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A multi-scale model of nociception pathways 
and pain mechanisms
Abstract: To develop suitable pain management policies and drug delivery assist de
vices for analgesia (i, e., pain alleviation), it is necessary to have a mathematical model 
which captures the essential dynamics of this complex process, Recent work points to 
the fact that pain can be characterized by several dynamic stages, including anoma
lous diffusion and spatio-temporal dependency on tissue characteristics. This chap
ter presents a physiologically based mathematical framework to capture nociceptor 
pathways and pain reception, transmission and perception, in the human body. The 
main difference with previous studies is the explicit incorporation of fractional calcu
lus tools as a natural way to characterize biological phenomena. Next, we observe the 
effects in skin impedance in the presence of nociceptor stimulation. For this purpose, 
a prototype device has been carefully designed to allow for the application of a non- 
invasive measurement protocol. Bio-electrical skin impedance captures the changes 
in tissue content at various time instants, sensor locations, and stimulus trains. The 
existence of a memory effect - or residual pain - is observed from the data.
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1 Introduction

Pain is rather a subjective and personal sensation, especially in awake and aware in
dividuals [26,40]. The self-evaluation metrics often become biased by the tissue mem

ory, i. e., perception of pain in its absence, or artificially elevated levels of pain due to

Acknowledgement: This chapter has been financially supported by Flanders Research Center, grant 
nr. G026514N and G008113N, and post-doctoral fellowship grant nr.l2B3415N (C. M. lonescu). Part of 
this work has been carried out within COST Action CA15225, a network supported by COST (European 
Cooperation in Science and Technology).

Clara M. lonescu, Dana Copot, Department of Electrical energy, Metals, Mechanical Constructions 
and Systems, Research group on Dynamical Systems and Control, Ghent University, Technoiogiepark 
914, 9052 Ghent Zwijnaarde, Belgium, e-mails: claramihaela.ionescu@ugent.be, 
4ana.copot@ugent.be
Cristina Muresan, Department of Automation, Technical University of Cluj Napoca, Memorandumului 
nr28, Cluj, Romania, e-mail: cristina.muresan@aut.utcluj.ro

tlttps://dol.org/10,1515/9783110571905-004

mailto:claramihaela.ionescu@ugent.be
mailto:4ana.copot@ugent.be
mailto:cristina.muresan@aut.utcluj.ro


56 C, M. lonescu et al.

anxiety, discomfort, and fear [7]. The most frequently used tools to assess acute pain 
are the numeric rating scale (NRS) and the visual analog scale (VAS), ranging from 0 
(no pain) to 10 (excessive pain), e. g., by means of the Wong-Baker faces scale.

However, many critically ill patients are unable to communicate effectively be
cause of cognitive impairment, sedation, paralysis, or unconsciousness (e. g., due 
to general anesthesia). Another group unable to communicate pain are neonates 
and infants [12]. As such, no single tool is universally accepted for use in the non- 
communicative (anesthetized) patient [20, 16]. When a patient cannot express him
self, observable indicators - both physiologic and behavioral - have been treated as 
pain-related indicators to evaluate the pain level [14]. Thus the numbers are simply 
estimates of the perception of the pain, based on past personal experience of the 
caregiver.

The state of absence of pain due to medication is referred to as analgesia. It is 
important to admit that patient analgesic needs can differ depending on clinical cir
cumstances, and that for any given patient therapeutic targets are likely to change 
over time, mainly due to drug trapping [4]. Thus, achieving patient comfort and en
suring patient safety, including avoidance of over- and under-dosage, relies on accu
rately measuring pain, agitation, sedation, and other related variables. This should 
be evaluated with validated tools that are easy to use, precise, accurate, and suffi
ciently robust to include a wide range of behaviors. From the point view of analgesia 
and chronic pain management, the community is still missing an adequate pain mea
surement tool based on objective processing of information. A comprehensive review 
of available tools to extrapolate on pain levels is given in [2].

A linear input-output-based model was identified by performing thermal cold 
stimuli into dental nerves and measuring the resulting electrical activity correlated to 
pain [9]. The model was a simple second-order transfer function with damping fac
tor and impulse response corresponding to measured electrical activity in interdental 
nerves. This crude model was further improved to better approximate the intra-patient 
variability and plasticity of pain sensation after repeated stimuli [8]. Further in vivo 
tests indicated that modulation is present in the electrical activity when pain is per
ceived by the subject, suggesting thus that a frequency dependence is necessary. 
Non-linear terms in sine and cosine functions have been introduced in [10] to predict 
this non-linear effect.

Somewhat later, a review of multi-scale processes involved in nociception and 
pain sensation has been made, summarizing all steps from thermal stimuli [45], Al
though the review provides an excellent overview, it concludes that the mechanistic 
processes are far from being well understood and that engineering tools need to be 
further employed for delivering useful models for assessing pain in humans. A model 
for electrical activity aroused from thermal nociceptor detection and transmission at 
the neuronal level is then given. Later studies on thermal pain indicated the presence 
of adaptability and variability in pain sensation as a result of the noxious stimu
lus intensity degree and the pattern of stimulation [27]. In engineering terms, this
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5 due to variability of disturbance profiles (i. e., stimuli) and thus the excitatory in- 
iut to the measured response variation provides a spatio-temporal change in the 
lathway. Simple linear models of classical system engineering theory can no longer 
apture such changes without increasing the complexity of the problem formula- 
ion.

2 Physiological background

The detection of stimuli that are capable of producing tissue injury is termed noci- 
:eption. These primary sensory neurons have cell bodies in the dorsal root ganglia 
rr in the trigeminal ganglia and possess naked peripheral endings that terminate in 
:he sldn, mostly in the epidermis (upper layer of the skin) [33]. Nociceptors, the re
ceptors of pain, are the first unit in the series of neurons related to nociceptive pain. 
They transduce mechanical, chemical, and thermal energy into ionic current (noxious 
stimuli result in depolarizations that generate action potentials), conduct the action 
potentials from the peripheral sensory neurons to the central nervous system (CNS), 
and convert the action potentials into neurotransmitter release at the presynaptic ter
minal [33].

In peripheral nerves, nociceptors have unmyelinated (C-fibres) or thinly myeli
nated (d5-fibres) axons [25]. Nociceptors have a lower conduction velocity compared 
to other peripheral sensory nerve fibres. Generally, the Ad-fibres have a medium 
diameter of 2-6 pm with a conduction velocity of 12-30 m/s. In comparison, the C- 
fibres have a small diameter of 0.4-1.2 pm with a conduction velocity of 0.5-2 m/s. 
These types of fibres account for the fast and slow pain responses, respectively. Of 
another type of fibres, the large-diameter AjS-fibres, the conduction velocity is about 
30-100 m/s.

According to the response to different stimuli, nociceptors can be further classified 
as high-threshold mechanoreceptors, chemoreceptors, temperature-sensitive recep
tors (heat/cold), polymodal nociceptors, and mechano-insensitive (silent) nocicep
tors, About 70 % of the Ad-fibre nociceptors are mechanical, 20 % are mechano-heat, 
and 10 % are mechanic-cold nociceptors [25].

Ion channels in the plasma membrane of nociceptors have a key role in the trans
duction of stimuli; these are proteins located in the cell membrane that selectively me
diate the transmembrane transportation of specific ions or molecules. The ion chan
nels include heat activated channels, capsaicin receptor-dependent channels, adeno
sine triphosphate (ATP)-gated channels, proton-gated channels, nociceptor-specific 
voltage-gated NA+ channels, and mechano-sensitive channels,

All these types of channels are essentially converted from closed to open states 
by mainly three types of stimulus: thermal (threshold 43 °C), mechanical (threshold 
0.2MPa), and chemical. The voltage-gated channels are the most important. These
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respond to membrane depolarization or hyperpolarization and are substantial to the 
generation and transmission of electrical signals along axons. When a noxious stim
ulus reaches a nociceptor, the corresponding ion channels will be opened, which will 
induce a transmembrane current and increase the membrane voltage. When this volt
age increases to the threshold, specified sodium channels will open in a positive feed
back mode that results in the depolarization of the membrane, eventually generating 
an action potential.

Primary afferent nociceptors mostly terminate in the spinal cord, which has an im
portant role in the integration and modulation of pain-related signals. Second-order 
neurons receiving input from nociceptors and projecting to the brain are located in 
both superficial and deep laminae of the dorsal horn [25]. These cells often have con
vergent inputs from different sensory fibre types and different tissues. Both pre- and 
post-synaptic elements are strongly gated by descending excitatory and inhibitory in
fluences from the brain. The inhibitory influences use neurotransmitters that are mim
icked by some analgesic drugs.

During consciousness, using MRI, it is possible to identify those brain areas di
rectly related to pain [25, 24]. Such a stimulus reliably leads to activation of multiple 
brain areas, jointly termed the pain matrix. Different areas represent different aspects 
of pain. The primary and secondary somatosensory cortices are activated to discrim
inate the location and intensity of a painful stimulus. The anterior cingulate cortex, 
frontal cortex, and anterior insula regions may be related to the cognitive and emo
tional components. The problem is that these areas show significant modulation de
pending on the context of the stimulus, e. g., degree of attention, anxiety, expectation, 
depression, and analgesic drug treatment.

There is an established relation between the nociceptor pathway and dynamics of 
potassium channels, i. e., the sodium-potassium pump, for signaling between intra
cellular fluid and extra-cellular fluid (ECF) in the biological tissue [33]. The observed 
increase in potassium concentration in the ECF varies between 0.1 and 10.0 mmol/L 
and depends on stimulation frequency, intensity, and duration [25]. In vitro valida
tion studies have been performed to verify the use of the proposed models for de
tecting changes in the concentration of these cations in controlled environment so
lutions [3].

From this initial step, we extrapolated that one may measure non-invasively the 
changes in the signaling pathways, by means of bio-electrical impedance, via the 
skin [43]. The proposed method for measurement is based on sending an excitatory 
electrical signal to the skin, while measuring its response as voltage and current 
changes. By changing the signaling conditions (i. e., with mechanical nociceptor 
stimulation) the impedance so measured changes its values as well, as a result of 
changes in the composition of the intra-cellular fluid and the ECF by the movement 
of the cations.
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Figure 1: Schematic overview of main sequences in nociceptor pathways and model rationale equiva
lent.

3 Multi-scale model development

Originating from our prior work on modelling biological tissue with fractional-order 
impedance models (FOIMs), the following extension is proposed. An overview of the 
processes and equivalence to model development is depicted in Figure 1, including 
changes at the molecular level.

The physiological pathway of pain can be described as four main processes [33]:
- transduction - when a stimulus is applied to the skin, the nociceptors located 

there trigger action potentials by converting the physical energy from a noxious 
thermal, mechanical, or chemical stimulus into electrochemical energy; 
transmission - the signals are subsequently transmitted in the form of action po
tentials (similar to pulse trains) via nerve fibers from the site of transduction (pe
riphery) to the dorsal root ganglion or the trigeminal ganglion, which then acti
vates the interneuron;

~ perception - the appreciation of signals arriving in specified areas in the cerebral 
cortex as pain; and

- modulation - descending inhibitory and excitatory input from the brainstem that 
influences (modulates) nociceptive transmission from the spinal cord.

The stimulatory effects of nociception are essentially considered an ultra-capacitor, 
which is represented by a non-rational form of a transfer function model in (jco)n, 
with n being any real number [31, 11]. Specifically, the skin-electrode interface, the
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stratum corneum, and ionic pathways can be modeled as elements in an electrical 
network. Various models describe this interface using constant or current-dependent 
resistive-capacitive equivalent circuits [39,32,15,13]. Using fraction expansion theory, 
a lumped F01M can be obtained as a fractional-order integral [19]. Similarly, transmis
sion in signaling pathways occurs via neuronal activity, already modeled with FOIMs 
from resistance-inductance equivalent electrical network elements [17], expressed by 
a fractional-order derivative.

The perception model based on combined exponential and power law functions 
seems to be a good candidate for capturing essential electrical activity modulated in 
the brain [1]. Plasticity in synaptic variance is introduced in a layer-based sensory area 
in the cortex by reverse node engineering modeling [37]. In the case of pain perception, 
the combined effect can be obtained by using the Mittag-Leffler function, which is well 
known to capture hybrid exponential and power law behavior in biological tissues 
[24, 41].

Diffusion of perception sensory activity in the brain using the Mittag-Leffler func
tion in the time domain corresponds to a non-integer-order derivative easily expressed 
in the frequency domain [44]. Layered activity can be represented by ladder networks 
with serial connection of RC cells. To account for plasticity, the RC cells are not iden
tical; instead they behave as a memristor with unbalanced dynamics. For instance, it 
is expected that the first pain perception is more intense than the second, given the 
latency of the delayed pain stimulus (i. e., sharp first increase followed by slowly de
caying tail).

Assuming the brain cortex area to be a porous tissue whose porosity varies (i. e., 
intra- and extra-cellular space tissue with different densities), one can model the 
changes in viscosity as a function of this porous density. It has been shown that 
fractional-order derivatives are natural solutions to anomalous diffusion equations 
[19, 24, 44, 28]. The use and physical interpretation of this very useful fractional 
calculus tool has been discussed in several works, e. g., [24, 30, 21, 22, 18], The net 
advantage of using the Mittag-Leffler function is that it allows for the introduction of 
memory formalism [38], therefore taldng into account the tissue rheology. The mixed 
area in brain tissue will introduce a dynamic viscosity and thus a dynamic perception 
of nociceptor-induced pain [42, 23], Finally, the perception and modulation activity 
can be characterized yet again by an FOIM as differ-integral (depending on the sign 
of the non-rational order) [44, 36].

In conclusion, a lumped FOIM comprising the main processes described above is 
given by

ZmM(s)=R + ^ + ^+Psa\ (1)

where au a2, a3 s (-1,0)u(0,1) and TD denotes transduction, TS denotes transmission, 
and P denotes perception. A calibration factor has been added, a gain R. It may be 
that not all terms in this model are necessary at all times, as some of the physiological
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rocesses may be impaired in some applications (e. g., analgesia will fix the effect of 
re perception term in P at zero) [5]. The units are arbitrary, as the model is defined as 
difference to the initial state of the patient - due to the use of fractional derivatives - 
nd not as absolute values. This enables patient specificity since no generic model is 
ssumed to be valid and thus broadcasts a new light upon the interpretation of such 
rodels.

Preliminaries

'tgure 2 depicts the flowchart of the measurement protocol. For this purpose, a proto- 
ype device has been developed, ANSPEC-PRO, depicted in Figure 3, and the electrode 
s placed in the hand palm.

Figure 3: Left: The ANSPEC-PRO prototype for non-invasive measurement of bio-electrical skin 
impedance. Right: Placement of the electrodes during proof-of-concept measurements; two current 
carrying electrodes (white, red) and one pick-up electrode (black).
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The measurement flowchart can be summarized as follows:
- design a multi-sine signal with 29 components in the frequency interval loo- 

1500 Hz, with step interval of 50 Hz; the multi-sine signal is sent with an amplitude 
of 0.2 mA, a factor 5 below the maximum allowed by clinical standards [6];

- send this signal and acquire the measured signals at sampling frequency of 
15 KHz;

- use a 3M three-point electrode sensor in the hand palm (CE-marked) (according 
to MDD93/42/EEC);

- measure current and voltage via a National Instruments (Texas, USA) device 
(cRI09074 with NI9201- and NI9263-slots);

- store the signals online or on the computer for further processing.

The computer is a laptop with the operating system Windows 7 Enterprise 64-bit and 
an INTEL(R) Core(TM) i7-6600U CPU@2.80GHz processor. A graphical user interface 
allows monitoring of signal quality.

The measurement requires three-point electrodes: two current carrying electrodes 
and one pick-up electrode. The latter measures the voltage without carrying any cur
rents; hence, no polarization occurs. All electrodes were placed on the palmar side of 
the hand (see Figure 3). A calibration of the measurements was performed for each vol
unteer by measuring for 10 minutes without nociceptor stimulus applied and without 
removing the electrodes.

The study was carried out on one healthy volunteer, without pain relief medica
tion treatment at the measurement moment. In this individual, two consecutive mea
surements were executed to investigate the repeatability and existence of pain mem
ory. Sensors were placed on the right hand and the nociceptor stimulation was ap
plied at the same location (i. e., the same hand). The protocol summarized in Table 1 
was applied.

Table 1: The time intervals and actions within the 10-minute measurement protocol. The P/NP de
note the acronym used in the figures to indicate the case.

Time interval (min) Nociceptor stimulation

0-2 Absent (NP1)
2-3 Present(PI)
3-6 Absent (NP2)
6-7 Present (P2)
7-10 Absent (NP3)

The measured signals are filtered for noise prior to the application of non-parametric 
identification methods [29]. Given the input is of sinusoidal type (Asin(mt)). the
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ipedance is a frequency-dependent complex variable evaluated as

Z(jco) =
Sxx(iw)

SXy(jw)
(2)

here S^ijco) denotes the auto-correlation spectrum of the signal, SXY{joJ) denotes 
e cross-correlation spectra between the input-output signals, w = 2nf is the an- 
ilar frequency in rad/s, with f being the frequency in Hz, and j = The Clas
cal periodogram filtering technique has been applied with no overlapping interval, 
ith windowing function Blackman implemented in the Matlab environment [29]. The 
rpedance is then evaluated every minute from online data streaming and plotted 
;ainst frequency. This is then a frequency response either in complex form (real and 
raginary parts), or in Bode plot form (magnitude and phase).

Results and discussion

he time-based current and voltage signals were acquired at a sampling frequency of 
i kHz. A snapshot of a small interval is depicted in Figure 4. In this figure one observes 
le input signal (current) remains the same at all times, while the recorded output 
gnals (skin response) undergoes changes between the NP and P intervals (recall the 
rotocol from Table 1).

0 50 100 150 200 250 300 350
Time (samples)

gure 4: Time-based input-output signals for a snapshot of the interval with absent (NP)/present (P) 
ociceptor stimulation.

he frequency response of the complex impedance calculated using (2) and illustrated 
y means of changes with respect to calibrated impedance prior to the test is depicted 
i Figure 5 for one individual test. In this figure one may observe the following: 

applying the same mechanical nociceptor stimuli, the real part of the impedance 
decreases from PI to P2, i. e., the level of perception of the pain is lower;
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Figure 5: Changes in impedance as a function of frequency by means of its real and imaginary parts, 
calculated per interval of absent (NRepresent (P) nociceptor stimulation.

- the impedance values during absence of nociceptor stimulation decrease from 
one interval NP1 to another, i. e., NP2, NP3, while NP2 overlaps with PI, i. e., the 
memory of the stimulation persists in the tissue.

For the same individual, for the pain PI interval, the fitting of the FOIM from (1) onto 
the frequency response complex impedance data is depicted in Figure 6. The fitting 
was again obtained using non-linear least squares identification, with steepest gradi
ent descent, in an iterative manner. Iteration was performed to avoid local minima and

-------- —--------------------------------- 1-------------------------------------------------1

----- Experimental

----NV-, - Model Fitting

______ _____

I_____________________________I______________________________!-------------------------------------------------
0 500 1000 1500

Figure 6: Identified FOIM for the raw impedance data PI.
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le number of iterations between the identified results varied between #2 and #4 in all 
ata. The iteration was stopped when the model parameters changed less than 5 %.

It is important to understand that the method and models developed here are 
niquely defined for each individual. In other words, the reporting of the model values 
, not relevant here because the data are expressed with respect to the initial moment 
f measurement, whereas the state of the patient is taken as a reference. Hence, all 
alues reported are in fact calibrated for that reference value of impedance and each 
idividual has his/her own initial state values.

The use of FOIMs is now justified by the data in some sense that, indeed, tissue 
lemory exists and it is a feature naturally explained with properties of mathematical 
rodels from fractional calculus. The detailed description of properties of FOIMs has 
een given in numerous other reports, hence it is omitted here [24,30].

The data are nevertheless relevant, for they support a method, a device, and math- 
matical models to provide an indication of change in bio-electrical impedance mea- 
ured via skin electrodes correlated with absence/presence of nociceptor stimulation, 
'his is a first step towards developing a full measurement set-up and an algorithm for 
[uantifying related pain levels.

Our proposed tools are in the same line of thought as those presented in [34, 35]. 
in intelligent analysis system based on fuzzy logic models was successfully tested in 
)ost-operative patients, whereas patient-controlled analgesia (morphine-based) was 
itrated from the determined index. With respect to their work, our work differs in that 
t delivers a mathematical framework related to the actual tissue dynamics (i. e., mem- 
>ry, dielectric) properties and thus justifies the use of FOIMs.

The changes in the skin impedance affect both time and frequency domains, as 
suggested by our results reported in this chapter. These changes are evaluated with re
spect to an initial state of the individual, e. g., when it experiences no pain or when the 
evel of pain is already characterized via other assessment tools (verbal or non-verbal, 
iepending on the state of the patient). It should be noted that in certain situations, 
:are must be taken when referencing to other states of the patient. For instance, if the 
painless state is recorded before a surgical intervention involving general anesthesia 
3f the patient, the composition of the interstitial tissue will be greatly affected by the 
cocktail of medication given during this intervention. Following ICU evaluation, pain 
levels will then have to be referenced to a more recent state of the patient. However, 
if the pain assessment is to be performed during the surgical nociceptor stimulation, 
then the referencing with the pre-operatory state of the patient maybe relevant.

The present study is limited in the number of individuals measured. No actual 
chronic pain patients or ICU post-operatory pain patients have been included. A cor
relation to clinical practice indices, such as the Wong-Baker faces scale, should be 
investigated using a larger population in order to extract a mathematical relationship 
between model parameters and clinical levels of pain. Although the method is per
sonalized, i. e., the values are calibrated to the initial state of the individual/patient, 
an analysis of the influence of BMI on the accuracy of the estimators should also be
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performed. We do not claim the values given here are reference values. Rather, they 
are specific for the individual included in this study.

6 Conclusions

This chapter introduced a physiological and mathematical framework to allow under
standing the pain mechanism and detect the nociception stimulation effects in skin 
impedance in a healthy volunteer as a proof of concept. The notoriously successful 
FOIM formulation has proven once more useful to characterize time and frequency 
evolution of a pre-defined protocol of nociceptor stimulation applied non-invasively 
in one subject.

The next steps are an in-depth analysis in post-operatory patients under pain al
leviation treatment and correlations to standard clinical practice of pain level assess
ments.
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