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SHQ1 regulation of RNA splicing is required
for T-lymphoblastic leukemia cell survival
Hexiu Su1,2, Juncheng Hu2, Liang Huang 3, Yang Yang4, Morgan Thenoz5, Anna Kuchmiy6, Yufeng Hu7,

Peng Li 8, Hui Feng 9, Yu Zhou 4, Tom Taghon6, Pieter Van Vlierberghe 5, Guoliang Qing 2,7,

Zhichao Chen1 & Hudan Liu2,7

T-acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with

complicated heterogeneity. Although expression profiling reveals common elevated genes

in distinct T-ALL subtypes, little is known about their functional role(s) and regulatory

mechanism(s). We here show that SHQ1, an H/ACA snoRNP assembly factor involved in

snRNA pseudouridylation, is highly expressed in T-ALL. Mechanistically, oncogenic NOTCH1

directly binds to the SHQ1 promoter and activates its transcription. SHQ1 depletion induces

T-ALL cell death in vitro and prolongs animal survival in murine T-ALL models. RNA-Seq

reveals that SHQ1 depletion impairs widespread RNA splicing, and MYC is one of the most

prominently downregulated genes due to inefficient splicing. MYC overexpression sig-

nificantly rescues T-ALL cell death resulted from SHQ1 inactivation. We herein report a

mechanism of NOTCH1–SHQ1–MYC axis in T-cell leukemogenesis. These findings not only

shed light on the role of SHQ1 in RNA splicing and tumorigenesis, but also provide additional

insight into MYC regulation.
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T-cell acute lymphoblastic leukemia (T-ALL) is a lethal and
aggressive hematological malignancy that frequently affects
children and adolescents, and accounts for approximately

10–15% of newly diagnosed pediatric ALL. Although clinical
complete remission is approaching 90% due to the implementa-
tion of intensive chemotherapy protocols, the outcomes of
patients with relapsed or refractory T-ALL remain poor, with
cure rates of less than 40%1. This clinical challenge has fueled
considerable research into the molecular understanding of T-ALL
pathogenesis which has yielded immense progress in the past
decade2. Gene expression profiling of T-ALL cases has led to the
identification of subgroups of T-ALL, each characterized by
aberrant expression of one particular transcription factor such as
TAL1, TLX1, and LMO1/23,4. Genome-wide sequencing has
identified numerous somatic gene mutations in T-ALL, in which
NOTCH1 gain-of-function mutations are found in >50% of T-
ALL cases5 and FBW7, the gene encoding the NOTCH1 E3 ligase,
is mutated with impaired activity at the rate of 12%6,7. These
findings have vaulted the dysregulated NOTCH1 signaling to the
center of T-ALL pathogenesis8.

Activation of NOTCH1 signaling initiates with association to
ligands of the Delta/Serrate/Lag-2 (DSL) family on neighboring
cells. This interaction elicits a series of proteolytic cleavage
terminated by γ-secretase. As a result, intracellular NOTCH1
(ICN1) is released from the cell membrane and translocates
into the nucleus, activating downstream responder genes by
forming a transcriptional activation complex9. Persistent activa-
tion of NOTCH1 signaling, due to NOTCH1 gain-of-function
and/or FBW7 loss-of-function mutations, triggers overexpression
of multiple oncogenes in T-ALL. MYC has been demonstrated
as a major downstream target of NOTCH1 which plays an
essential role in T-cell leukemogenesis10–12.

Pseudouridine (Ψ), a C5-glycoside isomer of uridine, is
the most abundant posttranscriptional modification in cellular
RNAs13. Pseudouridines in ribosomal RNA (rRNA) and small
nuclear (snRNA) are essential for the correct function of
the ribosome and spliceosome14,15. In higher eukaryotes,
pseudouridylation is mainly governed by a family of box
H/ACA snoRNPs (small nucleolar ribonucleoproteins), con-
sisting of a unique box H/ACA snoRNA and four common
core proteins (Cbf5/NAP57/Dyskerin, Nhp2/L7Ae, Nop10, and
Gar1). The RNA component serves as a guide that base
pairs with the substrate RNA and directs the enzyme Cbf5
to carry out the pseudouridylation reaction at a specific site16.
During the assembly process of H/ACA snoRNPs, SHQ1
functions as an assembly chaperone that protects the Cbf5
protein complexes from non-specific RNA binding and aggre-
gation before its assembly with H/ACA snoRNA17. As such,
abrogation of SHQ1 activity results in assembly failure and loss
of H/ACA snoRNP function18,19. Despite well-documented
mechanism of SHQ1 in H/ACA snoRNP biogenesis, little is
known about its precise functional role, especially in human
diseases such as cancer.

We herein define a vital role of SHQ1 in supporting T-cell
leukemogenesis. Sustained SHQ1 expression, induced by onco-
genic NOTCH1, is essential for T-ALL cell growth in vitro
and leukemogenesis in vivo. The profound role of SHQ1
in leukemogenesis relies on successful H/ACA snoRNP
assembly, enabling efficient global pre-mRNA splicing. We
also identify MYC, whose splicing and expression are highly
dependent on SHQ1, as an important downstream effector
mediating the tumor-supporting role of SHQ1. These findings
provide important insights into how SHQ1-mediated RNA
modification and pre-mRNA splicing affect tumorigenesis, and
also deepen our understanding of posttranscriptional regulation
of oncogene MYC.

Results
SHQ1 is highly expressed in T-ALL. To screen common elevated
genes with tumorigenic potential, we compared gene expression
profiles of 117 diagnostic pediatric T-ALLs with 7 normal bone
marrow (BM) controls20. A total of 97 genes were enriched with
more than 1.5-fold upregulation in T-ALL (p < 0.01, unpaired t-
test). One notable finding in this gene cluster was SHQ1,
encoding an essential factor involved in H/ACA snoRNP bio-
genesis and RNA splicing (Fig. 1a and Supplementary Data 1).
Analysis of the Cancer Cell Line Encyclopedia (CCLE) demon-
strated SHQ1 is most highly expressed in T-ALL among
1036 human cancer cell lines21 (Fig. 1b). Assessment of multiple
human leukemia databases confirmed significant increase in
SHQ1 expression in T-ALL as compared to normal BM22,23

(Fig. 1c) or other hematological malignancies24 (Fig. 1d). In
addition, previously published genome-wide expression profiling
data from normal and malignant T cells25 confirmed significant
higher SHQ1 expression in primary human T-ALL (n= 64) as
compared to CD4+CD8+ normal human thymocytes (Fig. 1e).
Furthermore, primary T-ALL cells harboring NOTCH1 activating
mutations showed higher SHQ1 protein expression than a T-ALL
case with wild-type NOTCH1 or normal thymocytes (Fig. 1f).
In line with the observations in human T-ALL, murine T-ALL
cells with NOTCH1 activating mutations/truncations had
greater SHQ1 expression than normal thymocytes (Fig. 1g).
Taken together, we identify a global upregulation of SHQ1 in
T-ALL.

NOTCH1 directly activates SHQ1 expression in T-ALL. To
understand the molecular mechanism underlying SHQ1 upre-
gulation in T-ALL, we performed in silico analysis to identify
potential transcription factor binding cis-elements in the
SHQ1 locus. NOTCH1, GATA3, TAL1 and MYC were pre-
dicted to activate the SHQ1 promoter (Supplementary Fig. 1a).
We individually knocked down each of these transcription
factors in human T-ALL JURKAT cells and found that only
depletion of NOTCH1 induced SHQ1 downregulation (Sup-
plementary Fig. 1b-1f). We then blocked NOTCH signaling
using γ-secretase inhibitor (GSI) Compound E in T-ALL cells.
As shown in Fig. 2a, NOTCH inactivation decreased SHQ1
mRNA and protein levels in seven T-ALL cell lines and four
primary patient-derived T-ALL cells. Again, genetic inactiva-
tion of NOTCH by expression of dominant negative MAML
(DNMAML) in HPB-ALL cells diminished SHQ1 mRNA
(Supplementary Fig. 2a). Conversely, overexpression of intra-
cellular NOTCH1 in either human HPB-ALL or murine T6E
cells remarkably bolstered SHQ1 expression in the presence
of NOTCH inhibitor (Supplementary Fig. 2b). Moreover, gene
expression profiling in 174 primary T-ALLs revealed a strong
and significant correlation between SHQ1 and NOTCH1-
regulated signature genes including NOTCH1 itself (Fig. 2b)
as well as NOTCH3 or LZTFL126 (Supplementary Fig. 2c).
Using three individual normal thymus specimens as control,
we further verified these findings in 11 Chinese T-ALL patient
samples, and found that SHQ1 was generally more abundant in
leukemia cells with enhanced NOTCH1 activation, as judged by
ICN1 production (Fig. 2c). These data support the presence of
NOTCH1–SHQ1 axis in human T-ALL.

Importantly, removal of Compound E immediately reversed
GSI-mediated inhibition of SHQ1 expression, even in the
presence of protein synthesis inhibitor cycloheximide (Supple-
mentary Fig. 2d), suggesting a direct NOTCH1 transcriptional
activation of SHQ1. In support of this prediction, chromatin
immunoprecipitation-sequencing (ChIP-Seq) analysis revealed a
NOTCH1 binding signal proximal to the SHQ1 transcription
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start site27,28. The association of NOTCH1 was completely
abolished in the NOTCH off state. Similarly, NOTCH1 inhibition
compromised the binding of RBPJ, an essential component of the
NOTCH1 transcriptional complex, to the SHQ1 promoter
(Fig. 2d). Conventional ChIP validated NOTCH1 association
with the SHQ1 promoter, with the HES1 promoter analyzed as
a positive control. Consistently, blockade of ICN1 generation
by Compound E disrupted this interaction (Fig. 2e). Tentative

NOTCH1 binding sites of SHQ1 were constructed into a
luciferase reporter vector; wild-type, but not mutant, DNA
sequences are sufficient to activate luciferase expression when co-
transfected with ICN1-expressing constructs (Fig. 2f). Our data
provide compelling evidence that nuclear NOTCH1 specifically
binds to the SHQ1 promoter for direct transcriptional activation
which may be the primary molecular mechanism underlying
elevated SHQ1 expression in T-ALL.
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SHQ1 is required for T-ALL cell survival. To clarify the role
of SHQ1 in T-ALL cell viability, we knocked it down in human
T-ALL cells with two short hairpin RNAs (shRNAs) (Fig. 3a
and Supplementary Fig. 3a). These shRNAs were cloned into
modified pLKO.1 vector, in which the puromycin-resistant
gene was substituted by the green fluorescent protein (GFP)
gene29. As shown in Fig. 3b and Supplementary Fig. 3b, not
only SHQ1 deficiency in HPB-ALL and KOPTK1 cells but also
in primary T-ALL resulted in marked cell growth inhibition.
Consistently, SHQ1-depleted cells lost growth advantage as per-
centages of GFP+ populations dramatically declined over time,
while cells expressing control shRNA remained unaffected
(Fig. 3c and Supplementary Fig. 3c). Notably, SHQ1 ablation
induced noticeable apoptotic cell death in HPB-ALL, KOPTK1,
and primary T-ALL cells, yet minimally affected normal bone
marrow cells (Fig. 3d, e and Supplementary Fig. 4a-4b). In
addition, we also analyzed SHQ1 function in normal murine
thymus and murine T-ALL cells, and consistently found heigh-
tened cell death in leukemia cells upon SHQ1 inactivation as
compared to normal thymocytes (Supplementary Fig. 4c). Time
course cell viability assay showed that SHQ1 ablation resulted in
poor cell survival in T-ALL but not in normal bone marrow,
confirming an essential role of SHQ1 in the survival of trans-
formed T cells (Fig. 3f). Cell cycle was not affected as a result of
SHQ1 deficiency (Supplementary Fig. 4d-4e), suggesting that
SHQ1 inactivation imposes a cytotoxic, rather than cytostatic,
effect on T-ALL cells.

To evaluate the role of SHQ1 in different tumor types, we
inactivated SHQ1 in B-ALL (RS4;11), acute myeloid leukemia
(AML) (HL-60), chronic myeloid leukemia (CML) (K562), and
lung cancer (A549) cell lines. B-ALL, AML, and CML cells were
all sensitive to SHQ1 inactivation, whereas lung cancer cells were
not (Supplementary Fig. 5a). In line with this observation, high
SHQ1 expression was associated with poor prognosis of T-cell
lymphoma and AML, while it predicted favorable outcome in
lung cancer (Supplementary Fig. 5b). Based on these data from
various tumor types, we reason that SHQ1 may exert variable or
even opposing roles in different tumor contexts.

SHQ1 depletion impedes T-cell leukemogenesis in vivo. To
assess the role of SHQ1 in leukemogenesis, we established a
doxycycline-inducible SHQ1 knockout JURKAT cell line using
CRISPR/Cas9 system and transplanted these cells into immuno-
compromised NPG mice, using non-specific single-guide RNA
(sgRNA) targeting GFP as a control. Prior to transplantation,
inducible SHQ1 deletion was confirmed to suppress JURKAT cell
growth in vitro (Supplementary Fig. 6). At 10 days post

engraftment, animals were randomly divided into two groups.
Doxycycline (200 mg kg−1) was administrated for consecutive
7 days to induce Cas9 expression and sgRNA-mediated cleavage
(Fig. 4a). Mice bearing sgGFP-expressing JURKAT cells suc-
cumbed to T-ALL within 35 days, regardless of doxycycline
treatment or not. In contrast, doxycycline treatment significantly
improved animal survival rates and prolonged life span of mice
transplanted with sgSHQ1-expressing JURKAT cells (Fig. 4b),
associated with efficient SHQ1 depletion (Fig. 4c). Consistently,
mice bearing SHQ1-deficient cells manifested ameliorated sple-
nomegaly and more reddish bones (Fig. 4d), as well as suppressed
CD45+ leukemia cell dissemination in the BM and spleen
(Fig. 4e, f). Immunohistochemical (IHC) staining confirmed that
SHQ1 deficiency significantly decreased human CD45+ leukemia
burden and cell proliferation (reflected by proliferating cell
nuclear antigen (PCNA) staining) in the spleen (Fig. 4f). Similar
results were obtained when we examined another HPB-ALL
xenografts in which shRNA-mediated SHQ1 silencing also
decreased T-ALL burden in vivo (Supplementary Fig. 7).

We next evaluated the role of SHQ1 in NOTCH1-induced T-
ALL using retroviral ICN1 transduction and fetal liver cell
transplant model. The retroviral vector MSCV-IRES-GFP30

allows co-expression of ICN1 and shRNA-of-interest in one
construct. Retroviruses expressing empty vector, ICN1/control
shRNA or ICN1/murine SHQ1 shRNA, with GFP as an
expression marker, were transduced into hematopoietic stem/
progenitor cells (HSPCs) from fetal livers of donor mice31,32. We
then transplanted these HSPCs into irradiated recipients and
assessed the onset of frank leukemia among these mice (Fig. 5a).
Mice expressing ICN1/control shRNA succumbed to T-ALL in
about 2 months, whereas most mice expressing ICN1/murine
SHQ1 shRNA remained alive when ICN1/control shRNA mice
became moribund (Fig. 5b). Compared to the in vivo expansion
of HSPCs transduced with ICN1/control shRNA, SHQ1 depletion
significantly decreased accumulation of GFP+ cells (34.5% vs
83%), in which neoplastic CD4+CD8+ lymphoblasts were vastly
reduced (24.9% vs 81.5%) (Fig. 5c), resulting in more reddish
bones and much smaller spleen size (Fig. 5d). Again, PCNA
staining manifested decreased cell proliferation in the spleen
associated with diminished SHQ1 expression as a consequence of
shRNA-mediated gene silencing (Fig. 5e). Notably, SHQ1
depletion had minimal effect on HSPC homing efficiency
(Supplementary Fig. 8), ruling out the possibility that the
phenotype of delayed leukemogenesis was due to defective
homing or engraftment of HSPCs. Therefore, results from two
complementary murine T-ALL models demonstrate that SHQ1
plays a vital role in T-ALL initiation and progression.

Fig. 1 Specific high SHQ1 expression in T-ALL. a Heatmap of top 97 highly expressed genes in 117 pediatric T-ALL samples in comparison to 7 normal bone
marrow cells (BM). Unsupervised hierarchical cluster was analyzed from GSE26713. A total of 77 T-ALL samples are characterized by oncogenic
rearrangements, including TAL/LMO (n= 36), TLX (n= 29), MYB translocations (n= 2), and HOXA activating rearrangements (n= 10). Samples without
such abnormalities are identified as Unknown (n= 40). Average gene expression from each category of T-ALL was compared to that in normal BM.
Common genes highly expressed in T-ALL are clustered and shown in a descending order as to gene expression levels in T-ALL (left; red indicates
increased and blue decreased) (see Supplementary Data 1). Distributions of SHQ1 mRNA expression derived from the heatmap are presented on the right.
b, c SHQ1 expression was analyzed among 1036 human cancer cell lines in CCLE database (https://portals.broadinstitute.org/ccle) (b), as well as other
primary T-ALLs and normal BM (left, 46 T-ALL samples in GSE28497; right, 11 T-ALL samples in GSE7186) in (c). d Expression analysis of SHQ1 among
2096 primary samples of hematological diseases and BM (GSE13159). e SHQ1 expression was analyzed from gene expression profiling of 64 human T-ALL
samples and 4 normal CD4+CD8+ thymocyte samples. Above all, sample numbers are shown in parentheses. The distributions of SHQ1mRNA expression
are presented as log2 median-entered intensity and shown in box-and-whisker plots with the median value (line), the interquartile range (box), and up
to 1.5× the interquartile range (bars). Unpaired t-test was used for statistic analysis in (c–e). f Immunoblots of SHQ1 in 3 normal thymus and 5 primary
T-ALL patient samples. NOTCH1 mutation status in primary T-ALL is also provided. These samples were obtained from Belgium and labeled as B1–B5.
g Immunoblots of murine SHQ1 in normal C57BL/6 thymus cells as well as 2 primary murine T-ALL samples KrasG12D/NOTCH1L1601P (L1601P), KrasG12D/
NOTCH1L1601PΔP (L1601PΔP), and 2 murine T-ALL cell lines T6E and G4A2. ACTIN serves as a loading control
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Fig. 2 Intracellular NOTCH1 directly binds to and activates SHQ1. a Seven T-ALL cell lines and four primary T-ALL cells were subjected to GSI (Compound E,
1 μM) or DMSO treatment for 24 h. SHQ1 mRNA and protein levels were subsequently determined by quantitative polymerase chain reaction (qPCR) and
immunoblots. b Correlation of SHQ1 expression with NOTCH1 in 174 primary T-ALL samples (GSE13159) with mRNA levels presented as log2 median-
entered intensity. Pearson’s correlation coefficient (R)= 0.481, p < 0.001, paired t-test. c Immunoblots of SHQ1 and ICN1 in additional 11 primary T-ALL and
3 normal thymus samples. d Chromatin landscapes around the SHQ1 locus in HPB-ALL (GSE58406) and CUTLL1 (GSE51800) cells. The associations of
nuclear NOTCH1 and RBPJ with the SHQ1 transcriptional start region are shown with respect to NOTCH1 active or inactive state. e Binding of ICN1 to the
SHQ1 or HES1 promoter was analyzed by ChIP in SIL-ALL cells with or without GSI treatment (Compound E, 1 μM) for 24 h. Averages of fold enrichment
between ICN1 and isotype IgG are shown. α-N1 denotes antibodies against ICN1. f Schematic presentation of two potential RBPJ-binding sites
proximal to the SHQ1 transcription initiation site. Luciferase assays were carried out with SHQ1 DNA sequence (−441 to −194) or HES1 promoter cloned
into pGL3-basic vector; reporter activities relative to empty pGL3 vector without ICN1 are presented as average fold induction. Data shown represent the
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SHQ1 depletion affects pre-mRNA splicing. As a crucial factor
for the assembly of H/ACA snoRNPs19, SHQ1 loss often leads to
degradation of the associated snoRNAs18. We confirmed the
diminished expression of scaU93, an H/ACA snoRNA respon-
sible for U2 snRNA pseudouridylation at the 54 site33, in SHQ1-
depleted HPB-ALL cells (Fig. 6a). As expected, an in vitro N-
cyclohexyl-N-(2-morpholinoethyl)-carbodiimid-methop-toluol-
sulfonate (CMC)-primer extension pseudouridylation assay34

manifested less U2 snRNA pseudouridylation in SHQ1-deficient
cells (Supplementary Fig. 9). We reasoned that inefficient
U2 snRNA modification would impair mRNA splicing. RNA-Seq
was then performed in HPB-ALL and KOPTK1 cells expressing
SHQ1 or control shRNA to assess pre-mRNA splicing. Splicing
analysis was restricted to reads directly spanning exon–intron or
exon–exon junction sequences (HPB-ALL, 61,456 junctions in
6809 genes; KOPTK1, 78,976 junctions in 7905 genes). Reads
spanning exon–intron junctions are considered as unspliced form
(a) and reads across exon–exon junctions as spliced form (b).
Intron retention (IR) ratio (a/b) reflects the magnitude of pre-
mRNA accumulation (Fig. 6b). As predicted, SHQ1 depletion
caused widespread intron retention reflected by increased IR
ratios (Fig. 6c). Indeed, 81% of genes in HPB-ALL and 73% of
genes in KOPTK1 cells exhibited differential intron retention

upon SHQ1 inactivation (Fig. 6d). Intron-retaining pre-mRNAs
often fail to complete mRNA maturation and are commonly
degraded via quality control mechanisms35. We then focused on
the most downregulated genes with splicing alteration in SHQ1
loss and selected five candidates, RNA polymerase II-associated
protein 2 (RPAP2), ATP citrate lyase (ACLY), checkpoint kinase 1
(CHEK1), MYC, and cyclin-dependent kinase 6 (CDK6) (Fig. 6d).
Their increased intron retentions were validated in SHQ1-
depleted HPB-ALL (Fig. 6e) and primary T-ALL cells (Supple-
mentary Fig. 10), consequently leading to decreased mature
mRNA and protein levels (Fig. 6e, f). As a major proto-oncogene
in T-ALL10,36, MYC gained our attention. To test whether SHQ1
globally affects T-ALL-associated oncogenes or specifically reg-
ulates MYC, we examined MYC, AKT1, NOTCH1, TAL1, and
LMO2 expression in response to SHQ1 loss. Only MYC expres-
sion was significantly decreased (Fig. 6g), which is consistent
with the findings from RNA-Seq (Fig. 6d and data not shown).
We thus identify MYC as one of the most prominent genes
downstream of the NOTCH1–SHQ1 axis.

SHQ1 modulatesMYC gene splicing and expression. To further
analyze MYC pre-mRNA splicing, we expressed a minigene
carrying MYC intron 2 and flanking exons in 293T cells
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(Supplementary Fig. 11). SHQ1 knockdown led to noticeable
accumulation of unspliced RNA, resulting in less mature RNA.
We observed a more profound defect on minigene splicing upon
pharmacological inhibition of NOTCH which was significantly
reversed by exogenous expression of SHQ1 (Fig. 7a). Endogenous
MYC in HPB-ALL cells was also assessed with primers designed
to amplify pre-mRNA (E1–I1 and E2–I2) and mature mRNA
(E1–E2 and E2–E3). As shown in Fig. 7b, mature MYC mRNA,

but not pre-mRNA, was significantly reduced in SHQ1 knock-
down cells. Again, deregulation of endogenous MYC splicing
upon NOTCH inhibition was efficiently rescued by SHQ1 over-
expression (Supplementary Fig. 12). More importantly, dimin-
ished MYC expression upon SHQ1 ablation in vivo was also
confirmed in JURKAT cell xenograft (Fig. 7c) and fetal liver cell
transplant (Fig. 7d).
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We next analyzed MYC-regulated aerobic glycolysis upon
SHQ1 deficiency and found significantly impaired glucose uptake
and lactate secretion in SHQ1-depleted HPB-ALL and
KOPTK1 cells (Fig. 7e and Supplementary Fig. 13a), associated
with downregulation of MYC target genes implicated in glycolysis
(Fig. 7f and Supplementary Fig. 13b). Notably, these glycolysis
defects were efficiently rescued by enforced MYC expression

(Supplementary Fig. 13c). To evaluate the role of SHQ1-regulated
MYC in cell viability, we overexpressed MYC in JURKAT cells,
in which doxycycline treatment induced SHQ1 knockout (Supple-
mentary Fig. 6). MYC-overexpressed cells significantly ameliorated
cell apoptosis resulting from SHQ1 depletion (Fig. 7g). Enforced
MYC expression also rescued cell death caused by SHQ1
inactivation in HPB-ALL and KOPTK1 cells (Supplementary
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Fig. 13d) as well as murine T-ALL T6E cells (Fig. 7h). Conversely,
murine T-ALL 8946 cells constitutively expressing a human MYC
transgene10, which does not require RNA splicing for expression,
were more refractory to SHQ1 depletion. When doxycycline
treatment switched off MYC expression, SHQ1 depletion induced
more severe growth inhibition, presumably due to suppression of
endogenous murine Myc expression (Fig. 7h). Collectively, these
results provide strong evidence supporting that SHQ1 serves an
important role in modulating MYC splicing and MYC acts as a
crucial downstream effector mediating the function of SHQ1 in
T-ALL cell survival.

Discussion
Based on gene expression profiling analysis, we identify that
SHQ1, whose expression is aberrantly upregulated in T-ALL,
contributes to leukemogenesis. We demonstrate SHQ1,
directly driven by NOTCH1, is required for T-ALL cell survival
in vitro and expansion in vivo. This important role of SHQ1
attributes to the assembly of H/ACA snoRNPs that mediates
snRNA pseudouridylation and mRNA splicing. We here
provide mechanistic evidence demonstrating regulation of MYC
splicing by SHQ1 as an important event involved in T-cell leu-
kemogenesis (Fig. 8), thus revealing the tumor-supporting role

Fig. 7 SHQ1 regulation of MYC gene splicing and expression is important for T-ALL cell survival. a MYC minigene splicing was analyzed in 293T cells
expressing control (Ctrl) or SHQ1 shRNA (sh1 or sh2) (top), and also in 293T cells expressing SHQ1 or empty vector in the presence of DMSO or GSI
(Compound E, 1 μM) (bottom). Semi-quantitative RT-PCR was performed to analyze unspliced and spliced RNA. Splicing efficiency was calculated and
shown as the ratio of spliced verse total RNA. b Schematic of MYC gene with three exons and two introns. Specific primer sets were designed to amplify
pre-mRNA (E1–I1 and E2–I2) and mature mRNA (E1–E2 and E2–E3) (left). Endogenous MYC pre-mRNA and mature mRNA in HPB-ALL were analyzed by
qPCR (right). Blue, red, or purple bars represent indicated RNA quantifications in control shRNA, SHQ1 shRNA-1, or -2-expressing cells. c Representative
immunohistological images of MYC in spleen sections from mice bearing sgSHQ1-JURKAT cells injected with or without doxycycline (Fig. 4d). Scale bar,
50 μm. Histological stain was quantified using ImageJ and plotted on the right. d Immunoblots of SHQ1 and MYC in GFP+ cells from 3 fetal liver HSPC
transplant samples in Fig. 5d. e HPB-ALL cells were infected with lentiviruses expressing control (Ctrl, blue) or SHQ1 shRNA (sh2, purple). Glucose uptake
and lactate secretion were examined 4 days post infection, normalized to the same number of live cells. f Analysis of MYC target genes implicated in
glycolysis by qPCR and immunoblots in control or SHQ1-deficient HPB-ALL cells 4 days post infection. Blue or purple bars represent indicated RNA
quantifications in control shRNA, SHQ1 shRNA-2-expressing cells. g SHQ1 inducible-knockout JURKAT cells were overexpressed withMYC or blank control.
Cell death was analyzed and quantified with (purple) or without (blue) doxycycline (Dox, 1 μg ml−1). h Cell growth was assessed using murine T-ALL T6E
and 8946 cells. T6E cells were infected with MSCV-shControl (Ctrl, black), MSCV-shmSHQ1 (shmSHQ1, blue), MSCV-shControl-MYC (MYC OE+Ctrl,
red), or MSCV-shmSHQ1-MYC (MYC OE+shmSHQ1, purple) as denoted. Sorted GFP+ cells were used for cell growth analysis (left). In all, 8946 cells
were infected with MSCV-shControl (Ctrl) or MSCV-shmSHQ1 (shmSHQ1). Sorted GFP+ cells were subjected to doxycycline treatment (1 μg ml−1) to
suppress human MYC transgene expression (MYC off+Ctrl, red; MYC off+shmSHQ1, purple), with PBS treatment as a control (Ctrl, black; shmSHQ1,
blue), followed by cell growth analysis (right). Data shown represent the means (±SEM) of three biological replicates; *p < 0.05, **p < 0.01, ***p < 0.001;
n.s. non-significant, unpaired t-test (b, c, e, f, g, h)
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of SHQ1 in human cancers that links SHQ1 to RNA splicing and
leukemogenesis.

Regulatory mechanism and functional role of SHQ1 in human
cancers are largely unknown. Using T-ALL as a model system,
we reveal a molecular mechanism underlying SHQ1 expression
in human cancers. NOTCH1 transcriptional complex directly
binds to the promoter region of SHQ1 and activates its tran-
scription. Given aberrant, sustaining NOTCH1 activation in
T-ALL, this regulatory mechanism may explain common eleva-
tion of SHQ1 expression in various T-ALL subtypes. Consistently,
previous publications suggest that SHQ1 expression is dependent
on NOTCH1 activity in T-ALL11,26. Being an important effector
downstream of NOTCH1 signaling, enhanced SHQ1 expression
is essential for T-ALL cell survival. Similarly, SHQ1 plays an
essential role in B-ALL, AML, and CML cells, and high SHQ1
expression correlates with poor prognosis in T-cell lymphoma
and AML. However, SHQ1 deficiency in lung cancer cell line
A549 induces minimal cell death and higher expression of SHQ1
is associated with better overall survival in lung cancer patients.
These findings are agreeable to prior reports that non-small
cell lung cancer37 and prostate cancer38–41 exhibit aberrantly
low expression or genomic deletion of SHQ1. Based on these
data from various tumor types, we reason the supporting or
suppressing role of SHQ1 in human cancers is highly context
dependent probably through regulating splicing of distinct
downstream genes.

Our in-depth mechanistic analysis reveals that SHQ1 mod-
ulates MYC splicing and expression. In line with prior reports
that NOTCH1 directly activates MYC transcription through
exquisite mechanisms27,36,42, these findings add an extra layer
of complexity on MYC regulation by SHQ1, H/ACA snoRNPs,
and spliceosomes. When exploring the molecular mechanism
underlying specific regulation of MYC splicing by SHQ1, we
identified a putative branch site (5′-UCCUG (A) C-3′) within
MYC intron 2. The nucleotide base paired with pseudouridine
(Ψ) in U2 snRNA is guanine (G) or cytosine (C) instead of the
common nucleotide adenosine (A) (Supplementary Fig. 14a).
Generally the presence of Ψ enables more efficient association
between U2 snRNA and pre-mRNA substrate13. In this case,
splicing of MYC intron may be more dependent on Ψ because
this modification improves the capacity and flexibility of
unconventional base pair with G or C. As predicted, mutagenesis
of G/C to A in the MYC minigene significantly ameliorated the
splicing defect resulting from SHQ1 inactivation (Supplementary
Fig. 14b), presumably due to a more stable U–A pair to initiate
splicing process to some extent. It is notable that similar cis-
elements are found in other candidate genes whose splicing
and expression are markedly affected by SHQ1 loss (Supple-
mentary Fig. 14c), suggesting a potential, common mechanism
involved in SHQ1-regulated splicing.

Additional effectors downstream of SHQ1 may contribute
to T-ALL as well. Indeed, our screen identifies CDK6 as a SHQ1
responder and their expression correlates to each other in
primary T-ALLs (Supplementary Fig. 15). Inhibition of CDK6
leads to remarkable anti-leukemia effect in T-ALL cell lines as
well as mouse model43,44. Modulation of other T-ALL-associated
pro-oncogenic genes suggests that SHQ1 may coordinate a
leukemogenic program enabling T-cell transformation. SHQ1 is
also responsible for telomerase RNP assembly and important
for telomere maintenance19, yet its function in T-ALL seems to
be telomere independent. Expression of telomerase H/ACA RNA
(hTR) and reconstitution of telomerase activity failed to rescue
T-ALL cells from SHQ1 depletion (Supplementary Fig. 16).
Similar findings were reported in neuroblastoma that telomere
reconstitution was unable to restore H/ACA snoRNP loss of
function45.

Taken together, our data suggest that T-ALL may have an
increased dependency on SHQ1-mediated snRNA pseudour-
idylation and functionally intact spliceosome. Oncogene activa-
tion has been shown to increase total RNA and protein
production in various tumor contexts. While such increases in
RNA and protein production may endow cancer cells with
pro-tumorigenic hallmarks, this increase in synthesis may also
generate heightened burden on cancer cells to process these
macromolecules properly46. Our findings provide an example
that, in order to adapt the oncogenic stress, NOTCH1 activates
the expression of SHQ1 which optimizes snRNA modification
and maximizes spliceosomal potential to accommodate greater
volumes of total RNA. As such, partial modulation or inhibition
of spliceosome may be detrimental to T-ALL cells. Hence,
our findings highlight the indispensable role of SHQ1 for
optimal spliceosome function in T-ALL which may offer ther-
apeutic opportunity for T-ALL patients by targeting of SHQ1 or
spliceosome.

Methods
Cell culture. The 293T, JURKAT, and CCRF-CEM cells were purchased from
American Type Culture Collection (ATCC). Human T-ALL cell lines SIL-ALL,
HPB-ALL, KOPTK1, CUTLL1, and DND41, and murine T-ALL cell lines T6E,
G4A2, and 8946 were kindly provided by Dr Warren Pear (University of Penn-
sylvania). T-ALL cell lines were grown in complete RPMI-1640 (Hyclone) sup-
plemented with 10% fetal bovine serum (FBS, Hyclone), 1% penicillin/
streptomycin (Hyclone), 1% non-essential amino acids (Gibco), 2 mM L-glutamine
(Sigma), 1 mM sodium pyruvate (Sigma), and 100 μM β-mercaptoethanol (Sigma).
Primary T-ALL cells were co-cultured with MS5-DL1 feeder cells in WIT-L
medium supplemented with stem cell factor (SCF) (50 ng ml−1), interleukin (IL)-2
(10 ng ml−1), IL-7 (10 ng ml−1), and insulin-like growth factor-1 (10 ng ml−1)47.
Human normal bone marrow cells were maintained in minimum essential
medium-α supplemented with 20% FBS and granulocyte-colony stimulating factor
(50 ng ml−1). The 293T cell was maintained in Dulbecco's modified Eagle's med-
ium (DMEM; Hyclone) containing 10% FBS and 1% penicillin/streptomycin
(Hyclone). All cell lines were authenticated using the variable number of tandem
repeats PCR assay, cultured for fewer than 6 months after resuscitation, and tested
for mycoplasma contamination every 3 months using MycoAlert (Lonza)48.
Human primary specimens were obtained with informed consents from Center for
Medical Genetics, Ghent University, Ghent, Belgium; Center for Cancer Research,
Boston University School of Medicine, Boston, USA; Guangzhou Institutes of
Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Union
Hospital and Tongji Hospital, Wuhan, China.

RNA extraction and quantitative real-time PCR. Total cellular RNA was
extracted using TRIzol (Invitrogen) and random primed RNAs (1 μg) were reverse
transcribed with RevertAid first-strand complementary DNA synthesis kit
according to the manufacturer’s instructions (Thermo Scientific). Quantitative PCR
was conducted using FAST SYBR Green Master Mix on CFX Connect Real-Time
PCR System (Bio-Rad). Relative expression of the mRNA was calculated by 2−ΔΔCt

method and normalized to ACTIN. Specific PCR primer sequences are listed in
Supplementary Table 1.

Immunoblotting. Cells were lysed with RIPA buffer (50 mM Tris-HCl pH 7.4,
150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 2 mM
sodium pyrophosphate, 25 mM β-glycerophosphate, 1 mM EDTA, 1 mM Na3VO4,
and 0.5 μg ml−1 leupeptin), and protein concentrations determined using Bradford
reagent (Bio-Rad). 30–50 μg total cellular proteins were then subjected to SDS-
polyacrylamide gel and transferred to polyvinylidene difluoride membrane
(Bio-Rad). After being blocked with 5% fat free milk, blots were generally incubated
with primary antibodies at 4 °C overnight. Appropriate horseradish peroxidase-
conjugated secondary antibodies were applied for 1–2 h at room temperature
before detection with SuperSignal Chemiluminescent Substrate (Bio-Rad).
Densitometric analyses of protein abundance were determined by ImageJ software.
All uncropped blotting images are presented in Supplementary Fig. 17 and 18.
Antibodies used in the experiments include β-ACTIN (1:2000, A5441, Sigma-
Aldrich), SHQ1 (1:500, ab110692, Abcam), MYC (1:1000, sc-764, Santa Cruz),
TAL1 (1:1000, sc-393287, Santa Cruz), CHEK1 (1:1000, sc-8408, Santa Cruz),
CDK6 (1:1000, A1545, ABclonal), GATA3 (1:1000, A1638, ABclonal), ACLY
(1:1000, #4332, Cell Signaling Technology), cleaved NOTCH1 (1:1000, #4147, Cell
Signaling Technology), HK2 (1:1000, #2106, Cell Signaling Technology), LDHA
(1:1000, #2012, Cell Signaling Technology), GLUT1 (1:1000, ab652, Abcam) and
PKM2 (1:1000, ab38237, Abcam).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06523-4

12 NATURE COMMUNICATIONS |  (2018) 9:4281 | DOI: 10.1038/s41467-018-06523-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ChIP assay. ChIP was performed using human T-ALL SIL-ALL cells10,49. These
cells were treated with dimethyl sulfoxide (DMSO) or Compound E (1 μM, Merck)
for 24 h, then fixed with 1% paraformaldehyde at room temperature for 10 min.
Cells were subjected to a Bioruptor Pico Sonifier to shear chromatin DNA to a size
range of 500–1000 bp. Precleared chromatin was immunoprecipitated with anti-
serum against intracellular NOTCH1 or rabbit IgG (sc-3888, Santa Cruz Bio-
technology) for 16 h at 4 °C. Antibody–chromatin complexes were pulled down
with protein G agarose/salmon sperm DNA beads (Roche) (1 h, 4 °C). The eluted
material was reverse-cross-linked and treated with proteinase K (40 μg ml−1).
Immunoprecipitated DNA was purified by phenol/chloroform extraction, eluted by
distilled H2O, and quantified by CFX Connect Real-Time PCR System (Bio-Rad)
using specific primers listed in Supplementary Table 1.

Luciferase reporter assay. The wild-type or mutant SHQ1 promoter sequences
were amplified using specific primers listed in Supplementary Table 1. The
resulting DNA fragments were constructed into pGL3-basic firefly luciferase
reporter vector (Promega). To detect luciferase reporter activity, 0.8 μg pGL3
expressing the SHQ1 promoter (or empty vector) and 0.2 μg pcDNA3-ICN1
plasmid, along with 50 ng pRL-TK Renilla luciferase reporter construct, were co-
transfected into 293T cells using Lipofectamine 2000 (Thermo Fisher Scientific).
Luciferase activities were measured 24 h later using Dual Luciferase Reporter Assay
System (Promega)49. Firefly luciferase activities were normalized with Renilla
luciferase control values, and relative to values from the empty vector lysate.

Lentiviral or retroviral transduction. For viral production, lentiviral vectors
pLKO.1 or pCDH were used for plasmid construction and transfected into
293T cells simultaneously with helper plasmids (pMD2.G and psPAX2); retroviral
vectors MSCV-IRES-GFP or MigR1 were used for plasmid construction and
transfected into 293T cells simultaneously with packaging plasmids (pCgp and
pHIT). Viral supernatants were generally collected 16–24 h post transfection.
Transduction of T-ALL cells was carried out as follows49. 1 × 106 cells were
incubated with 0.5 ml viral supernatant and 8 μg ml−1 polybrene (Sigma) in a final
volume of 2 ml for 0.5 h, and subjected to centrifugation at 1000 × g for 90 min at
room temperature. Cells were then supplemented with 3 ml fresh medium and
continued culture for additional 48 h.

Flow cytometry analysis. Cells with GFP fluorescence or stained with indicated
antibodies were resuspended in phosphate-buffered saline (PBS). Acquisition was
performed on an Accuri C6 (BD Biosciences) and live cells were gated based on FSC-
A and SSC-A characteristics. Data were analyzed with FlowJo software (TreeStar).
Flow cytometric sorting was conducted using a FACS Aria (BD Biosciences).

Inducible SHQ1 knockout cell generation. DNA sequences encoding specific
sgRNA were constructed into pLX-sgRNA vector according to the instruction
(#50662, Addgene). Inducible Cas9 JURKAT cells were generated as described50.
JURKAT cells were infected with lentivirus expressing pCW-Cas9 (#50661, Addgene),
selected by puromycin (2 μgml−1) for 48 h, and clonally sorted into 96-well tissue
culture plates containing 200 μl of media. Upon doxycycline (1 μgml−1) treatment,
the single colony with the greatest fold change in Cas9 expression was selected for
further pLX-sgGFP or pLX-sgSHQ1 lentiviral transduction. Positive colonies were
subsequently screened out by blasticidin (10 μgml−1) treatment for 72 h.

Human T-ALL xenograft. JURKAT xenografts were carried out as previously
described48,49. The 4–6-week-old female NPG mice (Beijing Vital River Laboratory
Animal Technology Co., Ltd.) were irradiated at 1 gray before tail vein injection of
2 × 106 JURKAT cells infected with inducible Cas9 and SHQ1 sgRNA (or GFP
sgRNA). Weekly monitoring of mice for circulating leukemia cells in peripheral
blood was performed by analysis of human CD45 expression with flow cytometry.
At 10 days post engraftment, mice expressing each specific sgRNA were randomly
divided into two groups, and subjected to intraperitoneal injection of doxycycline
(200 mg kg−1) or normal saline for 7 days. Mice were killed when demonstrating
characteristic disease symptoms or becoming moribund. Cells were then isolated
from spleens by mechanical disaggregation and red blood cell lysis, and collected
from bone marrow by flushing of femurs with PBS. The human CD45 surface
marker was assessed by flow cytometry analysis of leukemia burden in vivo. Spleen
sections were prepared for immunohistochemistry staining. This work was per-
formed under animal ethical regulations and the study protocol was approved by
the Institutional Animal Care and Use Committee of Wuhan University.

Fetal liver cell transplantation. Fetal liver cell transplantation was performed as
previously described51. Day 13.5–16.5 pregnant C57BL/6 mice (Beijing Vital River
Laboratory Animal Technology Co., Ltd.) were killed to obtain fetal livers which
were minced and grown at approximately 3 × 106 cells ml−1 in conditions sup-
porting hematopoietic stem cell growth. Cells were grown in 37% DMEM
(Hyclone) and 37% Iscove's modified Dulbecco's medium (Hyclone) supplemented
with 20% FBS (Hyclone), 2% L-glutamine (200 mM), 100 Uml−1 penicillin/strep-
tomycin, 50 nM 2-mercaptoethanol, 4% 0.45 μm filtered WEHI-3B supernatant,
0.2 ng ml−1 recombinant murine IL-3, 2 ng ml−1 recombinant murine IL-6, and
20 ng ml−1 recombinant murine SCF (PeproTech). The retroviral vector used in

this study was a modified MSCV-IRES-GFP vector30, kindly provided by Dr.
Chong Chen from Sichuan University, China, which allows co-expression of ICN1
and shRNA targeting SHQ1 (or GFP). Retroviruses expressing MSCV-IRES-GFP
(empty vector), MSCV-shControl-ICN1-IRES-GFP, or MSCV-shSHQ1-ICN1-
IRES-GFP were transduced into fetal liver cells cultured in vitro. For bone marrow
reconstitution experiments, 6–8-week-old C57BL/6 recipient mice were subjected
to lethal irradiation (9 gray), and reconstituted 6 h later with a total of 2 × 106 GFP
+ infected fetal liver cells by tail vein injection. Mice received enrofloxacin-
containing drinking water for 2 weeks post transplant. GFP+ or CD4+CD8+ cells
in peripheral blood were subsequently analyzed by flow cytometry to trace the
onset of leukemia. Mice were monitored for survival and killed when moribund or
demonstrating obvious clinical distress. Single-cell suspensions from bone marrow
and spleen were processed for flow cytometry and gene expression analysis.
Spleen sections were prepared for immunohistochemistry staining. This work was
performed under animal ethical regulations and the study protocol was approved
by the Institutional Animal Care and Use Committee of Wuhan University.

Immunohistochemistry. The IHC analysis was carried out using Histostain-Plus
IHC Kit (Thermo Fisher Scientific)49. Paraffin-embedded tissue sections were
incubated with the antibodies against CD45 (1:100, 13–9457, eBioscience), SHQ1
(1:100, ab110692, Abcam), c-Myc (1:200, sc-764, Santa Cruz), or PCNA (1:200, sc-
56, Santa Cruz) overnight at 4 °C. These slides were then subjected to horseradish
peroxidase-linked secondary antibodies for 1 h at room temperature. Staining was
visualized by the DAB substrate kit (Vector Labs) and representative areas of each
stained tissue section were imaged at ×400 magnification. ImageJ software was used
to quantify the staining results.

RNA-seq. HPB-ALL or KOPTK1 cells were infected with pLKO.1-shRNA against
SHQ1 or GFP control lentiviruses and cultured for 48 h, followed by puromycin (2
μg ml−1) selection for additional 48 h. Total RNA was isolated using Trizol reagent
(Thermo Fisher Scientific). RNA samples were rRNA depleted, and RNA libraries
were constructed using TruSeq RNA Library Prep Kit v2 (Illumina) and sequenced
as 150 bp paired-end reads by Illumina HiSeq 2000 (Beijing Annoroad Co. Ltd).
RNA-seq NGS reads quality was evaluated using FastQC. Efficiency of RNA
splicing was analyzed as previously described46. Briefly, reads were mapped to the
human genome reference assembly (hg19) using Bowtie 2. The ratio of
exon–intron reads to exon–exon reads was calculated as junction IR. Mature
mRNA expression was determined by normalized RPKM values (Reads Per
Kilobases per Million reads) of aligned exon–exon transcripts. We restricted the
above-mentioned analyses to high confidence genes with an average of at least 10
total junction reads and RPKM ≥100 in the control samples. The heatmap was
generated using Cluster 3.0 and TreeView software.

Minigene assay. Human MYC intron 2 and about 500 bp of flanking exonic
sequences were amplified by PCR from genomic DNA and cloned into a hybrid
minigene pBluescript KS construct (a generous gift from Dr. Hai-Ning Du, Wuhan
University). pLKO.1-SHQ1 shRNA or pCDH-SHQ1 plasmid (1 μg) were indivi-
dually transfected into 293T cells using Lipofectamine 2000 (Thermo Fisher Sci-
entific) in a final volume of 1 ml. After 24 h, the MYC minigene was transfected
into 293T cells prior to additional 24 h of cell culture. Cells were then harvested
and RNA was isolated, reverse transcribed, and subjected to PCR analysis (30 s at
94 °C, 30 s at 57 °C, 60 s at 72 °C; 30 cycles)52. The resulting PCR products were
separated on a 1% agarose gel. Unspliced and spliced minigene bands were
quantified using ImageJ and values were calculated as ratios of spliced/total RNA
products. The PCR primers used are shown in Supplementary Table 1.

Glucose uptake and lactate secretion assays. Glucose uptake and lactate
secretion analysis were carried out using respective colorimetric assay kits
according to the manufacture’s instruction (BioVision). Briefly, 4 × 105 cells were
inoculated in each well of 6-well plates. After 48 h of incubation, cell culture media
were collected to quantify glucose and lactate. Consumed glucose and released
lactate were calculated and normalized to the same live cell numbers.

Statistical analysis. Log-rank analysis was used to evaluate differences in
Kaplan–Meier survival curves. Kolmogorov–Smirnov test was applied to analyze
empirical cumulative distributions of IR scores in splicing analysis. Other statistical
analysis was calculated using two-tailed Student’s t-test, with p < 0.05 considered
significant.

Data availability
RNA-Seq data that support the findings of this study have been deposited in Gene
Expression Omnibus with the accession code GSE117264. All other relevant data are
available from the corresponding authors.
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