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A B S T R A C T

Various models exist to predict load interaction effects on fatigue crack growth in variable amplitude loading
conditions. Stress overloads have the potential to strongly retard or even arrest a propagating fatigue crack.
Whereas global analysis methods (making use of equivalent quantities) allow to describe stochastic loading
scenarios, describing the effects of deterministic overloads requires cycle-by-cycle analysis techniques. Within
this category, plastic zone models have proven to be effective and pragmatic in terms of calibration. Current
models, however, do not account for the effect of crack tip constraint on the plastic zone size, whose estimation
is a requirement. This paper develops a novel (“extended”) crack growth formulation based on the traditional
plastic zone based Wheeler’s model, taking into account the effect of out-of-plane constraint (plane stress versus
plane strain). Calibration of the model requires characterization of shut-off overload ratios for different stress
intensity factor levels. The “extended Wheeler” model gives better agreement with experimental tests results
than the original and modified Wheeler model.

1. Introduction

Metal components and structures are often subjected to cyclic
loading conditions having a variable amplitude. These conditions are
described by theories of “variable amplitude fatigue”, which the non-
constant nature of cyclic loading is accounted for in the calculation of
fatigue lifetime. A good understanding of crack growth is important in
damage tolerant design, where the safe operation is achieved by peri-
odic inspection, assessment and potentially repair. Improper accounting
for load interaction effects may lead to overly conservative lifetime
predictions (e.g. when crack growth retardation is neglected), or unsafe
predictions (when the retardation is over-estimated or acceleration is
underestimated).

The effects of variable loading on fatigue crack propagation were
first observed by the aviation industry [1]. Overloads were observed to
decrease the crack growth rate, while underloads led to acceleration of
the crack growth rate. The associated investigations were performed on
typical aviation materials such as aluminum and titanium alloys, but
similar effects have been observed for steels. The primary focus of this
study is crack growth retardation due to overload, the effect of which is
typically more pronounced than acceleration effects caused by under-
loads [2–4].

Different approaches have been developed to describe load

interaction effects on fatigue lifetime. These can be broadly categorized
into global analysis or cycle-by-cycle analysis techniques. In a global
analysis the load history is considered in its entirety. A statistical de-
scription of the load spectrum leads to a single, equivalent value for
stress intensity factor (SIF) (e.g., root mean square value) which can
then be inserted into a crack growth law (e.g. Paris-Erdogan equation)
to obtain a global crack growth rate. In general, global analysis models
may deliver acceptable results if the load sequence is stochastically
distributed. However, interaction effects of deterministic load se-
quences (such as a discrete number of single overloads) cannot be ac-
curately modelled by this approach [5].

With cycle-by-cycle analysis, incremental crack growth is calculated
for each load cycle in a prescribed load history. Four analysis types can
be identified, notably: models based on crack tip plasticity (e.g.,
Wheeler [6], Willenborg [7]); models based on crack closure; models
based on residual stress calculations in front of the crack tip; predictions
based on rigorous finite element modelling of the investigated load
sequence. During recent years, several model adaptations were devel-
oped to capture overload based retardation effects on fatigue crack
growth under variable amplitude loading. Given below is an overview
of recent related literature. The evolution of local crack plasticity and
its influence on the global elastic stress field was studied by means of
the CJP model [8,9], which calculates the size, shape and area of crack
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tip plastic zone, leading to modified stress intensity factors to predict
residual stress and crack closure. Doing so required cumbersome model
calibrations on the basis of measured displacement fields around the
crack tip. A unified model based damage mechanics was proposed and
validated under different conditions with overload and underload [10],
damage accumulation was incorporated with the cyclic plasticity model
[11] which describes cyclic strain ratcheting and stress relaxation.
Determination of more than 10 material constants for the model makes
the model highly complex and challenging to calibrate. Two extra
multiplication factors were added to the original Wheeler model re-
tardation factor to catch the effects of delayed retardation and overload
interaction [12,13]. In addition, the shape exponent of the reduction
factor was found variable for different overloads, but the authors did
not provide further discussion of methods to calculate its value. Plas-
ticity induced crack closure due to a single overload was numerically
studied based on FEM [14,15] and an empirical model and analytical
model, which considered the residual plastic wake as “plastic wedges”
and the mechanism of crack tip blunting resulting in elimination of
residual plastic wedges, were proposed. However, notable differences
between the models and finite element results were found in the various
loads. Virtual crack annealing models [16,17] based on the crack clo-
sure concept were proposed, in which the equivalent plastic zone in the
unloading process was introduced. The results indicated that the model
could not accurately predict constant load cases and the load cases with
a longer block overload, whose number of cycles exceeded 10. Li et al
[18] applied a strain hardening factor given by Shih [19] to correct the
size of the overload affected zone in the Wheeler model. Counter-
intuitively, obtained shape exponents of the reduction factor were ne-
gative for retardation effect. By adding a correction factor for equiva-
lent SIF range, Huang [20] included underloading scenarios into the
Wheeler model, and updated the three-piecewise function of plastic
zone factor proposed by Voorwald [21] into a continuous function by
using FE analysis and data fitting. It is clear from the above that
Wheeler based models are widely implemented to describe the re-
tardation in the fatigue crack growth, and provide ample potential for
improvements and modifications.

A common limitation of all abovementioned approaches is the lack
of a straightforward correction of plastic zone size for out-of-plane
constraint conditions. The theoretical limits to these conditions are
known as plane stress (when out-of-plane stress is zero for infinitely
thin structures) or plane strain (when out-of-plane strain is zero for

infinitely thick structures). Engineering structures are situated between
both extremes and, by definition, cannot be characterized as pure plane
stress or pure plane strain. Their out-of-plane constraint conditions are
intermediated between both limits, the exact value being determined by
the thickness of the structure and the extent of loading (stress intensity
factor). As out-of-plane constraint conditions are known to affect the
plastic zone size originating from a crack tip, an effect on crack growth
retardation is expected. To our knowledge, a crack growth retardation
model that analytically takes into account such effect is missing.
Additionally, the shape exponent was extensively reported as a non-
constant value in the literature. The dependence of this exponent on the
load level [6,22,23], which may significantly influence the crack
growth behavior under complex loading compared with a single over-
load case, is challenging to quantify and a reasonable approach to de-
scribe and calibrate it is missing.

The ambition of this work is to describe the influence of (sequences

Nomenclature

a crack length
a0 initial crack length
an crack length after n cycles

aΔ crack growth length
aOL overload crack length
C, m Paris law constants
n the number of applied cycles
K stress intensity factor (SIF)
Kmax,Kmin stress intensity factor at maximum and minimum load

∗Kmax ‘no retardation’ stress intensity factor
KΔ stress intensity factor range
KΔ i stress intensity factor range of ith cycle
KΔ eff effective stress intensity factor range
KΔ eff i, effective stress intensity factor range for ith cycle

R load ratio
Ri load ratio for ith cycle

KΔ th threshold stress intensity factor range
KΔ th0 threshold stress intensity factor range when R=0

ϕwh Wheeler’s retardation factor
ϕwh i, Wheeler’s retardation factor for ith cycle

ω shape exponent
rp plastic zone size
rp OL, overload plastic zone size

∗rp ‘no retardation’ plastic zone size
ROL overload ratio
RSO shut-off overload ratio
Rα correction factor
RSO

' corrected shut-off overload ratio
α plastic zone size factor
αOL overload plastic zone size factor
β exponent in modified Wheeler model
σy yield strength
P external load
W specimen thickness
t specimen thickness
rp,0 reference size (plane stress)
τ normalized thickness
η global constrain factor
η η,max min maximum and minimum value of global constrain factor
rp,0

' reference size (plane stress) for strip yield model
τ ' normalized thickness for strip yield model

Fig. 1. Typical −da dN K/ Δ relation for fixed R in a logarithmic graph.
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of) overload cycles on the fatigue crack growth in a high strength low
alloy steel, making use of cycle-by-cycle analysis and assuming a crack
tip plasticity model that accounts for variable out-of-plane constraint
conditions. In Section 2, it will be shown that (a) current crack tip
plasticity-based models (such as Wheeler’s model) do not account for
effects of out-of-plane crack tip constraint (e.g., plane stress versus
plane strain) on the plastic zone size, and (b) these effects lead to load-
dependent shut-off ratios for crack arrest. An “extended Wheeler”
model is developed, which does take into account these effects. Section
3 then introduces the numerical framework for cycle-by-cycle crack

propagation analysis, in which the extended Wheeler model has been
implemented. Sections 4 and 5 compare experimental results with nu-
merically predicted crack growth evolutions, and Section 6 finally
concludes.

Fig. 2. Post-overload plastic zones considered in crack tip plasticity models.

Fig. 3. Irwin’s estimation of plastic zone size [31].

Fig. 4. Visual representation of the strip yield model [33].

Fig. 5. Influence of τ′ and strain hardening on η ().
adopted from [34]
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2. Theoretical background for this study

2.1. Basic fatigue crack growth equations and Wheeler’s retardation model

Variable amplitude fatigue crack propagation models generally
modify existing crack propagation models for constant amplitude fa-
tigue. Generally, those existing models describe that crack propagation
rate is driven by SIF range KΔ and load ratio R, which are functions of
Kmax and Kmin denoting the SIF at the crack tip at the maximum and
minimum load respectively.

=da
dN

f K R(Δ , ) (1)

where = −K K KΔ max min, =R K K/min max. As a starting point, the most
well-known model proposed by Paris and Erdogan [24], shown in Fig. 1
where C and m are fitted parameters depending on material and loading
conditions (e.g., R), describes the second linear stage of typical crack
propagation behavior in a double logarithmic graph. Only KΔ is con-
sidered in this model, and the influence of different load ratio is not
directly included. Furtherly, researchers developed more models taking
into account the load ratio effect such Walker’s law [25], or to ad-
ditionally cover the other one or two propagation stages such as

Fig. 6. Comparison of approaches for estimating plastic zone size factor α.

Fig. 7. Overview of crack propagation analysis algorithm.

Fig. 8. Comparison between analytical and numerical SIF of ESET and CT
specimens.

Fig. 9. Load sequence for Wheeler shaping exponent fitting.
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Fig. 10. (a) Influence of plastic zone size factor α and shape exponent ω in the
original Wheelermodel; (b) zone in box of retardation effect in different con-
ditions.

Fig. 11. Influence of shut-off overload ratio RSO and fatigue crack threshold
KΔ th on the theoretical shaping exponent.

Fig. 12. Influence of shut-off overload ratio RSO in plane stress and plane strain
on the modified Wheeler model.

Fig. 13. Influence of shut-off overload ratio RSO in plane strain on the modified
Wheeler model.

Fig. 14. Configuration of the tested ESET specimens (dimensions in mm).
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Forman’s law [26].
Noticing that fatigue lifetime predictions based on linear cumulative

crack growth were often found to be ultra-conservative [6], Wheeler
modified the non-interaction models for constant amplitude by in-
troducing a retardation factor ϕwh, which is in the range between 0 and
1, representing the degree of absence of interaction. The Wheeler model
does not change input for the crack growth law (e.g. KΔ and R), so the
straightforward Paris equation can be employed, provided that its
parameters C and m were obtained under the correct load ratio. This is
illustrated in Eq. (2), in which n is the number of applied cycles and KΔ i

is the SIF range of cycle i. Load interaction effects can potentially be
simulated as the net crack growth rate is no longer independent of prior
load history.

∑= +
=

a a ϕ f K R· (Δ , )n
i

n

wh i i i0
1

,
(2)

The retardation factor ϕwh is given in Eqs. (3) and (4). The equations
are based on estimations of plastic zone size, which will be further
explained in Section 2.2. The state of the material in front of the crack
tip considered by crack tip plasticity models is illustrated in Fig. 2. It
contains the locations of all relevant elastic-plastic yield interfaces
caused by current or previous fatigue cycles and is therefore a re-
presentation of relevant loading history. In case of a single overload
occurring at crack length aOL, the material yields in the vicinity of the
crack tip and a plastic zone of size rp,OL is caused. Subsequent nominal
loads, applied at increasing crack length a, will cause plastic zones of
size rp in front of the propagating crack tip. As long as <r rp p,OL, the
current plastic zone will be fully embedded in the overload plastic zone
for a certain number of cycles due to compressive residual stress. It is
assumed that crack growth rate is reduced during these cycles. Once the
current elastic-plastic interface intersects the one caused by the over-
load, the current plastic zone becomes the relevant plastic zone and the
interaction effect disappears. Based on this reasoning, the condition for
retardation becomes >∗r rp p [6]. ∗rp represents the hypothetical size that
the current plastic zone should have in order to touch the overload
elastic-plastic interface. As the crack propagates, ∗rp will approach rp,
and the retardation effect will weaken till vanish.

=
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+ > +
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r
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p p

p p

p

p

(4)

The shape exponent ω is determined experimentally for a given
material and type of loading because of dependence on material
strength and overload ratio [6,22,23]. Typical reported values range
from 1.0 up to 4.0.

As ϕwh never equals to zero unless Kmax is zero, the original Wheeler
model will never predict crack arrest. However, by introducing KΔ eff ,
the retardation effect can also be expressed indirectly [27] as Eq. (5)

Table 1
Mechanical properties of DNV F460 steel.

Material σy

[MPa]
σUTS
[MPa]

E
[GPa]

ν K m[MPa· ]c KΔ th
[MPa m· ]

C
[m/cycle]

m

DNV F460 560 635 210 0.28 84.0 5.0 3.6e-12 3.064

Fig. 15. Wheeler shaping exponent fitting study based on ESET test nr. 1.

Fig. 16. Estimation of shut-off overload ratio and corrected shut-off ratio of the
ESET tested DNV F460 steel.

J. Zhang, et al. International Journal of Fatigue 125 (2019) 199–209

204



∑= + =
=

a a f K R K ϕ K(Δ , ), Δ Δn
i

n

eff i i eff i wh i
β

i0
1

, , ,
(5)

This simple modification can be used with any form of crack growth
law which predict both retardation and crack arrest after an overload if

⩽K KΔ Δeff i th, . Its disadvantage is obviously that β is an experimentally
fitting value [27]. However, it can be theoretically obtained by Eq. (6)
when Paris-Erdogan is applied as a growth rate equation.

∑= + =
=

a a C R K K ϕ K( )(Δ ), Δ Δn
i

n

eff i eff i wh i i0
1

, , ,
m
1

(6)

Since the model parameters above have not always been experi-
mentally documented and curve-fitting is generally required, a mod-
ified Wheeler model based on a theoretical relation was proposed
[28,29]. It was based on the observation of crack arrest for overload
values exceeding a load ratio value RSO with respect to the nominal
load. RSO typically ranges from 1.5 to 3.0, depending on the material. It
was reasoned that at the onset of crack arrest, the effective SIF range
must not exceed the threshold SIF range for the material. As m is the
Paris exponent, the shaping exponent can be determined from readily
available material data. It is no longer a constant but a function of the
material and the subsequent loading cycles. Assuming a constant α for
the time being, in the critical case where the effective SIF KΔ eff equals
the threshold KΔ th, the crack arrests to grow and the overload ratio

=R ROL SO. Then, ω can be obtained by solving the Eq. (7), leading to
Eq. (8) (noting that =r r R/p p OL SO,

2 when α is constant, based on Eq. (9)
which will be discussed below). For a variable α, the shut-off ratio RSO
should be replaced by the more general expression r r/p OL OL, .

Fig. 17. Simple load scenario: load sequence in LHL test nr. 2.

Fig. 18. Simulation results of LHL sequence for ESE(T) specimen in DNV F460
steel test nr. 2.

Fig. 19. Complex scenario: semi-random load sequence test nr. 3.

Fig. 20. Simulation results of semi-random sequence for ESE(T) specimen in
DNV F460 steel test nr. 3.

Fig. 21. Prediction of extended model under the first test load compared with
curve fitting.
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⎜ ⎟= = ⎛
⎝

⎞
⎠

=K ϕ K
r

r
KΔ ( | ) ·Δ ·Δth a a

m p

p OL

ω m
1/

,

/

OL
(7)

⎜ ⎟= ⎛
⎝

⎞
⎠

ω m K
K R2

log Δ
Δ

/log 1th

SO (8)

2.2. Plastic zone size models

Linear elastic stress analysis of sharp cracks predicts infinite stresses
at the crack tip, shown in Fig. 3. In reality however, the stresses are
finite due to a finite crack tip radius and plastic deformation in front of
the crack tip [30]. The general formula for calculating the plastic zone
size is given by Eq. (9).

⎜ ⎟= ⎛
⎝

⎞
⎠

r α K
σp

y

2

(9)

Two main methods for calculating the size of the plastic zone (by
means of calibration of α) are proposed in literature [30]: Irwin’s model
and the strip-yield model.

In Irwin’s model, plastic zone size estimation was based, as shown in
Fig. 3, on a cut-off of crack tip singularity stresses (line ABC) at the yield
strength (line A′B), followed by a shift of the singularity stresses to
maintain force equilibrium. Both hatched regions (A′BA and BB′C′C)
have an equal area. The resulting stress distribution is line A′B′C′, and
the plastic zone size corresponds with line A′B′.

According to Irwin’s model, the plastic zone size factor α has a value
of ≈π1/ ( 0.318) for plane stress conditions. For plane strain conditions,
the value is ≈π1/3 ( 0.106), due to suppression of yielding by the induced
triaxial stress state. As neither plane stress nor plane strain are real
scenarios, relations have been developed to include the influence of
applied load and specimen thickness on the plastic zone size factor α
[21]. Considering plastic zone size for plane stress as reference size rp,0,
a normalized thickness =τ t r/ p,0 is introduced. Eq. (10) was proposed to
describe the thickness effect in a linear relation between plain stress
and plain strain [21,29]. It is emphasized that the plastic zone factor is
strongly dependent on load, as it quadratically affects rp,0 through K by
Eq. (9).
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π
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π τ
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3

2
3

2.5
2.5 1

1
3 (10)

The strip yield model was developed by Dugdale and Barenblatt
considering small scale yielding conditions as a complement to linear
elastic fracture mechanics [32]. The model assumes that all deforma-
tion concentrates in a strip in front of the crack. As depicted in Fig. 4,
elastic-plastic behavior is approximated by superimposing two elastic
solutions for a through crack of length +a r2 2 p in an infinite plate in
plane stress. Remote tension over the entire crack length is supple-
mented with closure stresses at both crack tips over a length rp the
length of the long, slender plastic zone. The closure stress is equal to the
yield stress of material. By superposition (expressing that no singularity
should occur at the tips of the virtual extended crack having length

+a r2 2 p), =α π/8 is calculated [30]. This value is substantially dif-
ferent from the Irwin’s approach, and this plane stress plastic zone size
r′p,0 ≠r( )p,0 can be used as reference size.

Guo extended the strip model three-dimensionally to obtain valid
solutions for plates of finite thickness [34]. A global plastic constrain
factor was introduced to include effects of out-of-plane and in-plane
constraint to simulate three-dimensional effects in a two-dimensional
crack analysis, as shown in Eq. (11):

⎜ ⎟= ⎛
⎝

⎞
⎠

r π K
ησ8p

y

2

(11)

For elastic-perfectly plastic materials, =η 1 in plane stress, and as
plate thickness increases, η approaches the plane strain value

= − ≈η ν1/(1 2 )( 2.5)max . Then, the upper bound of α is ≈π/8( 0.393), and
its lower bound is − ≈π v(1 2 ) /8( 0.063)2 , as denoted in Eq. (12):

⎧

⎨
⎪

⎩⎪

=

= −α

π
η

π

π
η

π v

8 8

8
(1 2 )

8

min
2

max
2

2

(12)

Between plane stress and plane strain, η is highly dependent on
stress levels. A unified curve of η against normalized thickness =τ t r/ p

'
,0

'

was obtained, independent of material yield strength, stress level and
geometry. For real materials, a minor dependency on the strain hard-
ening exponent n, from the Ramberg-Osgood stress-strain relationship,
was observed [35]. Fig. 5 illustrates the influence of τ′ and strain
hardening on η for an elastic-perfectly plastic material (n being infinite)
and a real strain hardening material with n=10. Both were evaluated
by finite element analysis [34]. The mathematical description of these
curve is based on an iterative procedure described in [34] and not re-
peated here.

2.3. Development of extended Wheeler model with account for out-of-plane
constraint

In the section above, it was already pointed out that the traditional
and modified Wheeler’s models assume a fixed coefficient αfor the es-
timation of plastic zone size. However, Fig. 6 demonstrated a de-
pendency of α on τ , which in turn is influenced by the applied load
level. Hence, overload events may have a different plastic zone size
coefficient than the follow-up load cycles.

Instead of considering a constant α assumption, a variable α ac-
cording to load is used for an updated theoretical derivation of ω and
RSO. A more general formula for ω is found by a corrected shut-off
overload ratio RSO

' for the Wheeler model, Eq. (13):

= = = =R
r

r
α K

α K
α
α

R R R
·
·SO

p OL

p

OL OL OL
SO α SO

, max,
2

max
2

(13)

In other words, a correction factor Rα is introduced to account for
the load dependency of α. Shut-off overload ratios RSO are typically
measured as a ratio of SIFs when crack arrests, so a transformation to
RSO

' is needed for an accurate use of the extended Wheeler model. In
case a constant value is assumed, =R 1α and the extended Wheeler
model is fully equivalent to the Wheeler model.

3. Cycle-by-cycle crack propagation analysis

As stated above, crack tip plasticity models analyze each applied
cycle individually. Therefore, a numerical framework was developed in
Python to be able to process a long load history in an automated, cycle-
by-cycle way. A schematic overview of this algorithm is given in Fig. 7.

Before the analysis is started, the input load history is translated into
a block sequence. It is basically a series of blocks in which every block
contains the maximum and minimum applied SIF of the block-specific
fatigue cycle and the number of experimentally applied cycles. There
are different ways to translate load histories with grouped blocks of
sequence, which are likely to produce different retardation effects. Such
translations are outside of scope of this paper, here assumes block
loading as a starting point of the analysis.

Once the block of load sequence has been defined, the state of the
load interaction zone needs to be initialized. The active plastic zone is
the largest plastic zone (PZ), possibly caused by an earlier overload
cycle, while the current plastic zone is formed by the latest cycle. In the
following sections, the cycle-by-cycle analysis framework will be ap-
plied to fatigue crack growth rate tests. The input needed for initializing
both plastic zones can be derived from the fatigue pre-cracking history
of the test specimens. It can be assumed that at the end of this
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procedure no load interaction effects were in play, meaning that both
plastic zones are equal and can be defined by the initial crack length
and the maximum SIF applied during pre-cracking.

After initialization, the first cycle of the first load block is loaded
and analyzed. Firstly, the sizes of the current and active plastic zones
are compared to decide whether load interaction occurs. After pre-
cracking this is not the case, so the active PZ, which is defined as
overload elastic-plastic interface with size of rp OL, in Fig. 2, is updated to
the current plastic zone. The crack growth law calculates the increment
based on the unaltered SIF values and updates the current PZ based on
the calculated increment. Further in the load spectrum, an overload can
be applied. If the condition for retardation is true, the unmodified SIF
values are sent to the crack tip plasticity model, which will alter the
input for – or output from – the crack growth law. The modified in-
crement is then used to update the current PZ. Note that the active PZ is
not updated since load interaction is occurring.

During the simulation, SIF should be updated cycle-by-cycle based
on the load and crack size. This proved straightforward for the la-
boratory tests reported below, using specimens for which analytical K
solutions are available. Differently from analytical solutions for stan-
dard geometries, it is impossible for arbitrary geometries to calculate
SIF every cycle during the load history because of computational con-
sumption. The framework of Fig. 7 is capable to predict SIF by calcu-
lating it intermittently (based on Extended Finite Element Modelling,
XFEM) instead of each cycle. Fig. 8 shows examples of comparison
between analytical solution and numerical solution of ESET (eccen-
trically-loaded single edge crack tension) and CT (compact tension)
specimens. Hereby, the dimensionless stress intensity factor is defined
as Y in Eq. (14). More details are outside the scope of this study, and
reported in reference [36].

=K
p

t W
Y

(14)

4. Sensitivity analysis of governing parameters

In the crack growth retardation model, many parameters are in-
fluential, such as plastic zone size factor α, shaping exponent ω, fatigue
crack threshold KΔ th and shut-off overload ratio. A sensitivity study was
performed to analyze effects of these parameters based on a tested load
profile shown in Fig. 9 (see Section 5 for further detail). All fatigue
blocks of loading were applied with R=0.1, starting with a block load
having =KΔ 22.8 MPa m in order to initiate a stable crack growth.
Then, a single overload of =KΔ 32.2 MPa m was applied to create an
overload plastic zone. Retardation indeed occurred in the following
cycles. The load ranges decreased step-wisely in the following load
blocks as indicated in the figure.

Various crack growth predictions are shown in Fig. 10. The upper
dash-dotted line represents a reference case for which crack growth
retardation was neglected (i.e., corresponding with the Paris law). The
other lines represent predictions for different crack growth retardation
model parameters, adopting the original Wheeler model. The Irwin’s
model was used to calculated α values for the limit scenarios of plane
stress and plane strain.

A first observation is that α has a significant effect on the degree of
retardation, as the fatigue crack retards more in plane stress conditions
than in plane strain conditions. The explanation is that a higher α (less
constrained crack tip) will result in a larger plastic zone. A larger plastic
zone size leads to a higher degree of retardation factor and then a lower
crack growth rate. It turns out that a correct estimation of plastic zone
size is a precondition to achieve accurate crack growth predictions.

Secondly, a strong influence of the shaping exponent ω on crack
growth retardation is demonstrated. On the one hand, some effects of α
and ω can be separated: α rather affects the duration of retardation,
whereas ω rather influences the degree of retardation (initial crack
growth slope following an overload). On the other hand, there is a

coupled effect: the influence of α (plane stress and plane strain) is more
pronounced for higher values of ω.

In Fig. 11, it is clear that ω can vary significantly as a function of
load range, so it is not correct to simplify ω as a constant value in the
original and modified Wheeler models. The threshold stress intensity
factor range is also an influencing parameter, as an increase of KΔ th

results in a decrease of ω. Note that KΔ th is relatively sensitive to stress
ratio R, according to the following empirical equation [37]:

= −K K RΔ Δ (1 )th th
Y

0 (15)

where KΔ th0 represents the fatigue crack growth threshold for R=0; γ
is a shaping exponent that varies between 0 and 1, typically 0.5 for mild
steels and 0.7–0.9 for pearlitic steels. In practical terms, KΔ th generally
does not change much, so its influence will be moderate [38]. The in-
fluence of shut-off overload ratio RSO on crack growth predictions is
plotted in Figs. 12 and 13. In Fig. 12, similar to what Fig. 11 shows,
retardation is quite sensitive to RSO and difference between plane stress
and plane strain is even more pronounced. A lower RSO increases ω and
the degree of retardation, as the overload ratio ROL is quite close to
shut-off. As shown in Fig. 13, when RSO approaches the ratio of the
single overload ( =R 1.5OL ), the retardation becomes very close to crack
arrest.

5. Comparison with experimental data

This section compares crack growth predictions using different
crack tip plasticity-based retardation models against experimental fa-
tigue crack growth rate data, obtained from high strength low alloy
steels.

5.1. Material properties and specimen configuration

Different load sequences were applied to 15mm thick eccentrically-
loaded single edge crack tension (ESET) specimens of DNV F460 steel,
which is widely used in offshore structures. The configuration of ESET
specimens was designed according to the ASTM E647 [39] as shown in
Fig. 14. Before testing, specimens were fatigue pre-cracked up to a
minimum predefined crack length of about 50% of the specimen width
as suggested in the standard. Mechanical properties of DNV F460 steel
are listed in Table 1. Particularly, C and m are experimentally obtained
Paris-Erdogan parameters.

In Fig. 6, the range of τ values obtained during the ESET tests are
shown as a shaded band, along with their corresponding α values ac-
cording to Irwin’s model and strip yield model. τ was in the range be-
tween 11.5 and 187.0. The figure indicates that the tests had tendency
towards plane strain. Nonetheless, the strip yield model would indicate
large variations of α (between 0.063 and 0.393 for perfectly plastic
material). These variations would not be captured when using Irwin’s
plasti zone model, as shown in the same figure. For that reason, the
strip yield model will be considered for all further analyses in this
paper.

5.2. Experimental evaluation of crack growth retardation models

Three ESET tests were performed with different block load se-
quences. The rationale behind these sequences is motivated in reference
[4] and briefly summarized hereunder. All loading cycles were applied
with R=0.1, allowing to use the experimentally calibrated Paris law as
a reference, since it was also obtained at this load ratio. The first test
comprises a low-high-low sequence with a single cycle overload at peak
as shown in Fig. 9, in order to identify necessary material parameters.
The second specimen was tested with a low-high-low sequence of block
loadings. The third block load sequence was rather random, allowing to
check retardation effects in more complex situations. The load se-
quences are depicted further below in Figs. 17 and 19.

The Wheeler shaping exponent ω is a key parameter to calculate the
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retardation effect in the original Wheeler model, ω is calibrated as
Wheeler did originally [6] under strip yield modelunder a plane strain
plastic zone in the Irwin model. By adjusting the value of ω, the original
Wheeler model fitted the experimental data best with =ω 3.3, as shown
as green curve in Fig. 15.

Besides the values mentioned above, RSO for the modified Wheeler
model and RSO

' for the extended Wheeler model were required. It is
noticed in Fig. 13 that the sensitivity of crack growth to RSO increases
rapidly as it approaches the applied overload ratio ROL. According to
the experimental data obtained in different overload cases, all ROL va-
lues are plotted as a function of Kmax (shown upper in Fig. 16); and are
distinguished into two groups indicating whether the crack arrests or
continues to grow. The assumption of a constant value RSO does not
agree with experimental results. In fact, in the range of Kmax between 5
and 15.5 ∙MPa m , an increasing trend of RSO was observed. In order to
describe the behaviour of RSO, the available crack arrest and growth
data were used as upper and lower bounds to gauge the value. An es-
timation function for RSO was suggested, shown as the blue curve in
Fig. 16. This function will be applied within the modified Wheeler
model. Similar to RSO, all RSO

' values derived from Eq. (13) are plotted
as a function of Kmax in the bottom part of Fig. 16. An estimation
function for RSO

' is proposed and will be applied within the modified
and extended Wheeler model.

In the following calculations of another two loading cases, the out-
of-plane constraint is considered, the strip yield model was applied to
obtain the plastic zone size factors in terms of normalized specimen
thickness. The average of shut-off ratio and corrected shut-off ratio
between upper and lower bound is considered as the load level de-
pendent value for this study.

Firstly, the low-high-low sequence of the second test (shown in
Fig. 17) was input. Boundaries between blocks are also indicted by
vertical thin red lines in Fig. 18. The strip yield method was used to
calculate plastic zone size in the original (with =ω 3.3), modified and
extended Wheeler models. he strip yield model was preferred because it
yields a more sensible effect of out-of-plane constraint on α in the range
of tested conditions, compared to Irwin’s plasticity model (recall Fig. 6).
In line with our expectations, good correlations are observed in the first
five blocks, where no interaction between loads yields, as illustrated in
Fig. 18. Following the block with the largest loads, which is the fifth,
the retardation effect starts. The black dashed line is the simulation
result without any load interaction applied. Both the modified and
extended Wheeler models predict the retardation effect better than the
analysis without load interaction. Hereby, the extended Wheeler model
gives a better agreement than the modified Wheeler model. The original
Wheeler model yields the best agreement, This is considered due to the
fact that the extended Wheeler model is based on a more accurate de-
scription of plastic zone size.

To further evaluate the agreement of different Wheeler model pre-
dictions, the semi-random load sequence from Fig. 19 has been input. A
mix of overloads were consisted in the scenario. In Fig. 20, the original
model gives good correlation, which confirms the validity of Wheeler
model again. The experimental agreement of the modified Wheeler
model is moderate. In this case, the extended Wheeler model shows the
best agreement with experimental data. Since extended Wheeler model
has a fully theoretical background while the original one requires the
use of a well-tuned empirically ω value, the extended Wheeler model is
deemed more convincing.

So far, all extended Wheeler model simulations were based upon the
strip yield model. Fig. 21 compares its predictive ability to that of an
extended Wheeler model assuming Irwin’s plastic zone calculation.
Compared with the strip yield model, crack growth predictions deviate
more strongly from the experimental data. This is hypothetically due to
the observation that the strip yield model provides a more sensible view
on out-of-plane constraint effects in Fig. 6.

Looking back to the first test load, prediction of extended model
reasonably agrees with the experimental data under the first test load as

well (Fig. 21). Hence, the performance of the extended Wheeler model
is similar to that of the original Wheeler model in the test that was used
to calibrate the latter, and better in two other tests. Based on these
observations, it is suggested that the extended Wheeler model provides
an improvement to the original model.

6. Conclusions

In this work, the fatigue crack propagation under variable ampli-
tude analysis within a DNV F460 steel was numerically predicted and
compared with experimental data. A numerical framework based on
cycle-by-cycle plastic zone analysis was established to achieve fatigue
crack propagation simulations with a limited computational cost. The
baseline for the proposed crack retardation model is the original
Wheeler model and a reported modified Wheeler model. The proposed
model is based on a more accurate representation of plastic zone size,
taking into account effects of out-of- plane constraint (ratio of thickness
to plastic zone size). An evolution of shut-off load ratio as a function of
stress intensity factor is required to calibrate its parameters, and this
evolution can be experimentally obtained. This paper proposes a
method to include and calculate the effect of load level on the shape
exponent of Wheeler’s retardation factor.

The capabilities of the new extended Wheeler model were compared
with original and modified Wheeler models, by means of comparison
with experimental crack growth data within laboratory tests comprising
variable amplitude loading. Combining the extended Wheeler model
with the strip yield plastic zone model yields highly accurate re-
presentations of the experimental data. It is concluded that the ex-
tended Wheeler model offers an opportunity for more accurate fatigue
crack growth prediction than the established models, due to its sounder
theoretical basis, good predictive abilities and the purely experimental
nature of its parameter calibration.
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