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A B S T R A C T

Sustaining a traumatic brain injury (TBI) during adolescence has a profound effect on brain development and can
result in persistent executive functioning deficits in daily life. Cognitive recovery from pediatric-TBI relies on the
potential of neuroplasticity, which can be fostered by restorative training-programs. However the structural
mechanisms underlying cognitive recovery in the immature brain are poorly understood. This study investigated
gray matter plasticity following 2months of cognitive training in young patients with TBI. Sixteen adolescents in
the chronic stage of moderate-severe-TBI (9 male, mean age=15y8m ± 1y7m) were enrolled in a cognitive
computerized training program for 8 weeks (5 times/week, 40min/session). Pre-and post-intervention, and
6months after completion of the training, participants underwent a comprehensive neurocognitive test-battery
and anatomical Magnetic Resonance Imaging scans. We selected 9 cortical-subcortical Regions-Of-Interest as-
sociated with Executive Functioning (EF-ROIs) and 3 control regions from the Desikan-Killiany atlas. Baseline
analyses showed significant decreased gray matter density in the superior frontal gyri p=0.033, superior
parietal gyri p= 0.015 and thalamus p= 0.006 in adolescents with TBI compared to age and gender matched
controls. Linear mixed model analyses of longitudinal volumetric data of the EF-ROI revealed no strong evidence
of training-related changes in the group with TBI. However, compared to the change over time in the control
regions between post-intervention and 6months follow-up, the change in the EF-ROIs showed a significant
difference. Exploratory analyses revealed a negative correlation between the change on the Digit Symbol
Substitution test and the change in volume of the putamen (r=−0.596, p= 0.015). This preliminary study
contributes to the insights of training-related plasticity mechanisms after pediatric-TBI.

1. Introduction

Pediatric traumatic brain injury (TBI) is one of the most common
causes of acquired cognitive and behavioral disabilities in childhood
and adolescence, with a long-term detrimental effect on daily executive
functioning at home, school and in the social community (Chevignard
et al., 2016; Prasad et al., 2017; Sariaslan et al., 2016; Shultz et al.,
2016; Treble-Barna et al., 2017). Cognitive recovery from pediatric TBI
is strongly related to neurocognitive training and the enhanced ability
for reorganization present in the developing brain (Giza and Prins,
2006). The structural neuroplastic mechanisms underlying cognitive
recovery are however poorly understood. It is assumed that changes in

structural properties of neurons (such as the number of dendritic spines
or synapses) may reflect changes in their function (Kolb et al., 2001).
Moreover, previous papers in healthy adults suggested that training
induced neuroplasticity may resemble developmental plasticity
(Thomas and Baker, 2013; Wenger et al. 2017b), characterized by ex-
pansion of gray matter volume (based on neurogenesis, glial cell pro-
liferation, dendritic spine growth and synaptogenesis) followed by
gradual loss through dendritic and synaptic pruning (Maxwell, 2012;
Mills et al., 2016; Sowell et al., 2002; Thomas and Baker, 2013; Treit
et al., 2014; Zhou et al., 2015). This expansion–renormalization model
for plastic changes post-training may result in a remodeling of activity
in efficient neuronal circuits, contributing to improved functional
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performance (Holtmaat and Svoboda, 2009).
The use of advanced magnetic resonance imaging (MRI) to elucidate

brain plasticity after cognitive training has extended in cognitive neu-
roscience, with an array of potential imaging methods such as task-
related functional MRI (Ellis and Turk-Browne, 2018; Kou and Iraji,
2014; Sachs et al., 2017), diffusion MRI (Hutchinson et al., 2018) or
voxel-based morphometry (Konstantinou et al., 2016; Lampit et al.,
2015). Because of our interest in gray matter volume correlates of
cognitive remediation in a longitudinal design, we preferred anatomical
T1-weighted MRI scans processed with the longitudinal stream of
FreeSurfer (Bernal-Rusiel et al., 2013; Reuter et al., 2012). Prior long-
itudinal studies with FreeSurfer into gray matter plasticity after cog-
nitive training in healthy adults (Jiang et al., 2016; Lampit et al., 2015;
Metzler-Baddeley et al., 2016; Roman et al., 2016) or adults with ac-
quired brain injury (Caeyenberghs et al., 2018; Diez-Cirarda et al.,
2017; Han et al., 2014; Han et al., 2017; Lazaridou et al., 2013), have
identified opposite findings with either increase or decrease in cortical
volume or thickness in task-relevant brain regions. Furthermore, small
to moderate correlations between cortical alterations and cognitive
performance at post-intervention were obtained, however without
suggesting causality between these structural and behavioral changes
(Caeyenberghs et al., 2018). To the best of our knowledge, the imaging
evidence of gray matter plasticity in adolescents with TBI after cogni-
tive training targeting impaired executive function is not yet provided.

We pre-defined nine cortical and subcortical regions-of-interest
(ROI) from the Desikan-Killiany atlas (Desikan et al., 2006) associated
with executive function (EF) (including the superior frontal gyrus,
caudal part of the middle frontal gyrus, rostral part of the middle
frontal gyrus, superior parietal gyrus, inferior parietal gyrus, anterior
cingulate gyrus, caudate nucleus, putamen and thalamus) based on
prior studies (Alcauter et al., 2014; Anderson and Ylvisaker, 2009;
Andre et al., 2016; Breukelaar et al., 2017; Ferguson and Gao, 2014;
Fryer et al., 2012; Greven et al., 2015; Hsu et al., 2014; Isbell et al.,
2015; Levan et al., 2016; Little et al., 2010; Rosch et al., 2018; Snow,
2016; Velanova et al., 2008; Ware et al., 2016; Young et al., 2015).
Additionally, to affirm anatomical specificity, we selected 3 control
cortical regions (the primary visual cortex, primary auditory cortex and
primary somatosensory cortex) whereby we did not expect to see al-
terations induced by a cognitive training program.

Our hypotheses were fourfold: (1) Firstly, we hypothesized that
adolescents with TBI would show decreased gray matter density at
baseline (pre-intervention) in regions associated with executive func-
tion compared to typically developing peers. (2) Secondly, we expected
to observe an increase of gray matter volume in the ROIs related to EF
in the absence of changes in the control regions after 8 weeks of cog-
nitive training. (3) Thirdly, we expected a “re-normalization” of the
cortical–subcortical gray matter volume of the EF-ROIs at 6months
follow-up, with a decrease or disappearance of the temporally expan-
sion. (4) Finally, we hypothesized a correlation between changes in
gray matter volume and improvements in executive functioning in re-
sponse to the cognitive training intervention. A better understanding of
functional and structural neural plasticity of executive function in the
injured adolescent brain, is vitally important to advance appropriate
treatment design in adolescents with TBI.

2. Materials and methods

2.1. Participants

We recruited sixteen adolescents (9 males and 7 females, mean
age= 15y8m ± 1y7m) with moderate to severe traumatic brain injury
(TBI) according to the Mayo Classification System for TBI (Malec et al.,
2007) from the Child Rehabilitation Centre Ghent University Hospital,
Belgium and the Rehabilitation Centre for children and adolescents
Pulderbos, Belgium between March 2015 and January 2017. Causes of
brain injury were traffic accidents or sports injuries. All the adolescents

with TBI had evidence of a closed head injury with diffuse axonal in-
juries and cortical encephalomalacia as identified by neuroradiologists
on the T1-weighted MRI. Specifically, the adolescents (n= 16) showed
DAI in the frontal (n= 14), temporal (n=13), parietal (n= 11) and
occipital lobes (n=8). Furthermore there were DAI in the corpus cal-
losum (n= 9), brainstem (n=3) and deep brain nuclei (n= 5). Areas
of cortical encephalomalacia were seen in the frontal (n= 8), temporal
(n= 8) and parietal (n= 1) cortex.

We included adolescents minimum 1 year and maximum 5 years
post-injury, taking into account the rapid period of natural recovery
within 1 year post injury (Jaffe et al., 1995; Keenan et al., 2018) and
executive functioning ratings remaining relatively stable after this time
point (Jaffe et al., 1995; Keenan et al., 2018). The average time be-
tween the accident and our study was 2y4m ± 1y2w and the mean age
of the participants at the time of injury was 13y4m ± 1y7m. Apart
from one participant, all patients with TBI attended a multidisciplinary
rehabilitation in the acute phase post-injury (mean duration
11m4w ± 6m1w). At the end of the acute rehabilitation, all the ado-
lescents were referred to a regular school with most of them receiving
academic or psychosocial support. During each follow-up appointment
after rehabilitation, the adolescents and their parents reported per-
sisting impaired executive functioning in daily living.

The participants with TBI received a drill-based cognitive training
with BrainGames, 40min per session 5 days per week over 8 weeks. This
cognitive training program was recently developed by our research
group and showed promising results on executive performance in
adolescents in the chronic stage of TBI in a small pilot study (Verhelst
et al., 2017). Every training session with BrainGames comprised a self-
guided module that consisted of 4 games (2 games that tapped into
attention and 2 games that loaded on working memory/executive
functioning). Task difficulty increased adaptively depending on the
level of performance of the trainee. Training data were storaged auto-
matically for each training session on a server, which enabled us to
monitor compliance and progress of each participant. Once a week, the
adolescents were contacted by phone regarding their training process.

Alongside the adolescents with TBI, we recruited sixteen age and
gender matched control participants without a history of neurological
condition (perfect gender match, mean age=15y7m ± 1y8m) via the
social network of the researches, to compare morphological MRI data
and cognitive tests results at baseline. The control cohort did not re-
ceive the cognitive training program.

Long-term neurocognitive outcome after TBI and cortical volume
has been shown to be moderated by familial inheritance and education
(Noble et al., 2015; Walhovd et al., 2016). Therefore, we obtained the
educational level of the biological parents by calculating the number of
years of formal education. The average of the sum of the duration of
education of the mother and father was 32y4m ± 1y10m for the ty-
pically developing controls which was significantly higher (p < 0.001)
than 26y0m ± 5y6m for the adolescents with TBI. Written informed
consent was obtained from the adolescents and their parents. The study
was approved by the Ethics Committee of the Ghent University Hos-
pital, Belgium.

2.2. Magnetic resonance imaging

2.2.1. MRI acquisition
The participants were scanned at Ghent University Hospital,

Belgium, using the 3 T-Siemens Tim TRIO scanner equipped with a 32-
channel head coil. A 3D-T1-weighted Magnetization Prepared Rapid
Gradient Echo (MPRAGE) was administered with the following scan-
ning parameters: repetition time/echo time= 2250/4.18ms; acquisi-
tion time=5min14s; flip angle= 9°; field of view=256mm; voxel
size= 1,0× 1.0×1,0mm3; slab thickness= 176mm; bandwidth
=150 Hz/pixel). The TBI-adolescents were scanned at three time
points: at baseline (pre-intervention, time point 0), within a week of
completion of the last training session (post-intervention, time point 1)
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and 6months post-intervention (time point 2). The passive control
group of typically developing adolescents was scanned only once.

2.2.2. Pre-processing
At baseline (pre-intervention), cross-sectional morphological ana-

lyses of the T1-weighted MRI images of all participants were processed
using the recon-all function of FreeSurfer version 5.3.0 (http://surfer.
nmr.mgh.harvard.edu/), which has been described in detail in previous
literature (Fischl, 2012).

To identify training-related morphological changes over the three
time points in the TBI-group we used the longitudinal stream of
FreeSurfer (Bernal-Rusiel et al., 2013; Reuter et al., 2012). In this
longitudinal analysis, spatial normalization was obtained by an inverse
and robust consistent registration algorithm, which created an unbiased

within-subject template across the 3 time-points (Fischl, 2012; Metzler-
Baddeley et al., 2016; Reuter et al., 2012; Tamnes et al., 2017; Thomas
and Baker, 2013). To ensure the accuracy of the cortical surface re-
construction by FreeSurfer, all images were visually inspected post-
processing and if needed manually corrected.

2.2.3. ROIs selection
We obtained the morphological metrics using the Desikan-Killiany

atlas (Desikan et al., 2006). Several MRI and lesion studies offer a large
body of evidence that executive functioning (EF) depends on a central
executive network (Bettcher et al., 2016; Kim et al., 2017; Nowrangi
et al., 2014) including the following important gray matter areas: the
prefrontal and parietal cortex, the anterior cingulate cortex (Menon and
Uddin, 2010) and basal ganglia (Brooks et al., 2016; Ware et al., 2016).

Table 1
Pre-intervention statistical comparisons of gray matter volumes (mm3) between groups, corrected for Intra Cranial Volume, age, gender and parental education.
Means are estimated for mean values of age (15y7m), ICV (1598276mm3), and parental education (29y2m). Solid p-values are considered statistically significant,
applying the Benjamini-Hochberg procedure with FDR 0.10.

Region of interest Observed mean
volume mm3 (SD)
Controls n= 16

Observed mean
volume mm3 (SD)
TBI n=16

Est. diff. in
means

FDR-adjusted multiple
confidence intervals

Estimated
standardized
effect size

raw
p-value

BH
critical
value

Intra Cranial
Volume

1,602,127.17 (193,230.55) 1,594,425.34 (224,718.35) 49,184.02 [−125,070.93;
223,438.98]

0.25 0. 567

Thalamus 15,770.84 (1576.75) 14,076.41 (1871.81) 1920.61 [469.98; 3371.25] 1.22 0.006 0.011
Superior parietal 32,134.13 (4413.18) 27,901.94 (4944.23) 3719.36 [514.92; 6923.80] 0.84 0.015 0.022
Superior frontal 54,904.44 (6377.49) 49,597.00 (4492.14) 4861.22 [−3.19; 9725.64] 0.76 0.033 0.033
Putamen 11,522.65 (1612.18) 10,474.33 (1549.18) 1457.63 [−229.70; 3144.96] 0.90 0.063 0.044
Caudate nucleus 7858.22 (1043.18) 7786.99 (822.81) 531.74 [−323.46; 1386.94] 0.51 0.174 0.056
Caudal middle

frontal
15,130.13 (2442.97) 13,973.94 (2256.48) 788.26 [−1662.49; 3239.02] 0.32 0.476 0.067

Rostral middle
frontal

38,909.56 (4207.31) 37,258.44 (4343.16) −326.68 [−3183.00; 2529.64] −0.08 0.799 0.078

Anterior cingulate 10,563.00 (1272.11) 10,564.56 (1780.92) −163.92 [−1819.29; 1488.45] −0.13 0.825 0.089
Inferior parietal 35,040.50 (4920.01) 32,987.94 (4175.79) −110.51 [−3678.66; 3457.65] −0.02 0.945 0.100

The results in bold are significant.

Fig. 1. The estimated mean gray matter volume per region per group (TBI and control), adjusted for age, gender and total intracranial volume, parental education.
The error bars represent FDR adjusted confidence intervals.
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Based on these previous findings, we selected 9 bilateral cortical-sub-
cortical regions of interest (EF-ROIs): the superior frontal gyrus, caudal
part of the middle frontal gyrus, rostral part of the middle frontal gyrus,
superior parietal gyrus, inferior parietal gyrus, anterior cingulate gyrus,
caudate nucleus, putamen and thalamus. Furthermore, we defined the
precalcarine cortex (closely corresponding to the primary visual
cortex), transverse temporal cortex (closely corresponding to the pri-
mary auditory cortex) and the postcentral gyrus (closely corresponding
to the primary somatosensory cortex) as control regions. In the present
study, we chose not to analyze cortical thickness and surface area se-
parately, but to investigate cortical volumes to reduce the number of
comparisons in our small sample size. By using volumes, the same
measure for gray matter could be applied in the cortical and subcortical
regions of interest. A close examination of the contributions of each
hemisphere showed no significant main effect of cerebral hemisphere
(right, left) on gray matter volume, and there were no differential
symmetry effects across the group (both P > .05). Since diffuse injuries
occur over a more widespread area, the bilateral sum of the volumes of
these regions was used (Niemann et al., 2014). As such, the remaining
analyses were collapsed across hemispheres. Finally, gray matter vo-
lumes were corrected for intracranial volume (ICV) (‘estimated total
intracranial volume’ from FreeSurfer) (Malone et al., 2015;
Nordenskjold et al., 2013; Walhovd et al., 2011) in the cross-sectional
statistical analyses at baseline, to ensure that the observed gray matter
volume differences between TBI and typically developing adolescents
were independent of inter-individual variability in brain size (O'Brien
et al., 2011).

2.3. Measures of executive functioning

Training-related improvements in executive functioning in the
adolescents with TBI were assessed by means of a comprehensive
neurocognitive test battery. In short, the Digit Span forwards and
backwards (Donolato et al., 2017) was used to evaluate verbal working
memory (working memory span, the number of digits remembered),
Flanker task conflict cost (Levin et al., 2004; Sinopoli and Dennis, 2012)
to measure response inhibition and selective attention (difference in
reaction time between blocks in msec), Continuous Performance Test
(Riccio et al., 2002) to assess sustained attention (reaction time in
msec), Digit Symbol Substitution Test (Hinton-Bayre and Geffen, 2005)
to evaluate associative non-verbal learning and information processing
speed (accuracy score, total amount of symbols solved in 120 s); and the
Stockings of Cambridge (Jacobs and Anderson, 2002; Kostering et al.,
2015; Luciana et al., 2009; Syvaoja et al., 2015) to determine planning
and problem solving (total moves needed to copy a pattern of colored
balls). Furthermore, we obtained parent-reported symptoms of the
Dutch version of the Behavior Rating Inventory of Executive Function
(BRIEF) (Donders and DeWit, 2016; Kurowski et al., 2013; Wilson et al.,
2011) questionnaire (with lower scores reflecting better daily executive
function).

2.4. Statistical analyses

Analyses were performed in Statistical Analysis Software version
9.4.

Cognitive performance at different time points was modeled by
linear mixed models. Specifically, longitudinal covariance pattern
models were fitted with the cognitive assessments as continuous out-
come measures, with group, time and gender as fixed factors, and age
and parental education as covariates. Details of the statistical analysis
on the neurocognitive assessments can be found in a previous paper
(Vander Linden et al., 2018).

Group differences in gray matter volumes for each ROI were in-
vestigated by means of linear regression analyses, which included the
gray matter volumes as dependent variables; group and gender as fixed
factors; and intracranial volume (ICV), age and parental education asTa
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covariates (Ardila et al., 2005; Davis-Kean, 2005; Hsu et al., 2014;
Kannan et al., 2014; Lenroot et al., 2009; Piccolo et al., 2016; Yeates
et al., 2010).

Standardized effect sizes (Glass's delta) were calculated as the ratio
of the difference in estimated, adjusted mean volume between controls
and TBI-adolescents, and the SD of the control group (Ialongo, 2016).

Linear mixed-effects models (Bernal-Rusiel et al., 2013) were ap-
plied to assess training-related changes in gray matter volumes, with
random intercepts for subjects, cortical volume as continuous outcome
measure, time and gender as fixed factors, and age as covariate. Stan-
dardized effect size (Glass's delta) was here calculated as the ratio of the
difference in estimated mean volume between two successive time
points, and the SD of the earliest time point in the time comparisons
(Ialongo, 2016). The standardized effect sizes were interpreted:
0.2–0.49 for a small effect, 0.50–0.79 for a medium effect, and > 0.80
for large effects.

Regional specificity of structural gray matter changes was assessed
by analyzing the mean percentage change in gray matter volume over

two time periods (T0-T1) and (T1-T2) between test and control regions.
Percentage changes in gray matter volumes were calculated by sub-
tracting the baseline volume (T0) from the volume for each region post-
intervention (T1), divided by the baseline volume (T0), multiplied by
100% and similarly for the change between post-intervention (T1) and
6months-follow up (T2). Positive (resp. negative) changes indicate an
increase (resp. decrease) in gray matter volume over time. Linear mixed
model analyses with random intercept and slope were conducted with
the percentage change in gray matter volume as outcome measure and
a full factorial model for time points and type of region (EF-ROIs,
control).

Correlations between gray matter changes and neurocognitive per-
formance were investigated by calculating Pearson correlation coeffi-
cients.

In case of multiple testing, raw p-values were evaluated using the
Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). A
False Discovery Rate (FDR) of 10% was considered, allowing 10% of the
rejected null hypotheses to be false discoveries (McDonald, 2014). False
discovery rate adjusted multiple confidence intervals were reported
(Benjamini and Yekutieli, 2005).

3. Results

3.1. Post-intervention changes in executive functioning in adolescents with
TBI

Our linear mixed models revealed significant improvements in ex-
ecutive functioning with training on the Digit span forwards
(p= 0.002), Flanker conflict cost (p= 0.002), Continuous Performance
Test reaction time (p=0.005), Digit symbol substitution (p= 0.006)
and Stockings of Cambridge (p≤0.001). Furthermore, a significant
decrease on the BRIEF-parental scores (p= 0.013) post-intervention
could be observed, reflecting an increase in daily executive function. At
6months follow-up, the improvements remained significant. In addi-
tion, a significant improvement in Digit Span Backwards (p≤0.0001)
could be demonstrated in the TBI group at follow-up compared to pre-
intervention performance.

Fig. 2. Longitudinal change in cortical volume of the 9 EF-ROIs (blue) and 3 control regions (brown) in the group with TBI on the 3 time-points. The error bars
represent FDR adjusted confidence intervals.

Fig. 3. Significant difference in change over time between the 3 control regions
and the 9 EF-ROIs.
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3.2. Cross-sectional analysis of ROI-volumes between TBI and typically
developing peers at baseline

Univariate analyses for each EF-ROI separately revealed significant
decreases in the cortical volumes of the thalamus bilateral
(−1920.61mm3, p= .006), the superior parietal gyri (−3719.36mm3,
p= .015) and the superior frontal gyri (−4861.22mm3, p= .033) in
TBI-adolescents compared with their matched controls. (Table 1 and
Fig. 1).

3.3. Post-intervention change in gray matter volumes with time-point in the
TBI-group

In contrast to our second hypothesis, we found no significant vo-
lumetric gray matter increases in the 9 ROI's and no meaningful effect
sizes between baseline (T0) and immediately post-intervention (T1), or
between post-intervention (T1) and 6months-follow up (T2).
Furthermore, there were no significant gray matter alterations in the 3
control regions, which was expected. (Table 2 and Fig. 2).

We computed the regional specificity of the gray matter changes by
testing interaction between EF-ROI's and control regions. The evolution
in mean percentage change (T0-T1) versus (T1-T2) in gray matter vo-
lume was significantly different between EF-ROIs and control regions
(p= .0016), based on a linear mixed model analysis with random in-
tercept and slope per individual. The differences between control re-
gions and EF-ROIs are visualized in Fig. 3. For the first interval (T0-T1),
no statistically significant difference was found when contrasting the
EF-ROI to the control regions (p= .124), with an estimated mean in-
crease of 0.2% in the EF-ROI and decrease of 0.3% in the control re-
gions, resulting in an estimated difference in percentage change of 0.5%
with 95% CI [−0.1%;1.2%]. For the second interval (T1-T2) a sig-
nificant difference is found (p= .004), with an estimated mean de-
crease of 0.5% in the EF-ROI regions and mean increase of 0.5% in the
control regions, resulting in an estimated mean difference in percentage
change of −1% with 95% CI [−1.7%;-0.3%] contrasting EF-ROI to
control regions.

3.4. Correlation of change in neurocognitive performance with change in
cortical and subcortical gray matter volume

Table 3 depicts correlations between changes in performance on
neurocognitive assessments and volumetric gray matter alterations in
the EF-ROIs after 8 weeks of intensive neurocognitive training (interval
T0-T1). Only one explorative significant negative correlation was found
between the Digit Symbol Substitution and the volume of the putamen

(corr.=− 0.596 p= .015), denoting a more effective interplay of
cognitive processing and motor execution is correlated with a smaller
volume of the putamen. Important to note, the p-value reported for this
correlation was uncorrected for multiple comparisons with a statistical
threshold of p < .05.

4. Discussion

A traumatic impact on the adolescent's brain has been implicated in
persistent higher-order cognitive deficits. Intensive cognitive training
enhances functional and structural neural plasticity in task-related
brain regions with the ultimate purpose to ameliorate cognitive func-
tioning. Previous cognitive intervention studies in healthy adults (Jiang
et al., 2016; Lampit et al., 2015; Metzler-Baddeley et al., 2016; Roman
et al., 2016) or adults with acquired brain injury (Caeyenberghs et al.,
2018; Diez-Cirarda et al., 2017; Han et al., 2014; Han et al., 2017;
Lazaridou et al., 2013), showed mixed results regarding cortical plas-
ticity, with small correlations between behavioral improvements and
neuroplastic changes. To the best of our knowledge, this preliminary
study is the first in pediatric TBI literature, investigating training-re-
lated gray matter plasticity parallel with cognitive changes in adoles-
cents with TBI.

Our first hypothesis was that adolescents with TBI would show de-
creased cortical and subcortical volumes in regions associated with
executive functioning (EF-ROIs), compared to typically developing
peers. Apart from the anterior cingulate gyrus, all EF-ROIs showed
smaller volumes in the TBI-group, with a significant difference in the
superior part of the frontal gyrus, superior part of the parietal gyrus and
the thalamus. These results correspond with prior research of Wilde
et al., 2012 in pediatric TBI (n=20, mean age=13.6 ± 2.9) (Wilde
et al., 2012) showing loss of gray matter volume in the same brain
regions using FreeSurfer. We suggest that the main contributor of these
gray matter volume reductions is the presence of localized cortical
encephalomalacia and diffuse axonal injury (DAI).(Leunissen et al.,
2014; Warner et al., 2010).

Our second and third hypothesis was the presence of training-related
volumetric alterations in cortical and subcortical regions related to
executive function, according to the gray matter ex-
pansion–renormalization model for plastic changes post-training
(Wenger et al., 2017a). After a period of 8 weeks intense training on
several aspects of executive functioning (attention, working memory,
inhibition, planning and problem solving) utilizing BrainGames, we
observed no significant volumetric changes in the EF-ROIs, despite
applying a more liberal threshold (Benjamini-Hochberg procedure with
FDR 0.10). As expected (in contrast to the EF-ROIs) there were also no

Table 3
Pearson correlations and 2-tailed significance between longitudinal change in neurocognitive performance and longitudinal change in cortical and subcortical gray
matter. Abbreviations: Corr.= correlation, GEC=Global Executive Composite of BRIEF questionnaire. P-values reported were uncorrected for multiple compar-
isons.

Change Time 0 -Time
1

Digit span forwards Flanker conflict cost Cont.Perform.Test reaction
time

Digit symbol
substitution

Stock. of Cambridge Brief Gec

Corr. P-values Corr. P-values Corr. P-values Corr. P-values Corr. P-values Corr. P-values

Superior frontal − 0.179 0.508 − 0.134 0.621 −0.035 0.897 − 0.228 0.395 0.078 0.775 0.086 0.752
Caudal middle

frontal
− 0.184 0.495 − 0.373 0.155 0.350 0.184 0.004 0.988 − 0.290 0.277 0.116 0.668

Rostral middle
frontal

− 0.276 0.300 0.017 0.950 − 0.101 0.710 − 0.263 0.325 0.227 0.397 0.044 0.871

Superior parietal − 0.122 0.652 0.008 0.976 − 0.115 0.671 − 0.068 0.802 − 0.237 0.377 0.140 0.605
Inferior parietal − 0.339 0.199 0.097 0.720 − 0.455 0.077 − 0.263 0.325 0.317 0.232 0.051 0.852
Anterior cingulate − 0.066 0.808 0.720 0.498 − 0.059 0.829 − 0.347 0.188 − 0.129 0.635 − 0.127 0.639
Caudate nucleus − 0.141 0.601 − 0.103 0.703 0.040 0.882 − 0.379 0.147 − 0.098 0.718 0.208 0.440
Putamen 0.036 0.895 − 0.039 0.886 0.094 0.730 − 0.596 0.015 − 0.088 0.745 0.078 0.773
Thalamus − 0.067 0.804 0.242 0.368 − 0.153 0.571 − 0.439 0.089 − 0.068 0.802 −0.268 0.315

The results in bold are significant.
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significant training related volumetric changes in the control regions
(the precalcarine cortex, transverse temporal and postcentral gyrus).
Regional specificity of minor gray matter changes was computed by
testing interaction between EF-ROIs and control regions. Change over
time in the EF-ROIs was not significantly different from the control
regions in the first interval between pre- and immediately post-inter-
vention, but was however significantly different in the second interval
between immediately post-intervention and 6months follow-up.

We suggest there are several reasons for the absence of significant
training-induced morphological changes. First, we think we might have
missed the time window to capture the gray matter plastic changes.
Specifically, the exact timescale of training-dependent gray matter
changes is unknown so far. Previous work in healthy adults and ac-
quired brain injury patients (Caeyenberghs et al., 2018) is often limited
to 2 assessments (pre- and post-training) due to financial or practical
considerations, and the duration between these time points (according
to the training duration) is highly variable e.g. ranging from one year
(Erickson et al., 2011), two months (Metzler-Baddeley et al., 2016),
four weeks (Wenger et al., 2017c), two weeks (Ma et al., 2010), one
week (Driemeyer et al., 2008). Wenger et al., 2017a, b, c observed a
volume expansion of the primary motor cortex after 4 weeks motor
learning in healthy adults, which was no longer significant after
7 weeks despite continued training and increased task proficiency
(Wenger et al. 2017c). Consistent with these findings, we think that we
might have missed a possible early peak of gray matter volume increase
and future training studies should include halfway assessments. A
second consideration is that, although an adolescent's brain may have
an enhanced capacity for plasticity (Ismail et al. 2017; Kolb et al. 2017;
Piekarski et al. 2017), the brain damage in young TBI patients hinders
experience-dependent developmental plasticity, as suggested by
Fineman et al. 2000 (Fineman et al. 2000) and Li et al., 2014 (Li et al.
2014). In other words, we suggest that an injured developing brain has
an impaired cortical responsiveness to cognitive training compared to
the brain of a healthy peer (Giza and Prins 2006). Therefore, the cor-
tical expansion–renormalization model in healthy adults (Wenger et al.
2017c) may not be readily translated to an injured developing brain.
Another explanation for the absence of significant morphological
changes might lie in the training regime of the BrainGames. Following
our promising results in our feasibility pilot study, we assumed that the
cognitive training protocol of BrainGames would also be effective to
elicit structural alterations in gray matter volume in adolescents with
TBI. Nonetheless, until now the ‘most effective training regime’ (re-
garding dose, duration, intensity, and timing) to obtain structural al-
terations in patients with acquired brain injury is still a matter of debate
(Caeyenberghs et al. 2018). Based on region specificity (EF-ROIs versus
control regions), we did find a significant difference in change over
time between post-intervention and 6months follow-up, which has to
be bolstered in future research in larger sample sizes.

Finally, we expected a correlation between cognitive changes and
neuroplastic alterations in response to the cognitive training interven-
tion. Explorative analyses revealed one negative correlation between
performance on the Digit Symbol Substitution and the volume of the
putamen. During the completion of the Digit Symbol Substitution Test
(the participant has to write down the corresponding symbol under
each digit as fast as possible) an effective interplay of cognitive pro-
cessing and motor execution is required to guarantee good performance
(Zihl et al. 2014). The putamen, a subregion in the striatum, primarily
assists motor control needed in executive functioning (Arsalidou et al.
2013; Grahn et al. 2008; Haber 2016). This might explain the correla-
tion between the putamen and Digit Symbol Substitution Test. Simi-
larly, Ware et al., found associations between fine motor dexterity and
indices of gray matter integrity in the putamen (Ware et al. 2016).

Unexpectedly, the direction of the correlation coefficient between
the performance on the Digit Symbol Substitution Test and the Putamen
is negative, indicating the smaller the putamen the better the scores of
the Digit Symbol Substitution. Previous research in typically developing

children has demonstrated that maturation of the putamen during
adolescence is characterized by annual volume decline, primarily
driven by processes of dendritic-synaptic pruning. (Goddings et al.
2014; Herting et al. 2018; Narvacan et al. 2017; Swagerman et al.
2014). By eliminating unnecessary dendritic connections in the sub-
cortical gray matter, more adequate specific synaptic transmission
would be possible, resulting in improved function. Therefore, in ado-
lescents smaller (cortical and) subcortical volumes are correlated with
improved functional skills during development. (Dennison et al. 2013;
Goddings et al. 2014; Narvacan et al. 2017; Swagerman et al. 2014).

In our training-study, we would have expected a positive correlation
coefficient between a temporary expansion of the gray matter volume
of the putamen and improvement on the Digit Symbol Substitution Test
(Brooks et al. 2016). However, the increase in putamen volume was not
significant after 8 weeks cognitive training, despite improved perfor-
mance on the Digit Symbol Substitution Test. As mentioned above in
our discussion, we presume that we might have “missed” a possible
gray matter expansion in the putamen during the learning trajectory,
that is not present anymore in the maintenance of the trained skills
(Reed et al. 2011).

The present study has the following strengths: a well-defined study
population of adolescents with TBI, an age and gender matched control
cohort, no dropout during the cognitive training, three time points
(including a follow-up) for assessments, and mixed model statistical
analyses. However, we would like to acknowledge a couple of metho-
dological considerations and limitations. First, our sample size of ado-
lescents with TBI was small and hence there was a lack of power to
capture statistically structural training effects. Furthermore, we used a
lenient threshold level (FDR at 0.1) to correct for multiple comparisons
across regions due to the exploratory nature of the study. Secondly, the
absence of a TBI-active control group makes it difficult to control bias
and to attribute changes to the training-intervention, however recruit-
ment of an age and gender matched control TBI-group would be a
serious practical challenge. Thirdly, we decided to perform the control
region selection using the same parcellation scheme of the Desikan-
Killiany atlas as the ROI selection, though the Brodmann area labels for
primary visual and somatosensory cortices correspond better with the
pericalcarine cortex and postcentral gyrus. Finally, although it was not
the scope of this study, we acknowledge that clinical-anatomical cor-
relates of executive functioning goes beyond the (sub)cortical locali-
zation and EF involves a large-scale distributed brain network (Bettcher
et al. 2016; Catani et al. 2012; ffytche and Catani 2005).

In conclusion, while adolescents with TBI showed improvements in
executive functioning after cognitive training using multiple neu-
ropsychological assessments, we were not able to establish convincing
causality of gray matter structural pre-post changes in this cognitive
enhancement. However, region specificity (EF-ROIs versus control re-
gions) provided a significant difference in change over time between
post-intervention and 6months follow up. Furthermore, explorative
analyses revealed a negative correlation between changes in the Digit
Symbol Substitution Test and the gray matter volume of the putamen,
which was interpreted as an effective interplay of cognitive processing
and motor execution. Although our major hypotheses were not con-
firmed, this preliminary study may be considered of value because it
contributes to the insights of training-related plasticity mechanisms in
pediatric TBI. These results may furnish the scientific investigation of
theories emphasizing an impaired capacity of gray matter plasticity in a
traumatized brain. Future research involving a larger sample size with
early intermittent MRI assessments across the cognitive training pro-
gram and an equal number of MRI assessments in a matched control
cohort, is warranted to corroborate these findings. Exploring brain
plasticity in pediatric TBI is essential to provide a foundation for ap-
propriate therapeutic interventions to enhance functional recovery in
the injured developing brain.
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