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Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts
(HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting
with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and
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provide an opportunity for improved water quality monitoring. After more than a decade of application
in drinking water research, FCM methodology is optimised and established for routine application,
supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations
obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction
of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are repro-
ducible with relative standard deviations below 3% and can be available within 15 min of samples
arriving in the laboratory. High throughput sample processing and complete automation are feasible and
FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day,
depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown
FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables,
responsive to changes in the bacterial abundance and relevant for characterising and monitoring
drinking water treatment and distribution systems. The purpose of this critical review is to initiate a
constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We
argue that FCM provides a faster, more descriptive and more representative quantification of bacterial
abundance in drinking water.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Drinking water treatment and distribution systems are designed
and operated to safeguard the hygienic quality and ensure the
aesthetic quality of the water from source to tap. With this in mind,
monitoring is a non-negotiable and legislated requirement world-
wide. There is a recognised and accepted need to monitor, char-
acterise and understand the general microbiological performance/
response of individual treatment steps, especially under changing
environmental and operational conditions (Reasoner, 1990;
Lautenschlager et al., 2013; Pinto et al., 2012). There is, further-
more, the need to monitor the general microbiological behaviour of
treated water during distribution, particularly to detect potential
contamination or deterioration due to biologically unstable water
or distribution systems (Prest et al., 2016a,b; Pinto et al., 2014).
From a water utility perspective, microbiological methods used for
such general water quality monitoring would ideally meet the
criteria of being relevant, simple, reliable, rapid and cost-effective.

Heterotrophic plate counts (HPC) is the descriptive term for a
group of similar methods used routinely by water utilities for
general microbiological monitoring of drinking water. The method
enumerates a variety of heterotrophic bacteria that are cultivable
on semi-solid nutrient-rich media under defined incubation con-
ditions (Allen et al., 2004; Rice et al., 2012; Gensberger et al., 2015).
The basic HPC method was proposed well over a century ago (Koch,
1881) and was for a considerable time regarded as indicative of the
hygienic quality of drinking water (Sartory, 2004). However, during
the 1980's and 1990's it was decisively concluded that HPC mea-
surements have no hygienic relevance (WHO, 2003a, b; Sartory,
2004). Increasingly, HPC was regarded as a process variable to
monitor a range of events and/or processes relevant to the general
microbiological quality of drinking water in treatment and distri-
bution systems (Reasoner, 1990; WHO, 2003a, b; Sartory, 2004). For
most of the previous century, HPC was regarded as the best avail-
able technology for drinking water process monitoring, and HPC
data contributed towards considerable advances in our under-
standing of drinking water microbiology (Chowdhury, 2012).

In the last two decades, a number of powerful quantitative and
molecular methods have emerged for water analysis (e.g., adeno-
sine tri-phosphate (ATP) analysis, flow cytometry (FCM), 16S rRNA

gene amplification and sequencing). Application of these new
techniques showed that bacterial communities in drinking water
were vastly more abundant and complex than what was previously
understood from research based on cultivation-dependent
methods (Berry et al., 2006; Hoefel et al., 2003). Current evidence
suggests that the drinking water microbiome consists of as many as
9,000 distinct taxa, with total numbers ranging between
1,000—-500,000 bacteria mL~' (Proctor and Hammes, 2015;
Bautista-de los Santos et al., 2016).

FCM is one exciting “new” method capable of rapidly and accu-
rately counting and characterising practically all bacteria in drinking
water. FCM has already been used for microbiological characterisa-
tion and quantification in natural aquatic habitats for several de-
cades (Legendre and Yentsch, 1989; Trousellier et al., 1993), but was
only recently introduced as a method for drinking water analysis
(Hoefel et al., 2003, 2005a, 2005b; Hammes et al., 2008). All early
drinking water FCM studies confirmed the growing awareness of the
considerable numerical divide between the total bacteria and the
fraction of cultivable bacteria in drinking water (Hoefel et al., 2003;
Hammes et al., 2008). Multiple drinking water studies comparing
FCM and HPC data argued that FCM is more meaningful for use as a
process variable, and questioned the future relevance of HPC mea-
surements (Hoefel et al., 2005a; Hammes et al., 2008; Ho et al., 2012;
Liu et al., 2013b; Gillespie et al., 2014).

Here we evaluate the last 15 years of FCM developments and
applications in the field of drinking water analysis, and we argue
that routine HPC analysis no longer qualifies as the best available
technology for the above-stated criteria of relevance, simplicity,
reliability, speed and cost-effectiveness. The purpose of this critical
review is to initiate a constructive discussion on whether FCM can
and should replace HPC as the primary process variable in routine
microbiological water quality monitoring. We approached this by
briefly assessing the history, advantages and disadvantages of HPC
as a process variable, followed by a consideration of several alter-
native methods that may be suitable as alternatives. We then argue
the case for FCM as the method of choice, covering both the ad-
vantages and disadvantages of the methodology. We also compare
FCM to HPC and ATP with extensive data sets collected over the last
decade and outline how FCM could be applied as a monitoring
method in the future.
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2. Enumeration of bacteria by HPC
2.1. 130 years of HPC development and application

Around 1850, John Snow demonstrated the relationship be-
tween cholera prevalence and water consumption from a certain
well and concluded (without knowing the causative agent) that
drinking water was the transmitter of the disease (Sedlak, 2014). At
that time, smell, appearance, taste and basic chemical analysis were
the only tools available to water utilities for assessing drinking
water quality (Payment et al., 2003). This changed considerably
after Robert Koch published his gelatine plate method in 1881, for
the first time offering the possibility to isolate and cultivate pure
bacterial colonies and to enumerate bacteria (Koch, 1881). In the
following years, the method was improved by replacing gelatine
with agar, and was applied routinely to full-scale treatment sys-
tems for assessing particle filtration efficacy and microbiological
water quality (Frankland and Frankland, 1894; Payment et al., 2003;
Reasoner, 2004). In the same period, Koch proposed a limit of 100
colony forming units per millilitre (cfu mL~!) for preventing
cholera outbreaks (Koch, 1893; Exner et al., 2003). During the 130
years following its first publication (Koch, 1881), the HPC method
underwent a range of modifications including new media compo-
sitions and different incubation times and temperatures (Sartory,
2004; Reasoner, 2004). In the context of routine drinking water
monitoring, these modifications were aimed towards detecting the
largest possible fraction of bacteria in a given sample (Frankland
and Frankland, 1894; Reasoner and Geldreich, 1985). As a conse-
quence of the numerous method modifications, standardised HPC
methods cover a wide range of conditions, including different
media formulations like plate count agar (PCA) or R2A-agar (see
Table S1), different incubation temperatures ranging from 20 °C to
40 °C and incubation times ranging from hours to weeks (WHO,
20033, b; Allen et al., 2004; Rice et al., 2012). These variations are
not inconsequential: It is well known that variations in incubation
conditions affect the number and composition of bacteria

recovered (LeChevallier et al., 1980; Reasoner and Geldreich, 1985;
Reasoner, 1990; Gensberger et al., 2015). Nevertheless, even with
these modifications, Koch's original HPC method and proposed
limits associated with it are essentially still present in drinking
water legislation worldwide (Table 1).

Operational limits for HPC are still regularly incorporated in
drinking water legislation (Table 1). Maximum values range from
20 to 500 cfu mL~! depending on the country and the sampling
location (Allen et al., 2004). In some countries, maximum values are
increasingly replaced by a guideline stating that ‘no abnormal
change (NAC)’ should be detected, although guidelines are not clear
on how NAC is defined. Some countries have only very recently
changed their HPC guidelines. Compared to one decade ago, the
European Union, Canada and Australia for example have excluded
their HPC upper limit in drinking water legislation (Radcliff, 2003),
even though individual EU countries still maintain HPC upper limit
guideline values (Table 1).

2.2. Advantages and applications of HPC

One major advantage of HPC data is that a positive result is an
undeniable indicator of viability for the cells that formed colonies.
Given the well-known lack of silver-bullet methods distinguishing
between life and death in bacteria, the ability to identify viable
organisms should not be underestimated (Hammes et al.,, 2011). In
addition, changing the incubation conditions enables researchers
to isolate different types of organisms as pure cultures, which has
through the years facilitated detailed characterisations of
numerous drinking water bacteria. Moreover, HPC methods are
relatively low cost, simplistic and operators can compare HPC data
to more than a century of historical data worldwide to aid inter-
pretation and decision-making (Douterelo et al., 2014).

The application of HPC as an important variable for monitoring a
wide range of microbiologically relevant events and processes in
drinking water treatment and distribution systems has been
reviewed and discussed extensively in the works of Reasoner

Table 1

An overview of the variety in drinking water legislation and guidelines with regard to HPC. For agar compositions, see Table S1.
Region Media Temp. Time Upper limit Comment Reference
United States Plate countagar 48 h 35°C <500 cfu mL™! e Concern that values above limit interferes USEPA (2009)

with coliform and E. coli recovery
methods

United Kingdom Yeast extract 22°C 68 +4h NAC? e UK guidelines allow for the use of R2ZA Anonymous (2012)
agar 37 °C 44 + 4 h agar when deemed necessary
France Plate countagar 22 °C 72 h NAC e Change should not to exceed 10-fold the Ministere de la santé et des
36°C 48 h NAC “usual” results solidarités (2007)
The Netherlands Plate countagar 22 °C 72 h 100 cfu mL~! e Based on yearly geometrical mean value. Infrastructuur en Milieu
(2011)
Germany A° Low nutrient 22+2°C 68 +4h NAC e Some German utilities still follow the Bundesministerium der
agar® 36 +2°C 44 +4h NAC older TrinkwV1990 guidelines with Justiz und fiir
different media and specified limiting Verbraucherschutz (2013)
values
Germany B High nutrient 20+ 2°C 44 + 4 h 20 cfu mL™! e After treatment Bundesministerium der
agar 36+1°C 44 +4h 100 cfu mL~! e At the tap Justiz und fiir
100 cfu mL~! Verbraucherschutz (2013)
Belgium Yeast extract 22 +2°C 68 +4h NAC VMM (2014)
agar
Switzerland Plate countagar 30+ 1°C 72+3h 20 cfu mL™! e After treatment EDI (2014)
300 cfu mL™! « In the network
100 cfu mL™! e Untreated source (spring) water
Canada Standard 35°C 48 h No limit e Ifused as an indicator, numbers should be Health Canada (2012)
methods agar established on a system-specific basis.
Australia Yeast extract 20—-22°C 72—-120 h No limit e Guidelines allows flexibility regarding NHMRC and NRMMC
agar, R2A agar  35—-37 °C 24—-48 h No limit media and incubation conditions (2011)

2 NAC: no abnormal change.

® The German TrinkwV2001 guidelines specify low nutrient agar (6 g L' tryptone and 3 g L' yeast extract). The older TrinkwV1990 guidelines use high nutrient agar (1%

beef extract and 1% peptone).
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Table 2

Microbiologically relevant processes and/or events in drinking water treatment and distribution systems and that are conventionally monitored with HPC methods.® A
selection of related FCM studies for each category is given, together with links to specific examples presented in the supplementary information section of this manuscript.

Relevant process or event * Selection of related FCM studies Examples °
Source Detecting contamination of drinking water sources Besmer et al. (2014, 20164, b); Besmer and Hammes (2016) Fig. 1
Example S1
Treatment Assessment of chemical disinfection efficacy Hammes et al. (2008, 2010b); Vital et al. (2012) Example S2
Treatment Assessment of membrane filtration efficacy Hammes et al. (2010b) -
Treatment Growth and/or detachment during biofiltration Hammes et al. (2008, 2010b); Vital et al. (2012) Example S2
Treatment Operational influences on microbiological water quality Besmer et al. (20163, b) —
Distribution Temporal (in)stability in microbiological water quality Prest et al. (2016a,b); Besmer et al. (20164, b); Nescerecka et al. (2014) Example S4
Distribution Spatial (in)stability in microbiological water quality Nescerecka et al. (2014); Vital et al. (2012); Lautenschlager et al. (2013) Example S3
Plumbing Water quality deterioration in building plumbing Lautenschlager et al. (2010); Lipphaus et al. (2014); Siebel et al. (2008) Example S5
Storage Bacterial growth in drinking water during storage Mimoso et al. (2015); Wang et al. (2008) -

2 Adapted and expanded from Sartory (2004), WHO (2003a, b), Reasoner (1990), Allen et al. (2004) and Chowdhury (2012).
b Examples are summarised in case study format in the supplementary information section.

(1990), Sartory (2004), Allen et al. (2004) and Chowdhury (2012)
(Table 2). Some specific examples include: (i) assessment of chlo-
rine disinfection efficacy (e.g. LeChevallier et al., 1984); (ii) studying
the bacteriological activity in biofiltration systems (e.g., Camper
et al., 1986); (iii) tracking microbiological changes as a result of
regrowth and biological instability of drinking water (e.g., Francisque
et al.,, 2009; Uhl and Schaule, 2004; Prest et al., 2016a); (iv) quan-
tifying batch growth of bacteria during incubation (i.e. stagnation)
of nano-filtered drinking water (Liikanen et al., 2003) and unfil-
tered drinking water (Uhl and Schaule, 2004), and during overnight
stagnation in building plumbing (e.g., Pepper et al, 2004;
Lautenschlager et al., 2010). Based on evidence such as these, the
same WHO expert meeting that found that HPC values have no
hygienic relevance (above), concluded that HPC can be used to
monitor a range of relevant microbiological processes in drinking
water (WHO, 2003a, b). It is, however, important to note that the
WHO proposes no specific guidelines (i.e., methods, thresholds,
interpretations) on monitoring HPC in drinking water.

2.3. Disadvantages: what is HPC missing?

HPC has basic drawbacks in that it is time and labour consuming
and the time-to-result ranges between 2 and 10 days, which is not
ideal for fast decision-making and reactions to problems. Moreover,
we argue below that data from routine HPC methods represent
neither the abundance nor the composition of bacteria in drinking
water, thus seriously drawing into question the value of this
method as a relevant process variable.

2.3.1. Abundance

Right from the start (Frankland and Frankland, 1894) and
throughout the development of HPC methods (Reasoner and
Geldreich, 1985), there was a strong focus on establishing HPC
methods capable of detecting the largest possible fraction of bac-
teria in a water sample. Reasoner and Geldreich (1985) noted that
“it seems appropriate to use a medium that will provide the highest
estimate (of viable bacteria) possible to follow changes in bacterial
quality of water related to treatment or water quality degradation in
the distribution system”. However, already in the late 19th century
some of the first microbiologists realised that the number of col-
onies growing on agar plates was not reflecting the real number of
bacteria present in the water sample observed with direct micro-
scopy (Winterberg, 1898; Amann, 1911). Although branded ‘non-
selective’ and clearly intended to recover a wide range of micro-
organisms from water, HPC media and methods are highly selective
for bacteria growing under the specific incubation conditions (Allen
et al,, 2004; Gensberger et al., 2015). As Frankland and Frankland
(1894) aptly stated: “It might be supposed that it would be easy to
find a medium which would suit the requirements of all micro-

organisms [...] but, as a matter of fact [...] media which are suitable
for the growth of some are utterly unsuitable for the cultivation of
others”. Early comparisons showed that microscopic counts were
detecting up to 150 times more bacterial cells compared to HPC
(Amann, 1911). By the mid-20th century, this was universally rec-
ognised (Lewis et al., 2010) and later branded ‘The Great Plate Count
Anomaly’ (Staley and Konopka, 1985). More recent estimations of
the fraction of the total bacterial community detected by HPC are
usually lower than a few percent in drinking water. For example,
values of 0.01% (WHO, 2003a, b), 0.001—-6.5% (Hammes et al., 2008)
and 0.05—8.3% (Burtscher et al., 2009) have been reported in recent
literature, depending on the water sample origin and on the applied
HPC and total cell count methods.

Multiple studies have examined the so-called ‘unseen majority’,
referring to the major part of the bacteria not detected with con-
ventional HPC methods but observed with microscopy, FCM, next
generation sequencing and other cultivation-independent
methods. Seminal reviews on the topic are available for more
detailed information (Kell et al., 1998; Bogosian and Bourneuf,
2001; Green and Keller, 2006; Oliver, 2010; Epstein, 2013), but
the overall consensus is that, apart from lethally injured or dead
bacteria, this ‘unseen majority’ consists of two basic groups: (i)
bacteria belonging to strains that are regarded as cultivable but for
some reason enter into a so-called ‘viable but not cultivable’ (VBNC)
state (Bogosian and Bourneuf, 2001) and (ii) the so-called ‘uncul-
tivable bacteria’, which are simply not cultivable by conventional
HPC methods.

First of all, it is not reasonable to argue that most bacteria in
drinking water are lethally injured or dead. Several studies have
examined the fraction of intact, active and respiring bacteria in
drinking water. In non-chlorinated drinking water, 20—70% of the
total cells detected with FCM after SYBR Green I staining were
demonstrated to be active (esterase activity measured with CFDA
staining and FCM) and 70—80% of the cells had intact membranes
(measured with propidium iodide staining and FCM) (Berney et al.,
2008; Helmi et al., 2014a). When chlorine residual was lost in a
chlorinated system, samples contained 50—60% cells with intact
membranes (Kahlisch et al., 2012). Chlorinated tap water samples
have also shown an increase in intact cells and ATP, a measure for
active biomass, during extended network residence times
(Nescerecka et al., 2014), indicating regrowth of living cells. While
no single method is viewed as conclusive when assessing the
viability and activity of complex microbiological communities
(Hammes et al., 2011), these high percentages consistently indicate
that the majority of cells are alive.

With respect to the VBNC state, it has been shown that normally
cultivable bacteria can remain undetected by HPC due to the
presence of injured cells, which may recover and regain cultiva-
bility. Another explanation is dormant cells (also referred to as
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resting cells or persisters), which are physiologically in a VBNC state
due to adverse environmental conditions, but can get activated at
more favourable conditions or even at random moments and then
become cultivable again (Kell et al., 1998; Bogosian and Bourneuf,
2001; Oliver, 2005; Epstein, 2013).

Uncultivable bacteria that are not detected with conventional
HPC methods have been the subject of considerable discussion. One
proposed explanation for so-called uncultivability is the presence
of excessive nutrient concentrations in any type of HPC medium
compared to drinking water. For example, R2A-agar, often sug-
gested to be low in nutrients and therefore more suitable for
cultivating drinking water bacteria (Reasoner and Geldreich, 1985),
has an organic carbon concentration up to 800 times in excess of
drinking water (Hammes et al., 2008). Efforts for optimizing bac-
terial growth conditions, including the adaptation of macro- and
micronutrients, relieving oxidative stress, the use of synthetic en-
vironments mimicking the natural conditions and new cultivation
techniques, enabled the growth of some previously uncultivable
bacterial species (Kaeberlein et al., 2002; Rappe et al., 2002;
Sangwan et al., 2005; Wang et al., 2009; D'Onofrio et al., 2010).
However, millions of different microbiological species are thought
to exist and over 99% have never been cultivated (Achtman and
Wagner, 2008; D'Onofrio et al., 2010).

2.3.2. Composition

Multiple studies have identified HPC isolates in order to better
understand the hygienic and/or practical relevance of HPC data
(e.g., LeChevallier et al., 1980; Reasoner, 1990; Allen et al., 2004;
Gensberger et al., 2015). For example, LeChevallier et al. (1980)
concluded that chlorination selected for gram-positive genera
and that distributed drinking water comprised up to 30% oppor-
tunistic pathogens. These studies all identified a broad variety of
genera and showed that different organisms were isolated based on
sample origin and HPC incubation conditions. However, during the
last two decades it has become clear that cultivation-isolation
based methods completely underestimate the complexity of the
drinking water microbiome (Proctor and Hammes, 2015; Bautista-
de los Santos et al., 2016). Unfortunately, only a few studies have
directly compared the composition of HPC isolates with the total
community composition based on 16S rRNA amplification
(Farnleitner et al., 2004; Burtscher et al., 2009). Burtscher et al.
(2009) concluded that 16S profiles after HPC isolation and
directly from water samples differed completely, and showed that
the dominant HPC community comprised primarily copiotrophic
bacteria while the dominant drinking water community comprised
typical oligotrophic aquatic bacteria.

In summary, there is agreement in literature that HPC data
vastly underestimate the actual bacterial concentrations in drink-
ing water, and there is some clear evidence that the bacteria
detected on HPC plates are not the dominant species in water
samples. Moreover, there exists to our knowledge no clear evidence
that this small cultivable fraction of bacteria detected by HPC is

properly and consistently representative for behaviour of the entire
bacterial community in any given water, and for that matter rele-
vant to the challenges in the various application areas of treatment
and distribution systems (Table 2). This point is underscored, for
example, in the context of bacterial regrowth during distribution. A
recent book by leading drinking water experts, focussing solely on
regrowth problems, concluded unequivocally that: “HPC, in com-
bination with the standard of 100 cfu mL™", is not suited for assessing
the level of microbial growth in distribution systems” (van der Kooij
and Veenendaal, 2014) and “HPC [...] are not ideal parameters for
regrowth assessment” (van der Kooij and van der Wielen, 2014b).

3. Alternative methods for bacterial quantification are
available

Given the differences between various HPC regulations and
guidelines (Table 1), the very large and inconsistent difference
between the number and composition of bacteria detected with
HPC and the actual bacterial content of drinking water, and the
complex challenges for which process variables are needed
(Table 2), it is imperative to question whether HPC is still the way to
go for routine microbiological water analysis in the 21st century.
Drinking water utilities and researchers clearly need accurate and
reliable methods to quantify and characterise microbiological
changes during treatment and distribution (Table 2; Prest et al.,
2016b). Hence, abolishment of HPC methods without a suitable
replacement would in itself be a serious step backwards. For bac-
terial (re)growth during drinking water distribution, van der Kooij
and van der Wielen (2014b) stated that “assessment and monitoring
of the level of microbial regrowth requires a method for the quantifi-
cation of the biomass of all active bacteria” and suggested as exam-
ples ATP, total cell concentrations and the total DNA concentration
in samples. In fact, since the early establishment of HPC, a suite of
other methods has been developed to quantify bacteria in order to
study/monitor general microbiological quality of drinking water.
Table 3 compares six of these methods, but it is acknowledged that
several more alternatives exist (Lopez-Roldan et al., 2013). Micro-
scopy cell counting is an established methodology and can be
combined with a broad range of fluorescent and non-fluorescent
dyes (e.g., DAPI, acridine orange) and probes (e.g., labelled anti-
bodies) to assess total bacteria, viable bacteria or specific bacterial
sub-groups. Aside from some automated approaches (Zeder and
Pernthaler, 2009), microscopy is far too labour-intensive and
operator-subjective for routine application and is therefore used
predominantly as a research tool. Molecular assays, such as 16S-
rRNA quantitative real-time PCR (qPCR), can serve as indirect
measurements of absolute bacterial counting by measuring the
abundance of 16S rRNA gene copies in extracted DNA (Nadkarni
et al., 2002; Hoefel et al., 2005b). When the same approach is
applied to extracted RNA, the information can serve as viability
assay, and with more specific primers, it can target bacterial sub-
groups. While continuous and rapid progress is being made in

Table 3

Overview of methods used for general bacterial quantification in drinking water.
Method Measures Principle Viability ~ Labor Time-to-result Online  Reference
HPC Cultivable bacteria Growth Yes Medium  Days to weeks No Reasoner (1990)
FCM Cell concentration Staining Yes?® Low Minutes Yes Prest et al. (2013)
Microscopy Cell concentration Staining Yes® High Minutes to hours ~ No Burtscher et al. (2009)
ATP ATP concentration Enzymatic Yes Low Minutes Yes Nescerecka et al. (2016b)
qPCR 16S rRNA gene copies  Gene amplification Yes® High Hours to days No Lopez-Roldan et al. (2013)
Nucleic acid quantification =~ Total DNA/RNA Fluorescence/Absorbance  Yes” High Hours to days No -

@ Requires specific viability staining with dyes such as propidium iodide.
b Quantifies viability when RNA is extracted and analysed.
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this field, routine application is currently limited by time-intensive
nucleic acid extraction steps, PCR amplification bias and difficulties
with respect to viability assessment (Nocker et al., 2007). Moreover,
recent data suggests that current 16S-based approaches may not
accurately represent the full extent of diversity in the system (Hug
et al.,, 2016). To overcome PCR bias, it is also possible to simply
quantify the total amount of extracted DNA or RNA, but this
approach is less sensitive than PCR methods and still subject to
nucleic acid extraction biases (Hwang et al., 2012; Salter et al,,
2014). Measurement of ATP is a noteworthy alternative method,
which is fast, relatively simple and representative of all viable or-
ganisms in a water sample (Hammes et al., 2010a; van der Wielen
and van der Kooij, 2010). ATP analysis has been championed for
several decades as a cultivation-independent measure of viable
biomass in general (Holm-Hansen and Booth, 1966; Karl, 1980), and
more recently specifically for drinking water and biofilm quantifi-
cation (van der Kooij et al., 2003; Vrouwenvelder et al., 2008;
Hammes et al., 2010a; van der Wielen and van der Kooij, 2010;
Nescerecka et al., 2016b; Magic-Knezev and van der Kooij, 2004).
However, routine application of ATP analysis is currently limited by
a lack of standardised comparable methods and interference from
inorganic compounds in the water (e.g., iron, manganese) as well as
non-bacterial and/or extracellular ATP (Hammes et al., 2010a).
Finally, FCM for measurement of bacterial cell concentrations has
developed tremendously during the last decade (discussed below).

4. FCM cell concentrations as an alternative to HPC

FCM is a fast, accurate, quantitative and reproducible technique
for counting the total number of bacteria when a general nucleic
acid stain is used (Hammes et al., 2008; Wang et al., 2010; Prest
et al,, 2013) or the number of viable bacteria when combined

Relevant information

FCM-TCC and ICC data have been
used extensively to monitor
relevant bacterial changes during
treatment and distribution.

Rapid analysis

Example: Hammes et al. (2008)

Flexible staining

FCM can be combined
with a variety of
fluorescent dyes and
probes targeting
bacterial DNA content,
different aspects of
viability, activity and
identity.

Example: Berney et al.
(2007)

Multi-variable data

FCM measurements collect data
on fluorescent color, intensity
and light scattering (size) for
every single particle.

Example: Hammes and Egli (2010)

Less than 15 minutes is needed
from the time when the sample
reaches the laboratory until the
final result is available.

Example: Prest et al. (2013)

FCM fingerprinting

A range of new statistical tools
combines multivariate data to
track changes in community
composition with FCM.

Example: De Roy et al. (2012)

with viability stains (Berney et al., 2008; Helmi et al., 2014b). More
recently, the technique was expanded towards creating FCM fin-
gerprints of bacterial communities to allow more detailed charac-
terisation of those bacterial communities (De Roy et al., 2012; Prest
et al,, 2013; Koch et al., 2014). It is argued here that FCM cell con-
centrations can replace HPC as a suitable process variable for
routine drinking water analysis due to the (i) high level of infor-
mation, (ii) high accuracy and reproducibility, (iii) speed and
automation possibilities and (iv) overall reasonable costs compared
to other methods (Fig. 1).

4.1. Historical FCM developments with respect to drinking water
analysis

FCM characterises and quantifies individual suspended parti-
cles by passing them one by one through a light source, typically a
laser beam (Fig. 1). Fluorescent particles are excited by the light
source and emit light at a higher wavelength (Shapiro, 2003)
(Fig. 1). Particles of interest can either be autofluorescent (e.g.
algae that contain chlorophyll), or be made fluorescent, such as
bacteria after staining with fluorescent dyes (e.g., SYBR Green I)
(Hammes and Egli, 2010). FCM was initially applied for the anal-
ysis of mammalian cells, but in 1977 it was introduced by mi-
crobiologists to characterise suspended bacteria (Bailey et al.,
1977; Paau et al,, 1977). The method was at first not broadly
used in microbiology due to expensive instrumentation and
technical difficulties stemming from the small size of bacteria
compared to mammalian cells (Wang et al., 2010). However, de-
velopments in hardware performance, costs and ease of handling
and the concomitant emergence of novel stains for specific bac-
terial features finally made FCM more popular in microbiology
from the 1990s onwards (Hammes and Egli, 2010). To our

Reproducible measurements

Single operator/instrument
variability is < 3 % RSD; Multi
operator/instrument variability is
<10 %.

Example: Prest et al. (2013)

Low costs

FCM analysis can be
cost-effective
compared to HPC
analysis when more
than 15 samples per
day are analyzed, based
on hardware and labor
costs.

Example: This paper

Automation potential

Online FCM enables detailed
measurements of the frequency
and magnitude of fluctuations in
drinking water systems.

Example: Besmer et al. (2016)

Fig. 1. Overview of the main advantages of flow cytometry for drinking water monitoring. Abbreviations used: FCM — flow cytometry; TCC — total cell concentration; ICC — intact

cell concentration; HPC — heterotrophic plate counts; RSD — relative standard deviation.



S. Van Nevel et al. /| Water Research 113 (2017) 191-206 197

knowledge, Vesey et al. (1991) applied FCM for the first time for
drinking water analysis for detecting Cryptosporidium oocysts,
while Appenzeller et al. (2002) reported the first FCM-based
detection of bacteria in drinking water, studying the sorption of
E. coli on FeOOH. One year later, Hoefel et al. (2003) applied FCM
for detecting the physiologically active bacterial community in
drinking water and highlighted the difference in orders of
magnitude between HPC and FCM data. Research applying FCM in
drinking water now includes an extensive range of studies. For
example, FCM was used for the characterisation of water treat-
ment processes (Hammes et al., 2008; Ho et al., 2012; Van Nevel
et al., 2012; Vital et al., 2012; Helmi et al., 2014b), specific disin-
fection processes (Phe et al., 2005; Ramseier et al., 2011; Wert
et al, 2013) and viability assessment (Pianetti et al., 2005;
Berney et al., 2008). Regrowth and biological stability were stud-
ied in both chlorinated and non-chlorinated drinking water dis-
tribution networks (Hoefel et al., 2005a, 2005b; Vital et al., 2012;
Lautenschlager et al., 2013; Liu et al., 2013b; Prest et al., 2013;
Gillespie et al., 2014; Nescerecka et al., 2014; Wen et al., 2014;
Van Nevel et al, 2016) and building/premises plumbing
(Lautenschlager et al., 2010; Lipphaus et al., 2014). Measurements
of assimilable organic carbon were performed with FCM as the
bacterial enumeration method (Hammes and Egli, 2005; Van
Nevel et al,, 2013a). Specific pathogens were detected and path-
ogen growth potential was assessed with FCM (Vital et al., 2007,
2010; Yang et al, 2010; Keserue et al., 2012; Van Nevel et al,,
2013a). Finally, FCM has been used for studying drinking water
bacterial ecology, by detecting changes in the community
composition and creating FCM fingerprints (i.e. statistical in-
terpretations of raw FCM data) of specific water samples (Kahlisch
et al., 2010; De Roy et al., 2012; Douterelo et al., 2014; Prest et al.,
2014).

Monfort and Baleux (1992) compared fluorescence microscopy
with FCM total cell concentrations (TCC) and concluded that FCM is
reliable to enumerate bacteria in both pure cultures and natural
samples. In order to distinguish bacteria from abiotic particles,
various general nucleic acid stains have been tested (Wang et al.,
2010), and the stains SYBR Green I, SYBR Green II and SYTO 9
were found to deliver high quality results for total bacterial cell
counting in fresh water environments (Lebaron et al., 1998;
Hammes et al., 2008). While different stains would in theory
serve the same purpose, a recent extensive standardisation of the
FCM-TCC method was based on SYBR Green I, and this standardised
method was accepted as a guideline method into Swiss drinking
water legislation (SLMB, 2012; Prest et al., 2013). As major advan-
tages, the FCM-TCC method was shown to be fast (10 min staining
time, < 1 min analysis time), accurate (<3% relative standard de-
viation (RSD) on all measurements), reproducible (<7% variability
between different laboratories) and suitable for high throughput
processing (SLMB, 2012; Prest et al., 2013; Van Nevel et al., 2013b)

(Fig. 1).
4.2. FCM provides relevant quantitative process information

The consensus application value of HPC as a routine drinking
water variable is the enumeration of bacteria, either for evaluating/
monitoring treatment processes (e.g., filtration or disinfection ef-
ficiency) or for assessing the general microbiological quality of raw
and treated water (Section 2; Table 2). Here we argue that multiple
pilot scale and full-scale studies have demonstrated that for every
HPC application-area (Table 2) there are several examples where
FCM performed equally or better in providing accurate quantitative
and qualitative information that is relevant to the process and/or
system under investigation. Table 2 highlights selected FCM studies
and specific examples that are presented in the Supplementary

Information (SI) and discussed below.

Source water contamination: FCM analysis of temporal fluctua-
tions in source water was reported previously (Besmer et al., 2014,
20164, 2016b; Koetzsch and Sinreich, 2014; Besmer and Hammes,
2016) and is illustrated in Fig. 2 and Example S1. In many of these
examples, high frequency online FCM was used over extended time
periods to quantify dry weather baseline values and microbiolog-
ical changes caused by regional precipitation events with respect to
their frequency and magnitude. Fig. 2 shows a specific example
from a karstic spring, which is vulnerable to precipitation-induced
contamination. The spring was sampled hourly in the 24 h imme-
diately following a precipitation event (15.4 mm in 24 h), which
increased spring discharge from 1260 L min~! to 1’400 L min "
within hours of the event. The increased spring discharge coincided
with a substantial increase in FCM-TCC from 1.4 x 10° cells mL™ to
a maximum of 3.7 x 10° cells mL~L. The FCM data gives a clear
quantitative and qualitative description of the microbiological
response in the spring with respect to the temporal evolution and
magnitude. In contrast, the HPC data fluctuated on hourly time
scales between 200 and 2/000 cfu mL~, neither describing the
trend, nor the magnitude of the microbiological response in the
spring to the precipitation event.

Monitoring treatment processes: FCM was used to characterise
drinking water treatment processes in a large number of studies
(e.g., Hoefel et al., 20053, 2005b; Hammes et al., 2008, 2010b; Ho
et al.,, 2012; Vital et al,, 2012; Lautenschlager et al., 2014; Helmi
et al., 2014b; Example S2). In studies by Hammes et al. (2008,
2010b) and in Example S2 (a subset of data from Vital et al.
(2012)), disinfection through ozonation was not correctly
measured with routine HPC analysis, due in part to low cultivability
of bacteria in the source water, but could clearly be shown with
FCM-TCC. Helmi et al. (2014b) measured increased bacterial
abundance after activated carbon filtration with different FCM
methods, but these increases went undetected in some cases with
routine HPC methods. Similar changes in bacterial numbers with
various biofiltration steps were further elucidated in Hammes et al.
(2010b), Velten et al. (2011) and Vital et al. (2012). In one of the
clearest examples of treatment characterisations, Ho et al. (2012)
monitored raw water and the microbiological performance of
four different drinking water treatment options on pilot scale
during 12 months. In that study, HPC data showed no difference
between the different treatment options. In stark contrast, the FCM
data clearly characterised the significant differences between the
treatment options, which led the authors to conclude that “[...] FCM
was shown to be a better monitoring tool than HPCs, which allowed for
more definitive comparisons to be made between each of the treat-
ment streams” (Ho et al., 2012).

Growth/instability during distribution: FCM characterisation of
distributed drinking water was reported in Hoefel et al. (2005a),
Vital et al. (2012), Lautenschlager et al. (2013), Nescerecka et al.
(2014), van Nevel et al. (2016) and Prest et al. (2016a) and is illus-
trated in Examples S3 e S4. In an early study, Hoefel et al. (2005a)
described bacterial increases in excess of 1 x 10° cells mL™!
measured with FCM during distribution of chloraminated drinking
water, which went undetected with conventional HPC measure-
ments. These authors concluded that their data “[...] casts doubt on
the use of HPC data as an indicator of distribution system integrity
following a loss of chloramine residual caused by ammonia-oxidizing
bacteria” (Hoefel et al., 2005a). In a similar vein, Nescerecka et al.
(2014) demonstrated substantial microbiological growth from
about 1 x 10% cells mL™! up to 4 x 10° cells mL~" during distri-
bution of unstable chlorinated drinking water with FCM after
viability staining (measuring intact cells after SYBR Green I and
propidium iodide staining). A subset of this data is shown in
Example S3, showing that routine HPC measurements failed to
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Fig. 2. Microbiological monitoring of a karstic spring following regional precipitation and subsequent increased spring discharge (A). Samples collected hourly for 24 h were
analysed with flow cytometry (FCM) for total cell concentrations (TCC; SYBR Green I staining) and with heterotrophic plate counts (HPC; PCA, 30 °C, 72 h) (B).

recognise the magnitude of instability in that particular system,
exceeding the guideline value of 100 cfu mL™! in only one of 39
samples. A recent 2-year study of a full-scale distribution system
without residual chlorine (Prest et al., 2016a; Example S4) revealed
a distinct seasonal variation in flow cytometric intact cell concen-
tration (FCM-ICC) data from about 5 x 10* cells mL™! up to
2 x 10° cells mL~". Routine HPC measurements corroborated the
increased bacterial numbers in summer, but failed to quantify the
magnitude of change in the system. In fact, HPC numbers exceeded
the Dutch standard of 100 cfu mL~! only twice in the entire mea-
surement period (Example S4). More importantly, the FCM data
enabled the researchers to pinpoint the final biological filters in the
treatment plant as the primary source of change, and growth dur-
ing distribution as the secondary source (Prest et al., 2016a). In a
final example, Gillespie et al. (2014) studied biological stability in
chlorinated and chloraminated drinking water distributions and
reported a correlation between free chlorine concentrations and
FCM-ICC data. Interestingly, while we do not recommend here that
FCM replace faecal indicator monitoring, these authors observed
that most samples that tested positive for coliforms also showed
elevated FCM-ICC values and concluded that FCM measurements
are a potentially complementary tool for detecting quality failures
in systems with residual disinfectants.

Water storage and building plumbing: FCM studies of bacterio-
logical changes during drinking water storage and/or stagnation
prior to consumption include Siebel et al. (2008), Wang et al.
(2008), Lautenschlager et al. (2010), Mimoso et al. (2015),
Lipphaus et al. (2014) and Gillespie et al. (2014). Mimoso et al.

(2015) used online FCM to characterise bacterial growth during
stagnation of gravity driven membrane filtered river water. The
high frequency FCM data enabled accurate and detailed quantifi-
cation of the rate and extent of bacterial growth, mirroring similar
FCM studies for bottled water (Wang et al., 2008) and older HPC
growth studies (e.g., Uhl and Schaule, 2004; Reasoner, 1990). On the
building plumbing level, Lautenschlager et al. (2010) quantified the
extent of bacterial increases following overnight stagnation of non-
chlorinated drinking water in residential households. This study
demonstrated considerable increases in all microbiological vari-
ables (i.e. FCM, ATP and HPC), although HPC did not detect the
magnitude of change measured with FCM and ATP (Lautenschlager
et al, 2010). As a final example, Lipphaus et al. (2014) studied
multiple taps in residential and office building plumbing systems
receiving chlorinated drinking water, using FCM viability analysis
(SYBR green I and propidium iodide staining). The authors showed
elevated cell concentrations in taps that were infrequently used,
and washout from single taps as a function of water use. Example
S5 shows FCM and HPC data for a similar washout study from a
drinking water tap during daily use.

In the above section we described several examples where
straightforward FCM analysis was in our opinion equal or superior
to HPC analysis as a process variable and indicator of general
microbiological water quality. This does not diminish in any way
the extended history of HPC applications in water quality moni-
toring. There may well also be cases where specific focus on a sub-
group of bacteria provides insights into small microbiological
changes that will go undetected with a total cell concentration
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measurement approach (Vital et al., 2012). With respect to FCM
applications, there is an on-going need to systematically document
the use of FCM data (e.g., case studies in SI) and particularly to link
microbiological changes observed with FCM to specific events and/
or problems (e.g., system malfunctioning, consumer complaints). In
this regard, it is recognised that the current data sets are dominated
by studies from drinking water systems without residual disinfec-
tants, and additional studies on chlorinated systems are needed to
fill this gap.

4.3. Added qualitative value of FCM: fingerprinting and community
interpretations

Apart from the combination of FCM with various fluorescent
dyes and the determination of TCC and ICC (section 5.1), the fluo-
rescence and scatter detectors deliver information that can be used
for a more detailed analysis by creating a microbiological finger-
print of the water. Essentially, these FCM fingerprinting methods
are statistical analyses of multivariate FCM data (e.g., size, fluo-
rescent colour, fluorescence intensity) that varies in complexity and
which represents the distribution of raw data in FCM plots (De Roy
etal,, 2012; Prest et al., 2013). Such FCM fingerprinting methods are
sensitive for detecting small changes and shifts within the bacterial
community, which are overlooked by enumeration alone (De Roy
et al., 2012; Prest et al, 2013, 2014; Koch et al., 2014). For
example, Prest et al. (2013) detected the contamination of drinking
water by 4% wastewater effluent bacteria, based on the combina-
tion of FCM cell concentrations and a basic FCM fingerprinting
method (quantifying high (HNA) and low (LNA) nucleic acid con-
tent bacteria), and showed in a separate study (Prest et al., 2014)
that changes in the microbiological community composition by 16S
rRNA gene analysis can be detected early through changes in the
FCM fingerprint, a method further elucidated by Props et al. (2016).
De Roy et al. (2012) likewise used advanced fingerprinting methods
to detect the bacterial physiology adaptations within 3 h after mi-
nor nutrient addition in drinking water. Finally, Van Nevel et al.
(2016) examined the biological stability of a drinking water
network, where certain water samples showed elevated FCM cell
concentrations. The application of fingerprinting methods to these
samples suggested that bacterial growth was taking place to a large
extent in the household taps rather than in the drinking water
network (Van Nevel et al., 2016). With respect to FCM finger-
printing methods, the challenge is to establish methodological
toolboxes that are sensitive and robust, standardised, applicable to
FCM data generated with different instrument types, broadly
available and sufficiently easy to apply by non-specialist users.

High-throughput amplicon sequencing is currently a popular
method for microbiological community profiling, with increasing
applications in drinking water monitoring and characterisation
(Burtscher et al., 2009; Pinto et al.,, 2012, 2014; Prest et al., 2014).
One inherent limitation to such community profiling is that data
are presented as relative abundances, and differences in cell con-
centrations between samples are not considered (Props et al.,
2016). Needless to say, the latter information can completely alter
the interpretation of a community profiling dataset. A number of
studies have combined sequencing data (relative abundance) with
FCM-TCC (total absolute abundance) to derive and compare
sample-specific absolute taxon abundances (specific absolute
abundance). For example, Lautenschlager et al. (2013) attributed
minor biological instability in a non-chlorinated drinking water
distribution system to a 20 %-increase in the specific absolute
abundance of Comamonadaceae. Prest et al. (2014) used the same
approach to quantify the absolute abundance increase of some
phyla (e.g., Proteobacteria) and decrease of others (e.g., Bacter-
oidetes) during full-scale distribution of non-chlorinated drinking

water. The use of the two methods in concert enhances interpre-
tation of bacterial dynamics in drinking water systems. Combining
multiple methods also offers a potential starting point to develop a
multi-disciplinary theoretical framework for bacterial growth and
other dynamic processes in drinking water treatment and distri-
bution systems.

4.4. FCM is reproducible

From a statistical perspective, HPC only counts between 0 and
300 colonies in a well-chosen dilution, while FCM analysis usually
collects between 50 and 20,000 events for drinking water sample
analysis (Hammes et al., 2008). HPC analysis often shows RSD of
30% up to 100% (Hammes et al., 2008; Prest et al., 2013). In stark
contrast, the inter-laboratory and instrument variability are <7% for
FCM (SLMB, 2012), or even < 2.5% for a single operator and
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Fig. 3. Comparison of flow cytometric total cell concentration (FCM-TCC) and het-
erotrophic plate count (HPC) sensitivity and accuracy on four non-chlorinated water
samples. Four water samples were analysed in triplicate by three routine laboratories
using both HPC (PCA, 30 °C, 72 h) and FCM-TCC (SYBR Green I staining). Box plots show
the median (solid line), the 25 and 75 percentiles (box), as well as the absolute data
points (crosses). On average only 0.005% of the total bacterial cells were detected by
HPC (B), while FCM discriminated clearly between the different water samples (A). The
cultivability of the samples, expressed as HPC cell count divided by FCM cell concen-
tration, remained below 0.01% (C). RSD - relative standard deviation. Figure redrafted
from Koetzsch et al. (2012).
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instrument (Prest et al., 2013) (see also Fig. 3). Finally, FCM results
are mutually comparable when measured with a standardised
method, while HPC methods already have heavily differentiated
over the years, hindering comparison between laboratories
(Reasoner, 2004; SLMB, 2012).

The large discrepancy between HPC and FCM reproducibility
and accuracy is demonstrated in Fig. 3. In this particular example,
two raw water samples (groundwater and spring water), a sample
from the effluent of a drinking water treatment plant and a
drinking water sample from a household tap (all non-chlorinated
water samples), were measured independently in triplicate by
three different accredited routine laboratories (Koetzsch et al.,
2012). All three laboratories used identical methods: FCM-TCC
was measured with SYBR Green I staining as described previously
(SLMB, 2012; Prest et al., 2013) and HPC was measured according to
Swiss guidelines (PCA, 30 °C, 72 h). The results showed that only
0.005% (range = 0.0035%—0.0084%) of the total bacterial cells were
detected on average by HPC methods, while the HPC values and
reproducibility were so low that no clear differences between
different water samples could be detected (RSD = 88%) (Fig. 3). In
contrast to cultivation, the FCM-TCC results had a RSD as low as
6.9%, and allowed clear discrimination between all four water
samples (Fig. 3). This data emphasises the need for standardisation,
especially with respect to future routine application of FCM in the
water industry (SLMB, 2012; Prest et al., 2013; Nescerecka et al.,
2016a).

4.5. FCM speed, automation and online analysis potential

The usefulness of any monitoring variable is heavily influenced
by the time from sample collection to when results are available.
HPC incubation usually takes several days. For example, the incu-
bation times for HPC agar plates described in ‘Standard methods for
the examination of water and wastewater’ (Rice et al., 2012) range
from 2 to 7 days. However, by the time these results are available,
the drinking water of concern has spread throughout the distri-
bution network and has been consumed widely. In contrast, FCM
results can be available within 15 min after sampling, enabling
immediate action and identification of problematic samples for
further investigation or remediation steps. Moreover, automated
multi-well plate analysis, which is a feature on nearly all modern
FCM instruments, easily allows the measurement of up to 500
samples within a day with only one operator and one instrument
(Van Nevel et al., 2013b). This enables researchers and utilities to
rapidly screen considerably larger numbers of samples with the
same or even less labour input than was feasible with conventional
cultivation-based methods.

Many dynamic processes and events in drinking water treat-
ment and distribution systems occur on short time-scales (mi-
nutes-to-hours), and conventional grab sampling and cultivation-
based analysis approaches fail to correctly detect and characterise
such dynamics. Online analysis is the obvious solution to this, and a
variety of online microbiological tools and sensors have been
developed during the last few years (Lopez-Roldan et al., 2013).
Recent developments in fully automated online technology allow
continuous FCM measurements for several subsequent weeks
(Hammes et al., 2012; Brognaux et al., 2013; Besmer et al., 2014). For
example, Besmer et al. (2016a, 2016b) and Besmer and Hammes
(2016) characterised precipitation-induced fluctuations in raw
water and operationally induced fluctuations in treated water at
high temporal resolution, resulting in total sample numbers in the
thousands — far in excess of what is remotely possible with con-
ventional sampling and analysis tools (Example S1). This enabled a
detailed characterisation of the bacterial baseline concentrations
and fluctuations in specific systems on a level of detail not

previously possible, and also demonstrated the potential for early
warning systems and strategic sampling strategy design (Besmer
et al., 2016a, 2016b; Besmer and Hammes, 2016).

4.6. FCM analysis can be cost-beneficial

A final argument for selecting any method for application in
routine laboratories is incontrovertibly the cost. A cost comparison
for HPC versus FCM was done recently (Helmi et al., 2014b), which
showed higher cost of FCM compared to HPC for 100 samples.
However, for the purpose of this review the comparison was
revised based on our in-house instrumentation and protocols for
FCM, as well as information from a routine laboratory for HPC
analysis, including all amortization, consumables, quality control
and labour costs (Table S2). The FCM cost was estimated at $214 per
day for 100 samples processed, compared to $1,030 for the same
number of analyses with HPC. The initial FCM hardware investment
is considerable, but automation and low consumable use can keep
per sample costs minimal. In the case of HPC, the initial investment
is lower, but the procedure is labour-intensive, making the cost
increase for HPC almost linear to number of samples. Both methods
would cost $155 per day for a daily processing of 15 samples, and
FCM becomes more profitable for any higher number of water
samples. It should be noted that both comparisons (Helmi et al.,
2014b) are based entirely on high-income countries, where la-
bour costs are decisive. For low-income countries, the high initial
investment for FCM may be more demanding, and labour costs for
HPC would be less. However, FCM instrumentation costs have been
steadily decreasing during the last decade with the development of
simplistic bench-top systems and increased market competition.

5. Arguments against FCM methods

Every analytical method faces some drawbacks. Challenges for
FCM discussed below include: (i) the difficulties in distinguishing
between viable and non-viable bacteria, (ii) subjective data analysis
and (iii) problems in dealing with bacterial aggregates and clusters.

5.1. Detecting disinfection: how dead is dead?

A critical counter-argument against FCM-TCC is the inclusion of
dead cells in the enumeration. Disinfection (e.g., chlorination) is
common in drinking water treatment worldwide and in such a case
the use of FCM-TCC provides limited information and can lead to
erroneous conclusions. Viability staining (e.g., for membrane
integrity, membrane potential or metabolic activity) combined
with FCM can serve as an alternative (Berney et al., 2008; Helmi
et al,, 2014b). A broad range of viability stains for different bacte-
rial targets exists (e.g., SYTOX Green for damaged membranes and
carboxyfluorescein diacetate (CFDA) for esterase enzyme activity),
providing information that is regarded as indicative of bacterial
viability and/or activity (Hammes et al., 2011).

As a straightforward viability marker for drinking water, we
propose the use of membrane integrity, since it measures a cellular
property that is targeted by conventional disinfection with chlorine
and ozone (Ramseier et al., 2011). Moreover, severe membrane
damage is viewed as a conservative indicator of cell death (Lisle
et al., 1999; Berney et al., 2008) and is therefore arguably a safe
indicator for disinfection efficiency (Ramseier et al.,, 2011). The
combined use of propidium iodide with SYBR Green I offers the
possibility for FCM assessment of bacterial cell membrane integrity,
allowing discrimination between cells with intact and damaged
membranes (Fig. 4) (Berney et al., 2008; Vital et al., 2012). This
FCM-ICC is recommended as additional measurements to FCM-TCC
whenever disinfection is applied during treatment or when
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Fig. 4. The principle of flow cytometric total cell concentration (FCM-TCC) and intact cell concentration (FCM-ICC) measurements. FCM-TCC is based on SYBR Green I, which enters
and stains all bacterial cells with nucleic acids, independently of membrane integrity. FCM-ICC is based on dual staining with both SYBR Green I and propidium iodide, of which
propidium iodide is only able to penetrate and stain bacterial cells with damaged cell membranes. Therefore, FCM-ICC enables the differentiation between bacterial cells with intact

membranes and damaged bacterial cells.

residual disinfectant is maintained in distribution. Recently, the use
of FCM-ICC methodology showed instability and growth of bacteria
in different chlorinated drinking water distribution networks
(Nescerecka et al., 2014, Gillespie et al., 2014) and on the household
level (Lipphaus et al., 2014).

One specific challenge to the use of FCM-ICC is the evaluation of
UV-C-disinfection. The primary mode of action of UV-C-
disinfection is nucleic acid damage; the formation of pyrimidine
dimers and other photoproducts of the nucleic acids inhibit repli-
cation and transcription and thereby prevents the bacteria from
multiplication (Villarino et al., 2003; Hijnen et al., 2006). However,
during low/moderate UV-C-disinfection, the bacterial membranes
remain intact (Nocker et al., 2007), making this damage undetect-
able by propidium iodide staining. In this specific case, HPC analysis
will regard these cells as dead, and has an advantage over FCM.

A large number of viability dyes are commercially available and
have been tested in various research settings (Berney et al., 2008;
Helmi et al., 2014a). The future challenge in this field is to select
dyes based on (i) the mechanism of cellular death that is evaluated
(e.g., chlorination permeabilising cells) and (ii) the mechanistic
action of the dye (e.g., penetrating permeabilised cells). Only with
these two aspects matched appropriately can one establish mean-
ingful standardised protocols (Nescerecka et al., 2016a).

5.2. Is FCM quantification subjective and user-specific?

An often-mentioned critique towards FCM quantification for
routine monitoring is the use of variable instrument settings and
the need for manual gating to separate the bacterial signals from
the background (De Roy et al., 2012; Aghaeepour et al., 2013; Prest
et al., 2013). Until recently, this gating strategy was subjective and
mainly based on personal experience of the operator, which is a
serious disadvantage for standardised analysis. However, several
strategies emerged recently to address this issue. Firstly, Prest et al.
(2013) combined an optimised and fixed staining protocol with a
fixed gating strategy (i.e. no need for manual gate adjustments by
the operator) to acquire stable and reproducible results. Secondly,

an increasing number of researchers are working on circumventing
gating entirely by doing a gating-independent statistical processing
(including cluster recognition) of the data (De Roy et al., 2012;
Aghaeepour et al., 2013; Koch et al., 2014). Widespread applica-
tion will require further work to establish gating strategies that are
sensible, independent of user-bias or instrument-bias and easily
applicable to FCM data generated with different instruments.

5.3. Cell clumps, clusters and aggregates

FCM analysis detects single cells and/or bacterial aggregates, but
does not necessarily discriminate between the two, which is a
disadvantage that is shared with HPC (Shapiro, 2003). As a conse-
quence, the presence of clumps of sloughed biofilm or colonised
suspended particles will potentially lead to under-counting of
bacteria (van der Kooij and van der Wielen, 2014a). To address this
problem, some authors applied mild sonication to break up bac-
terial aggregates in wastewater and biofilm samples and validated
their procedure using microscopic techniques (Foladori et al., 2010;
Ma et al, 2013). However, it is clear that sonication based ap-
proaches have to be tested and validated extensively to find the
optimal sonication dose for every specific matrix. For example, an
activated sludge sample requires a higher sonication dose
compared to a settled wastewater sample (Ma et al., 2013), while
excess sonication damages bacterial cells (Buesing and Gessner,
2002) and thereby affects viability measurements. Routine appli-
cation of a sonication step to all samples would also increase the
time requirements for the FCM procedure and thereby partly
counteract one of the main advantages of FCM. Bulk analysis
methods such as ATP-analysis or nucleic-acid-based molecular
methods in theory do not face this problem and can be applied even
when clumps and clusters are part of the samples (Liu et al., 2013a).

6. FCM data do not correlate with HPC data

The data above highlighted a numerical discrepancy of several
orders of magnitude between FCM and HPC values and good
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correlations between FCM and HPC data should not be expected.
However, Hoefel et al. (2003) correctly argued that if a statistical
relationship between FCM and HPC data existed, it would facilitate
easier incorporation of rapid FCM methods in the routine water
analysis sector. Along these lines, a host of studies compared the
findings from new/rapid methods with HPC data, usually reporting
poor correlations (e.g., Hoefel et al, 2003; Siebel et al., 2008;
Burtscher et al.,, 2009; Nescerecka et al., 2014). These studies
were often limited in amount of data and variety of water samples.
Thus, for the purpose of this review, the largest dataset (n > 1,800)
to date was compiled comparing HPC results with FCM results for a
variety of water samples spanning a decade of drinking water
research. The dataset consists of groundwater and surface water
used for the production of drinking water, samples collected during
water treatment, finished drinking water and samples of drinking
water networks and household installations, from both chlorinated
and non-chlorinated waters from four European countries. HPC
values were measured using the routine methods prescribed by the
different local drinking water legislation, namely The Netherlands
(PCA, 22 °C, 72 h), Switzerland (PCA, 30 °C, 72 h), Latvia (PCA, 36 °C,
72 h) and Belgium (YEA, 22 °C, 68 h). While not identical, we
believe that these HPC methods were sufficiently similar to enable
detection of correlations and trends should they exist. FCM-TCC
was in all cases based on SYBR Green I staining as described by
Hammes et al. (2008) or Prest et al. (2013), FCM-ICC was based on
an additional viability staining with propidium iodide for mem-
brane integrity, as described by Nescerecka et al. (2014) or Van
Nevel et al. (2013b). The dataset comprises unpublished data
from accredited drinking water analysis laboratories in Switzerland
and The Netherlands (1,467 data points) as well as from published
data (355 data points) (Koetzsch and Sinreich, 2014; Nescerecka
et al.,, 2014; Prest et al., 2014; Sinreich et al., 2014) and on-going
research projects (1,138 data points).

The overall dataset shows extremely weak correlation between
either FCM-TCC and HPC (Kendall correlation test: R* < 0.1;
p < 0.001, T = 0.20) or FCM-ICC and HPC (Kendall correlation test:
R? < 0.1; p < 0.001, T = 0.25) (Fig. 5). On average, less than 1 out of
3,000 cells (or 0.032%) detected with FCM was detected by HPC.
These correlations did not improve substantially when the data was
clustered by country/method, by chlorinated or non-chlorinated
water type, or by source water vs. drinking water (data not
shown). While the poor correlations were not particularly
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surprising considering the large numerical discrepancy between
HPC and FCM data, it raises a problematic issue. We discussed
above that HPC and FCM methods are used for the same purpose in
drinking water monitoring (Table 2; Section 4). Hence, the lack of
any meaningful correlation between these two variables suggests
that they do not provide the same information and thus should not
be used for the same purpose. One may argue that the methods
provide different (and potentially complimentary) information and
can be used in concert with each other. However, given the practical
and financial constraints faced by water utilities and routine labo-
ratories, it is highly unlikely that the combined use of two micro-
biological methods for general water quality analysis would find
sufficient traction beyond a transitional period.

7. FCM data correlate strongly with intracellular ATP data

Although FCM and HPC did not have a strong correlation due to
the constraints and bias of the plating method, cultivation-
independent methods should, in theory, be complimentary or in
agreement. ATP measurment is one such method that is often
promoted for drinking water analysis (Hammes et al., 2010a; van
der Wielen and van der Kooij, 2010; Nescerecka et al., 2016b) and
intracellular ATP data was previously shown to correlate strongly
with FCM-ICC data (Hammes et al., 2010a). This correlation occurs
even though these two independent methods differ considerably.
ATP is a bulk measurement of the ATP molecule that is unique to all
living organisms, while FCM is a single cell method that distin-
guishes viability states in bacteria based on the reaction of fluo-
rescent dyes with the cells (Fig. 4). Some studies argued that ATP
measurements are less sensitive than FCM to small changes (Liu
et al., 2013b), but more useful when particles, clusters and/or bio-
films are measured (Liu et al., 2013a). For the purpose of this review
we compared FCM-ICC and intracellular ATP measurements, based
on a large dataset (n = 1,441) of samples collected over a decade
from different water types in different studies (Fig. 6). This dataset
is a subset of the data shown in Fig. 5. To enable comparison,
intracellular ATP analysis of all samples shown here was done ac-
cording to a similar protocol with reagents from a single supplier
(for details, see Hammes et al. (2010a) and Prest et al. (2014)), and
all FCM-ICC analysis was done with the same protocol (described
above). Statistical analysis confirmed the strong correlation be-
tween ATP and FCM-ICC (p < 0.001 according to the Kendall
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Fig. 5. Comparison between flow cytometry total cell concentration (FCM-TCC) and heterotrophic plate count (HPC) results (A) and intact cell concentration (FCM-ICC) with HPC
results (B) in a broad range of water samples. Samples originate from different (non-)chlorinated water treatments, including source, treatment and distribution network samples
(FCM-TCC: n = 3,675, FCM-ICC: n = 1,835). It is clear that the correlation between HPC and FCM-TCC or FCM-ICC is very weak (R? < 0.1 for linear regression in both cases).
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Fig. 6. The comparison of flow cytometry intact cell concentration (FCM-ICC) with
intracellular adenosine tri-phosphate (ATP) concentrations in water samples. Samples
originate from different chlorinated and non-chlorinated systems, including source,
treatment and distribution network samples (n = 1,441). There is a clear correlation
between both parameters, which is expected since both methods are a direct assess-
ment of potentially viable bacterial cells, either intact or active.

correlation test, T = 0.60; R?> = 0.73 for linear regression). While
some correlations between FCM data and intracellular ATP data
have been shown in previous studies (e.g., Nescerecka et al., 2014),
such a large collection of data from diverse samples and studies has
not. Both intracellular ATP and FCM-ICC measurements were pre-
viously argued to represent the majority of viable bacteria in
drinking water (Hammes et al., 2010a; van der Wielen and van der
Kooij, 2010). The overall correlation strongly suggests that both
these cultivation-independent variables may well be used for the
same purpose and that conversion factors can be employed to
broadly relate intracellular ATP data with bacterial cell concentra-
tions (or vice versa) when only one method is used.

8. Applying FCM for routine microbiological water
monitoring

FCM cell concentrations can be used in routine monitoring,
similarly to HPC, as a meaningful process variable. For a water
utility, this would typically mean characterising spatial variability
(e.g., source, treatment steps and various locations in the network)
(e.g., Vital et al., 2012; Nescerecka et al., 2014), characterising short
and long-term temporal variability (e.g., hours, days, weeks,
months at each location) (e.g., Ho et al., 2012; Besmer and Hammes,
2016) and detecting potential problematic situations. However, due
to the range of different factors (source water type, treatment
processes, environmental conditions) that affect microorganisms in
water, it does not make sense to set a universal absolute upper limit
for FCM cell concentrations. We argue that it would make more
sense to set the operational goal to “no abnormal change”, as is
currently the case for HPC in many countries (Table 1). This requires
the establishment of a baseline of bacterial concentrations that can
be expected in normal situations and as well as of the natural
fluctuations occurring in a given system (Besmer et al., 2014). This
baseline value will be dependent on: (i) raw water source: surface
water has usually considerably higher cell concentrations
compared to spring- and groundwater (Leclerc, 2003); (ii)

treatment plant design: for example biological filtration is known
for elevating cell concentrations (Hammes et al., 2008); (iii) use of
final disinfection and a disinfectant residual, which lowers (intact)
cell concentrations (e.g., Hoefel et al., 2003); and (iv) seasonal
variations, whereby groundwater tends to be more stable over time
than spring and surface water (Richardson et al., 2009; Pinto et al.,
2014; Prest et al., 2016a). Proper baseline establishment requires
extensive, long term monitoring and in turn allows accurate
detection of deviations (Besmer et al., 2014, 2016a), which should
be evaluated both in relative and absolute changes in bacterial cell
numbers. For example, an increase from 5,000 to 55,000 cells mL~!
(i.e. 1,100% increase) may be considered by some as more alarming
than an increase from 100,000 to 150,000 cells mL™! (i.e. 50% in-
crease), although the absolute increase (50,000 cells mL~!) was in
fact identical. On the other hand, bacteria growth in a distribution
network from 5,000 to 10,000 cells mL~! is the same relative in-
crease (100% increase) as growth from 100,000 to
200,000 cells mL~! (100% increase). However, based on a conver-
sion factor of 107 bacteria grown per pg of carbon (Van Nevel et al.,
2013a), only 0.5 pg-C L' is needed for the first situation, but 20-
times more assimilable organic carbon (ca. 10 pg-C L~1) would be
required for the second example, suggesting the latter situation is
considerably more alarming from a biological stability perspective.
While we expressly do not want to propose upper FCM limit values
for drinking water here, the large data set from multiple studies
presented in Fig. 5 suggests that drinking water typically does not
exceed a value of 500,000 cells mL~ .. The latter value is higher than
95% of the data in Fig. 5, excluding all raw water samples.

Although universal threshold/guideline values may not be sen-
sible for FCM data, we believe that individualised, utility-specific
limits to support decision-making could be established after
detailed monitoring of the particular systems. Implementation of
FCM by water utilities would therefore require several years (e.g.
minimum two years) of parallel FCM and HPC measurements,
thereby building-up a solid database and gaining confidence in the
FCM data from their own system. This effort is, however, worth-
while given the considerable advantages of FCM in comparison
with HPC as discussed in this review.

9. Conclusions

HPC played an important role in drinking water management
and general microbiological quality control over the past century,
but this review questions whether HPC is still the best available
technology for process and general water quality monitoring. We
argue that FCM cell counting is a suitable alternative to replace HPC
for routine microbiological drinking water monitoring for the
following 8 reasons:

1. Abundance: HPC detects considerably less that 1% of the total
bacteria in a water sample and often does not detect the
dominant species, while FCM detects all bacteria that are
present;

2. Relevance: Multiple studies showed that FCM is a meaningful
process variable, providing relevant information on various
drinking water treatment processes and microbiological water
quality changes during distribution — the same application
areas where HPC is routinely used;

3. Speed: FCM results can be available within 15 min of samples
arriving in the laboratory, while HPC incubation typically re-
quires 2—7 days;

4. Reproducibility: Inter-laboratory FCM comparisons have RSD on
cell concentrations below 10%, while single operator measure-
ments have RSD below 3%;
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5. Flexibility: In addition to absolute cell numbers, FCM can provide
information on bacterial viability and bacterial identity based on
different fluorescent dyes and probes;

6. Added value: Multivariate FCM data can be used to create a
unique flow cytometric fingerprint of the bacterial community,
which improves rapid detection of small changes to that
community;

7. Costs: Depending on labour costs and preferred instruments,
FCM costs are equal to or lower than those of HPC from about 15
water samples or more per day;

8. Automation: FCM offers easy automation options, opening
exciting doors on the prospect of fully automated online FCM
analysis.
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