
Contents lists available at ScienceDirect

Acta Astronautica

journal homepage: www.elsevier.com/locate/actaastro

Growing blood vessels in space: Preparation studies of the SPHEROIDS
project using related ground-based studies

Marcus Krügera,∗,1, Sascha Koppa,1, Markus Wehlanda, Johann Bauerb, Sarah Baatoutc,d,
Marjan Moreelsc, Marcel Eglie, Thomas J. Corydonf,g, Manfred Infangera, Daniela Grimma,f,h

a Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
bMax Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
c Radiobiology Unit, Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium
dDepartment of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
e Institute of Medical Engineering, Space Biology Group, Lucerne University of Applied Sciences and Arts, Obermattweg 9, CH-6052, Hergiswil, Switzerland
fDepartment of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000, Aarhus C, Denmark
g Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
hGravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto von Guericke University Magdeburg, D-39120,
Magdeburg, Germany

A R T I C L E I N F O

Keywords:
Microgravity
Spaceflight
Random positioning machine
3D growth
Spheroids
Tubular structures

A B S T R A C T

Endothelial cells (ECs) grow as single layers on the bottom surface of cell culture flasks under normal (1g) culture
conditions. In numerous experiments using simulated microgravity we noticed that the ECs formed three-di-
mensional, tube-like cell aggregates resembling the intima of small, rudimentary blood vessels. The SPHEROIDS
project has now shown that similar processes occur in space. For the first time, we were able to observe scaffold-
free growth of human ECs into multicellular spheroids and tubular structures during an experiment in real
microgravity. With further investigation of the space samples we hope to understand endothelial 3D growth and
to improve the in vitro engineering of biocompatible vessels which could be used in surgery.

1. Introduction

A few years ago, we detected that some types of endothelial cells
(ECs) form tube-like structures when cultured on a random positioning
machine (RPM) [1,2]. This observation was of great interest, because it
opened up new possibilities to study neovascularization, which plays a
crucial role for instance in tumor development. Gaining a deeper un-
derstanding of the underlying mechanisms in neovascularization fur-
ther helps to engineer blood vessels that can be used in hand surgeries,
plastic reconstructive surgeries and transplantations for example. RPMs
represent one of several tools available to simulate microgravity (µg) on
ground (1g). The working principle of the RPM is based on gravity
vector averaging to zero [3]. The typical RPM system comprises two

gimbal-mounted frames, which are each driven independently by mo-
tors. Through dedicated algorithms, the samples placed on the inner
frame are constantly reoriented, such that the gravity vector is dis-
tributed in all directions over time. Thus, from the sample's point of
view, the constantly reorienting gravity vector's trajectory converge
toward zero over time. However, 1g is always acting on the sample at
any given instant. It is assumed that the gravity vector needs to point in
a specific direction for a minimal period of time in order to allow
biological systems, like cells, to adapt to the gravity vector. But if the
gravity vector constantly changes its orientation, the cells will lose the
sense of direction and thus experience a state similar to µg (removed
gravity vector). Therefore, the frame rotations shall be faster than the
biological process studied [4]. However, the rotation cannot be too fast,
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as centrifugal forces will become effective [5]. Therefore, the RPM is
typically used to examine slow processes, which are observed at least
on the timescale of hours. It is obvious that an RPM treatment in-
troduces additional forces to the samples through the unique moving
pattern. If the RPMs are operated within certain boundaries however,
these disturbing forces can be reduced to a minimum [6]. We therefore
belive that an RPM treatment, applied with caution, can be called “si-
mulated microgravity”. The question remains, whether real µg can in-
duce the same tube-like structure formation of ECs that were cultivated
on the RPM. To answer this question, the ESA-SPHEROIDS project was
launched. This project included an extensive phase of preparation re-
garding the selection of the type of ECs capable of tube-like structure
formation even under the stressful situation and special cell culture
conditions during a spaceflight. In addition, a hardware was prepared
that guaranteed a proper culturing of human cells in space.

Two independently engineered hardware types were available in
our team for a space mission to the ISS or a space experiment on an
unmanned satellite/spacecraft. The first hardware (SimBox/CellBox),
developed by Airbus Defence and Space (Friedrichshafen, Germany),
holds a cell culture chamber with a volume of 13.5 mL. Below the cell
culture chamber, two fluid tanks are mounted. One of them acts as a
reservoir for fresh media in concert with being a waste compartment,
the other one stores the fixative and is the compartment for the waste
media of the second pumping procedure. Both, the fresh media com-
partment and the fixative compartment can hold up to 10mL of a liquid
and are used to exchange the fluid in the cell culture chamber [7]. The
special feature of the tank is an internal silicon membrane, which very
effectively allowed the storage of different fluids inside the same
compartment without any cross-contamination. When the fresh media
is pumped into the cell culture chamber, the waste fluid is simulta-
neously guided into the empty space on the other side of the membrane.
In this way dead volume was avoided. Besides the fixed cells, the su-
pernatant can be used for analyses.

The other hardware (now called SPHEROIDS hardware) was de-
signed and constructed by RUAG Space (Nyon, Switzerland). One unit
holds one fixative chamber, two cell culture chambers, two fresh media
compartments and two waste compartments. Each cell culture chamber
has a growth area of 9 cm2 providing a total of 18 cm2 per unit. The
completed unit, including electronics, has a dimension of
10×10×10 cm [8] (Fig. 1).

Both hardware types are built of biocompatible materials and can be
handled easily by the experimentators. However, the CellBox hardware
is more compact. It provides a larger growth area but lacks the

possibility of a complete media exchange. It has proven to be suitable
for cancer cell cultures in space [7,9,10]. The SPHEROIDS hardware is
designed with supernatant chambers, which are empty during the
missions start. A complete exchange of media and also a complete
flushing with fixative is possible. As these characteristics appeared
important for tissue engineering of tubular structures in space, the
SPHEROIDS hardware was chosen for this experiment.

2. Material and methods

2.1. Cells

EA.hy926 [11] cells were cultivated in RPMI 1640 medium (In-
vitrogen, Eggenstein, Germany) containing 2mM L-glutamine (Thermo
Fisher Scientific, Waltham, US-MA) and 10% FCS, 100 U/mL penicillin
and 100 μg/mL streptomycin (all Biochrom, Berlin, Germany).

Human saphenous vein endothelial cells (HSVECs) and human mi-
crovascular endothelial cells (HMVECs) were grown in advanced EC
growth medium purchased from Provitro (Berlin, Germany).

All cell types grew in 75-cm2 tissue culture flasks (Sarstedt,
Nümbrecht, Germany) at 37 °C and 5% humidity.

2.2. Tube formation test on the RPM

In order to test the tube formation capability of the three cell types,
the monolayer cells were scrapped off the bottom of the culture flask
and suspended in RPMI 1640 medium. Subsequently, 106 cells were
added to each of sixteen 25 cm2 tissue culture flasks, respectively and
incubated under normal gravity conditions at 37 °C until they reached
70% confluence. Afterwards, eight culture flasks, completely filled air-
bubble-free with culture medium, were either mounted on a table top
RPM [6] kept within a commercially available incubator or set in the
incubator next to RPM. The cell culture procedure was continued as
indicated below.

2.3. Spaceflight experiment

For preparing the spaceflight experiment, EA.hy926 cells were de-
tached from the bottom of the culture flask, and suspended in RPMI
1640 medium. Then, 106 cells were seeded in each of the 16 cultivation
chambers (RUAG Space, Nyon, Switzerland) of the SPHEROIDS hard-
ware recently described [8] (Fig. 1). VEGF-A was added to one half of
the culture chambers. As fixatives either paraformaldehyde (PFA) or
RNAlater (for RNA-sequencing at a later time) were used. During the 7-
day-experiment, the nutrient solution was not refreshed, whereas it was
changed for the 14-day-experiment.

2.4. Cell characterization

Cells cultured on the RPM were studied by phase contrast micro-
scopy. For visualization of the three-dimensional (3D) aggregates, tube-
like structures fixed with 4% PFA at the end of the culture period, in-
dicated below, were collected from spaceflight cultures. Afterwards,
they were embedded in paraffin and subjected to Periodic acid-Schiff
(PAS) staining, performed according to routine protocols [12]. Then the
coverslips were mounted and the structures were evaluated using a
Zeiss Axiovert wide field microscope (Oberkochen, Germany).

2.5. Pathway analysis

To investigate and visualize the original localization and the mutual
interactions of proteins coded by genes which were more than 4-fold up
or down-regulated, we used the relevant UniProtKB entry numbers in
the Elsevier Pathway Studio® v.11 software (Elsevier Research
Solutions, Amsterdam, The Netherlands). The method was described
earlier [13,14]. A STRING analysis was performed entering the names/

Fig. 1. Sample retrieval from the SPHEROIDS hardware. (A) Side view and (B)
top view on one hardware unit removal of the cover. The two cultivation
chambers (E1 and E2) are installed at the top of the unit. Samples in both
chambers are fixed with PFA. (C + D) View onto the growth area of the cul-
tivation chambers. The ‘goose pimples-like’ structures on the material surfaces
are adherent EA.hy926 cells. Scale bars: 1 cm.
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entry numbers of proteins found in the literature references [10–34]
using the STRING platform (https://string-db.org/).

3. Current knowledge from ground-based studies

Experiments using ground-based devices such as clinostats (CNs),
rotating wall vessels (RWVs), or the RPM provide the basis for research
in real μg and pave the way for rare and cost-intensive spaceflight
projects like SPHEROIDS. Table 1 summarizes the previous research
that was performed with human ECs on μg simulation devices.

The exact mechanism of endothelial 3D growth in simulated μg is
still unknown. Fig. 2 shows a STRING analysis of EC proteins that are
known to be affected by μg according to the literature summarized in
Tab. 1. Alterations of the actin cytoskeleton were reported often and
corroborate the theory of cytoskeletal gravisensing in eukaryotic cells
[40]. Taking into account their corresponding Gene Ontology (GO)
biological processes, proteins such as RelA, ET-1, CD40, Akt, caveolin-
1, MCP-1, or interleukin (IL)-6 are modulated as reaction to mechanical
stimuli (Fig. 2, yellow). They are metabolically connected to factors for
cell adhesion (Fig. 2, blue) and blood vessel formation/angiogenesis
(Fig. 2, red). Studies with human umbilical endothelial cells (HUVECs)
indicated, that angiogenesis could be mediated via the PI3K-Akt-eNOS
pathway and Rho signalling [15,18]. Possible key proteins of en-
dothelial spheroid formation that were identified in EA.hy926 cells in
RPM experiments build an interaction network between extracellular
matrix (ECM), cytoskeleton, immune response and other cellular pro-
cesses. It seems that μg intervenes deeply into cell function and meta-
bolism finally resulting in an altered growth behaviour and the for-
mation of tubular structures.

Table 1
Selected articles addressing the mechanisms of 3D growth of human ECs ex-
posed to simulated μg.

Cells Device,
Duration

Findings Ref.

HUVECs CN,
1 d

Angiogenesis is mediated through PI3K-
Akt-eNOS signalling pathway

[15]

HUVECs CN,
1 d

iNOS up-regulation AP-1↓, NF-κB↓ [16]

HUVECs CN,
1 d

Enhanced autophagosome formation,
LC3↑, beclin-1↑

[17]

HUVECs CN,
2 d

Induction of autophagy via HDM2-p53-
mTOR pathway

[18]

HUVECs CN,
1–2 d

eNOS↑, posttranslational modifications of
caveolin-1

[19]

HUVECs RWV,
1 d

Angiogenesis through RhoA-dependent
rearrangement of the actin cytoskeleton

[20]

HUVECs RWV,
3 d

hsp70↑, IL-1α↓, rapid remodelling of the
cytoskeleton, actin↓

[21]

HUVECs RWV/RPM,
2–4 d

Alterations of the actin cytoskeleton, NO
synthesis

[22]

HUVECs/
HMVECs

RWV,
4 d

Up-regulation of hsp70 [23]

HUVECs RWV,
8 d

Prostacyclin↑, NO↑ [24]

HUVECs RPM,
1 h-3 d

Increased cell migration [25]

HUVECs RPM,
1 d

ICAM1↑ [26]

HUVECs RPM,
1 d

ICAM1↑ in TNF-α-stimulated ECs [27]

HUVECs RPM,
1–2 d

“Anti-inflammatory phenotype”, NOS3↑,
CAV1↑, CAV2↑

[28]

HUVECs RPM,
1–3 d

Alteration in cytoskeleton structure and
mechanical properties

[29]

HUVECs RCCSa,
1–4 d

Increase of mTOR and Apaf-1, miR-22↑,
SRF↓, LAMC1↓

[30]

HUVECs RPM,
4 d

Secretome analysis: RANTES↑, eotaxin-1↑,
IL-1α↓, IL-8↓, bFGF↓

[31]

EA.hy926 RPM,
2 h

Angiogenesis via the cGMP-PKG-
dependent pathway

[32]

EA.hy926 RPM,
2 h

Increased migration caused by actin
modulation and NO release

[33]

EA.hy926 RPM,
4–24 h

Induction of apoptosis, ECM proteins, ET-
1, TGF-β. NOS3↓. IL-6↑, IL-8↑ NF-κB p50↑
and p65↑. bFGF protects ECs from
apoptosis.

[34]

EA.hy926 RPM,
4–72 h

Increase of ECM protein (collagen type I,
fibronectin, osteopontin, laminin, Flk-1),
altered cytoskeletal components. Cell-
protective influence of VEGF.

[35]

EA.hy926 RPM,
1–15 d

3D growth, increase of ECM proteins
(osteopontin↑, fibronectin↑)

[36]

EA.hy926 RPM,
5–7 d

Secretome analysis: VEGF↓, bFGF↓,
TNFRSF5↓, TNFSF5↓,
ICAM-1↓, TNFR-2↓, IL-18↓, C3↓, VWF↓.
PKCα plays a key role in tube formation

[37]

EA.hy926 RPM,
5–7 d

Gene array analysis: 1625 differentially
expressed genes (VWF↑, CXCL8↑, IL6↑,
HMOX1↑)

[38]

EA.hy926 RPM,
5–28 d

Tubes: integrin β1↑, α-tubulin↑, laminin↑,
fibronectin↑

[1]

EA.hy926 RPM,
35 d

Secretome analysis:
Suggested key proteins of spheroid
formation (VEGF↑, LCN2↑, IL-6↑, IL-8↑,
MCP-1↑, VCAM-1↑, ICAM-1↑, fibronectin↑
, RANTES↑)

[39]

EA.hy926/
HMVECs

RPM,
5–7 d

Proteome analysis: Proteasomes and
ribosomal proteins may play a role in tube
formation

[2]

↑=up-regulation/increase, ↓=down-regulation/decrease.
a RCCS= rotary cell culture system.

Fig. 2. Interactions of proteins influenced in ECs under μg conditions (STRING
analysis). Contributions to biological processes (GO) such as blood vessel de-
velopment (red), cell adhesion (blue), response to mechanical stimulus (yellow)
and response to external stimulus (green) are indicated with different colours.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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4. Results

4.1. Selection of the most suitable cell line

We were looking for the cells, which could be expected to give the
most appropriate answers in our experimental setup. According to the
literature, a number of studies investigating ECs exposed to simulated
μg have been published (as shown in Table 1). They were performed on
HUVECs (Table 1, [15–31]) and EA.hy926 cells (Table 1, [1,2,32–39]).
The studies have accumulated profound data about the behaviour of
these cells under simulated μg conditions. In addition, they indicated
various proteins and cellular factors playing a role in adjustment of ECs
to randomization of the gravity vector. However, it should be kept in
mind that HUVECs are cells derived from the endothelium of veins of
the umbilical cord and EA.hy926 are hybrid cells generated by fusing
HUVECs with the cancer cell line A432 [11]. As mentioned above, we
were interested in studying normal adult ECs. We thus investigated
human saphenous vein endothelial cells (HSVECs) and human micro-
vascular endothelial cells (HMVECs). HSVECs are normal adult ECs.
Hence, they appeared to be most appropriate to gain relevant knowl-
edge. However, these cells are very sensitive (see Fig. 3).

Already after 24 h dead cells became visible in the culture flask
incubated under static 1g-conditions (Fig. 3A). Their number increased
up to the 7th day (Fig. 3B). On the RPM, the cells remained adherent
during the first 24 h (Fig. 3C). After 7 d only adherent cells were seen,
but no floating 3D aggregates (Fig. 3D). In addition, their number had
decreased considerably. Hence, the data of the culturing of HSVECs
showed that these cells do not form 3D aggregates and may be too
sensitive for the stress of a spaceflight.

Afterwards, we searched for an alternative cell type representing
adult healthy ECs and studied the EA.hy926 cell line and HMVECs. Both
formed tube-like structures [2]. The formation was fast and the tubes
were completed after 7 d (Fig. 4). However, HMVECs were also very
sensitive. After 7 d under static 1g-conditions, a considerable number of

dead or apoptotic cells can be found. In addition, HMVECs constantly
need a temperature of 37 °C and die quickly when the temperature falls
below 30 °C. Therefore, they are not suitable for a longer culture under
ambient temperature in the Dragon capsule traveling to the ISS. In
contrast, EA.hy926 cells appeared very tough without much apoptosis
and presented some resistance to lower temperature, which made them
the tool of choice.

4.2. In silico analysis

After the preparatory experiments we decided to use the
EA.hy926 cell line for a first approach. These cells form tube-like
structures (Fig. 4A) and survive a few days of ambient temperature
below 30 °C [1,8,37]. We had characterized these cells very well [2,38].
From a genetic point of view 26 genes were of high interest, because
they were either down- or up-regulated more than 4-fold. In addition, a
few of them were genes whose products were known to be involved in
the formation of 3D aggregates of human ECs as wells as of human
cancer cells. Fig. 5 shows that the genes of the interacting osteopontin,
protein-lysine 6-oxidase, and heme oxygenase 1 [37,41,42], were up-
regulated, while those of interferon-induced proteins (IFIT1, IFI44L,
MX1) were down-regulated. The latter proteins contribute to the ac-
tivity of ISG15, which we recently found to be involved in breast cancer
spheroid formation [43].

4.3. Tube-like aggregate formation during spaceflight

The cells seeded in the flight hardware were flown to the ISS and
stayed there for 2 and 9 d at 37 °C as described in Ref. [8], before they
were fixed and stored for the return. All eight experimental units were
returned successfully. After the sample collection from the flight
hardware units (Fig. 1), we detected 3D cell aggregates, which as-
sembled after the launch of the experiment until their fixation ap-
proximately 5 and 12 d later (Fig. 6).

We investigated these aggregates emphasizing the morphology of
the single cells. Fig. 5 shows a representative tube-like structure. It
looks similar to the intima constructs, which we had detected in a
preparatory study on the RPM [1] and confirmed these results obtained
using a device designed to create conditions of μg on Earth.

Fig. 3. HSVECs cultured under 1g-conditions for (A) 24 h and (B) 7 d or on the
RPM for (C) 24 h and (D) 7 d.

Fig. 4. Tubular structures formed by (A) EA.hy926 cells and (B) human mi-
crovascular endothelial cells after 7 d on an RPM. Scale bars: 100 μm.

Fig. 5. Mutual interaction of proteins coded by genes which had been up-
(green rim) or down-regulated (red rim) during a 5- or 7-day-exposure to the
RPM. The icons at the upper edge indicate genes coding for extracellular pro-
teins. The icons at the lower edge indicate cytoplasmic proteins. The yellow one
indicates the endoplasmatic reticulum. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)
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5. Discussion

Extensive studies were performed on cultured ECs over the last
years using the RPM (Table 1). These studies have shown that ECs are
highly sensitive to random positioning, which induced 3D cell ag-
gregation as well as an up-regulation of several growth factors and ECM
components [38], but also initiated apoptosis in the EA.hy926 human
endothelial cell line [35]. Further, it has been reported that CD34+

human umbilical cord blood progenitors trans-differentiated into a
vascular endo-thelial cell phenotype and continued growing into 3D
structures inside a RWV [44].

Based on the data collected during the preparation of the space-
flight, we decided to use the EA.hy926 cell line for this study, although
they may not be the optimal model to obtain the desired information in
a first approach. At least, these cells form tube-like structures (Fig. 4A)
and survive a few day period of ambient temperature below 30 °C.
Hence, we expected that the cells show whether they behaved in space
like they did on the RPM, forming tube like structures.

Especially the 3D growth behaviour is of interest, as it could be a
versatile tool for angiogenesis studies in vitro. SPHEROIDS was not the
first experiment culturing human ECs in real μg [45–47], but 3D growth
was observed for the first time. The flight hardware enabled growth of
EA.hy926 cells as tube-like structures in space, similar to previous re-
sults using an RPM. This suggests that among other environmental
difference between space and the RPM, μg may be the main trigger for
3D growth. The lack of sedimentation and convection phenomena in μg
enables cells to arrange themselves in 3D aggregates, that allow simu-
lating the way cells are organized in vivo. This has provided more in-
sights into the morphological and functional behaviour of ECs and al-
lowed to collect valuable results on the pathophysiological
morphologies and functions of ECs that could not be obtained through
experiments in a normal terrestrial lab.

6. Conclusion

SPHEROIDS was not the first EC experiment in space, but 3D growth
in real μg was observed for the first time. A specially developed hard-
ware enabled growth of EA.hy926 cells as tube-like structures, which
resemble the aggregates formed on the RPM. This confirms that μg may
be the main trigger for 3D growth, although there are other environ-
mental differences between space and the RPM. Hence, it appears that
the lack of sedimentation facilitates the formation of 3D aggregates,
simulating the way cells organize themselves inside the human body.
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