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Abstract

Exploration of an unknown environment is one of the most prominent tasks for

multi-robot systems. In this paper, we focus on the specific problem of how a

swarm of simulated robots can collectively sample a particular environment fea-

ture. We propose an energy-efficient approach for collective sampling, in which

we aim to optimize the statistical quality of the collective sample while each

robot is restricted in the number of samples it can take. The individual decision

to sample or discard a detected item is performed using a voting process, in

which robots vote to converge to the collective sample that reflects best the

inter-sample distances. These distances are exchanged in the local neighbour-

hood of the robot. We validate our approach using physics-based simulations

in a 2D environment. Our results show that the proposed approach succeeds in

maximizing the spatial coverage of the collective sample, while minimizing the

number of taken samples.
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1. Introduction

Robot swarms are gaining importance as the scope of their applications is

getting wider [1, 2, 3, 4, 5]. Different from other types of multi-robot systems,

in swarm robotics no central coordination or knowledge is assumed. Instead,

robots only execute a set of simple behavioral rules and communicate with their5

local neighbors [6]. Impressive collective behaviors can emerge from these simple

rules, while the solution stays fault-tolerant and scalable [7, 8, 9]. Due to the

large number of robots in a swarm, the system can keep functioning even when

a few individuals get damaged. Scalability also results from the fact that robots

only exploit information from their local neighbourhood.10

One of the key tasks, in which swarm robotics offers a potentially cost-

efficient and robust solution is analyzing and mapping of large environments [10],

in which they can cover large areas within limited time periods. Environment

analysis is a fundamental task for different applications. For instance, in the

agriculture domain, environment analysis may be used to map soil quality. [11],15

A robot swarm robot can be used to build a spatial sample of the distribution

of some plant features (e.g. leave color) across a large field, which then can be

used as an indicator for particular crops.

In this paper, we tackle the problem of gathering information about the

spatial distribution of a specific environmental feature using a simulated swarm20

of robots1. Robots, in this study, operate as mobile sensors, which perform

a random walk and decide autonomously on whether to discard or to sample

and upload the locations of detected items to a central system for statistical

analysis. The information gathered by the swarm is referred to as the collective

sample. Note that the central system is used only for the statistical analysis25

of the collective sample, but has no impact on the individual robot’s decision-

making process nor on the constitution of the collective sample that is generated

by the swarm.

1For simplicity, we will refer to the simulated robot as robot throughout the paper.
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Real robots are associated with limited on-board batteries and hence the

number of energy-expensive operations such as a (wireless) upload need to be30

limited. We, therefore, address the problem of collective sampling under the

constraint of a limited sampling budget (LSB). Our optimization goal focuses on

the cost associated with uploading information about the sampled data items

rather than the cost associated of the robot’s travel. In particular, we aim

to design a behavioral decision model for the individual robot that results in a35

collective sample of maximal statistical quality with a minimum number of sam-

ples. Neither the actual locations nor the spatial distribution from which these

locations were sampled are known by the robots. This makes the generation of

a high-quality sample that covers all regions a challenging task. In this paper,

we study the most stringent LSB: we allow each robot to upload only one item.40

Similar to any statistical sampling, collective sampling needs to maximize

the coverage of the problem space (i.e. a 2D physical environment), so that the

statistical distance between the actual item distribution and the distribution

estimated from the collective sample is minimized. Increasing the number of

uploads improves the statistical quality of the sample but needs to be traded off45

with the LSB constraint. Our approach relies on covering the largest set of inter-

sample distances by adopting a local voting mechanism that allows to collectively

decide which robots will upload the location of a detected item. Inter-sample

distances represent a key parameter in several sampling applications, e.g., the

analysis of the T-Cell Receptor Repertoires [12], or gene expressions [13].50

The rest of the paper is organized as follows. In Section 2 we describe the

problem of collective sampling using a homogeneous swarm of robots under the

constraint of limited sampling budget (LSB) and the performance measure we

use to evaluate our results. The behavior of the individual robot is presented

in Section 3, in which we propose a novel approach for efficient exploration and55

information exploitation in sampling unknown environments. Our experimental

configurations are described in Section 4, and the results are discussed in Section

5. We conclude our paper in Section 6.
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2. Problem Description

We consider a system of N homogeneous robots that explore a large and

unknown 2D environment to sample a particular feature, denoted by Ω. The

feature Ω is discrete, thus, consists of a finite number of items M , which are scat-

tered across the environment following a particular spatial distribution P (x).

We define Ω as a static feature, i.e. it doesn’t change over time in any of its

properties such as its spatial distribution, quality level, or others. When a robot

encounters a sample of Ω, it might decide to upload the spatial coordinates of

its current location x. The upload decision is governed by one of the behaviours

defined in the next section. The collective sample uploaded by the robot swarm

is denoted by Scoll.

Scoll = {xKxKxK} K = ‖Scoll‖;K ≤ min(M,N) (1)

where, xK is the coordinate vector of the Kth uploaded item of the feature Ω60

and we impose that each robot cannot upload more than one item. Please note

that allowing the robot to sample more than one item can only improve the

statistical quality of the collective sample. Hence, we have selected the most

challenging setting by limiting the number of samples to one per robot and

benefit from this condition on obtaining an energy-efficient approach in terms65

of the uploading process.

The collective sample Scoll is used to estimate the parameters of the spatial

distribution of the feature Ω. In particular, Scoll is used to estimate the mean µgµgµg

and (diagonal) co-variance ΣgΣgΣg of a multi-modal bivariate Gaussian distribution

with G modes:

P (x| {µgµgµg,ΣgΣgΣg}) =
1

G

G∑
g=1

N (µgµgµg,ΣgΣgΣg) (2)

In this paper, we will restrict the analysis to G = 1 and G = 2 and diagonal

co-variance ΣgΣgΣg. The main goal of our study is to produce a collective sample

Scoll that allows the most accurate estimation of the feature distribution, while

minimizing the total number of uploads. We define the following measures to70

evaluate the efficiency of the collective sampling process at the swarm level:
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• The statistical quality of the collective sample Scoll: the uploaded

samples are a subset of the M items (M ∼ P (x)), which are distributed

over the environment. In order to evaluate the statistical correctness of

the distribution Q(x) estimated from the collective sample Scoll, we use

the Kullback-Leibler (KL-) divergence [14]. KL-divergence is a well-known

measure in information theory [15, 16] that is given by:

DKL(P ||Q) =

∫ ∞
−∞

p(x)log
p(x)

q(x)
dx (3)

where P is the actual spatial distribution of the data items and Q is

the distribution that is estimated based on the sample uploaded by the

robots. The distance is a non-negative measure that is zero when the two

distributions are identical.75

• The upload percentage: is a global measure that emerges from the

autonomous decisions of the individuals whether to upload or to discard

items, and it is computed as follows:

δScoll
=
K

M
(4)

where K is the number of uploads, and M is the total number of items

of feature Ω scattered over the environment (K ≤ min(M,N)). The

M items in the environment are a sample of the original distribution P .

Therefore, the best estimate Q that the swarm can possibly obtain, is by

sampling all of the M items. The upload percentage is used to indicate80

the percentage of knowledge obtained about the feature by reporting the

number of uploaded items over the total number of items. This metric

can be used as an indicator of the efficiency of the swarm performance in

terms of energy. Since in practical applications, such uploading operations

are generally expensive in terms of energy, limiting the number of uploads85

is a desired energy goal.
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3. The individual uploading behavior

In our proposed approach, to make an upload/discard decision, each robot

exploits the limited information sensed while exploring the environment, in ad-

dition to the information shared by its local neighborhood. The local neighbor-90

hood includes all robots that are within the communication range and are in

line-of-sight. The upload decision is made probabilistically, since no individual

has a complete knowledge of the environment nor of its current conditions. In

our study, robots have no knowledge on the parameters of the spatial distribu-

tion and on the size of the environment. Yet, the collective sample Scoll needs95

to (i) provide the widest possible spatial coverage of sample points, and (ii) re-

flect the distribution of inter-sample distances. In the following, we propose a

Collective Sampling Controller (CSC) that aims to achieve these requirements

under a Limited Sampling Budget (LSB) of one item per robot. We also present

two simpler variants of this controller that we will use as benchmarks in our ex-100

periments

Collective Sampling Controller (CSC): The CSC operates in three phases:

1. The exploration phase: in which robots explore the environment for a

period of δe using a diffusion behavior that allows the swarm to maximize

its coverage. To help first reaching a maximum coverage, robots are not105

allowed to stop on data items in case they detect any during this phase.

The diffusion behavior is inspired by diffusion models of gas particles, in

which the particles move from spaces with high concentration to spaces

with low concentration and hence tend to fill the whole space [17]. In our

algorithm, obstacles are understood as gas particles and the robot tends110

to move away towards spaces with lower concentrations. This tendency

results in two outputs: obstacle avoidance and maximum coverage. We

implement the diffusion behavior as follows. In each simulation step, the

robot accumulates the vectors extracted from the readings of its proximity
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sensors2. Each reading has a value and an angle to indicate both the115

relative distance and the relative angle to the obstacle perceived through

that sensor. The accumulated vector is used as an indicator towards the

most free direction—i.e. the space with lowest concentration. Different

from localized motion models such as Brownian motion [18], we preserve

the same direction and move in a straight line when no obstacles (or other120

robots) are sensed. This allows the robots to diffuse and increase the

swarm exploration coverage.

Pseudo-code of the behavior in this phase is shown in Alg. 1.

Algorithm 1: The algorithm followed by the individual robots in our

physics-based simulations to explore (diffuse in) their environment.

1 initialize the accumulated proximity vector v = (x = 0, y = 0);

2 for i=1, i ≤ 24 do

3 x = sensor(i).value * cos(sensor(i).angle);

4 y = sensor(i).value * sin(sensor(i).angle);

5 v.x = v.x + x;

6 v.y = v.y + y;

7 angle = atan2(v.y, v.x);

8 length = sqrt(v.x*v.x + v.y*v.y) / 24;

9 if length < threshold then

10 keep moving straight with linear speed 5 m/sec;

11 else

12 turn towards the free direction using the accumulated proximity

vector v;

2. The detection phase: robots use this phase to select the data items, for125

which they will make the decision to upload or discard. After the explo-

ration phase, robots are assumed to have achieved the maximum possible

2The robot used in our study has 24 proximity sensors. Details are provided in the next

section.
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coverage, and therefore are ready to start marking the nearest items for po-

tential upload. This phase lasts for a period of δd and in this phase robots

continue applying the diffusion behavior that enables obstacle avoidance130

and spreading-out but they are now allowed to stop on data items.

3. The exploitation phase: robots which have detected data items in the

previous phase, will take in this phase an individual decision to upload or

discard the location x of its detected item. This decision is taken after a

local voting procedure—i.e. across the robot’s neighborhood.135

The voting procedure is illustrated in Fig. 1. First, each robot i that has

detected a data item computes its distance dij to all its local neighbors

j —i.e. robots within its communication range—that have detected data

items as well. We will explain in Sec. 4 how such relative distances are

computed in our physics-based simulations.140

As mentioned above, one of the design goals of the voting process is to

maximize the coverage over the inter-sample distances. This is achieved by

allowing each robot to uniformly sample D ≤ ||Ni|| (||Ni|| is the number

of robots in the local neighborhood of robot i) values dx within the range

[min(dij),max(dij)], where dij denotes the set of all distances between145

robot i and its neighbours j.

1

d13

d15

d14

d16
d17

Voting	D neighbors

d16

d14

Uniform	distance	sampling

Distance

Sample	D distancesMeasure	distances

5
4

3

76

1

5
4

3

76

Figure 1: The voting mechanism in the CSC controller. Each robot samples uniformly from

the range of distances computed with neighbours, who have detected an item. The robot

votes for the neighbours whose distances are the closest match to the sampled distances.
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Each robot will now vote for the D neighbors of which the actual distance

dij is most close to one of the values dx that were uniformly sampled. In

particular, each sampled distance dx is mapped to the neighbor j from

the neighborhood Ni of robot i as follows:

Map(dx) = j, where |dx − dij | < |dx − dir| ∀r ∈ Ni,r 6= j, (5)

By uniformly sampling from the interval of actual distances, all inter-item

distances have the same probability to be included in the robot’s sample

(and hence to be a potential uploaded). Since every robot can upload

one data item at most, these sampling and voting mechanisms allow the150

uploaded data item locations to have a higher chance to represents all

inter-sample distances.

The robot sends its votes to its selected neighbors. Upon receiving a vote,

the receiver increases its tendency to upload the location of the data item

it detected (and stopped on), see Fig. 1.155

When the number of votes received by a robot is higher than a predefined

threshold ψ, the robot decides to upload, otherwise it doesn’t. This mech-

anism is inspired by the Response Threshold Model (RTM), a well-known

approach in robot swarms [19]. In this model, a robot will decide to switch

from its current option A to option B if a stimulus value crosses a partic-160

ular threshold (and vice versa). In our specific case, option A is to not

upload the detected item, option B is to upload it, and the stimulus is the

number of votes received by the robot. When the number of votes exceeds

the threshold, the robot uploads. One of the main challenges in applying

RTM is to properly set the threshold. In many studies this threshold is de-165

fined to be static. The threshold value results from a series of simulations

and fine-tuning processes. Whereas in some other studies the threshold is

dynamic and is adapted to the dynamics of the task environment. In our

study, we use a static threshold ψ, the value of which we have calibrated

using a set of initial simulations. The pseudo code of the CSC is given in170
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Alg. 2:

Algorithm 2: The algorithm followed by the individual robots in our

physics-based simulations to generate the collective sample.

1 initialize parameters;

2 while current time ≤ δe do

3 Explore the environment using

4 a) Diffusion random walks;

5 b) Obstacle avoidance;

6 while (current time > δe) and (current time ≤ δe + δd) do

7 Seek data items using

8 a) Diffusion random walks;

9 b) Obstacle avoidance;

10 if a data item is detected then

11 Mark data item (stop on it);

12 Broadcast a notification to the neighborhood;

13 if robot i has detected an item then

14 Compute Euclidean distances to all neighbors dij ∀j ∈ Ni, where Ni

is the set of neighbors of robot i, which have detected data items;

15 Sample D distances dx ∼ U [min ({dij}) ,max({dij})];

16 Map each dx to a neighbor of robot i using Eq. (5);

17 Send votes to all selected neighbors;

18 Count number of votes from neighbours;

19 if number of votes > ψ then

20 Upload data item;

Finally, in case of generalizing our algorithm to allow the robot to sample

more than one data item (as mentioned above, this can only improve the statis-

tical quality of the collective sample), the algorithm will iterate over the second175

and third phases, since the exploration phase is needed only once. Furthermore,

our algorithm can be extended easily to 3D environments, because the robot’s
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upload/discard decisions are taken based on local interactions. Surely, when

dealing with 3D environments, the robot’s random walk behavior needs to be

adapted; in particular, the sampling process of the random angle which the180

robot uses when performing obstacle avoidance.

3.1. Benchmark

In order to assess the importance of the exploration and exploitation phases,

we also define two simpler controllers that we will use as benchmark to evaluate

the performance of the CSC controller.185

Always-Uploading Controller (AUC): no exploration phase is used.

Robots perform a random walk using the diffusion process explained above and

upload the first item detected. No information is exchanged with the robot’s

neighborhood.

The AUC may be useful for tasks in which a minimum amount of data items190

needs to be uploaded within a specific deadline. The downside of this controller

is that most of the robots will upload at the region with a high number of data

items that is nearest to their starting location. Under the constraints of LSB

and swarm size N , the statistical quality of the collective sample Scoll is likely

to drop, since the robots will concentrate their uploads at specific spots, rather195

than enlarging the coverage of their collective sample.

Blocked-by-Neighbor Controller (BNC): this controller exploits the neigh-

borhood’s information to maximize the spatial coverage of the collective sample.

A robot that detects an item will send a blocking signal to its local neighbor-

hood. A robot will only upload an item if it is not in the local neighborhood of200

an uploading robot, otherwise, it will continue exploring the environment fur-

ther. By blocking uploads in the local neighborhood, we reinforce exploration.

BNC maximizes the spatial coverage of the collective sample Scoll under two

limitations (i) the swarm size N and (ii) the duration of the experiment. When

the average distance between data items is smaller than the robot’s communica-205

tion range, BNC fails to maximize the spatial coverage of the collective sample

Scoll, due to the high number of blocking events by the neighbors. This affects
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negatively the statistical quality of the collective sample.

4. Experimental Setup

We run simulations with N = 100 robots distributed over a rectangular 2D210

arena. The number of robots N = 100 was selected so that the average time

robots spend in obstacle avoidance is smaller than the average time spent in

other tasks (e.g., exploring, detecting, etc.). While keeping N fixed, we vary

the number of items M over the range [20 − 200]. This allows us to study

the collective dynamics for different ratios of N to the number of data items.215

We simulate a swarm of Footbots3 using ARGoS—a state-of-the-art simulator

for large-scale swarms that provides a high level of accuracy in simulating the

robots’ physics and dynamics. The Footbot has 24 proximity sensors to sense

obstacles, and we use its range-and-bearing system (sensor and actuator) to

(i) exchange messages relying on line-of-sight communications and (ii) to extract220

the relative distance to the message source (in centimeters)—this is how the

robots compute the relative distance to their neighbors as shown in Fig. 1.

Differently, the locations of the data items are assumed to be available for

the simulated robots. ARGoS doesn’t offer any simulated localization system,

besides the simulated Footbot is not equipped with any localization feature.225

However, in practice we assume that an absolute frame reference can be used

or other mechanisms can be applied such as light emitting, where a top camera

system can be used to extract the different locations of light.

We test the performance of our proposed controllers using a unimodal as

well as a bimodal Gaussian distribution to sample the location of the M data230

items at the beginning of the experiment. The macroscopic performance of the

swarm is measured using the KL-divergence Eq. (3) and the upload percent-

age Eq. (4). Since the exploitation phase involves only communication between

3A wheeled robot used in the Swarmanoid project. It is equipped with 24 proximity sensors

distributed around its perimeter, camera, and range-and-bearing communication system. It

moves in the simulation at a speed of 5 cm/s.
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agents, whereas the exploration and the detection phases involve agent motion,

and because of the significant difference between communication speed and mo-235

tion speed, the length of the first two phases is significantly larger than the

length of the exploitation phase. The exact split of the phases length is com-

puted based on the duration it may take the robot to travel along the arena

diagonally. This time is used to define the duration of the two phases, whereas

the rest of the time is assigned to the exploitation phase (details are given in the240

following sections for each of the two arenas). Our reported results for all exper-

iment configurations are averaged over 30 runs. The feature Ω is represented as

a group of colored circles scattered across the arena that can be detected using

the color sensors at the bottom of the Footbot. The diameter of the circle is set

to 10 cm. The diameter of the Footbot is 17 cm, so only one robot at a time can245

be over a particular circle. We also set the communication range of the robot

to 1 m.

We fit Scoll to a multi-modal bivariate Gaussian with equal weights (as in

the right-hand side of Eq. (2)). However, we do not assume the algorithm to

know the number of Gaussians beforehand. Instead, we first apply k-means250

clustering [20] on Scoll. As we will see in the experiments, in some scenarios

our fitting algorithm estimates a single modal distribution rather than a bi-

modal. The parameters of the multi-modal bivariate Gaussian (µgµgµg and ΣgΣgΣg) are

estimated from the samples Scoll. The KL-divergence computes the distance

between the actual distribution that was used to distribute the items before the255

start of the experiment, and a fit of the collective sample.

Unimodal Gaussian: We use a 10 × 8 m2 rectangular arena as shown

in Fig. 2. We set the length of each experiment with a unimodal Gaussian to

3000 time units (300 simulated seconds). The speed of each simulated robot

is 5 cm/s. Since the diagonal of the arena is appx. 1250 cm. It will take the260

robot appx. 250 simulated second to travel that distance. Hence, we set the

duration of the exploration and detection phases to 0.8 of the total experiment

time (0.8 × 300 = 240 simulated second), and we split this duration equally

between the two phases. Whereas the exploitation phase is assigned the rest of
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Robots	start	location

200	item	à Gaussian([0,0],[2,2])

(a)

Robots	start	location

200	item	à Gaussian([0,0],[0.4,0.4])

(b)

Figure 2: Unimodal Gaussian distribution of 200 data items, (a) unclustered configuration,

and (b) clustered configuration.

the experiment time—i.e. 0.2 of the experiment time. Table. 1 summarizes the265

parameters used for the unimodal Gaussian. In all experiments with a unimodal

Gaussian, the mean µgµgµg is set to (0,0), the center of the arena. The value of

the co-variance ΣgΣgΣg (diagonal matrix) will then determine the spread of the M

items. In our experiments, we will test two configurations: an unclustered and

clustered configuration. For the unclustered configuration, shown in Fig. 2, we270

set all elements of the 2x2 diagonal matrix ΣgΣgΣg to 2 m. Consequently, according

to the 3-σ rule [21], the value of 2 m used for the standard deviation allows the

data items to cover a squared area of 6× 6 m2 with a probability of 0.997.

Differently, for the clustered configuration of the unimodal Gaussian, we set all

diagonal elements of ΣgΣgΣg to σ = 0.4 m. Hence, the data items cover a squared275

area of 1.2× 1.2 m2 with a probability of 0.997.

Bimodal Gaussian: we use a 16× 16 m2 square arena as shown in Fig. 3.

The arena for the experiments with the bimodal Gaussian is larger than in the

case of the unimodal Gaussian because we aim to preserve the inter-sample dis-

tances between the data items while keeping the same value for the standard280

deviation of a single Gaussian mode. The inter-sample distances is a critical

parameter that influences directly the intensity of the collisions between the

robots while detecting the data items. Therefore, we increased the arena size
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Parameter Value

Arena dimensions 10× 8 m2

Experiment time 3000 time steps (300 s)

Total number of items M 20-200 (steps of 10)

Swarm size N 100 robots

Linear speed of robot 5 cm/s

Unclustered Gaussian µ = (0, 0) and σ = 2

Clustered Gaussian µ = (0, 0) and σ = 0.4

Duration of exploration phase δe 0.4 of the experiment time

Duration of detection phase δd 0.4 of the experiment time

Duration of exploitation phase δp 0.2 of the experiment time

Size of voted neighbors D 0.5 of the local neighborhood

Uploading threshold φ 0.1 of the neighborhood size

Table 1: Table of parameters for the experiments executed with unimodal Gaussian.

in the bimodal experiment setting. Similar to the computations done for the

unimodal Gaussian, the diagonal of the arena in the case of the bimodal Gaus-285

sian is appx. 2200 cm. Thus, it will take the robot appx. 440 simulated second

to travel that distance (robot’s speed is 5 cm/s). Hence, we set the duration

of the exploration and detection phases to 0.8 of the total experiment time

(0.8× 550 = 440 simulated second), and we split this duration equally between

the two phases. Whereas the exploitation phase is assigned the rest of the ex-290

periment time—i.e. 0.2 of the experiment time. In all experiments with bimodal

Gaussian distributions, we use a value of σ = 2 for all elements of the diagonal

co-variance matrix ΣgΣgΣg. The means of both modals are placed on a diagonal

of the arena. We vary the distance between the means of both modals and

discern between a close-means and far-means scenario. In the latter scenario,295

the M items will be clustered around the two means. For both scenarios, we

introduce two configurations: (i) non-symmetric: the means of the Gaussians
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are placed on the diagonal of the arena from the bottom left to the top right

corner; (ii) symmetric: the means of the Gaussians are placed on the diagonal

from the bottom right to the top left corner. Hence, the spatial distribution of300

the M items looks symmetric from the deployment location of the robots—i.e.

the bottom left corner of the arena. Example settings of all four configurations

are shown in Fig. 3. The parameters used in the experiments of the bimodal

distribution are given in Table. 2.

Robots	start	location

200	items
100	à Gaussian1	à ([-3,-3],[2,2])
100	à Gaussian2	à ([3,3],[2,2])

(a)

Robots	start	location

200	items
100	à Gaussian1	à ([-5,-5],[2,2])
100	à Gaussian2	à ([5,5],[2,2])

(b)

Robots	start	location

200	items
100	à Gaussian1	à ([-3,3],[2,2])
100	à Gaussian2	à ([3,-3],[2,2])

(c)

Robots	start	location

200	items
100	à Gaussian1	à ([-5,5],[2,2])
100	à Gaussian2	à ([5,-5],[2,2])

(d)

Figure 3: Sample scenarios for the different settings used in our experiments with bimodal

Gaussian distributions of Ω. (a) near-means, non-symmetric; (b) far-means, non-symmetric;

(c) near-means, symmetric; (d) far-means, symmetric.
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Parameter Value

Arena dimensions 16× 16 m2

Experiment time 5500 time steps (550 s)

Total number of items M 20-200 (steps of 10)

Swarm size N 100 robots

Linear speed of robot 5 cm/s

Near-means non-symmetric µ1 = (−3,−3), µ2(3, 3) and σ1 = 2, σ2 = 2

Far-means non-symmetric µ1 = (−5,−5), µ2(5, 5) and σ1 = 2, σ2 = 2

Near-means symmetric µ1 = (−3, 3), µ2(3,−3) and σ1 = 2, σ2 = 2

Far-means symmetric µ1 = (−5, 5), µ2(5,−5) and σ1 = 2, σ2 = 2

Duration of exploration phase δe 0.4 of the experiment time

Duration of detection phase δd 0.4 of the experiment time

Duration of exploitation phase δp 0.2 of the experiment time

Size of voted neighbors D 0.5% of the local neighborhood

Uploading threshold φ 0.1 of the neighborhood size

Table 2: Table of parameters for the experiments executed with bimodal Gaussian.

5. Results and Discussions305

5.1. Unimodal distribution

5.1.1. Unclustered configuration

Fig. 4 demonstrates the fit of the distribution extracted from the collective

sample Scoll that was collected by the three types of controllers and for differ-

ent item densities (from left to right: M = {20, 50, 100, 150, 200}). For each310

controller, the upper graphs show the locations of the robots who decided to

upload their detected items. The bottom graph shows a histogram of the lo-

cations along the X-axis and the fitted distribution. While Fig. 4 gives a more

qualitative insight, in Fig. 5, we plot the two performance measures that were

described in section 2.315
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When M > 50, the CSC controller provides the lowest KL divergence. The

BNC controller provides slightly worse KL-divergence. Notably, the KL diver-

gence of the AUC controller degrades rapidly with increasing values of M . This

observation can be explained in light of the larger number of items available for

the robots to sample nearby their starting location. With the AUC controller,320

robots will stop and sample the first item detected by each robot. Therefore, the

collective sample becomes biased with a shifted mean (to negative coordinates).

This is clearly visible in Fig. 4b.

The KL-divergence of the fitting in case of the collective sample generated

by the BNC controller is significantly better than the KL-divergence of the fit-325

tings from the AUC controller, and similar to the fittings of the CSC controller.

This performance of BNC can be explained by the large spatial coverage of

the collective sample that this controller generates, particularly for an unclus-

tered distribution of the items. Two features of BNC may be responsible for

the slightly decrements in performance for higher values of M in comparison330

to CSC: (i) when inter-item distances are smaller than the robot communica-

tion range, those are never sampled by the BNC controller, and such distances

are more frequent with higher values of M . (ii) The more items there are,

the more neighbors will sample, and thus the more blocking actions are taken.

Consequently, robots will spend a long time searching for items that they can335

sample and upload without being blocked by a neighbor. This may result in the

experiment finishing before a large-enough sample is generated.

The upload percentage, as shown in Fig. 5b is slightly higher for the CSC

controller than for the BNC controller. The AUC controller results in the highest

upload percentage. Remarkably, the AUC upload percentage decreases with340

higher values of M . This is due to spatial interferences (i.e. obstacle avoidance)

between robots that are trying to upload items nearby their starting location,

and robots that are trying to move out.
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5.1.2. Clustered configuration

The results of this configuration are shown in Fig. 6 and Fig. 7. For this con-345

figuration, the AUC and BNC both generate a biased distribution with a shifted

mean, specifically for high item densities, see Fig. 6b,c. For AUC, similar to the

unclustered configuration: the part of the cluster that is nearer to the robots’

starting location will be over-sampled and the mean is shifted to negative values.

In the case of BNC, the shifted mean results from the robots approaching first350

the cluster area near to their starting location. Since the robot’s communica-

tion range covers a large part of the cluster, these robots will then block other

robots who try to sample from other locations of the cluster. Therefore, the

area of the cluster that is covered first is the one with the highest probability

to be sampled. CSC performs best in the case of clustered item distribution,355

thanks (i) to the exploration and detection phases, in which the robots detect

the cluster of data items, and (ii) to the exploitation phase that balances both

the locations and the number of samples collected, see Fig. 6a.

As shown in Fig. 7a, the estimated distributions of the samples generated

by the CSC result in the lowest KL-divergence. AUC generates again the worst360

samples: the KL-divergence decreases almost linearly with the item density. In

terms of upload percentage, shown in Fig. 7b, BNC is the most economic con-

troller. However, we can notice that the upload percentage of BNC drops with

increasing item density due to the blocking effects. As a result, the size of the

collective sample will decrease and the KL-divergence will increase accordingly.365

Another remarkable result is the stabilization of the upload percentage of CSC

around 0.3 for higher values of M . This is a clear indicator of the efficiency

of CSC by converging to an adequate sample size even when a large amount

of items is available to sample from. Finally, the AUC has the highest upload

percentage, but this decreases with M due to spatial interferences between the370

robots in the small area where the items are clustered.

19



5.2. Bimodal distribution

5.2.1. Near means, non-symmetric

Fig. 8 illustrates the fitting of the distribution generated for the bi-modal

Gaussian based on the estimated means and standard deviations extracted from375

the collective sample using each of the three controllers. In Fig. 8b, it is obvious

that the collective sample generated by the AUC covers mainly the Gaussian

near to the robots’ starting location (µ = (−3,−3), σ = 2) rather than the far

Gaussian (µ = (3, 3), σ = 2). Hence, the fitting generated for the near Gaussian

is significantly better than the far one, and this increases with increasing the380

item density.

A similar problem, although less significant, is observed for the BNC con-

troller, as shown in Fig. 8c. The CSC provides the best coverage of both Gaus-

sians, as shown in Fig. 8a. Nevertheless, the algorithm (i.e. k-means clustering)

that is used to derive the distribution from the collective sample was not ef-385

ficient enough in distinguishing between the two Gaussians. Instead, it was

mostly interpreted as one Gaussian.

Due to all reasons explained above, none of the three controllers has reached

a high accuracy in the estimation of the item distribution (Fig. 9c), even when

CSC has reached a considerably wider coverage and both BNC and CSC have390

uploaded significantly fewer items than AUC Fig. 10.

However, CSC shows a better KL-divergence than BNC for the Gaussian

furthest from the starting location. Both controllers are better than AUC, see

Fig. 9a, for which the KL-divergence even degrades with increasing item density.

For the Gaussian nearest to the robots’ starting location, CSC preserves its395

KL-divergence. AUC is the best controller here, since all robots sample for the

Gaussian near to their starting location, see Fig. 9b.

5.2.2. Near means, symmetric

For the symmetric configuration with near means, no bias is found in the

sampling process performed by all three controllers. see in Fig. 11. All con-400

trollers generate a wide-enough sample of both Gaussians, thanks to the equal
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distance of the means from the robots’ starting location.

Nevertheless, due to the means being close to each other, the k-means clus-

tering algorithm was not able to recognize the bi-modality in the item distribu-

tions, and hence the KL-divergence values are high for all controllers, see Fig. 12.405

The percentage of uploaded items is similar for CSC and BNC and decreases

with higher item densities. AUC results in the highest upload percentage, see

Fig. 13. Consequently, for this particular settings of near means with symmetric

configuration, BNC outperformed CSC.

It is however important to note that the item distribution of each Gaussian410

can be categorized as unclustered with respect to the robots’ communication

range. In case the Gaussian distributions would have had a smaller variance,

CSC and not BNC would have been the best controller (see Sec. 5.1).

5.2.3. Far means, non-symmetric

Fig. 14 shows the fitting of the distribution estimated from the collective415

sample that is delivered by each of the three controllers. Similar to the case of

near means, CSC is able to sample both Gaussian distributions. An interesting

observation though is that the furthest Gaussian is slightly better covered than

the near one. This is due to the fact that by the end of the exploration phase,

most robots have reached the furthest Gaussian but there was not enough time420

to further diffuse and generate the most balanced coverage over the whole arena.

Nevertheless, the effect of this parameter setting is not fundamental in the

performance of CSC, since wide-enough samples of both Gaussian are attained.

The collective sample delivered by AUC is biased to the Gaussian nearest

to the robots’ starting location, with a considerably sparse sampling of the425

furthest Gaussian. This effect becomes even more accentuated for higher item

densities: the majority of the robots aggregates at the nearest Gaussian. BNC

suffers from the same biased sampling, however to a lesser extent thanks to the

blocking process applied by the neighbors, which stimulates a wider dispersion

of the robots across the environment.430

The CSC controller results in a fairly low KL-divergence values for both the
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near and the far Gaussian, see Fig. 15a,b. For AUC, the KL-divergence improves

significantly for the near Gaussian due to the over sampling performed at that

cluster, see Fig. 15b. BNC also performs the best for the Gaussian nearest

to the robots’ starting location and positions itself between AUC and CSC.435

When averaging the KL-divergence over both Gaussians, all controllers perform

similarly, in terms of this perfromance measure.

In terms of the upload percentage, CSC has the best performance, even

better than BNC. This remarkable result can be explained by the minimiza-

tion mechanism applied during the exploitation phase of the CSC. For BNC,440

the blocking by neighbours effect is minimal because the two Gaussians are

far-enough from each other. For higher item densities, the blocking intensity

increases and hence the upload percentages of CSC and BNC start to converge.

5.2.4. Far means, symmetric445

Finally, in this configuration the three controllers generate collective samples

that lead to a good and similar fitting, as shown in Fig. 17.

As shown in Fig. 18, all controllers achieve a fairly low KL-divergence for

low item densities. For higher item densities, the performance of AUC and BNC

drops while CSC sustains its the performance. This rather non-intuitive result is450

obtained due to the sampling dynamics of AUC and BNC. When increasing the

item density, more robots will find an item in the area between the two Gaussian

distributions. Thus more items are sampled at that specific area, leading to a

more difficult separation of the two Gaussian distributions by the analyzing

algorithm, and therefore higher KL-divergence values, for those controllers. In455

Fig. 17, the reader can indeed notice the higher intensity of sampling generated

by AUC and BNC over CSC in the area between the two Gaussian distributions.

Regarding the upload percentage, CSC performs equally to BNC and sam-

ples much fewer items than AUC, see Fig. 19.
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6. Conclusion460

In this study, we have investigated the application of robot swarms in sam-

pling environmental features that are spatially distributed over large-scale un-

known environments. This problem is of a high interest when considering future

applications of robotics systems in large-scale environments such as search and

rescue, precision agriculture, and even in-body cell sampling with no external465

control. We have addressed the sampling problem under the constrained of a

limited sampling budget (LSB), that is associated with the limited on-board

capabilities of the robots. We have leveraged our challenge by attempting to

maximize the statistical quality of the collective sample (measured using the

KL-divergence), while minimizing the number of samples taken and limiting the470

number of samples to one by each robot. We have proposed a novel controller

CSC (collective sampling controller), which relies on three phases: exploration,

detection, and exploitation to better search the environment and represent the

inter-sample distances. The performance of CSC was compared to two other

controllers (AUC and BNC) that were implemented as special cases and bench-475

mark for CSC.

Our results show that both the exploration phase and the voting mechanism

used during the exploitation phase facilitate in most cases a highly accurate

estimation of the parameters of the feature spatial distribution (verified using

KL-divergence measure), and/or a high economic sampling (verified using the480

percentage of the items sampled). As a future work, we would like to extend

CSC so that robots become able to decide for the number of voted neighbors

autonomously based on (i) the size of the local neighborhood and (ii) the ex-

periences collected during the exploration phase about the item densities. Fur-

thermore, besides the uploading cost, which we aimed to optimize in this study,485

other cost functions such as the ones account for robots’ travelling costs need

to be taken into account.
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Figure 4: The fitting of the distribution generated from the collective sample associated with

the output of one sampling process for (a) CSC, (b) AUC, and (C) BNC.
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Figure 5: Collective sampling performance metrics for the unclustered unimodal distribution:

(a) KL-divergence, and (b) the percentage of uploaded items.
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Figure 6: The fitting of the distribution generated from the collective sample associated with

the output of one sampling process for (a) CSC, (b) AUC, and (C) BNC.
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Figure 7: Collective sampling performance metrics for the clustered unimodal distribution:

(a) KL-divergence, and (b) the percentage of uploaded items.
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Figure 8: The fitting for bi-modal Gaussian, near means and non-symmetric item distributions,

generated by (a) CSC, (b) AUC, and (C) BNC.
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Figure 9: KL-divergence of the bimodal distribution (near-means, non-symmetric) estimated

from the collective sample (a) the Gaussian furthest from the robots’ starting location, (b) the

Gaussian nearest to the robots’ starting location, (c) the average of KL-divergence over both

Gaussians.
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Figure 10: Percentage of uploaded items for the near-means, non-symmetric configuration.
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Figure 11: The fitting of the sample collected from a bi-modal Gaussians (near means, sym-

metric) by (a) CSC, (b) AUC, and (C) BNC.
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Figure 12: KL-divergence of the bimodal distribution (near-means, symmetric) estimated

from the collective sample (a) the Gaussian on the right side of the robots’ starting location,

(b) the Gaussian on the left of the robots’ starting location, (c) the average of KL-divergence

over both Gaussians.
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Figure 13: Percentage of uploaded items for the near-means, symmetric configuration.
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Figure 14: The fitting for bi-modal Gaussian, far means and none-symmetric item distribu-

tions, generated by (a) CSC, (b) AUC, and (C) BNC.
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Figure 15: KL-divergence of the bimodal distribution (near-means, symmetric) estimated

from the collective sample (a) the Gaussian on the right side of the robots’ starting location,

(b) the Gaussian on the left of the robots’ starting location, (c) the average of KL-divergence

over both Gaussians.
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Figure 16: Percentage of uploaded items for the far means, non-symmetric configuration.
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Figure 17: The fitting for bi-modal Gaussian, far means and symmetric item distributions,

generated by (a) CSC, (b) AUC, and (C) BNC.

37



50 100 150 200

Number of items

0

0.5

1

1.5

K
u

llb
a

c
k
 L

e
ib

le
r 

d
iv

e
rg

e
n

c
e

AUC

BNC

CSC

(a)

50 100 150 200

Number of items

0

0.5

1

1.5

K
u

llb
a

c
k
 L

e
ib

le
r 

d
iv

e
rg

e
n

c
e

AUC

BNC

CSC

(b)

50 100 150 200

Number of items

0

0.5

1

1.5

K
u

llb
a

c
k
 L

e
ib

le
r 

d
iv

e
rg

e
n

c
e

AUC

BNC

CSC

(c)

Figure 18: KL-divergence of the bimodal distribution (near-means, symmetric) estimated

from the collective sample (a) the Gaussian on the right side of the robots’ starting location,

(b) the Gaussian on the left of the robots starting location, (c) the average of KL-divergence

over both Gaussians.
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Figure 19: Percentage of uploaded items for the far-means, symmetric configuration.
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