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Abstract 

A variational approach based on the minimization of complementary energy is developed to determine accurately a 

complete solution for both free-edge stress and displacement distributions of a laminate with arbitrary lay-ups 

(possibly un-symmetric and made of thin plies) under combined in-plane, bending and thermal loading. The key 

idea is partitioning the total stresses/displacements in a laminate with free edges into unperturbed (without free 

edges) and unknown perturbation stresses/displacements caused by the presence of free edges. It enables the theory 

of variational stress-transfer to deal easily with both applied traction and displacement boundary conditions. A 

methodology is introduced to obtain displacement fields for a stress-based variational approach. The resulting stress 

and displacement fields exactly satisfy local equilibrium equations, strain-displacement relations together with all 

traction/displacement boundary and continuity conditions. By comparing the results with those obtained from the 

finite element method, the accuracy and computational efficiency of the developed model, is confirmed.  

Keywords: A. Laminates; B. Stress concentrations; B. stress transfer; C. Analytical modelling.   

1. Introduction 

It is well known that edge effects in laminated composites may lead to unstable growth of ply cracks and 

delaminations [1-5]. In order to prevent/predict such damage mechanisms, it is essential that a reliable methodology 

is developed to determine accurately the three-dimensional (3D) stress/displacement states near free edges caused by 

the mismatch of elastic properties between layers. Therefore, the capability of interlaminar stress analysis in 

laminates with straight free edges has been a major concern and its understanding has evolved over decades, from 

very first approximate shear-lag analysis of Puppo and Evensen [6] in 1970s, to equivalent single-layer (ESL) 

models [7] and more accurate layer-wise (LW) approaches [8, 9]. It is very difficult to find a closed form solution 

for the 3D differential equations of elasticity describing the free-edge effect and satisfying the required traction free 
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boundary conditions and the interface continuity conditions in laminates with general lay-ups. Thus, many 

methodologies have been introduced by making simplified assumptions about the kinematics of displacement fields 

(displacement-based theories based on the principle of minimum total potential energy [10]) or stress fields (stress-

based theories based on the principle of minimum total complementary energy [11]) through the thickness of each 

ply (LW models) or through the thickness of the laminate (ESL models) to reduce the order of the problem to a 2D 

one. The reader is referred to Ref. [12-14] for an extensive literature review about the advances in this field.  

Generally, LW displacement-based theories are simpler and can be easily linked to finite element methods to 

develop a design tool. Moreover, they can provide both stress and displacement fields. However, they cannot exactly 

satisfy the zero traction condition on free surfaces neither stress continuities between the layers, leading to a lower 

convergence rate which might be a concern for the free-edge problem. On the other hand, LW stress-based theories 

can satisfy exactly the traction boundary conditions and stress continuities between the layers which would lead to a 

more accurate and computationally efficient scheme.  

Hashin [15] in 1985, first applied the LW stress-based variational theory to analyze a cracked cross-ply laminate 

under uniaxial tension. Since then, many authors have further enhanced both the accuracy and versatility of the 

variational approach to deal with ply cracking in more complex lay-ups and loading conditions (see Ref. [16-23]). 

Kassapoglou and Lagace [24] in 1986, independently and using a rather different methodology, implemented the 

variational approach to analyze approximately the stress concentrations near free edges under uniaxial loading. 

Kassapoglou [11] (whose approach is the closest to the one developed in the present paper) has extended this 

approach for combined loading cases and bending. In these models [11, 24] exponential functions are assumed and 

the principle of minimum complementary energy is used to obtain expressions for the decay rates. Later, some 

authors have also considered the effects of thermal residual stresses [25] and bending modes of deformation [26]. 

Moreover, Rose and Herakovich [27] have considered more complete stress functions to increase the accuracy of the 

variational approach. A comprehensive literature review of recent developments in stress-based variational 

approaches can be found in Refs. [12, 14] and Refs. [20, 28] for the free-edge and ply cracking stress transfer 

analyses, respectively. The first limitation of the available LW stress-based variational models is that they have not 

made any attempts to obtain the corresponding displacement fields. However, it does not mean that these approaches 

cannot inherently generate the displacement fields. It is mainly due to this fact that the strain-displacement equations 

need not to be considered due to the implementation of the complementary energy principle. Therefore, only stress 
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solutions are provided leading to an incomplete solution. Second, all of the available LW stress-based models akin 

to other methods introduced in this work, are aimed at eliminating the dependence of the stress state on the through-

thickness coordinate of the laminate to make a system of ordinary differential equations as a result of energy 

minimization. Therefore, the accuracy of a developed method depends on the stress state assumed in each ply and 

how these assumptions can be relaxed. Some of the available LW free-edge variational models [25-27] will usually 

face a set of non-homogeneous ordinary differential equations. It is due to this fact that for implementation of the 

complementary energy principle,  the assumed stress field must satisfy the applied traction loading conditions, a 

priori. Therefore, relaxing the assumptions in the stress field will lead to a large number of non-homogeneous 

differential equations which cannot be systematically solved. Due to the lack of a systematic way to formulate the 

equations and their solutions, it is difficult to develop a design tool based on these available variational models [25-

27] and thus, they usually do not manage to reproduce results obtained from very refined numerical methods (e.g. 

FEM) especially close to free edges. Moreover, although most of the experiments dealing with free-edge effect are 

under displacement loading conditions, the stress-based approaches are challenged when dealing with applied 

displacement loads.  

In the current paper, a novel variational model is developed to overcome the mentioned drawbacks and to deal 

with the problem of free-edge interlaminar stress and displacement analysis in laminate strips with general lay-ups 

(possibly made of many thin plies) under in-plane, bending and uniform thermal loading conditions. The analysis 

takes into account the effects of thermal residual stresses [29]. The one single fundamental assumption is that the in-

plane transverse and shear stresses are linear through-thickness of each ply. Akin to the variational models 

developed for ply cracking [15-23], the total stresses/displacements in a composite with free edges are partitioned to 

unperturbed (without free edge) and perturbation stresses/displacements. Therefore, it is possible to consider the 

effects of applied thermo-mechanical loads in the unperturbed state leading to a system of homogeneous differential 

equations that can be solved using standard methods. Moreover, the differential equations are derived in a 

systematic way so that a design tool/software is developed by which the effects of assumptions in the assumed stress 

field can be relaxed by implementing a ply refinement technique [30]. The final results satisfy exactly the local 

stress equilibrium equations, both traction and displacement boundary and continuity conditions and minimize the 

total complementary energy. Moreover, the obtained displacement fields satisfy either exactly or in average sense 

the strain-displacement relations. The numerical results are compared to the available refined finite element results 
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[30-33] for both symmetric and un-symmetric laminates under different in-plane, bending and thermal loading 

conditions showing very good agreement. The method is applied to a thin-ply laminate under a bending load to 

compare the stress transfer mechanisms in thin and typical ply composite laminates. A discussion is also made about 

the assumptions and accuracy of Pagano’s approximate elasticity solution (Reissner variational principle) [34, 35], 

McCartney’s stress transfer methodology [36-38] and the current variational approach to highlight the similarities 

and differences between these theories. It should be noted that the current model is an extension of a recently 

developed model by authors [39] which could only be applied to the analysis of symmetric laminates under in-plane 

loads. 

2. Theoretical Formulation 

Consider a general laminate with arbitrary stacking sequence as shown in Fig. 1. A Cartesian coordinate system, 

located at the center of the laminate, is used where the x, y and z coordinates specify the in-plane axial (loading), in-

plane transverse (normal to free edges) and through-thickness directions, respectively. The locations of N-1 

interfaces between the plies are denoted by z=zi; i=1, 2... N-1. The lower and upper external surfaces are defined by 

z=z0=-h/2 and by z=zN=h/2, where h is the total thickness of the laminate. Moreover, the thickness of the i
th

 ply is 

denoted by hi=zi-zi-1. The angle i defines the orientation of i
th

 ply, measured counter clockwise between the x-axis 

and the fiber direction of the ply. The laminate is long in x direction (L>>W) where 2L and 2W are, respectively, the 

length and width of the laminate (see Fig. 1). 

The in-plane, bending and thermal loads are applied, respectively, in the form of a uniform axial strain xx , an 

axial curvature with respect to the mid-plane (z=0) xx  and a temperature difference ΔT. In the context of classical 

laminated plate theory (CLPT), for a wide and long laminate without any free edges under the assumed loading 

condition, the only nonzero stress terms are,
0( ) 0( ) 0( ), ,i i i

xx yy xy   , where the superscript 0 specifies the infinite 

laminate and the superscript (i), i=1,2,…, N, specifies the number of the ply. It is noted that the terms “unperturbed 

laminate” or “infinite laminate” refer to a long and wide laminate without having any free edges. Then, it is assumed 

that the stresses in the i
th

 ply of the laminate with free edges ( )i

mn  are written as a superposition of the stresses in 

the unperturbed state 
0( )( )i

mn  and some perturbation stress functions 
( )( )p i

mn  appearing due to the presence of the 

free edges. 
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0( ) ( )( , ) ( , ) ( , ),i i p i

mn mn mny z y z y z      (1) 

where m,n=x,y,z. 

Our goal is to find stress and displacement fields which point-wisely satisfy the stress equilibrium equations 

, 0i

mn n    together with the following stress-strain-displacement relations: 

11 12 13 16 1 ,i i i i i i i i i ii
xx xx yy zz xy

u
S S S S T

x
     


      


 
(2) 

12 22 23 26 2 ,i i i i i i i i i ii
yy xx yy zz xy

v
S S S S T

y
     


      


 
(3) 

13 23 33 36 3 ,i i i i i i i i i ii
zz xx yy zz xy

w
S S S S T

z
     


      


 
(4) 

44 452 ,i i i i ii i
yz yz xz

v w
S S

z y
  

 
   
 

 
(5) 

45 552 ,i i i i ii i
xz yz xz

u w
S S

z x
  

 
   
 

 
(6) 

16 26 36 66 62 ,i i i i i i i i i ii i
xy xx yy zz xy

u v
S S S S T

y x
     

 
       
 

 
(7) 

where ui, vi and wi denote the displacement components for the i
th

 layer in the x, y and z directions, respectively, and 

,i i

xx yy   etc., represent the strain components. In addition, the terms 
i

klS  and 
i

k specify the compliance and 

thermal expansion coefficients of the i
th

 layer, respectively. Moreover, the stress and displacement components have 

to satisfy some boundary and interface continuity conditions, as follows: 

1. Zero traction condition on the top and bottom external surfaces z=±h/2: 0xz yz zz     . 

2. Continuity of stresses and displacements at the interfaces between the ply elements (z=zi, i=1,2,…,N-1): 

1 1 1, ,i i i i i i

xz xz yz yz zz zz           and 1 1 1, , .i i i i i iu u v v w w       

3. Zero traction condition on the free edges at y=±W, i=1,2,…,N: 0i i i

yy yz xy     .  

2.1 Stress field construction 
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For a long laminate (L>>W), all stresses will be independent of the x in the coordinate where the straight free edges 

are parallel to the x-axis. The single fundamental assumption of this analysis is that the in-plane transverse and shear 

perturbation stresses of each ply are linear in z but vary arbitrarily along the y-axis, as follows:  

   ( ) * ( ) * 1

1

1 1
( , ) ( ) ( ) , ( , ) ( ) ( ) , .p i p i i

yy i i i xy i i i i

i i i i

z z
y z p y p y y z q y q y

h h z z
     




    


 

(8) 

where 
*( ), ( ), ( )i i ip y p y q y and

*( )iq y are unknown functions of y only. The remaining stress components will be 

derived by satisfying the stress equilibrium equations
, 0i

mn n  , as follows:  

( ) ' 2 *'

1

1
( , ) ( )(1 ) (1 ) ( ) ( ),

2

p i i

yz i i i iy z p y p y F y        
(9) 

( ) ' 2 *'

2

1
( , ) ( )(1 ) (1 ) ( ) ( ),

2

p i i

xz i i i iy z q y q y F y        
(10) 

3 2
( ) '' *'' '

1 3

2 1
( , ) ( )( ) ( )( ) ( 1) ( ) ( ),

2 3 3 2 2

p i i ii i i
zz i i i i i i i

h
y z p y h p y h F y F y

 
             

(11) 

where 

' '

*' *'

1 2

1 1

'' *'' ''
*''

3

1 1

( ) ( )
( ) ( ) , ( ) ( ) ,

2 2

( ) ( ) ( )
( ) ( ) ,

3 2 2

i i
j ji i

j j

j j

ji
j ji k

j k

j k

p y q y
F y p y F y q y

p y p y p y
F y h p y

 

 

   
         

   

    
             

 

 

  

(12) 

and primes denote derivatives with respect to y. It is noted that to derive the equations (9)-(12), use has been made 

of integrating stress equilibrium equations 
, 0i

mn n  , with satisfaction of traction continuities at the interfaces 

between plies. 

It should be noted that the axial strain xx  and curvature xx  are already defined as input loading parameters, thus, 

the perturbation in-plane axial stress will be defined in terms of the other perturbation stress terms using Eq. (2), as 

follows: 
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 

 

0( ) ( )

12 13 16 1

11

0( ) 0( ) 0( )

12 16 1

11

1
,

1
,

i i p i i i i i i i i

xx xx xx xx xx yy zz xyi

i i i i i i

xx xx xx yy xyi

z S S S T
S

z S S T
S

        

     

        

     

 

(13) 

 

 

 ( ) ( ) ( ) ( )

12 13 16

11

1
.p i i p i i p i i p i

xx yy zz xyi
S S S

S
        

(14) 

Before using the principle of minimum complementary energy to find the optimal perturbation functions, the 

constructed admissible stress fields should balance the traction boundary conditions Nyy=Myy=Nxy=Mxy=0 which 

assert the following inter-relationships among perturbation functions:   

* *1
1

1 1

( )
( ) 0, ( ) ( ) 0,

2 3 2 2

N N
i i i i

i i i i

i i

p y h z h
p y p y p y z



 

      
           

      
   

* *1
1

1 1

( )
( ) 0, ( ) ( ) 0.

2 3 2 2

N N
i i i i

i i i i

i i

q y h z h
q y q y q y z



 

      
           

      
   

(15) 

The above equations ensure that the out-of-plane shear and normal stresses (σxz, σyz, σzz) are automatically zero on z 

= ±h/2. Finally, based on one fundamental assumption that the in-plane transverse and shear perturbation stresses of 

each ply are linear in z, the admissible stress fields represented by equations (8)-(14) point-wisely satisfy stress 

equilibriums, through-thickness traction boundary conditions and interface continuity conditions for any 

perturbation functions 
*( ), ( ), ( )i i ip y p y q y and

*( )iq y , i=1…N. Besides, Eq. (15) provides four relations among 

the perturbation stress functions to balance the applied traction boundary conditions and thus, the number of 

perturbation functions that must be evaluated, is 4(N-1). It is noted that by superposition of stresses into the 

unperturbed and perturbation stresses, the effects of applied traction and displacement boundary conditions as well 

as uniform temperature change are already considered in the analysis of the unperturbed laminate (CLPT analysis) 

and will be taken into account later using the boundary conditions at traction free edges that will be discussed in 

detail.    

2.2 Complementary energy minimization 

The complementary energy will be minimized to obtain the perturbation stress functions. The total complementary 

energy Ucom of a laminate subject to mixed traction/displacement boundary conditions including the effects of 

thermal residual stresses can be written as follows [40]: 
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0 1
, .

2

p p pT p

com com

V

U U U where U S dV      
(16) 

where 
0

comU  is the complementary energy of the unperturbed state (laminate without free edges), which does not 

contribute to the variation. In addition, S is the compliance tensor and V represents the region occupied by the 

laminate. As the variation of the unperturbed complementary energy is zero 
0( 0)comU  , it is sufficient to 

minimize the perturbation complementary energy functional (
PU ). The perturbation complementary energy 

functional (
pU ) will be minimized over the region of width 2W bounded by two free edges, such that 

2
hy W and z  ,   

   
1

( ) ( ) ( )

1

1
,

2

i

i

N W z T
p p i i p i

W z
i

U S dzdy 




 
    

 
    

(17) 

where ][ )(iS is the compliance matrix of the i
th

 layer in the global coordinate system.  

Substituting the perturbation stresses from (Eqs. (8)-(14)) and the global compliance matrices into Eq. (17) together 

with integrating over z, the perturbation complementary energy can be written as follows, in terms of independent 

unknown stress perturbation functions: 

                    * '' *'' * ' *' ' *', , , , , , , , , ,
W

P

W
U F y p p p p q q p p q q dy


  , 

(18) 

where the vectors           , etc. are vectors of independent unknown perturbation functions and the functional F is 

defined in Appendix A.  

It should be noted that minimization of the complementary energy leads to the Euler-Lagrange equations [18]. The 

Euler-Lagrange equations for the functional defined in Eq. (18) are, as follows: 

   

2

2' ''
0,

{ }

F d F d F

p dy dyp p

     
     
     
   

    

(19) 

   

2

* 2*' *''
0,

{ }

F d F d F

p dy dyp p

     
     
     
   

 

(20) 
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 '
0,

{ }

F d F

q dy q

  
  
  
 

    

(21) 

 * *'
0.

{ }

F d F

q dy q

  
  
  
 

    

(22) 

Applying the above equations to the functional (F) defined in Eqs. (18) and (A.1), The governing differential 

equations can be written as follows: 

           

       

'''' '' *'''' *'' *

1 2 3 4 5 6

'' *'' *

7 8 9 10

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] 0,

T p T p T p T p T p T p

T q T q T q T q

     

        

(23) 

           

       

'''' '' *'''' *'' *

4 5 6 11 12 13

'' *'' *

14 15 16 17

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] 0,

T T TT p T p T p T p T p T p

T q T q T q T q

     

   
 

(24) 

   
       

       

'' *'' *

7 8 14 15

'' *'' *

18 19 20 21

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] 0,

T T T TT p T p T p T p

T q T q T q T q

   

   
 

(25) 

       

       

'' *'' *

9 10 16 17

'' *'' *

20 21 22 23

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] 0,

T T T T

T T

T p T p T p T p

T q T q T q T q

   

   
    

(26) 

where the [Ti] matrices, i=1…23, are all obtained analytically and given in Appendix B.  

The Eqs. (23)-(26) are a coupled system of homogeneous fourth order ordinary differential equations with 

constant coefficients for which so many solution methods have been developed. The reader is referred to Ref. [19, 

20] to find details about solving these differential equations.  

After solving the differential equations (Eqs. (23)-(26)), the boundary conditions should be applied to provide a 

unique solution. The above differential equations require, in total, 12(N-1) boundary conditions.  

The stress free conditions for each ply on the free edges y=±W, can be written 

( ) 0( )( , ) 0 ( , ) ( ),i p i i

yy yy yyW z W z z         (27) 

( ) 0( )( , ) 0 ( , ) ( ),i p i i

xy xy xyW z W z z         (28) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10 
 

( )( , ) 0 ( , ) 0.i p i

yz yzW z W z       (29) 

Considering the perturbation stresses defined in Eqs. (8) and (9), the above equations will provide 12 (N-1) 

boundary conditions in terms of independent perturbation functions pi(y),   
    ,   

    ,    
    ,  qi(y) and   

    , as 

needed.  

It can be seen in Eq. (16) that by partitioning the total stresses into the initial and perturbation stresses, the effect of 

thermal residual stresses on the complementary energy can be evaluated completely by a thermoelasticity analysis of 

the composite without free edge only (unperturbed state) which can be readily done using a simple analysis based on 

the CLPT. Indeed, the effects of the actual mechanical and thermal loads (already considered in the unperturbed 

state) come through the constant fields (see Eqs. (27)-(29)) in the boundary conditions at traction free surfaces. 

Therefore, it can be concluded that the effects of residual stresses caused by humidity can be similarly taken into 

account by analogy with thermal residual stresses. To do so, it is enough to consider all hygro-thermal residual 

stresses in the analysis of the unperturbed state while implementing a CLPT analysis and their effects will be 

automatically reflected in Eqs. (27)-(29). 

2.3 Displacement fields 

Due to the implementation of the minimum complementary energy principle, the variational model needs only stress 

components to determine the solution leading to an incomplete elasticity solution. However, it is well known [41] 

that among the admissible stress fields that satisfy stress equilibrium equations together with traction boundary 

conditions, the one that leads to a compatible set of displacements minimizes the total complementary energy. 

Beyond the scope of the current approach, McCartney [36, 37] has developed a stress transfer model for cracked 

cross-ply laminates based on the assumption of the Generalized Plane Bending (GPB) condition. Here, we will 

extend this methodology to derive corresponding displacement fields in a general laminate for the variational model 

based on the admissible stress fields (Eq. (8)-(14)). 

The laminate is considered to be under generalized plane bending conditions where the displacement field in 

each ply (i) has the following form 

0 0

1( ) ( ) ( , ),i

i xx xx xy xyu z x z y g y z          (30) 

0 0 0 0

2( ) ( ) ( , ),i

i yy yy xy xyv z y z x g y z         (31) 
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2 0 2 0

3

1 1
( , ),

2 2

i

i xx yy xyw x y xy g y z        
(32) 

where 
0

yy , 
02 xy , 

0

yy , 
02 xy are, respectively, in-plane transverse strain, in-plane shear strain, transverse and shear 

curvatures of the infinite laminate (without free edges) with respect to the mid-plane (z=0) when the laminate is 

under the input loading parameters xx , xx and T .  It is noted that all above parameters can be easily obtained 

using a simple analysis based on the CLPT. It is also noted that the functions 
i

kg  , k = 1, 2, 3, i = 1…N, that are to 

be determined, are all independent of x. It is obvious that the axial displacement field (Eq. (30)) automatically 

satisfies Eq. (2), (see Eqs. (13) and (14)). The stress/strain relations (3), (4) and (7) may then be written in the 

following reduced form on eliminating the stress component 
i

xx  using (13)-(14) 

22 23 26 2 ,
i i i ii i i ii

yy yy zz xy

v
S S S T

y
    


     


 
(33) 

23 33 36 3 ,
i i i ii i i ii

zz yy zz xy

w
S S S T

z
    


     


 
(34) 

26 36 66 62 ,
i i i ii i i ii i

xy yy zz xy

u v
S S S T

y x
    

 
      
 

 
(35) 

where the reduced forms of compliances 
i

mnS  are defined in Appendix C. It then follows from Eqs. (8), (11), 

(12) and (34) that, for 0 1i    and i = 1…N, 

   

2 0 2 0 0( )

0

4 3 2
2 2 '' *'' '

33 1 3

2
* *

23 36 23 36

1 1
( )

2 2

( 1)1 1
( ) ( ) ( ) ( ) ( ) ( )
24 4 3 6 2

( ) ( ) ( ) ( ) ,
2

i i

i xx yy xy i zz i

i i ii i i i
i i i i i i

i

i i i i
i

i i i i i

w x y xy h d W y

h S p y p y F y F y
h

S p y S q y S p y S q y



    

   
  




     

 
       

 

   



  

(36) 

where ( )iW y  arises from the integration over z and will be defined later in Appendix D. Moreover, 
0( )i

zz is the out-

of-plane strain in the i
th

 ply of the unperturbed laminate (without free edges). 

It follows from Eqs. (5), (9), (10) and (36) that, for 0 1i    and i = 1…N, 
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   

0 0 0 0 '

3 5 2
33 3 2 ''' 4 *''' 3 2 '' '

1 3

*' *'
23 3644 44 45 45

( ) ( ) ( ) ( )

12
( 2 4 ) ( ) ( 1) ( ) (4 12 ) ( ) ( )

24 5

( ) 2 ( ) ( ) 2 ( )
2

i yy yy xy xy i i i i

i

i ii i i
i i i i i i i

i

i ii i i ii i
i i i i

v z y z x h W y V y

h S
p y p y F y F y

h

h
p y S S S q y S S S

    

 
    


 

     

 
        

 

       45 2 44 1

2 2
' '

23 3644 44 45 45

2 ( ) 2 ( )

( ) ( ) ( ) ( ) ,
2 3 3

i i i i

i ii i i ii i i i
i i

S F y S F y

h
p y S S S q y S S S

  

 
  

    
         

    

 

(37) 

where ( )iV y , arising from the integration over z, is defined in Appendix D. 

Similarly from Eq. (6), (9), (10) and (36) that, for 0 1i    and i = 1…N, 

0 0

2
*' *'

45 55 45 1 55 2

3
' '

45 55

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ,
6 2

i xx xx xy xy i

i i i i i ii
i i i i i i

i ii i
i i i

u z x z y U y

h s p y s q y h s F y s F y

h s p y s q y

   


 

 

    

           

     

 

(38) 

where ( )iU y , arising from the integration over z, is defined in Appendix D.  

It is noted that the expressions derived for the stress and displacement components satisfy exactly the stress 

equilibrium equations 
, 0i

mn n  , together with the stress-strain relations (2), (4)-(6). In addition, the displacement 

and stress fields satisfy all the interface continuity and boundary conditions. The approach would lead to an exact 

elasticity solution if the stress and displacement components could locally satisfy the stress-strain relations (3) and 

(7), as well. However, it is impossible to exactly satisfy these two equations because of the assumptions made on the 

dependency of the in-plane stresses to z-direction (linear in z, Eq. (8)). Instead, we have minimized the 

complementary energy and it is shown by Rosen [41] that of all stress fields which satisfy equilibrium throughout 

the region and boundary conditions on portions of the surface over which tractions are prescribed, the set that yields 

a compatible set of displacements minimizes the complementary energy. It can be shown that the obtained 

displacement and stress fields satisfy Eqs. (3) and (7) in an average sense through the thickness of each layer and it 

was checked in computer code and has been found to be satisfied by input data in all considered cases. Beyond  the 

scope of the current paper, Pagano [34, 35] and McCartney [36, 37] have developed two stress transfer models for 

ply cracking in general cross-ply laminates based on, respectively, Reissner energy principle and average 
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satisfaction of the stress-strain relations (3) and (7), with this assumption that out-of-plane shear stresses ,i i

xz yz   

are linear through-thickness of each ply (equal to the assumptions in Eq. (8)). They have also shown [42] that their 

approaches lead to the same results which means that average satisfaction of the stress-strain relations (3) and (7) is 

equal to satisfaction of the Reissner variational principle. In this paper, we have obtained the solution of the stress 

transfer (for free-edge effect) based on the minimum complementary energy principle leading again to the average 

satisfaction of the stress-strain relations (3) and (7). Therefore, the current theoretical formulation has the same 

quality as those of Pagano and McCartney but can additionally be applied to general laminates rather than only 

cross-ply laminates. Pagano and McCartney’s methodologies [34-37] need both the stress and displacement fields to 

obtain the governing differential equations, however, the current approach only needs the stress terms to formulate 

the problem, leading to a more tractable approach. In addition, the models of Pagano, McCartney and the current 

model, are developed in a systematic way so that the assumptions made in Eq. (8) can be relaxed by using a ply 

refinement technique [30, 43]. In ply refinement, each ply will be represented by a set of n elemental layers having 

the same material properties. In this way, the assumptions made in the Eq. (8), leading to through-thickness average 

of Eqs. (3) and (7), can be relaxed and the solution tends to an exact elasticity one. 

3. Results and Discussion 

To check the validity of the derived formulations and the developed software, the results obtained from the current 

variational approach will be compared with the available 3D finite element results in the literature [30-33]. The 

unidirectional material properties of each ply (transversely isotropic) used in this investigation, taken from Ref. [30-

33], are listed in the Table 1: 

 

Table. 1: Material properties of unidirectional plies used in this investigation. 

Set of 

Materials ( )

A

GPa

E
 

( )

T

GPa

E
 

( )

A

GPa

G
 

( )

T

GPa

G
 

A  A  

6 0(10 / )

A

C




 

6 0(10 / )

T

C




 

#1 137.9 14.48 5.86 5.86 0.21 0.21 0.36 28.8 

#2 97.6 8 3.1 2.7 0.37 0.5 - - 

First, an un-symmetric [0/90/45/90] laminate (made of the material set #1) under a pure bending load (Mxx), is 

considered. It should be noted that the input loading parameters in the current model are in the form of applied axial 
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strain xx  and curvature xx  which are the same for the perturbed and unperturbed cases (it is noted that 

Nyy=Nxy=Myy=Mxy=0 are other loading parameters which have always zero values). Therefore, a pure Mxx bending 

loading condition is approximated by a combination of applied axial strain and curvature for the case of unperturbed 

state. This condition can be easily obtained using a simple CLPT analysis. The laminate has the width 2W=4h 

where, as already mentioned, h=4t
ply

 is the thickness of the laminate (see Fig. 1). Mathematical software is 

developed to consider general laminates with ply refinement to improve the accuracy of predictions and ensure that 

the results are converged. Therefore, each ply was first divided into 6 elements of equal thickness. Further, the ply 

elements adjacent to all the interfaces were sub-divided in half, two times to take into account the high stress 

concentrations at the interfaces between plies near free edges. Figs. 2a and 2b depict the through-width distribution 

of normalized out-of-plane normal 

2

2

zz

xx

h

M

 
 and shear 

2

2

yz

xx

h

M

 
 stresses, respectively, at the interface between the 

90
0
 and 45

0
 plies (z=0, laminate mid-plane) and at the interface between the 45

0
 and 90

0
 plies (z=h/4, upper 

interface). The results are compared with FEM results reported in Ref. [31]. It can be seen that there is very good 

agreement between the results of the variational approach and FEM [31] for an un-symmetric laminate under 

bending loads even close to the free edges. It can be also seen (see yz distribution in Figs. 2a and b) that FEM 

cannot satisfy the zero traction conditions at free edges while the stress fields obtained based on the variational 

approach exactly satisfy zero traction boundary conditions at free edges. On the other hand, the run time of the 

variational approach for this case on an Intel Core i3 (2.27 GHz) processor is less than one second whereas the 

computational time of the FEM model is reported to be 540 seconds [31]. 

Second, two [ 10]s  and [ 20]s  symmetric laminates (made of the material set #2) under a uniform in-plane 

axial strain xx  are considered. The laminates have the width 2W=20mm and the thickness of each ply is assumed 

to be t
ply

=0.19mm. To further check the accuracy of the developed approach, the results are compared with the 

refined FEM results of Ref. [30] which are reported in regions very close to the free edges. It is noted that the FEM 

meshes are very refined near the free edges where elements’ size is less than 1 micron [30] to ensure having 

converged results. The variational approach is applied to this problem with three different levels of ply refinement. 

First, each ply is only divided into 2 elements of equal thickness (n=2). Second, each ply is divided into 8 elements 

of equal thickness (n=8). Third, after dividing each ply into 8 elements of equal thickness, the elements adjacent to 
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all interfaces have been further divided in half, four times (Double refined). Figs. 3a and 3b depict the transverse 

distribution of the normalized interlaminar shear 
xz

xx xxE




stresses ( xxE  is the axial stiffness of the laminate) very 

close to the free edge at the θ/-θ interfaces of [ 10]s and [ 20]s laminates, respectively. It can be clearly seen that 

for both lay-ups, 5% of a ply thickness far from the free edge, the results obtained from the FEM and variational 

approach (with different level of ply refinements) are in excellent agreement. It shows that the current variational 

approach using a very small amount of ply refinement (n=2) can provide accurate information about the stress state. 

On the other hand, there is rather a large discrepancy between the refined variational (double refined) and FEM 

solutions, very close to the free edge. It can be seen that the variational approach with ply refinement (n=8) has the 

same accuracy as refined 3D FEM. It has been shown by Wang and Choi [44, 45] that the state of stress close to free 

edges is generally singular and inherently three-dimentional where the strength of the boundary-layer (free-edge) 

singularity depends on elastic properties and laminate lay-up. In the current formulation, the effects of this 

boundary-layer are considered by the implementation of a large amount of ply refinements leading to very large 

eigenvalues in the solutions of the  governing differential equations. Using the refined meshes near free edges and 

interfaces in FEM is also an attempt to capture the effects of this singularity. However, solution convergence in 

elasticity problems with singularities by conventional displacement-based finite elements is independent of 

refinement of meshes and increases in the order of element formulations [46]. Moreover, in the evaluation of 

interlaminar stresses along the interfaces, FEM needs extrapolation schemes, which by themselves may introduce 

numerical errors in the final results while in the current approach interlaminar stresses are directly obtained without 

requiring any extrapolations. Moreover, as discussed by Bauld et al. [47], a finite element node coinciding with the 

interface corner (like a node at the edge locations and on the interface between the plies), receives average 

contributions from the finite elements on either side of the interface. In a finite element solution a stress-free 

boundary condition translates into a nodal force-free boundary condition. Therefore, setting the nodal force at the 

interface cornr equal to zero is, in some sense, an averaging procedure. The finite element method relies on the 

virtual work principle to establish a static equivalence between distributed boundary forces and concentrated nodal 

forces. Because elements adjacent to a boundary node, each contribute to the nodal force there according to the 

equivalency criterion stated, the nodal force results from an averaging process. Moreover, the nodal force remains an 

“average value” regardless of the element size [47]. However, in the current model, the zero traction conditions at 
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free edges are point-wisely satisfied and the ply refinement technique is implemented to capture the stress 

singularity. It should be also highlighted that although the approach has a high accuracy, none of the above results 

(both FEM and variational approach) are exact, due to the assumptions made in the formulation. It is noteworthy 

that the variational formulation has been derived without the assumption of having symmetry in the laminate with 

respect to the mid-plane. Therefore, preserving the symmetry of the laminate with high amount of ply refinement 

(n>8) shows the stability of the current formulation and of the associated software. It is a very important issue in 

assessing the quality of stress transfer models which is usually neglected and is achieved here using a non-

dimensional form for perturbation stresses (see Eqs. (8-12)) through-thickness direction. 

In the third example, the accuracy of the approach concerning thermal residual stresses will be verified. To do so, an 

un-symmetric [0/90/45/-45] laminate (made of the material set #1) under a uniform temperature change T , is 

considered. It is noted that for this loading cases (pure ΔT), it is assumed that Nxx=Mxx=0 [31], therefore, a 

combination of applied axial strain and curvature for the case of unperturbed state is considered to have a pure 

thermal loading (Note: Nyy=Nxy=Myy=Mxy=0). The laminate has the width 2W=4h where h=4t
ply

 is the laminate 

thickness. The variational model is applied to this problem by dividing each ply into 7 elements of equal thickness 

where elements adjacent to interfaces are further subdivided in half, two times to ensure that the results are 

converged. The results are compared with FEM results reported in Ref. [31]. Figs. 4a and 4b show, respectively, the 

through-width distribution (close to free edges) of normalized out-of-plane normal 
zz

T




 and shear 

yz

T




 stresses, at 

different interfaces between plies in the laminate. Again, the general remark is that there is a very good accordance 

between the two sets of results. To further check the accuracy of the developed model, a [0/90]s with the same 

material and geometrical properties as the last considered case ([0/90/45/-45] laminate) under a uniform temperature 

change, is also considered. It should be noted that for this loading case, it is assumed [32] that 0xx xx   . The 

results concerning this cross-ply laminate are compared with FEM results reported in Ref. [32]. The variational 

model is applied to this problem with the same ply refinement as the last considered case and also without ply 

refinement (n=1). Figs. 5a and 5b show, respectively, the through-width distribution of normalized out-of-plane 

normal 
zz

T




 and shear 

yz

T




 stresses, at the 0/90 interface in the [0/90]s laminate. It is worth mentioning that the 

variational approach, even without using a ply refinement (n=1) can predict the stress concentrations near free edges 
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with a very good accuracy, confirming the high computational efficiency of the developed stress-based LW 

variational approach.  

Next, the accuracy of the developed approach in predicting displacement fields will be assessed. A symmetric 

[45/-45]s laminate (made of the material set #1) having the width 2W=4h under a uniform in-plane strain xx , is 

considered. The variational model is applied to this problem by dividing each ply into 8 elements of equal thickness. 

Fig. 6a represents the through width distribution of normalized axial displacement (u/t
ply

/εxx) at upper external 

surface (z=h/2) of the [45/-45]s laminate. In addition, Fig. 6b, 7a and 7b depict, respectively, through thickness 

distribution of the normalized axial (u/t
ply

/εxx), normalized in-plane transverse (v/t
ply

/εxx) and normalized out-of-

plane (w/t
ply

/εxx) displacements at free edge (y=W) of the [45/-45]s laminate. Some of the results are compared to the 

FEM results reported (whenever available) in Ref. [33] showing very good agreement. 

 In addition, the free-edge effect in thin-ply and typical ply composite laminates under bending loads will be 

compared. A [0/90]s laminate with typical ply thickness (tply=0.19 mm) and a [    ]5s laminate with thin plies 

(tply=0.19/5=0.038mm) having the width 2W=20mm, made of material set #2, are considered under a uniform 

curvature xx . In order to have the converged results for the laminate with typical plies [0/90]s, each ply is first 

divided into 5 elements with the same thickness and the elements adjacent to all interfaces have been successively 

divided in three, two times. For the laminate made of thin plies [0/90]5s, each ply is first divided into 3 elements with 

the same thickness and the elements adjacent to all interfaces have been divided in half. In total, 44 and 98 ply 

elements are used to model precisely interlaminar stress transfer in typical and thin-ply laminates, respectively. Fig. 

8a depicts the through-thickness variation of the normalized interlaminar out-of-plane normal (
zz

xxh




 ) stresses very 

close to the free edge (y=0.998W) for both laminates with thin and typical plies. Fig. 8b also represents the 

distribution of the normalized interlaminar out-of-plane shear (
yz

xxh




) stresses through the width at 0/90 interface 

for both typical (z=0.19mm) and thin-ply (z=0.29766 mm, interface with highest interlaminar stresses) laminates. 

Moreover, Fig. 9 compares the through-thickness variation of the normalized transverse displacement (
2

xx

v

h
) of 

typical and thin-ply laminates at the location of the free edge (y=W). It is seen that 3D stress concentrations due to 
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the free-edge effect in thin-ply laminates are remarkably less than typical laminates. It can be clearly seen in Fig. 8b 

that when the ply thickness decreases, the size of edge effect remarkably decreases. Moreover, it can be also seen 

that thin-ply laminates are deformed much less than typical ply laminates when facing stress concentrations like 

free-edge effect. The results presented in Figs.8 and 9 show that reducing the ply thickness can lead to dramatic 

improvements in the interlaminar stress transfer performance of laminates. It can then lead to a significant delayed 

damage growth and a longer fatigue life [48, 49]. It should be mentioned that the use of numerical methods (e.g. 

FEM) when solving the free-edge effects in composite laminates with many plies (e.g. thin-ply laminates) will be 

exceedingly challenging and tedious due to the complexity of the required meshes near free edges and interfaces 

between the plies.  

Finally, in order to estimate the approximate size of the edge-effect (width of the region in which severe perturbation 

of three-dimensional stresses occurs), an anti-symmetric angle-ply laminate [-45/45] under only a uniform axial 

strain xx  (while xx ), made of material set #2, with two different widths (2W=8h (finite width) and 2W=1000h 

(infinite width)) where h=2t
ply

, is considered to study the extent of edge-effect. The through width distribution of the 

normalized interlaminar shear (
xz

xx AE




) stresses at the interface between -45/45 plies for the laminates with finite 

and infinite widths, is shown in Fig. 10a. The through width distribution of the normalized in-plane axial (
xx

xx AE




) 

stresses at the upper external surface, is shown in Fig. 10b. In addition, Figs. 11a and 11b, respectively, show the 

through width distribution of the normalized axial (u/εxx/W) and transverse (v/εxx/W) displacements at the upper 

external surface for both laminates with finite and infinite widths. It can be clearly seen that well way from the free 

edges, the results of both laminates with finite and infinite width, are in perfect agreement showing the results of 

CLPT. In these figures, the approximate size of the edge-effect can be seen although in general, it depends on the 

laminate lay-up, material properties, laminate width to thickness ratio (2W/h), etc. 

It is worth mentioning that unlike the current approach based on an assumed form for the through-thickness 

variations of the in-plane stress fields, some authors have tried to solve exactly the three-dimensional differential 

equations of elasticity based on the assumption of arbitrary shape functions for the displacement components 

through both the in-plane and out-of-plane coordinates. However, these approaches are still restricted to cross-ply 

laminates with free-edges [50] and general laminates with simply-supported boundary conditions [51, 52] without 
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considering the effects of residual stresses. The future works necessitate the extension of these works to deal with 

general laminates containing straight free edges, ply cracks and delaminations considering the effects of residual 

stresses. 

It should be also noted that the free edges might not always be straight such as for holes and cutouts in laminates. 

A generic variational procedure for laminates with circular holes under in-plane loads is developed [53, 54] in the 

cylindrical coordinate system which can be used to study free-edge effect in more complex geometries. 

4. Conclusion 

The following conclusions have been drawn from the paper: 

1- A novel stress-based variational model has been developed to determine accurately a complete solution for both 

stress and displacement fields in laminate strips containing straight free edges with general lay-ups (possibly 

unsymmetrical laminates and made of thin-plies) under in-plane, bending and thermal loading.  

2- By partitioning the total stresses in a composite with free edges into initial (without free edges) and perturbation 

stresses and using the principle of minimum complementary energy, the free-edge stress transfer problem has been 

reduced to a set of homogeneous differential equations that can be solved. 

3- The obtained stress and displacement fields satisfy exactly the stress equilibrium equations, strain-stress relations 

(either exactly or in an average sense) together with all boundary and continuity conditions.  

4- The results are in excellent agreement with the available refined FEM results. Moreover, the approach is superior 

to FEM in terms of computational efficiency and accuracy. 

5- It has been noted that the Pagano’s and McCartney’s solutions [28-31] can also be derived from a fully stress-

based variational approach.  

6- The generalized plane bending theory [30, 31] has been extended to analyze laminates with arbitrary stacking 

sequence. The findings can be used to extend the versatility of the available ply cracking models. 

7- The developed methodology with capability of modeling many plies can be the basis of good design tools to 

predict thickness, lay-up, material property and geometrical effects on damage initiation in thin-ply composite 

laminates with free edges. 

8- The methodology used in this paper for thermally induced residual stresses can be easily extended to deal with the 

residual stresses caused by humidity. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

20 
 

9. The study of the results shows that the size of edge-effect (width of the region in which severe perturbation of 

three-dimensional stresses occurs) decreases when the ply thickness decreases. 
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Appendix A. 

The result of integration over z, in Eq. (17) based on the independent unknown perturbation stress functions is 

written in Eq. (18) where the functional F will be defined, as follows: 
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where the coefficient matrices 
00

11
( 1) ( 1)N N

A
  

   , etc., with the superscripts corresponding to the order of derivatives 

and the subscripts corresponding to independent unknown functions involved, can be easily evaluated analytically in 

terms of ply properties. 

Appendix B. 

The [Ti] matrices defined in Eqs. (23)-(26), i=1…23, will be defined in terms of 
00

11[ ]A  matrices, etc., as follows: 
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Appendix C. 

The reduced form of strain/stress relations are defined by Eqs. (33)-(35) where the reduced compliances have the 

following forms: 
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Appendix D. 

The displacement fields must satisfy the continuity conditions at the interface between the plies:  

1 1 1, , , 1,..., 1.i i i i i i iu u v v w w on z z i N                (D.1) 

On substituting ( 1)i iz z    in (36) and considering Eq. (D.1)3, the following recurrence relation is derived for 

the functions ( ) ( ) ( )i i NW y W y W y    , for i=1…N-1: 
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Similarly, on substituting ( 1)i iz z    in (37) and considering Eq. (D.1)2, the following recurrence relation is 

derived for the functions ( ) ( ) ( )i i NV y V y V y    , for i=1…N-1: 
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(D.3) 

Similarly, on substituting ( 1)i iz z    in (38) and considering Eq. (D.1)1, the following recurrence relation is 

derived for the functions ( ) ( ) ( )i i NU y U y U y    , for i=1…N-1: 
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(D.4) 

The functions ( )NW y  and ( )NV y  defined by (D.2) and (D.3), can be calculated using through-thickness 

average and through-thickness moment average of the Eq. (33). Moreover, the function ( )NU y  defined (D.4), 

can be calculated using through-thickness average of the Eq. (35). 
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Fig. 1. A general laminate with arbitrary stacking sequence with two straight free edges. (Note: the origin of the 

coordinate system is located at the center of the laminate but there is no need to have an interface located at the 

mid-plane)  
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(a) (b) 

Fig. 2. Transverse (through-width) distribution of the normalized interlaminar normal zz  and shear yz  

stresses at a) the laminate mid-plane (z=0) and b) the upper interface (z=h/4) of a [0/90/45/90] laminate under 

pure bending loading. 

 

 
 

(a), 
010   (b), 

020   

Fig. 3. Transverse (through-width) distribution of the normalized interlaminar shear xz  stress very close to the 

free edge at /    interface of  
s

  laminate under xx .  
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(a)  (b)  

Fig. 4. Transverse (through-width) distribution of the normalized interlaminar a) normal zz and b) shear yz  

stresses at different interfaces between the plies in a [0/90/45/-45] laminate under a uniform temperature change 

T .  

 

 

 

(a)  (b)  

Fig. 5. Transverse (through-width) distribution of the normalized interlaminar a) normal zz and b) shear yz  
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stresses at the 0/90 interface in a [0/90]s laminate under a uniform temperature change T . 

 
 

(a)  (b)  

Fig. 6. a) Transverse (through-width) distribution of the normalized axial displacement (u) at top external surface 

(z=h/2) from edge to edge. b) Through thickness distribution of the normalized axial displacement (u) at free edge 

(y=W) of [45/-45]s laminate under εxx. 

 
 

(a)  (b)  

Fig. 7. Through thickness distribution of a) the normalized transverse displacement (v) b) the normalized out-of-

plane displacement (w) at free edge (y=W) of [45/-45]s laminate under εxx. 
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(a)  (b)  

 

Fig. 8. a) Through thickness distribution of normalized interlaminar normal stress σzz very close to the free edge 

(y=0.998W). b) Distribution of normalized shear stress σyz at 0/90 interface across the width. 

 

 

 

 

Fig. 9. Through thickness distribution of normalized interlaminar transverse displacement (v) at the free edge (y= 

W).  
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(a)  (b)  

 

Fig. 10. a) Through width distribution of normalized interlaminar shear stress σxz at the -45/45 interface. b) Through 

width distribution of normalized in-plane axial stress σxx at the upper external surface. 

 

  

(a)  (b)  

 

Fig. 11. Through width distribution of the normalized a) axial u and b) transverse v displacements at the upper 

external surface. 

 


