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Dankwoord

Als u deze woorden leest, komen er zo direct enkele mogelijke redenen bij mij
naar boven waarom: u wilt graag (om een of andere reden) meer te weten komen
over het beest genaamd de oppervlakte-admittantie-operator, u heeft moeite met
de slaap te vatten en heeft nood aan wat droge kost of — en dit is ongetwijfeld de
grootste groep lezers — u bent nieuwsgierig of u vermeld wordt in dit dankwoord.
Aan de eerste groep richt ik deze korte, doch krachtige boodschap: “Veel succes
en lasciate ogni speranza, voi ch’entrate”. De tweede groep raad ik Sectie 5.4 en
Hoofdstuk 6 aan; veel formules, weinig prentjes, kortom perfect om bij in slaap
te dommelen. Voor mensen uit de laatste groep hoop ik de hooggespannen ver-
wachtingen te kunnen inlossen. Het is namelijk zo dat vooraan op dit boekje dan
wel mijn naam prijkt, maar de inhoud van dit werk zo onmogelijk tot stand zijn
kunnen komen zonder de input en steun van een hele hoop mensen. Groot of
klein, direct of indirect, actief of passief, ik apprecieer ieders hulp en inbreng van
harte. Daarom verzoek ik u dan ook vriendelijk om geen belang te hechten aan
enige volgorde van vernoeming of lengte van dank in de volgende tekst. Ik doe
ook mijn uiterste best om hier niemand te vergeten vermelden maar mocht dit toch
voorvallen, mea maxima culpa.

Vooreerst wil ik graag een enorm welgemeende dank u wel richten aan mijn beide
promotoren, Dries en Daniël. Hun inbreng, visie, kennis en feedback hebben er
niet enkel voor gezorgd dat ik aan dit werk ben kunnen beginnen maar des te meer
dat hier voor u effectief een afgewerkt proefschrift ligt en dat ik dit dankwoord kan
schrijven. Hun ideeën en steun hebben me door de bij momenten diepe dalen van
dit doctoraat geleid, elk op hun eigen manier maar steeds samen als een goed geo-
liede machine. Ik heb ook enorm genoten van onze (al dan niet trans-Atlantische)
gesprekken over elektromagnetische en alle andere onderwerpen. Ook wil ik het
derde lid van het triumviraat van onze groep, d.i. Hendrik, bedanken voor de fijne
discussies en de uurtjes gesleten in de opleidingscommissie.

Een computationeel onderzoek heeft ook zo zijn nadelen. Achter ons scherm ge-
kluisterd, code schrijvend, is de link met de praktische realiteit soms ver te zoe-
ken. Daarom ben ik imec zeer dankbaar en in het bijzonder Eric Beynes groep
om naar het einde van dit onderzoek toe die connectie te voorzien. Bedankt dus
ook aan Geert Van der Plas en Xiao Sun om een interessante case voor te stellen
en samen met ons te onderzoeken. Dit lijkt me ook het perfect moment om een
aantal mensen te vermelden die op een meer indirecte manier hun steentje heb-
ben bijgedragen. Tijdens onze tijd in het Technicum leidde Isabelle ons allemaal
moeiteloos door de woelige wateren die zo kenmerkend zijn voor de administratie
aan de UGent, waarvoor mijn welgemeende complimenten. Na onze verhuis naar
de iGenttoren, werden we in deze bijgestaan door het team van Martine, Davinia
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en Bernadette. Een dikke merci ook aan Sabrina. Jouw dagelijks gevecht tegen
de bierkaai is enorm bewonderenswaardig, zeker omdat je telkens weer het beste
van jezelf geeft.

Collega’s komen en gaan maar ook al is de samenstelling van deze groep enorm
veranderd door de jaren heen, de behulpzaamheid en de toffe sfeer zijn moeite-
loos doorgegeven van generatie op generatie. Bij de minste vraag/twijfel/brainfart
staat er wel altijd iemand klaar om een handje toe te steken of samen een probleem
op te lossen. Ook bij de begeleiding van studenten tijdens thesissen en projecten
is er een enorme drive om dit samen tot een goed einde te brengen ondanks het
soms angstaanjagende aantal studenten. Gelukkig zijn er de zeer uiteenlopende
en boeiende gesprekken tijdens de middag in de “softmeetingroom”, raadsels, ik-
heb-een-vraag-punt-be-sessies enzovoort voor de nodige afleidingen. Ook buiten
de uren wordt deze toffe sfeer uitgedragen tijdens ribbetjesfestijnen of kartraces,
(soms verhitte) gezelschapsspelen of games. Daarom een dikke merci aan Arne,
Arnout, Dieter, Dries B., Dries V.B., Duygu, Gert-Jan G., Gert-Jan S., Giorgos, Hos-
sein, Igor, Irven, Kamil, Laura, Luigi, Marco, Michiel, Mykola, Nick, Niels, Olivier,
Paolo, Patrick, Pieter, Quinten, Robbe, Sam A., Sam L., Seppe, Simon, Steven, Tho-
mas A., Thomas C., Thomas D., Yves en Zdravko.

Het begin van mijn avontuur in de EM-groep werd echt gevormd tijdens mijn mas-
terthesis waarin ik werd bijgestaan door Gert-Jan. Niet alleen bleek hij een begena-
digd onderzoeker te zijn met een unieke mix aan theoretisch inzicht en praktische
kennis/vaardigheden, hij was vooral heel behulpzaam en spitsvondig en dus de
ideale begeleider, collega en uiteindelijk vriend. Bedankt om me de krochten van
LaTeX en TikZ te leren ontdekken, bedankt voor je advies over van alles en nog wat
en de fijne gesprekken. Ik bewonder bovendien enorm je doorzettingsvermogen
en toekomstvisie.

Enkele mensen hebben op hetzelfde moment als mij hun doctoraat aangevangen
in onze groep. Bedankt Arne voor je enorme inzet en kennis maar toch ook vooral
voor je no-nonsense attitude. Merci Dries voor de leuke discussies, je joie-de-vivre
en de Kempische toets in dit verre Oost-Vlaanderen. Irven, ik bewonder je enorm
voor je drive en je soms toch wel zotte projecten. Bedankt ook voor de fijne mo-
menten tijdens de Spaanse lessen. Je bent een uitzonderlijk persoon, Niels, en
dit bedoel ik op de meest positieve manier mogelijk. Jouw interesse in de elektro-
magnetische geschiedenis en straffe verhalen zorgden altijd voor de nodige animo.
Merci Olivier voor de interessante babbels en je nuchterheid. Bedankt Steven om
te proberen me de details van Sobolev-ruimtes bij te brengen en onze filmdiscussies
(The eagles zijn geen plot hole!).

Fandom mixups, logical fallacies, waanzinnige (maar niet gedroomde!) song in-
ceptions . . . zijn allemaal zaken die we hebben afgeleerd onder de heerschappij
van onze chef, Simon. Initieel aarzelend maar later volledig opgaand in zijn rol
als bureauverantwoordelijke, leidt Simon al bijna drie jaar bureau 210.006 met
ijzeren hand. Maar genoeg gezeverd: bedankt Simon voor alle hulp met compu-
tergerelateerde zaken, van Python en Linux tot orde scheppen in de chaos van het
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thesislokaal. Merci ook voor de leuke en grappige momenten zowel buiten als bin-
nen jouw domein. Als mijn MoM-buddy, Michiel, staan we zij aan zij in de strijd
tegen die heidenen met hun fancy, bewegende figuren. Pfff, show-offs! Bedankt
om altijd klaar te staan voor mijn vragen en twijfels of een klankbord te zijn als ik
met iets zat. Ik waardeer ook enorm dat je zo vaak onze gastheer/initiatiefnemer
bent voor een toffe gezelschapsspelenavond. Kortom, je bent een geweldige col-
lega én mens ook al wil je dat zelf niet altijd volledig geloven.

A big thank you to Paolo as well. I really appreciate our time together in our office
in the Technicum (and at SPI). I enjoyed your company and our conversations, in
particular, our language-related talks, which have provided me with a lot of insight
in both Italian and Dutch. I really liked the time we shared in our new office after
the move, however brief it may have been, Zdravko, Marco and Giorgos. Thank
you for the nice laughs and the stares. My gratitude extends to Hossein as well,
who brought a particular energy and atmosphere to our room that I really lear-
ned to appreciate. Thank you, Duygu, for brighting up our somber moods with
your kindness. Kamil, your drive and perseverance are unparalleled as well as
your eagerness to help each and everyone of us. You deserve the fullfillment of
all your dreams and ambitions. Bedankt Gert-Jan, om zowel als mijn rechter- als
linkerbuur op tijd en stond met de nodige gevatte en droge opmerking uit te hoek
te komen. Merci Thomas voor je opgewekte persoonlijkheid en merci om tege-
lijkertijd de stem van redelijkheid en die van de zotte ideeën in deze bureau te
zijn; een verrassende maar welgekomen mix. Bedankt ook aan Quinten en Tho-
mas D., onze hoogsteigen sons of Maxwell, om de nodige coolfactor te brengen
in dit nerdlandschap en voor jullie grappen en grollen. Merci Sam voor de con-
structieve babbels en de passie die je overbrengt over je interesses. Nick, bedankt
voor je technische skills en je smakelijke verhalen en beschrijvingen. De nieuwste
generatie doctoraatsstudenten, zijnde Dries, Igor, Laura, Pieter en Seppe, wens ik
het allerbeste toe. In het bijzonder gaat mijn sympathie uit naar Dries, die zich
heeft laten ompraten om op dit eigenste onderwerp verder te werken. Probeer
niet overal cilinders in te zien, dat wordt na een tijdje nogal vervelend.

Van een toevallige ontmoeting in de gangen van het Technicum na een flard Spaans
gehoord te hebben tot een wekelijkse taallunch: gracias por todo, Gemma. Me en-
canta nuestra conversaciones y comidas. Gracias por enseñarme como preparar
una verdadera tortilla de patatas y gracias para ayudarme practicar español. Es-
pero que encuentres la luz del sol figurativa en Bélgica sombría y mucha éxito en
leer los libros neerlandés.

Erica is bijna eigenhandig de oorzaak van mijn verbeterde conditie t.o.v. het begin
van mijn doctoraat door mij te overtuigen ’s morgens voor dag en dauw een uur het
zwembad in te duiken. Bedankt om er voor me te zijn als ik het nodig heb en voor
de fijne gesprekken. Merci Arend voor de zeer uiteenlopende babbels en absurde
discussies. Net omdat we elkaar misschien de laatste tijd niet meer zo veel hebben
gezien, Pieter, koester ik onze samenkomsten en nostalgische uitweidingen des te
meer.
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’s Avonds heb ik de laatste tweeënhalf jaar mijn uren dikwijls opgevuld met taken
van de specifieke lerarenopleiding. Ik zou moeiteloos een boek kunnen vullen de
dikte van dit doctoraat met wat ik heb geleerd en vooral niet geleerd heb tijdens
deze opleiding. Ik zou zelfs graag kunnen zeggen dat dit een grove overdrijving
is, maar helaas. Vraag gerust aan de collega’s, vrienden en familie of gewoonweg
iedereen die ik te pakken kreeg hoeveel ik over deze lessen heb gezaagd. Maar
we zullen het maar beschaafd houden. Onder het motto gedeelde smart is halve
smart wil ik hier dan ook uitdrukkelijk de medecursisten van deze opleiding in
de bloemetjes zetten. Samen hebben we, strompelend en vloekend, de eindmeet
gehaald en ik ben ervan overtuigd dat jullie allemaal stuk voor stuk uitstekende
leerkrachten kunnen en zullen zijn. Bedankt en dikke proficiat aan Julita, Ramses,
Cedric, Evi, Michiel, Steven en alle andere.

In de loop der jaren heb ik heel wat fijne eetgelegenheden mogen leren kennen
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nog lang in ere houden. Ook onze andere activiteiten met onder andere onze
vlotte ontsnapping uit de escape room zullen me altijd bijblijven. Bedankt Leen
voor je gepassioneerde verhalen en je ontwapenende (glim)lach. Merci Cedric
om me mee in het SLO-verhaal te nemen. Het was een helse tocht maar ik heb
er absoluut geen spijt en dit is grotendeels aan jouw steun te danken. Tussen je
sarcastische opmerkingen na (en op een onbewaakt moment, tijdens) de lessen
over pedagogische utopieën zitten een aantal pareltjes die ik nooit zal vergeten.
In het algemeen ben ik je gigantisch dankbaar voor je vriendschap, onze luchtige
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Mijn Gents avontuur heeft vanzelfsprekend zijn roots in Turnhout, waar ik het
genoegen heb deel uit te maken van een hechte vriendengroep. Bedankt Kenneth
en Nikki, Niels en Dorien en Tom en Laura voor de ontelbare aantal leuke avonden
en dagen. Of het nu restaurants uitproberen of gewoon iets gaan drinken is, dan
wel een film meepikken of een gezelschapsspel spelen is, met jullie is het altijd fijn
vertoeven. Moge we nog vele malen oudjaar met elkaar doorbrengen! Specifiek
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Samenvatting

De ongebreidelde verspreiding van elektronische apparaten in een groeiend aantal
toepassingen wordt voortgestuwd door inspanningen om tegemoet te komen aan
de explosieve vraag naar (draadloze) connectiviteit in onze technologiegerichte
globale maatschappij. Deze toepassingen variëren van de vertrouwde computers
en smartphones, over smartwatches en virtual reality tot zelfrijdende auto’s en
slimme steden. Deze verscheidenheid en groeiende complexiteit brengen een he-
leboel nieuwe technologieën en trends met zich mee om het hoofd te bieden aan
de bijhorende uitdagingen. De overgang van berichten met een lage bandbreedte
naar breedbandige communicatiekanalen op alomtegenwoordige mobiele toestel-
len heeft bijvoorbeeld geleid tot 5G, de opkomende standaard voor bliksemsnel
mobiel internet. Hiermee samenhangend is er de internet der dingen (r)evolutie,
waarbij doorsnee elektronische apparaten zoals computers of tablets verbonden
worden via het internet met slimme versies van alledaagse toestellen zoals ther-
mostaten, weegschalen, enz., wat leidt tot een huis vol moderne functionaliteit.
Deze trend om communicatiemogelijkheden in te bouwen in allerlei apparaten be-
perkt zich niet tot een enkele woning, maar vindt zijn toepassingen in onder andere
winkels, ziekenhuizen en de transportsector.

De opkomende technologieën en ontwikkelingen veranderen niet alleen commu-
nicatieprotocollen en -systemen; hun impact reikt volledig tot op het hardware-
niveau. De integratie van elektronica in een brede waaier aan toestellen en ma-
terialen, de stijgende bitsnelheden en de niet-aflatende drang tot miniaturisatie,
brengen steeds complexere en innovatievere geïntegreerde circuits en printpla-
ten met zich mee. Helaas heeft elke medaille een keerzijde. Moeilijkheden en
complicaties kunnen de kop opsteken in talloze domeinen, maar als we focussen
op elektromagnetische compatibiliteit en signaal- en vermogensintegriteit, worden
moderne circuits meer en meer geconfronteerd met fenomenen zoals daar zijn sig-
naalverzwakking, distorsie, dispersie, overspraak, enz. Al deze effecten kunnen
een nadelige invloed hebben op de juiste werking van het desgevallende systeem.
Om een duur en tijdrovend herontwerp te vermijden op het einde van het produc-
tieproces is het van cruciaal belang dat ontwerpers potentiële problemen zo snel
mogelijk opsporen. Om tegemoet te komen aan deze eis moeten de applicaties
voor computergestuurd ontwerp voortdurend evolueren om accuraat en relevant
te kunnen blijven.

Simulatieprogramma’s hebben over de jaren heen een opvallende evolutie doorge-
maakt. Circuitsimulators, die de wetten van Kirchhoff toepassen, zijn het startpunt
en standaard hulpmiddel voor vele ontwerpers. Ze kennen echter nogal sterke be-
perkingen daar ze de golfverschijnselen van de elektromagnetische velden niet in
rekening brengen. Zodoende zijn ze enkel inzetbaar zolang de dimensies van het
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circuit in kwestie beduidend kleiner zijn dan de relevante golflengte. Met de hui-
dige kloksnelheden en datadebieten wordt deze voorwaarde heel vaak geschonden
en is het onvermijdelijk om over te schakelen op elektromagnetische simulatiesoft-
ware, die de wetten van Maxwell hanteren, om de traditionele programma’s bij te
staan of zelfs te vervangen. Elektromagnetische simulators bestaan in allerlei vor-
men en maten en steunen op een of meerdere wiskundige technieken om Maxwells
stelsel van partiële differentiaalvergelijkingen op te lossen. Tweedimensionale
(2D) oplossingsmethodes waarbij structuren met een invariante dwarsdoorsnede,
bijvoorbeeld transmissielijnen, worden doorgerekend, werden eerst ontwikkeld.
Door deze 2D technieken aan te wenden om het zogenaamde binnenprobleem op
te lossen en het buitenprobleem over te laten aan een driedimensionale (3D) tech-
niek verhoogt men de accuraatheid. Dit dicht bovendien ook de kloof naar volledig
3D oplossingsmethodes.

Ongeacht de specifieke 3D simulator en zijn onderliggende werkingsprincipes, is
een van de meest uitdagende elektromagnetische fenomenen om nauwkeurig te
modelleren het skineffect. In goede geleiders nemen de elektromagnetische vel-
den exponentieel af in het volume en dit effect wordt prominenter naarmate de
frequentie stijgt waardoor de velden steeds sterker worden beperkt tot het opper-
vlak. Voor volumetrische technieken veroorzaken dergelijke materialen een onge-
remde groei in het aantal onbekenden. Oppervlaktemethodes worstelen dan weer
met een nauwkeurige numerieke integratie van de greense functie in het gelei-
dende medium. Gezien de alomtegenwoordigheid van geleiders in schakelingen
en antennes, en het feit dat dit fenomeen de onderliggende oorzaak is van vele sig-
naalintegriteitsproblemen, is het uiterst belangrijk dat efficiënte en nauwkeurige
modellen voor deze materialen worden ontwikkeld. In dit proefschrift presente-
ren we een nieuwe techniek voor het breedbandmodelleren van goede geleiders
zonder te vertrouwen op benaderingen.

De voorgestelde differentiële oppervlakte-admittantie-operator introduceert een
breedbandige, globale en exacte betrekking tussen het tangentiële elektrische en
magnetische veld op het randoppervlak van een volume; dit in tegenstelling tot de
populaire oppervlakte-impedantievoorwaarde, die een lokale, benaderende voor-
waarde oplegt, enkel geldig voor geleiders wiens skineffect sterk ontwikkeld is
en dit in een beperkt frequentiebereik. In Hoofdstuk 3 wordt een uitdrukking
voor de driedimensionale differentiële oppervlakte-admittantie-operator voor niet-
magnetische, homogene materialen opgesteld die integralen met de greense func-
tie in geleidende media omzeilt. In plaats daarvan vertrouwt de operator op de
eigenfuncties van een caviteit met perfect elektrisch geleidende wanden met de-
zelfde vorm als het bestudeerde object. Hoewel deze operator opgesteld kan wor-
den voor eender welke vorm, zorgt de afhankelijkheid van de eigenfuncties ervoor
dat hij het eenvoudigst kan worden afgeleid voor lichamen wiens eigenfuncties
analytisch berekenbaar zijn.

De 3D differentiële oppervlakte-admittantie-operator wordt in Hoofdstuk 4 toege-
past op verstrooiings- en antenneconfiguraties. Hiervoor worden de eigenfuncties
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van een cilinder bepaald en aangewend om de differentiële operator op te bou-
wen. Deze wordt vervolgens gediscretiseerd met een specifieke verzameling ba-
sisfuncties, namelijk gekromde dakfuncties. Deze functies zijn speciaal afgestemd
voor gebruik op de mantel van een cilinder aangezien ze diens gekromde aard
bewaren. Een overeenstemmende momentenmethode wordt naderhand toege-
past op de elektrischeveldintegraalvergelijking met diezelfde basisfuncties, waar-
door een volledige randintegraalvergelijkingsformulering voor cilinders wordt be-
komen. Vervolgens wordt de aanbevolen techniek benut om verstrooiing aan ver-
schillende materialen te bestuderen en om antenne-eigenschappen voor verande-
rende geleidbaarheden te evalueren, hetgeen de nauwkeurigheid van de methode
aantoont in vergelijking met bestaande softwarepakketten.

Een tweede domein waar de differentiële oppervlakte-admittantie-operator wordt
toegepast, omvat de karakterisering van (elektronische) interconnecties. Twee ver-
schillende randintegraalvergelijkinsformuleringen worden gespecificeerd die de
3D differentiële oppervlakte-admittantie-operator inlijven om het binnenprobleem
van geleiders aan te pakken. De eerste maakt gebruik van een circuitinterpretatie
die kan worden opgelost met de vertrouwde circuitsimulators om de weerstand
en inductantie van interconnecties te bepalen. De tweede methode leidt tot een
reeks matrixvergelijkingen die een volledige elektromagnetische karakterisering
mogelijk maken. De differentiële oppervlakte-admittantie-operator zelf wordt op-
gesteld op twee manieren. Gebaseerd op de eigenfuncties van de balk, discretiseert
de eerste methode de operator rechtstreeks met lokale basisfuncties. De alterna-
tieve aanpak past volledigedomainbasisfuncties toe als tussenstap. Dit resulteert
in een meer nauwkeurige en krachtige gediscretiseerde operator, in het bijzonder
voor geleiders. Uiteindelijk worden de voorgestelde methodes vergeleken in ter-
men van nauwkeurigheid en doeltreffendheid. Bovendien worden ze toegepast
op een groot aantal voorbeelden. Door te vergelijken met een aantal academische
technieken, commercieel beschikbare softwarepakketten en meetresultaten, wordt
de validiteit en bruikbaarheid van de gepresenteerde methodes aangetoond.

De beperking tot niet-magnetische materialen voor de 3D differentiële oppervlakte-
admittantie-operator wordt opgeheven voor de balk in Hoofdstuk 6. Een nieuwe
admittantie-operator wordt voorgesteld, rechtstreeks bepaald als het verschil tus-
sen twee Poincaré-Steklov-operators. Dit wordt bereikt door de configuratie van
beide operators te beschouwen als de superpositie van zes perfect elektrische ge-
leidende golfgeleiders met een gemetalliseerd uiteinde waardoor materialen met
zowel een elektrisch als magnetisch contrast in rekening gebracht kunnen worden.

In het afsluitende hoofdstuk worden de voornaamste conclusies van dit proefschrift
neergepend, gevolgd door een beknopte beschrijving van mogelijke verbeterin-
gen en/of uitbreidingen van het beschreven werk. Deze toekomstmogelijkheden
kunnen leiden tot een performante elektromagnetische simulator die hopelijk zijn
steentje kan bijdragen aan het vormen van de wereld van morgen.





Summary

The proliferation of electronic devices in an ever increasing range of applications
has been driven by efforts to cater to the population’s exploding demand for (wire-
less) connectivity in our technology-oriented global society. These applications
range from the familiar computers and smartphones, over smartwatches and vir-
tual reality to self-driving cars and smart cities. This diversity and growing com-
plexity has spawned many new technologies and trends to face the accompanying
challenges. The move from low-bandwidth messages to high-bandwidth commu-
nication channels on ubiquitous mobile devices has led, for example, to 5G, the
upcoming standard for ultra-fast mobile internet. Tied in with this, is the Inter-
net of Things (r)evolution, where standard electronic devices such as computers or
tablets are connected over the internet with smart variants of everyday objects such
as thermostats, scales, etc., creating a fully interconnected home. This trend of in-
tegrating connectivity capabilities in all sorts of devices is not confined to a single
house, but finds applications in stores, hospitals and the transportation industry,
among others.

The emerging technologies and trends do not only alter communication protocols
and systems, but their impact reaches all the way down to the hardware level as
well. The integration of electronics in a wide variety of appliances and materials,
the rising bit rates and the unrelenting urge for miniaturization, have all brought
about progressively more innovative and complex integrated circuits and printed
circuits boards. However, these solutions come at a cost. Issues/roadblocks can
arise in a myriad of domains, but focusing specifically on the electromagnetic com-
patibility and signal and power integrity, modern circuitry is increasingly faced
with phenomena such as signal attenuation, distortion, dispersion, crosstalk, etc.
All these effects can have an adverse influence on the correct operation of the
systems in question. For the sake of avoiding costly redesign at the end of the pro-
duction process, it is therefore crucial for designers to detect potential problems as
soon as possible. To accommodate this need, computer-aided design (CAD) tools
have to continue evolving to stay accurate and relevant.

Simulation tools have indeed seen a remarkable progression throughout the years.
Circuit solvers, which apply Kirchhoff’s laws, are the starting point and go-to solvers
for many designers. Unfortunately, they are only valid insofar the wave nature of
the fields does not play up, i.e., as long as the circuit is electrically small. With cur-
rent clock speeds, these conditions are often no longer met and electromagnetic
(EM) solvers that tackle Maxwell’s equations are required to complement/replace
circuit simulators. EM solvers come in all shapes and sizes and they are based on
one or more mathematical techniques to numerically solve Maxwell’s set of partial
differential equations. Two-dimensional (2-D) solvers were developed first, ana-
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lyzing structures with a fixed cross-section, e.g., computing transmission line pa-
rameters. Embedding these 2-D solvers that solve the interior problem into three-
dimensional (3-D) formulations for dealing with the exterior problem improves
the accuracy and bridges the gap to full 3-D solvers.

Regardless of the specific 3-D solver and its core working principle, one of the more
challenging electromagnetic phenomena to model accurately is the skin effect. In
good conductors, the electromagnetic fields decay exponentially in their bulk and
this effect strengthens with rising frequencies, increasingly constraining the fields
to the surface. For volumetric methods, these materials cause a rampant increase
in the number of unknowns while boundary-based methods struggle with the ac-
curate numerical integration of the Green’s function in the conductive medium.
Given the pervasive presence of good conductors in circuits and antennas, and the
fact that this phenomenon is the underlying root of many signal integrity problems,
it is imperative that efficient and accurate models are developed for these types of
materials. In this dissertation, we present a novel technique for the broadband
modeling of good conductors without relying on approximations.

The proposed differential surface admittance operator introduces a broadband,
global and exact relationship between the tangential electric and magnetic field on
the boundary surface of a volume; this in contrast to the popular surface impedance
condition, which implements a local, approximate condition, only valid for con-
ductors with a strongly developed skin effect in a limited frequency range. In
Chapter 3, an expression for the 3-D differential surface admittance operator for
nonmagnetic, homogeneous materials is constructed that avoids integrals involv-
ing the Green’s function of the (conductive) medium. Instead, it relies on the
eigenfunctions of a perfect electric conductor cavity with the same shape as the
object under study. Although this operator can be constructed for any volume, its
reliance on the eigenfunctions implies that it is most easily obtained for shapes
with analytically calculable eigenfunctions.

The 3-D differential surface admittance operator is applied to scattering and an-
tenna configurations in Chapter 4. For this, the eigenfunctions of a cylinder are
calculated and employed to construct the differential operator, which is subse-
quently discretized using a particular set of basis functions, i.e., curved rooftop
functions. These rooftops are specially tailored to use on the mantle of a cylin-
der, preserving its curved nature. Accordingly, a congruent Method of Moments
discretization of the electric field integral equation with the same set of functions
is constructed, yielding a comprehensive boundary integral equation formulation
for cylinders. Afterwards, the advocated technique is utilized to study scattering
at various materials and to evaluate antenna characteristics for varying conduc-
tivity values, demonstrating its accuracy by comparison with existing simulation
software packages.

Another application domain where the differential surface admittance operator is
deployed, comprises the characterization of interconnects. Two different boundary
integral equation formulations are specified that incorporate the 3-D differential
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surface admittance operator to deal with the interior problem of conductors. The
first one leverages a circuit interpretation that can be solved by traditional circuit
solvers to compute the resistance and inductance of interconnects, while the sec-
ond leads to a set of matrix equations that enable a full-wave characterization. The
differential surface admittance operator itself is constructed in two ways. Based
on the eigenfunctions of a cuboid, the first realization directly discretizes the op-
erator with standard local basis functions. The alternative approach applies entire
domain basis functions on the faces of the cuboid as an intermediate step. This
results in a more accurate and powerful discretized operator, especially for good
conductors. In the end, the proposed methods are compared in terms of accuracy
and efficiency, and are employed to characterize a plethora of examples and ap-
plications. Comparison with a number of academic techniques, commercial tools
and measurement results testifies to the validity and appositeness of the advocated
methods.

The restriction to nonmagnetic materials for the 3-D differential surface admit-
tance operator is alleviated in Chapter 6 for cuboids. A novel admittance oper-
ator is proposed, directly constructed as the difference of two Poincaré-Steklov
operators. This is achieved by deeming the configuration for each operator as the
superposition of six perfect electric conductor waveguides with a metallized end,
allowing for materials with both an electric and magnetic contrast.

In the final chapter, the main conclusions to this dissertation are formulated accom-
panied by a brief description of some possible improvements and/or extensions on
the presented work. These future avenues could lead to a full-blown EM CAD tool,
that can hopefully play its part in shaping the world of tomorrow.
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A 3-D DIFFERENTIAL SURFACE ADMITTANCE OPERATOR

FOR THE BROADBAND MODELING OF LOSSY

CONDUCTORS





1
Introduction

“But this is one corner of one country, in one continent, on one planet that’s a corner
of a galaxy, that’s a corner of a universe that is forever growing and shrinking and

creating and destroying and never remaining the same for a single millisecond.
And there is so much — so much to see.”

Eleventh Doctor, Doctor Who

1.1 Context

In recent years, an unprecedented expansion in communication systems and tech-
nologies has been fueled by the world’s insatiable hunger and craving for infor-
mation and global connectivity. In this day and age we take it for granted that
we essentially have the world at our fingertips. With the click of a button or a
swipe across the screen, we gain access to the world’s shared knowledge and get
into contact with people from around the world while mere decades ago, we still
thought “digital watches are a pretty neat idea”1.

The seemingly unbounded growth of electronic devices has brought along a myr-
iad of contemporary trends and technologies that in turn lead to new challenges
and solutions. Video on demand in combination with the ubiquitous use of mo-
bile devices, for example, has led to the advent of 5G, the next generation of mo-
bile communication networks. This new emerging standard has to deal not only
with the ever increasing number of users and applications, but with the shift from
low-bandwidth text- and/or speech-based messages to high-demand image/video-
based communication as well. Examples of this new paradigm can be found in

1The Hitchhiker’s Guide to the Galaxy, Douglas Adams
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various domains, ranging from social media applications such as Instagram and
FaceTime, to services such as telemedicine, teleconferencing, etc.

Another evolution that is gaining ground at breakneck speed is the inclusion of
connectivity functionality in nontraditional devices, leading to the so-called in-
ternet of things (IoT). One would be surprised how many appliances are manu-
factured nowadays in a smart variety: thermostats, doorbells, refrigerators, cof-
fee machines, . . . leading to a home where everything is interconnected. Outside
our homes, wireless technologies include radio-frequency identification (RFID) or
near-field communication (NFC) with applications including contactless payment,
shoplifting protection, interactive patient tags, . . . . Another area where the inte-
gration of electronics has taken off, is the transportation industry. Not only are
modern vehicles jam-packed with user-oriented modules, e.g., multimedia con-
soles, satellite navigation, etc., a bunch of sensors and controllers safeguard the
operation of the car and the safety of its passengers as well. With the onset of
smart cars and/or self-driving cars, this integrated functionality will only increase
further as the autonomy develops and inter vehicular information exchange ad-
vances through wireless communication networks.

The proliferation of these emerging technologies and trends does not only reshape
communication systems and protocols, but it has repercussions on the hardware
level as well in order to accommodate for the changing demands of the applica-
tions. The continuing push for miniaturization and the rising clock frequencies
combined with the integration of circuitry in a wide range of devices and ap-
pliances, have led to increasingly intricate and innovative printed circuit boards
(PCBs) and integrated circuits (ICs). Unfortunately, in one way or the other these
solutions come at a cost. Examples of important challenges/concerns that design-
ers face include manufacturability, process inaccuracies, mechanical instabilities,
inhomogeneous heat distribution, signal integrity (SI) and power integrity (PI)
degradation and electromagnetic compatibility (EMC) issues. Focusing on the elec-
tromagnetic problems, EMC and SI/PI cover a large group of effects such as dis-
tortion, ringing, dispersion, signal attenuation, skin effect and crosstalk that can
have detrimental consequences on the proper operation of electronic systems. De-
signers use a variety of computer-aided design (CAD) tools in an attempt to assess
and mitigate these problems as early as possible in the design cycle to avoid large
costs later down the line. Therefore, it is of the utmost importance that the tools
themselves evolve to remain reliable and accurate, keeping up to speed with new
topologies and technologies.

1.2 Motivation

The tools utilized by electronics designers are in the first place the traditional cir-
cuit solvers. Applying Kirchhoff’s laws, these flexible and versatile programs can
characterize very large structures in a short amount of time. However, the un-
derlying laws are only valid as long as the structure is electrically small, i.e., its
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dimensions have to be much smaller than the wavelength at the highest operating
frequency. At modern clock frequencies (around 3 GHz and higher), the free-space
wavelength drops below 100 mm, implying that is no longer justified to consider
ICs and certainly PCBs as electrically small. As such, circuit solvers no longer suf-
fice to accurately predict the behavior of such structures, even with extensions such
as transmission line theory. Hence, design engineers are increasingly dependent
on electromagnetic (EM) solvers that do take the wave nature of the signals and
fields into account by numerically solving Maxwell’s equations.

Just like the structures they model, electromagnetic solvers have evolved over the
years. For antenna applications, the early techniques modeled conductive, thin-
wire structures, such as cylindrical wires [1] or dipole antennas [2], by means of
a postulated current distribution. Interconnects, on the other hand, were mod-
eled initially as pure two-dimensional (2-D) structures having a fixed cross-section
with an initial focus on waveguides [3]–[5] that later expanded towards conduc-
tors [6]–[11]. As the structures shrunk further, the finite length was dealt with
by combining 2-D techniques to solve the interior problem, taking the finite con-
ductivity into account, with three-dimensional (3-D) methods to solve the exterior
problem, leading to an overall more efficient solution [12]–[17]. This did not,
however, negate the need for a full-blown 3-D solver, which has as such been re-
searched extensively in a wide variety of applications [18]–[21].

One of the more challenging wave effects to model accurately is the skin effect,
the phenomenon that the fields get progressively more confined to the surface of
(good) conductors with rising frequencies. This effect is the underlying root of
many SI problems such as dispersion, attenuation, the proximity effect, . . . and as
conductors are omnipresent in antennas and interconnects, adequate modeling of
these materials is of paramount importance. Regardless of the employed computa-
tional electromagnetics (CEM) method, broadband modeling of the skin effect and
related phenomena remains an open problem; low- and high-frequency limits and
approximations are well-known and have widespread use, but in the intermediate
frequency range accurate descriptions are notoriously challenging. In this disser-
tation, we propose a new approach to tackle this problem with specific interest in
accuracy over a wide frequency range without relying on approximations.

1.3 Computational electromagnetics

In CEM, there is no panacea, no cure-all, no “solver to rule them all”, neither in 2-D
nor in 3-D. If this were indeed the case, research into numerical techniques would
have come to an end in the past and this is clearly not the case. On the contrary,
throughout the years, various methods have been developed, each specialized for
certain types of configurations/problems. The goal of this section is to present
a brief overview of the fundamentals of the three most commonly used families
of methods, viz., finite element, finite difference and integral equation methods.
Specific focus is directed to the latter category as all methods presented in this
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dissertation are integral equation based. This list is by no means exhaustive; there
are several other well-known techniques such as geometrical optics (GO) and uni-
form theory of diffraction (UTD) [22], not even mentioning hybrid methods that
combine two or more types of solvers in an effort to get the best of both worlds.

1.3.1 Finite element methods

The finite element method (FEM) [23], [24] is used extensively in electromagnet-
ics as well as in other engineering and physics domains such as structural mechan-
ics and transport phenomena [25]. This technique meshes the entire volume of
the problem under consideration, typically with triangles and/or tetrahedral ele-
ments but other shapes are employed as well. The unknown quantities are then
expanded in basis functions that are defined locally on the mesh elements. To dis-
cretize a partial differential equation, it is weighted with test functions, often the
same as the basis functions, i.e., Galerkin testing, so that the solution will satisfy
the equation in the weak sense. This approach effectively transforms the contin-
uous problem into a matrix equation with a large but sparse matrix at its core.
The FEM is very apt at modeling intricate geometries and complex materials due
to the flexibility of its unstructured mesh and the localized approximation of the
sought-after quantities. However, its volumetric discretization results in a large
number of unknowns leading to poor scaling and a high computational cost, espe-
cially in the case of good conductors where a very fine discretization is required
to correctly capture the rapidly decaying fields in the material. Moreover, in order
to approximate unbounded volumes, absorbing boundary conditions (ABCs) have
to be employed to avoid reflections at the edge of the simulation domain. Addi-
tionally, as the FEM is usually applied in the frequency domain in EM (although
time-domain formulations exist as well [26]), nonlinear effects cannot be taken
into account.

1.3.2 Finite difference methods

Finite differences are predominantly applied in the time domain, leading to the
finite-difference time-domain (FDTD) method [27], [28]. At its core, the FDTD
method tackles Maxwell’s equations by approximating derivatives by finite differ-
ences and discretizing the field quantities on a staggered, structured grid. Un-
knowns are updated in a leapfrog manner while the time advances in discrete
steps until the desired time length is obtained. The FDTD method is conceptually
the simplest of the three main CEM methods and since it does not need to store
a system matrix, it scales better than the others. The volumetric grid also allows
for the simulation of complex materials but, just like the FEM, ABCs or perfectly-
matched layers (PMLs), are required to truncate the domain in case of unbounded
domains. Moreover, the structured nature of the grid hinders the inclusion of more
complex geometries. Various off-shoots of the FDTD have been developed to over-
come this restriction, e.g., the finite integration technique (FIT) [29]. Being a
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time domain method, the FDTD technique does allow for nonlinear media but on
the other hand, dispersive materials prove to be more difficult. By performing a
single simulation, broadband frequency results can by obtained in one fell swoop
as long as the stability is guaranteed. Although this stability behavior is well un-
derstood, the required time step can become unreasonably small if a fine spatial
resolution is required, such as is the case in the modeling of good conductors. For
a well-documented overview of the state-of-the-art in overcoming such problems,
the reader is referred to [30] and the references therein.

1.3.3 Integral equation methods

Integral equation methods solve Maxwell’s equation by first determining the re-
sponse of an impulse source placed in the background medium, i.e., the Green’s
function. Afterwards, through superposition, the response of any source is com-
puted by convolution of the Green’s function and the sources. The main advan-
tage of this approach is that the unboundedness of the background medium is
perfectly taken into account without relying on ABCs. As such, only objects not
part of the background medium have to be meshed. The Achilles’ heel of inte-
gral equation methods is the calculation of the Green’s function, which can only
be calculated analytically for a handful of simple configurations, fortunately in-
cluding the essential homogeneous background medium. Computation of layered
medium Green’s functions, on the other hand, proves to be far more cumbersome
and time-consuming [31]. Integral equations are usually formulated in the fre-
quency domain but have been developed for the time domain as well [32].

Volume integral equation methods

The volume integral equation (VIE) method [33], [34] can be used to model in-
homogeneous materials with very similar discretization strategies as the FEM but
without the need for approximations to truncate the simulation domain because of
the Green’s function. However, there is a quid pro quo: in contrast to the FEM, the
system matrix will be dense making the solution of the matrix equation much more
inefficient than the sparse matrix of the FEM. Nonetheless, VIE based methods are
being employed to model interconnects [16], [35]. This category includes the pop-
ular partial element equivalent circuit (PEEC) method [12], [36], which transforms
the integral equation into an equivalent circuit enabling integration into conven-
tional circuit solvers with subsequent integration capabilities of sources, discrete
elements, etc. However, this does not circumvent the dense matrix problem; many
elements in the formulation are coupled and this can result in large solution times
as circuit solvers are not optimized for such intertwined, dense circuits. Note that
due to the volumetric mesh, VIE methods face the same problem as the FEM when
it comes to good conductors as the number of required mesh elements explodes
with the decreasing skin effect.
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Boundary integral equation methods

If the objects under consideration are filled with piecewise homogeneous materi-
als, it suffices to only determine the unknowns on the boundaries, reducing the
VIE to a boundary integral equation (BIE). Subsequent discretization leads to a
boundary element method (BEM), also known as the Method of Moments (MoM)
in electromagnetics [37]. As only the surface has to be meshed, the number of
unknowns is tangibly lower than the related volumetric method, especially for
conductors where this reduction in unknowns can be considerable, while keeping
the advantages of the Green’s function. The system matrix evolving from the BIE-
MoM is dense, leading to a high computational cost for calculating its elements
and solving the matrix system. In free-space scattering applications, the multilevel
fast multipole method (MLFMM) [19] is leveraged to expedite the computations.
Applying a similar strategy for PCB or IC structures, which comprise a layered back-
ground medium, is far more cumbersome (see [38] and the references therein).

A very general BIE method to simulate any homogeneous material is the Poggio-
Miller-Chan-Harrington-Wu-Tsai (PMCHWT) technique [21]. Still, standard BIE
methods are poorly suited for the modeling of good conductors as the numer-
ical computation of MoM integrals involving the Green’s function in a material
with a strongly developed skin effect is an enormous challenge, almost nullify-
ing the advantages of the BEM. Even if one employs computationally expensive
techniques to bypass this complication [39], [40], the PMCHWT still has difficulty
coping with the high dielectric contrast, instigating the need for the employment of
(Calderón) preconditioners and/or specific basis functions to guarantee accurate
solutions [41].

Differential surface admittance operator

Various fixes/approximations have been formulated over the years to overcome the
difficulty in modeling materials in the skin effect regime. One of the most popular
methods is the surface impedance concept [42], an approximation valid for con-
ductors with a strongly developed skin effect in a geometry with moderate radius
of curvature [43]. This local relationship enforced on the boundary of the object,
relates the tangential electric and magnetic field, thus avoiding a direct solution of
the interior problem. Despite various extensions [15], [44], [45], this method is
not able to perform truly broadband simulations given its inherent assumptions.

The differential surface admittance operator introduces an exact, global relation-
ship between the tangential electric and magnetic field on the boundary surface,
valid over the entire frequency range. First introduced for 2-D based on a Dirichlet-
to-Neumann (DtN) operator in [10], this operator can be constructed without com-
puting integrals involving the Green’s function in the lossy medium. It relies on the
eigenfunctions of a perfect electric conductor (PEC) cavity with the same shape as
the object under study. As such, it is most easily constructed for canonical shapes
whose eigenfunctions can be calculated analytically or via an efficient algorithm,
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viz., rectangles [10], circles [10], [46], tubes [47] and triangles [48]. It has been
successfully applied to scattering problems [49] and to a variety of different inter-
connect cases [11], [50]–[52]. In [53], the authors present an extension of the 2-D
differential surface admittance operator to arbitrary cross-sections. However, this
approach reintroduces integrals involving the Green’s function in the conductive
medium and as such the need for a very fine (interior) mesh and the difficulty of
the numerical integration should resurface. Yet, the authors claim that a simple
quadrature rule and a modest number of pulse basis functions suffice to accurately
calculate the operator. Additionally, in comparison with the results from [10], they
state that the original method, which relies on the eigenfunctions, requires a finer
discretization and more eigenmodes, contradicting the analysis in [10].

The same authors have integrated the 2-D differential surface admittance opera-
tor with a 3-D integral equation to model interconnects [14], [54]. This approach
models the variation of the current in the 2-D cross-section but assumes the longi-
tudinal current in each block to be constant, which proves to be detrimental to the
accuracy of modeling corners/bends and thus for full 3-D interconnects. Recently,
in [55], [56] an extension of this method to layered media was proposed, but this
technique seems to be based on a mathematically questionable simplification of
the occurring Sommerfeld integrals.

1.4 Outline

The goal of this work is to develop a fully 3-D differential surface admittance oper-
ator for the modeling of arbitrary homogeneous materials with a particular focus
on lossy conductors, given their ubiquitousness in antenna and interconnect ap-
plications. The operator should be easily integrated in a BIE method to accurately
and efficiently solve the problem at hand. In this way the technique can be utilized
to characterize relevant scattering and interconnect problems.

In Chapter 2, we provide the fundamentals of EM theory used throughout this
work. The theoretical concepts of the BEM in electromagnetics are discussed in
this chapter as well. The general idea of the 3-D differential surface admittance
operator is presented in Chapter 3. Moreover, two different derivations lead to an
expression of the operator based on the eigenfunctions of the volume. In Chapter 4,
we apply the differential surface admittance operator to cylinders and integrate it
into a MoM framework. For this, we first propose a set of basis functions specifically
designed for the mantle of circular cylinders. The approach to deal with the cor-
responding singular integrals is explained as well. Afterwards, the eigenfunctions
of the cylinder are constructed and utilized to create the discretized differential
surface admittance operator. The combination of this operator and the BIE is then
employed to study scattering problems and characterize antenna performance for
varying conductor conductivity values. The study of interconnects is tackled in
Chapter 5. Thereto, two different BEMs are formulated that incorporate the dif-
ferential surface admittance operator to model the lossy materials accurately. The
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differential surface admittance operator is then derived for cuboids in two ways.
The second approach applies entire domain basis functions in order to come to
a more efficient and accurate computation of the operator. Its appositeness and
validity are shown via various examples and applications through thorough com-
parison with several academic and commercial solvers. In the next chapter, i.e.,
Chapter 6, the differential surface admittance operator for cuboids is derived in an
alternative way that enables both magnetic and dielectric contrast. This disserta-
tion finishes with a formulation of the conclusions and avenues for future work in
Chapter 7.
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2
The Boundary Integral Equation

Method for Electromagnetics

“From a long view of the history of mankind — seen from, say, ten thousand years
from now — there can be little doubt that the most significant event of the 19th

century will be judged as Maxwell’s discovery of the laws of electrodynamics.”

Richard Feynman

2.1 Maxwell’s equations

Electric and magnetic manifestations have been on the mind of people for as long as
recorded history exists. For the longest time, they were designated to be mysterious
phenomena, often thought to be supernatural and/or superstitious. The advent of
modern science sparked a renewed interest in the search for the origin of these
two natural phenomena. Despite countless experiments and tremendous leaps in
human understanding, however, electricity and magnetism remained two separate
fields until the Danish scientist Ørsted brought to light the deflection of a compass
needle by an electric current at the start of the 19th century. This jump-started the
field of electromagnetism, which was explored by many famous scientist including
Gauss, Ampère, Weber, Henry, Faraday just to name a few; all of whom have a
scientific unit named after them.

In 1861, all this groundbreaking work was distilled into twenty equations by the
Scotsman James Clerk Maxwell in his work On Physical Lines of Force [1], defini-
tively unifying electricity and magnetism. This collection of equations, derived
through mechanical reasoning on an equivalent material model of molecular vor-
tices, was reduced to a set of four equations by Oliver Heaviside twenty years later.
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Hence, the vector form of the equations, which we use up to this day, saw the
light of day. Meanwhile, in 1865, in A Dynamical Theory of the Electromagnetic
Field [2], Maxwell proved that his equations supported undulations of oscillating
electric and magnetic fields and that they propagate through vacuum at the speed
of light, inadvertently showing that light itself is an electromagnetic phenomenon.
Experimental evidence and practical applications in the form of transmission lines
followed swiftly before the turn of the century.

Maxwell’s equations have proven to be remarkably general especially given the
progress in physics since their conception. First it was shown that, following the
annus mirabilis 1905, Maxwell’s equations are compatible with Einstein’s theory
of special relativity and that the speed of light in free space is, in fact, the highest
speed attainable in any frame of reference. Only with the advent of quantum
electrodynamics (QED) did it become clear that the classical equations break down
at extremely small distances (at photon level). Nevertheless, since their advent
over a century ago, Maxwell’s equations have been one of the driving forces for
our modern world, (in)directly leading to a plethora of inventions such as radio,
the Internet, magnetic resonance imaging (MRI), cell phones, . . .

2.1.1 Frequency domain

In this work, we will work exclusively in the frequency domain. This implies that
all physical quantities (such as fields, currents, etc.) x̄ (r, t) will be represented by
their complex phasor x (r,ω) withω= 2π f the angular frequency. Both represen-
tations are linked through x̄ (r, t) = Re

�

x (r,ω) e jωt
�

, a convention used through-
out this work. Without further ado, we now present Maxwell’s equations in the
frequency domain:

∇× e (r,ω) = − jωb (r,ω) (2.1)

∇× h (r,ω) = jωd (r,ω) + j (r,ω) (2.2)

∇ · b (r,ω) = 0 (2.3)

∇ · d (r,ω) = ρ (r,ω) . (2.4)

The first two equations, the so-called curl equations, describe the relation between
the electric field e (in V/m) and the magnetic field h (in A/m) on the one hand,
and the magnetic induction b (in Wb/m2) and electric induction d (in C/m2) on
the other hand, together with the (electrical) current density j (in A/m2). In the
frequency domain, the divergence equations (2.3) and (2.4) can be derived of the
curl equations (2.1) and (2.2), respectively, by taking the divergence of both sides
and, for the latter, using the law of charge conservation:

∇ · j (r,ω) + jωρ (r,ω) = 0, (2.5)

with ρ the electrical charge density (in C/m3). Conversely, (2.5) can be derived
from (2.2) and (2.4).
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This set of four (or five if you like) equations contains too many unknowns to
results in a system with a unique solution, especially given the innate redundancy
alluded to above. Therefore, additional equations are required to get a closed set
of equations. These relations are enforced by the materials involved and are called
the constitutive equations:

d (r,ω) = ε (r,ω)e (r,ω) (2.6)

b (r,ω) = µ (r,ω)h (r,ω) , (2.7)

where ε and µ are the permittivity and permeability of the medium, respectively.
Note that these relations are macroscopic simplifications of the complex, micro-
scopic reality. In particular, (2.6)–(2.7) describe local, linear, isotropic, but possi-
bly dispersive and inhomogeneous materials. Although more comprehensive re-
lations can be employed to describe, amongst others, crystals and ferromagnetic
materials, in this dissertation the considered media are piecewise homogeneous,
implying that permittivity and permeability are location independent, other than a
discrete number of jumps. This leads to the following definition of the propagation
speed, wavenumber and wave impedance

c (ω) = 1/
Æ

ε (ω)µ (ω) (2.8)

k (ω) =ω
Æ

ε (ω)µ (ω) (2.9)

Zc (ω) =
Æ

µ (ω)/ε (ω). (2.10)

This leaves the j term in (2.2) to be dealt with. Several contributions can make up
the total current density. One of those is the conduction current in a conductor, de-
fined as jc = σe. Throughout this dissertation, the conductivity σ is allowed for by
merging it with the (possibly already) complex permittivity to obtain a generalized
permittivity

ε̃= ε+
σ

jω
, (2.11)

where the tilde is customarily assumed and hence, suppressed, in the rest of this
work. The remaining contributions to j are usually external, assumed to be known,
and often denoted as je. By means of (2.5), the same applies to the charge den-
sity ρe.

A perfect electric conductor (PEC) is a hypothetical material for which the electri-
cal conductivity is infinite. Despite not existing in nature, conductors are regularly
replaced by PECs in calculations/simulations to simplify matters as the approxi-
mation is reasonable at high frequencies.

Good (but non-perfect) conductors are defined as materials for whichσ�ωε and
are often characterized by a different metric, i.e., the skin depth, defined as

δ =
Æ

2/ωµσ. (2.12)



20 Chapter 2. The Boundary Integral Equation Method for Electromagnetics

medium 2

medium 1

n̂

ρs

S

js

Figure 2.1: Relevant illustration for the definition of (2.15)–(2.18).

This is the distance over which a wave propagating through the material sees its
amplitude decreased by a factor e. The skin depth crops up in the approximate
expressions of the wavenumber and wave impedance of this class of materials:

k =ω
p
εµ≈ (1− j)/δ (2.13)

Zc ≈ (1+ j)/σδ. (2.14)

2.1.2 Boundary conditions

At the boundaries of different media, Maxwell’s equations (2.1)–(2.4) have to be
complemented with boundary conditions that describe the possible jumps of the
field quantities and their derivatives. Given the conventions depicted in Fig. 2.1,
these conditions on the surface S are

n̂× (e2 − e1) = 0 (2.15)

n̂× (h2 − h1) = js (2.16)

n̂ · (b2 − b1) = 0 (2.17)

n̂ · (d2 − d1) = ρs, (2.18)

with js the surface current density (in A/m), ρs the surface charge density (in
C/m2) and n̂ the unit normal vector pointing from medium 1 into medium 2. These
boundary equations are valid if one of the media is a PEC as well, albeit that all
field quantities inside the medium vanish as no fields are supported in the bulk of
a PEC.

2.1.3 Wave equation

Substituting the constitutive equations (2.6)–(2.7) into the curl equations (2.1)–
(2.2), results in a pair of coupled first order differential equations. Taking the curl
of (2.1) and substituting (2.2) into the result, leaves only the electric field quantity,
described by a second-order differential equations [3]:

∇2e+ k2e= jωµje +∇ρe/ε. (2.19)
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This partial differential equation has taken the form of a (vector) Helmholtz equa-
tion, unequivocally exhibiting the wave character of the electric field. A similar
procedure yields the same type of differential equation for the magnetic field,

∇2h+ k2h= −∇× je. (2.20)

2.1.4 Electromagnetic potentials

Solving (2.19) can prove to be cumbersome due to the∇ρe term in the right-hand
side as this tends to lead to hypersingular integrals. Therefore, it turns out to be
advantageous to express the unknown field quantities in terms of electromagnetic
potentials first and use these to obtain a set of equations that is easier to solve. To
this end, e and h will be decomposed according to Helmholtz’s theorem.

Eq. (2.3) states that b is solenoidal and implies that it can be fully described as the
curl of a vector potential a:

b=∇× a. (2.21)

Substituting this relation into (2.1), reveals that e + jωa is irrotational and can
thus be characterized by the gradient of a scalar potential φ, yielding

e= − jωa−∇φ. (2.22)

As this set of potentials a and φ is not uniquely defined, an extra condition can be
enforced to exploit this degree of freedom. Various possibilities exist but here the
Lorenz gauge [4] will be employed, which for an isotropic, homogeneous medium
is defined as:

∇ · a+ jωεµφ = 0. (2.23)

Substituting (2.21)–(2.22) into Maxwell’s equation and applying (2.23), results in
the following wave equations for the potentials:

∇2a+ k2a= −µje (2.24)

∇2φ + k2φ = −ρe/ε. (2.25)

After solving these (easier) wave equations, the fields can be reconstructed through
(2.21)–(2.22).

2.1.5 Green’s function

A universal solution to the scalar and/or vector Helmholtz equation does not exist
for an arbitrary source. However, given the linearity of the system, a solution can
be constructed through superposition of simpler source terms. A general approach,



22 Chapter 2. The Boundary Integral Equation Method for Electromagnetics
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Figure 2.2: Image theory applied to the calculation of the Green’s function in a half-space.

analogous to the impulse response in system theory, is to solve the Helmholtz equa-
tion for a single source point [5]:

∇2G (r) + k2G (r) = −δ (r) , (2.26)

with δ (r) the Dirac delta function. The solution to this equation is called the
Green’s function. In order to obtain a unique solution that physically represents
an outgoing wave, the function is subjected to the Sommerfeld radiation condi-
tion [6], which in three-dimensional (3-D) space is defined as

lim
r→∞

r
�

∂ G
∂ r
+ jkG

�

= 0. (2.27)

In a 3-D homogeneous background medium this results in the following Green’s
function

G (r) =
e− jkr

4πr
. (2.28)

In interconnect modeling, the so-called (quasi-)static approximation is often em-
ployed as the electrical length of the connections is very small. In such cases, an
approximation of the Green’s function is utilized: G (r) = 1/4πr.

In case there is an infinite PEC plane present, the Green’s function in the half-space
above the PEC plane can still be expressed analytically through image theory (see
Fig. 2.2) as

Ghalf

�

r|r′
�

= G
�

|r− r′|
�

± G
�

|r− r′′|
�

=
e− jkR

4πR
±

e− jkR′

4πR′
, (2.29)

with r′′ the mirror image of r′, R= |r−r′| and R′ = |r−r′′|. The minus sign must be
chosen for the field components that are zero on the PEC plane. The plus sign per-
tains to field components whose normal derivatives vanish on the PEC plane. For
other background media, such as the very prevalent layered or stratified medium,
the expressions for the Green’s function become much less straightforward [7],
[8] and usually involves computationally expensive numerical integration and/or
slowly convergent series.
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Figure 2.3: Illustration of the equivalence theorem.

2.1.6 Equivalence principle

To avoid convoluted and complex Green’s function calculations, the equivalence
theorem is widely utilized to transform a given situation into an equivalent, ide-
ally easier to solve problem [3], [9]. Several different flavors of the equivalence
principle exist, but only one will be elucidated here, viz., Love’s theorem [10].

Consider the situation shown in Fig. 2.3(a). A volume V with boundary surface S
and filled with a material (ε,µ) is embedded in a background medium V0, char-
acterized by (ε0,µ0) (not necessarily free space). The fields inside V are denoted
as (e1,h1) while outside, they are given as (e0,h0). Love’s equivalence theorem
states that the fields inside the volume can be made to vanish while leaving the
outside field distributions untouched by introducing an electric js and magnetic ms
surface current density on S (shown in Fig. 2.3(b)). Applying boundary conditions
(2.15)–(2.18) in both Fig. 2.3(a) and Fig. 2.3(b) yields, by comparison, the follow-
ing expressions for the equivalent surface current densities:

js = n̂× h0 = n̂× h1 (2.30)

ms = −n̂× e0 = −n̂× e1, (2.31)

with the tangential fields taken on S 1. Without any fields inside V, any changes
to the material parameters will not influence (e0,h0). The inside material can
thus, for example, be replaced by the background medium to obtain the equivalent
configuration of Fig. 2.3(c). Since the material discontinuity has been replaced by
the equivalent surface currents, it is (generally) easier to find a suitable Green’s
function (in this case the free space Green’s function (2.28)).

1Note that for the description of Love’s equivalence theorem, we tacitly added magnetic current
and charge densities to the right-hand side of (2.1) and (2.3), respectively, as well as magnetic surface
current and surface charge densities to (2.15) and (2.17), respectively. Although the existence of such
physical quantities has not been proven, they allow for elegant formulations and solution to a number
of problems of great practical interest.
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2.1.7 Eigenfunctions

In Section 2.1.5, the Helmholtz equation was solved for a fundamental excitation.
Interestingly, the homogeneous variants of the wave equations (2.19)–(2.20), i.e.,
without any sources, exhibit nonzero solutions under certain boundary conditions.
These so-called eigenfuctions will be discussed here for the specific case of a (singly
bounded and simply connected) volume V with a PEC boundary surface S. The
discussion largely follows [5], [11]2.

The electric field eigenvectors fall apart into two separate sets: irrotational and
solenoidal/divergenceless functions. The first set is defined as fν = ∇φν with φν
subjected to

∇2φν +λ
2
νφν = 0 in V (2.32)

φν = 0 on S, (2.33)

with ν a triple index. The solenoidal eigenmodes eν satisfy

∇×∇× eν − k2
νeν = 0 in V (2.34)

n̂× eν = 0 on S. (2.35)

The eigenvectors for the magnetic field can be split into two sets as well. The
irrotational vectors are gν =∇ψν where ψν satisfies

∇2ψν +µ
2
νψν = 0 in V (2.36)

n̂ · ∇ψν = 0 on S. (2.37)

The solenoidal eigenmodes hν, on the other hand, comply with

∇×∇× hν − k2
νhν = 0 in V (2.38)

n̂×∇× hν = 0 on S. (2.39)

Remark that the wavenumber/eigenvalue of the solenoidal eigenfunctions for both
fields are the same for every value of ν. This is a consequence of the fact that∇×hν
is a potential electric eigenvector and vice versa. Moreover, the eigenvectors can
be normalized such that

kνeν =∇× hν and kνhν =∇× eν. (2.40)

The wavenumbers of the eigenmodes, i.e., kν,λν,µν, are always real. The eigen-
modes themselves can be chosen to be real as well, but through linear combinations
can also be represented in some cases as complex functions.

2Note that other notations and conventions are used as well. One such example are Hansen’s
vector wave functions L, M and N, which reduce to the functions presented here when constrained to
the same boundary conditions [12].
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These two sets of eigenmodes are complete and thus suffice to construct all con-
ceivable valid field distributions inside the cavity. Care has to be taken for special
volumes (non singly bounded or non simply connected) such as two concentric
spheres or a cylindrical shell as these require an additional eigenmode to fully
capture the static behavior [11].

2.2 The boundary integral equation method

Boundary integral equations (BIEs), of which a high-level overview was presented
in Section 1.3.3, will be used throughout this work to tackle computational electro-
magnetics (CEM) problems. In this section, the boundary element method (BEM)
will be introduced for PEC objects. Moreover, the discretization procedure to trans-
form the (continuous) integral equation into a (discrete) matrix equation will be
discussed along with strategies to deal with the numerical evaluation of singular
integrals.

2.2.1 Mixed potential integral equation

Consider once more the situation of Fig. 2.3(a), but specifically with the material
inside V being a PEC. This implies two main changes from the general case. First
of all, no fields are supported in its bulk, so (e1,h1) vanish. Furthermore, an elec-
tric surface current density js on S will be induced by the fields in V0 to enforce
the corresponding boundary conditions on S. Careful comparison to Fig. 2.3(b)
reveals that both situations are the same except for the absence of the magnetic
current density ms, which is not supported by the PEC. It is thus as if Love’s the-
orem is automatically applied by the PEC. Consequently, the PEC can simply be
removed and replaced by the induced js without altering the outside environment,
leading to a geometry as shown in Fig. 2.3(c).

Let us now split up the total electric (and magnetic) field e0 into two contributions:
einc, the incident field generated by sources inside V0 as if the PEC was never there
in the first place, and esc, the scattered field excited by js in absence of the sources.
The incident field is assumed to be the source term for the posed problem and
so is known upfront. The scattered field, on the other hand, is generated by the
surface current density and can thus be found by solving (2.19). Yet, as detailed
in Section 2.1.4, it is advantageous to express esc in terms of potentials, leading to
the following expression for the scattered field, through superposition:

esc = − jωµ0

∫

S

G
�

|r− r′|
�

js
�

r′
�

dr′+
1

jωε0
∇
∫

S

G
�

|r− r′|
�

∇′ · js
�

r′
�

dr′, (2.41)

where (2.5) was employed to relate js and ρs. The first term is the contribution to
the electric field by the vector potential a, while the second term corresponds to
the scalar potential φ, hence the name mixed potential integral equation (MPIE).
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At this point, the boundary condition on the tangential electric field (2.15) is ap-
plied on S, i.e.,

n̂× e0 = n̂× (einc + esc) = 0. (2.42)

Inserting (2.41) leads to the electric field integral equation (EFIE)

n̂× einc = −ZcT js = jωµ0 n̂×
∫

S

G
�

|r− r′|
�

js
�

r′
�

dr′

−
1

jωε0
n̂×∇

∫

S

G
�

|r− r′|
�

∇′ · js
�

r′
�

dr′, (2.43)

with T the EFIE operator.

2.2.2 Method of Moments

Solving (2.43) analytically only succeeds in a handful of very simple geometries,
e.g., an infinite (PEC) plane, an infinite cylinder or a sphere. For arbitrary sur-
faces numerical approximations are necessary to find an expression for js. The
most widely used method to tackle this problem is the BEM, which is often called
Method of Moments (MoM) in the field of electromagnetics [13]. The general
idea of the MoM is to approximate the boundaries by a surface mesh consisting
of simple shapes. Subsequently, the unknown quantities (for the EFIE the surface
current density js) are expanded into elementary functions, defined over the mesh.
By testing the result, the integral equation is transformed into a matrix equation,
which is then solved using an appropriate matrix solver.

The surface mesh is usually constructed out of triangles (see for example Fig. 2.4).
Delaunay triangulation forms the basis for meshing algorithms as it provides a set
of regular triangles, i.e., without very sharp corners. However, for constrained two-
dimensional (2-D) problems and non-flat surfaces, Delaunay triangulation does
not guarantee a (unique) solution and heuristics have to be applied [14], [15].
Other shapes are sometimes used as well. Rectangles, or more generally quadrilat-
erals, are employed to reduce the number of unknowns but are overall less suited
for general mesh programs as they are less flexible than triangular meshes. Curvi-
linear elements can be used for a more efficient representation of curved objects
and shapes.

With every edge e j in the surface mesh, a basis function is associated. For the
omnipresent triangular meshes, the most widespread basis functions f j (r) are the
so-called Rao-Wilton-Glisson (RWG) functions [16] defined on pairs of adjacent
triangles (see Fig. 2.5(a)):

f j(r) =


�

r− r+j
�

/2 A+j , if r ∈ T+j
�

r−j − r
�

/2 A−j , if r ∈ T−j
0, elsewhere

(2.44)
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(a) Coarse surface mesh. (b) Fine surface mesh.

Figure 2.4: Illustration of a triangular surface mesh of a rocket, generated with gmsh [14].

r+j r−j
T+j T−j

e j

(a) RWG basis function f j (r) defined over triangles
T+j and T+j .

r+j

r−jû+j û−j

R+j
R−j

e j

(b) Rooftop basis function f j (r) defined over rect-
angles R+j and R+j .

Figure 2.5: Basis functions defined over a pair of adjacent faces with common edge e j .

with A±j the area of the respective triangles T±j and r±j the anchor point of the RWG,
i.e., the vertex opposite of the common edge e j . An RWG function represents a
current flowing from one triangle to another, perpendicularly to their common
edge and tangential to the other edges.

The equivalent function on adjacent rectangles are the rooftop functions, shown
in Fig. 2.5(b), generally defined as

f j(r) =


�

(r− r+j ) · u
+
j

�

û+j /A
+
j , if r ∈ R+j

�

(r−j − r) · u−j
�

û−j /A
−
j , if r ∈ R−j

0, elsewhere

(2.45)

with A±j the area of the respective rectangles R±j .

On other surface meshes, similar, linear functions can be defined. Additionally,
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higher-order basis functions, which expand upon, e.g., the RWG functions, can
also be constructed [17], [18], but they have not such a widespread use in the
BEM, in contrast to volumetric methods such as the finite element method (FEM).

Regardless of the chosen set of functions, the next step constitutes the approxima-
tion of js on S in terms of these local basis functions

js =
N
∑

j=1

I jf j (r) , (2.46)

with N the number of edges and thus employed basis functions. This expansion is
inserted in (2.43). In order to fully transform the resulting equation into a matrix
equation, both sides of the EFIE are weighted utilizing a suitable inner product
and an appropriate set of test functions t (r). A very common approach uses the
(rotated version of the) same functions as the basis of the expansion, i.e., t= n̂× f
and is called the Galerkin technique. The inner product is defined as

〈a (r) ,b (r)〉=
∫

S

a (r) · b (r) dS (2.47)

with S the common support of the functions involved. This procedure transforms
the EFIE into

∫

Si

fi (r) · et
inc (r) dS =

N
∑

j=1

I j






jωµ0

∫

Si

∫

S j

G
�

|r− r′|
�

fi (r) · f j

�

r′
�

dS′ dS (2.48)

−
1

jωε0

∫

Si

fi (r) · ∇
∫

S j

G
�

|r− r′|
�

∇′ · f j

�

r′
�

dS′ dS






,

with the superscript t denoting tangential to the surface and Si the support of
function fi . Remark that the divergence of the presented basis functions is well-
defined and evaluates to a constant value on either of its support faces. This type
of basis functions is therefore called divergence-conforming. The gradient of the
inner integral in the second term on the right-hand side can be transferred to the
testing function fi through the appropriate vector properties and Gauss’ theorem
to yield

∫

Si

fi (r) · et
inc (r) dS =

N
∑

j=1

I j






jωµ0

∫

Si

∫

S j

G
�

|r− r′|
�

fi (r) · f j

�

r′
�

dS′ dS (2.49)

+
1

jωε0

∫

Si

∫

S j

G
�

|r− r′|
�

∇ · fi (r)∇′ · f j

�

r′
�

dS′ dS






.
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In compact notation this discretized EFIE reads

P = Z I, (2.50)

with the elements of the vectors P, I and the matrix Z given by

pi =

∫

Si

fi (r) · et
inc (r) dS (2.51)

I j = I j (2.52)

Z i j = jωµ0

∫

Si

∫

S j

G
�

|r− r′|
�

fi (r) · f j

�

r′
�

dS′ dS

+
1

jωε0

∫

Si

∫

S j

G
�

|r− r′|
�

∇ · fi (r)∇′ · f j

�

r′
�

dS′ dS

. (2.53)

This matrix equation can be solved either directly or iteratively. The resulting
coefficients I j can then be employed to reconstruct js and to calculate the scattered
fields anywhere through (2.41). Notwithstanding the local nature of the basis
functions, the matrix Z is not sparse; on the contrary, it will be dense. This is
a result of the Green’s function in the integrals required to calculate the matrix
elements, which has a global reach.

2.2.3 Singular integrals

The elements of the interaction matrix, as defined in (2.53), involve two surface
integrals over pairs of faces. Unfortunately, no analytical formulas exist for their
evaluation and one has to turn to numerical integration techniques such as, e.g.,
Gaussian quadrature [19] to solve the four-dimensional integrals. At this point,
however, an additional problem rears its head. The integrand of both contributions
becomes singular when the supports Si and S j overlap or touch. Generally speak-
ing, two approaches to tackle this inconvenience are in use. Singularity extraction
splits the integrand into a singular and non-singular part. The first integral is then
calculated analytically while the remaining, regularized term is evaluated numer-
ically using any appropriate technique [20]–[24]. The second type of technique
introduces a substitution of variables in the inner double integral over one face to
obtain a Jacobian that cancels out the singularity. The resulting set of integrals is
non-singular and can be solved by conventional methods [25]–[29].
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3
The Differential

Surface Admittance Operator

“Call it magic, call it true.”

Coldplay

F F F

In this chapter, we introduce the general concept of the differential surface ad-
mittance operator in 3-D space and a specific formulation of this operator based
on the eigenmodes of the volume under consideration. First, in Section 3.1, we
introduce a variant of the electromagnetic equivalence theorem which only in-
volves a single electrical equivalent current. In Section 3.2, for the case of a
nonmagnetic material, we determine an expression for this unknown surface
current density based on the eigenmodes of a cavity with the same shape as the
volume under consideration. An alternative derivation of the same formula
is proposed in Section 3.3. This reasoning is based on the general theory of
resonators.

3.1 Introduction

In the previous chapter, more specifically in Section 2.1.6, we introduced the equiv-
alence principle through Love’s theorem. By imposing both an electrical and mag-
netic surface current density on the boundary surface S, the fields inside (or out-
side) the bounded volume V were made to vanish. This condition is, however,
quite strict. If one is only interested in preserving the outside field distributions
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V
ε,µ

(e,h)
n̂

V0

ε0,µ0

(e0,h0)

S

(a) Original situation.

ε0,µ0

(e′,h′)n̂

js

ms ε0,µ0

(e0,h0)

(b) General equivalence theo-
rem.

ε0,µ0

(e′′,h′′)n̂

js

ε0,µ0

(e0,h0)

(c) Single source equivalent.

Figure 3.1: Illustration of the single source equivalence theorem.

and replacing the material by the background material, an arbitrary field distribu-
tion can be allowed inside V [1]. This additional degree of freedom can then be
utilized to eliminate one of the surface current densities [2].

The general equivalence theorem is demonstrated in Fig. 3.1(a) and Fig. 3.1(b). To
guarantee the conservation of the outside field quantities (e0,h0), the two surface
current densities take the following form

js = n̂×
�

h− h′
�

(3.1)

ms = −n̂×
�

e− e′
�

. (3.2)

With (e′,h′) = (0,0), i.e., Love’s equivalence theorem, and taking the boundary
conditions (2.15)–(2.16) for Fig. 3.1(a) into account, (3.1)–(3.2) indeed reduces
to (2.30)–(2.31). However, when considering the situation in Fig. 3.1(b) and
choosing ms to vanish, we get the case shown in Fig. 3.1(c). For this single source
equivalent, the following conditions apply

js = n̂×
�

h− h′′
�

(3.3)

n̂× e= n̂× e′′. (3.4)

With the (rotated) tangential electric field n̂×e′′ fully defined on S, the uniqueness
theorem is satisfied [3] and the fields (e′′,h′′) are unique inside V. Nonetheless,
they do not carry any physical meaning or useful information about the original
fields (e,h) inside the volume. As such, these fields are in a sense fictitious and not
employed to infer any characteristics from the original situation in post-processing
steps.

The equivalent electrical surface current density js is unknown at this point. To
find a relation between this quantity and the fields outside V, we introduce the
Poincaré-Steklov or admittance operator P [4]. This operator maps the tangential
electric field on S to the (rotated) tangential magnetic field on S. For Fig. 3.1(a),
this gives

n̂× h= Pet , (3.5)
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while for the case depicted in Fig. 3.1(c), we get

n̂× h′′ = P ′′et . (3.6)

In the definition of (3.6), we have employed (3.4) to replace e′′ by e on S. By
subtracting the expressions of both operators and invoking (3.3) and (2.15) in the
original situation, we obtain the following result for js:

js =
�

P −P ′′
�

et
0 = Y et

0, (3.7)

with Y the differential surface admittance operator, which defines the equivalent
electrical surface current density in terms of the tangential electric field on S. This
relation will generally be global; js in one point r on S will depend on et

0 every-
where on the boundary surface of V.

3.2 Nonmagnetic differential surface admittance
operator

In this section we derive an expression for Y in case of a nonmagnetic material or
less strict, for a material with the same permeability as the background material,
i.e., µ = µ0. Furthermore, we require that no sources are present inside V. The
expression is based on the eigenmodes of a PEC cavity with the same shape as V.

The electric fields inside V in both Fig. 3.1(a) and Fig. 3.1(c) now satisfy the source-
less Helmholtz equation:

∇×∇× e− k2e= 0, (3.8)

∇×∇× e′′ − k2
0e′′ = 0. (3.9)

Subtracting (3.9) from (3.8) and defining E as e− e′′ shows that

∇×∇× E − k2
0E = (k

2 − k2
0)e, (3.10)

while n̂×E = 0 on S. These relations imply that E can be expanded in the electric
solenoidal eigenvectors [5] as defined in (2.34)–(2.35)

E =
∑

ν

aνeν. (3.11)

An important property of these eigenmodes is their orthogonality. Consequently,
∫

V
eν · e∗τ dV =N 2

ν δντ, (3.12)

with δντ the Kronecker delta and N 2
ν a normalization factor. The star ∗ denotes the

complex conjugate. This orthogonality can be proven in a couple of simple steps,
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employing the proper Green’s theorem and (2.34)–(2.35):

(k2
ν − k2

τ)

∫

V
eν · e∗τ dV =

∫

V
(k2
νeν) · e

∗
τ − eν · (k2

τeτ)
∗ dV

=

∫

V
(∇×∇× eν) · e∗τ − eν · (∇×∇× e∗τ)dV

=

∫

V
(∇× eν) · (∇× e∗τ)dV −

∫

S

�

e∗τ × (∇× eν)
�

· n̂dS

−
∫

V
(∇× e∗τ) · (∇× eν)dV +

∫

S

�

eν × (∇× e∗τ)
�

· n̂dS

= −
∫

S
(n̂× eτ)
︸ ︷︷ ︸

=0

∗ · (∇× eν)dS +

∫

S
(n̂× eν)
︸ ︷︷ ︸

=0

·(∇× e∗τ)dS

= 0, (3.13)

with k2
ν 6= k2

τ indicating that this applies for non-degenerate eigenmodes. In case
two eigenmodes share the same wavenumber, the Gram-Schmidt procedure can
be applied to orthogonalize these eigenmodes.

Since both the eigenvectors and E satisfy the same boundary condition, we can
safely apply the ∇×∇× operator to (3.11), which, by invoking (2.34), yields

∇×∇× E =
∑

ν

k2
νaνeν. (3.14)

Substituting this expansion into (3.10), multiplying both sides with e∗τ, and inte-
grating over V leads to

aτ
�

k2
τ − k2

0

�

N 2
τ = (k

2 − k2
0)

∫

V
e · e∗τ dV, (3.15)

by exploiting the orthogonality property (3.12). The volume integral in the above
expression can be reduced to a surface integral confined to S. To this end, we em-
ploy (2.34) to rewrite the volume integral and invoke the proper Green’s theorem
together with (2.35) to get

k2
τ

∫

V
e ·e∗τ dV = k2

∫

V
e ·e∗τ dV +

∫

S
(n̂× eτ)
︸ ︷︷ ︸

=0

∗ ·(∇×e)dS−
∫

S
(n̂×e) ·(∇×eτ)

∗ dS.

(3.16)

Now suppose we have normalized the eigenmodes according to (2.40) such that

∇× eτ = kτhτ (3.17)

and vice versa, with hτ the magnetic solenoidal eigenvectors (see (2.38)). To
emphasize that the tangential electric fields on S in both Fig. 3.1(a) and Fig. 3.1(c)
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are identical and additionally equal to the tangential electric field just outside V,
we denote the tangential component of e on S as et

0, as in (3.7). This yields the
final expression for the coefficient aτ:

aτ =
−kτ

�

k2 − k2
0

�

�

k2
τ − k2

0

� �

k2
τ − k2

�

N 2
τ

∫

S

�

n̂× et
0

�

· h∗τ dS. (3.18)

To conclude this derivation, we apply the curl to (3.11):

∇× E = − jωµ0

�

h− h′′
�

=
∑

ν

kνaνhν. (3.19)

Employing (3.3) finally leads to an expression for the surface current density:

js = Yet
0 = −

1
jωµ0

∑

ν

kνaν (n̂× hν) , (3.20)

which can be rewritten, by means of the contrast parameter

η=
�

k2 − k2
0

�

/ jωµ0 = σ0 −σ+ jω (ε0 − ε) , (3.21)

as

js = η
∑

ν





k2
ν

�

k2
ν − k2

� �

k2
ν − k2

0

�

N 2
ν

∫

S

�

n̂× et
0

�

· h∗ν dS



 (n̂× hν) . (3.22)

The presented form of the differential surface admittance operator Y has the main
advantage that the integral it entails does not depend in any way on the material
properties, as is the case in conventional methods, but only involves the (unknown)
electric field on the boundary and the magnetic eigenmodes of the cavity.

3.3 Resonator theory based derivation

Here, we present an alternative derivation for (3.22) based on the theory of res-
onators as presented in [5]. Although the start and end result are the same, we
additionally assume here that the eigenmodes are chosen to be real.

Observe once again, the cases depicted in Fig. 3.1(a) and Fig. 3.1(c). In both
situations, the fields inside V satisfy Maxwell’s curl equations (2.1)–(2.2)

∇× e= − jωµ0h ∇× e′′ = − jωµ0h′′ (3.23)

∇× h= jωεe ∇× h′′ = jωε0e′′ (3.24)
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and the boundary conditions (2.15)–(2.18)

n̂ ·µ0 (h0 − h) = 0 n̂ ·µ0

�

h0 − h′′
�

= 0 (3.25)

n̂× (e0 − e) = 0 n̂×
�

e0 − e′′
�

= 0 (3.26)

n̂× (h0 − h) = 0 n̂×
�

h0 − h′′
�

= js. (3.27)

By subtracting the relations (3.23)–(3.24) that hold for both cases and introducing
the field differences as E = e− e′′ and H= h− h′′, we get

∇× E = − jωµ0H (3.28)

∇×H= jωε0E + jω (ε− ε0)e≡ jωε0E +J , (3.29)

where we have designated jω (ε− ε0)e as an impressed (bulk) electric current J .
The same reasoning leads to the following boundary conditions:

n̂ ·µ0H= 0 (3.30)

n̂× E = 0 (3.31)

n̂×H= js. (3.32)

From (3.28)–(3.32) we deduce that the field differences describe the fields inside
a cavity homogeneously filled with the background material and bounded by per-
fect electrically conducting walls. From Section 2.1.7, we know that this implies
that all quantities can be expanded into their corresponding eigenmodes. Since
all fields inside V for both cases are divergence-free, we only need to take the
solenoidal eigenmodes into account, i.e., we can ignore fν and gν in our expan-
sions. Therefore, we can write E, H and J as

E =
∑

ν

aνeν (3.33)

H=
∑

ν

bνhν (3.34)

J =
∑

ν

cνeν. (3.35)

Generally it does not hold that the curl of an infinite sum is equal to the sum of
the curl of the individual terms. As such, the curls of the field differences are
expanded, separately, into eigenmodes as well:

∇× E =
∑

ν

rνhν (3.36)

∇×H=
∑

ν

sνeν. (3.37)
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Plugging these expansions into (3.28)–(3.29) and taking the orthogonality of the
eigenmodes into account, the following relations between the expansion coeffi-
cients are found:

rν = − jωµ0 bν (3.38)

sν = jωε0aν + cν. (3.39)

In determining the remaining coefficients, we project (3.35)–(3.37) onto the vari-
ous eigenvectors and integrate over V. For this, we will exploit a few properties of
these eigenvectors. Besides the choice for real eigenmodes, we invoke the normal-
ization defined in (2.40). A consequence of this is that both sets of eigenmodes
share the same normalization constant Nν:

N 2
ν =

∫

V

|eν|2 dV =

∫

V

|hν|2 dV. (3.40)

We start by projecting both sides of (3.35) onto eτ and invoke the eigenmode
orthogonality, which leads to

cτN 2
τ =

∫

V

J · eτ dV = jω (ε− ε0)

∫

V

eτ · edV. (3.41)

By utilizing the Helmholtz equation for eτ and the appropriate integral relation-
ships, the integral on the right-hand side is rewritten as

k2
τ

∫

V

eτ · edV =

∫

V

eτ · (∇×∇× e) dV (3.42)

+

∫

S

(n̂× eτ) · (∇× e) dS −
∫

S

(n̂× e) · (∇× eτ) dS.

Subsequently, the first integral on the right-hand side is transformed to the sought-
after integral by invoking the (sourceless) Helmholtz equation for e while the
penultimate term drops out as the tangential component of eτ vanishes on S. This
leads to

�

k2 − k2
τ

�

∫

V

eτ · edV = kτ

∫

S

(n̂× e) · hτ dS. (3.43)

Hence, we find the following expression for cτ:

cτ =

�

k2
0 − k2

�

kτ

jωµ0

�

k2 − k2
τ

�

N 2
τ

∫

S

(n̂× e) · hτ dS. (3.44)



42 Chapter 3. The Differential Surface Admittance Operator

Using the same approach for (3.36) but projecting on hτ and using the adequate
vector property leads to

rτN 2
τ =

∫

V

∇ · (E × hτ) dV +

∫

V

E · (∇× hτ) dV. (3.45)

The first integral can be transformed to a surface integral by the divergence theo-
rem and promptly vanishes because of (3.31). For the second integral we substitute
the expansion for E:

rτN 2
τ = kτ

∑

ν

aν

∫

V

eν · eτ dV (3.46)

By once again invoking the mode orthogonality, we get the following simple rela-
tion between rτ and aτ:

rτ = kτaτ, (3.47)

thus revealing that in this particular case the curl of an infinite sum is indeed the
sum of the curl of the individual terms.

Starting from (3.37), an analogous reasoning leads to the following expression for
sτ:

sτ = kτbτ. (3.48)

Combining (3.44), (3.47) and (3.48) with (3.38)–(3.39) enables us to find the
following expressions for E and H:

E =
∑

ν

eν
− jωµ0η kν

�

k2
0 − k2

ν

� �

k2 − k2
ν

�

N 2
ν

∫

S
(n̂× e) · hν dS (3.49)

H=
∑

ν

hν
η k2

ν
�

k2
0 − k2

ν

� �

k2 − k2
ν

�

N 2
ν

∫

S
(n̂× e) · hν dS, (3.50)

with the contrast parameter η as defined in (3.21).

Plugging (3.50) into (3.32) and employing (3.26), i.e., n̂×e= n̂×e0, gives us the
following relation between js and the tangential electric field et

0 on S:

js = −η
∑

ν

Kν
N 2
ν

�∫

S
(n̂× hν) · et

0 dS

�

(n̂× hν) , (3.51)

where Kν is introduced for compactness of notation and defined as

Kν =
k2
ν

�

k2
0 − k2

ν

� �

k2 − k2
ν

� (3.52)

Careful comparison of (3.22) and (3.51) shows that both formulations are indeed
equivalent (for real eigenfunctions).
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4
Scattering at Finite Conductors

“No, I move slow. I want to stop time. I’ll sit here till I find the problem.”

Tyler Joseph

F F F

In this chapter a novel approach to simulate nonmagnetic homogeneous mate-
rials, in particular good conductors, in a boundary integral equation context
is introduced. The advocated 3-D differential surface admittance operator re-
lies on the eigenmodes of the volume and as such avoids cumbersome integrals
of the Green’s function in the medium. Furthermore, a Method of Moments
scheme for cylinders is proposed that, through the use of curved rectangles
with associated rooftops, preserves the curved nature of the volume, leading
to an efficient discretization. Combining both novel methods results in an effi-
cient and versatile way to assess scattering and antenna characteristics. This is
demonstrated by studying scattering at different materials and analyzing the
influence of finite conductivity on the performance of a dipole and a Yagi-Uda
antenna.

4.1 Introduction

The impact of the finite conductivity on scattering and antenna characteristics has
been a research topic for over half a century. Initially, approximate current dis-
tributions were utilized to include the imperfect conductors’ effect on cylindri-
cal scatterers [1] and thin-wire antennas [2]. Another approach uses the surface
impedance concept. This impedance relates the external tangential electric and
magnetic field at the boundary of the object under study by a function that depends
on the material’s properties, as such eliminating the need to solve the internal field
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problem. This approach thus employs the same principle as the Poincaré-Steklov
operator and the differential surface admittance operator, introduced in Chapter 3,
but differs from these techniques at a couple of crucial points. Firstly, the surface
impedance, or similar methods [3], impose a local relationship between the electric
and magnetic field on the surface that approximates the true global relationship
as captured by the aforementioned operators. Secondly, since it is derived based
on the study of a planar interface of a good conductor with vacuum [4], it can
only be employed for good conductors with sufficient dielectric contrast with the
background medium and for a moderate curvature of the boundary surface [5].
Nevertheless, the surface impedance or, as it is also known, the Leontovich bound-
ary condition [6], is widely utilized in modeling good conductors. It is defined
as

et = Zsn̂× ht , (4.1)

with the surface impedance Zs = (1+ j)/σδ equal to the wave impedance Zc in-
side the good conductor (see (2.14)). We stress here once more that (4.1) relates
both field quantities in a single point by means of the scalar Zs in contrast to (3.5),
which entails a global relation on the entire boundary surface. To overcome its
shortcomings, higher-order approximations of the surface impedance boundary
condition have been proposed, extending its applicability [7]. Nevertheless, these
extensions do not suffice to capture the complete current crowding phenomenon
from direct current (DC) to the highest frequencies. Therefore, we propose a dif-
ferential surface admittance operator for cylinders that produces accurate results
for any nonmagnetic material and curvature.

We start by proposing a novel, specific MoM formulation for cylinders, tailored to-
wards this geometry by introducing curved basis functions in Section 4.2. The dif-
ferential surface admittance operator, as introduced in Chapter 3, is developed for
cylinders in Section 4.3. The discretization of this continuous operator by means
of the specific set of basis functions is discussed in this section as well. Next, we
apply this novel method to a range of examples to show its properties, validity and
appositeness in Section 4.5.

4.2 EFIE formulation for cylinders

4.2.1 Basis functions

As discussed in Section 2.2.2, surface meshes are predominately triangle based.
Meshing the boundary surface of a circular cylinder by flat triangles, effectively
transforms the cylinder into a prism-like polyhedron, losing its curved nature and
its circular symmetry. This phenomenon is of course not unique to the cylinder and
occurs for all curved objects, as shown for example in Fig. 2.4(a). The effect is gen-
erally circumvented by increasing the number of triangles (see e.g., Fig. 2.4(b)),
thus improving the approximation of the cylinder, but inadvertently driving up the
number of unknowns and the corresponding computational cost. Although curvi-



4.2. EFIE formulation for cylinders 47

l

2a

x

z y
φ

Figure 4.1: Surface mesh of a cylinder using curved rectangles on the mantle and triangles
on the end caps.

linear mesh elements do exist, they are usually based on polynomial interpolation
and do not have the required fixed radius of curvature of circular cylinders/spheres
(see e.g., Figure 4 in [8]), introducing once again approximations of the actual
shape. To fully preserve the curved nature of the mantle of the cylinder, we pro-
pose here the use of curved rectangles as shown in Fig. 4.1. The corresponding
linear basis functions, shown in Fig. 4.2, are defined analogously to the rooftops on
flat rectangles (see Fig. 2.5(b) and (2.45)). For the z-oriented rooftop this results
in

f j(r) =


�

z − z+j
�

ẑ/A+j , if r ∈ R+j
�

z−j − z
�

ẑ/A−j , if r ∈ R−j
0, elsewhere,

(4.2)

where A±j is the area of the curved rectangle R±j , respectively, while the φ-oriented
rooftops are defined as

f j(r) =


�

φ −φ+j
�

φ̂/A+j , if r ∈ R+j
�

φ−j −φ
�

φ̂/A−j , if r ∈ R−j
0, elsewhere.

(4.3)

Care should be taken in calculating the divergence of these rooftops, especially
the angular ones. The nabla operator in cylindrical coordinates is defined as ∇ =
∂

∂ ρ
ρ̂ +

1
ρ
ρ̂ +

1
ρ

∂

∂ φ
φ̂ +

∂

∂ z
ẑ, leading thus to (with a the radius of the cylinder)

∇ · (4.2)= ±
1

A±j
(4.4)

∇ · (4.3)= ±
1

aA±j
. (4.5)
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z−j

z+j

R+j

R−j

e j

(a) z-oriented rooftop function f j (r) de-
fined over curved rectangles R+j and R+j .

φ+j φ−j

R+j R−j
e j

(b) φ-oriented rooftop basis function f j (r) defined
over curved rectangles R+j and R+j .

Figure 4.2: Basis functions defined over a pair of adjacent curved rectangles with common
edge e j .

The (flat) end caps of the cylinders are meshed with triangles (see Fig. 4.1). The
corresponding basis functions are the RWG functions [9] as illustrated and defined
in (2.44) and Fig. 2.5(a).

This only leaves the edges at the circumference of the end caps to be modeled.
The basis functions on these edges are hybrid functions consisting of one half of an
RWG and one half of a z-oriented rooftop. The common edge is bifurcated due to a
mismatch between the straight edge of the triangle and the bent edge of the curved
rectangle involved. As shown, albeit exaggerated, in Fig. 4.3, this leaves a circular
segment of the surface uncovered by the mesh and accompanying basis functions.
To circumvent this issue, a local Kirchhoff approximation is introduced: all the
current that enters/leaves the triangle through the straight edge exits/enters the
curved edge immediately. Clearly, this tactic is only valid as long as the distance the
current transverses instantly, i.e., the width of the circular segment, is negligible as
compared to the wavelength. This way, the error in delay/phase will be acceptable.
Considering that the typical mesh length in a MoM mesh is an order of magnitude
smaller than the wavelength, the transversal dimension of the circular segment is
easily an additional order of magnitude smaller, thus justifying the approximation.

4.2.2 Integrals

With the above choice of basis functions, we can now calculate the elements of the
MoM matrix Z as defined in (2.53). For the two surface integrals of the curved rect-
angles, the standard Gauss-Legendre quadrature is used, albeit in the (φ, z)-plane
instead of a Cartesian coordinate plane [10]. For the triangles, a variant of the
same quadrature rule specifically tailored towards triangles is applied [11]–[13].
For the hybrid integrals, i.e., a double integral over a triangle/curved rectangle
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Figure 4.3: Detail of the surface mesh at the circumference of the top end cap. The gray
colored area of the surface is not covered by the mesh (exaggerated).

pair, a combined set of quadrature points is used. To cope with the singularities in
the integrals, we employ the first method introduced in Section 2.2.3, viz., singu-
larity extraction.

Triangles

The singularity 1/R (with R the distance between a point of a triangle and an ob-
servation point) can be integrated analytically using the method described in [14].
The integration over the second triangle is then regularized and can thus be tackled
by numerical evaluation. This method can be used for any singularity: proximity,
vertex, edge and self-patch. The case for two fully overlapping triangles, i.e., the
so-called self-patch, is a very important and crucial one as it will contribute to the
diagonal of Z , representing the strongest interactions on the surface mesh. There-
fore, we employ a complete analytical solution for the double surface integrals
(twice over the same triangle) as detailed in [15] to increase the accuracy.

Curved rectangles

The reciprocal Euclidean distance between two points belonging to a pair of curved
rectangles becomes singular as well. The Euclidean distance between two points,
given in cylindrical coordinates is

R (r1, r2) =
Ç

ρ2
1 +ρ

2
2 − 2ρ1ρ2 cos (φ1 −φ2) + (z1 − z2)

2

=

√

√

4a2 sin2
�

φ1 −φ2

2

�

+ (z1 − z2)
2, (4.6)

where the last step assumes that both points are equidistant from the central axis
of the cylinder, i.e., ρ1 = ρ2 = a. In contrast to the distance function in Carte-
sian coordinates,

∫

R−1 dS over a curved rectangle is not analytically integrable;
integration over the angle will result in the incomplete elliptic integral of the first
kind [16], preventing further analytical integration. To circumvent this problem,
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x

y

R

R̃

r1

r2

φ1

φ2

(a) Two points with the Euclidean dis-
tance R and its approximation R̃.
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(b) Different distance measures (normalized
to the radius a) as a function of φ1 −φ2.

Figure 4.4: Illustration of the difference between R (blue) and R̃ (orange) for z1 = z2.

we remark that the analytical integration will only be applied for adjacent or over-
lapping patches. As such, φ1−φ2 will evaluate to small values and we can approxi-
mate the sine in (4.6) by its first order Taylor expansion, leading to an approximate
distance function

R̃=
q

a2 (φ1 −φ2)
2 + (z1 − z2)

2. (4.7)

In Fig. 4.4, the difference between both distance measures is illustrated for two
points in the same x y-plane. We clearly see that the approximate distance mea-
sure approaches the actual Euclidean distance for small angles φ1 −φ2. With this
distance function, the four-dimensional integration over two curved rectangles of
1/R̃ can now be performed analytically, the result of which is presented in Sec-
tion A.1 in Appendix A. The remainder of the integrand, i.e., in free space

G (R)−
1

R̃
=

e− jkR

R
−

1

R̃
=

R̃e− jkR − R
R R̃

(4.8)

has been regularized and can thus be integrated numerically. For the MoM inte-
grals stemming from the vector potential (first double integral in (2.53)), addi-
tional terms appear in the numerator that have to be integrated analytically along-
side 1/R̃ as well. For the z-oriented rooftops, a factor

�

z1 − z±1
� �

z2 − z±2
�

or similar
expressions are introduced that fortunately pose no problem to the integration
(see Section A.1). The term

�

φ1 −φ±1
� �

φ2 −φ±2
�

cos (φ1 −φ2) accounts for the
φ-oriented basis functions, with the cosine originating from φ̂1 · φ̂2. The combina-
tion of this cosine with 1/R̃ is not analytically integrable. To solve this problem, the
cosine is approximated by its zeroth order expansion, i.e., 1. Higher accuracy can
be obtained by including the second order term (φ1 −φ2)

2 /2. These integrations
can be found in Section A.1 as well.
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Triangle-rectangle pair

As the singularity expressions for triangles are exact and do not employ a Taylor-
based approximation, the singularity over the triangle is calculated analytically
using the same approach as for a pair of triangles [14]. The remaining surface
integral over the curved rectangle can then be tackled by numeric quadrature.

4.3 Differential surface admittance operator for
cylinders

For the construction of the differential surface admittance operator, as defined in
(3.22), we need an expression for the (magnetic) eigenfunctions of a cylindrical
cavity, which are calculated analytically in the following subsection. Some proper-
ties of these eigenfunctions are computed and discussed as well. In Section 4.3.2,
the discretization of the continuous operator is elaborated upon. Through combi-
nation with the MoM matrix this then leads to a set of matrix equations that, when
solved simultaneously, enables the computation of scattered fields at homogeneous
cylinders.

4.3.1 Eigenfunctions of a cylindrical cavity

Circular waveguide

The way we construct the eigenmodes of a cylinder is to first take a look at the
eigenmodes of a circular waveguide and in a second step, turn this infinite waveg-
uide into a cavity by terminating its ends with PEC plates. To this end, suppose the
cylinder has radius a with its axis aligned along the z-axis. We now split the fields
into a longitudinal and transversal part, and through separation of variables write
the field quantities as x (r) = x (ρ) e− jγz , with γ = β − jα, β > 0 and α > 0, en-
abling a decoupling of Maxwell’s (sourceless) curl equations (2.1)–(2.2) into the
following set of equations

∇t × ez(ρ)ẑ− jγẑ× et(ρ) = − jωµ0ht(ρ) (4.9)

∇t × et(ρ) = − jωµ0hz(ρ)ẑ (4.10)

∇t × hz(ρ)ẑ− jγẑ× ht(ρ) = jωεet(ρ) (4.11)

∇t × ht(ρ) = jωεez(ρ)ẑ, (4.12)

where the subscript t denotes transversal components. Through a few substitu-
tions, we can isolate two independent, concurrent Helmholtz equations for hz and
ez:

∇2
t hz +

�

k2 − γ2
�

hz = 0 (4.13)

∇2
t ez +

�

k2 − γ2
�

ez = 0. (4.14)
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It can be shown that for a homogeneous medium these two equations give rise to
two classes of solutions, viz., transverse electric (TE) and transverse magnetic (TM)
modes, for which ez and hz , respectively, are non-existent. The complete field
profile of the TE modes can be derived from hz as

et =
jωµ0

k2 − γ2
(ẑ×∇thz) (4.15)

ht = −
jγ

k2 − γ2
∇thz . (4.16)

For the TM modes, the transversal fields are

et = −
jγ

k2 − γ2
∇t ez (4.17)

ht = −
jωε0

k2 − γ2
(ẑ×∇t ez) . (4.18)

The solutions to (4.13)–(4.14) for a circle can be found by applying separation of
variables in polar coordinates and by invoking the relevant PEC boundary condi-
tions [17], [18]. For the TE modes this leads to the modal field distributions

hz,mn (ρ) = Jn (λmnρ) e
jnφ (4.19)

et,mn (ρ) =
jωµ0

λ2
mn

�

λmnJ ′n (λmnρ) φ̂ −
jn
ρ

Jn (λmnρ) ρ̂
�

e jnφ (4.20)

ht,mn (ρ) = −
jγmn

λ2
mn

�

λmnJ ′n (λmnρ) ρ̂ +
jn
ρ

Jn (λmnρ) φ̂
�

e jnφ , (4.21)

with n ∈ Z, m ∈ N, γmn =
Æ

k2 −λ2
mn and λmn = ymn/a, where ymn is the m-th

zero of the first derivative of the Bessel function of the first kind of order n, i.e.,
J ′n (ymn) = 0. For the TM modes the expressions are

ez,mn (ρ) = Jn (µmnρ) e
jnφ (4.22)

et,mn (ρ) = −
jγmn

µ2
mn

�

µmnJ ′n (µmnρ) ρ̂ +
jn
ρ

Jn (µmnρ) φ̂
�

e jnφ (4.23)

ht,mn (ρ) = −
jωε0

µ2
mn

�

µmnJ ′n (µmnρ) φ̂ −
jn
ρ

Jn (µmnρ) ρ̂
�

e jnφ , (4.24)

with γmn =
Æ

k2 −λ2
mn and µmn = xmn/a, where xmn is the m-th zero of the Bessel

function of the first kind of order n, i.e., Jn (xmn) = 0. Note that we have chosen,
for compactness of notation, to use complex functions for our eigenmodes. It can
easily be shown, however, that through linear combinations of two eigenmodes
with opposite n, two subsets of real eigenmodes can be obtained per TE/TM set.
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Cylindrical cavity

With the modal fields in the cross-section fully determined, we express the fields
anywhere in the (infinite) waveguide as a superposition of a right- and left-traveling
wave for every eigenmode:

e (r) =
∑

n,m

K+mn

�

et,mn(ρ) + ez,mn(ρ)ẑ
�

e− jγmnz

+
∑

n,m

K−mn

�

et,mn(ρ)− ez,mn(ρ)ẑ
�

e jγmnz

(4.25)

h (r) =
∑

n,m

K+mn

�

ht,mn(ρ) + hz,mn(ρ)ẑ
�

e− jγmnz

+
∑

n,m

K−mn

�

−ht,mn(ρ) + hz,mn(ρ)ẑ
�

e jγmnz .

(4.26)

To turn this waveguide into a resonator cavity with height l, the structure is ter-
minated at z = −l/2 and z = l/2 with PEC end caps, implying that the tangential
electric field vanishes at these points. From (4.25), for every separate eigenmode
this entails

K+mnet,mn(ρ)e
jγmn l/2 + K−mnet,mn(ρ)e

− jγmn l/2 = 0 (4.27)

K+mnet,mn(ρ)e
− jγmn l/2 + K−mnet,mn(ρ)e

jγmn l/2 = 0, (4.28)

which in turn leads to the restrictions

K−mn = −K+mne± jγl (4.29)

sin (γmnl) = 0. (4.30)

The second condition forces the propagation constants γmn to take the values pπ/l
with p a natural number. This requirement is not met generally but, as γmn is a
function of k and thus of the frequency, it can be satisfied at certain frequencies
only, i.e., the resonant frequencies. With these restrictions in place, (4.25)–(4.26)
becomes for every mode

emnp (r) = et,mn sin
�

pπ
l

�

z −
l
2

��

+ jez,mn cos
�

pπ
l

�

z −
l
2

��

ẑ (4.31)

hmnp (r) = Zcht,mn cos
�

pπ
l

�

z −
l
2

��

− jZchz,mn sin
�

pπ
l

�

z −
l
2

��

ẑ, (4.32)

with Zc the characteristic impedance (cf. (2.10)). As eigenmodes are only deter-
mined up to a (complex) constant, the above expressions have been normalized
such that the additional conditions formulated in (2.40) are satisfied.

Applied to the circular waveguide, this yields the full field description of the reso-
nant eigenmodes of the cylindrical cavity. As a result of (4.30), the wavenumber k,
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will be discretized. For the TE modes, we get

k2
mnp = λ

2
mn +

� pπ
l

�2
=

y2
mn

a2
+
� pπ

l

�2
. (4.33)

For the modal field distributions themselves, the substitution of (4.19)–(4.21) into
(4.31)–(4.32) yields

emnp(r) = kmnp

�

λmn J ′n (λmnρ) φ̂ −
jn
ρ

Jn (λmnρ) ρ̂
�

e jnφ sin
� pπ

l
z −

pπ
2

�

(4.34)

hmnp(r) = −
pπ
l

�

λmn J ′n (λmnρ) ρ̂ +
jn
ρ

Jn (λmnρ) φ̂
�

e jnφ cos
� pπ

l
z −

pπ
2

�

−λ2
mnJn (λmnρ) e

jnφ sin
� pπ

l
z −

pπ
2

�

ẑ.

(4.35)

Note that for p = 0, the TE eigenmodes do not exist as all the fields are zero.

For the TM modes, on the other hand, the wavenumber is defined as

k2
mnp = µ

2
mn +

� pπ
l

�2
=

x2
mn

a2
+
� pπ

l

�2
, (4.36)

and the modal field distributions are given as

emnp(r) = −
pπ
l

�

µnmJ ′n (µnmρ) ρ̂ +
jn
ρ

Jn (µnmρ) φ̂
�

e jnφ sin
� pπ

l
z −

pπ
2

�

+µ2
nmJn (µnmρ) e

jnφ cos
� pπ

l
z −

pπ
2

�

ẑ

(4.37)

hmnp(r) = −knmp

�

µnmJ ′n (µnmρ) φ̂ −
jn
ρ

Jn (µnmρ) ρ̂
�

e jnφ cos
� pπ

l
z −

pπ
2

�

.

(4.38)

In the definition of the differential surface admittance operator (3.22), one of the
terms in the denominator is the normalization constant N 2

ν , which is defined in
(3.12). This constant can be calculated analytically for both sets of eigenmodes
by calculating the volume integral, which is separable in cylindrical coordinates,
and invoking various (integral) properties of the Bessel functions [19]. For the TE
modes, this leads to

N 2
mn0 = 0 (4.39)

N 2
mnp = k2

mnp
πl
2

�

y2
mn − n2

�

Jn (ymn) , (4.40)

(4.41)

while for the TM modes, the factor is

N 2
mnp = k2

mnp
πl
εp

x2
mnJn+1 (xmn) , (4.42)
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with εp the Neumann factor (see [17]), which evaluates to 1 for p = 0 and be-
comes 2 for all other natural numbers.

4.3.2 Discretization

With all the necessary quantities denoted, we have fully defined the continuous
differential surface admittance operator for cylinders. As we have opted for a
definition of the eigenmodes with complex functions, we are obliged to use defi-
nition (3.22) of the operator. The discretization approach is essentially the MoM
procedure; the tangential electric field is expanded into basis functions:

et
0 =

N
∑

j=1

E jf j (r) , (4.43)

and both sides of the equation are tested with the same functions f to obtain the
discretized version of the Y operator, i.e., Y , with its elements defined as:

Y i j = −η
∑

m,n,p

Kmnp

N 2
mnp

∫

S j

�

n̂× h∗mnp

�

· f j (r) dS

∫

Si

�

n̂× hmnp

�

· fi (r) dS. (4.44)

Note that in the calculation of each element, a triple infinite sum is present. In
a numerical implementation, this summation has to be limited along its three di-
mensions. These maximum values are denoted as (M , N , P), keeping in mind that,
as n is an integer, n ranges from −N to N . Moreover, we have to remember that
there exist two sets of magnetic eigenmodes, viz., TE and TM. For every value
(m, n, p), there are thus two contributions to every matrix element.

The integrals in (4.44) can be evaluated either analytically or numerically. For the
RWG functions used on the end caps, one has to resort to numerical evaluation as
the basis functions generally do not have a simple form in cylindrical coordinates
that enables integration in conjunction with the (derivative of) Bessel functions.
On the other hand, for the mantle of the cylinder, the curved rectangles and as-
sociated rooftops provide an easy evaluation of the required integrals; both the
(rotated) magnetic eigenmodes and the rooftops are expressed in cylindrical coor-
dinates leading to separate integrals over φ and z. These integrals can be solved
by straightforward substitutions and through partial integration.

4.4 Full-wave solution

At this point, we combine the discretized differential surface admittance operator
with the EFIE operator to obtain a full description of the electromagnetic prob-
lem. The main difference with the PEC scattering described in Section 2.2.1, is the
boundary condition (2.42): the total electric field, i.e., the sum of the incident and
scattered field, does not vanish at the surface as it did for a PEC. Instead, (3.7) has
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to satisfied: the current surface density and the electric field at the boundary are
related through the differential surface admittance operator Y. In other words,
two equations have to be satisfied simultaneously:

n̂× et
0 = n̂× einc − ZcT js (4.45)

js = Yet
0. (4.46)

It is evident from the above equations that a simple substitution would suffice
to get a single equation for one of the unknowns, i.e., js or et

0. However, this
combined equation will contain the concatenation of both the T and Y operator.
Discretization will as such prove a very difficult task, if not impossible, certainly
given the singular nature of the integrals in the T operator. As such, we discretize
both (4.45) and (4.46) separately and solve them jointly afterwards. This implies
that both js and et

0 are to be expanded into basis functions:

js =
N
∑

p=1

Ipfp (r) (4.47)

et
0 =

N
∑

q=1

Eqfq (r) . (4.48)

Plugging these expansions into (4.45) and testing both sides with n̂× fi , yields
∑

q

Eq




n̂× fi , n̂× fq

�

= 〈n̂× fi , n̂× einc〉 − Zc

∑

p

Iq




n̂× fi ,T fq

�

, (4.49)

which can be written compactly as

GE= P− ZI, (4.50)

with P, I and Z as defined in (2.51)–(2.53). The elements of E and the Gram
matrix G are given by

Ei = Ei (4.51)

G i j =

∫

S
fi (r) · f j (r) dS. (4.52)

A similar procedure, but testing with fi transforms (4.46) into
∑

p

Ip




fi , fp

�

=
∑

q

Eq




fi ,Y fp

�

, (4.53)

or in compact matrix notation

GI = Y E, (4.54)
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where the matrix Y was defined previously in (4.44). Note that for multiple ob-
jects (cylinders), Y is a block diagonal matrix where each block represents the
differential surface admittance matrix for each individual object.

Both matrix equations (4.50) and (4.54) together form the discrete version of the
continuous equations we intend to solve. By rewriting (4.54) and substituting the
result into (4.50), we obtain one single matrix equation

�

G + Z G
−1

Y
�

E= P, (4.55)

or alternatively, by substituting (4.50) into (4.54), this yields

�

G + Y G
−1

Z
�

I = Y G
−1

P. (4.56)

Both equations can be solved either directly or iteratively. In the examples pre-
sented in the next section, no discernible advantage for either one of the equations
in terms of accuracy (or conditioning) was found. As we are usually interested in
the surface current density, (4.56) was preferred.

Gram matrix

The Gram matrix G, defined in (4.52), is a sparse matrix due to the local nature
of the employed basis functions. After all, the integral does not vanish if and
only if both functions share a common patch (triangle/curved rectangle). For the
RWG this thus amounts to a maximum of five nonzero entries per row/column.
For the curved rooftops and the hybrid functions, it boils down to three and four
elements, respectively, because of the orthogonality of rooftops functions along
different coordinate axes.

The integrals featured in the evaluation of these nonzero elements can often be
calculated analytically. For the RWG functions, the integrals can be decomposed
into various contributions of the form

∫

T

(r− ra) · (r− rb) dS. (4.57)

This integral over the triangle T is the inner product of two half RWGs on the
same triangle with ra and rb the anchor points of their respective functions. These
points lie at one of the three vertices (p,q, s) of the triangle. With A the area of the
triangle, the result of the above integral is [20]

2A
�

1
12
(p · (p+ q+ s) + q · (q+ s) + s · s)

−
1
6
(p+ q+ s) · (ra + rb) +

1
2

ra · rb

�

. (4.58)
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Closed expressions for the Gram integrals can be found for the curved rectangles
as well. Demonstrated here for the z-oriented rooftops (the case of the φ-oriented
rooftops being completely analogous), two types of simple integrals are found

φ1
∫

φ0

z1
∫

z0

(z − z0)
2 dS =

φ1
∫

φ0

z1
∫

z0

(z1 − z)2 dS = A
(z1 − z0)

2

3
(4.59)

φ1
∫

φ0

z1
∫

z0

(z − z0) (z1 − z) dS = A
(z1 − z0)

2

6
, (4.60)

with A the area of the curved rectangle.

4.5 Examples

4.5.1 Validation examples

Scattering at a single cylinder

To validate the novel method, scattering at a single, homogeneous cylinder is con-
sidered for several materials. A reference solution is obtained from an in-house,
all-purpose BIE-MoM solver [21], [22] that does not leverage the surface admit-
tance operator. At 1 GHz, a cylinder with radius a = λ/3 and height 2λ is illu-
minated by a plane wave. The dimensions of the edges in the surface mesh are
of the order λ/12. Traveling along x̂ in the horizontal plane, i.e., in the plane
perpendicular to the axis, the plane wave is TE-polarized, viz. its magnetic field
is aligned with the axis of the cylinder. Three different materials are studied: a
low-contrast dielectric with εr = 4, a high-contrast dielectric with εr = 100 and
copper with a conductivity of σ = 5.8 · 107 S/m. Radar cross-sections (RCSs) in
the horizontal plane, halfway the cylinder’s length are shown in Fig. 4.6 (only half
the range is plotted due to symmetry). These results are computed through the
expressions provided in Appendix B. The solid lines represent the reference solu-
tion while the various markers demonstrate the solutions obtained by means of the
differential surface admittance operator with the cut-off values of the eigenmodes
at (M , N , P) = (200,15, 25) for the low-contrast dielectric, (200, 50,15) for the
cylinder with εr = 100 and (600,15, 25) for the copper filled cylinder.

As is evident from Fig. 4.6, excellent agreement between the reference solution
and the novel formalism is found. The total root mean square (rms) error stays
well below 1% for all examples, validating the accuracy of the differential surface
admittance operator. The remaining, minor deviations can be attributed to the
mesh detail in both solvers, the finite number of eigenmodes in the novel method
and rounding errors.
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Figure 4.5: Cylinder with length 2λ and radius a = λ/3 at 1GHz. A TE-polarized plane
wave travels along x̂ in the horizontal plane.
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Figure 4.6: Radar cross-sections of the cylinder depicted in Fig. 4.5, illuminated by a plane
wave. Reference results for the simulated materials, i.e., a low-contrast dielectric, a high-
contrast dielectric and copper, are obtained using in-house BIE-MoM software that is not
based on the surface admittance operator.
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Figure 4.7: Normalized real (blue) and imaginary (orange) part of three selected Y matrix
elements as a function of the normalized skin depth.

Analysis of the discretized Y-operator

Before turning our attention to application examples, the behavior of the Y matrix
is explored in more detail. To this end, the evolution of three matrix elements
for the copper cylinder with radius a of the previous section as a function of the
relative skin depth δ/a is examined: yhor and yver both correspond to a diagonal
element, the former for a horizontal edge and the latter for a vertical edge on the
mantle of the cylinder. The third element yoff is an off-diagonal matrix entry that
represents the interaction between two vertical mantle edges on opposite sides of
the cylinder. The real part (black lines) and imaginary part (gray lines) of these
three quantities are shown in Fig. 4.7. The results demonstrate that the real parts
are dominant and constant for large relative skin depths while the imaginary parts
gain in importance as the skin depth decreases. For very small skin depths, only
the diagonal elements remain significant and become proportional to the classical
point-wise surface admittance Ys =

p

σ/ ( jωµ), indicated by the identical absolute
value of their real and imaginary part.

Another important influence on the matrix elements is the number of eigenmodes
that are taken into account. To illustrate this, the diagonal elements of the previous
example, i.e., yhor and yver, are computed over the same frequency range for an
increasing number of eigenmodes in the radial direction, i.e., for increasing M . N
and P are set to 5 for this particular example but note that the analysis remains
valid for other parameter values as well. The relative error is plotted in Fig. 4.8
where the reference solution is the one obtained for M = 5000 as the absolute
change in matrix entries was negligible for larger M . As is evident from the graph, a
modest number of eigenmodes, say 100, suffices for large skin depths while current
crowding in the skin effect regime requires an increasing amount of eigenmodes
to be fully captured.
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Figure 4.8: Relative error of two distinct diagonal Y matrix elements, i.e., yhor and yver, as
a function of normalized skin depth for the copper cylinder of Fig. 4.6 for various values
of M . Error values are defined with respect to the solution for M = 5000.

4.5.2 Application examples

Dipole antenna

Consider a dipole antenna in free space with a total length of 2λ at 1GHz. As the
diameter of wire antennas is generally much smaller than their length (and the
wavelength), the radius a is set to λ/500. The width of the gap between the two
cylinders constituting the antenna, is set to a/501. The structure is excited by an
impinging TM-polarized plane wave for varying inclination angles θ . The normal-
ized open circuit voltage Vopen, norm over the dipole’s gap, i.e., the potential differ-
ence between both cylinders, is numerically computed for increasing conductivity
and displayed in Fig. 4.10. The voltage values are normalized with respect to the
peak value of the solution for a PEC cylinder (denoted in Fig. 4.10 by the solid line).
The range of eigenmodes in this example is given by (M , N , P) = (500,12, 15).
Only half of the range of θ is plotted due to symmetry in the response character-
istic. It is evident from the results that, with increasing conductivity, the voltage
response evolves towards that of the perfectly conducting cylinder, which is indeed
to be expected. At the same time, however, it shows that for a moderate conduc-
tivity, a substantial change in antenna response is to be expected. Although such
conductivities are well below those of traditional conductors such as copper, they
can, for example, be found in solar applications or transparent technologies where
materials such as indium tin oxide (ITO) and PEDOT:PSS with typical conductivity
values of around 2.4 · 105 S/m and 103 S/m, respectively [25], [26], are utilized.

1Employing other types of gaps/excitations, e.g., delta-gap [23], [24], will generally only change
the right-hand side of (4.55).
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Figure 4.9: Dipole antenna with length 2λ at 1 GHz with radius a = λ/500.
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Figure 4.10: Normalized open circuit voltage Vopen,norm of a dipole for a 2λ dipole at 1 GHz
for various conductivity values. The dipole is excited by a TM-polarized plane wave at
varying inclination angles.

Yagi-Uda antenna

Consider the Yagi-Uda antenna displayed in Fig. 4.11. The driving component of
this structure is a dipole antenna with length l f . The remaining elements are of
a parasitic nature: one reflector with length lr at a distance dr behind the central
dipole and three directors with length ld which are placed in front with a spacing
of dd . All wires have the same radius a. Values for these parameters can be found
in Table 4.1 for the Yagi-Uda operating at 110 MHz, i.e., the center frequency of
the localizer in an instrument landing system (ILS). The gain of this configura-
tion is calculated numerically by means of the proposed differential surface ad-
mittance operator method for circular cylinders for varying inclination angles θ
in the vertical plane (xz-plane). This gain pattern is plotted in Fig. 4.12 for de-
creasing values of the skin depth δ, i.e., for increasing conductivity σ. A reference
solution for a PEC Yagi-Uda is obtained through 4nec2 [27], a free Numerical Elec-
tromagnetics Code (NEC) based antenna modeler. Due to the inherent symmetry
of the structure under study, only half the range of θ is shown. It is apparent that
the antenna response evolves towards that of the PEC solution for decreasing skin
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l flr

dr

ld ld ld

dd dd ddx

z θ

Figure 4.11: Yagi-Uda wire antenna with dipole feed, one reflector and three directors.
Dimensions for operation at 110MHz can be found in Table 4.1.

Table 4.1: Dimensions (in m) of the antenna in Fig. 4.11.

Parameter Value Parameter Value

l f 1.332 a (radius) 0.001

lr 1.348 dr 0.8

ld 1.12 dd 0.637

depths. Moreover, it is shown that an insufficient conductivity detrimentally affects
the antenna’s characteristics. The remaining discrepancy between the solution for
δ/a = 0.01 and the PEC reference can be attributed to both the fundamental ap-
proximations of the reference solution, viz., thin-wire MoM, and the finite mesh of
the employed method.

The individual patterns can be interpreted as follows. For the lowest conductivity,
i.e., δ/a = 10, the gain pattern resembles that of a single dipole, albeit with a very
low efficiency. The parasitic elements do not seem to skew the response, revealing
them to be transparent for the fields emitted by the central dipole. Increasing the
conductivity shifts the entire pattern up towards the 2.15 dBi gain expected for an
ideal dipole antenna. At the same time, however, the influence of the reflector and
directors increases and the typical Yadi-Uda skew starts emerging. This explains
why the backwards gain for the δ/a = 1 antenna lies above that of the better con-
ductors: the gain of the central antenna approaches that of the individual dipole
but the lowered conductivity still cripples the strength of the parasitic elements.
Only when the conductivity ensures sufficiently strong skin effect phenomena, we
observe a substantial front-to-back-ratio crop up.

4.6 Conclusions

In this chapter, the 3-D differential surface admittance operator has been adopted
in the context of wire antennas to assess the influence of finite conductivity on
their performance and characteristics. Furthermore, a specific MoM formulation,
tailored to cylinders, is developed. Through the use of curved rectangles with cor-
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Figure 4.12: Gain of the Yagi-Uda antenna at 110 MHz for various values of the skin depth
(a = 1mm and f = 110 MHz are kept constant, only the conductivity changes). The refer-
ence PEC solution is obtained through 4nec2 [27].

responding rooftops functions, an efficient meshing of cylinders is realized without
sacrificing their curved nature. The construction of the associated MoM matrix is
tackled, with particular care taken in dealing with the singular integrals. The con-
tinuous differential surface admittance operator was constructed starting from the
eigenfunctions of the volume and discretized on the same surface mesh, optimally
exploiting its advantageous properties. The novel method was thoroughly vali-
dated by comparing its performance with an established BIE-MoM solver, proving
its versatility for a wide variety of materials, while at the same time delving deeper
into its broadband properties and investigating the convergence behavior of the
matrix elements. Moreover, the method was utilized to examine a dipole and a
Yagi-Uda antenna for various conductivity values, demonstrating its applicability
in the analysis of the material’s influence on antenna performance.
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5
Interconnect Modeling

“Let us step into the night and pursue that flighty temptress, adventure.”

J.K. Rowling

F F F

Full-wave techniques to rigorously characterize 3-D lossy interconnects are pre-
sented in this chapter. Two distinct differential surface admittance operator
formulations for cuboids are given where the second formulation employs en-
tire domain basis functions and closed sums of infinite series to improve the
accuracy and efficiency of its computation. Encompassing this operator in
an alternative MPIE interpretation enables integration in conventional circuit
solvers and results in accurate resistance and inductance evaluation. Com-
bining the differential surface admittance operator with the augmented EFIE
formulation leads to a matrix system that permits a comprehensive broadband
full impedance characterization of interconnect structures. Both methods are
thoroughly validated on numerous examples by comparison with both state-of-
the-art academic research and commercial solvers demonstrating its versatility
and appositeness. Additionally, various application examples are provided to
further prove the applicability and accuracy of the presented work.

5.1 Introduction

The continuing search for smaller and faster electronic circuits to satisfy the needs
of our information-driven global society has led to increasingly complex structures
in both printed circuit board (PCB) and integrated circuit (IC) technologies. One
example of such an innovation is the rise of 3-D ICs [1]. The increased density
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of components and interconnects poses a myriad of challenges, not least in terms
of signal integrity. Proximity of various signal lines and noisy circuits to intercon-
nects introduces numerous detrimental phenomena such as crosstalk and signal
distortion. These effects only get amplified by the cluttered electromagnetic en-
vironment and the high-frequency spectral content of digital signals caused by
increasing data rates. Accurate modeling of circuits and especially interconnects
becomes ever more indispensable in modern design tools.

Referring to Chapter 1 for a more detailed overview of various CEM methods that
are employed in interconnect modeling, some key points are picked out here. 3-D
interconnect modeling approaches can generally be categorized as either volume
or surface discretization methods. The former category houses, among others, the
well-known FEM. By meshing the entire 3-D volume, this method provides a versa-
tile tool for a wide range of applications. However, volume discretization requires
a very large number of (small) mesh elements to properly represent phenomena
such as the skin and proximity effect in good conductors, leading to computation-
ally intractable linear systems.

BEMs such as the MoM are inherently less susceptible to this problem as only the
surface is meshed. Nevertheless, tackling the interior problem for highly conduc-
tive media remains a challenging feat. The calculation of the interaction inte-
grals [2] or guaranteeing the accuracy of the iterative solution [3] poses big chal-
lenges of its own. A popular class of approximate techniques employs the surface
impedance concept [4], previously discussed in Section 4.1. In this chapter, we
introduce the differential surface admittance operator as a solution to overcome
the problems generally associated with modeling lossy interconnects.

In Section 5.2, we first discuss the MoM scheme used for the modeling of cuboids,
the basic building blocks for interconnects, including a discussion of the singu-
lar integrals. Additionally, two different solutions to the complete matrix system
(both including the differential surface admittance operator) are proposed and
compared. This operator is subsequently introduced for cuboids, once again based
on the eigenfunctions of the volume, in Section 5.3. In Section 5.4, we take an-
other look at the same operator and come up with a different calculation approach,
based on entire domain basis functions, that proves to be more efficient and accu-
rate. Afterwards, the different techniques and methods are validated, applied and
compared numerically in Section 5.5.

5.2 EFIE formulation for cuboids

5.2.1 Basis functions

In contrast to the cylinder, discussed in Section 4.2, the cuboid is a volume with
flat faces and we can thus without any problem apply standard surface meshing
techniques, i.e., triangular and/or rectangular meshes. Here, we opt for the latter
as the faces of a cuboid lend themselves perfectly to a rectangular mesh, leading
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Figure 5.1: Surface mesh of a cuboid using rectangular patches.

to fewer unknowns then a triangular mesh with the same average edge length.
An example of a surface mesh (with uniform subdivision along each Cartesian
axis) is shown in Fig. 5.1. The associated linear basis functions are the rooftops,
introduced in (2.45) and Fig. 2.5(b) in Section 2.2.2. As the rooftops on the cuboid
are aligned along the principal axes of the local Cartesian coordinate system, the
general definition (2.45) simplifies to expressions of the form ±

�

x − x±j
�

x̂/A±j ,
with analogous forms for the other axes.

5.2.2 Integrals

With the rooftops as basis functions, the integrals for the calculation of the MoM
matrix have to be tackled. As was the case for the curved rectangles and triangles,
we use standard Gauss-Legendre quadrature for the four-dimensional integrals
governing all pairs of rectangles. Of course, the singular integrals still pose an
issue and have to be dealt with. Once again, we opt for singularity extraction. For
rectangular patches a similar, general procedure as for the triangles exists [5] that
calculates the inner surface integral analytically and computes the outer, regular-
ized one numerically. In a cuboid we can go one step further since two rectangles
are not oriented arbitrarily: they lie either in parallel planes (with as special case
the same plane) or perpendicular planes. This results in double surface integrals
that are completely analytically calculable over its four dimensions. The results of
these computations are provided in Appendix A, specifically Sections A.2 and A.3.

5.2.3 Alternative interpretation of the MPIE

In Section 4.4 the EFIE in its MPIE formulation was solved jointly with the differ-
ential surface admittance operator to evaluate scattering at arbitrary materials. In
this chapter, we deploy the combined techniques for the analysis of interconnects
through an alternative interpretation of the EFIE that lends itself more to the study
of interconnects. In this formulation, the integration of circuit elements such as
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sources and other discrete elements is possible, as well as a straightforward way
to connect various building blocks to build more complex structures.

The starting point is the expression for the electric field in terms of its potentials
(see (2.22)), which states that the scattered field can be expressed as

esc = e0 − einc = − jωa−∇φ. (5.1)

By introducing the same expansion and testing technique as utilized in the pre-
vious chapter (cf. (4.47)–(4.48)), we can turn (5.1) into a matrix equation. The
tangential electric field et

0 and surface current density js are thus expanded into
linear basis functions, viz., rooftops, and the equation is tested on both sides with
the same functions. For the first term on the left-hand side this leads to

∫

Si

et
0 · fi dS =

∑

j

E j

∫

Si

f j · fi dS =
∑

j

G i j E j , (5.2)

with G the Gram matrix. For the rooftops, each row in the Gram matrix will have
three nonzero entries, which are calculated through integrals completely analo-
gous to (4.59)–(4.60) (see also (5.79)–(5.80)).

The weighted incident field is taken into account through the vector P, defined in
(2.51). The contribution of the vector potential is a dense matrix that is obtained
through expansion of the surface current density and corresponds to the first term
of (2.53):

∫

Si

a · fi dS =
∑

j

I jµ0

∫

Si

∫

S j

G
�

|r− r′|
�

f j · fi dS dS′ =
∑

j

L i j I j . (5.3)

That leaves the scalar potential to be dealt with. By applying the proper vector
identity and invoking the divergence theorem, this term becomes

∫

Si

∇φ · fi dS =

∫

Si

∇ · (φfi) dS −
∫

Si

φ∇ · fi dS

=

∮

ci

φ n̂ · fi
︸︷︷︸

=0

dc −







∫

R+i

φ

A+i
dS −

∫

R−i

φ

A−i
dS







= V−i − V+i , (5.4)

with V±i the average potential on the rectangles R±j that make up the basis func-
tion fi . As such, (5.1) is discretized into

GE− P = − jωLI+V+ −V−, (5.5)
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Figure 5.2: Equivalent circuit interpretation of (5.6). Each node corresponds to the average
potential on a rectangle and each branch maps to an edge.

where V± constellates the average potentials for all rectangles. We can now elim-
inate one set of unknowns by introducing the 3-D differential surface admittance
operator, which will be discussed further for cuboids in Sections 5.3 and 5.4. In
discretized form (see (4.54)), this operator satisfies GI = Y E, leading to

�

G Y
−1

G
�

I− P = − jωLI+V+ −V−. (5.6)

This equation can be interpreted as a circuit with a node for every rectangle in the
mesh and a branch for every edge, as shown in Fig. 5.2. The main advantage of
this approach is the ease of integration with discrete components such as sources
or loads and the ability to employ conventional circuit solvers. Throughout this
work, (5.6) will be solved by means of the popular circuit solver LTspice R© [6].

5.2.4 Augmented EFIE

Although (5.6) can be used to successfully characterize circuits, it does not offer a
complete description of the electromagnetic interactions. By only taking the vector
potential’s influence into account through the matrix L, capacitive effects will be
neglected. Notwithstanding that this approach is taken very often in interconnect
modeling, if we want a truly broadband characterization of (complex) structures,
it is paramount to include all electromagnetic (coupling) effects. To this end, we
cast the differential surface admittance operator into the so-called augmented EFIE
formulation [7]. This technique formulates two matrix equations with two sets of
unknowns and solves them jointly. The first equation is actually (5.6), which can
be rewritten as

�

G Y
−1

G + jωL
�

I− TV = P. (5.7)
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Q i
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Figure 5.3: Charge conservation on a single rectangle Ri . The blue arrows represent the
various rooftop functions that contribute to the charge Q on the dark gray rectangle while
the orange arrow is a (possible) external current source.

The vector V and incidence matrix T , which maps the patches and edges of the
mesh, are defined as

(V)i =

∫

Ri

φ

Ai
dS, (5.8)

�

T
�

i j
=


1, if R j is R+i of fi

−1, if R j is R−i of fi

0, otherwise,

(5.9)

with Rg being a rectangle of the surface mesh with a corresponding area Ag . The
second equation is found by discretizing the following expression for the scalar
potential

φ (r) =
1
ε0

∫

S

G
�

|r− r′|
�

ρs

�

r′
�

dS′. (5.10)

Inserting the piecewise constant divergence of the basis functions that correspond
to the charge on each patch and averaging over the rectangles of the mesh, leads
to the following matrix relation

V = KQ, (5.11)

with the column vector Q collecting the charges on each rectangle and with the
elements of K given by

K i j =
1
ε0

∫

Ri

∫

R j

G
�

|r− r′|
�

Ai A j
dS dS′. (5.12)

To eliminate Q, we discretize the conservation of charge law on every rectangle.
As shown for an arbitrary rectangle Ri in Fig. 5.3, various currents (can) contribute
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to a single rectangle: rooftops defined on adjacent patches and possibly external
current sources. The charge conservation equation ∇ · js + jωρs = 0 on Ri then
becomes

Ia − Ib + Ic − Id + jωQ i = Is. (5.13)

Generalizing this relation to all mesh elements, leads to the matrix equation

T
T
I+ jωQ = S, (5.14)

where the vector S contains the external current sources.

Combining (5.7) together with (5.11) and (5.14), leads to the following set of
matrix equations





G Y
−1

G + jωL −T

T
T

jωK
−1





�

I
V

�

=
�

P
S

�

. (5.15)

This equation can subsequently be solved by a direct or iterative solver. This matrix
equation is only one possible variant of the augmented EFIE [7], [8]. By rescaling
one or more equations and/or choosing another set of unknowns, e.g., charges
instead of potentials, alternative formulations are obtained with varying proper-
ties. This way an EFIE devoid of low-frequency breakdown can be obtained down
to very low frequencies when charge neutrality is enforced [8]. The question re-
mains, however, how the introduction of the differential surface admittance ma-
trix influences this desirable behavior. The frequency independent nature of its
elements for large skin depths (and thus low frequencies), as shown in Fig. 4.7,
seems promising in this regard but a full analysis for various materials and config-
urations is not included in this dissertation and is subject for future work.

At this point, however, (5.15) represents a set of separate objects residing in a
background medium without any interconnection. In order to represent realistic
structures, the various cuboids should be combined. We achieve this by introducing
an infinitesimally small PEC wire connection between adjacent rectangles of two
cuboids which equates the voltages of the adjacent rectangles and introduces an
extra, yet unknown current flowing integrally from one rectangle to the other. This
is implemented in the matrix system (5.15) by introducing an extra row with only
two nonzero entries 1 and −1 to equate the voltages and an extra column with
only two nonzero entries 1 and −1 to add the additional current to the two charge
conservation equations of the involved rectangles.
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5.3 Differential surface admittance operator for
cuboids

In constructing the differential surface admittance operator, as defined in (3.51),
the magnetic eigenfunctions of a cuboid cavity are required, which we present
in the following subsection. The discretization of the operator is illustrated in
Section 5.3.2 and can then be employed in either (5.6) or (5.15) to characterize
interconnects.

5.3.1 Eigenfunctions of a cuboid cavity

Rectangular waveguide

We derive the eigenfunctions for the cuboid in the same way as we did for the
cylinder: first we determine the eigenmodes for the rectangular waveguide. After-
wards we transform the waveguide into a cavity by terminating its ends with PEC
plates. Thus, suppose that we have a rectangular waveguide with its cross-section
in the x y-plane with dimensions lx and l y and its propagation direction aligned
along the z-axis. Based on the derivation presented in Section 4.3.1, we find that
the eigenmodes fall apart into two sets: TE and TM. By solving (4.13)–(4.14) with
PEC boundary conditions through separation of variables and plugging the results
in (4.15)–(4.18), we get the modal field distributions in the rectangle. For the TE
modes, these are

hz,mn (ρ) = cos (λx x) cos
�

λy y
�

(5.16)

et,mn (ρ) =
jωµ0

λ2
x +λ2

y

�

λy cos (λx x) sin
�

λy y
�

x̂−λx sin (λx x) cos
�

λy y
�

ŷ
�

(5.17)

ht,mn (ρ) =
jγmn

λ2
x +λ2

y

�

λx sin (λx x) cos
�

λy y
�

x̂+λy cos (λx x) sin
�

λy y
�

ŷ
�

,

(5.18)

with m ∈ N, n ∈ N, γmn =
q

k2 −λ2
x −λ2

y , λx = mπ/lx and λy = nπ/l y . For the
TM modes, the modal field distributions satisfy

ez,mn (ρ) = sin (λx x) sin
�

λy y
�

(5.19)

et,mn (ρ) = −
jγmn

λ2
x +λ2

y

�

λx cos (λx x) sin
�

λy y
�

x̂+λy sin (λx x) cos
�

λy y
�

ŷ
�

(5.20)

ht,mn (ρ) =
jωε0

λ2
x +λ2

y

�

λy sin (λx x) cos
�

λy y
�

x̂−λx cos (λx x) sin
�

λy y
�

ŷ
�

.

(5.21)
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Rectangular cavity

By substituting (5.16)–(5.18) and (5.19)–(5.21) into (4.25)–(4.26), we get the
fields at any point in the waveguide. By placing PEC end caps at z = 0 and z = lz ,
we obtain the cuboid resonator cavity. These boundary conditions lead to very
similar restrictions as (4.29)–(4.30), viz.,

K−mn = −K+mn (5.22)

sin (γmnlz) = 0. (5.23)

Similar to the cylinder, these conditions force γmn to be pπ/lz = λz with p ∈ N.
As such we find that the total modal field distribution at resonance frequencies for
every mode is given by

emnp (r) = et,mn sin (λzz) + jez,mn cos (λzz) ẑ (5.24)

hmnp (r) = Zcht,mn cos (λzz)− jZchz,mn sin (λzz) ẑ, (5.25)

where we have normalized the expressions such that they satisfy (2.40).

Due to (5.23), the wavenumber can only take a discrete number of values. In
contrast to the cylindrical cavity, the mode wavenumber is the same for both sets
of modes:

k2
mnp = λ

2
x +λ

2
y +λ

2
z =

�

mπ
lx

�2

+

�

nπ
l y

�2

+
�

pπ
lz

�2

. (5.26)

The TE modes satisfy the field distributions

emnp = kmnpλy cos (λx x) sin
�

λy y
�

sin (λzz) x̂

−kmnpλx sin (λx x) cos
�

λy y
�

sin (λzz) ŷ

(5.27)

hmnp = λzλx sin (λx x) cos
�

λy y
�

cos (λzz) x̂

+λzλy cos (λx x) sin
�

λy y
�

cos (λzz) ŷ

−
�

λ2
x +λ

2
y

�

cos (λx x) cos
�

λy y
�

sin (λzz) ẑ

. (5.28)

Note that for p = 0 or m= n= 0, all field components vanish.

The TM eigenfunctions are given by

emnp = −λzλx cos (λx x) sin
�

λy y
�

sin (λzz) x̂

+λzλy sin (λx x) cos
�

λy y
�

sin (λzz) ŷ

+
�

λ2
x +λ

2
y

�

sin (λx x) sin
�

λy y
�

cos (λzz) ẑ

(5.29)

hmnp = kmnpλy sin (λx x) cos
�

λy y
�

cos (λzz) x̂

−kmnpλx cos (λx x) sin
�

λy y
�

cos (λzz) ŷ

. (5.30)

These modes vanish for m= 0 or n= 0.
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The normalization factors N 2
ν of both sets of eigenmodes are easily computed as

the volume integral is separable in Cartesian coordinates [9]. For the TE modes
this gives

N 2
mn0 =N 2

00p = 0 (5.31)

N 2
mnp = k2

mnp
V

2εmεn

�

λ2
x +λ

2
y

�

, (5.32)

with V = lx l y lz , i.e., the volume of the cuboid, while for the TM functions we find

N 2
0np =N 2

m0p = 0 (5.33)

N 2
mnp = k2

mnp
V

4εp

�

λ2
x +λ

2
y

�

, (5.34)

with εi the Neumann factor [9], which equals 1 for i = 0 and 2 otherwise.

5.3.2 Discretization

The expressions for the magnetic eigenmodes and their normalization factors suf-
fice to construct the differential surface admittance operators for cuboids. How-
ever, when utilizing this operator in (5.6) or (5.15), we require the discretized
version of (3.51). Analogous to the approach for the cylinder in Section 4.3.2, we
expand the tangential electric field into basis functions and test the operator with
the same set of functions to obtain

Y i j = −η
∑

m,n,p

Kmnp

N 2
mnp

∫

S j

�

n̂× hmnp

�

· f j (r) dS

∫

Si

�

n̂× hmnp

�

· fi (r) dS. (5.35)

Note that in the calculation of each element, a triple infinite sum is present. In a
numerical implementation, this summation is limited along its three dimensions.
These maximum values are further denoted as (M , N , P). Moreover, we have to
keep in mind that there exist two sets of magnetic eigenmodes, viz., TE and TM.
For every value (m, n, p), there are thus two contributions to every matrix element.

The integrals to be evaluated in (5.35) can all be calculated analytically for the
employed rooftops as they align along the same axes as the eigenmodes. This
results in simple integrals of either trigonometric functions or the product of a first
order polynomial and a (co)sine. All contributions to the Y matrix can thus be
computed exactly.



5.4. Revisited differential surface admittance operator 77
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Figure 5.4: Illustration of the numbering convention of the different faces of a cuboid.

5.4 Revisited differential surface admittance operator

The calculation method for the differential surface admittance operator summa-
rized in (5.35) enables the characterization of any nonmagnetic material for any
frequency. However, as demonstrated in Section 4.5.1 for the cylinder, the method
has a drawback: for good conductors, a considerable amount of eigenmodes is
required to fully take the skin effect into account. Technically it is no problem to
increase the number of eigenmodes but this does lengthen the computational time.
This is why, in this section, we revisit the differential surface admittance operator
for cuboids to obtain an expression for this operator that alleviates this problem.
Initially, we present the operator for entire domain basis functions, leading to a
sparse formulation in Section 5.4.1. Next we show in Section 5.4.2 that certain in-
finite sums in this sparse formulation have closed analytical expressions, improving
the convergence behavior, especially for strongly developed skin effect phenomena.
In the end in Section 5.4.3, we provide transformation matrices to switch back to
local basis functions, enabling seamless inclusion into (5.6) or (5.15).

5.4.1 Expansion matrix

In (3.51), the eigenmodes themselves are actually not required but rather their
tangential component on S. Numbering the cuboid’s six faces Si from 0 to 5,
corresponding to the outward-pointing normal vectors (−x̂, x̂,−ŷ, ŷ,−ẑ, ẑ), they
are located at x = 0, x = lx , y = 0, y = l y , z = 0 and z = lz , respectively as
demonstrated in Fig. 5.4.

The rotated magnetic eigenmodes on S0 are thus given by

S0 : −x̂× hmnp =− ζy,mnp sin
�

λy y
�

cos (λzz) ẑ

+ ζz,mnp sin (λzz) cos
�

λy y
�

ŷ, (5.36)

where we have introduced ζβ ,mnp as a placeholder for the pertinent factor of the
β-component of either TE or TM modes, where β stands for x , y or z, and made
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explicitly clear that they (can) depend on all three indices. Remark that ζz,mnp
vanishes for TM modes. Careful inspection of the same quantity on the other sides
of the cuboid shows that they all have the same form: each is composed of two
terms along the two axes which comprise the face and, in turn, each term contains
the product of a sine and cosine function. Furthermore, it turns out that the contri-
bution along a particular axis shows a cosine dependence for the coordinate along
that axis and a sine dependence along the remaining axis. In (5.36), for example,
the first term oriented along ẑ has a cos (λzz) and a sin

�

λy y
�

dependence.

This observation prompts us to expand both et
0 and js in similar functions, i.e.,

entire domain basis functions, on each face and exploit the orthogonality of the
trigonometric functions. For example, the tangential electric field on S0 is ex-
panded as

S0 : et
0 =

∑

n′,p′
e0,n′p′ =

∑

n′,p′

�

a0
0,n′p′ sin

�

λ′y y
�

cos
�

λ′zz
�

ẑ

+a1
0,n′p′ sin

�

λ′zz
�

cos
�

λ′y y
�

ŷ
�

, (5.37)

with n′ and p′ being the two indices governing the expansion along the y- and
z-axis, respectively, λ′y and λ′z fulfilling the same role as in (5.26) but for these
primed indices n′ and p′, and a0

0,n′p′ and a1
0,n′p′ the unknown expansion coefficients

on S0 along its two axes.

For every term e0,n′p′ , the integral in (3.51) can then be expressed as
∫

S0

�

−x̂× hmnp

�

· e0,n′p′ dS = −δnn′δpp′
A0

2

�

a0
0,n′p′ζy,mnp

σn

εp
− a1

0,n′p′ζz,mnp

σp

εn

�

,

(5.38)
with σi zero for i = 0 and 1 otherwise, with A0 the area of face S0, and δi j the
Kronecker delta. These Kronecker deltas imply that we can henceforth replace
{n′, p′} by {n, p}. Focusing now, for illustration purposes, on the expansions coef-
ficients a0

0,np along ẑ and plugging the results back into (3.51) gives

js =
−ηA0

2

∑

n,p

σn

εp

∑

m

Kmnp

N 2
mnp

a0
0,npζy,mnp

�

n̂× hmnp

�

. (5.39)

At this point, we can expand the surface current density on each face in exactly
the same way as the tangential electric field. Illustrating this first for S0, we get

S0 : js =
∑

n′′,p′′
j0,n′′p′′ =

∑

n′′,p′′

�

b0
0,n′′p′′ sin

�

λ′′y y
�

cos
�

λ′′z z
�

ẑ

+b1
0,n′′p′′ sin

�

λ′′z z
�

cos
�

λ′′y y
�

ŷ
�

, (5.40)

where we have introduced the double primed indices n′′ and p′′ analogously to the
primed ones in (5.37). Focusing again on a single component (along the z-axis)
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and introducing the relevant term of n̂× hmnp on the same face, (5.39) yields

b0
0,n′′p′′ sin

�

λ′′y y
�

cos
�

λ′′z z
�

= (5.41)

ηA0

2

∑

n,p

σn

εp

∑

m

Kmnp

N 2
mnp

a0
0,npζ

2
y,mnp sin

�

λy y
�

cos (λzz) .

In order to isolate b0
0,n′′p′′ , we multiply both sides by sin

�

λ′′y y
�

cos
�

λ′′z z
�

and inte-
grate over S0. This once again forces the (double) primed indices to take the same
values as their nonprimed counterparts, leading to

b0
0,np =

A0σn

2εp

�

η
∑

m

Kmnp

N 2
mnp

ζ2
y,mnp

�

a0
0,np. (5.42)

This equation fully captures the influence of a single a0
0,np component of the tan-

gential electric field on its counterpart, i.e., the b0
0,np component of the surface

current density. For the y-component of js in (5.40), we find a similar relation:

b1
0,np =

A0σn

2εp

�

−η
∑

m

Kmnp

N 2
mnp

ζy,mnpζz,mnp

�

a0
0,np. (5.43)

The same procedure can now be repeated for the other five faces to fully determine
the impact that this one component of the expanded tangential electric field has on
the surface current densities on all faces. We will pick a few of these components
to showcase their most important characteristics.

First, a closer look at the opposite face, i.e., S1, shows that the rotated magnetic
eigenmode and surface current density are given by

S1 : x̂× hmnp =+ ζy,mnp(−1)m sin
�

λy y
�

cos (λzz) ẑ

− ζz,mnp(−1)m sin (λzz) cos
�

λy y
�

ŷ, (5.44)

S1 : js =
∑

n′′,p′′
j1,n′′p′′ =

∑

n′′,p′′
b0

1,n′′p′′ sin
�

λ′′y y
�

cos
�

λ′′z z
�

ẑ

+b1
1,n′′p′′ sin

�

λ′′z z
�

cos
�

λ′′y y
�

ŷ. (5.45)

Following the same reasoning as outlined above, we thus find the following relation
between a0

0,np and b0
1,np:

b0
1,np =

A0σn

2εp
s

�

−η
∑

m

Kmnp

N 2
mnp

(−1)mζ2
y,mnp

�

a0
0,np, (5.46)

while for b1
1,np we get

b1
1,np =

A0σn

2εp

�

η
∑

m

Kmnp

N 2
mnp

(−1)mζy,mnpζz,mnp

�

a0
0,np. (5.47)
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We immediately see that (5.46) and (5.47) are very similar to (5.42) and (5.43),
respectively; the only difference is a minus sign and the factor (−1)m in the sum-
mation.

Next, we observe the influence on a perpendicular face, e.g., S2. Here, the rotated
magnetic eigenmodes and the expansion of js are given by

S2 : −ŷ× hmnp =− ζz,mnp sin (λzz) cos (λx x) x̂

+ ζx ,mnp sin (λx x) cos (λzz) ẑ, (5.48)

S2 : js =
∑

p′′,m′′
j2,p′′m′′ =

∑

p′′,m′′
b0

2,p′′m′′ sin
�

λ′′z z
�

cos
�

λ′′x x
�

x̂

+b1
2,p′′m′′ sin

�

λ′′x x
�

cos
�

λ′′z z
�

ẑ. (5.49)

Substituting these in (5.39) and selecting the component along the x-axis, we
obtain the equivalent of (5.41) as

b0
2,p′′m′′ sin

�

λ′′z z
�

cos
�

λ′′x x
�

= (5.50)

ηA0

2

∑

n,p

σn

εp

∑

m

Kmnp

N 2
mnp

a0
0,npζy,mnpζz,mnp sin (λzz) cos (λx x) .

Employing a similar projection to isolate b0
2,p′′m′′ as before, the double primed in-

dices collapse onto their nonprimed equivalents. This time, however, these indices,
i.e., m and p, do not correspond (completely) with the indices of a0

0,np, i.e., n and
p. As such, this projection enforces an extra condition on the index m and the
summation, as found for example in (5.42), over m vanishes, leading to:

b0
2,pm =

A0

2

∑

n

σn

εp

�

η
Kmnp

N 2
mnp

ζy,mnpζz,mnp

�

a0
0,np. (5.51)

For all other surface current density expansion coefficients one finds similar results.
In short, we can write the relation between a0

0,np and any other nonzero expansion

coefficient b j
i,mnp on face Si along its first ( j = 0) or second axis ( j = 1) as

b j
i,mnp = Ω

j
i,mnp

�

A0

2
σn

εp

�

a0
0,np, (5.52)

for the same face S0 and the opposite face S1, where Ω j
i,mnp evaluates to a single

infinite sum (as for example shown in (5.42) and (5.46)) and to

b j
i,mnp =

∑

n or p

Υ
j

i,mnp

�

A0

2
σn

εp

�

a0
0,np, (5.53)
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for the remaining faces where the summation runs over n for S2 and S3 and over
p for S4 and S5. Note, however, that Υ j

i,mnp is a known scalar (as, e.g., for S2 in
(5.51)). Note as well that the bracketed term is independent of either i or j and
only linked to the face and direction of a0

0,np.

At this point, we have fully described the relation between one set of electric field
expansion coefficients on S0 and all relevant current density coefficients on all
faces. The same approach can now be repeated for all the other faces and directions
to obtain a complete global relation between all expansion coefficients of both
quantities. Clearly, the results are the same as described above apart from the
required cyclic permutation of the axes and the employed indices. In summary,
when we collect all coefficients into the vectors ac and bc , we get

bc = Y c ac = X Dac , (5.54)

with the expansion matrix X being a sparse matrix whose nonzero entries are the
— still to be evaluated — Ω

j
i,mnp and the already known scalar values Υ j

i,mnp, and

where D is a diagonal matrix with elements similar to the bracketed term in (5.52)
and (5.53).

5.4.2 Explicit analytic expressions

Although all elements in Y c (or in particular in X ) are theoretically fully defined,
the infinite sum that still appears in Ω j

i,mnp poses a computational challenge. How-
ever, we will now show that this sum possesses a closed analytical form, as such
avoiding a cut-off of the sum and the corresponding loss in accuracy in the actual
implementation, especially at high frequencies when accurate skin effect modeling
is imperative.

As a first example, we examine the Ω j
i,mnp values for (5.42). Adding up the contri-

butions from both the TE and TM modes, we get

Ω
j
i,mnp =

4η
V
σn





∞
∑

m=0

εmλ
2
yλ

2
z

�

k2 − k2
mnp

��

k2
0 − k2

mnp

��

λ2
x +λ2

y

�

+εp

∞
∑

m=1

k2
mnpλ

2
x

�

k2 − k2
mnp

��

k2
0 − k2

mnp

��

λ2
x +λ2

y

�



 . (5.55)

By extracting the m= 0 term of the first sum and recombining both fractions using
the following substitutions:

α=
lx

π
α′ =

lx

π

q

k2 −λ2
y −λ2

z (5.56)

α0 =
lx

π
α′0 =

lx

π

Ç

k2
0 −λ2

y −λ2
z (5.57)
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θ =
lx

π
λy = nlx/l y ϑ =

lx

π
λz = plx/lz (5.58)

we get the following expression for (5.55)

Ω
j
i,mnp =

4η
V
σn

l2
x

π2

�

ϑ2

�

1
α2α2

0

+ 2
∞
∑

m=1

1

(m2 −α2)
�

m2 −α2
0

�

�

(5.59)

+εp

∞
∑

m=1

m2

(m2 −α2)
�

m2 −α2
0

�

�

.

The sums in this expression have closed analytical forms as outlined in Appendix C:

Ω
j
i,mnp =

4η
V
σn

l2
x

π2

�

2ϑ2Ω0 (α,α0) + εpΩ2 (α,α0)
�

. (5.60)

= −
2σnεp lx

jωµ0V

�

k2 −λ2
y

α′
cot (πα)−

k2
0 −λ

2
y

α′0
cot (πα0)

�

(5.61)

Second, the same procedure is applied to the sum in (5.43). In this case, the TM
contribution vanishes as ζTM

z ≡ 0, yielding

Ω
j
i,mnp = −

4η
V

∞
∑

m=0

εmλyλz
�

k2 − k2
mnp

��

k2
0 − k2

mnp

�

= −
4η
V

l2
x

π2
θϑ [2Ω0 (α,α0)] (5.62)

=
4lx

jωµ0V
λyλz

�

1
α′

cot (πα)−
1
α′0

cot (πα0)

�

(5.63)

Third, as observed before (see (5.46) and (5.47)), very similar sums appear for
parallel, non-coinciding planes. For example, the Ω j

i,mnp value in (5.47) becomes:

Ω
j
i,mnp =

4η
V

∞
∑

m=0

εm(−1)mλyλz
�

k2 − k2
mnp

��

k2
0 − k2

mnp

�

=
4η
V

l2
x

π2
θϑ [2Ψ0 (α,α0)] , (5.64)

= −
4lx

jωµ0V
λyλz

�

1
α′

csc (πα)−
1
α′0

csc (πα0)

�

(5.65)

where we observe that the only difference with (5.62) is a minus sign and another
type of auxiliary function, i.e., Ψn (·, ·) instead of Ωn (·, ·), to account for the (−1)m

factor in the sum.
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ẑ

ŷ

x̂ y0 = 0

yt

yT = l y

z0 = 0
zs

zS = lz

f +st f −(s+1)tRst

R(s+1)t

Figure 5.5: Definition of a rooftop along ẑ on face S0.

Above, we have demonstrated the existence of closed-form expressions for some
specific examples. The same procedure is followed for all other expansion coeffi-
cients and, as expected from the symmetry of the problem, the resulting expres-
sions are all of the same form provided that the correct cyclic permutation of the
axes and indices is performed. At this point, it is important to stress that Y c in
(5.54) is free from infinite sums and, thus, efficiently and accurately maps the
expansions coefficients ac onto bc .

5.4.3 Discretized Y-operator for a cuboid

In Section 5.4.1 we derived an analytical form of the differential surface admit-
tance operator for a cuboid based on entire domain basis functions. In order to
integrate it into (5.6) or (5.15), we need to convert to and from the rooftops em-
ployed to discretize the surface of the cuboid(s) [10]. Restricting ourselves once
more to S0 and the ẑ-component on this face, we expand ez = e · ẑ as

S0 : ez =
S
∑

s=1

T
∑

t=1

A0
0,st f +st + A0

0,(s−1)t f −st , (5.66)

with S and T the number of divisions along ẑ and ŷ, respectively. The positive and
negative half-rooftop functions f +st and f −st , as illustrated in Fig. 5.5, are defined as

f +st =
z − zs−1

∆z∆y
, {y, z} ∈ Rst (5.67)

f −st =
zs − z
∆z∆y

, {y, z} ∈ Rst , (5.68)

with Rst the rectangle that supports the half-rooftop function (see Fig. 5.5) and
∆z and ∆y its length along the z- and y-axis, respectively. This expansion should
equal the z-component of (5.37):

S0 : ez =
∑

n′,p′
a0

0,n′p′ sin
�

λ′y y
�

cos
�

λ′zz
�

(5.69)
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To connect expansions (5.66) and (5.69), we project them both onto the entire
domain basis function sin

�

λy y
�

cos (λzz) ẑ. For (5.69), the resulting integral re-
sembles (5.38) and results in a0

0,np A0σn/(2εp). For (5.66), one gets,

S
∑

s=1

T
∑

t=1

A0
0,st I

+
st + A0

0,(s−1)t I
−
st , (5.70)

with

I±st =

∫

Rst

f ±st sin
�

λy y
�

cos (λzz) dS = φyφ
±
z , (5.71)

and

φy =
−1
∆yλy

�

cos
�

λy yt

�

− cos
�

λy yt−1

��

(5.72)

φ+z =
sin (λzzs)
λz

+
cos (λzzs)− cos (λzzs−1)

λ2
z∆z

(5.73)

φ−z = −
sin (λzzs−1)

λz
−

cos (λzzs)− cos (λzzs−1)
λ2

z∆z
. (5.74)

When we generalize the results obtained above to all directions and faces and
collect all rooftop basis function expansion coefficients (of the type A0

0,st in (5.66))
into the vector E, we get the following relation:

ME= Dac , (5.75)

where the matrix M links the rooftop and trigonometric functions via expression
of the type (5.70) and the previously introduced diagonal scaling matrix D (see
(5.54)) is present on the right-hand side.

For the surface current density, we start with similar expansions:

S0 : js,z =
S
∑

s=1

T
∑

t=1

B0
0,st f +st + B0

0,(s−1)t f −st , (5.76)

S0 : js,z =
∑

n′′,p′′
b0

0,n′′p′′ sin
�

λ′′y y
�

cos
�

λ′′z z
�

, (5.77)

which we now project onto rooftop testing functions fs′ t ′ =
�

f +s′ t ′ + f −s′ t ′
�

ẑ. For
(5.77) this results in an integral of the same form as in (5.71) thus giving the
following result for this procedure:

M
T
bc . (5.78)

Projecting (5.76) onto rooftops, results in the Gram matrix G. As mentioned before
(see (5.2)) only three elements per row/column are nonzero in G: two entries for
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partially overlapping rooftops and one for the self-interaction. Therefore, only two
distinct integrals are required (with ARst

being the area of Rst):
∫

Rst

f +st f +st dS =

∫

Rst

f −st f −st dS =
ARst

3 (∆y)2
, (5.79)

∫

Rst

f +st f −s(t−1) dS =
ARst

6 (∆y)2
. (5.80)

Consequently, the relation between both expansions of js is

GI = M
T
bc , (5.81)

where I collects all rooftop function expansion coefficients (of the type B0
0,st in

(5.76)) of js. Combining (5.75) and (5.81) together with (5.54), finally yields

I = G
−1

M
T

Y c D
−1

ME (5.82)

= G
−1 �

M
T

X M
�

E (5.83)

= G
−1

Y E, (5.84)

with Y now being the discrete version of (3.51). The entire procedure leading to
(5.84) has been schematically summarized in Fig. 5.6. We conclude this section
with some remarks about Y . All material properties and frequency dependencies
are encapsulated in X . This implies that the calculation of the total matrix for
various frequencies and/or materials only calls for separate instances of X while
M can be reused. Similarly, all the mesh information is captured by M . The size
of X (and thus of M) depends on the number of entire domain basis functions that
are taken into account.

5.5 Examples

In this chapter, we have defined two matrix equations to jointly solve the exte-
rior and interior problem. At the same time, we have provided two distinct ways
to compute the differential surface admittance operator for cuboids. For the re-
mainder of this chapter, Method 1 will denote the combination of (5.6) and (5.35),
i.e., the equivalent circuit interpretation combined with the original differential
surface admittance matrix formulation solved by a circuit solver. Method 2, on
the other hand, utilizes the set of matrix equations (5.15) in conjunction with the
revisited differential surface admittance operator (5.84) solved through conven-
tional matrix solvers. Method 3 obtains full-wave results by using the set of matrix
equations (5.15) but combined with the original differential surface admittance
operator (5.35) and will be employed in a comparison between both Y -matrix cal-
culation methods.
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Figure 5.6: Schematic overview of the discretization procedure.
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Figure 5.7: Two parallel copper conductors with cross-section 2 mm× 2mm, length l and
separation s.

5.5.1 Validation examples

Two parallel copper conductors

As a first example, we consider two parallel copper conductors (σ = 5.6·107 S/m),
both with a rectangular cross-section of 2mm × 2 mm, varying length l and sep-
aration distance s as shown in Fig. 5.7 (all dimensions are given in mm). This
configuration is a 3-D version of the second example of Fig. 9 in [11]. The resis-
tance and inductance per unit of length (p.u.l. ) are calculated through Method 1
by diving the total resistance/inductance by the length l. The resistance per meter
is shown in Fig. 5.8(a). The low-frequency value is the same for all configura-
tions and corresponds to the DC value obtained by Pouillet’s law. For increasing
frequencies the resistance for the various separations starts to fan out due to the
proximity effect, which is strongest for the smallest spacing. (Results from [11]
are not shown on the figure since the near-perfect agreement clutters the graph.)
The corresponding inductance per unit of length is depicted in Fig. 5.8(b). Here
we observe that both parameters have a much stronger influence on the results. A
considerable length is required to evolve towards the pure 2-D results, especially
for the low-frequency limit.
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Figure 5.8: Resistance and inductance of the structure shown in Fig. 5.7 for various separa-
tions s and lengths l. The 2-D reference solution is obtained through the technique described
in [11]. All dimensions are given in millimeter.
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Figure 5.9: Microstrip configuration on a RO4350B RF substrate (εr = 3.48, tanδ = 0.003,
w= 530µm, t = 35µm, h= 250µm, l = 10mm, σ = 5.8 · 107 S/m).
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(b) P.u.l. inductance in nH/m.

Figure 5.10: P.u.l. resistance and inductance of the microstrip shown in Fig. 5.9. The 2-D
reference result is calculated through the method reported in [12].

Microstrip

Consider, as a second example characterized with Method 1, a PCB microstrip
configuration as presented in Fig. 5.9. A copper conductor (σ = 5.8 ·107S/m) and
a perfect electric ground plane are placed on either sides of a RO4350B substrate
(εr = 3.48, tanδ = 0.003). The height of this substrate is h = 250µm while the
dimensions of the strip are 530µm× 35µm× 10mm.

The resistance p.u.l. , simply obtained by dividing the total resistance of the strip
by its finite length l, is shown in Fig. 5.10(a) together with a 2-D reference solution
obtained through the technique described in [12]. The low-frequency value con-
verges to the Pouillet value while we clearly see the influence of the skin effect for
increasing frequencies. Furthermore, we observe an excellent agreement between
the 2-D results and our proposed method.

In Fig. 5.10(b) the inductance per unit of length is plotted for both methods. For
this characteristic we observe a much stronger influence of the finite length of the
microstrip. The difference between the curves is strongest for the low-frequency
inductance where we observe a difference of 3% between both results. However,
tests have shown that increasing the length of the microstrip raises the curve to-
wards the 2-D result, as expected.

Right-angled corner

The two previous examples are essentially 2-D problems and as such do not fully
take advantage of the possibilities of the techniques presented in this chapter.
Thereto, our third example to be solved with Method 1 is a copper (σ = 5.6 ·
107 S/m) right-angled corner as shown in Fig. 5.11(a). The height h and width a
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(a) Geometry of the right-angled corner. (b) Connection between the different cuboids.

Figure 5.11: Geometry of the right-angled corner with fixed dimensions h= a = 2mm and
variable lengths L and D. The second figure shows the details of the connection between
the different cuboids that make up the total structure.

are set to 2 mm while L and D, the lengths of both arms, are varied. Figure 5.11(b)
illustrates the subdivision of the structure: the corner is divided into three distinct
cuboids which are placed next to each other. The actual connection between two
blocks is provided by a wire between two adjacent rectangles (or equivalently volt-
age nodes) on both cuboids, implemented in the equivalent circuit by a short circuit
between the two voltage nodes. This ensures that the current flows uninhibited
from one cuboid to the other without changing direction or phase. The resistance
was computed not only for the right-angled corner but also for a single straight
cuboid with the combined length of both arms and the corner block, i.e., L+a+D
such that the volume of both topologies is the same. In Fig. 5.12, the resistance is
shown for two different configurations. For the lower frequencies we observe that
the corner has a lower resistance than the corresponding cuboid in both cases. This
DC value has been verified with a finite difference method (FDM) program, solving
Laplace’s problem, and demonstrates perfect agreement (shown with markers on
the y-axis). At the same time, the results for the single straight cuboids coincide
with the Pouillet value. When the frequency is raised, the proximity effect causes
the resistance of the corners to start increasing earlier, resulting in a crossover of
the curves and eventually a higher resistance for the corner.

Fringing effect

So far we have solved problems with Method 1; a formulation which does not
take capacitance effects into account. By utilizing Method 2, on the other hand,
all contributions of the Green’s function are taken into account, leading to a full
electromagnetic characterization. As a first example, consider the geometry de-
picted in Fig. 5.13. A copper plate (σ = 5.8 · 107 S/m) of dimension l × w with a
thickness of 1µm is fed by a stub of 20µm× 5µm and suspended 2.5µm above a
PEC ground plane. Initially we choose l = w = 50µm and use the simple parallel
plate formula (Cpp = εA/d) for both cuboids to estimate the total capacitance of
this structure (see Table 5.1). However, this ignores the fringing fields and will
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Figure 5.12: Resistance of a copper, right-angled corner in mΩ, compared to a cuboid with
the same total volume, for various configurations as a function of frequency with h = a =
2 mm. The markers on the left indicate the DC resistance as obtained through a FDM.
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Figure 5.13: Copper plate (σ = 5.8 · 107 S/m) with a feed stub above a PEC half-space.
The thickness of the conductor is 1µm. All other dimensions are given in µm on the figure.

as such underestimate the true capacitance. Various analytical expressions to esti-
mate this effect can be found for 2-D and 3-D capacitors. We will employ the simple
expressions for 2-D conductors with a finite thickness as found in [13] and apply
them along two dimensions for an improved estimation. All results are collected
in Table 5.1. It is apparent that the parallel plate formula severely underestimates
the total capacitance. Employing the analytical formulas results in a 30 % increase
while our full-wave solution computes a capacitance that is 37% larger. The addi-
tional increase found with the integral equation solution is due to the corners and
the connection of both blocks.

According to the parallel plate formula, the capacitance only depends on the area
of the plate and not on its shape. However, the analytical formulas contradict this
and suggest that fringing effects do depend on the exact shape. Therefore, we
investigate configurations with the same, fixed area for various aspect ratios α =
l/w. The difference between the calculated and nominal capacitance of 9.208 fF
is characterized by the fringing factor γ such that C = γCpp. For some specific
values of α the capacitances are included in Table 5.1. From Fig. 5.14 we see that
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Table 5.1: Capacitance in fF of the structure in Fig. 5.13

l [µm] w [µm] α= l/w Cpp Yuan/Trick [13] Method 2

50 50 1 9.208 12.035 12.647

111.80 22.36 5 9.208 12.742 13.524

22.36 111.80 0.2 9.208 12.742 13.462
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Figure 5.14: Fringing factor γ for various aspect ratios α= l/w.

γ is minimum for a square plate and increases the more the plate is elongated in
either direction. Note as well that the capacitance for reciprocal aspect ratios is
slightly different according to the simulation results. Two such values are included
in Table 5.1 and show that for longer plates the capacitance is marginally larger
than for wider plates. This phenomenon can be attributed to the feed stub, which
is aligned along the length of the plate, and a such introduces a small asymmetry.

Gap capacitance

For the second example solved with Method 2, we examine a structure that exhibits
both capacitive and inductive behavior. The example constitutes a simple structure
consisting of two copper (σ = 5.8·107 S/m) blocks with dimensions 2 mm×2 mm×
20 mm. This example is not only used to further validate Method 2, but it is also
employed to compare the revisited Y , cf. (5.84), with the initial formulation, i.e.,
(5.35) employed in Method 3, in terms of accuracy, computation time and memory
requirement.

Focusing on the electrical performance of the structure first, we calculate its impedance
by measuring the voltage over the terminals where a unit current source connects
to the copper blocks. The magnitude of this impedance is shown in Fig. 5.16 for
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Figure 5.15: Two copper blocks (2mm× 2mm× 20mm) separated by a variable distance
g.
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Figure 5.16: Magnitude of the total impedance of the two copper blocks shown in Fig. 5.15
as a function of frequency for various separation distances g.

various values of the gap g. The black dotted line, i.e., for g = 0mm, corresponds
to one single copper block of length 40 mm and is included as a reference result
for the limit g → 0.

For all nonzero values of g, a series resonance occurs due to the interplay of the
inductance, which is the same for all configurations, and the capacitance of the gap,
which decreases for increasing distances as such pushing the resonance frequency
to higher values. Once beyond its self-resonance, the inductive behavior dominates
and the impedance response coincides with the reference results regardless of the
separation distance.
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Figure 5.17: Real part of the impedance for two copper blocks (see Fig. 5.15) as a function
of frequency with g = 1µm for Method 2 and Method 3. The number of entire domain
basis functions used along the x-, y- and z-axis are {M , M , 25} respectively (with both
blocks aligned along the z-axis) and the employed value of M is denoted between brackets.

To assess the accuracy of the two distinct surface admittance matrix computation
avenues, we turn our attention to the real part of the impedance for a fixed sep-
aration distance g of 1µm. In Fig. 5.17, we clearly see that for low frequencies,
Method 2 (black dotted curve) correctly predicts the Pouillet resistance value of
1.7 · 10−4Ω and that it exhibits the characteristic

p

f -behavior as the skin effect
develops. The maximum value M of the indices governing the cross-section, i.e.,
m and n, has been set to 25, with the same value along the longitudinal z-axis.
When we compare this to Method 3 with the same restrictions on the indices, we
see that while the low-frequency results coincide nicely, the resistance curve for
(5.35) levels out around 10MHz. This nonphysical result is caused by cutting off
the infinite summation for numerical evaluation, which is clearly detrimental for
accurate results, especially for a strongly developed skin effect. This leveling out
would be alleviated by driving up the number of eigenmodes M to higher values,
but as shown in Fig. 5.17, even a considerable amount of eigenmodes does not
suffice to yield adequate results over the complete frequency range. Moreover,
it comes at a high computation cost. In Method 2, this shortcoming is solved by
exploiting the closed form of the infinite sums as demonstrated in Section 5.4.2.

Table 5.2 contains a more detailed comparison of the computation cost by listing
the computation time per frequency point and memory consumption for the pro-
vided example. A set-up time of 170s for the computation of the L and K matrices
is not included as these results can be reused for all frequency points. From the
table we clearly see that the computation time and memory requirements for both
methods are of the same order for the same number of eigenmodes. However,
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Table 5.2: Computation time and memory usage per frequency point for the configuration
of Fig. 5.17.

Metric Method 2 (25) Method 3 (25) Method 3 (200)

Y calculation [s] 0.86 0.88 30.91

Matrix solution [s] 0.5 0.51 0.5

Y calculation [MiB] 5.6 5.1 5.5

5
10

5
5

l
5

1

1

Figure 5.18: Copper loop with one side of variable length l. All dimensions shown are
given in µm.

when comparing to the result from Method 3 with an increased number of eigen-
modes to increase accuracy at higher frequencies, the entire domain basis functions
based method evidently outperforms the other technique. The memory consump-
tion stays roughly the same but the computation time increases by a factor 35 for
an increase of M from 25 to 200.

5.5.2 Application examples

Rectangular loop

The initial application example is a rectangular loop, characterized with Method 1.
The dimensions (in micrometers) are found in Fig. 5.18. First we examine the
loop for a fixed side length l of 20µm. The configuration is the same as the one
from Fig. 3 in [14] and therefore the conductivity of copper is taken to be σ =
5.6 · 107 S/m. The total resistance and inductance of this loop is measured over
the 1µm gap and shown on both panels of Fig. 5.19 and is compared with two 3-D
electromagnetic (EM) industry standards, viz., Analysis Systems (ANSYS) High
Frequency Simulation Software (HFSS) [15] and Computer Simulation Technology
(CST) Microwave Studio (MWS) [16]. In Fig. 5.19(a) we see that both reference
solutions coincide with our result at low frequencies while the value from [14] is
larger, similar to what we observed for the single corner in Section 5.5.1. The low-
frequency inductance of the proposed method coincides with the value computed
by HFSS and together they lie within a 3% margin of the result from CST MWS
while the value from [14] differs 9.6 % and 6.6% from both reference solutions,
respectively. This shows that limiting the flow of the current in each cuboid to its
longitudinal direction, as assumed in [14], introduces non-negligible deviations.
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(b) Inductance in pH.

Figure 5.19: Resistance and inductance of the copper loop (σ = 5.6 ·107 S/m) of Fig. 5.18
for l = 20µm as a function of frequency. The configuration is taken from [14] and this
result is shown alongside with simulation results from ANSYS HFSS and CST MWS.
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Table 5.3: DC resistance of a straight copper (σ = 5.8 · 107 S/m) cuboid and loop (see
Fig. 5.18) for various values of l.

l [µm] cuboid [mΩ] loop [mΩ]

10 203.5 175.5

15 237.9 210.2

20 272.4 245.0

25 306.9 279.8

30 341.4 314.6

For higher frequencies, both reference solutions’ resistance and inductance start
changing earlier and at a faster rate. As radiation losses are extremely small and
considering the unphysical kink in the inductance curve of HFSS in Fig. 5.19(b),
we conclude that faulty meshing of the inside of the good conductor fails to prop-
erly assess the current crowding and proximity effects in both volume meshing
solvers. Meanwhile, our method and the one described in [14] make use of BIEs
and alleviate this shortcoming. Both methods demonstrate near identical trends
or evolutions for higher frequencies despite their low-frequency difference. This
justifies the advocated differential surface admittance operator based BEM for the
modeling of 3-D interconnects.

Second, we vary the length l of the loop and again calculate the resistance and
inductance with Method 1 shown in Fig. 5.20, this time for a conductivity of
σ = 5.8 ·107 S/m. Careful inspection of the low-frequency value of the resistances
shows that the obtained values are smaller than the DC Pouillet resistance of a
single cuboid with the same total length as the loop (see the selected results in Ta-
ble 5.3). This can be attributed to an accurate 3-D modeling of the corners present
in the loop as demonstrated before for the single corner in Fig. 5.12. For the higher
frequencies we note that the curves are more tightly packed. The smaller value of l
makes the loop more compact and brings the various conductors closer together.
This strengthens the proximity effect and causes the smaller loop’s resistance to
start increasing at an earlier frequency than for the larger loop.

Parallel plate capacitor with feed structure

The second validation example, depicted in Fig. 5.21, represents a copper (σ =
5.8 ·107 S/m) parallel plate capacitor with variable width w and a 1µm separation
between the plates, fed via two traces that form a rectangular loop. All dimen-
sions are annotated on the figure and are given in µm. The total impedance of this
structure is measured over the 1µm gap for a broad frequency range and obtained
through Method 2. In Fig. 5.22 the absolute value of this impedance is shown for
various values of w (including results from CST MWS shown with markers) and
for a reference planar loop. This reference loop has the same shape and dimen-
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(b) Inductance in pH.

Figure 5.20: Resistance and inductance of the copper loop (σ = 5.8 ·107 S/m) of Fig. 5.18
for various values of the parameter l.
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Figure 5.21: Two copper (σ = 5.8 · 107 S/m) plates of variable width w with a feeding
structure. All dimensions shown are in µm. The impedance is measured over the 1µm gap.

sions, i.e., 60µm×40µm, as the structure in Fig. 5.21 but lacks the parallel plates,
and thus resembles the previous example, shown in Fig. 5.18. For low frequen-
cies, we see that the structure behaves as a capacitance which increases for larger
widths w. The response of the planar loop, on the other hand, indicates inductive
behavior with a non-negligible resistive component that levels out the response
for the lowest frequencies. Around 150GHz, the structure undergoes a series res-
onance, whose precise frequency shifts with w as the capacitance changes. For
even higher frequencies (around 700GHz), the structure endures a second (par-
allel) resonance. This phenomenon is caused by the capacitance of the gap where
the impedance is measured. The planar loop exhibits the same resonance albeit at
a lower frequency of 630 GHz due the absence of the parallel plate capacitance.
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Figure 5.22: Absolute value of the impedance of the structure in Fig. 5.21 for various values
of w. Lines indicate results obtained via Method 2, while the CST MWS results are indicated
by blue markers.
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Figure 5.23: 3×3 array of square, copper loops (20µm×20µm) with a square cross section
of 4µm×4µm spaced 30µm apart. A port is defined over a 1µm gap on the same side for
every loop [17].

Rectangular loop array

Consider an array of square, copper (σ = 5.8 · 107 S/m) coils, arranged in a 3× 3
grid with a mutual spacing of 30µm as described and simulated with VoxHenry
in [17] (see Fig. 5.23). Each coil, having a square cross-section with side 4µm,
measures 20µm×20µm. In the middle of one side of all coils, a port is defined
over a 1µm gap. The array will be studied for two different cases, viz., with and
without ground plane, by means of Method 2. In case of a ground plane,an infinite
PEC plane is positioned 2µm below the loops. Both situations are compared to a
corresponding ANSYS HFSS simulation.

In Fig. 5.24 a diagonal element from the structure’s Z-parameters is shown as a
function of frequency. Fig. 5.24(a) shows the real part of Z55, i.e., the resistance of
the central loop. Method 2, VoxHenry (see [17]) and HFSS all predict the same re-
sponse although a small deviation is visible at higher frequencies between all three.
This can be attributed to the inherent difference between volumetric methods, vol-
ume integral equation (VIE) methods and BEMs. Nevertheless, it is apparent from
the set of results that the ground plane has a negligible influence on the resistance.

Turning to Fig. 5.24(b), the imaginary part of the same Z-matrix element overω is
shown in pH. The curves for the structure in free space both coincide very well with
the VoxHenry result. The case with ground plane results in an offset between both
curves. This deviation is caused by the different implementation of the infinite
ground plane. In our BIE approach, this feature is taken into account through the
Green’s function while in the FEM based HFSS solver this is achieved through the
appropriate boundary conditions on the bounding box of the simulation domain.
In [17] the shift in inductance due to the ground plane is not observed but can be
attributed to the fact that their ground plane is finite and lossy.
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Figure 5.24: Real and imaginary part of Z55 as a function of frequency for the geometry
shown in Fig. 5.23 with (solid) and without (dashed) ground plane.

Moving on to the off-diagonal elements in Fig. 5.25, we take a closer look at
the coupling between two sets of adjacent loops, i.e., loop two and loop five in
Fig. 5.25(a) and loop four and loop five in Fig. 5.25(b), respectively. For the first
pair, the correspondence between both solvers is similar to Fig. 5.24(b) while for
the second pair there is a larger discrepancy. Comparing the two pairs, both our
method and HFSS predict a smaller coupling for the second pair but using the dif-
ferential surface admittance operator this drop is bigger, resulting in the observed
difference in the response. A possible explanation for this disparity is the differ-
ence in port definition between the compared methods. Still, comparing to the
VoxHenry results, we see that our response curves again coincide nicely for the
free space case.
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Figure 5.25: Selected nondiagonal impedance matrix elements as a function of frequency
for the geometry shown in Fig. 5.23 with (solid) and without (dashed) ground plane.

Two coupled on-chip inductors

As a final example, a test chip was designed, manufactured and measured by Geert
Van der Plas and Xiao Sun in Eric Beyne’s 3-D system integration group at imec.
This chip consists of an aluminum (σ = 3.77·107 S/m) loop placed 6.508µm above
a smaller copper (σ = 5.8 · 107 S/m) loop. Both elements have the same inner
dimensions for the loop, i.e., 100µm×70µm, but have different cross-sections, as
shown in Fig. 5.26 together with all other relevant dimensions, which are all given
in micrometers. The loops are placed in an on-chip multilayered stack-up that is
not included here as the nonmagnetic materials have negligible influence on the
mainly inductive coupling phenomena in this setup. The scattering parameters
of this structure are simulated by means of Method 2 and HFSS. The coupling
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Figure 5.26: Two coupled loops spaced 6.508µm apart. The top aluminum loop (σ =
3.77 ·107 S/m) has a cross section of 5µm×0.5µm while the bottom copper loop measures
2µm×0.173µm. All dimensions in the figure are given in µm.

is also compared to measurement data and shown in Fig. 5.27. The measured
diagonal elements of the S-matrix are not included in the analysis as the complex
feed structure and measurement setup did not allow for stable de-embedding over
the entire frequency range.

Starting with Fig. 5.27(a), we observe excellent agreement between the proposed
method, HFSS and the measured |S21|. The measurement shows a slightly lower
coupling over the entire frequency band due to additional losses in the measure-
ment. At the end of the frequency range the three curves diverge more due to
high-frequency noise in the measurement data and the earlier observed difference
between volumetric and surface methods. Advancing to Fig. 5.27(b), we show the
absolute value of S11 and S22 for the coupled loops. Once again, we obtain very
good agreement between our Method 2 and HFSS.

5.6 Conclusions

In this chapter, we have introduced a framework to accurately characterize 3-D in-
terconnect structures. For the evaluation of the structures, two different EFIE for-
mulation were derived: one led to a circuit interpretation of the boundary integral
equation that was solved using conventional circuit solvers while the other, based
on the augmented EFIE, yielded a set of matrix equations that fully describes the
electromagnetic problem. Furthermore, the differential surface admittance for the
quintessential building block of interconnects, i.e., the cuboid, was derived based
on the eigenmodes of the volume. Two options were presented: the conventional
form analogous to the one present for cylinder in Chapter 4, and an improved
formulation, specifically for cuboids, that through the use of entire domain basis
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Figure 5.27: Scattering matrix elements as a function of frequency for the geometry shown
in Fig. 5.26.
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functions and the sum of infinite series, resulted in a faster, more accurate differ-
ential surface admittance matrix. The presented methods have been thoroughly
validated through numerous examples including 2-D reference results, meticulous
evaluation of essential 3-D building blocks and careful computation of nonideal-
ized capacitors. Additionally, both expressions for the differential surface admit-
tance matrix have been painstakingly compared in a simple example to assess their
accuracy and computational cost/speed. Afterwards, both methods were utilized
to study a few applications examples, ranging from a single loop and parallel plate
capacitor with feed structure to an array of rectangular loops and coupled on-chip
inductors.
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6
The Differential

Surface Admittance Operator
for Combined Magnetic
and Dielectric Contrast

“Some humans would do anything to see if it was possible to do it.
If you put a large switch in some cave somewhere, with a sign on it saying

‘End-of-the-World Switch. PLEASE DO NOT TOUCH’,
the paint wouldn’t even have time to dry. ”

Terry Pratchett

F F F

This chapter details an extension of the 3-D differential surface admittance op-
erator for cuboids. By computing two separate Poincaré-Steklov operators for
the cuboid directly, the restriction on nonmagnetic materials for the differen-
tial surface admittance operator based on eigenmodes is alleviated. The pair
of operators are computed by considering the cuboid as the superposition of six
waveguides with one of its open ends metallized. Based on the modes in these
waveguides and by expanding the unknown quantities in entire domain basis
functions, the differential surface admittance operator can be found in all six
cases. Computing the explicit formulas for one of the six cases, reveals that the
required expressions resemble these of the nonmagnetic variant of the operator
and indeed are a generalization of the latter.
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6.1 Introduction

The differential surface admittance operator as presented in Section 3.1 was de-
rived from the general equivalence theorem and enables the replacement of a ho-
mogeneous material by the background medium through a single equivalent (elec-
trical) surface current density. In subsequent sections and chapters, expressions for
this operator based on the eigenmodes of a volume were constructed and applied
to cylinders and cuboids, and its usage was demonstrated for a variety of materi-
als and configurations. However, in all these cases an additional restriction was
enforced: the material in question had to be nonmagnetic or, less restrictive, was
required to have the same permeability as the background medium. Although this
supplementary constraint applies to the lion’s share of materials employed in cir-
cuits, antennas, etc., ranging from dielectrics to (good) conductors, an important
subset of materials, i.e., magnetic materials, is excluded that play a crucial role in
certain applications. One such example are the so-called mu-metals. These materi-
als combine a high permeability with low hysteresis losses and limited anisotropy,
justifying their prevalent usage in an electromagnetic compatibility (EMC) context
where low-frequency magnetic shielding is essential, e.g., MRI [1].

In this chapter, we present an alternative approach to the entire domain basis func-
tions construction of the differential surface admittance operator for cuboids as de-
scribed in Section 5.4. Not only does this derivation provide additional insight into
the structure of this operator, it does not require the absence of magnetic contrast,
opening the way to the inclusion of materials with both an electric and magnetic
contrast. In Section 6.2, we clarify the working principle of this derivation based
on the construction of a Poincaré-Steklov operator for the cuboid from its eigen-
modes. In Sections 6.3.1 and 6.3.2, expressions for the surface current density are
determined.

6.2 Poincaré-Steklov operator for cuboids

Referring back to Section 3.1, it was shown in (3.7) that the differential surface ad-
mittance operator can be expressed as the difference between two Poincaré-Steklov
operators, one for the original situation and one for the equivalent scenario. In the
derivation of the general expressions for the differential surface admittance oper-
ator based on the eigenfunctions of the volume, however, the differential operator
was formed directly, contracting the additional nonmagnetic constraint along the
way. Here, we determine both Poincaré-Steklov operators first and only afterwards
substitute them into (3.7), leading to the sought after Y-operator.

To construct the Poincaré-Steklov operator, which expresses the rotated tangential
magnetic field n̂× ht in any point on the surface S as a function of the tangential
electric field et in all points on that same surface, we take the following approach:
in accordance with the superposition principle, the overall dependence of n̂× ht

on et can be obtained by putting et = 0 on all but one of the faces of the cuboid
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Figure 6.1: Superposition principle applied to the cuboid for the calculation of its Poincaré-
Steklov operator. Throughout this chapter, situation (f) is discussed in detail, knowing that
cases (a)-(e) are completely analogous.

and determining the resulting n̂×ht on all the faces as long as the volume is filled
with a linear material (shown in Fig. 6.1). Naturally, this procedure has to be
repeated for all other five faces to achieve the complete solution. Analogous to the
formulation in Section 5.4.1, we thus only discuss the case for one of the six faces
in the remainder of this chapter, knowing that the other faces can be treated in
completely the same way.

A cuboid filled with a material characterized by (ε,µ), whose tangential electric
field vanishes on its surface, except for one single face, can be considered a PEC
waveguide with one of its open ends metallized. In order to tie in with the notation
and choices of Chapter 5, we take the waveguide to be oriented along the z-axis.
As such, the fields inside can be expressed as a sum of two sets of modes, viz., the
TE modes (5.16)–(5.18) and the TM modes (5.19)–(5.21). As the fifth metallized
face, we choose the face at z = 0; in other words, the open face of the structure
where et 6= 0 is the face at z = lz , i.e., S5 (this corresponds to Fig. 6.1(f)).

When constructing the Poincaré-Steklov operator, we have to choose a representa-
tion for et and n̂× ht that ensures that these field quantities can take all possible
values. Inspired by Section 5.4.1, the most elegant choice is the use of entire do-
main basis functions as they optimally profit from the properties of the eigenmodes.
Careful inspection of the mode expressions in the waveguide, before metallizing
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face S4, shows that on S4 and S5

ex and n̂× hy ∝ cos (λx x) sin
�

λy y
�

(6.1)

ey and n̂× hx ∝ sin (λx x) cos
�

λy y
�

, (6.2)

i.e., a cosine dependence along the direction of the electric field and a sine depen-
dence in the direction of the magnetic field. λx and λy are defined as mπ/lx and
nπ/lz , respectively. Similar expressions for the rotated tangential magnetic fields
are to be made on all other faces as well. Although this choice of basis functions
will prove to be beneficial in constructing the Y-operator, it may prove difficult to
integrate this form into the integral equation that solves the equivalent problem’s
exterior. However, the transformation to another basis, e.g., local basis functions,
is generally easily found and for rooftop functions specifically, it is found to be M
as constructed in Section 5.4.3.

A consequence of our choice of entire domain basis functions is that it turns out to
be advantageous to recombine the TE and TM modes (5.16)–(5.21) into two new
sets where either ex 6= 0 and ey = 0 or vice versa. By multiplying the TM modes
by −ωµλx/γmnλy (with γmn =

q

k2 −λ2
x −λ2

y) and combining both modes, the
modal field distributions for the first set become

ez,mn (ρ) = −
λx

jγmn
sin (λx x) sin

�

λy y
�

(6.3)

hz,mn (ρ) =
λy

jωµ
cos (λx x) cos

�

λy y
�

(6.4)

et,mn (ρ) =
�

cos (λx x) sin
�

λy y
�

x̂+ 0 ŷ
�

(6.5)

ht,mn (ρ) =
λy

ωµγmn

�

−λx sin (λx x) cos
�

λy y
�

x̂+
k2 −λ2

y

λy
cos (λx x) sin

�

λy y
�

ŷ

�

,

(6.6)

while multiplying with the factor ωµλy/γmnλx for the TM modes, the linear com-
bination gives

ez,mn (ρ) = −
λy

jγmn
sin (λx x) sin

�

λy y
�

(6.7)

hz,mn (ρ) = −
λx

jωµ
cos (λx x) cos

�

λy y
�

(6.8)

et,mn (ρ) =
�

0 x̂+ sin (λx x) cos
�

λy y
�

ŷ
�

(6.9)

ht,mn (ρ) =
λx

ωµγmn

�

−
k2 −λ2

x

λx
sin (λx x) cos

�

λy y
�

x̂+λy cos (λx x) sin
�

λy y
�

ŷ

�

.

(6.10)

Note that we have normalized both sets such that ex and ey have unit amplitude.
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At this point, we have enforced et = 0 on faces S0 − S3 but not yet on S4, i.e., the
face at z = 0. In order to achieve this, we remember that (6.3)–(6.10) are solutions
for waves propagating in the positive z-direction and thus have an exp(− jγmnz)
dependence. This also implies that we can construct a set of modes for waves prop-
agating in the opposite direction with the corresponding exp(+ jγmnz) dependence
(simply obtained by substituting γmn for −γmn). If we combine them such that ex
and ey have a sine dependence in z, the condition et = 0 at S4 is automatically
satisfied. For the first set, this leads to

ez,mn = −
λx

γmn
sin (λx x) sin

�

λy y
�

cos (γmnz) (6.11)

hz,mn =
λy

jωµ
cos (λx x) cos

�

λy y
�

sin (γmnz) (6.12)

ex ,mn = cos (λx x) sin
�

λy y
�

sin (γmnz) (6.13)

ht,mn =
1

jωµγmn

�

λxλy sin (λx x) cos
�

λy y
�

cos (γmnz) x̂

−
�

k2 −λ2
y

�

cos (λx x) sin
�

λy y
�

cos (γmnz) ŷ
�

,

(6.14)

and for the second set, this yields

ez,mn = −
λy

γmn
sin (λx x) sin

�

λy y
�

cos (γmnz) (6.15)

hz,mn = −
λx

jωµ
cos (λx x) cos

�

λy y
�

sin (γmnz) (6.16)

ey,mn = sin (λx x) cos
�

λy y
�

sin (γmnz) (6.17)

ht,mn =
1

jωµγmn

��

k2 −λ2
x

�

sin (λx x) cos
�

λy y
�

cos (γmnz) x̂

−λxλy cos (λx x) sin
�

λy y
�

cos (γmnz) ŷ
�

.

(6.18)

Remark that during the combination we have also rescaled both sets such that ex
and ey , respectively, have a unit coefficient.

With these expressions, we can now construct the part of the Poincaré-Steklov P
operator for the cuboid originating from nonzero electric fields on S5. We only need
to set z to lz in (6.13) or (6.17), respectively, and divide by sin (γmnlz) to obtain
the entire domain basis functions (6.1)–(6.2) for et on this face. By extracting the
resulting n̂×ht on all six faces, we obtain P. By repeating the entire procedure for
a cuboid filled with the background material (ε0,µ0), we get the operator P ′′ (see
(3.6)) for the equivalent configuration. Subtracting both yields the differential
surface admittance operator. In the following section, we directly calculate the
effect of et on S5 on the surface current density js on all faces, i.e., we immediately
calculate the entries for Y.
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6.3 Surface current density on the cuboid’s surface

With the two Poincaré-Steklov operators P and P ′′ fully defined, we can construct
the Y-operator from them since js = n̂ × (h− h′′) = (P −P ′′)et

0 = Y et . In the
following section, we take a look at every face of the cuboid and compute the
surface current density resulting from the following two basis functions on S5,
corresponding to set 1 and 2, respectively,

ex = cos (λx x) sin
�

λy y
�

(6.19)

ey = sin (λx x) cos
�

λy y
�

. (6.20)

6.3.1 Surface current density on parallel faces

S5 to S5

First, we look at the induced surface current density on the same face of the cuboid
as the nonzero tangential electric field, i.e., S5 with n̂ = ẑ. For the first set, the
excitation (6.19) gives rise to a surface current density along both x and y , which
we denote in terms of the entire domain basis functions as

js,x = A0 cos (λx x) sin
�

λy y
�

(6.21)

js,y = A1 sin (λx x) cos
�

λy y
�

. (6.22)

The coefficients A0 and A1 are found by first setting z = lz in (6.14) and dividing
the result by sin (γmnlz), i.e., the factor that rescales ex to the formulation of an
entire domain basis functions. This procedure is then repeated for the waveguide
filled with the background medium and these factors are subtracted from the ones
obtained from (6.14). These resulting coefficients A0 and A1 are as such found to
be

A0 =
1
jω

�

k2 −λ2
y

µγ
cot (γlz)−

k2
0 −λ

2
y

µ0γ0
cot (γ0lz)

�

(6.23)

A1 =
1
jω
λxλy

�

1
µγ

cot (γlz)−
1
µ0γ0

cot (γ0lz)
�

, (6.24)

with k0 =ω
p
ε0µ0 and γ0 =

q

k2
0 −λ2

x −λ2
y and where we have dropped the sub-

script mn on γ/γ0. Comparing these to (5.61) and (5.63), we see that the same
expressions have been found (except for a constant factor) if µ = µ0. This shows
that the sum of the infinite series as detailed in Appendix C and employed in Sec-
tion 5.4.2 indeed successfully transforms the series into trigonometric functions.
We can now also clearly see the origin of the difference between the two trigono-
metric functions; they are a result of the difference between the two pertinent
Poincaré-Steklov operators.
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For the second set, ey is the nonzero tangential electric field and, just like ex ,
induces a surface current density in both directions of S0:

js,x = Ã0 cos (λx x) sin
�

λy y
�

(6.25)

js,y = Ã1 sin (λx x) cos
�

λy y
�

. (6.26)

Finding the unknown coefficients is done completely analogously to the first set
and yields

Ã0 =
1
jω
λxλy

�

1
µγ

cot (γlz)−
1
µ0γ0

cot (γ0lz)
�

(6.27)

Ã1 =
1
jω

�

k2 −λ2
x

µγ
cot (γlz)−

k2
0 −λ

2
x

µ0γ0
cot (γ0lz)

�

. (6.28)

Comparing Ã0 and Ã1 to A0 and A1, we see that A0 = Ã1 and A1 = Ã0 if λx and λy

are swapped. Actually, A1 and Ã0 are equal anyway as they are symmetric in λx
and λy .

S5 to S4

On the face opposite to the excitation face, i.e., S4 with n̂ = −ẑ, ex generates
very similar surface current densities as before (6.21)–(6.22) but this time with
coefficients B0 and B1, which, through the same procedure, are found to be

B0 = −
1
jω

�

k2 −λ2
y

µγ
csc (γlz)−

k2
0 −λ

2
y

µ0γ0
csc (γ0lz)

�

(6.29)

B1 = −
1
jω
λxλy

�

1
µγ

csc (γlz)−
1
µ0γ0

csc (γ0lz)
�

. (6.30)

Analyzing B0 and B1 and comparing with the results on S5, we see that B0 and B1

can be derived from A0 and A1, respectively, by replacing cot by − csc. Repeating
the same calculation for the second set, reveals that the same holds for B̃0 and B̃1

as well, leading to

B̃0 = −
1
jω
λxλy

�

1
µγ

csc (γlz)−
1
µ0γ0

csc (γ0lz)
�

(6.31)

B̃1 = −
1
jω

�

k2 −λ2
x

µγ
csc (γlz)−

k2
0 −λ

2
x

µ0γ0
csc (γ0lz)

�

. (6.32)

Remark at this point that a single entire domain basis function of the electric field
is linked to the same type of basis function for the surface current density along
both directions on a parallel or coinciding face. This relation is demonstrated
schematically in Fig. 6.2. In the next section, we will see that this one-to-one
correspondence no longer holds for the perpendicular faces.
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Figure 6.2: Schematic overview of the induced surface current density of set 1 and set 2
on faces S5 and S4. In the illustration m and n are set to 1 and 2, respectively.

6.3.2 Surface current density on perpendicular faces

S5 to S3

Keeping the same ex on S5 as the source of the induced surface current densities,
we now turn to the face at y = l y with n̂= ŷ, viz., S3. js is then found to be

js,z = −
1
jω
λxλy sin (λx x) (−1)n

�

cos (γz)
µγ sin (γlz)

−
cos (γ0z)

µ0γ0 sin (γ0lz)

�

(6.33)

js,x =
1
jω
λy cos (λx x) (−1)n

�

sin (γz)
µ sin (γlz)

−
sin (γ0z)
µ0 sin (γ0lz)

�

, (6.34)

while the second set of modes leads to

js,z = −
1
jω

sin (λx x) (−1)n
�

k2 −λ2
x

µγ

cos (γz)
sin (γlz)

−
k2

0 −λ
2
x

µoγ0

cos (γ0z)
sin (γ0lz)

�

(6.35)

js,x = −
1
jω
λx cos (λx x) (−1)n

�

sin (γz)
µ sin (γlz)

−
sin (γ0z)
µ0 sin (γ0lz)

�

. (6.36)
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A closer look at these induced surface current densities quickly shows that they
do not fit the mould of our entire domain basis functions. The x-dependence is
present with cos (λx x) and sin (λx x) for js along x and z, respectively, but the z-
dependence still hinges on the material properties through the factor γ and γ0 in
the argument of the (co)sine. In order to obtain the full expressions for the entire
domain basis functions, we need to rewrite the z-dependent functions. Thereto,
we expand sin (γz) and cos (γz) (and analogously for γ0) into Fourier series as

sin (γz) =
∞
∑

p=1

αp sin (λzz) (6.37)

cos (γz) =
∞
∑

p=0

βp cos (λzz) , (6.38)

with λz = pπ/lz . The coefficients αp and βp of these series can easily be found by
multiplying both sides of (6.37) and (6.38) with sin (λz) and cos (λz), respectively
for a fixed value of p and integrating over z from 0 to lz . This isolates a single
coefficient through the orthogonality of the trigonometric functions and after some
calculations, this yields

αp =
2pπ
l2
z

(−1)p
1

k2 − k2
mnp

sin (γlz) (6.39)

βp =
εpγ

lz
(−1)p

1
k2 − k2

mnp

sin (γlz) . (6.40)

By substituting (6.37)–(6.38) in the expressions for the induced surface current
densities (6.33)–(6.36) on S3, we cast them in the desirable form of the entire
domain basis functions. Note that there is one major difference with the situation
on S5 and S4: one single entire domain basis function of ex or ey on S5 now excites
an infinite series of entire domain basis functions of the surface current density
on S3 along both the z- and x-axis. In other words, there is no longer a one-to-one
interaction as was the case for the coinciding and parallel planes. For ex , this yields

js,z =
∞
∑

p=0

C0
p cos (λzz) sin (λx x) (6.41)

js,x =
∞
∑

p=1

C1
p sin (λzz) cos (λx x) , (6.42)
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with the coefficients given by
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The dependence of these coefficients on p is denoted explicitly to emphasize the
difference with the corresponding coefficients A0, A1, B0, and B1 on faces S5 and
S4.

The same approach of invoking the Fourier series, gives the following expressions
for the surface current densities (6.35)–(6.36) in terms of the basis functions:

js,z =
∞
∑

p=0

C̃0
p cos (λzz) sin (λx x) (6.45)

js,x =
∞
∑

p=1

C̃1
p sin (λzz) cos (λx x) , (6.46)

where the coefficients are obtained in a analogous way and found to be
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S5 to S2

On the second xz-oriented face of the cuboid, i.e., S2 at y = 0 (with n̂ = −ŷ), the
expressions for the surface current density are completely analogous to the one
on S3. Denoting the coefficients for the first set as D0

p and D1
p , the same calculation

steps yields
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Figure 6.3: Schematic overview of the induced surface current density of set 1 and set 2
on faces S2 and S3. In the illustration m and n are set to 1 and 2, respectively.

Comparison with C0
p and C1

p easily shows that D0
p and D1

p just differ by a factor
−(−1)n for their counterparts on S3. As the same applies to the second set, D̃0

p and
D̃1

p are swiftly found to be
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The relation between the coefficients on faces S3 and S2 for both sets of electric
fields on S5 are represented in Fig. 6.3. Once more, we see clear similarities with
the expressions obtained in Section 5.4.1. For surface current densities on perpen-
dicular faces, the relation for the expansion coefficients described in (5.53) feature
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a similar infinite sum as shown on faces S3 and S2 in Fig. 6.3 while the coefficients
themselves take analogous forms if µ= µ0.

S5 to S1

Addressing the penultimate cuboid face S1 positioned at x = lx with its outward
pointing normal x̂, we compute the surface current densities similarly to the ones
on S3, producing the following expressions for the first set
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while the excited js for the second set is
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Once again, the entire domain basis functions our not directly present in the ob-
tained expressions but by employing the Fourier series (6.37)–(6.38), the surface
current density is cast into its desired shape:
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The coefficients themselves are defined as

E0
p = −

1
jω

2πpλy

l2
z

(−1)m(−1)p





1

µ
�

k2 − k2
mnp

� −
1

µ0

�

k2
0 − k2

mnp

�



 (6.59)

E1
p = −

1
jω

εp

lz
(−1)n(−1)p





k2 −λ2
y

µ
�

k2 − k2
mnp

� −
k2

0 −λ
2
y

µ0

�

k2
0 − k2

mnp

�



 . (6.60)

Following the same scheme for the second set, we find
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∞
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Figure 6.4: Schematic overview of the induced surface current density of set 1 and set 2
on faces S0 and S1. In the illustration m and n are set to 1 and 2, respectively.

with Ẽ0
p and Ẽ0

p expressed as
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Comparing the coefficients on this face with the ones on S3, we clearly see some
striking parallels. E0

p and E1
p equal C̃1

p and C̃0
p , respectively, provided that the sub-

stitutions λx ↔ λy and m↔ n are introduced. The same relations hold for Ẽ0
p

and Ẽ1
p on the one hand, and for C1

p and C0
p on the other hand.
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S5 to S0

Just as it was the case for the faces S3 and S2, the coefficients for S0 are easily
deduced as they only differ by a factor −(−1)m from their counterparts on S1.
Hence, the coefficients governing the surface current density on this final face are
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for the first set, while the ones for the second are expressed as
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The various coefficients on these last two faces are also shown schematically in
Fig. 6.4.

6.4 Conclusions

An extension of the 3-D differential surface admittance operator for cuboids was
presented in this chapter. By expressing the operator directly as the difference be-
tween two Poincaré-Steklov operators, the restriction on nonmagnetic materials
was lifted. We then calculated both operators by means of the superposition prin-
ciple where the entire cuboid was tackled as the combination of six rectangular
waveguides with one of its open ends metallized. By expanding the electric field
and surface current density in entire domain basis functions, we derived explicit
expressions for the differential surface admittance operator in one of the six cases
in the superposition. Given that the other scenarios result in completely analogous
expressions, the differential surface admittance operator for combined magnetic
and dielectric contrast has been fully defined for cuboids.
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7
Conclusion

“Still round the corner there may wait
A new road or a secret gate,

And though we pass them by today,
Tomorrow we may come this way”

J.R.R. Tolkien

7.1 Conclusions

In this dissertation, we have presented a novel method to accurately model arbi-
trary homogeneous materials in a three-dimensional (3-D) boundary integral equa-
tion (BIE) context. The advocated differential surface admittance operator (based
on eigenfunctions) has proven, in particular, to efficiently model good conductors
over a broad frequency range, from direct current (DC) to the strong skin effect
regime. The method has been demonstrated and applied to scattering and an-
tenna problems for cylinders and to interconnect structures composed of cuboids.
Through a diverse number of experiments and comparisons with academic state-of-
the-art methods and commercial industry-standard solvers, we have verified that
the inclusion of the differential surface admittance operator into a BIE method
provides accurate and consistent results in various applications. Hence, its appo-
siteness and validity in modeling phenomena related to good conductors, such as
the skin and proximity effect, was demonstrated.

In Chapter 3, the concept of the differential surface admittance operator in 3-D
was introduced based on the equivalence principle and the Poincaré-Steklov op-
erator. An expression for the differential operator based on the eigenfunctions of
the volume has been introduced. This construction method avoids the (numeri-
cal) integration of the Green’s function in the homogeneous material, which can be
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a computationally heavy burden. The operator has been employed to scattering
problems and antenna configurations involving cylinders in Chapter 4. To con-
struct an efficient surface mesh, conserving the curved nature of the mantle of the
cylinder, a special set of basis functions, i.e., curved rooftops, was developed first.
The integrals required for singularity extraction on these curved patches were pre-
sented as well. By calculating the eigenfunctions of the cylinder and discretizing
the differential surface admittance operator, all the while profiting from the spe-
cial basis functions, a full BIE solution was obtained. Afterwards, we studied the
broadband properties of the discretized operator’s elements and commented on
their convergence behavior. Additionally, the new method was compared to an
established BIE-Method of Moments (MoM) solver for scattering problems at var-
ious materials and to a freeware antenna modeller for assessing characteristics of
different antennas with varying conductivity values.

Throughout Chapter 5, the modeling of 3-D interconnects was the central goal. Ac-
cordingly, we presented two boundary element methods (BEMs) that incorporate
the differential surface admittance operator and the electric field integral equa-
tion (EFIE). The first formulation enabled broadband calculation of the resistance
and inductance of interconnect structures by constructing a circuit interpretation
of the equations that was subsequently solved with a traditional circuit solver. The
second interpretation was based on the augmented EFIE and provides a set of
matrix equations that, solved jointly, provide a full-wave characterization. Two
different techniques to construct the differential surface admittance operator for
cuboids were discussed as well. On the one hand, the continuous operator was
directly discretized with local basis functions. On the other hand, an intermediate
discretization with entire domain basis functions resulted in an alternative formu-
lation that, through closed sums of infinite series, gives a differential surface ad-
mittance matrix with improved accuracy and convergence properties. Afterwards,
both BEMs and differential operator formulations were tested extensively by com-
parison with ample reference results. Lastly, various applications examples were
studied, comparing with commercial solvers, academic state-of-the-art methods
and measurements. In Chapter 6, the differential surface admittance operator for
cuboids was revisited once more. By tackling it directly as the difference between
two Poincaré-Steklov operators, each calculated through the superposition of six
perfect electric conductor (PEC) waveguides with one metallized end, materials
with both a dielectric and a magnetic contrast can be included.

As a final remark, we summarize the advantages and drawbacks of the 3-D differ-
ential surface admittance operator as presented in this work. Its main advantage
is the fact that the skin effect can be captured accurately without having to rely
on the laborious integrals of the Green’s function in the conductive medium or
without having to resort to approximations. This results in a broadband accu-
rate characterization of any nonmagnetic homogeneous material. The calculation
method based on the entire domain basis function derived for the cuboid in Chap-
ter 5 increases the efficiency considerably by its use of analytical sums of infinite
series, thus reducing the number of required eigenmodes for accurate results. This
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number also provide a convenient control mechanism: for increased accuracy one
can easily include more eigenmodes. Moreover, there is no need for a complete re-
calculation as the entries for the additional eigenfunctions can just be added to the
initial differential surface admittance matrix. The major drawback of this operator
is the fact that the eigenmodes are only easily calculated for a handful of canon-
ical shapes. Given the generally modest to large number of eigenmodes needed
to achieve satisfactory precision, shapes for which the eigenfunctions can only be
calculated numerically will in all likelihood lead to unacceptably long computa-
tion times. Nonetheless, the two shapes demonstrated in this work, i.e., cylinders
and cuboids, make up a very large fraction of the encountered building blocks in
circuits and antenna systems.

7.2 Future work

The techniques and methods proposed and developed in this work encompass the
foundations of the 3-D differential surface admittance operator. However, they do
not present its end stage; on the contrary, many extensions/improvements could be
developed to extend its range of applications and improve its performance. Below
we pitch some ideas to accomplish these goals.

7.2.1 The differential surface admittance operator

The theory presented in Chapter 6 for the magnetic differential surface admittance
operator for cuboids is untested at the moment. An adaptation of the implemen-
tation of the operator expounded in Section 5.4, will effectively implement this
extended operator and will open up the way for experiments such as the assess-
ment of the shielding effectiveness of mu-metal enclosures. The same extensions
could be realized for cylinders. Not only would this lead to an expansion of the set
of calculable materials, this could also improve the convergence properties of the
differential surface admittance matrix as some of the infinite series may contains
closed sums. It remains to be seen, of course, if this is actually the case for the
Bessel functions. Similarly, the differential surface admittance operator could be
applied to emerging materials and technologies such as indium tin oxide (ITO) or
printed antennas where techniques such as the surface impedance approach are
less appropriate.

In two dimensions, the differential surface admittance operator has been con-
structed for various shapes, i.e., rectangles, circles, tubes and triangles. It would
be very interesting to extend the arsenal of the 3-D operator as well. Spheres can
model solder bumps, tubes represent drilled and plated vias and triangular prisms
would enable the study of arbitrary angled bends (without resorting to approxi-
mations) and over-/underetched structures.

The current implementation of the differential operator could be improved upon
considerably as well. The triple and double sums in the expressions for the cuboids
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and cylinders lends themselves extremely well to multithreading and/or parallezi-
ation. So far, this property has not been exploited in the simulations. Moreover,
the entire program in its actual state is written in an interpreted programming
language. By porting some parts or the entire code to a compiled language, the
efficiency of the program could be improved.

7.2.2 The boundary integral equation

The problems studied in this work are relatively speaking quite small in terms of
number of unknowns. If the developed code is to be employed to model entire
boards or complex integrated circuit (IC) interconnects, the number of unknowns
will increase considerably. Due to the block diagonal structure of the differential
surface admittance operator, i.e., each block represents the interior problem of a
single building block and there is no coupling between different parts, the scaling
will affect the MoM matrices the hardest. More efficient and scalable BEMs will
have to be used, such as the multilevel fast multipole method (MLFMM). Another
complication that can come up is the conditioning of the system matrix. For low
frequencies and/or dense meshes, the conditioning number of the EFIE is known to
explode, degrading the speed and accuracy of iterative and direct solvers. Possible
solutions lie in the rescaling of the matrix equations/unknowns as presented before
for the augmented EFIE or the use of (Calderón) preconditioners.

Larger problems or more intricate structures will also entail additional connections
between different building blocks. So far, these connections have been realized as
small PEC wires. For general applications, however, a more rigorous approach to
these junctions might be required. At the same time, the need will arise to combine
the cylinders and cuboids to model structures, such as there are, vias with a feed
structure. In more realistic simulations, the influence of the substrate cannot be
ignored either. As such, the inclusion of the Green’s function for layered media
will extend the applicability of the presented techniques.

Just like it is the case with the differential surface admittance operator, the actual
implementation of the MoM matrices is not optimized for speed but for accuracy
and testing flexibility. Optimizing/porting the calculation of the numerical inte-
gration of the Green’s function could, for example, increase the efficiency consid-
erably, just as exploiting certain symmetries or approximations could reduce the
computational burden even further.



A
Singularity Integrals

A.1 Integrals for two curved rectangles

In Section 4.2.2, the singularity extraction procedure for curved rooftops is de-
scribed. As the basis functions both span two patches, the required integrals can
be split into a sum of four contributions, each being a double surface integral over
two curved rectangles. Two such patches are shown in Fig. A.1 with the points in
each curved rectangle described by its own set of coordinates (φ, z) and (φ′, z′),
respectively, with the boundaries given by the coordinates of two diagonally op-
posite vertices. Note that in cases where singularity extraction is applied, both
patches usually either overlap or have a common edge/vertex. Since the expres-
sions obtained below are general, these cases are all covered appropriately.

Before turning our attention to the actual integrals, we define a set of auxiliary
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Figure A.1: Illustration of two curved rectangles on the surface of a cylinder.
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integrals that are employed in the final expressions.

The first set represents integration of the reciprocal approximate distance measure
over a single curved rectangle with r =

p

p2 + q2:
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The second set is applied to integration over the second patch with r equaling
r =
p

v2 +w2 in the expressions below
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−15w6 ln(v + r) + 5vr(−8v4 + 2v2w2 − 5w4)
�

(A.13)

j (v, w) =

∫∫

vδ (v, w) dw dv =
1

5040

�

210v6w ln(w+ r)− 35v6w

+2r(−72v6 + 15v4w2 − 34v2w4 − 16w6)
�

.

(A.14)

The simplest singular integral evaluates the reciprocal of

R̃=
q

ρ2 (φ −φ′)2 + (z − z′)2, (A.15)

with ρ the radius of the cylinder, over two curved rectangles and originates from
the contribution of the scalar potential to the MoM system matrix:

I0 =

φ1
∫

φ0

z1
∫

z0

φ′1
∫

φ′0

z′1
∫

z′0

1

R̃
ρ2 dz′ dφ′ dz dφ. (A.16)

Performing the substitutions p = ρ (φ −φ′) and q = (z − z′), the double inner
integral is transformed into (A.1), thus leading to

I0 =
1
∑

k,l=0

(−1)k+l

φ1
∫

φ0

z1
∫

z0

α
�

ρ(φ −φ′k), (z − z′l )
�

ρ dz dφ. (A.17)

The second set of substitutions v = ρ
�

φ −φ′k
�

and w =
�

z − z′l
�

shows that the
last pair of integrals can be written as (A.5), yielding the following expression

I0 =
1
∑

i, j,k,l=0

(−1)i+ j+k+l a
�

ρΦik, Z jl

�

, (A.18)
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with the shorthand notations Φik = φi −φ′k and Z jl = z j − z′l .

In interactions involving z-directed rooftops (see (4.2)) factors of the form (z − za)
�

z′ − z′a
�

appear in the numerator of the integrand with the za and z′a constants equal to ei-
ther of the boundary values of z/z′ on their respective curved rectangle. These
constants originate from the definitions of the rooftops, cf. z±j in (4.2). The inte-
gral to be calculated thus is

Iz =

φ1
∫

φ0

z1
∫

z0

φ′1
∫

φ′0

z′1
∫

z′0

(z − za)
�

z′ − z′a
�

R̃
ρ2 dz′ dφ′ dz dφ. (A.19)

Introducing the same substitutions as before, enables us to rewrite this expression,
with the aid of (A.1)–(A.2), as

Iz =

φ1
∫

φ0

z1
∫

z0

φ−φ′1
∫

φ−φ′0

z−z′1
∫

z−z′0

(z − za)
�

z − z′a
�

− q (z − za)

R̃
ρ dq dp dz dφ. (A.20)

=
1
∑

k,l=0

(−1)k+l

φ1
∫

φ0

z1
∫

z0

(z − za)
�

z − z′a
�

α
�

(z − z′l ),ρ(φ −φ
′
k)
�

− (z − za)β
�

(z − z′l ),ρ(φ −φ
′
k)
�

ρ dz dφ

. (A.21)

The last two integrals are transformed by means of the second set of substitutions
and through (A.5)–(A.9) this yields

Iz =
1
∑

i, j,k,l=0

(−1)i+ j+k+l
��

z′l − za

� �

z′l − z′a
�

a
�

Z jl ,ρΦik

�

+
�

2z′l − za − z′a
�

b
�

Z jl ,ρΦik

�

+ c
�

Z jl ,ρΦik

�

−
�

z′l − za

�

d
�

Z jl ,ρΦik

�

− e
�

Z jl ,ρΦik

��

.

(A.22)

For the φ-oriented rooftops (see (4.3)), (φ −φa)
�

φ′ −φ′a
�

is the relevant factor,
given the zeroth order approximation of cos (φ −φ′) as described in Section 4.2.2.
This leads to the integral

Iφ =

φ1
∫

φ0

z1
∫

z0

φ′1
∫

φ′0

z′1
∫

z′0

(φ −φa)
�

φ′ −φ′a
�

R̃
ρ2 dz′ dφ′ dz dφ. (A.23)

With the same substitutions as performed in the previous derivation, but taking



A.2. Integrals for two rectangles in parallel planes 131

the appropriate powers of ρ into account, the end result is

Iφ =
1
ρ2

1
∑

i, j,k,l=0

(−1)i+ j+k+l
�

ρ2
�

φ′k −φa

� �

φ′k −φ
′
a

�

a
�

ρΦik, Z jl

�

+ρ
�

2φ′k −φa −φ′a
�

b
�

ρΦik, Z jl

�

+ c
�

ρΦik, Z jl

�

−ρ
�

φ′k −φa

�

d
�

ρΦik, Z jl

�

− e
�

ρΦik, Z jl

��

.
(A.24)

For the second order approximation of the cosine, the relevant integral is of the
form

Iφ,2 =

φ1
∫

φ0

z1
∫

z0

φ′1
∫

φ′0

z′1
∫

z′0

(φ −φa)
�

φ′ −φ′a
�

(φ −φ′)2

R̃
ρ2 dz′ dφ′ dz dφ. (A.25)

Utilizing the change of variables p and q and (A.3)–(A.4), the intermediate result
is

Iφ,2 =
1
ρ3

1
∑

k,l=0

(−1)k+l

φ1
∫

φ0

z1
∫

z0

ρ (φ −φa)
�

φ −φ′a
�

γ
�

ρ(φ −φ′k), (z − z′l )
�

− (φ −φa)δ
�

ρ(φ −φ′k), (z − z′l )
�

ρ dz dφ

(A.26)

Through (A.10)–(A.14), the complete expression becomes

Iφ,2 =
1
ρ4

1
∑

i, j,k,l=0

(−1)i+ j+k+l
�

ρ2
�

φ′k −φa

� �

φ′k −φ
′
a

�

f
�

ρΦik, Z jl

�

+ρ
�

2φ′k −φa −φ′a
�

g
�

ρΦik, Z jl

�

+ h
�

ρΦik, Z jl

�

−ρ
�

φ′k −φa

�

i
�

ρΦik, Z jl

�

− j
�

ρΦik, Z jl

��

.
(A.27)

A.2 Integrals for two rectangles in parallel planes

In Section 5.2.2, we expounded the approach employed for singular integrals in
case of a rectangular mesh. In this section, singularity extraction for rectangles in
parallel planes is tackled while the next section deals with rectangles in perpendic-
ular planes. As the basis functions both span two patches, the required integrals
can be split into a sum of four contributions, each being a double surface inte-
gral over two rectangles. Two such patches are shown in Fig. A.2 with the points
in each rectangles described by its own set of coordinates (x , y, 0) and (x ′, y ′, a),
respectively, with the boundaries given by the coordinates of two diagonally op-
posite vertices. Remark that we have opted for two patches in parallel x y-planes.
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�

x ′0, y ′0
�

�

x ′1, y ′1
�

(x0, y0)

(x1, y1)

(x ′, y ′)

(x , y)
z = a

z = 0

Figure A.2: Illustration of two rectangles in parallel planes spaced a apart.

For other orientations, the same results can be used with the roles of the various
coordinates reversed. Note that in cases where singularity extraction is applied,
both patches usually either overlap or have a common edge/vertex. Since the
expressions obtained below are general, these cases are all covered appropriately.

Before turning our attention to the actual integrals, we define a set of auxiliary
integrals that are employed in the final expressions.

The first set represents integration of the reciprocal distance measure over a single
rectangle with r =

p

p2 + q2 + a2:

α (p, q) =

∫∫

dq dp
r
=p ln(q+ r) + q ln(p+ r)− q+

a arctan
�q

a

�

− a arctan
� pq

ar

�

(A.28)

β (p, q) =

∫∫

p dq dp
r

=
1
4

�

2
�

p2 + a2
�

ln(q+ r) + 2qr − a2
�

(A.29)

The second set is applied to integration over the second patch with r equaling
r =
p

v2 +w2 + a2 in the expressions below

a (v, w) =

∫∫

α (v, w) dw dv

=
1

12

�

6
�

v2 + a2
�

w ln(w+ r)− 3vw(v +w)

+6
�

w2 + a2
�

v ln(v + r)− 2(v2 +w2 − 2a2)r

−6va2 ln(w2 + a2) + 12vwh arctan
�w

a

�

− 12vwa arctan
� vw

ar

�

−12va2 arctanh
� v

r

�

− 12wa2 arctanh
�w

r

�i

(A.30)
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b (v, w) =

∫∫

vα(v, w)dw dv

=
1

144

�

48v3w ln(w+ r) + 2vw
�

−8v2 − 27vw+ 24a2
�

+3
�

w4 + 12v2w2 + 6w2a2 + 12a2v2 − 3a4
�

ln(v + r)

+3vr
�

−6v2 −w2 + 3a2
�

− 36v2a2 ln
�

w2 + a2
�

−24wa
�

3v2 + a2
�

arctan
� vw

ar

�

− 72v2a2 arctanh
� v

r

�

−48wa3 arctan
� v

a

�

+ 72v2wa arctan
�w

a

�i

(A.31)

c (v, w) =

∫∫

v2α (v, w) dw dv

=
1

720

�

180
�

v4 − a4
�

w ln(w+ r) + 120
�

w2 + a2
�

v3 ln(v + r)

−120v3a2 ln
�

w2 + a2
�

− 15v2w
�

3v2 + 12vw− 6a2
�

+4r
�

−18v4 + 2w4 −w2v2 + 4a2v2 + 9a2w2 − 8a4
�

−240v3wa arctan
� vw

ar

�

+ 240v3wa arctan
�w

a

�

+240wa4 arctanh
�w

r

�

− 240v3a2 arctanh
� v

r

�i

(A.32)

d (v, w) =

∫∫

β (v, w) dw dv

=
1

72

�

12vw
�

v2 + 3a2
�

ln(w+ r)− 4vw
�

v2 + 6a2
�

+3
�

w4 + 6w2a2 − 3a4
�

ln(v + r)− 3vr
�

2v2 − 3w2 + 5a2
�

−24wa3 arctan
� vw

ar

�

+ 24wa3 arctan
� v

a

�i

(A.33)

e (v, w) =

∫∫

v β (v, w) dw dv

=
1

480

�

60
�

v2 + a2
�2

w ln(w+ r)− 15v2w
�

v2 + 2a2
�

−60w4r + 100w2r3 − 32r5
�

(A.34)

Note that these auxiliary functions reduce to (A.5)–(A.10) for a→ 0.

The simplest singular integral evaluates the reciprocal of

R=
q

(x − x ′)2 + (y − y ′)2 + a2, (A.35)

with a the distance between both planes, over two rectangles and originates from
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the contribution of the scalar potential to the MoM system matrix:

I0 =

x1
∫

x0

y1
∫

y0

x ′1
∫

x ′0

y ′1
∫

y ′0

1
R

dy ′ dx ′ dy dx . (A.36)

Performing the substitutions p = (x − x ′) and q = (y − y ′), the double inner inte-
gral is transformed into (A.28), thus leading to

I0 =
1
∑

k,l=0

(−1)k+l

x1
∫

x0

y1
∫

y0

α
�

(x − x ′k), (y − y ′l )
�

dy dx . (A.37)

The second set of substitutions v =
�

x − x ′k
�

and w =
�

y − y ′l
�

shows that the last
pair of integral can be written as (A.30), yielding the following expression

I0 =
1
∑

i, j,k,l=0

(−1)i+ j+k+l a
�

X ik, Yjl

�

, (A.38)

with the shorthand notations X ik = x i − x ′k and Yjl = y j − y ′l .

In interactions involving x-directed rooftops factors of the form (x − xa)
�

x ′ − x ′a
�

appear in the numerator of the integrand with the xa and x ′a constants equal to
either of the boundary values of x/x ′ on their respective rectangle. These constants
originate from the definitions of the rooftops, cf. r±j in (2.45). By exchanging the
roles of x and y the relevant results for y-oriented rooftops are obtained. The
integral to be calculated is thus

Ix =

x1
∫

x0

y1
∫

y0

x ′1
∫

x ′0

y ′1
∫

y ′0

(x − xa)
�

x ′ − x ′a
�

R
dy ′ dx ′ dy dx . (A.39)

Introducing the same substitutions as before, enables us to rewrite this expression,
with the aid of (A.28)–(A.29), as

Ix =

x1
∫

x0

y1
∫

y0

x−x ′1
∫

x−x ′0

y−y ′1
∫

y−y ′0

(x − xa)
�

x − x ′a
�

− q (x − xa)

R
dq dp dy dx . (A.40)

=
1
∑

k,l=0

(−1)k+l

x1
∫

x0

y1
∫

y0

(x − xa)
�

x − x ′a
�

α
�

(x − x ′k), (y − y ′l )
�

− (x − xa)β
�

(x − x ′k), (y − y ′l )
�

dy dx .

(A.41)
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�

x ′0, y ′0
�

�

x ′1, y ′1
�

(x0, z0)

(x1, z1)

(x ′, y ′)

(x , z)

z = z′c

y = yc

Figure A.3: Illustration of two rectangles in perpendicular planes.

The last two integrals are transformed by means of the second set of substitutions
and through (A.30)–(A.34) this yields

Ix =
1
∑

i, j,k,l=0

(−1)i+ j+k+l
��

x ′l − xa

� �

x ′l − x ′a
�

a
�

X ik, Yjl

�

+
�

2x ′l − xa − x ′a
�

b
�

X ik, Yjl

�

+ c
�

X ik, Yjl

�

−
�

x ′l − xa

�

d
�

X ik, Yjl

�

− e
�

X ik, Yjl

��

.

(A.42)

A.3 Integrals for two rectangles in perpendicular
planes

In the previous section, we explored the singular integrals for two rectangles in
parallel planes. Here we will take a closer look at two rectangles in perpendicular
planes. To this end, we examine the situations shown in Fig. A.3. One rectangle,
with coordinates (x ′, y ′), lies in an x y-plane (with z = z′c), while to other one
is situated in an xz-plane (with y = yc) and has coordinates (x , z). For other
configurations/orientations, the results can be found by making the appropriate
substitutions/permutations of the coordinates. Note that in cases where singular-
ity extraction is applied, both patches usually either have a common edge/vertex.
Since the expressions obtained below are general, these cases are all covered ap-
propriately.

Before turning our attention to the actual integrals, we define a set of auxiliary
integrals that are employed in the final expressions.
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The first set represents integration of the reciprocal distance measure over a single
rectangle with r =

p

p2 + q2 + a2:

α (p, q, a) =

∫∫

dq dp
r
= p ln(q+ r) + q ln(p+ r)− q− a arctan

� pq
ar

�

(A.43)

β (p, q, a) =

∫∫

p dq dp
r

=
1
2

��

p2 + a2
�

ln(q+ r) + qr
�

(A.44)

The second set is applied to integration over the second patch with r equaling r =p
v2 +w2 + b2 in the expressions below (note the change of the order of variables

in the integrand):

a (v, b, w) =

∫∫

α (v, b, w) dw dv

=
1

12

�

12vwb ln(v + r) + 2b
�

3v2 − b2
�

ln(w+ r)− 18vwb− 4wbr

+2w
�

3v2 +w2
�

ln(b+ r)− 6v
�

w2 − b2
�

arctan
�w

b

�

− 4w3 arctanh
�

b
r

�

−2v3 arctan
�

bw
vr

�

− 6vw2 arctan
�

bv
wr

�

− 6vb2 arctan
� vw

br

�

�

(A.45)

b (v, b, w) =

∫∫

vα (v, b, w) dw dv

=
1
24

�

2wb
�

6v2 +w2 + b2
�

ln(v + r) + 8v3 b ln(w+ r)− 18v2wb− vwbr

+8v3w ln(b+ r)− 6v2
�

w2 − b2
�

arctan
�w

b

�

− 3v4 arctan
�

bw
vr

�

−w2
�

6v2 +w2
�

arctan
�

bv
wr

�

− b2
�

6v2 + b2
�

arctan
� vw

br

�

�

(A.46)

c (v, b, w) =

∫∫

v2α (v, b, w) dw dv

=
1

180

�

60v3wb ln(v + r) + 3b
�

15v4 + b4
�

ln(w+ r)

+9w
�

5v4 −w4
�

ln(b+ r) +wbr
�

−2v2 + 7w2 + 7b2
�

− 90v3wb

+12w5 arctanh
�

b
r

�

− 18v5 arctan
�

bw
vr

�

− 30v3w2 arctan
�

vb
wr

�

−30v3
�

w2 − b2
�

arctan
�w

b

�

− 30v3 b2 arctan
� vw

br

�i

(A.47)
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d (v, b, w) =

∫∫

β (v, b, w) dw dv

=
1

36

�

6wb
�

w2 + b2
�

ln(v + r) + 6vb
�

v2 + b2
�

ln(w+ r)

+6vw
�

v2 +w2
�

ln(b+ r) + 9vwbr − 3v4 arctan
�

bw
vr

�

−3w4 arctan
�

bv
wr

�

− 3b4 arctan
� vw

br

�

�

(A.48)

e (v, b, w) =

∫∫

v β (v, b, w) dw dv

=
1

120

�

b
�

15v4 + 10v2 b2 + 3b4
�

ln(w+ r)− 8v5 arctan
�

bw
vr

�

+w
�

15v4 + 10v2w2 + 3w4
�

ln(b+ r) +wbr
�

18v2 + 7w2 + 7b2
��

(A.49)

The most straightforward singular integral evaluates the reciprocal of

R=
r

(x − x ′)2 + (yc − y ′)2 +
�

zc − z′c
�2

, (A.50)

over two rectangles and originates from the contribution of the scalar potential to
the MoM system matrix:

I0 =

x1
∫

x0

z1
∫

z0

x ′1
∫

x ′0

y ′1
∫

y ′0

1
R

dy ′ dx ′ dz dx . (A.51)

Performing the substitutions p = (x − x ′) and q = (y − y ′) and a = z − zc , the
double inner integral is transformed into (A.43), thus leading to

I0 =
1
∑

k,l=0

(−1)k+l

x1
∫

x0

z1
∫

z0

α
�

(x − x ′k), (y − y ′l ), z − z′c
�

dy dx . (A.52)

The second set of substitutions v =
�

x − x ′k
�

, w =
�

z − z′c
�

and b = yc − y ′l shows
that the last pair of integral can be written as (A.45), yielding the following ex-
pression

I0 =
1
∑

i, j,k,l=0

(−1)i+ j+k+l a
�

X ik, Yl , Z j

�

, (A.53)

with the shorthand notations X ik = x i − x ′k, Yl = yc − y ′l and Z j = z j − z′c .

The only rooftop combination possible on both patches of which the inner product
does not vanish, are the ones oriented along their common coordinate, viz., x in
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this example. The denominator is thus, once again, (x − xa)
�

x ′ − x ′a
�

, with the xa
and x ′a constants equal to either of the boundary values of x/x ′ on their respective
rectangle, originating from the definition of the rooftops in question. The integral
we wish to compute is

Ix =

x1
∫

x0

z1
∫

z0

x ′1
∫

x ′0

y ′1
∫

y ′0

(x − xa)
�

x ′ − x ′a
�

R
dy ′ dx ′ dz dx . (A.54)

Employing the familiar substitutions, we can reformulate this, through (A.43)–
(A.44), as

Ix =

x1
∫

x0

z1
∫

z0

x−x ′1
∫

x−x ′0

y−y ′1
∫

y−y ′0

(x − xa)
�

x − x ′a
�

− q (x − xa)

R
dq dp dz dx . (A.55)

=
1
∑

k,l=0

(−1)k+l

x1
∫

x0

z1
∫

z0

(x − xa)
�

x − x ′a
�

α
�

(x − x ′k), (y − y ′l ), (z − z′c)
�

− (x − xa)β
�

(x − x ′k), (y − y ′l ), (z − z′c)
�

dz dx

. (A.56)

The last two integrals are transformed by means of the second set of substitutions
and through (A.45)–(A.49) this yields

Ix =
1
∑

i, j,k,l=0

(−1)i+ j+k+l
��

x ′l − xa

� �

x ′l − x ′a
�

a
�

X ik, Yl , Z j

�

+
�

2x ′l − xa − x ′a
�

b
�

X ik, Yl , Z j

�

+ c
�

X ik, Yl , Z j

�

−
�

x ′l − xa

�

d
�

X ik, Yl , Z j

�

− e
�

X ik, Yl , Z j

��

.

(A.57)



B
Far Field Expressions

B.1 Introduction

An important characteristic of an electromagnetic structure is its far field behavior.
This can be described by the far field vector, typically denoted as F(φ,θ ) and/or
the (monostatic/bistatic) radar cross-sections. In this appendix, the expression
for the electric field at large distances is derived as well as formulas for the radar
cross-sections.

B.2 Scattered electric field

In Section 2.2.1, more specifically (2.41), the scattered field is expressed as a func-
tion of js. A more general formulation (i.e., also valid in a non-BIE context), which
does not assume the currents to be confined to a surface, is given by

esc = − jωµ

∫

V

G(|r− r′|) j(r′)dr′ +
1

jωε
∇
∫

V

G(|r− r′|)∇′ · j(r′)dr′. (B.1)

When sources actually do exist only on the surface, this expression just reduces to
(2.41).

The second integral in (B.1) can be transformed to a more convenient form using
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the appropriate vector identities and Gauss’ theorems:
∫

V

G(|r− r′|)∇′ · j(r′)dr′ =

∫

V

∇′ ·
�

G(|r− r′|) j(r′)
�

dr′ −
∫

V

∇′G(|r− r′|) · j(r′)dr′

=

∫

S
G(|r− r′|) j(r′) · n̂dr′ −

∫

V

∇′G(|r− r′|) · j(r′)dr′

= −
∫

V

∇′G(|r− r′|) · j(r′)dr′,

where the last step exploits the fact that S is a spherical surface located at infinity
and since this surface does not contain any sources, the first integral vanishes.
Furthermore, one easily realizes that, in a homogeneous infinite space, ∇′G(|r−
r′|) = −∇G(|r− r′|), resulting in the following version of (B.1):

esc(r) = − jωµ

∫

V

G(|r− r′|) j(r′)dr′ +
1

jωε
∇
∫

V

∇G(|r− r′|) · j(r′)dr′. (B.2)

This equation can be written compactly by employing the Green’s tensor

G(r) =
�

k2 I +∇∇
�

· G(r) =







k2 + ∂ 2

∂ x2
∂ 2

∂ x∂ y
∂ 2

∂ x∂ z
∂ 2

∂ x∂ y k2 + ∂ 2

∂ y2
∂ 2

∂ y∂ z
∂ 2

∂ x∂ z
∂ 2

∂ y∂ z k2 + ∂ 2

∂ z2






G(r), (B.3)

resulting in the compact following form for (B.2):

esc(r) =
1

jωε

∫

V

G(|r−r′|)·j(r′)dr′ =
1

jωε

�

k2 I +∇∇
�

·
∫

V

G(|r−r′|) j(r′)dr′. (B.4)

B.3 Green’s function in the far field

For large distances, the Euclidean distance can be approximated in order to ease
calculations. Generally speaking, the Euclidean distance between two points is
given by

|r− r′|=
p

r2 + r ′2 − 2r · r′, (B.5)

with r and r ′ the norm of r and r′, respectively. In the far field, the observation
point r is located at such a distance from the scatterer, that for all points r′ of
the structure r � r ′. Therefore, we can approximate the Euclidean distance by
calculating its first order Taylor expansion around r′ = 0:

|r− r′|= r
Æ

1− 2r′ · r̂/r + (r ′/r)2 ≈ r − r′ · r̂, (B.6)
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with r̂ the unit vector in the radial direction of r. When this approximation is
plugged into the free space Green’s function (2.28), the zeroth order approxima-
tion of (B.6) can be used for the denominator as the amplitude is much less affected
by small variations such as r′ · r̂ than the phase term of the exponential in the nu-
merator. Hence, the following expression for the Green’s function is used in the
far field:

Gfar

�

|r− r′|
�

=
e− jkr

4πr
e+ jkr′·r̂. (B.7)

In order to simplify the complete Green’s tensor, an appropriate approximation
of the Green’s function’s gradient has to be constructed as well. Making use of
∇|r− r′|= (r− r′)/|r− r′| and the chain rule, one gets:

∇G(|r− r′|) = e− jk|r−r′|

4π|r− r′|

�

− jk−
1

|r− r′|

�

∇|r− r′|

=
e− jk|r−r′|

4π|r− r′|

�

− jk−
1

|r− r′|

�

r− r′

|r− r′|
. (B.8)

In the far field, the Euclidean distance will be given by (B.6). For the denominators,
this can be further simplified to r. As such, the expression can be simplified by
only retaining the term(s) with the lowest power of |r − r′| in the denominator.
Furthermore, the gradient of the Euclidean distance, can be approximated by r̂ as
r′/r = (r ′/r)r̂′ will have a negligible influence due to its small norm. In the end,
we thus get

∇Gfar

�

|r− r′|
�

= − jkr̂
e− jkr

4πr
e+ jkr′·r̂ = − jkr̂ Gfar(|r− r′|). (B.9)

This expression indicates that the nabla operator (∇) can be replaced by − jkr̂ in
the far field, as such transforming (B.3) into

Gfar(r) = k2
�

I − r̂r̂
�

· Gfar(r). (B.10)

B.4 Radar cross-section

With the above expression for the Green’s dyadic, (B.4) can be simplified to a form
for the electric field in the far field region of space:

Esc
far(r) =

1
jωε

∫

V
Gfar(|r− r′|) · j(r′)dr′ = jωµ

�

r̂r̂− I
�

·
∫

V
Gfar(|r− r′|) j(r′)dr′.

(B.11)
From this expression the far field vector F can be easily derived by employing the
following relationship between the electric field and the far field vector:

lim
kr→∞

Esc(r) = F(φ,θ )
e− jkr

r
, (B.12)
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in order to get the final result

F(φ,θ ) =
jωµ
4π

�

r̂r̂− I
�

·
∫

V
j(r′)e+ jkr′·r̂ dr′, (B.13)

where the integration will typically be reduced to the boundary S = ∂ V as the
current in a MoM situation is restricted to a surface (or multiple surfaces).

From the far field vector, the various radar cross-sections can be quickly derived.
The radar cross-section (RCS) σs (̂ı) is defined as the total scattered power divided
by the total incident power, i.e.,

σs (̂ı) =
1

|E0|2

∫

Ω

|F(φ,θ )|2 dΩ, (B.14)

with ı̂ the propagation direction of the impinging plane wave and E0 its polariza-
tion vector.

The bistatic radar cross-section σ
�

r̂|̂ı
�

is defined as 4π times the power scattered
in an elementary solid angle in the direction r̂, divided by the incident power of
the plane wave with propagation direction ı̂:

σ
�

r̂|̂ı
�

= 4π
|F(φ,θ )|2

|E0|2
. (B.15)



C
Limits of Summable Series

C.1 Closed analytical expressions for fundamental
sums

The various series in Section 5.4.2 can all be decomposed into the fundamental
sums featured here. Their analytical expressions are calculated utilizing a contour
integration method as outlined in the appendix of [1]:

φ (x) =
∞
∑

k=1

1
(k2 − x2)

=
1

2x2
[1−πx cot (πx)] (C.1)

χ (x) =
∞
∑

k=1

1

(k2 − x2)2
=

1
4x4

�

−2+πx cot (πx) + (πx)2 csc2 (πx)
�

(C.2)

ρ (x) =
∞
∑

k=1

(−1)k

(k2 − x2)
=

1
2x2
[1−πx csc (πx)] (C.3)

ς (x) =
∞
∑

k=1

(−1)k

(k2 − x2)2
=

1
4x4
[−2+πx csc (πx) (1+πx cot (πx))] (C.4)

These functions are singular for integer values of x which corresponds to the sit-
uation where the wavenumber of a mode is exactly equal to either k or k0 (see
(3.51)–(3.52)). However, for x → 0 they have a finite limit:

φ(0) =
π2

6
χ(0) =

π4

90
(C.5)

ρ(0) = −
π2

12
ς(0) = −

7π4

720
. (C.6)
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C.2 Auxiliary functions

We define the following auxiliary functions:

Ω0 (a, b) =
1
2

∞
∑

k=0

εk

(k2 − a2) (k2 − b2)
(C.7)

Ω2 (a, b) =
∞
∑

k=1

k2

(k2 − a2) (k2 − b2)
(C.8)

Ψ0 (a, b) =
1
2

∞
∑

k=0

(−1)kεk

(k2 − a2) (k2 − b2)
(C.9)

Ψ2 (a, b) =
∞
∑

k=1

(−1)kk2

(k2 − a2) (k2 − b2)
, (C.10)

with εi the Neumann factor, which equals 1 for i = 0 and evaluates as 2 otherwise.

Employing the closed expression for the sums as defined above, these functions
simplify to

Ω0 (a, b) =
1

2a2 b2
+
φ(a)−φ(b)

a2 − b2
= −

π

2 (a2 − b2)

�

cot (πa)
a

−
cot (πb)

b

�

(C.11)

Ω2 (a, b) =
a2φ(a)− b2φ(b)

a2 − b2
= −

π

2 (a2 − b2)
[a cot (πa)− b cot (πb)] (C.12)

Ψ0 (a, b) =
1

2a2 b2
+
ρ(a)−ρ(b)

a2 − b2
= −

π

2 (a2 − b2)

�

csc (πa)
a

−
csc (πb)

b

�

(C.13)

Ψ2 (a, b) =
a2ρ(a)− b2ρ(b)

a2 − b2
= −

π

2 (a2 − b2)
[a csc (πa)− b csc (πb)] (C.14)

These closed analytical expression are singular for a = b. Note that this situation
theoretically implies k = k0, a trivial scenario in which the material is indistin-
guishable from the background medium. Nevertheless, for low frequencies and
low dielectric contrast, this instance can still occur due to the finite machine pre-
cision. This limiting case therefore requires different analytical expressions, as
follows:

Ω0 (a, a) =
1

2a4
+χ(a) =

π

4a3

�

cot (πa) +πa csc2 (πa)
�

(C.15)

Ω2 (a, a) = a2χ(a) +φ(a) =
π

4a

�

− cot (πa) +πa csc2 (πa)
�

(C.16)

Ψ0 (a, a) =
1

2a4
+ ς(a) =

π

4a3
csc (πa) [πa cot (πa) + 1] (C.17)

Ψ2 (a, a) = a2ς(a) +ρ(a) =
π

4a
csc (πa) [πa cot (πa)− 1] (C.18)
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