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Abstract

We consider the formalism of information decomposition of target effects from multi-source

interactions, i.e. the problem of defining redundant and synergistic components of the information

that a set of source variables provides about a target, and apply it to the two-dimensional Ising

model as a paradigm of a critically transitioning system. Intuitively, synergy is the information

about the target variable that is uniquely obtained taking the sources together, but not considering

them alone; redundancy is the information which is shared by the sources. To disentangle the

components of the information both at the static level and at the dynamical one, the decomposition

is applied respectively to the mutual information and to the transfer entropy between a given spin,

the target, and a pair of neighbouring spins (taken as the drivers). We show that a key signature of

an impending phase transition (approached from the disordered size) is the fact that the synergy

peaks in the disordered phase, both in the static and in the dynamic case: the synergy can thus

be considered a precursor of the transition. The redundancy, instead, reaches its maximum at the

critical temperature. The peak of the synergy of the transfer entropy is far more pronounced than

those of the static mutual information. We show that these results are robust w.r.t. the details of

the information decomposition approach, as we find the same results using two different methods;

moreover, w.r.t. previous literature rooted on the notion of Global Transfer Entropy, our results

demonstrate that considering as few as three variables is sufficient to construct a precursor of the

transition, and provide a paradigm for the investigation of a variety of systems prone to crisis, like

financial markets, social media, or epileptic seizures.

PACS numbers:
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High dimensional physical, biological or social systems are formed by a large number

of interacting components, and their macroscopic evolution is the product of intertwined

mechanisms at the lower scale. These systems are typically characterized by stochastic

disordered dynamics, and sudden transitions between different regimes. In this framework it

is of crucial importance to develop methods that are able to identify precursors, i.e. warning

signals, to forecast the transition before it takes place, notably in processes such as financial

market crisis, polarization of news, or epileptic seizures. Since the mechanisms underlying

the rapid rearrangement of the dynamics, connected with the transition, may be different in

different systems in the microscopic details but similar at the systemic level, it is important

to find and assess new paradigms which can act as a conceptual background for a variety

of systems prone to crisis. Using the temperature decrease of a spin system as a model, a

precursor marker of a dynamical transitions from disorder to order has been proposed [1]:

the global transfer entropy (GTE), rooted in the formalism of information dynamics. The

transfer entropy (TE) is a quantity introduced in [2] and based on appropriate conditioning

of transition probabilities, see [3] and references therein; it is able to effectively distinguish

driving and responding elements, and to detect asymmetry. Let si be a given spin, taken as

the target variable, and let us denote s̃i its value at the next time step. Let {sjsk · · · sr} be a

group of spins which is assumed to be candidate driver for the spin si. The transfer entropy

from this group of drivers to the target is defined in terms of the following conditional mutual

information:

Tjk···r→i = I (s̃i; {sjsk · · · sr}|si) . (1)

For each target variable, GTE is computed by measuring the information provided by all the

other variables about the future of each target, i.e. taking as driving group all the variables

at hand but si, eventually averaging over all the possible targets. The pairwise TE, at fixed

target, corresponds instead to the amount of information provided by each other variable,

I (s̃i; sj|si), averaged over the driving variable sj.

For a 2D lattice Ising model with Glauber dynamics, information flow, as quantified by

GTE, attains a maximum strictly in the disordered (paramagnetic) phase and is thus able

to predict an imminent transition [1]. On the other hand, the pairwise TE and the mu-

tual information peak at criticality; the gradients of all measures appear to diverge as the

temperature tends to the critical value. As discussed in [4] GTE is a measure of collective

information transfer, capturing both pairwise and higher-order (multivariate) correlations to
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a variable. As remarked in [1], its peak can be interpreted in terms of conflicting tendencies

among these components as the disorder decreases, while tending to the phase transition

point: pairwise correlations can be expected to become more prevalent than higher-order

multivariate effects as the critical temperature is approached. It follows that disentangling

explicitly the components of the collective information flow is needed to get a better de-

scription of the system in the proximity of the transition. GTE has also been shown to be

a predictor of finite first order transitions, like in the canonical Potts spin model [5]. These

findings have supported the conjecture that generically for systems featuring order-disorder

phase transitions, a key signature of an impending phase transition (approached from the

disordered size), is a peak in GTE. Recently GTE has been used to predict crash events of

stock markets in [6].

In order to calculate GTE from data (1) all the relevant variables of the system must

be measured, and (2) one should have access to dynamical data (GTE evaluates dynamic

dependencies based on lagged conditioned correlations). In a recent paper [7] it has been

shown that conditions (1) and (2) are not necessary and that a precursor of crisis can be built

even measuring a limited number of variables and using static (mutual information-based)

quantities. The key to answer this question resides indeed in the effort spent in recent years

by many researchers to achieve a satisfactory formulation of the information decomposition

of target effects from multi-source interactions, i.e. the problem of defining redundant (or

shared), unique and synergistic (or complementary) components of the information that a

set of source variables provides about a target, see [11] and references therein. Applying this

formalism to the mutual information between a target spin and two of its neighbors in the two

dimensional Ising model of size 128 × 128, in [7] it has been shown that the synergy peaks

in the disordered phase considering as few as three variables; lagged correlations are not

necessary to this scope. However, in [7] a particular prescription introduced in [8] was used to

obtain the decomposition of the mutual information: what remained to be clarified is whether

such phenomenon depends on the details of the information decomposition methodology

applied. In this work on one side we show, simulating the 2d Ising model on a 512 × 512

lattice, that the findings of [7] do not depend on the way the information decomposition of

the mutual information is done; indeed using a different method we find the same results

as those from [8]. Moreover we also show that performing the decomposition of the transfer

entropy from the two neighboring spins, to the target spin, leads to a far more pronounced

4



peak of the synergy w.r.t. those of the mutual information in the paramagnetic phase, thus

providing a clear connection between the information decomposition frame and the results

about GTE described in [1].

Let us consider the two dimensional Ising model, where spins on a regular lattice are

characterized by the Hamiltonian

H = −β
∑
〈ij〉

sisj, (2)

β being the coupling and the sum being performed over nearest neighbor pairs of spins. This

model shows a second order phase transition at βc ≈ 0.4407, in correspondence with long

range correlations in the system [9]. The mutual information of a pair of nearest neighbor

spins I (si; sj) has been calculated in [10] and peaks at criticality; it represents the static

information about si contained in the stochastic variable sj. Analogously we can consider

the spin si as a target, and spins sj and sk as two drivers. The information on si contained

in this pair of drivers is the mutual information I (si; {sjsk}). The desirable information

decomposition is:

I (si; {sjsk}) = U I
j→i + U I

k→i +RI
jk→i + SIjk→i,

I (si; sj) = U I
j→i +RI

jk→i,

I (si; sk) = U I
k→i +RI

jk→i.

In the expansion above, the terms U I
j→i and U I

k→i quantify the components of the infor-

mation about the target si which are unique to the sources sj and sk, respectively, thus

reflecting contributions to the predictability of the target that can be obtained from one

of the sources when it’s treated as the only driver, and not from the other source. Each

of these unique contributions sums up with the redundant information RI
jk→i to yield the

mutual information between one source and the target according to the classic Shannon in-

formation theory. Then, the term SIjk→i refers to the synergy between the two sources while

they provide information about the target, intended as the information that is uniquely

obtained taking the two sources sj and sk together, but not considering them alone. Since

in the expansion four quantities are unknown and just three equations are at hand, the

information decomposition in unique, redundant and synergistic parts is a missing piece in
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classical information theory. An additional ingredient to Shannon theory is needed to get

a fourth defining equation for providing an unambiguous definition of U I
j→i, U

I
k→i, R

I
jk→i

and SIjk→i. While several information decomposition definitions have been proposed arising

from different conceptual definitions of redundancy and synergy [12–14], in the case of three

variables several of these definitions coincide. The so-called minimum mutual information

(MMI) PID [15] assumes that redundancy is given by the minimum of the information pro-

vided by each individual source to the target, and hence is independent of the correlation

between sources; moreover synergy is the extra information contributed by the weaker source

when the stronger source is known, and can either increase or decrease with correlation be-

tween sources. Another proposal is the maximum entropy-based redundancy measure of [8],

which is defined as follows. Let us call p(si, sj, sk) the joint probability distribution of the

three spins, and consider the set of all the probability distributions q(si, sj, sk) that preserve

the bivariate marginals involving si, i.e. q(si, sj) = p(si, sj) and q(si, sk) = p(si, sk). It is

then assumed that unique information and redundancy are invariant within this set, while

synergy depends on the specific form of the trivariate joint distributions. Synergy is thus

determined as the difference between the mutual information for the original p(si, sj, sk) and

the minimum within the set of q distributions:

SIjk→i = I (si; {sjsk})−MINq I (si; {sjsk}) . (3)

In [15] it has been shown that in the case of Gaussian stochastic variables the MMI and

the maximum entropy-based approach are equivalent and provide the same decomposition.

Although these two methods in general give different results, for the problem at hand we

have verified that they provide the same decomposition.

The transfer entropy from the pair of spins sj and sk to the target si is defined as follows,

in terms of conditional mutual information: Tjk→i = I (s̃i; {sjsk}|si), where s̃i is the future

value of si obtained when the system is updated with Glauber dynamics, like in [1]. The

pairwise transfer entropies are defined as Tj→i = I (s̃i; sj|si) and Tk→i = I (s̃i; sk|si), respec-

tively. Note that conditioning on the past of the target si (a step that in the information

decomposition framework also includes synergies produced by the source with past of the

target) removes shared information due to common history. The information decomposition
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now reads:

Tjk→i = UT
j→i + UT

k→i +RT
jk→i + STjk→i,

Tj→i = UT
j→i +RT

jk→i,

Tk→i = UT
k→i +RT

jk→i.

Also for the decomposition of the transfer entropy in this Ising system, we have verified that

the adoption of the MMI approach and the maximum entropy-based approach provide the

same decomposition. [15].

FIG. 1: The spatial arrangement of spins around spin s1, to which the following figures refer.

We simulated a kinetic Ising model of size N = L × L with L = 512 and periodic

boundary conditions. Each update consisted of N (potential) spin-flips according to the

Glauber transition probabilities. Simulations were initially run for a relaxation time of

104 updates and statistics then collected over a further 105 updates. This procedure was

performed for 1000 runs at each of 50 temperature points enclosing the phase transition.

We will refer to the spin configuration depicted in figure (1), where 1 is the target and we

take two of the neighboring spins as the drivers.

Let us start considering the drivers s2 and s3, i.e. two opposite nearest neighbors to

the target si. In this case the unique information terms are all vanishing, both for the

static (mutual information) and the dynamic (transfer entropy) information decomposition:

this property holds whenever the marginals corresponding to the two drivers are the same.

In figure (2) we depict the redundancy and the synergy as a function of the coupling β:
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while the redundancy peaks at criticality, the synergy of the two spins have a peak in the

paramagnetic phase. In figure (3) the peaks of the static and dynamic synergies have been

zoomed in (the confidence interval is also shown but it is so narrow that it can be seen with

much difficulty).

a) b)

FIG. 2: (a) The redundancy and synergy of spins s2 and s3 according to the decomposition of the

mutual information, as a function of the coupling β. (b) The redundancy and synergy of spins s2

and s3 according to the decomposition of the transfer entropy, as a function of the coupling β.

It is also worth considering other pairs of driving spins that one can choose from set of

nearest and next to nearest neighbors of the target: in figure (4) we depict the synergy, both

static and dynamic, for four pairs. We observe that the pair of nearest neighbors s3 and s4

is characterized by a similar behavior to the pair s2 and s3, but the synergy is lower in this

case. This suggests that the knowledge of two opposite spins provides more information,

w.r.t. the future of the target, than two nearest neighbor driver spins forming a π
2

angle

with the target: in figure (5) we depict the mutual information and the transfer entropy for

the same sets of drivers, and show that this indeed the case. Intuitively, the reason for this

can be ascribed to the fact that when two opposite spins are aligned it is more likely (less

surprising) that the target is in the inner of a domain. It is also worth stressing that figure

(5) shows that I and T do not peak at the same locations as SI and ST , hence the cause of
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FIG. 3: (a) The peak of the synergy in figure (2a), related to the decomposition of the mutual

information, is zoomed in. (b) The peak of the synergy in figure (2b), related to the decomposition

of the transfer entropy, is zoomed in. The shaded areas, corresponding to the 95% confidence

interval, is hardly visible.

the peaks of the synergy is not a finite size effect.

Coming back to figure (4), and considering a pair with one nearest neighbor and one next-

to-nearest neighbor, 2-6 and 3-6, we note that the interaction of the two drivers diminishes

w.r.t. the case of two nearest neighbors. Figure (4) shows that the value of β at which the

synergy peaks approaches the critical value as the amount of synergy decreases; for the pair

3-6 no peak is observed. However, in these cases we observe an interesting phenomenon:

the unique information from the nearest neighbor driver does not vanish, and peaks in

the paramagnetic phase as shown in figure (6). As shown in [10] and [1], both the pairwise

mutual information and the pairwise transfer entropy peak at criticality; however the unique

information, obtained subtracting the information redundant with a next-to-the nearest

neighbor spin, is non-zero and peaks in the paramagnetic phase.

Summarizing, we have shown that in the 2D Ising model three variables are sufficient

to build reliable precursors of the transition, in the frame of the information decomposition

in a redundant term and a synergistic one, and that this phenomenon is robust w.r.t. the

approach used to perform the information decomposition, indeed we find the same results

using two different prescriptions. The redundancy peaks at criticality, while the synergy has
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FIG. 4: (a) The synergy of four pairs of driving spins (2-3, 3-4, 2-6, and 3-6) is depicted versus

the coupling β, for the decomposition of the mutual information. (b) The synergy of four pairs of

driving spins (2-3, 3-4, 2-6, and 3-6) is depicted versus the coupling β, for the decomposition of

the transfer entropy.
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FIG. 5: (a) The mutual information of four pairs of driving spins (2-3, 3-4, 2-6, and 3-6) is depicted

versus the coupling β. (b) The transfer entropy of four pairs of driving spins (2-3, 3-4, 2-6, and

3-6) is depicted versus the coupling β.

a peak in the disordered phase, both in the static case (corresponding to the decomposition
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FIG. 6: The unique information of spin s2 when it is paired with spin s6 in the information

decomposition, as a function of the coupling β. (a) Static case, i.e. mutual information. (b)

Dynamic case, i.e. transfer entropy. Note that the same curves hold for the spin s3 when it is

paired with s6, as the marginals distributions are the same as in the case of drivers s2 and s6.

of the mutual information) and in the dynamic case (corresponding to the decomposition

of the transfer entropy). The peaks by the dynamic transfer entropy decomposition are far

more pronounced than those from the decomposition of mutual information: on one hand

this suggests that the study of dynamical influences are more effective to build precursors of

transitions, on the other hand the search for the reason of this occurrence deserves further

investigation. We have shown that just two variables are required to build the precursor,

in comparison with the GTE which requires the knowledge of all the relevant variables.

These results also provide an explanation of the fact, noted in [1], that using just one

driving variable one gets quantities peaking at criticality: indeed there are no synergistic

components when only one driver is considered. Further work could be devoted to extend

the present analysis to transitions in networked systems [16].
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