.024 0.397 ± 0.002 0.384 ± 0.004 0.382 ± 0.004

6 0.390 ± 0.020 0.402 ± 0.026 0.413 ± 0.002 0.409 ± 0.005 0.408 ± 0.005
7 0.399 ± 0.021 0.410 ± 0.026 0.422 ± 0.001 0.428 ± 0.004 0.425 ± 0.004
8 0.406 ± 0.022 0.417 ± 0.027 0.428 ± 0.002 0.435 ± 0.005 0.434 ± 0.005
9 0.409 ± 0.022 0.421 ± 0.027 0.432 ± 0.001 0.445 ± 0.004 0.447 ± 0.004

10 0.412 ± 0.022 0.423 ± 0.027 0.434 ± 0.001 0.454 ± 0.003 0.455 ± 0.003
15 0.421 ± 0.023 0.431 ± 0.027 0.441 ± 0.001 0.470 ± 0.003 0.474 ± 0.003
20 0.425 ± 0.023 0.434 ± 0.027 0.444 ± 0.001 0.479 ± 0.003 0.481 ± 0.003
25 0.426 ± 0.023 0.435 ± 0.027 0.445 ± 0.001 0.436 ± 0.147 0.439 ± 0.146

30 0.427 ± 0.023 0.437 ± 0.027 0.446 ± 0.001 0.415 ± 0.012 0.414 ± 0.012
40 0.429 ± 0.023 0.438 ± 0.027 0.447 ± 0.001 0.420 ± 0.012 0.419 ± 0.012
50 0.430 ± 0.024 0.439 ± 0.027 0.448 ± 0.001 0.419 ± 0.011 0.416 ± 0.011
60 0.430 ± 0.024 0.439 ± 0.027 0.448 ± 0.001 0.417 ± 0.012 0.419 ± 0.012

70 0.431 ± 0.024 0.439 ± 0.027 0.448 ± 0.001 0.416 ± 0.012 0.417 ± 0.012
80 0.431 ± 0.024 0.440 ± 0.027 0.448 ± 0.001 0.425 ± 0.012 0.422 ± 0.012
90 0.431 ± 0.024 0.440 ± 0.027 0.449 ± 0.001 0.422 ± 0.012 0.421 ± 0.012
100 0.432 ± 0.024 0.440 ± 0.027 0.449 ± 0.001 0.415 ± 0.012 0.415 ± 0.012

Table A.14: Cophenetic correlation on the BBC segmented news dataset of
MV-tSNE compared with single view and stacked views tSNE. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.309 ± 0.085 0.315 ± 0.085 0.322 ± 0.003 0.283 ± 0.006 0.282 ± 0.006
3 0.323 ± 0.090 0.330 ± 0.091 0.337 ± 0.002 0.317 ± 0.005 0.317 ± 0.005
4 0.330 ± 0.092 0.337 ± 0.093 0.344 ± 0.001 0.334 ± 0.004 0.335 ± 0.004
5 0.333 ± 0.093 0.341 ± 0.094 0.348 ± 0.001 0.347 ± 0.002 0.347 ± 0.002

6 0.335 ± 0.094 0.343 ± 0.095 0.351 ± 0.001 0.353 ± 0.002 0.353 ± 0.002
7 0.337 ± 0.094 0.344 ± 0.095 0.352 ± 0.001 0.357 ± 0.001 0.357 ± 0.001
8 0.338 ± 0.094 0.345 ± 0.095 0.353 ± 0.001 0.361 ± 0.002 0.359 ± 0.002
9 0.338 ± 0.095 0.346 ± 0.095 0.354 ± 0.001 0.365 ± 0.001 0.362 ± 0.001

10 0.339 ± 0.095 0.346 ± 0.095 0.354 ± 0.001 0.361 ± 0.001 0.364 ± 0.001
15 0.340 ± 0.095 0.348 ± 0.095 0.355 ± 0.001 0.367 ± 0.001 0.368 ± 0.001
20 0.341 ± 0.095 0.348 ± 0.095 0.356 ± 0.001 0.372 ± 0.001 0.369 ± 0.001
25 0.341 ± 0.095 0.348 ± 0.096 0.356 ± 0.001 0.334 ± 0.112 0.333 ± 0.111

30 0.341 ± 0.095 0.348 ± 0.096 0.356 ± 0.001 0.329 ± 0.046 0.331 ± 0.046
40 0.341 ± 0.095 0.349 ± 0.096 0.356 ± 0.001 0.332 ± 0.045 0.330 ± 0.045
50 0.341 ± 0.095 0.349 ± 0.096 0.356 ± 0.001 0.330 ± 0.046 0.330 ± 0.046
60 0.342 ± 0.095 0.349 ± 0.096 0.356 ± 0.001 0.331 ± 0.046 0.329 ± 0.046

70 0.342 ± 0.095 0.349 ± 0.095 0.356 ± 0.001 0.331 ± 0.046 0.331 ± 0.046
80 0.342 ± 0.095 0.349 ± 0.096 0.356 ± 0.001 0.332 ± 0.045 0.332 ± 0.046
90 0.342 ± 0.095 0.349 ± 0.096 0.356 ± 0.001 0.334 ± 0.045 0.332 ± 0.046
100 0.342 ± 0.095 0.349 ± 0.096 0.356 ± 0.001 0.329 ± 0.046 0.334 ± 0.046

Table A.15: Area under the curve of the RNX index on the BBC segmented
news dataset of MV-tSNE compared with single view and stacked views tSNE.
K is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.812 ± 0.021 0.810 ± 0.041 0.808 ± 0.035 0.616 ± 0.078 0.619 ± 0.078
3 0.818 ± 0.063 0.820 ± 0.102 0.822 ± 0.081 0.733 ± 0.058 0.730 ± 0.058
4 0.834 ± 0.029 0.847 ± 0.085 0.859 ± 0.078 0.825 ± 0.058 0.824 ± 0.058
5 0.845 ± 0.004 0.866 ± 0.030 0.887 ± 0.006 0.886 ± 0.010 0.887 ± 0.010

6 0.844 ± 0.007 0.867 ± 0.033 0.889 ± 0.004 0.900 ± 0.012 0.902 ± 0.012
7 0.832 ± 0.043 0.854 ± 0.070 0.875 ± 0.047 0.901 ± 0.007 0.902 ± 0.007
8 0.847 ± 0.004 0.869 ± 0.031 0.891 ± 0.002 0.914 ± 0.005 0.911 ± 0.005
9 0.846 ± 0.002 0.869 ± 0.032 0.891 ± 0.004 0.911 ± 0.004 0.910 ± 0.004

10 0.846 ± 0.002 0.869 ± 0.032 0.892 ± 0.001 0.912 ± 0.003 0.913 ± 0.003
15 0.847 ± 0.003 0.847 ± 0.070 0.846 ± 0.070 0.914 ± 0.002 0.916 ± 0.002
20 0.847 ± 0.002 0.853 ± 0.064 0.859 ± 0.063 0.919 ± 0.002 0.917 ± 0.002
25 0.847 ± 0.002 0.854 ± 0.062 0.860 ± 0.062 0.832 ± 0.276 0.825 ± 0.275

30 0.846 ± 0.002 0.860 ± 0.051 0.875 ± 0.047 0.817 ± 0.023 0.816 ± 0.023
40 0.846 ± 0.001 0.868 ± 0.032 0.891 ± 0.001 0.812 ± 0.001 0.823 ± 0.001
50 0.847 ± 0.001 0.861 ± 0.050 0.875 ± 0.046 0.813 ± 0.022 0.818 ± 0.022
60 0.847 ± 0.001 0.853 ± 0.064 0.858 ± 0.064 0.805 ± 0.031 0.805 ± 0.031

70 0.846 ± 0.001 0.844 ± 0.072 0.842 ± 0.072 0.805 ± 0.035 0.808 ± 0.035
80 0.848 ± 0.001 0.869 ± 0.030 0.890 ± 0.002 0.826 ± 0.001 0.822 ± 0.001
90 0.846 ± 0.001 0.845 ± 0.072 0.843 ± 0.072 0.798 ± 0.035 0.797 ± 0.034
100 0.846 ± 0.002 0.845 ± 0.070 0.844 ± 0.070 0.804 ± 0.034 0.800 ± 0.034

Table A.16: Clustering purity on the BBC segmented news dataset of MV-
tSNE compared with single view and stacked views tSNE. K is the dimen-
sionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.580 ± 0.028 0.588 ± 0.056 0.596 ± 0.047 0.350 ± 0.067 0.352 ± 0.068
3 0.591 ± 0.057 0.613 ± 0.085 0.635 ± 0.055 0.511 ± 0.060 0.512 ± 0.060
4 0.607 ± 0.028 0.645 ± 0.087 0.683 ± 0.062 0.624 ± 0.068 0.623 ± 0.068
5 0.620 ± 0.007 0.663 ± 0.062 0.706 ± 0.012 0.711 ± 0.018 0.709 ± 0.018

6 0.617 ± 0.013 0.664 ± 0.068 0.711 ± 0.007 0.744 ± 0.017 0.741 ± 0.018
7 0.609 ± 0.036 0.656 ± 0.083 0.703 ± 0.033 0.743 ± 0.011 0.739 ± 0.011
8 0.622 ± 0.007 0.667 ± 0.065 0.712 ± 0.005 0.757 ± 0.011 0.756 ± 0.011
9 0.622 ± 0.004 0.668 ± 0.067 0.715 ± 0.008 0.759 ± 0.007 0.753 ± 0.007

10 0.621 ± 0.004 0.668 ± 0.067 0.715 ± 0.003 0.762 ± 0.007 0.761 ± 0.007
15 0.622 ± 0.006 0.655 ± 0.063 0.688 ± 0.042 0.770 ± 0.005 0.766 ± 0.005
20 0.623 ± 0.004 0.657 ± 0.065 0.692 ± 0.042 0.767 ± 0.006 0.769 ± 0.006
25 0.623 ± 0.004 0.659 ± 0.064 0.694 ± 0.040 0.693 ± 0.230 0.691 ± 0.230

30 0.621 ± 0.003 0.661 ± 0.066 0.701 ± 0.033 0.630 ± 0.017 0.628 ± 0.017
40 0.620 ± 0.002 0.666 ± 0.066 0.713 ± 0.002 0.634 ± 0.002 0.630 ± 0.002
50 0.622 ± 0.003 0.662 ± 0.065 0.702 ± 0.031 0.630 ± 0.016 0.630 ± 0.016
60 0.623 ± 0.002 0.657 ± 0.064 0.691 ± 0.042 0.615 ± 0.021 0.622 ± 0.021

70 0.621 ± 0.002 0.649 ± 0.064 0.678 ± 0.049 0.615 ± 0.025 0.617 ± 0.025
80 0.623 ± 0.002 0.667 ± 0.063 0.712 ± 0.003 0.631 ± 0.002 0.631 ± 0.002
90 0.621 ± 0.002 0.650 ± 0.065 0.678 ± 0.051 0.624 ± 0.025 0.623 ± 0.026
100 0.621 ± 0.003 0.651 ± 0.063 0.682 ± 0.046 0.621 ± 0.023 0.620 ± 0.023

Table A.17: Clustering normalized mutual information on the BBC segmented
news dataset of MV-tSNE compared with single view and stacked views tSNE.
K is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 1.961 ± 0.004 1.962 ± 0.005 1.962 ± 0.002 1.984 ± 0.004 1.976 ± 0.004
3 1.960 ± 0.005 1.960 ± 0.007 1.960 ± 0.005 1.959 ± 0.005 1.970 ± 0.005
4 1.959 ± 0.005 1.958 ± 0.006 1.957 ± 0.003 1.972 ± 0.005 1.961 ± 0.005
5 1.958 ± 0.001 1.957 ± 0.002 1.956 ± 0.001 1.962 ± 0.001 1.956 ± 0.001

6 1.958 ± 0.000 1.957 ± 0.002 1.956 ± 0.001 1.973 ± 0.001 1.954 ± 0.001
7 1.960 ± 0.005 1.958 ± 0.007 1.957 ± 0.004 1.949 ± 0.001 1.954 ± 0.001
8 1.958 ± 0.000 1.957 ± 0.002 1.955 ± 0.001 1.955 ± 0.001 1.954 ± 0.001
9 1.958 ± 0.001 1.957 ± 0.002 1.955 ± 0.001 1.966 ± 0.001 1.954 ± 0.001

10 1.958 ± 0.000 1.957 ± 0.002 1.955 ± 0.000 1.936 ± 0.001 1.953 ± 0.001
15 1.958 ± 0.005 1.959 ± 0.005 1.959 ± 0.001 1.953 ± 0.001 1.953 ± 0.001
20 1.958 ± 0.003 1.957 ± 0.003 1.956 ± 0.001 1.950 ± 0.001 1.953 ± 0.001
25 1.958 ± 0.004 1.958 ± 0.004 1.958 ± 0.001 1.761 ± 0.584 1.758 ± 0.586

30 1.959 ± 0.003 1.958 ± 0.003 1.957 ± 0.001 1.868 ± 0.002 1.874 ± 0.002
40 1.959 ± 0.000 1.957 ± 0.002 1.956 ± 0.001 1.866 ± 0.000 1.860 ± 0.000
50 1.959 ± 0.003 1.958 ± 0.003 1.957 ± 0.001 1.855 ± 0.002 1.853 ± 0.002
60 1.958 ± 0.003 1.957 ± 0.003 1.956 ± 0.001 1.857 ± 0.002 1.872 ± 0.002

70 1.959 ± 0.004 1.958 ± 0.004 1.958 ± 0.001 1.857 ± 0.002 1.850 ± 0.002
80 1.959 ± 0.000 1.957 ± 0.002 1.956 ± 0.001 1.855 ± 0.000 1.868 ± 0.000
90 1.959 ± 0.004 1.958 ± 0.004 1.958 ± 0.001 1.841 ± 0.002 1.851 ± 0.002
100 1.959 ± 0.004 1.958 ± 0.004 1.958 ± 0.001 1.874 ± 0.002 1.866 ± 0.002

Table A.18: Davies-Boulding index on the BBC segmented news dataset of
MV-tSNE compared with single view and stacked views tSNE. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.062 ± 0.003 0.062 ± 0.011 0.062 ± 0.005 0.061 ± 0.001 0.063 ± 0.003
3 0.068 ± 0.001 0.068 ± 0.004 0.069 ± 0.002 0.067 ± 0.001 0.069 ± 0.001
4 0.073 ± 0.001 0.075 ± 0.004 0.076 ± 0.001 0.070 ± 0.001 0.074 ± 0.001
5 0.076 ± 0.001 0.078 ± 0.003 0.079 ± 0.001 0.072 ± 0.000 0.077 ± 0.001

6 0.080 ± 0.001 0.082 ± 0.004 0.082 ± 0.001 0.078 ± 0.001 0.082 ± 0.001
7 0.082 ± 0.001 0.084 ± 0.004 0.085 ± 0.001 0.080 ± 0.001 0.084 ± 0.001
8 0.083 ± 0.001 0.084 ± 0.003 0.085 ± 0.001 0.080 ± 0.001 0.084 ± 0.001
9 0.083 ± 0.001 0.085 ± 0.003 0.085 ± 0.001 0.081 ± 0.001 0.085 ± 0.001

10 0.081 ± 0.001 0.084 ± 0.005 0.086 ± 0.001 0.076 ± 0.001 0.082 ± 0.001
15 0.078 ± 0.001 0.083 ± 0.006 0.085 ± 0.001 0.071 ± 0.001 0.079 ± 0.001
20 0.074 ± 0.001 0.077 ± 0.006 0.079 ± 0.002 0.068 ± 0.001 0.075 ± 0.001
25 0.069 ± 0.001 0.071 ± 0.002 0.071 ± 0.001 0.067 ± 0.001 0.070 ± 0.001

30 0.067 ± 0.000 0.069 ± 0.002 0.070 ± 0.000 0.064 ± 0.000 0.068 ± 0.000
40 0.038 ± 0.001 0.021 ± 0.022 0.013 ± 0.003 0.063 ± 0.000 0.040 ± 0.001
50 0.025 ± 0.002 0.017 ± 0.011 0.013 ± 0.002 0.036 ± 0.003 0.026 ± 0.003
60 0.017 ± 0.001 0.014 ± 0.011 0.013 ± 0.001 0.021 ± 0.002 0.017 ± 0.001

70 0.012 ± 0.007 0.012 ± 0.013 0.013 ± 0.001 0.012 ± 0.001 0.013 ± 0.008
80 0.010 ± 0.005 0.011 ± 0.012 0.012 ± 0.008 0.007 ± 0.001 0.010 ± 0.005
90 0.008 ± 0.004 0.011 ± 0.013 0.012 ± 0.006 0.004 ± 0.007 0.008 ± 0.004
100 0.007 ± 0.003 0.010 ± 0.010 0.012 ± 0.004 0.002 ± 0.005 0.007 ± 0.003

Table A.19: One-vs-one SVM classification accuracy on the animal with at-
tributes (AWA) dataset of MV-tSNE compared with single view and stacked
views tSNE. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.145 ± 0.115 0.145 ± 0.278 0.145 ± 0.110 0.146 ± 0.105 0.148 ± 0.112
3 0.165 ± 0.135 0.166 ± 0.327 0.168 ± 0.130 0.172 ± 0.125 0.172 ± 0.132
4 0.179 ± 0.149 0.180 ± 0.360 0.182 ± 0.143 0.184 ± 0.138 0.186 ± 0.146
5 0.184 ± 0.154 0.186 ± 0.374 0.190 ± 0.149 0.195 ± 0.144 0.193 ± 0.152

6 0.187 ± 0.157 0.188 ± 0.380 0.190 ± 0.151 0.194 ± 0.145 0.195 ± 0.154
7 0.187 ± 0.158 0.188 ± 0.382 0.191 ± 0.152 0.194 ± 0.146 0.195 ± 0.155
8 0.188 ± 0.159 0.190 ± 0.384 0.192 ± 0.153 0.195 ± 0.147 0.196 ± 0.156
9 0.188 ± 0.159 0.189 ± 0.385 0.192 ± 0.153 0.195 ± 0.147 0.195 ± 0.156

10 0.188 ± 0.159 0.191 ± 0.388 0.196 ± 0.156 0.204 ± 0.153 0.200 ± 0.159
15 0.188 ± 0.159 0.190 ± 0.387 0.196 ± 0.156 0.204 ± 0.154 0.200 ± 0.159
20 0.188 ± 0.159 0.191 ± 0.388 0.196 ± 0.157 0.204 ± 0.154 0.200 ± 0.159
25 0.188 ± 0.159 0.191 ± 0.388 0.196 ± 0.157 0.204 ± 0.154 0.200 ± 0.160

30 0.188 ± 0.159 0.191 ± 0.388 0.196 ± 0.156 0.204 ± 0.154 0.201 ± 0.160
40 0.038 ± 0.104 0.064 ± 0.283 0.121 ± 0.129 0.204 ± 0.154 0.126 ± 0.132
50 0.038 ± 0.104 0.051 ± 0.277 0.080 ± 0.130 0.123 ± 0.156 0.083 ± 0.132
60 0.038 ± 0.104 0.043 ± 0.277 0.056 ± 0.131 0.074 ± 0.158 0.058 ± 0.135

70 0.038 ± 0.104 0.039 ± 0.277 0.041 ± 0.132 0.044 ± 0.160 0.042 ± 0.135
80 0.037 ± 0.104 0.036 ± 0.278 0.032 ± 0.133 0.027 ± 0.162 0.033 ± 0.137
90 0.037 ± 0.104 0.034 ± 0.279 0.027 ± 0.134 0.016 ± 0.164 0.027 ± 0.137
100 0.037 ± 0.104 0.033 ± 0.279 0.023 ± 0.134 0.010 ± 0.166 0.024 ± 0.138

Table A.20: Cophenetic correlation on the animal with attributes (AWA)
dataset of MV-tSNE compared with single view and stacked views tSNE. K
is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.054 ± 0.067 0.056 ± 0.185 0.057 ± 0.079 0.051 ± 0.055 0.055 ± 0.068
3 0.060 ± 0.076 0.062 ± 0.210 0.063 ± 0.089 0.057 ± 0.063 0.062 ± 0.078
4 0.065 ± 0.081 0.067 ± 0.224 0.067 ± 0.095 0.061 ± 0.067 0.066 ± 0.083
5 0.067 ± 0.083 0.069 ± 0.230 0.069 ± 0.098 0.065 ± 0.068 0.068 ± 0.085

6 0.067 ± 0.084 0.069 ± 0.233 0.070 ± 0.099 0.064 ± 0.069 0.068 ± 0.085
7 0.068 ± 0.085 0.070 ± 0.234 0.071 ± 0.099 0.065 ± 0.070 0.069 ± 0.086
8 0.068 ± 0.085 0.070 ± 0.235 0.071 ± 0.100 0.065 ± 0.070 0.069 ± 0.087
9 0.068 ± 0.085 0.070 ± 0.236 0.071 ± 0.100 0.065 ± 0.070 0.069 ± 0.087

10 0.070 ± 0.087 0.071 ± 0.236 0.071 ± 0.100 0.068 ± 0.072 0.071 ± 0.088
15 0.070 ± 0.087 0.071 ± 0.237 0.071 ± 0.100 0.068 ± 0.072 0.071 ± 0.088
20 0.070 ± 0.087 0.071 ± 0.237 0.072 ± 0.100 0.068 ± 0.072 0.071 ± 0.088
25 0.070 ± 0.087 0.071 ± 0.237 0.072 ± 0.100 0.068 ± 0.072 0.071 ± 0.088

30 0.070 ± 0.087 0.071 ± 0.237 0.071 ± 0.101 0.068 ± 0.072 0.071 ± 0.088
40 0.041 ± 0.063 0.023 ± 0.141 0.016 ± 0.054 0.068 ± 0.072 0.043 ± 0.064
50 0.028 ± 0.059 0.019 ± 0.136 0.015 ± 0.054 0.041 ± 0.065 0.029 ± 0.061
60 0.020 ± 0.056 0.016 ± 0.134 0.015 ± 0.054 0.025 ± 0.059 0.020 ± 0.057

70 0.015 ± 0.053 0.014 ± 0.132 0.014 ± 0.054 0.015 ± 0.053 0.015 ± 0.055
80 0.012 ± 0.051 0.013 ± 0.129 0.014 ± 0.054 0.009 ± 0.048 0.012 ± 0.052
90 0.010 ± 0.049 0.013 ± 0.127 0.014 ± 0.053 0.005 ± 0.043 0.010 ± 0.049
100 0.009 ± 0.046 0.013 ± 0.126 0.014 ± 0.053 0.003 ± 0.039 0.009 ± 0.047

Table A.21: Area under the curve of the RNX index on the animal with
attributes (AWA) dataset of MV-tSNE compared with single view and stacked
views tSNE. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.106 ± 0.002 0.105 ± 0.005 0.105 ± 0.002 0.104 ± 0.002 0.107 ± 0.002
3 0.105 ± 0.002 0.105 ± 0.005 0.106 ± 0.002 0.106 ± 0.002 0.108 ± 0.002
4 0.106 ± 0.001 0.106 ± 0.004 0.106 ± 0.002 0.106 ± 0.003 0.109 ± 0.002
5 0.106 ± 0.001 0.107 ± 0.002 0.107 ± 0.001 0.108 ± 0.001 0.109 ± 0.001

6 0.105 ± 0.002 0.105 ± 0.005 0.106 ± 0.002 0.106 ± 0.002 0.107 ± 0.002
7 0.105 ± 0.001 0.106 ± 0.002 0.106 ± 0.001 0.106 ± 0.001 0.108 ± 0.001
8 0.106 ± 0.001 0.106 ± 0.003 0.106 ± 0.001 0.106 ± 0.002 0.108 ± 0.001
9 0.106 ± 0.001 0.106 ± 0.003 0.106 ± 0.001 0.106 ± 0.001 0.108 ± 0.001

10 0.106 ± 0.001 0.106 ± 0.002 0.107 ± 0.001 0.108 ± 0.001 0.109 ± 0.001
15 0.106 ± 0.001 0.106 ± 0.003 0.107 ± 0.001 0.107 ± 0.001 0.109 ± 0.001
20 0.106 ± 0.001 0.106 ± 0.002 0.107 ± 0.001 0.107 ± 0.001 0.109 ± 0.001
25 0.106 ± 0.001 0.106 ± 0.002 0.107 ± 0.001 0.107 ± 0.001 0.109 ± 0.001

30 0.106 ± 0.001 0.107 ± 0.001 0.107 ± 0.001 0.107 ± 0.001 0.109 ± 0.001
40 0.021 ± 0.004 0.035 ± 0.037 0.064 ± 0.002 0.107 ± 0.001 0.067 ± 0.002
50 0.021 ± 0.003 0.028 ± 0.020 0.043 ± 0.004 0.065 ± 0.005 0.045 ± 0.004
60 0.021 ± 0.002 0.024 ± 0.015 0.030 ± 0.001 0.039 ± 0.002 0.031 ± 0.001

70 0.021 ± 0.002 0.022 ± 0.011 0.023 ± 0.006 0.024 ± 0.001 0.023 ± 0.006
80 0.022 ± 0.001 0.020 ± 0.009 0.018 ± 0.003 0.014 ± 0.005 0.018 ± 0.003
90 0.022 ± 0.009 0.020 ± 0.015 0.015 ± 0.001 0.009 ± 0.003 0.015 ± 0.001
100 0.022 ± 0.006 0.019 ± 0.014 0.013 ± 0.006 0.005 ± 0.001 0.013 ± 0.006

Table A.22: Clustering purity on the animal with attributes (AWA) dataset
of MV-tSNE compared with single view and stacked views tSNE. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.137 ± 0.001 0.137 ± 0.004 0.138 ± 0.001 0.139 ± 0.001 0.141 ± 0.001
3 0.137 ± 0.001 0.137 ± 0.004 0.138 ± 0.002 0.139 ± 0.003 0.140 ± 0.002
4 0.137 ± 0.001 0.137 ± 0.003 0.138 ± 0.001 0.139 ± 0.001 0.140 ± 0.001
5 0.137 ± 0.001 0.138 ± 0.004 0.138 ± 0.002 0.140 ± 0.002 0.142 ± 0.002

6 0.135 ± 0.001 0.136 ± 0.003 0.136 ± 0.001 0.137 ± 0.002 0.139 ± 0.001
7 0.136 ± 0.001 0.137 ± 0.003 0.137 ± 0.001 0.138 ± 0.002 0.140 ± 0.001
8 0.135 ± 0.002 0.135 ± 0.005 0.136 ± 0.002 0.137 ± 0.003 0.139 ± 0.002
9 0.135 ± 0.001 0.136 ± 0.004 0.136 ± 0.002 0.137 ± 0.002 0.139 ± 0.002

10 0.135 ± 0.002 0.136 ± 0.004 0.137 ± 0.001 0.140 ± 0.001 0.140 ± 0.001
15 0.135 ± 0.001 0.136 ± 0.002 0.137 ± 0.001 0.139 ± 0.001 0.140 ± 0.001
20 0.135 ± 0.000 0.136 ± 0.002 0.137 ± 0.001 0.139 ± 0.001 0.140 ± 0.001
25 0.135 ± 0.001 0.136 ± 0.002 0.137 ± 0.001 0.139 ± 0.001 0.140 ± 0.001

30 0.135 ± 0.001 0.136 ± 0.002 0.137 ± 0.001 0.138 ± 0.000 0.140 ± 0.001
40 0.027 ± 0.005 0.045 ± 0.048 0.083 ± 0.003 0.139 ± 0.001 0.086 ± 0.003
50 0.027 ± 0.004 0.036 ± 0.027 0.055 ± 0.006 0.084 ± 0.007 0.057 ± 0.006
60 0.027 ± 0.004 0.031 ± 0.013 0.039 ± 0.005 0.050 ± 0.009 0.040 ± 0.005

70 0.027 ± 0.003 0.028 ± 0.011 0.029 ± 0.006 0.030 ± 0.001 0.029 ± 0.006
80 0.027 ± 0.003 0.026 ± 0.015 0.023 ± 0.008 0.018 ± 0.002 0.023 ± 0.008
90 0.027 ± 0.002 0.025 ± 0.011 0.019 ± 0.001 0.011 ± 0.002 0.019 ± 0.001
100 0.028 ± 0.002 0.024 ± 0.015 0.017 ± 0.001 0.007 ± 0.003 0.017 ± 0.001

Table A.23: Clustering normalized mutual information on the animal with
attributes (AWA) dataset of MV-tSNE compared with single view and stacked
views tSNE. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 1.981 ± 0.003 1.980 ± 0.009 1.982 ± 0.003 1.983 ± 0.002 2.022 ± 0.003
3 1.981 ± 0.003 1.980 ± 0.009 1.981 ± 0.003 1.981 ± 0.003 2.019 ± 0.003
4 1.976 ± 0.004 1.976 ± 0.012 1.980 ± 0.003 1.980 ± 0.003 2.015 ± 0.003
5 1.978 ± 0.004 1.977 ± 0.011 1.979 ± 0.003 1.978 ± 0.003 2.022 ± 0.003

6 1.979 ± 0.004 1.978 ± 0.011 1.979 ± 0.004 1.979 ± 0.003 2.027 ± 0.004
7 1.980 ± 0.004 1.977 ± 0.011 1.979 ± 0.004 1.978 ± 0.003 2.022 ± 0.004
8 1.978 ± 0.004 1.978 ± 0.010 1.978 ± 0.004 1.978 ± 0.003 2.015 ± 0.004
9 1.978 ± 0.004 1.977 ± 0.011 1.979 ± 0.004 1.981 ± 0.003 2.021 ± 0.004

10 1.979 ± 0.004 1.980 ± 0.010 1.979 ± 0.004 1.980 ± 0.003 2.019 ± 0.004
15 1.981 ± 0.004 1.980 ± 0.011 1.979 ± 0.004 1.983 ± 0.003 2.021 ± 0.004
20 1.985 ± 0.004 1.980 ± 0.011 1.979 ± 0.004 1.982 ± 0.003 2.032 ± 0.004
25 1.979 ± 0.004 1.978 ± 0.011 1.979 ± 0.004 1.982 ± 0.003 2.021 ± 0.004

30 1.978 ± 0.004 1.979 ± 0.013 1.979 ± 0.004 1.983 ± 0.003 2.026 ± 0.004
40 1.191 ± 0.008 0.653 ± 0.668 0.396 ± 0.004 1.983 ± 0.003 1.235 ± 0.004
50 0.792 ± 0.008 0.524 ± 0.334 0.396 ± 0.009 1.189 ± 0.010 0.819 ± 0.009
60 0.554 ± 0.008 0.447 ± 0.133 0.396 ± 0.001 0.713 ± 0.003 0.572 ± 0.002

70 0.411 ± 0.008 0.401 ± 0.017 0.396 ± 0.004 0.427 ± 0.008 0.421 ± 0.004
80 0.326 ± 0.008 0.373 ± 0.061 0.396 ± 0.001 0.256 ± 0.002 0.330 ± 0.001
90 0.275 ± 0.008 0.356 ± 0.102 0.396 ± 0.004 0.153 ± 0.007 0.276 ± 0.004
100 0.244 ± 0.008 0.347 ± 0.129 0.396 ± 0.001 0.092 ± 0.002 0.244 ± 0.001

Table A.24: Davies-Boulding index on the animal with attributes (AWA)
dataset of MV-tSNE compared with single view and stacked views tSNE. K
is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.730 ± 0.005 0.776 ± 0.101 0.858 ± 0.002 0.861 ± 0.002 0.852 ± 0.002
3 0.737 ± 0.005 0.786 ± 0.087 0.855 ± 0.003 0.862 ± 0.002 0.844 ± 0.003
4 0.738 ± 0.005 0.783 ± 0.090 0.855 ± 0.002 0.864 ± 0.002 0.855 ± 0.003
5 0.733 ± 0.007 0.784 ± 0.093 0.857 ± 0.002 0.864 ± 0.002 0.859 ± 0.002

6 0.733 ± 0.006 0.786 ± 0.091 0.857 ± 0.002 0.862 ± 0.002 0.861 ± 0.003
7 0.736 ± 0.006 0.787 ± 0.089 0.857 ± 0.002 0.863 ± 0.002 0.859 ± 0.002
8 0.733 ± 0.003 0.788 ± 0.090 0.857 ± 0.001 0.862 ± 0.002 0.860 ± 0.003
9 0.736 ± 0.005 0.788 ± 0.088 0.857 ± 0.002 0.862 ± 0.003 0.858 ± 0.002

10 0.735 ± 0.004 0.788 ± 0.087 0.855 ± 0.002 0.862 ± 0.001 0.857 ± 0.002
15 0.739 ± 0.005 0.788 ± 0.086 0.856 ± 0.001 0.862 ± 0.002 0.857 ± 0.003
20 0.736 ± 0.006 0.788 ± 0.087 0.856 ± 0.002 0.862 ± 0.001 0.859 ± 0.004
25 0.741 ± 0.004 0.788 ± 0.087 0.857 ± 0.001 0.863 ± 0.002 0.862 ± 0.002

30 0.742 ± 0.005 0.789 ± 0.086 0.857 ± 0.001 0.864 ± 0.001 0.862 ± 0.001
40 0.745 ± 0.005 0.791 ± 0.084 0.858 ± 0.001 0.862 ± 0.002 0.860 ± 0.001
50 0.747 ± 0.005 0.792 ± 0.082 0.857 ± 0.001 0.860 ± 0.002 0.859 ± 0.002
60 0.742 ± 0.006 0.790 ± 0.085 0.857 ± 0.001 0.859 ± 0.001 0.857 ± 0.002

70 0.743 ± 0.003 0.790 ± 0.084 0.857 ± 0.001 0.860 ± 0.001 0.854 ± 0.001
80 0.734 ± 0.006 0.785 ± 0.090 0.857 ± 0.001 0.860 ± 0.001 0.856 ± 0.001
90 0.729 ± 0.003 0.784 ± 0.094 0.857 ± 0.001 0.860 ± 0.001 0.855 ± 0.002
100 0.731 ± 0.002 0.783 ± 0.092 0.856 ± 0.001 0.860 ± 0.001 0.855 ± 0.001

Table A.25: One-vs-one SVM classification accuracy on the Berkeley protein
dataset of MV-tSNE compared with single view and stacked views tSNE. K
is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 -0.068 ± 0.040 0.164 ± 0.510 0.312 ± 0.312 0.325 ± 0.214 0.269 ± 0.227
3 -0.062 ± 0.048 0.174 ± 0.532 0.321 ± 0.324 0.343 ± 0.239 0.296 ± 0.252
4 -0.062 ± 0.058 0.179 ± 0.545 0.329 ± 0.332 0.347 ± 0.248 0.310 ± 0.262
5 -0.059 ± 0.067 0.182 ± 0.551 0.333 ± 0.338 0.349 ± 0.252 0.315 ± 0.268

6 -0.062 ± 0.069 0.181 ± 0.556 0.335 ± 0.341 0.350 ± 0.255 0.318 ± 0.270
7 -0.062 ± 0.071 0.182 ± 0.558 0.336 ± 0.343 0.351 ± 0.257 0.319 ± 0.270
8 -0.058 ± 0.079 0.183 ± 0.558 0.337 ± 0.344 0.352 ± 0.257 0.320 ± 0.270
9 -0.064 ± 0.074 0.182 ± 0.561 0.338 ± 0.345 0.352 ± 0.257 0.320 ± 0.271

10 -0.059 ± 0.082 0.184 ± 0.561 0.338 ± 0.345 0.353 ± 0.257 0.320 ± 0.271
15 -0.063 ± 0.082 0.183 ± 0.563 0.338 ± 0.346 0.353 ± 0.257 0.321 ± 0.271
20 -0.066 ± 0.084 0.182 ± 0.565 0.339 ± 0.346 0.353 ± 0.257 0.321 ± 0.271
25 -0.069 ± 0.085 0.181 ± 0.566 0.339 ± 0.346 0.353 ± 0.257 0.321 ± 0.271

30 -0.069 ± 0.085 0.181 ± 0.566 0.339 ± 0.346 0.353 ± 0.257 0.321 ± 0.271
40 -0.070 ± 0.086 0.180 ± 0.567 0.339 ± 0.346 0.353 ± 0.257 0.321 ± 0.271
50 -0.072 ± 0.085 0.180 ± 0.568 0.339 ± 0.346 0.353 ± 0.257 0.321 ± 0.271
60 -0.073 ± 0.084 0.179 ± 0.568 0.339 ± 0.346 0.353 ± 0.257 0.321 ± 0.271

70 -0.074 ± 0.083 0.179 ± 0.569 0.339 ± 0.346 0.353 ± 0.257 0.321 ± 0.271
80 -0.073 ± 0.084 0.179 ± 0.568 0.339 ± 0.346 0.353 ± 0.257 0.321 ± 0.271
90 -0.074 ± 0.084 0.179 ± 0.569 0.339 ± 0.346 0.353 ± 0.257 0.321 ± 0.271
100 -0.074 ± 0.083 0.179 ± 0.569 0.339 ± 0.346 0.353 ± 0.257 0.321 ± 0.271

Table A.26: Cophenetic correlation on the Berkeley protein dataset of MV-
tSNE compared with single view and stacked views tSNE. K is the dimen-
sionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.045 ± 0.028 0.102 ± 0.167 0.148 ± 0.101 0.158 ± 0.025 0.144 ± 0.026
3 0.045 ± 0.027 0.105 ± 0.173 0.151 ± 0.103 0.166 ± 0.029 0.150 ± 0.031
4 0.044 ± 0.026 0.107 ± 0.177 0.155 ± 0.106 0.169 ± 0.030 0.156 ± 0.033
5 0.045 ± 0.025 0.108 ± 0.179 0.156 ± 0.107 0.170 ± 0.031 0.158 ± 0.035

6 0.044 ± 0.024 0.108 ± 0.182 0.158 ± 0.108 0.170 ± 0.031 0.160 ± 0.035
7 0.043 ± 0.024 0.108 ± 0.182 0.159 ± 0.109 0.171 ± 0.031 0.160 ± 0.035
8 0.045 ± 0.024 0.109 ± 0.182 0.159 ± 0.109 0.171 ± 0.031 0.160 ± 0.035
9 0.043 ± 0.023 0.108 ± 0.183 0.159 ± 0.110 0.171 ± 0.031 0.161 ± 0.035

10 0.044 ± 0.024 0.109 ± 0.183 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035
15 0.042 ± 0.022 0.108 ± 0.183 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035
20 0.040 ± 0.021 0.108 ± 0.184 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035
25 0.038 ± 0.020 0.107 ± 0.185 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035

30 0.038 ± 0.020 0.107 ± 0.185 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035
40 0.037 ± 0.019 0.107 ± 0.185 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035
50 0.036 ± 0.019 0.106 ± 0.185 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035
60 0.035 ± 0.019 0.106 ± 0.186 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035

70 0.035 ± 0.019 0.106 ± 0.186 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035
80 0.035 ± 0.019 0.106 ± 0.186 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035
90 0.034 ± 0.019 0.106 ± 0.186 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035
100 0.035 ± 0.019 0.106 ± 0.186 0.160 ± 0.110 0.171 ± 0.031 0.161 ± 0.035

Table A.27: Area under the curve of the RNX index on the Berkeley protein
dataset of MV-tSNE compared with single view and stacked views tSNE. K
is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.700 ± 0.000 0.712 ± 0.030 0.736 ± 0.005 0.700 ± 0.000 0.700 ± 0.000
3 0.700 ± 0.000 0.718 ± 0.044 0.753 ± 0.005 0.744 ± 0.006 0.732 ± 0.002
4 0.700 ± 0.000 0.719 ± 0.046 0.756 ± 0.004 0.755 ± 0.002 0.747 ± 0.003
5 0.700 ± 0.000 0.719 ± 0.046 0.756 ± 0.005 0.756 ± 0.001 0.748 ± 0.002

6 0.700 ± 0.000 0.719 ± 0.048 0.758 ± 0.003 0.756 ± 0.001 0.750 ± 0.001
7 0.700 ± 0.000 0.720 ± 0.049 0.760 ± 0.002 0.756 ± 0.001 0.749 ± 0.001
8 0.700 ± 0.000 0.720 ± 0.049 0.760 ± 0.001 0.756 ± 0.000 0.749 ± 0.000
9 0.700 ± 0.000 0.720 ± 0.049 0.760 ± 0.001 0.756 ± 0.000 0.749 ± 0.001

10 0.700 ± 0.000 0.720 ± 0.049 0.760 ± 0.001 0.756 ± 0.000 0.749 ± 0.000
15 0.700 ± 0.000 0.720 ± 0.049 0.761 ± 0.000 0.756 ± 0.000 0.749 ± 0.000
20 0.700 ± 0.000 0.720 ± 0.049 0.761 ± 0.000 0.756 ± 0.000 0.749 ± 0.001
25 0.700 ± 0.000 0.720 ± 0.049 0.760 ± 0.000 0.756 ± 0.000 0.749 ± 0.000

30 0.700 ± 0.000 0.720 ± 0.049 0.761 ± 0.000 0.756 ± 0.000 0.749 ± 0.000
40 0.700 ± 0.000 0.720 ± 0.049 0.761 ± 0.000 0.756 ± 0.000 0.749 ± 0.000
50 0.700 ± 0.000 0.720 ± 0.049 0.761 ± 0.000 0.756 ± 0.000 0.749 ± 0.000
60 0.700 ± 0.000 0.720 ± 0.049 0.761 ± 0.000 0.756 ± 0.000 0.749 ± 0.000

70 0.700 ± 0.000 0.720 ± 0.049 0.761 ± 0.000 0.756 ± 0.000 0.749 ± 0.000
80 0.700 ± 0.000 0.720 ± 0.049 0.761 ± 0.000 0.756 ± 0.000 0.749 ± 0.000
90 0.700 ± 0.000 0.720 ± 0.049 0.761 ± 0.000 0.756 ± 0.000 0.749 ± 0.000
100 0.700 ± 0.000 0.720 ± 0.049 0.761 ± 0.000 0.756 ± 0.000 0.749 ± 0.000

Table A.28: Clustering purity on the Berkeley protein dataset of MV-tSNE
compared with single view and stacked views tSNE. K is the dimensionality
of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.015 ± 0.012 0.120 ± 0.164 0.243 ± 0.007 0.199 ± 0.004 0.187 ± 0.004
3 0.016 ± 0.007 0.127 ± 0.180 0.265 ± 0.006 0.277 ± 0.007 0.247 ± 0.007
4 0.013 ± 0.013 0.134 ± 0.184 0.270 ± 0.003 0.290 ± 0.004 0.269 ± 0.003
5 0.024 ± 0.013 0.145 ± 0.175 0.270 ± 0.005 0.291 ± 0.002 0.270 ± 0.003

6 0.036 ± 0.015 0.151 ± 0.168 0.272 ± 0.004 0.292 ± 0.001 0.272 ± 0.001
7 0.035 ± 0.012 0.151 ± 0.171 0.275 ± 0.002 0.292 ± 0.001 0.272 ± 0.001
8 0.047 ± 0.011 0.154 ± 0.162 0.274 ± 0.002 0.292 ± 0.001 0.272 ± 0.000
9 0.049 ± 0.009 0.154 ± 0.160 0.273 ± 0.001 0.292 ± 0.000 0.271 ± 0.001

10 0.053 ± 0.009 0.157 ± 0.158 0.275 ± 0.002 0.292 ± 0.000 0.271 ± 0.000
15 0.065 ± 0.009 0.160 ± 0.150 0.274 ± 0.000 0.292 ± 0.000 0.271 ± 0.000
20 0.058 ± 0.008 0.158 ± 0.154 0.274 ± 0.000 0.291 ± 0.000 0.272 ± 0.001
25 0.066 ± 0.013 0.160 ± 0.150 0.274 ± 0.000 0.291 ± 0.000 0.271 ± 0.000

30 0.064 ± 0.006 0.161 ± 0.150 0.274 ± 0.000 0.291 ± 0.000 0.271 ± 0.000
40 0.061 ± 0.006 0.160 ± 0.152 0.274 ± 0.000 0.292 ± 0.000 0.271 ± 0.000
50 0.059 ± 0.006 0.158 ± 0.154 0.274 ± 0.000 0.291 ± 0.000 0.271 ± 0.000
60 0.056 ± 0.006 0.156 ± 0.156 0.274 ± 0.000 0.291 ± 0.000 0.271 ± 0.000

70 0.059 ± 0.006 0.158 ± 0.153 0.274 ± 0.000 0.291 ± 0.000 0.271 ± 0.000
80 0.052 ± 0.011 0.156 ± 0.159 0.274 ± 0.000 0.292 ± 0.000 0.271 ± 0.000
90 0.057 ± 0.009 0.158 ± 0.155 0.274 ± 0.000 0.291 ± 0.000 0.271 ± 0.000
100 0.059 ± 0.009 0.159 ± 0.153 0.274 ± 0.000 0.291 ± 0.000 0.271 ± 0.000

Table A.29: Clustering normalized mutual information on the Berkeley protein
dataset of MV-tSNE compared with single view and stacked views tSNE. K
is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 1.976 ± 0.173 1.826 ± 0.315 1.750 ± 0.026 1.721 ± 0.068 1.735 ± 0.059
3 1.966 ± 0.235 1.801 ± 0.369 1.695 ± 0.033 1.677 ± 0.067 1.689 ± 0.064
4 1.965 ± 0.309 1.763 ± 0.459 1.584 ± 0.039 1.664 ± 0.070 1.677 ± 0.070
5 1.943 ± 0.293 1.748 ± 0.450 1.563 ± 0.048 1.664 ± 0.070 1.676 ± 0.071

6 1.920 ± 0.314 1.732 ± 0.466 1.537 ± 0.057 1.663 ± 0.070 1.674 ± 0.072
7 1.904 ± 0.304 1.731 ± 0.451 1.548 ± 0.068 1.664 ± 0.070 1.674 ± 0.072
8 1.875 ± 0.303 1.722 ± 0.441 1.552 ± 0.081 1.663 ± 0.070 1.674 ± 0.072
9 1.880 ± 0.309 1.721 ± 0.449 1.544 ± 0.076 1.663 ± 0.070 1.674 ± 0.072

10 1.855 ± 0.298 1.717 ± 0.432 1.556 ± 0.091 1.663 ± 0.070 1.674 ± 0.072
15 1.821 ± 0.307 1.702 ± 0.436 1.545 ± 0.107 1.664 ± 0.070 1.674 ± 0.072
20 1.803 ± 0.299 1.699 ± 0.430 1.555 ± 0.135 1.664 ± 0.070 1.674 ± 0.072
25 1.789 ± 0.304 1.693 ± 0.435 1.550 ± 0.145 1.664 ± 0.070 1.674 ± 0.072

30 1.764 ± 0.297 1.687 ± 0.425 1.557 ± 0.152 1.664 ± 0.070 1.674 ± 0.072
40 1.745 ± 0.302 1.679 ± 0.435 1.551 ± 0.171 1.664 ± 0.070 1.674 ± 0.072
50 1.764 ± 0.305 1.684 ± 0.434 1.550 ± 0.154 1.664 ± 0.070 1.674 ± 0.072
60 1.765 ± 0.304 1.685 ± 0.432 1.550 ± 0.151 1.664 ± 0.070 1.674 ± 0.072

70 1.758 ± 0.300 1.684 ± 0.428 1.554 ± 0.155 1.664 ± 0.070 1.674 ± 0.072
80 1.762 ± 0.298 1.686 ± 0.427 1.556 ± 0.155 1.664 ± 0.070 1.674 ± 0.072
90 1.772 ± 0.303 1.687 ± 0.432 1.551 ± 0.147 1.664 ± 0.070 1.674 ± 0.072
100 1.769 ± 0.300 1.688 ± 0.426 1.555 ± 0.145 1.664 ± 0.070 1.674 ± 0.072

Table A.30: Davies-Boulding index on the Berkeley protein dataset of MV-
tSNE compared with single view and stacked views tSNE. K is the dimen-
sionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.432 ± 0.007 0.482 ± 0.073 0.533 ± 0.009 0.484 ± 0.008 0.538 ± 0.009
3 0.438 ± 0.007 0.491 ± 0.076 0.544 ± 0.009 0.494 ± 0.008 0.550 ± 0.009
4 0.457 ± 0.005 0.508 ± 0.074 0.560 ± 0.006 0.509 ± 0.006 0.565 ± 0.006
5 0.464 ± 0.004 0.518 ± 0.077 0.572 ± 0.005 0.519 ± 0.004 0.577 ± 0.005

6 0.468 ± 0.002 0.525 ± 0.080 0.582 ± 0.003 0.530 ± 0.003 0.587 ± 0.003
7 0.476 ± 0.005 0.531 ± 0.078 0.586 ± 0.006 0.534 ± 0.005 0.593 ± 0.006
8 0.474 ± 0.004 0.532 ± 0.083 0.591 ± 0.005 0.540 ± 0.004 0.597 ± 0.005
9 0.485 ± 0.002 0.545 ± 0.085 0.606 ± 0.002 0.543 ± 0.002 0.605 ± 0.002

10 0.546 ± 0.006 0.615 ± 0.098 0.684 ± 0.008 0.616 ± 0.007 0.684 ± 0.008
15 0.572 ± 0.006 0.645 ± 0.104 0.718 ± 0.008 0.645 ± 0.007 0.718 ± 0.008
20 0.582 ± 0.003 0.652 ± 0.099 0.722 ± 0.003 0.648 ± 0.003 0.722 ± 0.003
25 0.566 ± 0.003 0.638 ± 0.102 0.710 ± 0.003 0.637 ± 0.003 0.710 ± 0.003

30 0.558 ± 0.003 0.627 ± 0.097 0.695 ± 0.003 0.626 ± 0.003 0.696 ± 0.003
40 0.328 ± 0.003 0.367 ± 0.055 0.406 ± 0.003 0.365 ± 0.003 0.406 ± 0.003
50 0.107 ± 0.002 0.120 ± 0.019 0.133 ± 0.003 0.120 ± 0.002 0.133 ± 0.003
60 0.063 ± 0.002 0.070 ± 0.011 0.078 ± 0.003 0.070 ± 0.002 0.078 ± 0.003

70 0.036 ± 0.002 0.041 ± 0.007 0.045 ± 0.003 0.041 ± 0.003 0.045 ± 0.003
80 0.021 ± 0.002 0.024 ± 0.005 0.026 ± 0.003 0.024 ± 0.003 0.026 ± 0.003
90 0.012 ± 0.002 0.014 ± 0.005 0.015 ± 0.003 0.014 ± 0.003 0.015 ± 0.003
100 0.007 ± 0.003 0.008 ± 0.004 0.009 ± 0.003 0.008 ± 0.003 0.009 ± 0.003

Table A.31: One-vs-one SVM classification accuracy on the Cora dataset of
MV-tSNE compared with single view and stacked views tSNE. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.330 ± 0.001 0.370 ± 0.058 0.411 ± 0.001 0.371 ± 0.001 0.411 ± 0.001
3 0.349 ± 0.001 0.391 ± 0.060 0.434 ± 0.002 0.390 ± 0.002 0.434 ± 0.002
4 0.341 ± 0.006 0.382 ± 0.060 0.424 ± 0.007 0.382 ± 0.007 0.424 ± 0.007
5 0.334 ± 0.007 0.377 ± 0.062 0.420 ± 0.008 0.378 ± 0.007 0.421 ± 0.008

6 0.332 ± 0.004 0.375 ± 0.061 0.418 ± 0.005 0.375 ± 0.005 0.419 ± 0.005
7 0.337 ± 0.006 0.381 ± 0.062 0.424 ± 0.007 0.380 ± 0.007 0.423 ± 0.007
8 0.339 ± 0.004 0.380 ± 0.059 0.421 ± 0.005 0.379 ± 0.005 0.421 ± 0.005
9 0.329 ± 0.001 0.372 ± 0.061 0.415 ± 0.001 0.374 ± 0.001 0.416 ± 0.001

10 0.374 ± 0.001 0.422 ± 0.068 0.469 ± 0.002 0.423 ± 0.002 0.470 ± 0.002
15 0.402 ± 0.002 0.451 ± 0.070 0.501 ± 0.002 0.450 ± 0.002 0.501 ± 0.002
20 0.397 ± 0.010 0.444 ± 0.068 0.492 ± 0.001 0.442 ± 0.001 0.492 ± 0.001
25 0.383 ± 0.002 0.432 ± 0.069 0.480 ± 0.002 0.432 ± 0.002 0.480 ± 0.002

30 0.382 ± 0.002 0.430 ± 0.068 0.478 ± 0.002 0.429 ± 0.002 0.477 ± 0.002
40 0.231 ± 0.002 0.261 ± 0.042 0.290 ± 0.002 0.261 ± 0.002 0.290 ± 0.002
50 0.074 ± 0.001 0.083 ± 0.013 0.092 ± 0.002 0.082 ± 0.002 0.092 ± 0.002
60 0.045 ± 0.002 0.050 ± 0.008 0.056 ± 0.002 0.050 ± 0.002 0.056 ± 0.002

70 0.027 ± 0.002 0.031 ± 0.006 0.034 ± 0.003 0.030 ± 0.002 0.034 ± 0.003
80 0.016 ± 0.002 0.018 ± 0.005 0.021 ± 0.003 0.018 ± 0.003 0.021 ± 0.003
90 0.010 ± 0.003 0.011 ± 0.005 0.012 ± 0.003 0.011 ± 0.003 0.012 ± 0.003
100 0.006 ± 0.003 0.007 ± 0.005 0.008 ± 0.004 0.007 ± 0.004 0.008 ± 0.004

Table A.32: Clustering purity on the Cora dataset of MV-tSNE compared with
single view and stacked views tSNE. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-tSNE
Worst Average Best

2 0.110 ± 0.007 0.125 ± 0.023 0.139 ± 0.009 0.125 ± 0.008 0.139 ± 0.009
3 0.129 ± 0.008 0.145 ± 0.026 0.162 ± 0.010 0.145 ± 0.009 0.161 ± 0.010
4 0.128 ± 0.004 0.144 ± 0.024 0.160 ± 0.005 0.144 ± 0.005 0.160 ± 0.005
5 0.124 ± 0.003 0.140 ± 0.023 0.157 ± 0.004 0.141 ± 0.004 0.157 ± 0.004

6 0.126 ± 0.006 0.141 ± 0.024 0.157 ± 0.007 0.142 ± 0.006 0.157 ± 0.007
7 0.129 ± 0.006 0.146 ± 0.025 0.162 ± 0.007 0.146 ± 0.007 0.162 ± 0.007
8 0.128 ± 0.007 0.144 ± 0.025 0.159 ± 0.008 0.144 ± 0.007 0.159 ± 0.008
9 0.148 ± 0.005 0.168 ± 0.029 0.187 ± 0.006 0.168 ± 0.006 0.187 ± 0.006

10 0.176 ± 0.001 0.197 ± 0.031 0.219 ± 0.002 0.197 ± 0.002 0.219 ± 0.002
15 0.201 ± 0.002 0.226 ± 0.035 0.251 ± 0.002 0.226 ± 0.002 0.251 ± 0.002
20 0.206 ± 0.008 0.231 ± 0.038 0.256 ± 0.010 0.230 ± 0.009 0.256 ± 0.010
25 0.201 ± 0.001 0.225 ± 0.034 0.250 ± 0.002 0.225 ± 0.001 0.249 ± 0.002

30 0.202 ± 0.001 0.227 ± 0.036 0.252 ± 0.001 0.226 ± 0.001 0.252 ± 0.002
40 0.121 ± 0.010 0.137 ± 0.024 0.152 ± 0.001 0.138 ± 0.001 0.153 ± 0.001
50 0.037 ± 0.008 0.042 ± 0.014 0.047 ± 0.009 0.042 ± 0.008 0.047 ± 0.009
60 0.023 ± 0.006 0.026 ± 0.011 0.029 ± 0.008 0.026 ± 0.007 0.029 ± 0.008

70 0.014 ± 0.005 0.016 ± 0.009 0.017 ± 0.007 0.015 ± 0.006 0.017 ± 0.007
80 0.008 ± 0.004 0.009 ± 0.007 0.010 ± 0.005 0.009 ± 0.005 0.010 ± 0.005
90 0.005 ± 0.004 0.006 ± 0.006 0.006 ± 0.005 0.006 ± 0.004 0.006 ± 0.005
100 0.003 ± 0.003 0.003 ± 0.005 0.004 ± 0.004 0.003 ± 0.003 0.004 ± 0.004

Table A.33: Clustering normalized mutual information on the Cora dataset
of MV-tSNE compared with single view and stacked views tSNE. K is the
dimensionality of the projection.



Appendix B

Results of MV-MDS
experiments

In this appendix, the detailed results of the experiments with the MV-MDS
method are presented. There is a results table for each combination of dataset
and evaluation method, yielding a total of 36 tables. The methods are com-
pared with the counterpart single view method, either applied to single views
individually or to all views stacked on a single matrix. For single views, the
worst, average and best views (on average) are given.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.516 ± 0.016 0.571 ± 0.144 0.488 ± 0.014 0.650 ± 0.016 0.741 ± 0.009
3 0.609 ± 0.011 0.719 ± 0.143 0.692 ± 0.015 0.811 ± 0.015 0.880 ± 0.004
4 0.680 ± 0.009 0.777 ± 0.150 0.787 ± 0.013 0.880 ± 0.010 0.941 ± 0.008
5 0.706 ± 0.012 0.816 ± 0.179 0.864 ± 0.011 0.921 ± 0.009 0.951 ± 0.005

6 0.749 ± 0.011 0.834 ± 0.184 0.875 ± 0.007 0.939 ± 0.006 0.968 ± 0.004
7 0.769 ± 0.015 0.861 ± 0.190 0.898 ± 0.008 0.957 ± 0.004 0.971 ± 0.006
8 0.798 ± 0.020 0.873 ± 0.188 0.915 ± 0.009 0.968 ± 0.005 0.977 ± 0.005
9 0.810 ± 0.012 0.880 ± 0.185 0.928 ± 0.008 0.970 ± 0.004 0.979 ± 0.007

10 0.824 ± 0.015 0.891 ± 0.175 0.942 ± 0.006 0.973 ± 0.005 0.975 ± 0.007
15 0.830 ± 0.017 0.902 ± 0.177 0.966 ± 0.010 0.977 ± 0.007 0.980 ± 0.004
20 0.831 ± 0.017 0.910 ± 0.163 0.970 ± 0.007 0.980 ± 0.007 0.975 ± 0.006
25 0.822 ± 0.016 0.911 ± 0.168 0.968 ± 0.009 0.977 ± 0.005 0.972 ± 0.005

30 0.800 ± 0.019 0.900 ± 0.178 0.961 ± 0.009 0.974 ± 0.004 0.963 ± 0.005
40 0.722 ± 0.024 0.839 ± 0.189 0.922 ± 0.016 0.928 ± 0.010 0.932 ± 0.007
50 0.701 ± 0.018 0.748 ± 0.161 0.832 ± 0.025 0.835 ± 0.016 0.844 ± 0.025
60 0.639 ± 0.030 0.589 ± 0.231 0.688 ± 0.054 0.663 ± 0.045 0.700 ± 0.056

70 0.520 ± 0.064 0.426 ± 0.338 0.496 ± 0.081 0.421 ± 0.075 0.510 ± 0.081
80 0.343 ± 0.105 0.300 ± 0.319 0.339 ± 0.079 0.247 ± 0.082 0.342 ± 0.085
90 0.200 ± 0.091 0.215 ± 0.291 0.233 ± 0.074 0.156 ± 0.055 0.238 ± 0.081
100 0.116 ± 0.039 0.158 ± 0.232 0.166 ± 0.058 0.112 ± 0.022 0.164 ± 0.057

Table B.1: One-vs-one SVM classification accuracy on the digits dataset of
MV-MDS compared with single view and stacked views MDS. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.214 ± 0.269 0.293 ± 0.531 0.359 ± 0.238 0.392 ± 0.212 0.394 ± 0.082
3 0.214 ± 0.269 0.328 ± 0.611 0.389 ± 0.278 0.441 ± 0.269 0.437 ± 0.112
4 0.214 ± 0.269 0.347 ± 0.632 0.430 ± 0.291 0.483 ± 0.278 0.461 ± 0.121
5 0.214 ± 0.269 0.363 ± 0.636 0.453 ± 0.288 0.516 ± 0.259 0.462 ± 0.109

6 0.214 ± 0.269 0.374 ± 0.649 0.475 ± 0.290 0.525 ± 0.268 0.476 ± 0.107
7 0.214 ± 0.269 0.382 ± 0.654 0.487 ± 0.294 0.542 ± 0.272 0.482 ± 0.119
8 0.214 ± 0.269 0.387 ± 0.659 0.497 ± 0.293 0.552 ± 0.268 0.486 ± 0.121
9 0.214 ± 0.269 0.391 ± 0.666 0.504 ± 0.297 0.559 ± 0.273 0.495 ± 0.118

10 0.214 ± 0.269 0.394 ± 0.672 0.510 ± 0.301 0.562 ± 0.275 0.489 ± 0.117
15 0.214 ± 0.269 0.402 ± 0.686 0.524 ± 0.309 0.577 ± 0.283 0.464 ± 0.117
20 0.214 ± 0.269 0.407 ± 0.694 0.533 ± 0.314 0.585 ± 0.284 0.441 ± 0.120
25 0.214 ± 0.269 0.409 ± 0.699 0.537 ± 0.316 0.590 ± 0.285 0.408 ± 0.122

30 0.214 ± 0.269 0.411 ± 0.701 0.540 ± 0.316 0.593 ± 0.285 0.367 ± 0.115
40 0.214 ± 0.269 0.412 ± 0.704 0.542 ± 0.317 0.598 ± 0.285 0.345 ± 0.116
50 0.214 ± 0.269 0.413 ± 0.706 0.543 ± 0.318 0.599 ± 0.285 0.324 ± 0.114
60 0.214 ± 0.269 0.413 ± 0.707 0.543 ± 0.318 0.601 ± 0.285 0.311 ± 0.111

70 0.214 ± 0.269 0.413 ± 0.708 0.543 ± 0.318 0.602 ± 0.285 0.297 ± 0.105
80 0.214 ± 0.269 0.413 ± 0.708 0.543 ± 0.318 0.603 ± 0.285 0.290 ± 0.104
90 0.214 ± 0.269 0.413 ± 0.708 0.543 ± 0.318 0.603 ± 0.285 0.282 ± 0.105
100 0.214 ± 0.269 0.413 ± 0.708 0.543 ± 0.318 0.604 ± 0.284 0.275 ± 0.105

Table B.2: Cophenetic correlation on the digits dataset of MV-MDS com-
pared with single view and stacked views MDS. K is the dimensionality of the
projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.116 ± 0.071 0.130 ± 0.144 0.148 ± 0.068 0.159 ± 0.065 0.161 ± 0.031
3 0.116 ± 0.071 0.171 ± 0.212 0.207 ± 0.103 0.226 ± 0.106 0.209 ± 0.049
4 0.116 ± 0.071 0.197 ± 0.262 0.247 ± 0.127 0.268 ± 0.134 0.244 ± 0.064
5 0.116 ± 0.071 0.215 ± 0.300 0.274 ± 0.146 0.298 ± 0.148 0.258 ± 0.069

6 0.116 ± 0.071 0.229 ± 0.331 0.294 ± 0.160 0.321 ± 0.162 0.273 ± 0.075
7 0.116 ± 0.071 0.241 ± 0.354 0.316 ± 0.172 0.340 ± 0.176 0.285 ± 0.083
8 0.116 ± 0.071 0.251 ± 0.372 0.334 ± 0.181 0.352 ± 0.181 0.290 ± 0.090
9 0.116 ± 0.071 0.256 ± 0.386 0.341 ± 0.188 0.362 ± 0.185 0.298 ± 0.093

10 0.116 ± 0.071 0.262 ± 0.398 0.350 ± 0.195 0.371 ± 0.190 0.302 ± 0.095
15 0.116 ± 0.071 0.277 ± 0.437 0.375 ± 0.216 0.397 ± 0.211 0.306 ± 0.097
20 0.116 ± 0.071 0.285 ± 0.460 0.392 ± 0.232 0.410 ± 0.220 0.310 ± 0.102
25 0.116 ± 0.071 0.289 ± 0.474 0.401 ± 0.240 0.416 ± 0.223 0.312 ± 0.108

30 0.116 ± 0.071 0.292 ± 0.482 0.405 ± 0.245 0.420 ± 0.225 0.308 ± 0.107
40 0.116 ± 0.071 0.295 ± 0.493 0.411 ± 0.251 0.424 ± 0.226 0.297 ± 0.105
50 0.116 ± 0.071 0.296 ± 0.500 0.414 ± 0.255 0.425 ± 0.224 0.286 ± 0.101
60 0.116 ± 0.071 0.297 ± 0.504 0.415 ± 0.257 0.426 ± 0.223 0.276 ± 0.097

70 0.116 ± 0.071 0.298 ± 0.507 0.416 ± 0.258 0.427 ± 0.223 0.268 ± 0.096
80 0.116 ± 0.071 0.298 ± 0.508 0.417 ± 0.259 0.427 ± 0.222 0.260 ± 0.094
90 0.116 ± 0.071 0.298 ± 0.508 0.417 ± 0.260 0.428 ± 0.221 0.253 ± 0.092
100 0.116 ± 0.071 0.298 ± 0.508 0.417 ± 0.261 0.428 ± 0.221 0.247 ± 0.091

Table B.3: Area under the curve of the RNX index on the digits dataset
of MV-MDS compared with single view and stacked views MDS. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.445 0.510 ± 0.048 0.538 0.556 0.616
3 0.445 0.550 ± 0.072 0.583 0.697 0.743
4 0.445 0.602 ± 0.088 0.684 0.767 0.758
5 0.445 0.597 ± 0.087 0.659 0.798 0.792

6 0.445 0.600 ± 0.091 0.694 0.832 0.844
7 0.445 0.634 ± 0.116 0.775 0.854 0.801
8 0.445 0.653 ± 0.126 0.787 0.798 0.886
9 0.445 0.671 ± 0.144 0.837 0.880 0.873

10 0.445 0.671 ± 0.144 0.812 0.885 0.887
15 0.445 0.696 ± 0.163 0.871 0.914 0.849
20 0.445 0.695 ± 0.161 0.861 0.918 0.824
25 0.445 0.697 ± 0.165 0.876 0.921 0.850

30 0.445 0.697 ± 0.165 0.875 0.837 0.855
40 0.445 0.697 ± 0.165 0.877 0.838 0.873
50 0.445 0.695 ± 0.163 0.876 0.837 0.848
60 0.445 0.695 ± 0.163 0.877 0.838 0.849

70 0.445 0.695 ± 0.163 0.877 0.839 0.831
80 0.445 0.695 ± 0.163 0.877 0.839 0.873
90 0.445 0.695 ± 0.163 0.877 0.839 0.871
100 0.445 0.695 ± 0.163 0.877 0.839 0.872

Table B.4: Clustering purity on the digits dataset of MV-MDS compared with
single view and stacked views MDS. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.412 0.471 ± 0.052 0.489 0.530 0.628
3 0.416 0.524 ± 0.064 0.551 0.631 0.742
4 0.461 0.553 ± 0.065 0.606 0.661 0.737
5 0.441 0.564 ± 0.076 0.616 0.717 0.756

6 0.453 0.580 ± 0.085 0.665 0.741 0.802
7 0.457 0.599 ± 0.096 0.706 0.767 0.769
8 0.476 0.614 ± 0.103 0.719 0.767 0.820
9 0.463 0.621 ± 0.114 0.745 0.804 0.810

10 0.465 0.623 ± 0.114 0.734 0.810 0.821
15 0.474 0.642 ± 0.130 0.788 0.842 0.836
20 0.472 0.641 ± 0.128 0.771 0.847 0.824
25 0.474 0.646 ± 0.133 0.799 0.851 0.845

30 0.474 0.646 ± 0.134 0.797 0.806 0.864
40 0.474 0.646 ± 0.134 0.800 0.807 0.888
50 0.474 0.643 ± 0.131 0.798 0.806 0.863
60 0.474 0.644 ± 0.131 0.798 0.807 0.872

70 0.474 0.644 ± 0.131 0.798 0.809 0.853
80 0.474 0.644 ± 0.131 0.798 0.808 0.891
90 0.474 0.644 ± 0.131 0.798 0.809 0.891
100 0.474 0.644 ± 0.131 0.798 0.809 0.892

Table B.5: Clustering normalized mutual information on the digits dataset
of MV-MDS compared with single view and stacked views MDS. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 1.904 ± 0.053 1.878 ± 0.179 1.870 ± 0.094 1.870 ± 0.054 1.874 ± 0.045
3 1.904 ± 0.076 1.850 ± 0.205 1.829 ± 0.094 1.803 ± 0.085 1.788 ± 0.092
4 1.904 ± 0.084 1.827 ± 0.238 1.789 ± 0.094 1.762 ± 0.095 1.778 ± 0.106
5 1.904 ± 0.092 1.825 ± 0.239 1.782 ± 0.094 1.742 ± 0.108 1.758 ± 0.128

6 1.904 ± 0.089 1.822 ± 0.246 1.784 ± 0.094 1.724 ± 0.116 1.738 ± 0.144
7 1.904 ± 0.109 1.813 ± 0.266 1.738 ± 0.094 1.717 ± 0.121 1.737 ± 0.114
8 1.904 ± 0.112 1.796 ± 0.289 1.732 ± 0.094 1.720 ± 0.126 1.709 ± 0.134
9 1.904 ± 0.112 1.793 ± 0.290 1.731 ± 0.094 1.704 ± 0.128 1.708 ± 0.129

10 1.904 ± 0.116 1.790 ± 0.297 1.727 ± 0.094 1.702 ± 0.130 1.703 ± 0.132
15 1.904 ± 0.114 1.791 ± 0.298 1.719 ± 0.094 1.703 ± 0.131 1.718 ± 0.130
20 1.904 ± 0.118 1.791 ± 0.300 1.721 ± 0.094 1.699 ± 0.133 1.720 ± 0.107
25 1.904 ± 0.115 1.790 ± 0.300 1.716 ± 0.094 1.700 ± 0.132 1.715 ± 0.143

30 1.904 ± 0.114 1.790 ± 0.300 1.717 ± 0.094 1.709 ± 0.122 1.714 ± 0.106
40 1.904 ± 0.115 1.790 ± 0.302 1.716 ± 0.094 1.709 ± 0.122 1.724 ± 0.114
50 1.904 ± 0.116 1.791 ± 0.300 1.716 ± 0.094 1.709 ± 0.122 1.726 ± 0.121
60 1.904 ± 0.115 1.791 ± 0.300 1.716 ± 0.094 1.709 ± 0.122 1.708 ± 0.136

70 1.904 ± 0.115 1.791 ± 0.299 1.716 ± 0.094 1.709 ± 0.122 1.720 ± 0.136
80 1.904 ± 0.115 1.791 ± 0.299 1.716 ± 0.094 1.709 ± 0.122 1.698 ± 0.133
90 1.904 ± 0.115 1.791 ± 0.299 1.716 ± 0.094 1.708 ± 0.122 1.701 ± 0.130
100 1.904 ± 0.115 1.791 ± 0.299 1.716 ± 0.094 1.708 ± 0.122 1.712 ± 0.135

Table B.6: Davies-Boulding index on the digits dataset of MV-MDS com-
pared with single view and stacked views MDS. K is the dimensionality of the
projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.532 ± 0.015 0.555 ± 0.058 0.591 ± 0.009 0.607 ± 0.021 0.586 ± 0.019
3 0.570 ± 0.028 0.592 ± 0.089 0.660 ± 0.009 0.610 ± 0.011 0.611 ± 0.025
4 0.614 ± 0.022 0.636 ± 0.077 0.693 ± 0.009 0.612 ± 0.025 0.637 ± 0.019
5 0.640 ± 0.018 0.661 ± 0.097 0.742 ± 0.006 0.657 ± 0.023 0.672 ± 0.020

6 0.659 ± 0.016 0.683 ± 0.094 0.761 ± 0.005 0.670 ± 0.019 0.683 ± 0.019
7 0.685 ± 0.017 0.696 ± 0.091 0.770 ± 0.006 0.705 ± 0.013 0.713 ± 0.015
8 0.691 ± 0.021 0.719 ± 0.085 0.787 ± 0.007 0.713 ± 0.009 0.724 ± 0.016
9 0.702 ± 0.017 0.726 ± 0.082 0.790 ± 0.005 0.732 ± 0.010 0.745 ± 0.019

10 0.695 ± 0.017 0.728 ± 0.085 0.793 ± 0.005 0.731 ± 0.018 0.745 ± 0.017
15 0.704 ± 0.015 0.743 ± 0.083 0.806 ± 0.006 0.774 ± 0.012 0.776 ± 0.011
20 0.719 ± 0.014 0.753 ± 0.087 0.818 ± 0.008 0.779 ± 0.014 0.785 ± 0.017
25 0.714 ± 0.023 0.749 ± 0.098 0.827 ± 0.006 0.783 ± 0.016 0.787 ± 0.012

30 0.722 ± 0.010 0.742 ± 0.102 0.828 ± 0.008 0.773 ± 0.013 0.777 ± 0.014
40 0.672 ± 0.009 0.703 ± 0.133 0.814 ± 0.008 0.711 ± 0.016 0.710 ± 0.020
50 0.619 ± 0.018 0.643 ± 0.134 0.756 ± 0.012 0.620 ± 0.014 0.626 ± 0.015
60 0.534 ± 0.008 0.571 ± 0.155 0.687 ± 0.016 0.535 ± 0.025 0.543 ± 0.029

70 0.464 ± 0.066 0.464 ± 0.155 0.506 ± 0.037 0.455 ± 0.030 0.456 ± 0.031
80 0.351 ± 0.036 0.368 ± 0.105 0.420 ± 0.014 0.382 ± 0.038 0.380 ± 0.039
90 0.334 ± 0.063 0.342 ± 0.108 0.401 ± 0.013 0.328 ± 0.029 0.331 ± 0.030
100 0.306 ± 0.017 0.327 ± 0.082 0.388 ± 0.013 0.306 ± 0.019 0.307 ± 0.019

Table B.7: One-vs-one SVM classification accuracy on the Reuters multilin-
gual corpus dataset of MV-MDS compared with single view and stacked views
MDS. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.766 ± 0.067 0.759 ± 0.250 0.790 ± 0.082 0.846 ± 0.077 0.784 ± 0.024
3 0.738 ± 0.079 0.780 ± 0.206 0.821 ± 0.060 0.882 ± 0.053 0.828 ± 0.028
4 0.735 ± 0.076 0.787 ± 0.197 0.833 ± 0.054 0.899 ± 0.041 0.837 ± 0.049
5 0.751 ± 0.084 0.795 ± 0.185 0.831 ± 0.048 0.905 ± 0.039 0.813 ± 0.040

6 0.740 ± 0.087 0.796 ± 0.184 0.833 ± 0.046 0.913 ± 0.035 0.810 ± 0.030
7 0.742 ± 0.082 0.798 ± 0.177 0.840 ± 0.040 0.915 ± 0.033 0.802 ± 0.021
8 0.743 ± 0.081 0.794 ± 0.175 0.840 ± 0.039 0.917 ± 0.032 0.793 ± 0.022
9 0.740 ± 0.080 0.789 ± 0.171 0.834 ± 0.039 0.918 ± 0.031 0.770 ± 0.023

10 0.740 ± 0.078 0.787 ± 0.165 0.829 ± 0.038 0.920 ± 0.030 0.713 ± 0.026
15 0.713 ± 0.072 0.770 ± 0.155 0.812 ± 0.037 0.923 ± 0.028 0.630 ± 0.032
20 0.696 ± 0.069 0.754 ± 0.150 0.797 ± 0.036 0.924 ± 0.027 0.604 ± 0.032
25 0.685 ± 0.067 0.741 ± 0.145 0.786 ± 0.035 0.925 ± 0.027 0.544 ± 0.029

30 0.669 ± 0.066 0.728 ± 0.144 0.775 ± 0.035 0.926 ± 0.027 0.505 ± 0.030
40 0.645 ± 0.063 0.708 ± 0.138 0.750 ± 0.034 0.926 ± 0.027 0.454 ± 0.027
50 0.624 ± 0.060 0.690 ± 0.135 0.732 ± 0.034 0.927 ± 0.027 0.416 ± 0.022
60 0.604 ± 0.058 0.674 ± 0.136 0.718 ± 0.034 0.927 ± 0.026 0.380 ± 0.019

70 0.589 ± 0.057 0.660 ± 0.135 0.705 ± 0.034 0.927 ± 0.026 0.341 ± 0.015
80 0.573 ± 0.056 0.647 ± 0.135 0.693 ± 0.034 0.927 ± 0.026 0.299 ± 0.015
90 0.561 ± 0.054 0.633 ± 0.134 0.680 ± 0.034 0.928 ± 0.026 0.273 ± 0.016
100 0.549 ± 0.054 0.622 ± 0.133 0.668 ± 0.034 0.928 ± 0.026 0.242 ± 0.018

Table B.8: Cophenetic correlation on the Reuters multilingual corpus dataset
of MV-MDS compared with single view and stacked views MDS. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.144 ± 0.028 0.179 ± 0.125 0.202 ± 0.050 0.247 ± 0.060 0.206 ± 0.026
3 0.167 ± 0.036 0.214 ± 0.152 0.232 ± 0.057 0.275 ± 0.055 0.257 ± 0.035
4 0.195 ± 0.047 0.242 ± 0.170 0.268 ± 0.067 0.306 ± 0.056 0.296 ± 0.042
5 0.218 ± 0.056 0.259 ± 0.182 0.276 ± 0.068 0.331 ± 0.059 0.314 ± 0.041

6 0.228 ± 0.061 0.270 ± 0.197 0.292 ± 0.077 0.345 ± 0.058 0.321 ± 0.035
7 0.236 ± 0.065 0.282 ± 0.208 0.315 ± 0.080 0.354 ± 0.057 0.322 ± 0.031
8 0.242 ± 0.069 0.288 ± 0.215 0.324 ± 0.083 0.360 ± 0.056 0.321 ± 0.028
9 0.251 ± 0.074 0.293 ± 0.220 0.327 ± 0.084 0.370 ± 0.058 0.322 ± 0.026

10 0.253 ± 0.076 0.295 ± 0.225 0.329 ± 0.086 0.375 ± 0.057 0.323 ± 0.024
15 0.271 ± 0.088 0.304 ± 0.238 0.335 ± 0.090 0.394 ± 0.057 0.310 ± 0.018
20 0.279 ± 0.095 0.307 ± 0.245 0.335 ± 0.093 0.407 ± 0.058 0.299 ± 0.012
25 0.284 ± 0.099 0.310 ± 0.249 0.337 ± 0.095 0.417 ± 0.060 0.289 ± 0.014

30 0.287 ± 0.103 0.311 ± 0.249 0.335 ± 0.095 0.426 ± 0.062 0.284 ± 0.015
40 0.292 ± 0.106 0.310 ± 0.246 0.328 ± 0.092 0.435 ± 0.063 0.267 ± 0.013
50 0.293 ± 0.109 0.307 ± 0.242 0.323 ± 0.091 0.442 ± 0.064 0.257 ± 0.013
60 0.293 ± 0.110 0.305 ± 0.237 0.320 ± 0.090 0.447 ± 0.065 0.245 ± 0.012

70 0.292 ± 0.111 0.302 ± 0.233 0.317 ± 0.088 0.450 ± 0.066 0.237 ± 0.011
80 0.291 ± 0.111 0.299 ± 0.229 0.313 ± 0.087 0.454 ± 0.066 0.229 ± 0.012
90 0.289 ± 0.110 0.297 ± 0.224 0.311 ± 0.086 0.456 ± 0.066 0.224 ± 0.013
100 0.287 ± 0.109 0.295 ± 0.221 0.309 ± 0.085 0.458 ± 0.066 0.216 ± 0.014

Table B.9: Area under the curve of the RNX index on the Reuters multilingual
corpus dataset of MV-MDS compared with single view and stacked views
MDS. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.505 0.534 ± 0.015 0.545 0.535 0.523
3 0.519 0.530 ± 0.020 0.558 0.492 0.534
4 0.499 0.525 ± 0.037 0.599 0.454 0.483
5 0.503 0.522 ± 0.034 0.583 0.450 0.485

6 0.499 0.530 ± 0.038 0.600 0.449 0.507
7 0.496 0.533 ± 0.041 0.611 0.449 0.517
8 0.509 0.538 ± 0.041 0.618 0.449 0.485
9 0.496 0.520 ± 0.051 0.613 0.449 0.483

10 0.499 0.532 ± 0.043 0.616 0.449 0.523
15 0.511 0.529 ± 0.024 0.576 0.449 0.487
20 0.492 0.532 ± 0.043 0.617 0.448 0.532
25 0.496 0.533 ± 0.042 0.616 0.448 0.493

30 0.508 0.533 ± 0.036 0.604 0.448 0.451
40 0.502 0.532 ± 0.038 0.607 0.448 0.392
50 0.536 0.539 ± 0.034 0.605 0.448 0.404
60 0.538 0.541 ± 0.033 0.605 0.448 0.418

70 0.533 0.544 ± 0.044 0.631 0.448 0.424
80 0.533 0.544 ± 0.044 0.630 0.448 0.443
90 0.533 0.544 ± 0.044 0.630 0.448 0.352
100 0.533 0.545 ± 0.043 0.631 0.448 0.359

Table B.10: Clustering purity on the Reuters multilingual corpus dataset
of MV-MDS compared with single view and stacked views MDS. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.191 0.234 ± 0.031 0.284 0.230 0.214
3 0.219 0.253 ± 0.045 0.339 0.200 0.248
4 0.212 0.255 ± 0.045 0.340 0.149 0.215
5 0.216 0.259 ± 0.053 0.362 0.150 0.223

6 0.231 0.271 ± 0.057 0.377 0.153 0.250
7 0.199 0.272 ± 0.063 0.387 0.153 0.280
8 0.210 0.281 ± 0.065 0.404 0.153 0.217
9 0.218 0.262 ± 0.076 0.395 0.153 0.238

10 0.218 0.277 ± 0.065 0.401 0.153 0.275
15 0.215 0.266 ± 0.044 0.346 0.153 0.219
20 0.196 0.265 ± 0.055 0.365 0.154 0.265
25 0.224 0.271 ± 0.049 0.364 0.153 0.254

30 0.212 0.263 ± 0.040 0.333 0.153 0.222
40 0.216 0.264 ± 0.040 0.337 0.152 0.138
50 0.251 0.270 ± 0.033 0.335 0.152 0.144
60 0.254 0.266 ± 0.037 0.335 0.153 0.195

70 0.250 0.275 ± 0.045 0.364 0.153 0.185
80 0.249 0.276 ± 0.043 0.361 0.153 0.174
90 0.249 0.277 ± 0.044 0.364 0.153 0.094
100 0.248 0.274 ± 0.046 0.365 0.153 0.101

Table B.11: Clustering normalized mutual information on the Reuters mul-
tilingual corpus dataset of MV-MDS compared with single view and stacked
views MDS. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 1.782 ± 0.047 1.748 ± 0.155 1.832 ± 0.074 1.683 ± 0.049 1.699 ± 0.028
3 1.687 ± 0.054 1.691 ± 0.114 1.662 ± 0.052 1.657 ± 0.065 1.662 ± 0.041
4 1.661 ± 0.087 1.654 ± 0.135 1.638 ± 0.057 1.647 ± 0.073 1.592 ± 0.063
5 1.674 ± 0.092 1.646 ± 0.147 1.594 ± 0.052 1.638 ± 0.073 1.577 ± 0.070

6 1.672 ± 0.065 1.638 ± 0.152 1.617 ± 0.048 1.636 ± 0.073 1.581 ± 0.065
7 1.670 ± 0.066 1.655 ± 0.133 1.613 ± 0.048 1.637 ± 0.073 1.587 ± 0.054
8 1.666 ± 0.068 1.649 ± 0.123 1.610 ± 0.049 1.637 ± 0.073 1.667 ± 0.042
9 1.671 ± 0.068 1.648 ± 0.127 1.610 ± 0.055 1.636 ± 0.072 1.647 ± 0.053

10 1.652 ± 0.068 1.644 ± 0.131 1.609 ± 0.067 1.636 ± 0.072 1.682 ± 0.041
15 1.677 ± 0.069 1.654 ± 0.141 1.604 ± 0.071 1.636 ± 0.072 1.634 ± 0.048
20 1.674 ± 0.069 1.644 ± 0.141 1.604 ± 0.071 1.635 ± 0.073 1.652 ± 0.046
25 1.674 ± 0.069 1.643 ± 0.138 1.604 ± 0.071 1.635 ± 0.073 1.622 ± 0.058

30 1.673 ± 0.069 1.650 ± 0.139 1.604 ± 0.071 1.635 ± 0.073 1.722 ± 0.009
40 1.672 ± 0.069 1.648 ± 0.136 1.603 ± 0.071 1.635 ± 0.072 1.744 ± 0.006
50 1.673 ± 0.069 1.644 ± 0.137 1.603 ± 0.070 1.635 ± 0.072 1.854 ± 0.006
60 1.672 ± 0.069 1.646 ± 0.143 1.603 ± 0.070 1.635 ± 0.072 1.738 ± 0.007

70 1.673 ± 0.069 1.649 ± 0.140 1.603 ± 0.070 1.635 ± 0.072 1.870 ± 0.004
80 1.672 ± 0.069 1.648 ± 0.137 1.603 ± 0.070 1.635 ± 0.072 1.881 ± 0.012
90 1.672 ± 0.069 1.648 ± 0.136 1.603 ± 0.070 1.635 ± 0.072 1.937 ± 0.010
100 1.672 ± 0.069 1.649 ± 0.140 1.603 ± 0.070 1.635 ± 0.072 1.943 ± 0.008

Table B.12: Davies-Boulding index on the Reuters multilingual corpus dataset
of MV-MDS compared with single view and stacked views MDS. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.827 ± 0.011 0.828 ± 0.015 0.830 ± 0.010 0.871 ± 0.006 0.871 ± 0.006
3 0.926 ± 0.010 0.920 ± 0.017 0.914 ± 0.011 0.949 ± 0.007 0.949 ± 0.007
4 0.945 ± 0.009 0.941 ± 0.012 0.937 ± 0.006 0.955 ± 0.007 0.955 ± 0.007
5 0.942 ± 0.011 0.942 ± 0.015 0.941 ± 0.010 0.960 ± 0.011 0.960 ± 0.011

6 0.950 ± 0.009 0.946 ± 0.013 0.942 ± 0.007 0.962 ± 0.008 0.962 ± 0.007
7 0.951 ± 0.009 0.951 ± 0.011 0.951 ± 0.007 0.966 ± 0.006 0.967 ± 0.006
8 0.953 ± 0.008 0.954 ± 0.011 0.954 ± 0.007 0.969 ± 0.006 0.968 ± 0.006
9 0.953 ± 0.009 0.955 ± 0.011 0.957 ± 0.006 0.968 ± 0.006 0.969 ± 0.006

10 0.953 ± 0.009 0.955 ± 0.011 0.956 ± 0.006 0.965 ± 0.007 0.965 ± 0.007
15 0.955 ± 0.006 0.954 ± 0.010 0.952 ± 0.008 0.968 ± 0.006 0.969 ± 0.006
20 0.955 ± 0.008 0.953 ± 0.012 0.950 ± 0.008 0.967 ± 0.005 0.967 ± 0.005
25 0.951 ± 0.007 0.949 ± 0.013 0.947 ± 0.010 0.962 ± 0.004 0.962 ± 0.004

30 0.943 ± 0.007 0.946 ± 0.012 0.948 ± 0.009 0.959 ± 0.004 0.959 ± 0.004
40 0.931 ± 0.011 0.935 ± 0.014 0.939 ± 0.006 0.951 ± 0.007 0.951 ± 0.007
50 0.914 ± 0.012 0.921 ± 0.018 0.928 ± 0.008 0.942 ± 0.008 0.942 ± 0.007
60 0.859 ± 0.014 0.871 ± 0.030 0.882 ± 0.020 0.923 ± 0.013 0.923 ± 0.013

70 0.737 ± 0.031 0.754 ± 0.052 0.771 ± 0.035 0.864 ± 0.025 0.863 ± 0.025
80 0.565 ± 0.044 0.587 ± 0.071 0.609 ± 0.046 0.758 ± 0.037 0.758 ± 0.036
90 0.421 ± 0.040 0.439 ± 0.064 0.456 ± 0.043 0.615 ± 0.044 0.615 ± 0.045
100 0.340 ± 0.025 0.352 ± 0.043 0.364 ± 0.031 0.484 ± 0.038 0.485 ± 0.038

Table B.13: One-vs-one SVM classification accuracy on the BBC segmented
news dataset of MV-MDS compared with single view and stacked views MDS.
K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.194 ± 0.006 0.193 ± 0.007 0.191 ± 0.003 0.212 ± 0.001 0.213 ± 0.001
3 0.211 ± 0.005 0.213 ± 0.006 0.214 ± 0.004 0.243 ± 0.000 0.246 ± 0.000
4 0.225 ± 0.006 0.228 ± 0.009 0.231 ± 0.005 0.253 ± 0.001 0.253 ± 0.000
5 0.226 ± 0.008 0.227 ± 0.010 0.228 ± 0.005 0.253 ± 0.001 0.248 ± 0.001

6 0.225 ± 0.008 0.226 ± 0.010 0.227 ± 0.006 0.249 ± 0.001 0.235 ± 0.001
7 0.209 ± 0.007 0.216 ± 0.014 0.222 ± 0.008 0.246 ± 0.000 0.225 ± 0.000
8 0.207 ± 0.007 0.211 ± 0.013 0.216 ± 0.008 0.235 ± 0.000 0.208 ± 0.001
9 0.209 ± 0.008 0.209 ± 0.012 0.208 ± 0.009 0.227 ± 0.000 0.196 ± 0.001

10 0.200 ± 0.008 0.202 ± 0.013 0.203 ± 0.010 0.228 ± 0.001 0.196 ± 0.002
15 0.192 ± 0.013 0.192 ± 0.019 0.192 ± 0.014 0.220 ± 0.001 0.185 ± 0.001
20 0.185 ± 0.017 0.184 ± 0.024 0.184 ± 0.017 0.209 ± 0.001 0.170 ± 0.001
25 0.182 ± 0.019 0.183 ± 0.027 0.184 ± 0.019 0.211 ± 0.000 0.172 ± 0.000

30 0.182 ± 0.022 0.182 ± 0.030 0.181 ± 0.020 0.208 ± 0.000 0.167 ± 0.000
40 0.182 ± 0.025 0.181 ± 0.034 0.179 ± 0.023 0.205 ± 0.000 0.160 ± 0.001
50 0.180 ± 0.027 0.180 ± 0.038 0.179 ± 0.027 0.202 ± 0.001 0.156 ± 0.001
60 0.181 ± 0.029 0.180 ± 0.042 0.180 ± 0.031 0.203 ± 0.001 0.158 ± 0.001

70 0.183 ± 0.032 0.183 ± 0.047 0.183 ± 0.034 0.207 ± 0.001 0.162 ± 0.002
80 0.188 ± 0.034 0.187 ± 0.051 0.187 ± 0.037 0.211 ± 0.002 0.167 ± 0.002
90 0.192 ± 0.037 0.191 ± 0.055 0.190 ± 0.040 0.216 ± 0.002 0.172 ± 0.003
100 0.197 ± 0.039 0.196 ± 0.059 0.196 ± 0.044 0.220 ± 0.003 0.176 ± 0.004

Table B.14: Cophenetic correlation on the BBC segmented news dataset of
MV-MDS compared with single view and stacked views MDS. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.116 ± 0.008 0.115 ± 0.011 0.114 ± 0.007 0.134 ± 0.000 0.133 ± 0.000
3 0.136 ± 0.010 0.135 ± 0.015 0.135 ± 0.010 0.161 ± 0.001 0.160 ± 0.001
4 0.146 ± 0.012 0.146 ± 0.016 0.146 ± 0.012 0.169 ± 0.001 0.169 ± 0.001
5 0.166 ± 0.015 0.165 ± 0.021 0.164 ± 0.015 0.190 ± 0.001 0.189 ± 0.000

6 0.173 ± 0.017 0.174 ± 0.024 0.176 ± 0.017 0.199 ± 0.000 0.197 ± 0.000
7 0.176 ± 0.018 0.180 ± 0.027 0.184 ± 0.019 0.207 ± 0.000 0.204 ± 0.000
8 0.182 ± 0.019 0.185 ± 0.029 0.188 ± 0.021 0.211 ± 0.000 0.208 ± 0.000
9 0.187 ± 0.020 0.188 ± 0.030 0.190 ± 0.022 0.213 ± 0.000 0.209 ± 0.001

10 0.189 ± 0.022 0.193 ± 0.032 0.196 ± 0.023 0.219 ± 0.000 0.214 ± 0.000
15 0.207 ± 0.029 0.209 ± 0.042 0.212 ± 0.030 0.240 ± 0.000 0.230 ± 0.000
20 0.217 ± 0.035 0.218 ± 0.049 0.219 ± 0.034 0.247 ± 0.001 0.234 ± 0.001
25 0.224 ± 0.040 0.225 ± 0.055 0.226 ± 0.038 0.254 ± 0.000 0.241 ± 0.001

30 0.226 ± 0.042 0.228 ± 0.059 0.230 ± 0.041 0.259 ± 0.000 0.244 ± 0.000
40 0.235 ± 0.048 0.235 ± 0.067 0.235 ± 0.046 0.264 ± 0.000 0.247 ± 0.001
50 0.239 ± 0.052 0.240 ± 0.074 0.241 ± 0.052 0.268 ± 0.001 0.250 ± 0.001
60 0.243 ± 0.056 0.245 ± 0.080 0.247 ± 0.058 0.273 ± 0.000 0.253 ± 0.000

70 0.247 ± 0.060 0.250 ± 0.087 0.252 ± 0.062 0.277 ± 0.001 0.256 ± 0.001
80 0.253 ± 0.064 0.255 ± 0.092 0.256 ± 0.067 0.282 ± 0.000 0.259 ± 0.000
90 0.257 ± 0.068 0.258 ± 0.098 0.259 ± 0.071 0.286 ± 0.000 0.264 ± 0.000
100 0.260 ± 0.071 0.262 ± 0.104 0.264 ± 0.075 0.290 ± 0.000 0.268 ± 0.000

Table B.15: Area under the curve of the RNX index on the BBC segmented
news dataset of MV-MDS compared with single view and stacked views MDS.
K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.529 0.553 ± 0.024 0.577 0.697 0.691
3 0.617 0.652 ± 0.034 0.686 0.857 0.862
4 0.856 0.869 ± 0.013 0.882 0.914 0.921
5 0.817 0.820 ± 0.002 0.822 0.875 0.689

6 0.699 0.708 ± 0.009 0.716 0.736 0.715
7 0.706 0.695 ± 0.011 0.683 0.751 0.567
8 0.581 0.653 ± 0.073 0.726 0.752 0.552
9 0.577 0.652 ± 0.075 0.727 0.746 0.565

10 0.581 0.654 ± 0.073 0.727 0.744 0.553
15 0.584 0.659 ± 0.074 0.733 0.746 0.443
20 0.735 0.728 ± 0.007 0.720 0.747 0.526
25 0.732 0.726 ± 0.006 0.720 0.746 0.432

30 0.737 0.729 ± 0.007 0.722 0.746 0.427
40 0.736 0.737 ± 0.001 0.738 0.745 0.384
50 0.733 0.735 ± 0.001 0.736 0.749 0.379
60 0.734 0.735 ± 0.001 0.737 0.747 0.414

70 0.739 0.738 ± 0.000 0.738 0.746 0.338
80 0.736 0.729 ± 0.007 0.722 0.746 0.384
90 0.736 0.729 ± 0.006 0.723 0.745 0.323
100 0.734 0.728 ± 0.006 0.722 0.745 0.415

Table B.16: Clustering purity on the BBC segmented news dataset of MV-
MDS compared with single view and stacked views MDS. K is the dimension-
ality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.484 0.476 ± 0.008 0.468 0.572 0.565
3 0.540 0.555 ± 0.015 0.570 0.716 0.722
4 0.696 0.705 ± 0.009 0.715 0.778 0.788
5 0.651 0.652 ± 0.001 0.653 0.732 0.562

6 0.606 0.614 ± 0.008 0.622 0.672 0.637
7 0.637 0.619 ± 0.018 0.601 0.704 0.483
8 0.487 0.572 ± 0.084 0.656 0.715 0.472
9 0.488 0.574 ± 0.087 0.661 0.703 0.490

10 0.489 0.577 ± 0.088 0.665 0.699 0.463
15 0.496 0.590 ± 0.094 0.683 0.703 0.314
20 0.686 0.667 ± 0.019 0.647 0.707 0.422
25 0.678 0.664 ± 0.014 0.650 0.706 0.290

30 0.689 0.672 ± 0.018 0.654 0.706 0.251
40 0.687 0.690 ± 0.002 0.692 0.705 0.213
50 0.681 0.685 ± 0.004 0.690 0.714 0.201
60 0.683 0.687 ± 0.004 0.692 0.710 0.232

70 0.693 0.694 ± 0.001 0.695 0.708 0.109
80 0.686 0.671 ± 0.015 0.656 0.707 0.169
90 0.686 0.672 ± 0.014 0.658 0.706 0.147
100 0.685 0.671 ± 0.014 0.657 0.706 0.260

Table B.17: Clustering normalized mutual information on the BBC segmented
news dataset of MV-MDS compared with single view and stacked views MDS.
K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 1.983 ± 0.002 1.983 ± 0.003 1.983 ± 0.002 1.979 ± 0.000 1.979 ± 0.000
3 1.979 ± 0.002 1.979 ± 0.003 1.979 ± 0.002 1.972 ± 0.000 1.972 ± 0.000
4 1.971 ± 0.001 1.972 ± 0.002 1.972 ± 0.001 1.970 ± 0.000 1.970 ± 0.000
5 1.972 ± 0.002 1.972 ± 0.002 1.972 ± 0.001 1.971 ± 0.000 1.976 ± 0.000

6 1.971 ± 0.002 1.971 ± 0.002 1.970 ± 0.001 1.970 ± 0.000 1.969 ± 0.000
7 1.971 ± 0.004 1.969 ± 0.005 1.967 ± 0.001 1.970 ± 0.000 1.967 ± 0.001
8 1.969 ± 0.004 1.965 ± 0.007 1.962 ± 0.001 1.969 ± 0.001 1.960 ± 0.001
9 1.967 ± 0.004 1.964 ± 0.006 1.961 ± 0.002 1.967 ± 0.000 1.957 ± 0.002

10 1.967 ± 0.004 1.965 ± 0.005 1.963 ± 0.002 1.967 ± 0.000 1.958 ± 0.002
15 1.964 ± 0.005 1.962 ± 0.006 1.960 ± 0.003 1.965 ± 0.001 1.946 ± 0.003
20 1.965 ± 0.003 1.965 ± 0.005 1.966 ± 0.003 1.963 ± 0.000 1.957 ± 0.001
25 1.964 ± 0.003 1.965 ± 0.005 1.965 ± 0.003 1.962 ± 0.000 1.950 ± 0.001

30 1.964 ± 0.003 1.965 ± 0.005 1.965 ± 0.003 1.962 ± 0.000 1.956 ± 0.001
40 1.964 ± 0.003 1.965 ± 0.005 1.965 ± 0.003 1.962 ± 0.000 1.961 ± 0.001
50 1.964 ± 0.003 1.965 ± 0.005 1.965 ± 0.003 1.962 ± 0.000 1.959 ± 0.001
60 1.964 ± 0.003 1.965 ± 0.005 1.965 ± 0.003 1.962 ± 0.000 1.959 ± 0.001

70 1.963 ± 0.003 1.964 ± 0.005 1.965 ± 0.003 1.962 ± 0.000 1.964 ± 0.001
80 1.962 ± 0.003 1.964 ± 0.005 1.965 ± 0.003 1.962 ± 0.000 1.961 ± 0.002
90 1.962 ± 0.003 1.964 ± 0.005 1.965 ± 0.003 1.962 ± 0.000 1.957 ± 0.002
100 1.962 ± 0.003 1.964 ± 0.005 1.965 ± 0.003 1.962 ± 0.000 1.955 ± 0.002

Table B.18: Davies-Boulding index on the BBC segmented news dataset of
MV-MDS compared with single view and stacked views MDS. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.063 ± 0.007 0.056 ± 0.025 0.065 ± 0.007 0.063 ± 0.007 0.062 ± 0.007
3 0.069 ± 0.006 0.064 ± 0.023 0.077 ± 0.006 0.069 ± 0.007 0.066 ± 0.006
4 0.077 ± 0.014 0.072 ± 0.031 0.089 ± 0.006 0.077 ± 0.007 0.080 ± 0.007
5 0.047 ± 0.012 0.070 ± 0.041 0.094 ± 0.006 0.060 ± 0.025 0.088 ± 0.008

6 0.038 ± 0.005 0.067 ± 0.052 0.097 ± 0.010 0.044 ± 0.017 0.065 ± 0.027
7 0.037 ± 0.004 0.065 ± 0.060 0.096 ± 0.022 0.038 ± 0.005 0.055 ± 0.031
8 0.037 ± 0.004 0.051 ± 0.049 0.062 ± 0.029 0.038 ± 0.004 0.043 ± 0.023
9 0.037 ± 0.004 0.044 ± 0.034 0.041 ± 0.004 0.037 ± 0.004 0.043 ± 0.025

10 0.036 ± 0.004 0.045 ± 0.047 0.056 ± 0.037 0.037 ± 0.004 0.043 ± 0.023
15 0.038 ± 0.008 0.052 ± 0.086 0.121 ± 0.039 0.040 ± 0.007 0.045 ± 0.013
20 0.038 ± 0.008 0.051 ± 0.080 0.096 ± 0.057 0.050 ± 0.011 0.060 ± 0.018
25 0.037 ± 0.005 0.054 ± 0.082 0.098 ± 0.055 0.048 ± 0.007 0.070 ± 0.030

30 0.042 ± 0.008 0.053 ± 0.080 0.094 ± 0.055 0.059 ± 0.036 0.104 ± 0.055
40 0.044 ± 0.016 0.059 ± 0.090 0.104 ± 0.047 0.083 ± 0.027 0.145 ± 0.038
50 0.040 ± 0.009 0.061 ± 0.082 0.102 ± 0.027 0.074 ± 0.017 0.125 ± 0.014
60 0.047 ± 0.012 0.071 ± 0.069 0.095 ± 0.009 0.063 ± 0.013 0.101 ± 0.014

70 0.044 ± 0.010 0.065 ± 0.049 0.076 ± 0.012 0.056 ± 0.010 0.088 ± 0.010
80 0.040 ± 0.007 0.059 ± 0.039 0.064 ± 0.009 0.053 ± 0.006 0.072 ± 0.010
90 0.039 ± 0.006 0.053 ± 0.032 0.054 ± 0.010 0.049 ± 0.007 0.060 ± 0.008
100 0.042 ± 0.008 0.049 ± 0.025 0.045 ± 0.005 0.047 ± 0.006 0.053 ± 0.008

Table B.19: One-vs-one SVM classification accuracy on the animal with at-
tributes (AWA) dataset of MV-MDS compared with single view and stacked
views MDS. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.161 ± 0.292 0.207 ± 0.596 0.282 ± 0.277 0.283 ± 0.143 0.391 ± 0.169
3 0.177 ± 0.308 0.242 ± 0.625 0.319 ± 0.272 0.289 ± 0.159 0.404 ± 0.160
4 0.175 ± 0.320 0.261 ± 0.653 0.340 ± 0.285 0.306 ± 0.176 0.410 ± 0.175
5 0.178 ± 0.325 0.268 ± 0.664 0.350 ± 0.286 0.317 ± 0.186 0.405 ± 0.188

6 0.182 ± 0.326 0.272 ± 0.674 0.353 ± 0.293 0.318 ± 0.192 0.410 ± 0.184
7 0.184 ± 0.329 0.278 ± 0.683 0.357 ± 0.296 0.333 ± 0.189 0.422 ± 0.184
8 0.190 ± 0.332 0.285 ± 0.691 0.361 ± 0.296 0.346 ± 0.192 0.430 ± 0.183
9 0.192 ± 0.335 0.291 ± 0.698 0.366 ± 0.296 0.348 ± 0.199 0.439 ± 0.183

10 0.195 ± 0.336 0.294 ± 0.704 0.368 ± 0.298 0.353 ± 0.197 0.441 ± 0.180
15 0.200 ± 0.341 0.310 ± 0.722 0.375 ± 0.297 0.375 ± 0.215 0.461 ± 0.172
20 0.204 ± 0.343 0.318 ± 0.733 0.379 ± 0.296 0.391 ± 0.229 0.471 ± 0.169
25 0.207 ± 0.345 0.324 ± 0.742 0.381 ± 0.296 0.400 ± 0.239 0.474 ± 0.164

30 0.209 ± 0.346 0.327 ± 0.748 0.382 ± 0.296 0.408 ± 0.245 0.483 ± 0.161
40 0.214 ± 0.347 0.333 ± 0.757 0.383 ± 0.295 0.420 ± 0.257 0.494 ± 0.154
50 0.217 ± 0.348 0.338 ± 0.763 0.385 ± 0.294 0.427 ± 0.264 0.501 ± 0.143
60 0.218 ± 0.349 0.340 ± 0.766 0.386 ± 0.294 0.434 ± 0.272 0.509 ± 0.132

70 0.220 ± 0.349 0.342 ± 0.769 0.386 ± 0.294 0.439 ± 0.278 0.516 ± 0.120
80 0.221 ± 0.350 0.344 ± 0.771 0.387 ± 0.293 0.443 ± 0.282 0.519 ± 0.113
90 0.222 ± 0.350 0.345 ± 0.774 0.387 ± 0.293 0.446 ± 0.285 0.520 ± 0.107
100 0.222 ± 0.351 0.346 ± 0.775 0.387 ± 0.293 0.448 ± 0.288 0.520 ± 0.101

Table B.20: Cophenetic correlation on the animal with attributes (AWA)
dataset of MV-MDS compared with single view and stacked views MDS. K is
the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.029 ± 0.028 0.042 ± 0.083 0.054 ± 0.038 0.044 ± 0.017 0.060 ± 0.030
3 0.036 ± 0.039 0.053 ± 0.110 0.064 ± 0.053 0.051 ± 0.024 0.065 ± 0.031
4 0.047 ± 0.049 0.062 ± 0.137 0.084 ± 0.076 0.058 ± 0.031 0.072 ± 0.030
5 0.050 ± 0.054 0.067 ± 0.153 0.090 ± 0.083 0.064 ± 0.037 0.079 ± 0.030

6 0.054 ± 0.059 0.071 ± 0.165 0.092 ± 0.085 0.068 ± 0.042 0.084 ± 0.031
7 0.058 ± 0.067 0.077 ± 0.184 0.102 ± 0.097 0.074 ± 0.043 0.090 ± 0.030
8 0.062 ± 0.073 0.084 ± 0.204 0.114 ± 0.110 0.080 ± 0.048 0.095 ± 0.029
9 0.064 ± 0.076 0.090 ± 0.221 0.124 ± 0.122 0.083 ± 0.052 0.099 ± 0.029

10 0.067 ± 0.081 0.092 ± 0.230 0.125 ± 0.124 0.086 ± 0.054 0.102 ± 0.030
15 0.080 ± 0.100 0.110 ± 0.294 0.160 ± 0.172 0.099 ± 0.065 0.117 ± 0.028
20 0.088 ± 0.113 0.121 ± 0.339 0.182 ± 0.203 0.109 ± 0.076 0.124 ± 0.026
25 0.094 ± 0.123 0.128 ± 0.368 0.191 ± 0.216 0.116 ± 0.085 0.130 ± 0.024

30 0.100 ± 0.134 0.134 ± 0.392 0.197 ± 0.225 0.123 ± 0.092 0.135 ± 0.025
40 0.109 ± 0.150 0.145 ± 0.432 0.207 ± 0.240 0.132 ± 0.104 0.142 ± 0.025
50 0.116 ± 0.162 0.152 ± 0.463 0.215 ± 0.251 0.139 ± 0.114 0.147 ± 0.026
60 0.123 ± 0.174 0.158 ± 0.488 0.220 ± 0.258 0.145 ± 0.123 0.152 ± 0.026

70 0.128 ± 0.183 0.163 ± 0.508 0.224 ± 0.264 0.149 ± 0.129 0.155 ± 0.027
80 0.133 ± 0.192 0.168 ± 0.527 0.227 ± 0.268 0.153 ± 0.134 0.157 ± 0.027
90 0.137 ± 0.199 0.171 ± 0.542 0.229 ± 0.272 0.156 ± 0.138 0.158 ± 0.027
100 0.141 ± 0.206 0.174 ± 0.556 0.231 ± 0.274 0.158 ± 0.142 0.159 ± 0.027

Table B.21: Area under the curve of the RNX index on the animal with
attributes (AWA) dataset of MV-MDS compared with single view and stacked
views MDS. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.086 0.090 ± 0.004 0.099 0.095 0.098
3 0.090 0.096 ± 0.005 0.103 0.098 0.098
4 0.095 0.097 ± 0.004 0.103 0.100 0.106
5 0.094 0.096 ± 0.005 0.106 0.104 0.105

6 0.090 0.098 ± 0.006 0.110 0.101 0.113
7 0.097 0.102 ± 0.006 0.115 0.106 0.111
8 0.096 0.102 ± 0.006 0.115 0.107 0.113
9 0.096 0.102 ± 0.006 0.116 0.109 0.115

10 0.095 0.103 ± 0.006 0.116 0.111 0.116
15 0.095 0.103 ± 0.008 0.120 0.109 0.115
20 0.097 0.105 ± 0.007 0.120 0.110 0.112
25 0.098 0.106 ± 0.006 0.118 0.110 0.108

30 0.095 0.106 ± 0.008 0.120 0.112 0.113
40 0.097 0.106 ± 0.007 0.119 0.112 0.120
50 0.100 0.106 ± 0.007 0.120 0.110 0.118
60 0.096 0.105 ± 0.006 0.114 0.110 0.114

70 0.098 0.106 ± 0.007 0.119 0.111 0.114
80 0.096 0.105 ± 0.008 0.122 0.108 0.114
90 0.097 0.106 ± 0.008 0.122 0.111 0.117
100 0.096 0.104 ± 0.007 0.117 0.111 0.112

Table B.22: Clustering purity on the animal with attributes (AWA) dataset
of MV-MDS compared with single view and stacked views MDS. K is the
dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.113 0.123 ± 0.009 0.142 0.129 0.136
3 0.121 0.129 ± 0.011 0.151 0.134 0.138
4 0.131 0.134 ± 0.008 0.151 0.140 0.149
5 0.135 0.136 ± 0.008 0.154 0.145 0.157

6 0.134 0.136 ± 0.007 0.152 0.144 0.159
7 0.137 0.141 ± 0.007 0.156 0.146 0.158
8 0.140 0.143 ± 0.007 0.159 0.149 0.164
9 0.134 0.143 ± 0.009 0.162 0.149 0.162

10 0.138 0.143 ± 0.007 0.157 0.150 0.166
15 0.138 0.144 ± 0.007 0.159 0.151 0.166
20 0.136 0.145 ± 0.007 0.160 0.152 0.166
25 0.134 0.144 ± 0.008 0.159 0.152 0.158

30 0.136 0.145 ± 0.008 0.161 0.150 0.157
40 0.136 0.145 ± 0.008 0.160 0.150 0.161
50 0.138 0.145 ± 0.008 0.161 0.150 0.157
60 0.133 0.143 ± 0.009 0.161 0.151 0.156

70 0.135 0.145 ± 0.008 0.159 0.150 0.151
80 0.135 0.143 ± 0.008 0.159 0.148 0.148
90 0.136 0.144 ± 0.008 0.161 0.148 0.151
100 0.137 0.144 ± 0.007 0.157 0.147 0.155

Table B.23: Clustering normalized mutual information on the animal with
attributes (AWA) dataset of MV-MDS compared with single view and stacked
views MDS. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 1.993 ± 0.060 2.000 ± 0.079 1.994 ± 0.008 1.991 ± 0.006 1.984 ± 0.014
3 1.986 ± 0.061 1.987 ± 0.099 1.993 ± 0.017 1.988 ± 0.009 1.975 ± 0.017
4 1.982 ± 0.062 1.980 ± 0.109 1.978 ± 0.023 1.986 ± 0.011 1.968 ± 0.019
5 1.979 ± 0.060 1.979 ± 0.113 1.983 ± 0.026 1.986 ± 0.011 1.983 ± 0.033

6 1.979 ± 0.083 1.974 ± 0.140 1.947 ± 0.028 1.984 ± 0.011 1.981 ± 0.030
7 1.976 ± 0.100 1.966 ± 0.162 1.921 ± 0.030 1.983 ± 0.012 1.976 ± 0.037
8 1.976 ± 0.109 1.967 ± 0.171 1.912 ± 0.032 1.979 ± 0.015 1.956 ± 0.025
9 1.975 ± 0.119 1.961 ± 0.182 1.906 ± 0.034 1.978 ± 0.020 1.952 ± 0.031

10 1.974 ± 0.126 1.962 ± 0.188 1.906 ± 0.034 1.978 ± 0.018 1.949 ± 0.033
15 1.972 ± 0.140 1.959 ± 0.211 1.906 ± 0.037 1.975 ± 0.019 1.947 ± 0.038
20 1.972 ± 0.140 1.954 ± 0.218 1.905 ± 0.039 1.973 ± 0.021 1.949 ± 0.033
25 1.972 ± 0.143 1.955 ± 0.228 1.904 ± 0.040 1.971 ± 0.029 1.923 ± 0.044

30 1.972 ± 0.140 1.951 ± 0.224 1.905 ± 0.040 1.968 ± 0.031 1.919 ± 0.047
40 1.970 ± 0.141 1.954 ± 0.231 1.904 ± 0.042 1.968 ± 0.038 1.873 ± 0.052
50 1.969 ± 0.142 1.945 ± 0.231 1.903 ± 0.044 1.967 ± 0.041 1.895 ± 0.049
60 1.971 ± 0.141 1.946 ± 0.234 1.905 ± 0.045 1.966 ± 0.039 1.918 ± 0.055

70 1.971 ± 0.140 1.946 ± 0.231 1.905 ± 0.046 1.963 ± 0.042 1.905 ± 0.053
80 1.972 ± 0.157 1.948 ± 0.241 1.908 ± 0.046 1.963 ± 0.045 1.877 ± 0.054
90 1.972 ± 0.147 1.943 ± 0.239 1.906 ± 0.046 1.964 ± 0.054 1.881 ± 0.074
100 1.972 ± 0.141 1.947 ± 0.231 1.904 ± 0.045 1.963 ± 0.047 1.902 ± 0.064

Table B.24: Davies-Boulding index on the animal with attributes (AWA)
dataset of MV-MDS compared with single view and stacked views MDS. K is
the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

1 0.713 ± 0.023 0.740 ± 0.077 0.708 ± 0.016 0.703 ± 0.012 0.793 ± 0.011
2 0.718 ± 0.024 0.746 ± 0.086 0.708 ± 0.014 0.703 ± 0.013 0.808 ± 0.014
3 0.721 ± 0.026 0.755 ± 0.087 0.723 ± 0.012 0.701 ± 0.011 0.816 ± 0.015
4 0.000 ± 0.021 0.239 ± 0.587 0.718 ± 0.015 0.704 ± 0.012 0.821 ± 0.015

5 0.000 ± 0.023 0.251 ± 0.617 0.754 ± 0.012 0.712 ± 0.010 0.838 ± 0.012
6 0.000 ± 0.020 0.248 ± 0.607 0.743 ± 0.013 0.710 ± 0.009 0.834 ± 0.012
7 0.000 ± 0.021 0.244 ± 0.599 0.733 ± 0.015 0.710 ± 0.009 0.841 ± 0.007
8 0.000 ± 0.017 0.245 ± 0.602 0.736 ± 0.018 0.709 ± 0.011 0.838 ± 0.006

9 0.000 ± 0.023 0.247 ± 0.607 0.742 ± 0.016 0.709 ± 0.012 0.840 ± 0.008
10 0.000 ± 0.019 0.250 ± 0.613 0.750 ± 0.013 0.714 ± 0.009 0.856 ± 0.012
11 0.000 ± 0.016 0.250 ± 0.614 0.751 ± 0.015 0.727 ± 0.013 0.855 ± 0.014
12 0.000 ± 0.017 0.252 ± 0.618 0.756 ± 0.022 0.738 ± 0.010 0.832 ± 0.012

13 0.000 ± 0.016 0.253 ± 0.621 0.760 ± 0.023 0.745 ± 0.016 0.795 ± 0.012
14 0.000 ± 0.014 0.256 ± 0.627 0.768 ± 0.019 0.770 ± 0.020 0.739 ± 0.020
15 0.000 ± 0.016 0.257 ± 0.630 0.771 ± 0.021 0.790 ± 0.017 0.709 ± 0.018
16 0.000 ± 0.014 0.256 ± 0.628 0.768 ± 0.012 0.795 ± 0.015 0.705 ± 0.016

17 0.000 ± 0.014 0.256 ± 0.627 0.767 ± 0.012 0.816 ± 0.015 0.705 ± 0.018
18 0.000 ± 0.015 0.255 ± 0.624 0.764 ± 0.018 0.812 ± 0.015 0.703 ± 0.017
19 0.000 ± 0.015 0.255 ± 0.625 0.764 ± 0.022 0.808 ± 0.015 0.703 ± 0.017
20 0.000 ± 0.015 0.255 ± 0.624 0.764 ± 0.019 0.801 ± 0.015 0.703 ± 0.017

Table B.25: One-vs-one SVM classification accuracy on the Berkeley protein
dataset of MV-MDS compared with single view and stacked views MDS. K is
the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.215 ± 0.293 0.308 ± 0.655 0.382 ± 0.413 0.438 ± 0.304 0.408 ± 0.281
3 0.288 ± 0.353 0.326 ± 0.665 0.370 ± 0.408 0.468 ± 0.311 0.406 ± 0.273
4 0.292 ± 0.362 0.324 ± 0.669 0.367 ± 0.409 0.472 ± 0.307 0.407 ± 0.267
5 0.279 ± 0.357 0.323 ± 0.664 0.365 ± 0.409 0.466 ± 0.304 0.354 ± 0.236

6 0.303 ± 0.363 0.329 ± 0.664 0.364 ± 0.410 0.463 ± 0.306 0.307 ± 0.215
7 0.299 ± 0.373 0.329 ± 0.666 0.363 ± 0.409 0.460 ± 0.307 0.279 ± 0.220
8 0.297 ± 0.372 0.327 ± 0.664 0.361 ± 0.408 0.459 ± 0.309 0.247 ± 0.210
9 0.300 ± 0.369 0.327 ± 0.661 0.359 ± 0.408 0.456 ± 0.309 0.228 ± 0.211

10 0.300 ± 0.369 0.327 ± 0.661 0.358 ± 0.407 0.455 ± 0.309 0.228 ± 0.215
15 0.307 ± 0.403 0.325 ± 0.675 0.348 ± 0.404 0.448 ± 0.313 0.165 ± 0.220
20 0.284 ± 0.392 0.314 ± 0.666 0.339 ± 0.400 0.442 ± 0.315 0.130 ± 0.213
25 0.271 ± 0.385 0.306 ± 0.659 0.331 ± 0.397 0.436 ± 0.318 0.108 ± 0.210

30 0.267 ± 0.370 0.301 ± 0.648 0.325 ± 0.394 0.432 ± 0.319 0.091 ± 0.206
40 0.244 ± 0.354 0.289 ± 0.633 0.314 ± 0.389 0.423 ± 0.320 0.065 ± 0.202
50 0.242 ± 0.326 0.286 ± 0.615 0.308 ± 0.385 0.416 ± 0.319 0.050 ± 0.203
60 0.238 ± 0.312 0.282 ± 0.605 0.302 ± 0.382 0.415 ± 0.311 0.040 ± 0.203

70 0.233 ± 0.294 0.279 ± 0.593 0.297 ± 0.378 0.410 ± 0.308 0.040 ± 0.206
80 0.234 ± 0.284 0.278 ± 0.586 0.292 ± 0.374 0.407 ± 0.304 0.041 ± 0.207
90 0.243 ± 0.271 0.280 ± 0.578 0.287 ± 0.370 0.403 ± 0.302 0.043 ± 0.208
100 0.250 ± 0.262 0.282 ± 0.572 0.284 ± 0.369 0.399 ± 0.301 0.046 ± 0.210

Table B.26: Cophenetic correlation on the Berkeley protein dataset of MV-
MDS compared with single view and stacked views MDS. K is the dimension-
ality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.143 ± 0.180 0.171 ± 0.293 0.223 ± 0.204 0.164 ± 0.053 0.150 ± 0.040
3 0.157 ± 0.190 0.188 ± 0.320 0.242 ± 0.226 0.185 ± 0.060 0.157 ± 0.043
4 0.158 ± 0.193 0.189 ± 0.316 0.240 ± 0.219 0.195 ± 0.053 0.179 ± 0.052
5 0.170 ± 0.202 0.194 ± 0.319 0.240 ± 0.216 0.203 ± 0.054 0.174 ± 0.047

6 0.173 ± 0.203 0.196 ± 0.318 0.237 ± 0.211 0.205 ± 0.054 0.165 ± 0.043
7 0.179 ± 0.202 0.198 ± 0.315 0.235 ± 0.208 0.206 ± 0.057 0.159 ± 0.043
8 0.182 ± 0.205 0.199 ± 0.318 0.235 ± 0.208 0.206 ± 0.058 0.153 ± 0.041
9 0.180 ± 0.202 0.200 ± 0.316 0.235 ± 0.206 0.208 ± 0.060 0.150 ± 0.042

10 0.183 ± 0.204 0.201 ± 0.317 0.232 ± 0.203 0.209 ± 0.062 0.150 ± 0.042
15 0.180 ± 0.196 0.204 ± 0.313 0.227 ± 0.196 0.212 ± 0.062 0.136 ± 0.044
20 0.176 ± 0.191 0.204 ± 0.312 0.222 ± 0.187 0.213 ± 0.061 0.125 ± 0.041
25 0.173 ± 0.186 0.203 ± 0.312 0.218 ± 0.182 0.214 ± 0.058 0.115 ± 0.039

30 0.171 ± 0.184 0.201 ± 0.309 0.215 ± 0.178 0.214 ± 0.057 0.105 ± 0.037
40 0.167 ± 0.178 0.199 ± 0.310 0.206 ± 0.168 0.212 ± 0.054 0.090 ± 0.032
50 0.163 ± 0.173 0.196 ± 0.303 0.202 ± 0.161 0.211 ± 0.053 0.080 ± 0.030
60 0.161 ± 0.169 0.190 ± 0.293 0.197 ± 0.156 0.210 ± 0.051 0.072 ± 0.027

70 0.160 ± 0.166 0.187 ± 0.288 0.194 ± 0.152 0.209 ± 0.049 0.066 ± 0.025
80 0.159 ± 0.164 0.179 ± 0.276 0.189 ± 0.147 0.208 ± 0.047 0.063 ± 0.024
90 0.157 ± 0.162 0.175 ± 0.269 0.186 ± 0.143 0.207 ± 0.045 0.060 ± 0.021
100 0.156 ± 0.160 0.170 ± 0.262 0.183 ± 0.140 0.205 ± 0.044 0.058 ± 0.020

Table B.27: Area under the curve of the RNX index on the Berkeley protein
dataset of MV-MDS compared with single view and stacked views MDS. K is
the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.700 0.720 ± 0.028 0.759 0.781 0.771
3 0.700 0.720 ± 0.028 0.759 0.784 0.770
4 0.700 0.720 ± 0.028 0.760 0.785 0.765
5 0.700 0.720 ± 0.028 0.759 0.785 0.700

6 0.700 0.720 ± 0.029 0.761 0.785 0.700
7 0.700 0.721 ± 0.029 0.762 0.787 0.700
8 0.700 0.721 ± 0.029 0.762 0.788 0.700
9 0.700 0.721 ± 0.029 0.762 0.788 0.700

10 0.700 0.721 ± 0.029 0.762 0.788 0.700
15 0.700 0.721 ± 0.030 0.764 0.788 0.700
20 0.700 0.721 ± 0.030 0.764 0.788 0.700
25 0.700 0.720 ± 0.029 0.761 0.788 0.700

30 0.700 0.720 ± 0.029 0.761 0.788 0.700
40 0.700 0.720 ± 0.029 0.761 0.788 0.700
50 0.700 0.720 ± 0.029 0.761 0.788 0.700
60 0.700 0.720 ± 0.029 0.761 0.788 0.812

70 0.700 0.720 ± 0.029 0.761 0.788 0.700
80 0.700 0.720 ± 0.029 0.761 0.788 0.700
90 0.700 0.720 ± 0.029 0.761 0.788 0.700
100 0.700 0.720 ± 0.029 0.761 0.788 0.807

Table B.28: Clustering purity on the Berkeley protein dataset of MV-MDS
compared with single view and stacked views MDS. K is the dimensionality
of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.091 0.163 ± 0.076 0.268 0.311 0.306
3 0.021 0.140 ± 0.102 0.270 0.315 0.305
4 0.019 0.140 ± 0.103 0.271 0.319 0.292
5 0.017 0.138 ± 0.103 0.268 0.320 0.116

6 0.017 0.139 ± 0.104 0.270 0.314 0.117
7 0.017 0.139 ± 0.104 0.271 0.319 0.109
8 0.017 0.139 ± 0.104 0.271 0.320 0.109
9 0.017 0.139 ± 0.104 0.271 0.320 0.116

10 0.017 0.139 ± 0.104 0.271 0.320 0.125
15 0.017 0.140 ± 0.105 0.273 0.320 0.094
20 0.017 0.140 ± 0.105 0.273 0.320 0.106
25 0.017 0.138 ± 0.104 0.270 0.320 0.085

30 0.017 0.139 ± 0.104 0.270 0.320 0.156
40 0.017 0.139 ± 0.104 0.270 0.320 0.121
50 0.017 0.139 ± 0.103 0.270 0.320 0.118
60 0.017 0.138 ± 0.103 0.269 0.320 0.392

70 0.017 0.139 ± 0.104 0.270 0.320 0.045
80 0.017 0.139 ± 0.104 0.270 0.320 0.024
90 0.017 0.139 ± 0.103 0.270 0.320 0.040
100 0.017 0.139 ± 0.103 0.269 0.320 0.371

Table B.29: Clustering normalized mutual information on the Berkeley protein
dataset of MV-MDS compared with single view and stacked views MDS. K is
the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 1.747 ± 0.212 1.648 ± 0.599 1.636 ± 0.258 1.693 ± 0.161 1.713 ± 0.146
3 1.750 ± 0.309 1.614 ± 0.645 1.531 ± 0.251 1.693 ± 0.159 1.713 ± 0.145
4 1.751 ± 0.489 1.564 ± 0.774 1.382 ± 0.250 1.695 ± 0.158 1.715 ± 0.148
5 1.751 ± 0.645 1.512 ± 0.921 1.225 ± 0.245 1.695 ± 0.160 1.637 ± 0.385

6 1.752 ± 0.645 1.512 ± 0.921 1.225 ± 0.246 1.694 ± 0.161 1.623 ± 0.406
7 1.753 ± 0.645 1.513 ± 0.921 1.225 ± 0.245 1.690 ± 0.163 1.628 ± 0.400
8 1.753 ± 0.645 1.512 ± 0.922 1.225 ± 0.246 1.689 ± 0.163 1.633 ± 0.393
9 1.754 ± 0.645 1.513 ± 0.922 1.225 ± 0.245 1.689 ± 0.163 1.632 ± 0.394

10 1.754 ± 0.645 1.512 ± 0.921 1.225 ± 0.245 1.689 ± 0.163 1.649 ± 0.372
15 1.754 ± 0.645 1.513 ± 0.922 1.225 ± 0.246 1.690 ± 0.163 1.637 ± 0.366
20 1.754 ± 0.645 1.513 ± 0.922 1.225 ± 0.247 1.690 ± 0.163 1.725 ± 0.229
25 1.751 ± 0.645 1.512 ± 0.921 1.225 ± 0.248 1.690 ± 0.163 1.631 ± 0.379

30 1.752 ± 0.645 1.512 ± 0.920 1.225 ± 0.246 1.690 ± 0.163 1.719 ± 0.165
40 1.751 ± 0.645 1.512 ± 0.920 1.225 ± 0.246 1.690 ± 0.163 1.753 ± 0.189
50 1.752 ± 0.645 1.512 ± 0.920 1.225 ± 0.246 1.690 ± 0.163 1.740 ± 0.182
60 1.752 ± 0.645 1.512 ± 0.921 1.225 ± 0.245 1.689 ± 0.163 1.710 ± 0.131

70 1.751 ± 0.645 1.512 ± 0.921 1.225 ± 0.246 1.690 ± 0.163 1.765 ± 0.213
80 1.751 ± 0.645 1.512 ± 0.921 1.225 ± 0.246 1.690 ± 0.163 1.818 ± 0.153
90 1.751 ± 0.645 1.511 ± 0.920 1.225 ± 0.246 1.690 ± 0.163 1.817 ± 0.159
100 1.752 ± 0.645 1.512 ± 0.920 1.225 ± 0.245 1.690 ± 0.163 1.702 ± 0.139

Table B.30: Davies-Boulding index on the Berkeley protein dataset of MV-
MDS compared with single view and stacked views MDS. K is the dimension-
ality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.431 ± 0.006 0.446 ± 0.025 0.460 ± 0.013 0.455 ± 0.006 0.487 ± 0.010
3 0.453 ± 0.022 0.457 ± 0.029 0.462 ± 0.018 0.490 ± 0.013 0.574 ± 0.017
4 0.488 ± 0.012 0.508 ± 0.033 0.528 ± 0.012 0.516 ± 0.014 0.621 ± 0.014
5 0.528 ± 0.013 0.531 ± 0.023 0.534 ± 0.018 0.559 ± 0.019 0.653 ± 0.014

6 0.559 ± 0.012 0.546 ± 0.030 0.533 ± 0.020 0.590 ± 0.014 0.664 ± 0.017
7 0.564 ± 0.022 0.552 ± 0.028 0.541 ± 0.007 0.601 ± 0.007 0.692 ± 0.010
8 0.570 ± 0.007 0.561 ± 0.022 0.551 ± 0.017 0.600 ± 0.012 0.699 ± 0.018
9 0.584 ± 0.009 0.575 ± 0.018 0.567 ± 0.011 0.614 ± 0.010 0.700 ± 0.014

10 0.590 ± 0.012 0.577 ± 0.026 0.565 ± 0.014 0.629 ± 0.017 0.710 ± 0.016
15 0.653 ± 0.015 0.631 ± 0.037 0.609 ± 0.012 0.683 ± 0.013 0.738 ± 0.012
20 0.656 ± 0.017 0.637 ± 0.034 0.619 ± 0.014 0.691 ± 0.015 0.734 ± 0.020
25 0.627 ± 0.010 0.630 ± 0.018 0.633 ± 0.014 0.654 ± 0.012 0.745 ± 0.018

30 0.582 ± 0.006 0.608 ± 0.041 0.635 ± 0.016 0.614 ± 0.011 0.734 ± 0.012
40 0.471 ± 0.013 0.563 ± 0.132 0.655 ± 0.012 0.500 ± 0.012 0.702 ± 0.014
50 0.391 ± 0.009 0.520 ± 0.182 0.648 ± 0.009 0.406 ± 0.013 0.628 ± 0.023
60 0.356 ± 0.010 0.505 ± 0.210 0.653 ± 0.011 0.363 ± 0.012 0.525 ± 0.019

70 0.341 ± 0.011 0.489 ± 0.210 0.637 ± 0.015 0.345 ± 0.011 0.454 ± 0.020
80 0.335 ± 0.011 0.480 ± 0.206 0.626 ± 0.011 0.340 ± 0.010 0.393 ± 0.014
90 0.326 ± 0.016 0.477 ± 0.215 0.628 ± 0.012 0.330 ± 0.018 0.366 ± 0.011
100 0.326 ± 0.015 0.472 ± 0.208 0.618 ± 0.022 0.324 ± 0.017 0.346 ± 0.010

Table B.31: One-vs-one SVM classification accuracy on the Cora dataset of
MV-MDS compared with single view and stacked views MDS. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.429 0.397 ± 0.032 0.366 0.372 0.464
3 0.444 0.407 ± 0.037 0.370 0.384 0.460
4 0.385 0.387 ± 0.002 0.389 0.405 0.448
5 0.408 0.406 ± 0.002 0.404 0.409 0.431

6 0.383 0.389 ± 0.006 0.395 0.404 0.440
7 0.383 0.390 ± 0.007 0.397 0.414 0.481
8 0.383 0.389 ± 0.006 0.395 0.403 0.467
9 0.386 0.389 ± 0.004 0.393 0.399 0.448

10 0.388 0.390 ± 0.003 0.393 0.398 0.442
15 0.399 0.394 ± 0.005 0.389 0.396 0.389
20 0.395 0.392 ± 0.003 0.389 0.395 0.350
25 0.395 0.391 ± 0.004 0.387 0.434 0.333

30 0.391 0.375 ± 0.016 0.359 0.442 0.339
40 0.383 0.372 ± 0.012 0.360 0.407 0.353
50 0.329 0.345 ± 0.016 0.360 0.416 0.311
60 0.333 0.348 ± 0.015 0.363 0.359 0.307

70 0.308 0.334 ± 0.026 0.360 0.412 0.336
80 0.308 0.319 ± 0.011 0.330 0.350 0.373
90 0.333 0.336 ± 0.004 0.340 0.314 0.374
100 0.322 0.352 ± 0.030 0.381 0.317 0.377

Table B.32: Clustering purity on the Cora dataset of MV-MDS compared with
single view and stacked views MDS. K is the dimensionality of the projection.
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K
Single view Stacked

views MV-MDS
Worst Average Best

2 0.119 0.177 ± 0.058 0.236 0.125 0.239
3 0.125 0.193 ± 0.068 0.260 0.138 0.236
4 0.137 0.169 ± 0.032 0.201 0.151 0.223
5 0.151 0.190 ± 0.038 0.228 0.158 0.195

6 0.144 0.171 ± 0.026 0.197 0.151 0.196
7 0.145 0.158 ± 0.013 0.170 0.157 0.225
8 0.144 0.169 ± 0.026 0.195 0.150 0.216
9 0.141 0.167 ± 0.026 0.192 0.147 0.202

10 0.140 0.167 ± 0.027 0.193 0.144 0.209
15 0.143 0.173 ± 0.030 0.203 0.148 0.157
20 0.143 0.177 ± 0.034 0.211 0.149 0.118
25 0.141 0.173 ± 0.032 0.205 0.211 0.079

30 0.099 0.146 ± 0.047 0.193 0.209 0.058
40 0.097 0.140 ± 0.044 0.184 0.165 0.125
50 0.099 0.106 ± 0.007 0.114 0.194 0.074
60 0.114 0.112 ± 0.002 0.110 0.100 0.017

70 0.093 0.101 ± 0.009 0.110 0.191 0.093
80 0.081 0.095 ± 0.014 0.109 0.088 0.098
90 0.109 0.111 ± 0.002 0.113 0.071 0.107
100 0.121 0.114 ± 0.007 0.107 0.074 0.113

Table B.33: Clustering normalized mutual information on the Cora dataset
of MV-MDS compared with single view and stacked views MDS. K is the
dimensionality of the projection.



Appendix C

Results of MVSC-CEV
experiments

In this appendix, the detailed results of the experiments with the MV-SC-
CEV method are presented. There is a results table for each combination of
dataset and evaluation method, yielding a total of 36 tables. The methods are
compared with the counterpart single view method, either applied to single
views individually or to all views stacked on a single matrix. For single views,
the worst, average and best views (on average) are given.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.515 ± 0.026 0.450 ± 0.184 0.565 ± 0.013 0.508 ± 0.018 0.551 ± 0.023
3 0.500 ± 0.024 0.576 ± 0.179 0.685 ± 0.014 0.706 ± 0.019 0.776 ± 0.009
4 0.511 ± 0.014 0.661 ± 0.305 0.840 ± 0.010 0.850 ± 0.013 0.905 ± 0.007
5 0.514 ± 0.015 0.713 ± 0.329 0.877 ± 0.010 0.901 ± 0.007 0.946 ± 0.008

6 0.534 ± 0.024 0.746 ± 0.351 0.910 ± 0.010 0.926 ± 0.006 0.957 ± 0.005
7 0.547 ± 0.023 0.766 ± 0.358 0.926 ± 0.007 0.947 ± 0.008 0.965 ± 0.007
8 0.547 ± 0.023 0.782 ± 0.364 0.926 ± 0.009 0.961 ± 0.005 0.968 ± 0.007
9 0.547 ± 0.023 0.798 ± 0.354 0.928 ± 0.009 0.964 ± 0.004 0.971 ± 0.005

10 0.597 ± 0.036 0.813 ± 0.333 0.932 ± 0.009 0.966 ± 0.005 0.974 ± 0.005
15 0.655 ± 0.020 0.841 ± 0.299 0.950 ± 0.005 0.975 ± 0.005 0.977 ± 0.004
20 0.663 ± 0.024 0.848 ± 0.295 0.952 ± 0.005 0.976 ± 0.005 0.974 ± 0.005
25 0.690 ± 0.019 0.858 ± 0.274 0.955 ± 0.006 0.976 ± 0.005 0.974 ± 0.004

30 0.689 ± 0.016 0.859 ± 0.269 0.955 ± 0.006 0.980 ± 0.004 0.974 ± 0.005
40 0.685 ± 0.021 0.849 ± 0.272 0.953 ± 0.006 0.978 ± 0.003 0.974 ± 0.004
50 0.682 ± 0.027 0.823 ± 0.268 0.956 ± 0.007 0.974 ± 0.005 0.970 ± 0.006
60 0.685 ± 0.017 0.763 ± 0.348 0.949 ± 0.009 0.952 ± 0.011 0.943 ± 0.009

70 0.688 ± 0.016 0.683 ± 0.458 0.940 ± 0.009 0.873 ± 0.027 0.889 ± 0.027
80 0.674 ± 0.018 0.590 ± 0.519 0.901 ± 0.018 0.692 ± 0.063 0.786 ± 0.042
90 0.677 ± 0.018 0.506 ± 0.523 0.814 ± 0.023 0.495 ± 0.071 0.654 ± 0.047
100 0.669 ± 0.014 0.429 ± 0.515 0.705 ± 0.041 0.350 ± 0.072 0.530 ± 0.066

Table C.1: One-vs-one SVM classification accuracy on the digits dataset of
MVSC-CEV compared with single view and stacked views SC. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.048 ± 0.141 0.175 ± 0.392 0.242 ± 0.195 0.257 ± 0.153 0.166 ± 0.131
3 0.047 ± 0.145 0.209 ± 0.430 0.310 ± 0.182 0.310 ± 0.137 0.235 ± 0.090
4 0.047 ± 0.147 0.231 ± 0.448 0.323 ± 0.215 0.335 ± 0.193 0.245 ± 0.084
5 0.051 ± 0.147 0.241 ± 0.451 0.345 ± 0.213 0.359 ± 0.188 0.269 ± 0.087

6 0.106 ± 0.110 0.244 ± 0.400 0.349 ± 0.192 0.362 ± 0.136 0.282 ± 0.086
7 0.114 ± 0.114 0.236 ± 0.376 0.335 ± 0.172 0.345 ± 0.145 0.280 ± 0.084
8 0.114 ± 0.113 0.239 ± 0.367 0.338 ± 0.160 0.344 ± 0.134 0.243 ± 0.096
9 0.115 ± 0.113 0.244 ± 0.366 0.344 ± 0.160 0.359 ± 0.140 0.245 ± 0.090

10 0.115 ± 0.113 0.237 ± 0.356 0.326 ± 0.142 0.348 ± 0.142 0.248 ± 0.090
15 0.116 ± 0.111 0.225 ± 0.327 0.320 ± 0.136 0.344 ± 0.123 0.263 ± 0.058
20 0.112 ± 0.113 0.218 ± 0.308 0.305 ± 0.115 0.331 ± 0.115 0.265 ± 0.065
25 0.139 ± 0.105 0.215 ± 0.275 0.296 ± 0.103 0.306 ± 0.109 0.254 ± 0.067

30 0.147 ± 0.096 0.210 ± 0.262 0.285 ± 0.104 0.295 ± 0.113 0.241 ± 0.055
40 0.137 ± 0.064 0.198 ± 0.237 0.274 ± 0.113 0.281 ± 0.114 0.228 ± 0.057
50 0.141 ± 0.061 0.190 ± 0.218 0.257 ± 0.102 0.264 ± 0.095 0.233 ± 0.050
60 0.132 ± 0.047 0.190 ± 0.213 0.256 ± 0.101 0.263 ± 0.090 0.240 ± 0.053

70 0.127 ± 0.053 0.194 ± 0.218 0.253 ± 0.103 0.259 ± 0.080 0.254 ± 0.066
80 0.129 ± 0.060 0.206 ± 0.235 0.259 ± 0.110 0.264 ± 0.086 0.272 ± 0.069
90 0.124 ± 0.054 0.216 ± 0.253 0.264 ± 0.110 0.278 ± 0.090 0.293 ± 0.070
100 0.153 ± 0.037 0.232 ± 0.266 0.272 ± 0.111 0.293 ± 0.091 0.308 ± 0.071

Table C.2: Cophenetic correlation on the digits dataset of MVSC-CEV com-
pared with single view and stacked views SC. K is the dimensionality of the
projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.096 ± 0.063 0.087 ± 0.114 0.098 ± 0.048 0.103 ± 0.039 0.104 ± 0.019
3 0.095 ± 0.063 0.120 ± 0.155 0.152 ± 0.066 0.159 ± 0.058 0.152 ± 0.029
4 0.098 ± 0.065 0.145 ± 0.194 0.199 ± 0.093 0.211 ± 0.092 0.186 ± 0.037
5 0.098 ± 0.065 0.163 ± 0.223 0.224 ± 0.106 0.239 ± 0.109 0.207 ± 0.040

6 0.099 ± 0.058 0.172 ± 0.246 0.243 ± 0.121 0.256 ± 0.109 0.219 ± 0.042
7 0.100 ± 0.059 0.178 ± 0.260 0.255 ± 0.124 0.271 ± 0.117 0.226 ± 0.048
8 0.100 ± 0.059 0.185 ± 0.273 0.270 ± 0.130 0.279 ± 0.120 0.225 ± 0.050
9 0.100 ± 0.059 0.191 ± 0.284 0.276 ± 0.134 0.287 ± 0.127 0.228 ± 0.050

10 0.100 ± 0.059 0.195 ± 0.294 0.281 ± 0.134 0.289 ± 0.130 0.230 ± 0.053
15 0.101 ± 0.061 0.205 ± 0.319 0.291 ± 0.145 0.306 ± 0.138 0.245 ± 0.061
20 0.103 ± 0.063 0.211 ± 0.336 0.296 ± 0.150 0.313 ± 0.146 0.257 ± 0.072
25 0.125 ± 0.088 0.219 ± 0.345 0.301 ± 0.154 0.312 ± 0.147 0.258 ± 0.074

30 0.125 ± 0.090 0.220 ± 0.353 0.300 ± 0.156 0.310 ± 0.149 0.260 ± 0.073
40 0.129 ± 0.102 0.222 ± 0.368 0.299 ± 0.161 0.308 ± 0.151 0.262 ± 0.077
50 0.127 ± 0.105 0.221 ± 0.375 0.294 ± 0.160 0.304 ± 0.146 0.265 ± 0.076
60 0.125 ± 0.105 0.223 ± 0.382 0.294 ± 0.163 0.302 ± 0.144 0.267 ± 0.077

70 0.122 ± 0.104 0.225 ± 0.392 0.294 ± 0.164 0.301 ± 0.142 0.271 ± 0.079
80 0.121 ± 0.105 0.228 ± 0.403 0.296 ± 0.167 0.302 ± 0.141 0.276 ± 0.079
90 0.134 ± 0.129 0.233 ± 0.415 0.297 ± 0.169 0.303 ± 0.139 0.282 ± 0.079
100 0.147 ± 0.128 0.238 ± 0.421 0.299 ± 0.170 0.305 ± 0.137 0.286 ± 0.079

Table C.3: Area under the curve of the RNX index on the digits dataset
of MVSC-CEV compared with single view and stacked views SC. K is the
dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.329 0.364 ± 0.047 0.417 0.421 0.466
3 0.317 0.444 ± 0.072 0.556 0.570 0.596
4 0.315 0.495 ± 0.097 0.621 0.715 0.762
5 0.289 0.555 ± 0.148 0.676 0.708 0.875

6 0.429 0.559 ± 0.103 0.622 0.677 0.802
7 0.407 0.576 ± 0.110 0.679 0.781 0.795
8 0.407 0.588 ± 0.121 0.734 0.875 0.771
9 0.407 0.582 ± 0.111 0.682 0.885 0.817

10 0.407 0.602 ± 0.135 0.751 0.787 0.944
15 0.408 0.653 ± 0.171 0.805 0.902 0.809
20 0.409 0.667 ± 0.178 0.895 0.907 0.791
25 0.516 0.675 ± 0.121 0.806 0.898 0.810

30 0.472 0.668 ± 0.126 0.738 0.799 0.791
40 0.409 0.637 ± 0.137 0.731 0.800 0.822
50 0.379 0.625 ± 0.138 0.765 0.806 0.799
60 0.367 0.592 ± 0.127 0.754 0.753 0.786

70 0.342 0.577 ± 0.121 0.695 0.751 0.736
80 0.332 0.592 ± 0.138 0.716 0.751 0.726
90 0.390 0.603 ± 0.143 0.736 0.755 0.719
100 0.355 0.579 ± 0.125 0.755 0.784 0.752

Table C.4: Clustering purity on the digits dataset of MVSC-CEV compared
with single view and stacked views SC. K is the dimensionality of the projec-
tion.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.439 0.360 ± 0.077 0.415 0.429 0.468
3 0.430 0.415 ± 0.055 0.491 0.553 0.602
4 0.416 0.473 ± 0.070 0.583 0.634 0.730
5 0.391 0.516 ± 0.092 0.622 0.650 0.829

6 0.402 0.514 ± 0.093 0.590 0.681 0.821
7 0.398 0.529 ± 0.105 0.636 0.739 0.824
8 0.398 0.537 ± 0.109 0.660 0.791 0.805
9 0.398 0.536 ± 0.101 0.640 0.807 0.840

10 0.398 0.543 ± 0.115 0.684 0.750 0.893
15 0.400 0.595 ± 0.151 0.758 0.835 0.815
20 0.400 0.601 ± 0.155 0.823 0.847 0.797
25 0.478 0.615 ± 0.115 0.762 0.841 0.808

30 0.439 0.615 ± 0.117 0.734 0.793 0.792
40 0.400 0.597 ± 0.123 0.729 0.803 0.840
50 0.383 0.584 ± 0.118 0.720 0.811 0.814
60 0.390 0.570 ± 0.112 0.719 0.753 0.782

70 0.348 0.557 ± 0.111 0.658 0.713 0.728
80 0.346 0.562 ± 0.132 0.676 0.718 0.738
90 0.379 0.568 ± 0.129 0.705 0.719 0.735
100 0.417 0.561 ± 0.092 0.693 0.744 0.743

Table C.5: Clustering normalized mutual information on the digits dataset
of MVSC-CEV compared with single view and stacked views SC. K is the
dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 1.977 ± 0.028 1.940 ± 0.121 1.922 ± 0.013 1.906 ± 0.036 1.895 ± 0.061
3 1.897 ± 0.051 1.900 ± 0.172 1.870 ± 0.076 1.848 ± 0.072 1.868 ± 0.066
4 1.873 ± 0.078 1.877 ± 0.205 1.813 ± 0.081 1.788 ± 0.097 1.766 ± 0.143
5 1.857 ± 0.091 1.819 ± 0.236 1.779 ± 0.080 1.777 ± 0.091 1.746 ± 0.123

6 1.863 ± 0.088 1.834 ± 0.245 1.784 ± 0.081 1.802 ± 0.081 1.746 ± 0.140
7 1.864 ± 0.090 1.817 ± 0.276 1.770 ± 0.078 1.718 ± 0.117 1.741 ± 0.145
8 1.892 ± 0.100 1.819 ± 0.288 1.754 ± 0.067 1.701 ± 0.130 1.739 ± 0.134
9 1.869 ± 0.106 1.808 ± 0.301 1.750 ± 0.085 1.709 ± 0.128 1.728 ± 0.150

10 1.854 ± 0.112 1.805 ± 0.298 1.736 ± 0.094 1.737 ± 0.102 1.696 ± 0.141
15 1.843 ± 0.116 1.790 ± 0.314 1.719 ± 0.103 1.699 ± 0.124 1.705 ± 0.181
20 1.857 ± 0.119 1.785 ± 0.316 1.705 ± 0.072 1.700 ± 0.123 1.695 ± 0.180
25 1.856 ± 0.125 1.768 ± 0.384 1.719 ± 0.069 1.699 ± 0.122 1.716 ± 0.173

30 1.848 ± 0.117 1.762 ± 0.380 1.729 ± 0.067 1.724 ± 0.107 1.705 ± 0.184
40 1.857 ± 0.126 1.759 ± 0.398 1.712 ± 0.067 1.724 ± 0.111 1.717 ± 0.145
50 1.836 ± 0.128 1.757 ± 0.390 1.696 ± 0.071 1.723 ± 0.114 1.718 ± 0.133
60 1.814 ± 0.137 1.752 ± 0.386 1.687 ± 0.080 1.726 ± 0.108 1.723 ± 0.134

70 1.838 ± 0.132 1.763 ± 0.389 1.686 ± 0.078 1.679 ± 0.146 1.733 ± 0.144
80 1.843 ± 0.113 1.753 ± 0.390 1.708 ± 0.075 1.682 ± 0.145 1.712 ± 0.160
90 1.881 ± 0.134 1.769 ± 0.379 1.714 ± 0.054 1.686 ± 0.138 1.705 ± 0.180
100 1.841 ± 0.131 1.784 ± 0.314 1.704 ± 0.080 1.724 ± 0.121 1.732 ± 0.150

Table C.6: Davies-Boulding index on the digits dataset of MVSC-CEV com-
pared with single view and stacked views SC. K is the dimensionality of the
projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.505 ± 0.018 0.476 ± 0.053 0.497 ± 0.007 0.482 ± 0.016 0.523 ± 0.015
3 0.536 ± 0.021 0.522 ± 0.058 0.517 ± 0.008 0.574 ± 0.021 0.601 ± 0.019
4 0.525 ± 0.018 0.528 ± 0.055 0.535 ± 0.005 0.585 ± 0.016 0.592 ± 0.014
5 0.546 ± 0.023 0.568 ± 0.058 0.552 ± 0.011 0.604 ± 0.028 0.650 ± 0.021

6 0.560 ± 0.006 0.589 ± 0.054 0.624 ± 0.009 0.611 ± 0.029 0.650 ± 0.014
7 0.583 ± 0.020 0.609 ± 0.079 0.666 ± 0.006 0.612 ± 0.029 0.664 ± 0.016
8 0.594 ± 0.027 0.618 ± 0.087 0.684 ± 0.004 0.624 ± 0.027 0.674 ± 0.022
9 0.622 ± 0.026 0.638 ± 0.081 0.699 ± 0.007 0.669 ± 0.026 0.703 ± 0.021

10 0.626 ± 0.023 0.644 ± 0.091 0.716 ± 0.009 0.673 ± 0.027 0.717 ± 0.024
15 0.665 ± 0.028 0.682 ± 0.097 0.760 ± 0.006 0.717 ± 0.017 0.783 ± 0.010
20 0.672 ± 0.021 0.697 ± 0.113 0.793 ± 0.006 0.733 ± 0.012 0.784 ± 0.016
25 0.685 ± 0.017 0.712 ± 0.108 0.799 ± 0.006 0.741 ± 0.013 0.796 ± 0.012

30 0.683 ± 0.022 0.717 ± 0.118 0.815 ± 0.003 0.742 ± 0.007 0.799 ± 0.013
40 0.681 ± 0.021 0.726 ± 0.120 0.821 ± 0.004 0.757 ± 0.013 0.801 ± 0.015
50 0.672 ± 0.007 0.720 ± 0.119 0.815 ± 0.008 0.745 ± 0.015 0.792 ± 0.011
60 0.640 ± 0.016 0.704 ± 0.134 0.811 ± 0.007 0.719 ± 0.025 0.766 ± 0.017

70 0.567 ± 0.026 0.657 ± 0.161 0.783 ± 0.008 0.656 ± 0.017 0.698 ± 0.016
80 0.497 ± 0.032 0.595 ± 0.175 0.725 ± 0.012 0.562 ± 0.036 0.591 ± 0.032
90 0.436 ± 0.034 0.524 ± 0.160 0.629 ± 0.031 0.465 ± 0.029 0.504 ± 0.036
100 0.391 ± 0.027 0.455 ± 0.126 0.518 ± 0.035 0.412 ± 0.032 0.453 ± 0.029

Table C.7: One-vs-one SVM classification accuracy on the Reuters multilin-
gual corpus dataset of MVSC-CEV compared with single view and stacked
views SC. K is the dimensionality of the projection.



193

K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.720 ± 0.064 0.699 ± 0.165 0.723 ± 0.066 0.723 ± 0.057 0.720 ± 0.058
3 0.719 ± 0.064 0.659 ± 0.295 0.726 ± 0.064 0.725 ± 0.058 0.722 ± 0.059
4 0.574 ± 0.074 0.613 ± 0.299 0.732 ± 0.065 0.514 ± 0.151 0.698 ± 0.058
5 0.545 ± 0.089 0.612 ± 0.245 0.623 ± 0.044 0.567 ± 0.120 0.528 ± 0.027

6 0.410 ± 0.085 0.554 ± 0.254 0.561 ± 0.073 0.501 ± 0.088 0.472 ± 0.062
7 0.478 ± 0.081 0.567 ± 0.228 0.512 ± 0.071 0.571 ± 0.076 0.541 ± 0.052
8 0.466 ± 0.085 0.563 ± 0.201 0.591 ± 0.057 0.480 ± 0.062 0.483 ± 0.055
9 0.443 ± 0.084 0.541 ± 0.197 0.604 ± 0.054 0.493 ± 0.057 0.494 ± 0.050

10 0.378 ± 0.086 0.516 ± 0.226 0.564 ± 0.049 0.537 ± 0.049 0.528 ± 0.045
15 0.467 ± 0.073 0.508 ± 0.151 0.551 ± 0.051 0.510 ± 0.058 0.512 ± 0.046
20 0.435 ± 0.064 0.516 ± 0.152 0.571 ± 0.034 0.414 ± 0.052 0.378 ± 0.046
25 0.411 ± 0.057 0.492 ± 0.140 0.529 ± 0.036 0.376 ± 0.045 0.372 ± 0.038

30 0.433 ± 0.055 0.478 ± 0.140 0.562 ± 0.029 0.421 ± 0.035 0.369 ± 0.036
40 0.379 ± 0.044 0.441 ± 0.121 0.501 ± 0.029 0.379 ± 0.033 0.400 ± 0.027
50 0.336 ± 0.046 0.390 ± 0.188 0.523 ± 0.025 0.374 ± 0.032 0.388 ± 0.023
60 0.325 ± 0.041 0.366 ± 0.097 0.402 ± 0.021 0.299 ± 0.030 0.359 ± 0.024

70 0.288 ± 0.039 0.338 ± 0.104 0.387 ± 0.020 0.293 ± 0.023 0.304 ± 0.021
80 0.258 ± 0.039 0.301 ± 0.093 0.321 ± 0.019 0.273 ± 0.023 0.256 ± 0.022
90 0.237 ± 0.039 0.268 ± 0.103 0.338 ± 0.017 0.258 ± 0.025 0.231 ± 0.024
100 0.184 ± 0.044 0.200 ± 0.083 0.216 ± 0.025 0.228 ± 0.029 0.233 ± 0.029

Table C.8: Cophenetic correlation on the Reuters multilingual corpus dataset
of MVSC-CEV compared with single view and stacked views SC. K is the
dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.101 ± 0.010 0.095 ± 0.026 0.101 ± 0.009 0.106 ± 0.005 0.103 ± 0.005
3 0.117 ± 0.015 0.112 ± 0.074 0.110 ± 0.011 0.115 ± 0.005 0.111 ± 0.005
4 0.134 ± 0.039 0.139 ± 0.092 0.134 ± 0.016 0.172 ± 0.051 0.152 ± 0.010
5 0.169 ± 0.056 0.170 ± 0.120 0.184 ± 0.042 0.216 ± 0.052 0.196 ± 0.023

6 0.168 ± 0.060 0.188 ± 0.132 0.217 ± 0.055 0.232 ± 0.042 0.228 ± 0.031
7 0.175 ± 0.063 0.197 ± 0.136 0.228 ± 0.058 0.236 ± 0.042 0.234 ± 0.031
8 0.180 ± 0.070 0.202 ± 0.140 0.231 ± 0.059 0.242 ± 0.036 0.243 ± 0.032
9 0.187 ± 0.076 0.209 ± 0.147 0.240 ± 0.063 0.251 ± 0.035 0.248 ± 0.031

10 0.187 ± 0.081 0.213 ± 0.153 0.241 ± 0.063 0.255 ± 0.035 0.256 ± 0.032
15 0.213 ± 0.090 0.227 ± 0.161 0.248 ± 0.067 0.274 ± 0.038 0.277 ± 0.030
20 0.211 ± 0.091 0.234 ± 0.169 0.253 ± 0.070 0.276 ± 0.030 0.280 ± 0.028
25 0.212 ± 0.098 0.239 ± 0.183 0.263 ± 0.077 0.278 ± 0.031 0.281 ± 0.028

30 0.216 ± 0.102 0.240 ± 0.190 0.267 ± 0.079 0.283 ± 0.030 0.282 ± 0.027
40 0.212 ± 0.106 0.243 ± 0.205 0.273 ± 0.084 0.281 ± 0.029 0.286 ± 0.026
50 0.211 ± 0.111 0.239 ± 0.216 0.272 ± 0.085 0.284 ± 0.028 0.285 ± 0.024
60 0.212 ± 0.112 0.239 ± 0.222 0.265 ± 0.088 0.280 ± 0.026 0.287 ± 0.025

70 0.214 ± 0.115 0.240 ± 0.229 0.263 ± 0.090 0.283 ± 0.025 0.287 ± 0.023
80 0.218 ± 0.119 0.240 ± 0.234 0.261 ± 0.092 0.286 ± 0.027 0.290 ± 0.024
90 0.222 ± 0.121 0.239 ± 0.236 0.261 ± 0.094 0.288 ± 0.027 0.291 ± 0.024
100 0.226 ± 0.122 0.240 ± 0.241 0.257 ± 0.096 0.288 ± 0.026 0.293 ± 0.024

Table C.9: Area under the curve of the RNX index on the Reuters multilingual
corpus dataset of MVSC-CEV compared with single view and stacked views
SC. K is the dimensionality of the projection.



195

K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.463 0.458 ± 0.017 0.427 0.469 0.509
3 0.458 0.457 ± 0.025 0.426 0.456 0.494
4 0.475 0.476 ± 0.035 0.520 0.529 0.562
5 0.522 0.491 ± 0.025 0.507 0.530 0.566

6 0.495 0.475 ± 0.020 0.439 0.494 0.567
7 0.504 0.487 ± 0.025 0.442 0.497 0.567
8 0.505 0.509 ± 0.011 0.529 0.487 0.573
9 0.508 0.508 ± 0.007 0.518 0.486 0.579

10 0.478 0.489 ± 0.021 0.463 0.488 0.581
15 0.491 0.517 ± 0.032 0.570 0.537 0.551
20 0.475 0.537 ± 0.045 0.613 0.537 0.599
25 0.478 0.534 ± 0.061 0.648 0.566 0.607

30 0.383 0.512 ± 0.096 0.672 0.525 0.579
40 0.386 0.504 ± 0.086 0.640 0.529 0.555
50 0.491 0.517 ± 0.061 0.634 0.493 0.541
60 0.513 0.498 ± 0.020 0.526 0.511 0.583

70 0.510 0.505 ± 0.040 0.579 0.505 0.544
80 0.492 0.495 ± 0.019 0.531 0.482 0.568
90 0.490 0.503 ± 0.036 0.574 0.482 0.606
100 0.512 0.503 ± 0.014 0.525 0.497 0.593

Table C.10: Clustering purity on the Reuters multilingual corpus dataset
of MVSC-CEV compared with single view and stacked views SC. K is the
dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.163 0.156 ± 0.012 0.136 0.168 0.270
3 0.183 0.159 ± 0.016 0.135 0.170 0.270
4 0.169 0.175 ± 0.033 0.225 0.204 0.321
5 0.202 0.194 ± 0.024 0.224 0.252 0.320

6 0.163 0.189 ± 0.023 0.162 0.196 0.313
7 0.163 0.182 ± 0.019 0.164 0.198 0.311
8 0.180 0.203 ± 0.030 0.263 0.233 0.339
9 0.187 0.214 ± 0.029 0.268 0.233 0.341

10 0.190 0.207 ± 0.025 0.230 0.207 0.338
15 0.217 0.238 ± 0.048 0.329 0.224 0.338
20 0.241 0.236 ± 0.049 0.321 0.256 0.350
25 0.190 0.237 ± 0.074 0.377 0.260 0.361

30 0.176 0.221 ± 0.090 0.381 0.259 0.339
40 0.183 0.215 ± 0.076 0.350 0.219 0.330
50 0.186 0.229 ± 0.058 0.340 0.198 0.315
60 0.189 0.220 ± 0.042 0.300 0.207 0.319

70 0.190 0.212 ± 0.036 0.276 0.208 0.307
80 0.174 0.213 ± 0.039 0.288 0.192 0.311
90 0.185 0.210 ± 0.033 0.274 0.180 0.350
100 0.156 0.204 ± 0.039 0.274 0.192 0.330

Table C.11: Clustering normalized mutual information on the Reuters multi-
lingual corpus dataset of MVSC-CEV compared with single view and stacked
views SC. K is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 1.902 ± 0.013 1.834 ± 0.082 1.817 ± 0.016 1.811 ± 0.012 1.810 ± 0.013
3 1.623 ± 0.018 1.675 ± 0.154 1.798 ± 0.020 1.622 ± 0.019 1.619 ± 0.017
4 1.532 ± 0.048 1.633 ± 0.205 1.623 ± 0.028 1.600 ± 0.038 1.530 ± 0.018
5 1.660 ± 0.076 1.608 ± 0.209 1.507 ± 0.022 1.708 ± 0.054 1.753 ± 0.014

6 1.661 ± 0.074 1.686 ± 0.142 1.701 ± 0.026 1.654 ± 0.063 1.656 ± 0.059
7 1.663 ± 0.073 1.700 ± 0.133 1.701 ± 0.026 1.652 ± 0.063 1.655 ± 0.058
8 1.663 ± 0.079 1.702 ± 0.142 1.687 ± 0.014 1.646 ± 0.065 1.688 ± 0.056
9 1.628 ± 0.076 1.670 ± 0.159 1.659 ± 0.016 1.647 ± 0.064 1.685 ± 0.051

10 1.622 ± 0.075 1.654 ± 0.149 1.660 ± 0.010 1.592 ± 0.059 1.652 ± 0.061
15 1.680 ± 0.066 1.691 ± 0.173 1.674 ± 0.017 1.760 ± 0.067 1.759 ± 0.080
20 1.727 ± 0.062 1.702 ± 0.122 1.671 ± 0.015 1.708 ± 0.050 1.780 ± 0.066
25 1.726 ± 0.071 1.752 ± 0.183 1.848 ± 0.016 1.819 ± 0.060 1.807 ± 0.069

30 1.880 ± 0.059 1.759 ± 0.219 1.693 ± 0.016 1.830 ± 0.074 1.846 ± 0.070
40 1.880 ± 0.057 1.766 ± 0.190 1.693 ± 0.009 1.830 ± 0.062 1.833 ± 0.079
50 1.878 ± 0.056 1.746 ± 0.189 1.692 ± 0.011 1.837 ± 0.056 1.717 ± 0.047
60 1.721 ± 0.054 1.706 ± 0.106 1.695 ± 0.018 1.670 ± 0.047 1.725 ± 0.038

70 1.746 ± 0.054 1.708 ± 0.118 1.697 ± 0.016 1.668 ± 0.046 1.670 ± 0.044
80 1.716 ± 0.055 1.692 ± 0.111 1.694 ± 0.018 1.702 ± 0.054 1.725 ± 0.043
90 1.745 ± 0.057 1.740 ± 0.166 1.716 ± 0.018 1.851 ± 0.058 1.716 ± 0.042
100 1.884 ± 0.038 1.889 ± 0.092 1.910 ± 0.008 1.870 ± 0.046 1.875 ± 0.053

Table C.12: Davies-Boulding index on the Reuters multilingual corpus dataset
of MVSC-CEV compared with single view and stacked views SC. K is the
dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.584 ± 0.018 0.588 ± 0.024 0.591 ± 0.015 0.619 ± 0.012 0.620 ± 0.015
3 0.816 ± 0.012 0.818 ± 0.016 0.819 ± 0.010 0.860 ± 0.013 0.862 ± 0.014
4 0.920 ± 0.009 0.913 ± 0.017 0.906 ± 0.011 0.943 ± 0.009 0.943 ± 0.007
5 0.939 ± 0.012 0.937 ± 0.014 0.936 ± 0.006 0.958 ± 0.006 0.958 ± 0.005

6 0.938 ± 0.012 0.940 ± 0.014 0.941 ± 0.007 0.958 ± 0.006 0.958 ± 0.006
7 0.948 ± 0.010 0.944 ± 0.014 0.940 ± 0.009 0.959 ± 0.007 0.960 ± 0.008
8 0.950 ± 0.010 0.949 ± 0.013 0.949 ± 0.009 0.967 ± 0.007 0.967 ± 0.007
9 0.950 ± 0.008 0.950 ± 0.012 0.951 ± 0.009 0.966 ± 0.006 0.966 ± 0.006

10 0.951 ± 0.008 0.951 ± 0.011 0.951 ± 0.008 0.964 ± 0.008 0.964 ± 0.008
15 0.956 ± 0.008 0.952 ± 0.012 0.949 ± 0.008 0.968 ± 0.007 0.969 ± 0.006
20 0.953 ± 0.009 0.950 ± 0.013 0.947 ± 0.009 0.967 ± 0.005 0.967 ± 0.005
25 0.949 ± 0.006 0.947 ± 0.010 0.946 ± 0.008 0.963 ± 0.004 0.963 ± 0.004

30 0.944 ± 0.007 0.945 ± 0.011 0.946 ± 0.009 0.959 ± 0.007 0.959 ± 0.006
40 0.934 ± 0.007 0.936 ± 0.013 0.937 ± 0.010 0.952 ± 0.005 0.952 ± 0.005
50 0.907 ± 0.010 0.913 ± 0.018 0.918 ± 0.012 0.939 ± 0.010 0.939 ± 0.010
60 0.809 ± 0.021 0.827 ± 0.040 0.846 ± 0.022 0.889 ± 0.018 0.889 ± 0.018

70 0.638 ± 0.034 0.653 ± 0.050 0.669 ± 0.030 0.767 ± 0.025 0.768 ± 0.026
80 0.523 ± 0.030 0.528 ± 0.035 0.533 ± 0.018 0.641 ± 0.028 0.644 ± 0.029
90 0.448 ± 0.032 0.456 ± 0.037 0.464 ± 0.015 0.553 ± 0.027 0.555 ± 0.026
100 0.401 ± 0.023 0.414 ± 0.034 0.428 ± 0.016 0.498 ± 0.021 0.498 ± 0.022

Table C.13: One-vs-one SVM classification accuracy on the BBC segmented
news dataset of MVSC-CEV compared with single view and stacked views
SC. K is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.139 ± 0.007 0.127 ± 0.018 0.115 ± 0.003 0.133 ± 0.001 0.133 ± 0.001
3 0.195 ± 0.008 0.193 ± 0.009 0.191 ± 0.003 0.201 ± 0.002 0.201 ± 0.002
4 0.207 ± 0.006 0.208 ± 0.007 0.209 ± 0.003 0.230 ± 0.001 0.229 ± 0.000
5 0.221 ± 0.008 0.225 ± 0.011 0.229 ± 0.004 0.237 ± 0.001 0.237 ± 0.001

6 0.221 ± 0.010 0.224 ± 0.012 0.227 ± 0.005 0.235 ± 0.002 0.235 ± 0.002
7 0.217 ± 0.010 0.219 ± 0.012 0.220 ± 0.006 0.226 ± 0.002 0.226 ± 0.002
8 0.195 ± 0.009 0.202 ± 0.016 0.210 ± 0.007 0.214 ± 0.001 0.213 ± 0.001
9 0.192 ± 0.010 0.197 ± 0.014 0.202 ± 0.008 0.207 ± 0.001 0.207 ± 0.000

10 0.182 ± 0.010 0.188 ± 0.016 0.195 ± 0.009 0.199 ± 0.000 0.199 ± 0.000
15 0.182 ± 0.016 0.182 ± 0.022 0.182 ± 0.015 0.211 ± 0.000 0.211 ± 0.000
20 0.180 ± 0.021 0.181 ± 0.028 0.182 ± 0.018 0.198 ± 0.001 0.198 ± 0.000
25 0.189 ± 0.028 0.192 ± 0.036 0.194 ± 0.023 0.211 ± 0.002 0.211 ± 0.002

30 0.197 ± 0.031 0.199 ± 0.040 0.201 ± 0.025 0.221 ± 0.002 0.221 ± 0.002
40 0.221 ± 0.040 0.218 ± 0.052 0.215 ± 0.032 0.238 ± 0.002 0.238 ± 0.002
50 0.244 ± 0.049 0.241 ± 0.065 0.239 ± 0.043 0.257 ± 0.002 0.257 ± 0.002
60 0.270 ± 0.059 0.270 ± 0.081 0.270 ± 0.056 0.289 ± 0.003 0.289 ± 0.003

70 0.314 ± 0.074 0.319 ± 0.105 0.325 ± 0.073 0.347 ± 0.003 0.347 ± 0.003
80 0.385 ± 0.098 0.388 ± 0.136 0.390 ± 0.095 0.429 ± 0.002 0.429 ± 0.002
90 0.467 ± 0.124 0.465 ± 0.172 0.462 ± 0.120 0.513 ± 0.001 0.513 ± 0.000
100 0.535 ± 0.144 0.534 ± 0.205 0.534 ± 0.146 0.599 ± 0.000 0.599 ± 0.001

Table C.14: Cophenetic correlation on the BBC segmented news dataset of
MVSC-CEV compared with single view and stacked views SC. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.081 ± 0.006 0.080 ± 0.008 0.078 ± 0.005 0.089 ± 0.000 0.089 ± 0.000
3 0.121 ± 0.010 0.120 ± 0.013 0.119 ± 0.008 0.140 ± 0.000 0.140 ± 0.000
4 0.143 ± 0.012 0.142 ± 0.017 0.141 ± 0.012 0.170 ± 0.000 0.170 ± 0.000
5 0.155 ± 0.014 0.155 ± 0.019 0.155 ± 0.014 0.177 ± 0.001 0.177 ± 0.000

6 0.173 ± 0.018 0.173 ± 0.025 0.172 ± 0.017 0.196 ± 0.000 0.196 ± 0.000
7 0.180 ± 0.021 0.182 ± 0.028 0.183 ± 0.019 0.206 ± 0.001 0.206 ± 0.001
8 0.183 ± 0.022 0.187 ± 0.032 0.192 ± 0.022 0.213 ± 0.001 0.213 ± 0.001
9 0.192 ± 0.025 0.194 ± 0.035 0.197 ± 0.024 0.217 ± 0.001 0.217 ± 0.001

10 0.193 ± 0.026 0.196 ± 0.037 0.198 ± 0.026 0.220 ± 0.002 0.220 ± 0.001
15 0.212 ± 0.034 0.213 ± 0.048 0.214 ± 0.034 0.243 ± 0.001 0.243 ± 0.001
20 0.223 ± 0.042 0.222 ± 0.058 0.222 ± 0.039 0.246 ± 0.002 0.247 ± 0.002
25 0.233 ± 0.050 0.232 ± 0.067 0.231 ± 0.045 0.257 ± 0.002 0.257 ± 0.002

30 0.236 ± 0.053 0.237 ± 0.073 0.239 ± 0.051 0.264 ± 0.003 0.265 ± 0.003
40 0.249 ± 0.063 0.248 ± 0.086 0.248 ± 0.058 0.271 ± 0.003 0.271 ± 0.003
50 0.258 ± 0.071 0.258 ± 0.098 0.258 ± 0.068 0.279 ± 0.001 0.279 ± 0.001
60 0.269 ± 0.079 0.271 ± 0.112 0.272 ± 0.080 0.290 ± 0.002 0.289 ± 0.001

70 0.286 ± 0.091 0.289 ± 0.130 0.292 ± 0.092 0.306 ± 0.002 0.306 ± 0.001
80 0.308 ± 0.105 0.309 ± 0.149 0.310 ± 0.105 0.329 ± 0.000 0.329 ± 0.000
90 0.332 ± 0.121 0.331 ± 0.170 0.330 ± 0.120 0.352 ± 0.001 0.352 ± 0.000
100 0.353 ± 0.136 0.353 ± 0.193 0.353 ± 0.137 0.380 ± 0.001 0.380 ± 0.000

Table C.15: Area under the curve of the RNX index on the BBC segmented
news dataset of MVSC-CEV compared with single view and stacked views
SC. K is the dimensionality of the projection.



201

K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.535 0.542 ± 0.007 0.550 0.547 0.567
3 0.552 0.575 ± 0.023 0.597 0.594 0.616
4 0.630 0.663 ± 0.033 0.696 0.837 0.860
5 0.861 0.862 ± 0.001 0.863 0.885 0.911

6 0.635 0.717 ± 0.082 0.800 0.919 0.940
7 0.684 0.746 ± 0.061 0.807 0.713 0.733
8 0.591 0.628 ± 0.037 0.665 0.613 0.637
9 0.551 0.568 ± 0.017 0.585 0.598 0.624

10 0.527 0.551 ± 0.025 0.576 0.575 0.591
15 0.443 0.518 ± 0.075 0.593 0.456 0.478
20 0.429 0.446 ± 0.017 0.463 0.435 0.457
25 0.505 0.497 ± 0.009 0.488 0.428 0.452

30 0.388 0.494 ± 0.106 0.600 0.421 0.443
40 0.532 0.530 ± 0.002 0.528 0.414 0.469
50 0.484 0.439 ± 0.045 0.393 0.503 0.525
60 0.498 0.460 ± 0.038 0.423 0.394 0.415

70 0.380 0.443 ± 0.063 0.505 0.397 0.409
80 0.341 0.374 ± 0.033 0.407 0.413 0.510
90 0.383 0.383 ± 0.000 0.383 0.435 0.509
100 0.582 0.524 ± 0.058 0.466 0.478 0.523

Table C.16: Clustering purity on the BBC segmented news dataset of MVSC-
CEV compared with single view and stacked views SC. K is the dimensionality
of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.367 0.377 ± 0.010 0.387 0.399 0.433
3 0.498 0.497 ± 0.001 0.496 0.510 0.547
4 0.548 0.563 ± 0.015 0.578 0.710 0.747
5 0.694 0.700 ± 0.006 0.706 0.757 0.798

6 0.493 0.560 ± 0.067 0.627 0.790 0.826
7 0.584 0.602 ± 0.019 0.621 0.630 0.666
8 0.493 0.530 ± 0.037 0.567 0.515 0.556
9 0.458 0.464 ± 0.005 0.469 0.522 0.562

10 0.353 0.408 ± 0.054 0.462 0.490 0.522
15 0.266 0.390 ± 0.124 0.514 0.315 0.352
20 0.247 0.295 ± 0.049 0.344 0.297 0.334
25 0.332 0.361 ± 0.028 0.389 0.288 0.328

30 0.151 0.349 ± 0.198 0.547 0.306 0.343
40 0.479 0.445 ± 0.034 0.412 0.299 0.385
50 0.298 0.237 ± 0.062 0.175 0.357 0.394
60 0.403 0.318 ± 0.085 0.233 0.237 0.274

70 0.222 0.294 ± 0.072 0.366 0.240 0.257
80 0.132 0.165 ± 0.033 0.198 0.215 0.416
90 0.172 0.183 ± 0.012 0.195 0.267 0.327
100 0.364 0.313 ± 0.050 0.263 0.331 0.342

Table C.17: Clustering normalized mutual information on the BBC segmented
news dataset of MVSC-CEV compared with single view and stacked views SC.
K is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 1.984 ± 0.001 1.983 ± 0.003 1.983 ± 0.002 1.983 ± 0.000 1.983 ± 0.000
3 1.982 ± 0.002 1.982 ± 0.003 1.982 ± 0.002 1.982 ± 0.000 1.982 ± 0.001
4 1.978 ± 0.002 1.978 ± 0.003 1.978 ± 0.002 1.972 ± 0.000 1.972 ± 0.000
5 1.972 ± 0.001 1.972 ± 0.002 1.972 ± 0.001 1.971 ± 0.000 1.971 ± 0.000

6 1.973 ± 0.002 1.975 ± 0.003 1.976 ± 0.001 1.970 ± 0.000 1.970 ± 0.000
7 1.973 ± 0.002 1.971 ± 0.003 1.970 ± 0.001 1.970 ± 0.000 1.970 ± 0.000
8 1.972 ± 0.005 1.968 ± 0.007 1.964 ± 0.001 1.967 ± 0.000 1.967 ± 0.000
9 1.968 ± 0.004 1.964 ± 0.007 1.960 ± 0.002 1.966 ± 0.001 1.967 ± 0.001

10 1.961 ± 0.005 1.963 ± 0.006 1.965 ± 0.003 1.962 ± 0.001 1.961 ± 0.001
15 1.964 ± 0.005 1.964 ± 0.006 1.965 ± 0.003 1.952 ± 0.003 1.952 ± 0.003
20 1.955 ± 0.005 1.959 ± 0.008 1.964 ± 0.003 1.948 ± 0.002 1.948 ± 0.002
25 1.959 ± 0.006 1.960 ± 0.006 1.961 ± 0.003 1.946 ± 0.002 1.946 ± 0.002

30 1.962 ± 0.006 1.963 ± 0.007 1.965 ± 0.003 1.959 ± 0.001 1.959 ± 0.001
40 1.960 ± 0.005 1.958 ± 0.007 1.956 ± 0.004 1.956 ± 0.001 1.955 ± 0.001
50 1.965 ± 0.005 1.965 ± 0.007 1.965 ± 0.004 1.956 ± 0.001 1.956 ± 0.001
60 1.967 ± 0.005 1.964 ± 0.007 1.961 ± 0.004 1.959 ± 0.001 1.959 ± 0.001

70 1.959 ± 0.005 1.963 ± 0.009 1.967 ± 0.004 1.961 ± 0.001 1.961 ± 0.001
80 1.970 ± 0.005 1.970 ± 0.007 1.970 ± 0.005 1.961 ± 0.001 1.955 ± 0.001
90 1.974 ± 0.005 1.972 ± 0.006 1.970 ± 0.004 1.971 ± 0.000 1.971 ± 0.000
100 1.983 ± 0.002 1.984 ± 0.003 1.985 ± 0.002 1.984 ± 0.000 1.986 ± 0.000

Table C.18: Davies-Boulding index on the BBC segmented news dataset of
MVSC-CEV compared with single view and stacked views SC. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.044 ± 0.003 0.054 ± 0.024 0.053 ± 0.006 0.071 ± 0.008 0.069 ± 0.008
3 0.044 ± 0.003 0.057 ± 0.029 0.053 ± 0.006 0.076 ± 0.007 0.076 ± 0.008
4 0.044 ± 0.004 0.058 ± 0.033 0.052 ± 0.006 0.078 ± 0.008 0.077 ± 0.006
5 0.044 ± 0.004 0.051 ± 0.029 0.052 ± 0.006 0.047 ± 0.013 0.079 ± 0.004

6 0.044 ± 0.003 0.048 ± 0.019 0.053 ± 0.006 0.042 ± 0.005 0.067 ± 0.020
7 0.044 ± 0.003 0.048 ± 0.021 0.056 ± 0.006 0.041 ± 0.005 0.052 ± 0.024
8 0.044 ± 0.003 0.048 ± 0.021 0.059 ± 0.005 0.039 ± 0.004 0.037 ± 0.003
9 0.044 ± 0.003 0.048 ± 0.022 0.060 ± 0.005 0.039 ± 0.004 0.043 ± 0.014

10 0.043 ± 0.003 0.048 ± 0.025 0.063 ± 0.008 0.041 ± 0.010 0.043 ± 0.015
15 0.044 ± 0.006 0.051 ± 0.031 0.073 ± 0.008 0.041 ± 0.011 0.039 ± 0.007
20 0.047 ± 0.005 0.046 ± 0.019 0.048 ± 0.005 0.043 ± 0.011 0.042 ± 0.007
25 0.053 ± 0.008 0.046 ± 0.024 0.038 ± 0.004 0.060 ± 0.037 0.044 ± 0.007

30 0.055 ± 0.007 0.050 ± 0.033 0.046 ± 0.013 0.047 ± 0.027 0.045 ± 0.006
40 0.053 ± 0.007 0.054 ± 0.052 0.068 ± 0.039 0.087 ± 0.019 0.040 ± 0.005
50 0.047 ± 0.005 0.056 ± 0.079 0.114 ± 0.042 0.061 ± 0.008 0.072 ± 0.025
60 0.043 ± 0.004 0.055 ± 0.070 0.117 ± 0.008 0.050 ± 0.006 0.068 ± 0.009

70 0.039 ± 0.004 0.050 ± 0.044 0.085 ± 0.011 0.042 ± 0.004 0.061 ± 0.006
80 0.038 ± 0.004 0.046 ± 0.030 0.064 ± 0.007 0.038 ± 0.005 0.050 ± 0.004
90 0.037 ± 0.004 0.046 ± 0.031 0.052 ± 0.005 0.038 ± 0.004 0.044 ± 0.004
100 0.036 ± 0.004 0.046 ± 0.037 0.042 ± 0.005 0.038 ± 0.005 0.040 ± 0.004

Table C.19: One-vs-one SVM classification accuracy on the animal with at-
tributes (AWA) dataset of MVSC-CEV compared with single view and stacked
views SC. K is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 -0.025 ± 0.085 0.142 ± 0.417 0.272 ± 0.127 0.013 ± 0.055 0.146 ± 0.064
3 0.014 ± 0.093 0.132 ± 0.408 0.272 ± 0.129 0.089 ± 0.078 0.146 ± 0.068
4 -0.004 ± 0.095 0.129 ± 0.426 0.274 ± 0.132 0.028 ± 0.083 0.103 ± 0.054
5 -0.007 ± 0.098 0.122 ± 0.444 0.275 ± 0.134 0.030 ± 0.091 0.111 ± 0.058

6 -0.038 ± 0.111 0.118 ± 0.465 0.275 ± 0.135 -0.001 ± 0.098 0.123 ± 0.055
7 -0.031 ± 0.113 0.121 ± 0.466 0.276 ± 0.136 -0.020 ± 0.096 0.125 ± 0.050
8 -0.031 ± 0.109 0.123 ± 0.469 0.277 ± 0.137 -0.014 ± 0.093 0.126 ± 0.039
9 -0.029 ± 0.105 0.124 ± 0.473 0.277 ± 0.137 -0.018 ± 0.090 0.125 ± 0.030

10 -0.015 ± 0.101 0.126 ± 0.476 0.280 ± 0.141 -0.020 ± 0.087 0.129 ± 0.030
15 -0.024 ± 0.101 0.130 ± 0.502 0.286 ± 0.148 -0.045 ± 0.087 0.094 ± 0.027
20 -0.028 ± 0.100 0.107 ± 0.491 0.291 ± 0.152 -0.040 ± 0.098 0.089 ± 0.023
25 -0.032 ± 0.100 0.104 ± 0.503 0.293 ± 0.156 -0.032 ± 0.093 0.081 ± 0.021

30 -0.037 ± 0.101 0.109 ± 0.502 0.295 ± 0.160 -0.025 ± 0.091 0.074 ± 0.017
40 -0.059 ± 0.095 0.086 ± 0.462 0.300 ± 0.165 -0.028 ± 0.076 0.050 ± 0.015
50 -0.043 ± 0.079 0.069 ± 0.393 0.307 ± 0.173 -0.034 ± 0.069 0.062 ± 0.020
60 -0.043 ± 0.065 0.077 ± 0.391 0.310 ± 0.178 -0.037 ± 0.059 0.079 ± 0.029

70 -0.030 ± 0.043 0.086 ± 0.372 0.314 ± 0.181 -0.026 ± 0.044 0.086 ± 0.032
80 0.004 ± 0.023 0.099 ± 0.353 0.320 ± 0.170 -0.008 ± 0.024 0.099 ± 0.033
90 0.042 ± 0.042 0.114 ± 0.339 0.320 ± 0.172 0.041 ± 0.037 0.119 ± 0.048
100 0.088 ± 0.087 0.116 ± 0.253 0.231 ± 0.076 0.087 ± 0.069 0.144 ± 0.064

Table C.20: Cophenetic correlation on the animal with attributes (AWA)
dataset of MVSC-CEV compared with single view and stacked views SC. K
is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.010 ± 0.016 0.018 ± 0.040 0.031 ± 0.022 0.017 ± 0.011 0.027 ± 0.013
3 0.010 ± 0.016 0.017 ± 0.043 0.031 ± 0.022 0.024 ± 0.012 0.032 ± 0.015
4 0.011 ± 0.016 0.017 ± 0.042 0.031 ± 0.022 0.022 ± 0.013 0.030 ± 0.013
5 0.011 ± 0.016 0.017 ± 0.044 0.031 ± 0.022 0.024 ± 0.015 0.034 ± 0.014

6 0.011 ± 0.016 0.017 ± 0.046 0.031 ± 0.022 0.021 ± 0.018 0.037 ± 0.016
7 0.011 ± 0.016 0.017 ± 0.046 0.031 ± 0.022 0.020 ± 0.020 0.038 ± 0.016
8 0.011 ± 0.016 0.018 ± 0.046 0.031 ± 0.022 0.023 ± 0.018 0.039 ± 0.015
9 0.011 ± 0.016 0.018 ± 0.048 0.031 ± 0.022 0.023 ± 0.019 0.041 ± 0.015

10 0.011 ± 0.016 0.018 ± 0.050 0.031 ± 0.022 0.023 ± 0.022 0.043 ± 0.015
15 0.011 ± 0.017 0.019 ± 0.055 0.031 ± 0.022 0.024 ± 0.018 0.044 ± 0.013
20 0.011 ± 0.017 0.023 ± 0.067 0.032 ± 0.023 0.024 ± 0.022 0.046 ± 0.013
25 0.012 ± 0.018 0.023 ± 0.072 0.032 ± 0.023 0.026 ± 0.025 0.047 ± 0.013

30 0.012 ± 0.018 0.025 ± 0.077 0.032 ± 0.023 0.027 ± 0.028 0.047 ± 0.013
40 0.015 ± 0.021 0.028 ± 0.090 0.032 ± 0.024 0.029 ± 0.029 0.047 ± 0.013
50 0.020 ± 0.023 0.033 ± 0.105 0.033 ± 0.024 0.032 ± 0.033 0.050 ± 0.015
60 0.026 ± 0.029 0.038 ± 0.116 0.033 ± 0.025 0.034 ± 0.036 0.055 ± 0.018

70 0.045 ± 0.044 0.045 ± 0.131 0.037 ± 0.028 0.040 ± 0.042 0.058 ± 0.019
80 0.048 ± 0.048 0.051 ± 0.144 0.044 ± 0.035 0.046 ± 0.047 0.061 ± 0.020
90 0.052 ± 0.054 0.056 ± 0.157 0.044 ± 0.035 0.056 ± 0.054 0.067 ± 0.023
100 0.065 ± 0.068 0.066 ± 0.178 0.058 ± 0.048 0.064 ± 0.060 0.075 ± 0.027

Table C.21: Area under the curve of the RNX index on the animal with at-
tributes (AWA) dataset of MVSC-CEV compared with single view and stacked
views SC. K is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.079 0.085 ± 0.007 0.081 0.096 0.117
3 0.079 0.086 ± 0.009 0.081 0.102 0.121
4 0.079 0.084 ± 0.008 0.080 0.099 0.121
5 0.080 0.086 ± 0.009 0.081 0.102 0.121

6 0.079 0.085 ± 0.008 0.082 0.100 0.122
7 0.079 0.086 ± 0.009 0.081 0.101 0.122
8 0.079 0.087 ± 0.010 0.081 0.105 0.122
9 0.079 0.085 ± 0.010 0.079 0.110 0.119

10 0.079 0.087 ± 0.011 0.079 0.110 0.120
15 0.079 0.088 ± 0.014 0.080 0.115 0.128
20 0.079 0.093 ± 0.016 0.113 0.113 0.130
25 0.080 0.093 ± 0.015 0.115 0.108 0.131

30 0.080 0.094 ± 0.017 0.121 0.110 0.131
40 0.080 0.097 ± 0.017 0.128 0.112 0.131
50 0.079 0.101 ± 0.016 0.130 0.112 0.129
60 0.077 0.100 ± 0.016 0.130 0.108 0.134

70 0.080 0.102 ± 0.014 0.128 0.102 0.134
80 0.078 0.102 ± 0.014 0.124 0.104 0.135
90 0.079 0.102 ± 0.013 0.123 0.104 0.137
100 0.087 0.105 ± 0.011 0.118 0.104 0.139

Table C.22: Clustering purity on the animal with attributes (AWA) dataset
of MVSC-CEV compared with single view and stacked views SC. K is the
dimensionality of the projection.



208 APPENDIX C. RESULTS OF MVSC-CEV EXPERIMENTS

K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.101 0.108 ± 0.013 0.117 0.139 0.127
3 0.100 0.110 ± 0.017 0.127 0.144 0.135
4 0.101 0.109 ± 0.018 0.126 0.137 0.135
5 0.100 0.110 ± 0.018 0.132 0.142 0.140

6 0.099 0.108 ± 0.017 0.131 0.146 0.141
7 0.098 0.107 ± 0.019 0.132 0.143 0.142
8 0.098 0.106 ± 0.018 0.124 0.145 0.140
9 0.098 0.107 ± 0.021 0.132 0.145 0.143

10 0.098 0.108 ± 0.022 0.134 0.147 0.144
15 0.099 0.108 ± 0.023 0.142 0.155 0.151
20 0.099 0.119 ± 0.029 0.143 0.156 0.154
25 0.100 0.119 ± 0.028 0.141 0.154 0.158

30 0.095 0.117 ± 0.031 0.141 0.149 0.153
40 0.096 0.125 ± 0.029 0.142 0.150 0.152
50 0.097 0.132 ± 0.024 0.142 0.147 0.154
60 0.094 0.134 ± 0.024 0.144 0.143 0.156

70 0.093 0.136 ± 0.022 0.140 0.139 0.159
80 0.092 0.137 ± 0.023 0.143 0.142 0.163
90 0.090 0.136 ± 0.024 0.143 0.140 0.165
100 0.115 0.140 ± 0.016 0.140 0.146 0.164

Table C.23: Clustering normalized mutual information on the animal with at-
tributes (AWA) dataset of MVSC-CEV compared with single view and stacked
views SC. K is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 2.001 ± 0.014 1.985 ± 0.045 1.957 ± 0.006 1.995 ± 0.003 1.967 ± 0.005
3 1.993 ± 0.019 1.968 ± 0.061 1.935 ± 0.010 1.992 ± 0.004 1.988 ± 0.007
4 1.992 ± 0.014 1.965 ± 0.062 1.957 ± 0.013 1.990 ± 0.005 1.937 ± 0.016
5 1.989 ± 0.019 1.953 ± 0.078 1.936 ± 0.018 1.990 ± 0.006 1.991 ± 0.005

6 1.988 ± 0.024 1.936 ± 0.105 1.916 ± 0.019 1.988 ± 0.010 1.961 ± 0.009
7 1.989 ± 0.029 1.921 ± 0.127 1.893 ± 0.018 1.988 ± 0.011 1.986 ± 0.008
8 1.959 ± 0.028 1.907 ± 0.132 1.894 ± 0.026 1.982 ± 0.012 1.985 ± 0.007
9 1.976 ± 0.026 1.903 ± 0.156 1.896 ± 0.030 1.981 ± 0.013 1.986 ± 0.007

10 1.974 ± 0.031 1.907 ± 0.161 1.907 ± 0.031 1.980 ± 0.015 1.985 ± 0.007
15 1.969 ± 0.017 1.868 ± 0.250 1.916 ± 0.037 1.977 ± 0.015 1.983 ± 0.006
20 1.973 ± 0.024 1.912 ± 0.216 1.930 ± 0.036 1.975 ± 0.019 1.980 ± 0.008
25 1.976 ± 0.025 1.932 ± 0.162 1.913 ± 0.039 1.971 ± 0.024 1.981 ± 0.007

30 1.979 ± 0.035 1.884 ± 0.272 1.858 ± 0.039 1.971 ± 0.030 1.980 ± 0.008
40 1.977 ± 0.040 1.925 ± 0.173 1.854 ± 0.045 1.969 ± 0.033 1.979 ± 0.009
50 1.975 ± 0.037 1.955 ± 0.112 1.887 ± 0.047 1.972 ± 0.036 1.977 ± 0.009
60 1.974 ± 0.027 1.962 ± 0.121 1.881 ± 0.049 1.972 ± 0.040 1.974 ± 0.011

70 1.974 ± 0.044 1.964 ± 0.111 1.909 ± 0.048 1.972 ± 0.042 1.973 ± 0.012
80 1.975 ± 0.053 1.960 ± 0.132 1.877 ± 0.048 1.972 ± 0.043 1.970 ± 0.012
90 1.975 ± 0.059 1.969 ± 0.107 1.938 ± 0.047 1.972 ± 0.042 1.970 ± 0.011
100 1.976 ± 0.041 1.974 ± 0.094 1.977 ± 0.046 1.973 ± 0.043 1.966 ± 0.013

Table C.24: Davies-Boulding index on the animal with attributes (AWA)
dataset of MVSC-CEV compared with single view and stacked views SC. K
is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

1 0.786 ± 0.012 1.196 ± 0.986 2.000 ± 0.008 0.708 ± 0.013 0.772 ± 0.011
2 0.784 ± 0.016 1.528 ± 1.804 3.000 ± 0.015 0.708 ± 0.007 0.771 ± 0.014
3 0.787 ± 0.012 1.864 ± 2.616 4.000 ± 0.012 0.708 ± 0.006 0.773 ± 0.020
4 0.782 ± 0.015 2.200 ± 3.430 5.000 ± 0.010 0.708 ± 0.011 0.764 ± 0.013

5 0.799 ± 0.014 2.539 ± 4.239 6.000 ± 0.010 0.708 ± 0.013 0.763 ± 0.012
6 0.798 ± 0.019 2.878 ± 5.048 7.000 ± 0.012 0.708 ± 0.012 0.769 ± 0.016
7 0.798 ± 0.017 3.211 ± 5.865 8.000 ± 0.012 0.708 ± 0.011 0.766 ± 0.012
8 0.795 ± 0.010 3.541 ± 6.686 9.000 ± 0.010 0.708 ± 0.013 0.779 ± 0.014

9 0.800 ± 0.014 3.877 ± 7.499 10.000 ± 0.011 0.708 ± 0.012 0.777 ± 0.011
10 0.814 ± 0.011 5.554 ± 11.569 15.000 ± 0.011 0.708 ± 0.011 0.784 ± 0.016
11 0.821 ± 0.011 7.227 ± 15.644 20.000 ± 0.005 0.708 ± 0.006 0.782 ± 0.012
12 0.824 ± 0.014 8.894 ± 19.726 25.000 ± 0.004 0.708 ± 0.005 0.786 ± 0.011

13 0.825 ± 0.012 10.553 ± 23.818 30.000 ± 0.007 0.709 ± 0.009 0.764 ± 0.012
14 0.793 ± 0.018 13.854 ± 32.022 40.000 ± 0.022 0.707 ± 0.014 0.769 ± 0.019
15 0.786 ± 0.015 17.176 ± 40.201 50.000 ± 0.026 0.698 ± 0.014 0.749 ± 0.018
16 0.740 ± 0.016 20.491 ± 48.389 60.000 ± 0.013 0.722 ± 0.019 0.750 ± 0.018

17 0.723 ± 0.016 23.816 ± 56.563 70.000 ± 0.015 0.737 ± 0.017 0.750 ± 0.019
18 0.718 ± 0.015 27.145 ± 64.734 80.000 ± 0.016 0.745 ± 0.017 0.748 ± 0.021
19 0.712 ± 0.015 30.475 ± 72.903 90.000 ± 0.017 0.749 ± 0.016 0.745 ± 0.019
20 0.708 ± 0.015 33.807 ± 81.070 100.000 ± 0.018 0.763 ± 0.015 0.750 ± 0.018

Table C.25: One-vs-one SVM classification accuracy on the Berkeley protein
dataset of MVSC-CEV compared with single view and stacked views SC. K
is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.282 ± 0.349 0.257 ± 0.555 0.207 ± 0.276 0.313 ± 0.310 0.374 ± 0.257
3 0.250 ± 0.315 0.253 ± 0.556 0.203 ± 0.275 0.260 ± 0.286 0.375 ± 0.189
4 0.213 ± 0.270 0.224 ± 0.489 0.193 ± 0.244 0.201 ± 0.268 0.366 ± 0.150
5 0.189 ± 0.243 0.212 ± 0.464 0.191 ± 0.241 0.195 ± 0.270 0.346 ± 0.115

6 0.172 ± 0.216 0.208 ± 0.456 0.198 ± 0.254 0.224 ± 0.244 0.285 ± 0.076
7 0.161 ± 0.200 0.203 ± 0.452 0.216 ± 0.285 0.178 ± 0.211 0.274 ± 0.065
8 0.157 ± 0.188 0.205 ± 0.453 0.223 ± 0.297 0.178 ± 0.210 0.245 ± 0.053
9 0.143 ± 0.181 0.196 ± 0.451 0.229 ± 0.310 0.172 ± 0.187 0.236 ± 0.048

10 0.139 ± 0.174 0.196 ± 0.458 0.240 ± 0.326 0.162 ± 0.168 0.215 ± 0.043
15 0.099 ± 0.160 0.161 ± 0.397 0.220 ± 0.287 0.119 ± 0.146 0.166 ± 0.041
20 0.076 ± 0.157 0.152 ± 0.412 0.236 ± 0.310 0.072 ± 0.127 0.141 ± 0.044
25 0.067 ± 0.158 0.146 ± 0.411 0.239 ± 0.323 0.042 ± 0.089 0.136 ± 0.053

30 0.059 ± 0.153 0.141 ± 0.398 0.235 ± 0.325 0.036 ± 0.090 0.128 ± 0.061
40 0.063 ± 0.144 0.142 ± 0.397 0.227 ± 0.325 -0.002 ± 0.078 0.115 ± 0.064
50 0.078 ± 0.131 0.142 ± 0.381 0.228 ± 0.324 -0.004 ± 0.089 0.092 ± 0.064
60 0.084 ± 0.120 0.175 ± 0.348 0.343 ± 0.237 -0.011 ± 0.090 0.091 ± 0.064

70 0.104 ± 0.115 0.177 ± 0.333 0.331 ± 0.228 0.004 ± 0.103 0.088 ± 0.068
80 0.117 ± 0.113 0.179 ± 0.303 0.304 ± 0.210 0.021 ± 0.100 0.097 ± 0.078
90 0.119 ± 0.116 0.176 ± 0.301 0.304 ± 0.208 0.074 ± 0.093 0.106 ± 0.081
100 0.093 ± 0.127 0.168 ± 0.308 0.308 ± 0.203 0.136 ± 0.084 0.108 ± 0.091

Table C.26: Cophenetic correlation on the Berkeley protein dataset of MVSC-
CEV compared with single view and stacked views SC. K is the dimensionality
of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.078 ± 0.058 0.099 ± 0.164 0.143 ± 0.112 0.097 ± 0.038 0.118 ± 0.037
3 0.078 ± 0.058 0.116 ± 0.206 0.166 ± 0.139 0.101 ± 0.036 0.149 ± 0.038
4 0.078 ± 0.057 0.120 ± 0.222 0.173 ± 0.150 0.099 ± 0.038 0.153 ± 0.034
5 0.078 ± 0.057 0.129 ± 0.247 0.172 ± 0.152 0.102 ± 0.039 0.170 ± 0.039

6 0.078 ± 0.058 0.130 ± 0.252 0.172 ± 0.154 0.127 ± 0.038 0.163 ± 0.035
7 0.078 ± 0.058 0.129 ± 0.250 0.170 ± 0.154 0.122 ± 0.038 0.162 ± 0.034
8 0.079 ± 0.059 0.129 ± 0.252 0.169 ± 0.154 0.125 ± 0.037 0.157 ± 0.034
9 0.079 ± 0.059 0.136 ± 0.271 0.188 ± 0.178 0.132 ± 0.035 0.161 ± 0.036

10 0.079 ± 0.059 0.137 ± 0.274 0.187 ± 0.179 0.131 ± 0.033 0.158 ± 0.034
15 0.079 ± 0.058 0.142 ± 0.291 0.192 ± 0.191 0.124 ± 0.036 0.149 ± 0.036
20 0.079 ± 0.059 0.145 ± 0.303 0.191 ± 0.193 0.128 ± 0.042 0.145 ± 0.037
25 0.080 ± 0.060 0.146 ± 0.305 0.187 ± 0.190 0.122 ± 0.040 0.142 ± 0.037

30 0.081 ± 0.061 0.151 ± 0.315 0.187 ± 0.190 0.123 ± 0.041 0.137 ± 0.038
40 0.084 ± 0.065 0.155 ± 0.322 0.189 ± 0.192 0.119 ± 0.045 0.129 ± 0.034
50 0.100 ± 0.078 0.162 ± 0.325 0.196 ± 0.197 0.123 ± 0.046 0.123 ± 0.034
60 0.169 ± 0.108 0.186 ± 0.328 0.200 ± 0.201 0.123 ± 0.046 0.120 ± 0.033

70 0.175 ± 0.114 0.190 ± 0.333 0.207 ± 0.206 0.127 ± 0.045 0.117 ± 0.031
80 0.180 ± 0.124 0.195 ± 0.337 0.213 ± 0.209 0.131 ± 0.045 0.115 ± 0.030
90 0.182 ± 0.128 0.196 ± 0.340 0.217 ± 0.211 0.137 ± 0.041 0.117 ± 0.030
100 0.194 ± 0.140 0.199 ± 0.345 0.215 ± 0.214 0.142 ± 0.036 0.115 ± 0.029

Table C.27: Area under the curve of the RNX index on the Berkeley protein
dataset of MVSC-CEV compared with single view and stacked views SC. K
is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.700 0.729 ± 0.042 0.788 0.700 0.700
3 0.700 0.728 ± 0.040 0.785 0.796 0.807
4 0.700 0.719 ± 0.027 0.757 0.700 0.774
5 0.700 0.700 ± 0.000 0.700 0.700 0.753

6 0.700 0.706 ± 0.009 0.718 0.700 0.700
7 0.700 0.700 ± 0.000 0.700 0.700 0.700
8 0.700 0.732 ± 0.045 0.795 0.700 0.700
9 0.700 0.700 ± 0.000 0.700 0.700 0.700

10 0.700 0.700 ± 0.000 0.700 0.700 0.700
15 0.700 0.732 ± 0.046 0.797 0.700 0.700
20 0.700 0.734 ± 0.049 0.803 0.700 0.700
25 0.700 0.735 ± 0.049 0.804 0.700 0.700

30 0.700 0.700 ± 0.000 0.700 0.700 0.700
40 0.700 0.700 ± 0.000 0.700 0.700 0.700
50 0.700 0.700 ± 0.000 0.700 0.700 0.700
60 0.700 0.700 ± 0.000 0.700 0.700 0.700

70 0.700 0.700 ± 0.000 0.700 0.700 0.700
80 0.700 0.700 ± 0.000 0.700 0.700 0.700
90 0.700 0.700 ± 0.000 0.700 0.700 0.700
100 0.700 0.700 ± 0.000 0.700 0.700 0.700

Table C.28: Clustering purity on the Berkeley protein dataset of MVSC-CEV
compared with single view and stacked views SC. K is the dimensionality of
the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.027 0.137 ± 0.116 0.297 0.152 0.245
3 0.027 0.144 ± 0.120 0.309 0.295 0.346
4 0.032 0.128 ± 0.083 0.234 0.110 0.286
5 0.032 0.089 ± 0.069 0.186 0.104 0.255

6 0.032 0.092 ± 0.076 0.199 0.101 0.165
7 0.032 0.079 ± 0.057 0.159 0.085 0.154
8 0.032 0.126 ± 0.120 0.296 0.077 0.162
9 0.032 0.083 ± 0.059 0.166 0.077 0.161

10 0.032 0.084 ± 0.062 0.171 0.075 0.160
15 0.033 0.128 ± 0.129 0.311 0.082 0.160
20 0.033 0.146 ± 0.135 0.335 0.079 0.159
25 0.033 0.145 ± 0.139 0.341 0.078 0.154

30 0.033 0.057 ± 0.019 0.077 0.084 0.154
40 0.033 0.055 ± 0.016 0.070 0.078 0.159
50 0.033 0.055 ± 0.018 0.075 0.061 0.150
60 0.120 0.083 ± 0.026 0.072 0.073 0.137

70 0.120 0.080 ± 0.028 0.066 0.069 0.166
80 0.107 0.078 ± 0.022 0.071 0.064 0.148
90 0.107 0.081 ± 0.018 0.067 0.061 0.155
100 0.109 0.078 ± 0.023 0.055 0.071 0.137

Table C.29: Clustering normalized mutual information on the Berkeley protein
dataset of MVSC-CEV compared with single view and stacked views SC. K
is the dimensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 1.729 ± 0.225 1.657 ± 0.528 1.608 ± 0.251 1.718 ± 0.252 1.627 ± 0.365
3 1.670 ± 0.225 1.615 ± 0.635 1.608 ± 0.356 1.632 ± 0.243 1.716 ± 0.154
4 1.744 ± 0.228 1.648 ± 0.606 1.603 ± 0.288 1.671 ± 0.284 1.742 ± 0.139
5 1.759 ± 0.229 1.650 ± 0.600 1.603 ± 0.300 1.687 ± 0.266 1.750 ± 0.143

6 1.761 ± 0.229 1.650 ± 0.590 1.603 ± 0.275 1.683 ± 0.266 1.705 ± 0.292
7 1.773 ± 0.229 1.653 ± 0.587 1.603 ± 0.256 1.679 ± 0.282 1.688 ± 0.344
8 1.667 ± 0.288 1.593 ± 0.623 1.533 ± 0.302 1.657 ± 0.292 1.754 ± 0.204
9 1.785 ± 0.288 1.633 ± 0.623 1.533 ± 0.254 1.650 ± 0.297 1.756 ± 0.203

10 1.781 ± 0.228 1.658 ± 0.586 1.604 ± 0.254 1.663 ± 0.264 1.765 ± 0.188
15 1.701 ± 0.288 1.611 ± 0.594 1.532 ± 0.237 1.697 ± 0.242 1.769 ± 0.183
20 1.717 ± 0.288 1.640 ± 0.563 1.532 ± 0.213 1.655 ± 0.258 1.767 ± 0.181
25 1.691 ± 0.288 1.637 ± 0.554 1.532 ± 0.229 1.708 ± 0.210 1.743 ± 0.220

30 1.824 ± 0.288 1.681 ± 0.564 1.532 ± 0.193 1.798 ± 0.123 1.771 ± 0.187
40 1.821 ± 0.288 1.681 ± 0.564 1.532 ± 0.200 1.695 ± 0.298 1.716 ± 0.248
50 1.824 ± 0.288 1.680 ± 0.574 1.532 ± 0.216 1.653 ± 0.279 1.693 ± 0.316
60 1.842 ± 0.354 1.648 ± 0.643 1.418 ± 0.193 1.793 ± 0.113 1.714 ± 0.279

70 1.850 ± 0.354 1.651 ± 0.643 1.418 ± 0.190 1.724 ± 0.230 1.680 ± 0.341
80 1.844 ± 0.148 1.763 ± 0.475 1.757 ± 0.189 1.703 ± 0.223 1.767 ± 0.184
90 1.864 ± 0.147 1.804 ± 0.332 1.757 ± 0.159 1.739 ± 0.174 1.699 ± 0.311
100 1.867 ± 0.148 1.805 ± 0.328 1.756 ± 0.149 1.790 ± 0.153 1.735 ± 0.181

Table C.30: Davies-Boulding index on the Berkeley protein dataset of MVSC-
CEV compared with single view and stacked views SC. K is the dimensionality
of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.333 ± 0.016 0.331 ± 0.021 0.328 ± 0.013 0.347 ± 0.005 0.392 ± 0.010
3 0.420 ± 0.011 0.373 ± 0.068 0.327 ± 0.010 0.413 ± 0.028 0.437 ± 0.018
4 0.436 ± 0.012 0.382 ± 0.078 0.328 ± 0.013 0.482 ± 0.031 0.466 ± 0.018
5 0.484 ± 0.012 0.407 ± 0.111 0.329 ± 0.011 0.501 ± 0.017 0.491 ± 0.019

6 0.518 ± 0.006 0.428 ± 0.130 0.338 ± 0.024 0.523 ± 0.025 0.521 ± 0.014
7 0.557 ± 0.010 0.453 ± 0.148 0.350 ± 0.021 0.546 ± 0.019 0.569 ± 0.018
8 0.550 ± 0.018 0.451 ± 0.142 0.353 ± 0.020 0.590 ± 0.011 0.593 ± 0.018
9 0.553 ± 0.011 0.459 ± 0.136 0.365 ± 0.026 0.587 ± 0.015 0.609 ± 0.017

10 0.578 ± 0.009 0.479 ± 0.140 0.381 ± 0.013 0.601 ± 0.016 0.613 ± 0.010
15 0.653 ± 0.009 0.536 ± 0.166 0.419 ± 0.008 0.672 ± 0.013 0.662 ± 0.006
20 0.655 ± 0.012 0.583 ± 0.105 0.510 ± 0.014 0.687 ± 0.012 0.705 ± 0.016
25 0.641 ± 0.009 0.605 ± 0.054 0.569 ± 0.012 0.676 ± 0.015 0.680 ± 0.018

30 0.630 ± 0.022 0.612 ± 0.036 0.594 ± 0.014 0.653 ± 0.010 0.682 ± 0.012
40 0.512 ± 0.020 0.576 ± 0.093 0.639 ± 0.013 0.559 ± 0.024 0.612 ± 0.012
50 0.382 ± 0.018 0.518 ± 0.194 0.655 ± 0.010 0.403 ± 0.017 0.481 ± 0.013
60 0.339 ± 0.010 0.501 ± 0.231 0.664 ± 0.020 0.344 ± 0.015 0.393 ± 0.013

70 0.331 ± 0.014 0.499 ± 0.239 0.667 ± 0.016 0.336 ± 0.013 0.374 ± 0.011
80 0.317 ± 0.013 0.493 ± 0.250 0.669 ± 0.016 0.322 ± 0.009 0.365 ± 0.013
90 0.319 ± 0.015 0.487 ± 0.239 0.656 ± 0.014 0.322 ± 0.011 0.363 ± 0.015
100 0.319 ± 0.011 0.480 ± 0.229 0.642 ± 0.011 0.320 ± 0.011 0.361 ± 0.014

Table C.31: One-vs-one SVM classification accuracy on the Cora dataset of
MVSC-CEV compared with single view and stacked views SC. K is the di-
mensionality of the projection.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.339 0.337 ± 0.002 0.335 0.302 0.302
3 0.355 0.345 ± 0.010 0.335 0.344 0.310
4 0.349 0.342 ± 0.007 0.335 0.363 0.308
5 0.384 0.359 ± 0.025 0.335 0.350 0.384

6 0.404 0.369 ± 0.035 0.335 0.405 0.362
7 0.397 0.366 ± 0.031 0.335 0.417 0.367
8 0.397 0.366 ± 0.031 0.335 0.404 0.351
9 0.399 0.367 ± 0.032 0.335 0.390 0.347

10 0.381 0.358 ± 0.023 0.335 0.411 0.378
15 0.390 0.352 ± 0.038 0.314 0.402 0.353
20 0.302 0.330 ± 0.028 0.358 0.338 0.359
25 0.302 0.331 ± 0.029 0.360 0.387 0.423

30 0.302 0.330 ± 0.028 0.358 0.302 0.425
40 0.303 0.326 ± 0.024 0.350 0.302 0.421
50 0.308 0.335 ± 0.027 0.362 0.302 0.460
60 0.302 0.332 ± 0.030 0.362 0.309 0.391

70 0.302 0.336 ± 0.034 0.370 0.302 0.390
80 0.302 0.336 ± 0.034 0.371 0.302 0.390
90 0.302 0.341 ± 0.038 0.379 0.305 0.448
100 0.309 0.343 ± 0.035 0.378 0.303 0.366

Table C.32: Clustering purity on the Cora dataset of MVSC-CEV compared
with single view and stacked views SC. K is the dimensionality of the projec-
tion.
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K
Single view Stacked

views MVSC-CEV
Worst Average Best

2 0.027 0.051 ± 0.024 0.075 0.009 0.029
3 0.027 0.069 ± 0.042 0.111 0.086 0.038
4 0.027 0.071 ± 0.044 0.115 0.118 0.086
5 0.027 0.081 ± 0.054 0.135 0.116 0.112

6 0.027 0.091 ± 0.063 0.154 0.147 0.110
7 0.027 0.087 ± 0.060 0.147 0.166 0.128
8 0.027 0.087 ± 0.060 0.147 0.160 0.122
9 0.027 0.088 ± 0.060 0.148 0.147 0.109

10 0.027 0.081 ± 0.054 0.135 0.186 0.118
15 0.022 0.073 ± 0.051 0.124 0.159 0.113
20 0.068 0.060 ± 0.008 0.052 0.058 0.115
25 0.091 0.058 ± 0.033 0.025 0.125 0.189

30 0.090 0.053 ± 0.037 0.016 0.023 0.190
40 0.108 0.066 ± 0.042 0.024 0.020 0.195
50 0.122 0.074 ± 0.048 0.026 0.016 0.230
60 0.117 0.067 ± 0.051 0.016 0.023 0.153

70 0.111 0.064 ± 0.046 0.018 0.028 0.137
80 0.112 0.063 ± 0.049 0.014 0.025 0.138
90 0.094 0.060 ± 0.035 0.025 0.021 0.222
100 0.125 0.072 ± 0.053 0.020 0.015 0.078

Table C.33: Clustering normalized mutual information on the Cora dataset
of MVSC-CEV compared with single view and stacked views SC. K is the
dimensionality of the projection.
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