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Flow controlled DCMS hysteresis

Direct hysteresis experiment =
stepwise in/decrease of single operation
parameter

Hysteresis @ constant current

Ti/O, a) reactive gas pressure
b) discharge voltage
c) deposition rate

discharge off  discharge on by poisoning

7’
'

e a) vanishing getter pump

'

gas el b) Chaﬂgmg YSee

consumption
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c) decreasing sputter yield (Y. <<'Y_)

© Easy process control
@ No access to|transition jmode!
@ Bad film/deposition control




Pressure controlled DCMS hysteresis

Al/O,

direct controlled

feedback controlled

W.D. Sproul, et al., Thin Solid Films 491, 1 (2005)

Feedback hysteresis experiment =
stepwise in/decrease of variable by feedback controlled operation parameter

© Access to transition
© Better film/deposition control
@ Harder process control



Voltage controlled DCMS hysteresis

Al/N, Wisely choose
your operation
parameter!

McMahon, et al.,
J. Vac. Sci. Technol. 20,
376 (1982)

Voltage control of reactive (O,/N,)
Al deposition is the key to

© Access to transition
© Better film/deposition control
© Easy process control

Succes is material dependent

Steenbeck, et al., Thin Solid Films 92, 371 (1982)
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Ti/O,
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Stability of voltage control

Increase in V

¢

[ increases along /V-line

¢

target gets less poisoned

4

decrease in current /

4

target gets more poisoned

U o>e
stops decrease in current /
stabilize to new /V point
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Voltage control for R-HIPIMS

Hysteresis study:
direct control on the reactive flow is common while fixing the current/power

... but much can be learned from the IV-characteristic as it is stronly
influenced by target state

=> (ion-induced) secondary electron emission yield Yo

M. Aiempanakit, et al.,

J. Appl. Phys. 113, 133302 (2013)

As HIPIMS is typically voltage controlled, _
this way of looking to R-HiPIMS may be /0,
an interesting tool.

=> shift of a ‘pure’ plasma viewpoint to
a more target oriented viewpoint
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|V-dependencies

O Process parameters

v’ gas pressure/composition => reactive gas fraction < 20 %

l. Petrov, et al., J. Vac. Sci. Technol. A 11, 2733 (1993)

v' magnetron design
» magnetic field B = target erosion

» anode position => shielding or disappearing

target thickness 7 magnetic field B ™

Cu pressure 7

impedance ™
High B :
pressure 7
impedance 7 _

D. Depla, Surf. & Coat. Techn.
200, 4329 (2006)



|V-dependencies

o Target condition F. Moens, et al., Frontiers in Physics 5, 51 (2017)

v’ sputter yield = gas rarefaction (HiPIMS © pcws)

v' elemental composition = secondary electron emission yield ¥ qe
> metal -> electron reflection probability r(p)
» compound
» chemisorbed

Al

D. Depla, et al., Surf. & Coat. Techn. 200, 4329 (2006)
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Thornton relation extended

WO ) D. Depla, et al., Thin Solid Films 517, 2825 (2009)
Vp = :
D =(E(p, B, Dyseeyeic.](p, B, 1) [ Target dependency of V in y..and r
. y.eff,see Values? Yeee

W,: effective ionization energy © metals; emperical formulas
gi(p, B, 1): ion collection efficiency + experimental data
€.(p, B,1): e ionization efficiency ® compounds:
E(p,B,I) = (mr): limited data
effective gas ionization probability r
m: e~ multiplication factor ® what makes it fit? 14?
r: e~ reflection probability _ ® impact low for 0 to 0.6

G. Buyle, Phd Thesis, Ghent (2005)

s sheath energization alone?

= modelling results : Ohmic heating has a role (HIPIMS € pcwms)

but 1
no (direct) target dependency Vv, — (A(r)¥see)sneatn + Bonmic

N. Brenning, et al., Plasma Sources Sci. Technol. 25 (2016) 065024
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Secondary electron emission yields y...

Dominant target dependency of Use this correlation for the y,., of
Vi IS 0N Yoo compounds
©

but slope is pressure/current dependent
for given sputter system

D. Depla, et al., Thin Solid Films 517, 2825 (2009)
L e R W DRAFT ugentbe 12




V-relations

For diode sputtering:
I=,8(V—V0)3/2 > [~ Vsee

E.J. Soxman, Proc. of 7! Int. Vacuum Congress,

B (or n) define sharpness of IV
0. 309 (1977) or impedance of plasma

For DC magnetrons:

[ =pV" => overestimation 2 magnetron designs,

J. A. Thornton, J. Vac. Sci. at lOW VOltage 1 metals, / Pressures,
Technol. 15, 171 (1978) 7 B strenghts

For DC and RF magnetrons:

[ = BV 2 -> valid for broad
A( %) condition range

W.D. Westwood et al., J. Appl. Phys. 54, 6841 (1983)

Thornton idea of a V.,

D. Depla, et al., Surf. & Coat. Techn. 200, 4329 (2006)
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V-relations

Best fitted by I = BV — V,)?

,8 ~ Vsee
fitted
contamination
How clean is your target? Vsee
(Ppase < 4x1074 Pa)

R. Schelfhout, et al., Appl. Surf. Science 355, 743 (2015) D. Depla, et al., Surf. & Coat. Techn. 200, 4329 (2006)



Reactive IV-characteristic

A rotating cylindrical magnetron with varied oxygen pressure
modifying the target composition between

v" metal mode
v oxide mode

v (partial?) chemisorbed mode De Gryse, et al., Thin Solid Films 520, 5833 (2012)

I =BV —"Vy)?

0 O B~ Vsee O z

Al,chem Al,oxide
ySee < Vsee < Vsee y;leoxlde < Y.S?;leChem

< ysee

15



Outline

O ntroduction
@ |\/-characteristic

€ Reactive IV-model

D Results

® Conclusion

L e i DRAFT ugent e 16



RSD model

Q,=Q+Q,+Q,

= Berg model + advanced target model

Chamber

Target
* Surface

» Subsurface

Substrate

reactive partial pressure
gas flow to pump

o

-

9]

©

metallic fraction
chemisorbed fraction
compound fraction
gas flow consumption

3

(]

D DD

-

subsurface metal fraction
metal depth concentration
reactive depth concentration

chemisorbed concentration
gas flow consumption

model ‘engine’ = set of balance equations

one-cell

one-cell

uniform current

multi-cell
non-uniform current

redeposition profile

continuum in depth

one-cell
multi-cell

deposition profile
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Towards RSD model for IV

General IV-relation : I =B —V)"
> assumption: only target surface condition influences IV by changing y...
s
metal (8,,, ¥ Generalized Thornton relation

compound (6, , y,)

e
chemisorbed (8, y,) Ysee =y T D
ySee — Zm,r,c eiyl' yi — Vi + b @
\ L J
Y A\
1 2 1 1
Yo = @ T B+ RN
~ ® 03Pa012A )
L OO05Pa0I2A
S
X
2
x (in TiO,_,)
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Target: single versus multi-c

Current on target is non-uniform!

=> crucial impact on the pQ-hysteresis
simulation

-> emergence of a double hysteresis
which has been experimentally proved

R. Schelfhout, et al., Appl. Phys. Lett. 109, 111605 (2016)

... Where the procedure is based on
voltage controlled measurement of the V!

e|l

RSD simulation

Zr/O,

Also observed in

R-HIPIMS!

Sarakinos, Surf. Coat. Technol. 202, 5033 (2008)
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Extra’s to RSD2013 model

» Linear voltage dependency of the sputter yield : Y,(V)=c¢V+d; i=mr,c

» Transport flux Jr of unbounded implanted reactive gas in target bulk

« pressure-driven transport: Jr = =T (x)ng(x)
where T (x) scales with implantation profile
dng(x)
+ damage-driven diffusion:  Jr = ~Daam (%) —
where D;,m (x) scales with damage profile
* thermic diffusion: Jp = _Dthermang;;x)

» Specification of IV-relations for metal, compound & chemisorbed (?) target
ni
I=8(V—-Vy)

Ny

n0+nR

[> Gas dilution of sputter yield: Y;(ng, V) = Y;(V) ngy: metal density ]

ng:gas concentration

L e i DRAFT ugent e 2
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Reference system

Sputter conditions:

* Target Al
» Process gas Ar
20cm e Reactive gas O,
* Target diameter = 2 inch (20 cm?)

« Pumping speed S = 30 L/s
40 cm * Argon pressure P,, = 0.4 Pa
20 cm » Oxygen flow Qp, = 1.2 scem

=> Experimental and simulated
IV-relation under variation of
these operation parameters

B, =5.56x 1074

Bm = 3.81 X 1075 ' '
-> Fitted IV-relation for metal and

B, =3.81x1076 oxide state
Guess for chemisorbed state!

L e i DRAFT ugent e 2



Influence of oxygen flow

Experimental Simulation

-> higher oxygen flow makes hysteresis wider
=> critical points shift to higher discharge currents



Influence of pumping speed

Qq, = 0.8 sccm Experimental Qq, = 0.8 sccm Simulation

=> increasing pumping speed removes hysteresis by decreasing current of
2nd critical point

L e i DRAFT ugent e 2



Influence of argon pressure

Experimental Simulation

=> Ar pressure influences metal IV-relation (not included in simulation)
=> increasing Ar pressure removes hysteresis
=> simulation indicates that full poisoning is not reachable at high pressure

L e i DRAFT ugent e 2



Influence of racetrack

Reduction of hysteresis possible by
shrinking the erosion area:

% not same as current density 2 by
current 7

« Tt critical point: amount of sputtered
material ~ current

« 2 critical point: compound removal
on target ~ current density

Nyberg, Appl. Phys. Lett. 86, 164106 (2005)

Simulation

www.DRAFT.ugent.be
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Double IV-hysteresis

R-DCMS R-HiPIMS
P, =16 Pa b, =2 Pa
Qq. = 1.2 sccm Qo, = 0.5 scem
S =32 L/s S =59 /s
f =495 Hz
t,,= 20 us
Experimental Experimental

=> Independent of technique (HIPIMS € DCMS)
=> Double hysteresis is in RSD model but not yet satisfactory
= the responsable mechanism in RSD is identified as a second criticality

=> Hysteresis behavior in R-HIPIMS?

K. Strijckmans, et al., J. Appl. Phys. 121, 080901 (2017)
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Conclusion

What we have learned...

v" Direct voltage control for the reactive sputtering of Al,O; enables stable
process control in the transition mode of the hysteresis curve.

v" Discharge voltage measurements are a monitor for the target condition
during reactive sputtering via its relation with the secondary electron
emission yield.

Ready for the future...

v The RSD model is extended to include simulation of the IV-hysteresis
based on the Thornton relation.

v" Simulated IV-results for R-DCMS are in line with experimental data.

The future...

v" More advanced model to predict the experimental double hysteresis
behaviour.

v IV-modelling of the R-HiPIMS hysteresis curve
v IV-relation for a target in chemisorbed state
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