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Abstract

In this paper, a new constitutive model is proposed for the behavior of ther-

moplastic polymers under non-isothermal conditions. The model couples linear

viscoelasticity and viscoplasticity and thermal e�ects. It is formulated within

the framework of irreversible thermodynamics. The total strain is the sum of

viscoelastic, viscoplastic and thermal strains. General hereditary integrals de-

scribe the thermo-viscoelastic response. The viscoplastic part accounts for both

isotropic and kinematic hardenings. The stress-strain response and the mate-

rial self-heating are predicted and compared to experimental data on Polyamide

66 (PA66) and Polypropylene (PP). Good agreement between the numerical

simulations and experimental data was obtained for the two materials.

Keywords: Polymeric material, constitutive behavior, rate-dependent

material, thermomechanical processes, self-heating

1. Introduction

As their domain of application is in continuous expansion, thermoplastic2

polymers especially, semi-crystalline ones, are being exposed to more and more

challenging working conditions with complex thermo-mechanical loading. In4

particular, the variation of temperature and loading rate have important e�ects
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on the material response (Zhou and Mallick, 2002; Dasari and Misra, 2003;6

Krempl and Khan, 2003; Khan and Farrokh, 2006; Farrokh and Khan, 2010; Reis

et al., 2013). Crystalline and amorphous phases of the material are responsible8

for its complex behavior, which is characterized by reversible and irreversible

deformations (Kennedy et al., 1994; Ayoub et al., 2011).10

Di�erent approaches were proposed to model semi-crystalline polymers. These

approaches can be classi�ed in two classes: the �rst class is physical models in-12

spired from the material micro-structure characterized by crystalline and amor-

phous phases. The second class is phenomenological models that treat the ma-14

terial as an homogeneous medium which exhibits reversible and/or irreversible

deformations.16

The �rst class of models is motivated by the di�erence in response of each

phase of the material: amorphous and crystalline phases. Some authors believe18

that the crystalline phase has the most important contribution to the material

behavior, especially at small deformation conditions and the amorphous phase20

is rather important at large deformation stage, or more speci�cally in the post-

yielding regime of the material response (Garcia-Gonzalez et al., 2017). In order22

to take into account the e�ect of the material crystallization degree, multi-scale

approaches were employed in several works such as (Nikolov and Doghri, 2000;24

Nikolov et al., 2002; Van Dommelen et al., 2003; Makradi et al., 2005; Bedoui

et al., 2006; Gueguen et al., 2008; Ayoub et al., 2011; Uchida and Tada, 2013;26

Alisafaei et al., 2016).

On the other hand, those who believe that the amorphous phase has the most28

important contribution and focus on the study of polymers with large defor-

mations, were able to bene�t from the important amount of work dedicated30

to the pure amorphous polymers (see for review Bouvard et al. (2009)). This

work started since the middle of the twentieth century and mainly two refer-32

ence models were extensively used and developed through the years : Edwards

and Vilgis (1986) model and Haward and Thackray (1968) model. The model34

of Edwards and Vilgis (1986) is also famous as the network model, it is based

on the work of Ball et al. (1981), that modi�ed the classical rubber elasticity36

(e.g. hyper-elasticity) by proposing the concept of slip-link to account for the

entanglement slippage along the network chains. The original work of Edwards38
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and Viligis was employed and extended by several authors for the amorphous

glassy polymers such as Sweeney and Ward (1995) and Billon (2012). The40

theory was also applied and extended for semi-crystalline polymers in several

works such as Sweeney et al. (2002) and Maurel-Pantel et al. (2015). In the42

work of Maurel-Pantel et al. (2015), the authors extended the model of Bil-

lon (2012) to non-isothermal conditions, The original model was developed for44

time-dependent mechanical behavior of polymers close to the glass transition.

Haward and Thackray (1968) proposed a 1D model for large deformation of46

polymers below their glass transition temperature. Boyce, Parks and Argon

(1988) extended the original model to 3D description famous as BPA model.48

The model was initially based on the three chain concept, then it was extended

by Arruda et al. (1995) to the eight chain model. Further development based50

on the original Haward and Thackray model was carried out by several au-

thors (e.g. Wu and Van Der Giessen, 1993; Arruda et al., 1995; Govaert et al.,52

2000), other versions for amorphous polymers were proposed by Buckley and

co-workers (e.g. Buckley and Jones, 1995; Li and Buckley, 2009) and, Anand54

and co-workers (e.g. Anand and Gurtin, 2003; Anand et al., 2009; Ames et al.,

2009).56

The second class consists of phenomenological models, which focus on the re-

versible part of the material behavior or the irreversible one or both of them, as58

the non-linearity is one of the key features of the material behavior. If the ma-

terial deformation is assumed to be governed by reversible deformations, several60

authors proposed to model the material as non-linear viscoelastic material (e.g.

Lai et al., 2005; Khan et al., 2006), based on the theory proposed by Schapery62

(1969). Other works focus on the rate dependency of the irreversible behavior by

using viscoplastic models (e.g. Bardenhagen et al., 1997; Colak, 2005; Drozdov64

and Christiansen, 2007; Ghorbel, 2008; Dusunceli and Colak, 2008; Drozdov,

2011; Khan and Yeakle, 2011) mainly employing the over-stress (VBO) model.66

Another set of models couples the viscoelastic (VE) and viscoplastic (VP) be-

haviors (e.g. Hasan and Boyce, 1995; Frank and Brockman, 2001; Miled et al.,68

2011; Yu et al., 2016; Gudimetla and Doghri, 2017).

The progressive material degradation was also modeled by coupling the damage70

to the elasto-viscoplastic (EVP) behavior (e.g. Zairi et al., 2008; Balieu et al.,
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2013) or to the viscoelastic and viscoplastic behavior such as the model proposed72

by two of the authors Krairi and Doghri (2014) based on the work of Miled

et al. (2011). Praud et al. (2017) also proposed a model which couples VE, VP74

and ductile damage, mainly with di�erent description of the viscoelastic part

of the behavior using di�erential representation instead of integral description76

in the work of Krairi and Doghri (2014), more di�erences are given in details

in Praud et al. (2017). The later model was described as a multi-mechanisms78

(MM) constitutive model, since several mechanisms are involved to simulate the

overall behavior of the material. Cayzac et al. (2013a) also proposed to model80

the damage in semi-crystalline polymers using a new version of the MM model

of Regrain et al. (2009).82

The vast majority of the above listed models are isothermal models. In order

to be used under non-isothermal conditions, their material parameters need to84

be calibrated for di�erent temperatures. This method is only valid under a

�eld of temperature with constant magnitude. However, for coupled thermo-86

mechanical analysis with variable temperature �eld, non-isothermal models are

more suitable such as the hyperelastic-thermoviscoplastic constitutive model88

proposed by Garcia-Gonzalez et al. (2017).

In this work, based on an extension of the model published by Miled et al.90

(2011), a new model is proposed for thermoplastic polymers within the frame-

work of irreversible thermodynamics. It couples viscoelasticity and viscoplas-92

ticity under non-isothermal loading conditions.

The paper is organized as follows. Section 2 presents detailed development94

of the constitutive model based on a thermodynamics framework. In section 3,

numerical simulations using the model, are compared with experimental tests on96

PA66 and PP under di�erent temperatures and di�erent strain rates. Finally, a

discussion and possible enhancements of the model are presented in section 4.98

In the text, bold symbols designate second or fourth-rank tensors, as indi-

cated by the context. The contracted tensors products are expressed as:100

a : b = aijbji, (A : b)ij = Aijklblk,

where summation over a repeated index is supposed. The symbols I and I are

respectively the fourth and the second order symmetric identity tensors. The102
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spherical and deviatoric fourth order operators Ivol and Idev are given by:

Ivol ≡ 1

3
I ⊗ I and Idev≡I− Ivol,

2. Constitutive equations104

The model is formulated under the small perturbation hypothesis. The total

strain is decomposed into three parts: a viscoelastic (VE) strain εve, a thermal106

(TH) strain εth and a viscoplastic (VP) one εvp :

ε = εve + εth + εvp (1)

The thermal strain is considered to be expressed as:108

εth (T ) = (T − T0)︸ ︷︷ ︸
θ

αI (2)

here T is the absolute temperature at the current time and T0 is the initial

temperature, and α is the thermal expansion coe�cient for an isotropic polymer,110

which may be temperature dependent for some polymers.

2.1. Helmholtz free energy112

The proposed Helmholtz's free energy per unit mass ψ is decomposed into a

viscoelastic (VE) part denoted by strain energy function ψve and a hardening114

energy function ψh.

ψ = ψve + ψh (3)

The VE part will be studied in sections 2.2 and 2.3. The hardening part of116

the energy is an extension of the expression de�ned in Doghri (1993) as:

ρψh =
1

2
χ(t, T ) : χ(t, T ) +

p(t)ˆ

0

R(ξ, T )dξ (4)
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In this work, (εvp,V = {p,χ}) are internal variables, where the scalar vari-118

able p models isotropic hardening and the strain-like tensor χ models kine-

matic hardening. Internal variables V are associated to thermodynamic forces120

A = {R,X} . The scalar variable R measures the radius of the yield surface

in the space of deviatoric stresses while the tensor variable X measures the122

translation of the center of that surface in the same space. The Cauchy stress

is denoted σ.124

2.2. Temperature-independent viscoelastic properties

First we consider the case of temperature-independent viscoelastic proper-126

ties. The expression of ψve is form-similar to the Helmholtz free energy proposed

by Christensen and Naghdi (1967) for linear non-isothermal viscoelastic solids,128

but instead of the total strain in the purely VE latter formulation, we choose

to write ψve in terms of the thermo-viscoelastic strain:130

εtve = εth + εve = ε− εvp (5)

The expression of ψve is the following:

ρψve = ρψve0 +

tˆ

−∞

D(t− τ) :
∂εtve

∂τ
dτ −

tˆ

−∞

β(t− τ)
∂θ

∂τ
dτ

+
1

2

tˆ

−∞

tˆ

−∞

{
∂εtve (τ)

∂τ
: Cve(t− τ, t− η) :

∂εtve (η)

∂η

}
dτdη

−
tˆ

−∞

tˆ

−∞

{
ϕ (t− τ, t− η) :

∂εtve (τ)

∂τ

∂θ (η)

∂η

}
dτdη

− 1

2

tˆ

−∞

tˆ

−∞

{
m(t− τ, t− η)

∂θ (τ)

∂τ

∂θ (η)

∂η

}
dτdη +O

(
ε3
)

(6)

where ρ[kg/m3] is the mass density, ψve0 is the Holmholtz free energy density132

of the material in the initial stress-free state. The functions D, β, Cve, ϕ and

m are the relaxation mechanical functions, they are assumed to be continuous134

for arguments τi < 0; i.e.,

Dij (τ1) = 0, β (τ1) = 0, Cveijkl (τ1, τ2) = 0, ϕij (τ1, τ2) = 0,136
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m (τ1, τ2) = 0, for τ1 < 0 and τ2 < 0

The terms of O
(
ε3
)
in equation 6 are neglected.138

The Clausius-Duhem inequality requires the dissipation φ to be non-negative

and reads as:140

φ = σ :
.
ε− ρ

( .
ψ + S

.

T
)
−∇T. q

T
≥ 0 (7)

where q is the heat �ux vector and S is the entropy per unit mass. After

di�erentiation with respect to time of the free energy expression, using Leibnitz's142

rule, the Clausius-Duhem inequality leads to the following expressions of the

stress and the entropy after cancelingD and β terms (cf. AppendixA for details)144

σ(t) =

tˆ

−∞

Cve(t− τ) :
∂εtve(τ)

∂τ
dτ −

tˆ

−∞

ϕ (t− τ)
∂θ (τ)

∂τ
dτ (8)

ρS (t) =

tˆ

−∞

m (t− τ)
∂θ (τ)

∂τ
dτ +

tˆ

−∞

ϕ (t− τ) :
∂εtve(τ)

∂τ
dτ (9)

The dissipation de�ned in equation 7 can be re-expressed as follows:

φ = σ :
.
ε
vp − ρ

.

ψ
h

+ Λ−∇T. q
T
≥ 0 (10)

The expression of the thermo-VE term Λ is given in AppendixA. Following146

Christensen (1982), the aim is to develop a �rst order theory and Λ is a second-

order term which can be neglected in front of the others. Consequently, and148

using the expression of ψh (eq.4). The dissipation is rewritten as:

φ =−∇T. q
T

+ σ :
.
ε
vp −R .

p− aχ(t) : χ̇ (t)︸ ︷︷ ︸
φmec

≥ 0 (11)

where φmec is the mechanical dissipation transferred to heat. This e�ect is called150

self heating. Generally, it is important at high strain rates under monotonic

loading or at high frequencies under cyclic loading. It can be the origin of152

important thermal softening that may lead to material failure.

The �rst law of thermodynamics can be expressed in the following form [See154

details in Doghri (2000),Chapter 12]:
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ρė = σ : ε̇+ ρrext − divq (12)

where e [J/kg] is an internal energy per unit mass, and rext [W/kg] a mass156

density of internal heat production due to external sources. Internal and free

energies per unit mass, e and ψ, are related by:158

ψ = e− TS (13)

Using the equations of state (and neglecting the Λ term again) equation 12 can

be rewritten as follows:160

ρT Ṡ = φmec + ρrext − divq (14)

This can again be rewritten as follows:162

ρcpṪ = (φmec + ρrext − ρTH)− divq (15)

where cp[J/kg/K] is the speci�c heat capacity and H is the structural heating,

given by the following expressions:164

cp ≡ T
∂S

∂T

H ≡ ∂S

∂εtve
: εtve (16)

According to Fourier's law, the heat conduction in an isotropic material can be

expressed as:166

q = −k∇T (17)

The conductivity tensor k is assumed to be an isotropic tensor de�ned as k = kI.

2.3. Temperature-dependent viscoelastic properties168

Let us start with purely VE case. When the properties are temperature-

dependent, then according to Schapery (1967) a thermodynamically valid con-170

stitutive relation is:
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σ(t) =

tˆ

−∞

Cve(t̄− τ̄) :
∂ε(τ)

∂τ
dτ −

tˆ

−∞

ϕ (t̄− τ̄)
∂θ (τ)

∂τ
dτ (18)

where t̄ and τ̄ are reduced times de�ned by172

t̄ =

tˆ

0

dξ

aT (T (ξ))
; τ̄ =

τ̂

0

dξ

aT (T (ξ))
(19)

with aT (T ) being a temperature shift function. This formalism has been widely

used since the 1960's. As noted also by Schapery 1967, eq 18 can be rewritten174

equivalently as:

σ(t) =

t̄ˆ

−∞

Cve(t̄− τ̄) :
∂ε(τ̄)

∂τ̄
dτ̄ −

t̄ˆ

−∞

ϕ (t̄− τ̄)
∂θ (τ̄)

∂τ̄
dτ̄ (20)

This relation is form-identical to classical one for temperature-independent176

properties, provided that time is replaced by reduced time. Going back to

coupled VE-VP, with temperature-dependent VE properties, we assume that178

the VE part of the free energy remains form-identical to that of equation (6) on

the condition that the following substitutions are made:180

t→ t̄ ; τ → τ̄ ; η → η̄ (21)

The time derivative is given by

∂t̄

∂t
=

1

aT (T (t))
(22)

Using equations 21 and 22, and following the same procedure as in section 2.2182

and AppendixA, the following equations of state are found for the stress and

the entropy:184

σ(t) =

tˆ

−∞

Cve(t̄− τ̄) :
∂εtve(τ)

∂τ
dτ −

tˆ

−∞

ϕ (t̄− τ̄)
∂θ (τ)

∂τ
dτ (23)

ρS (t) =

tˆ

−∞

m (t̄− τ̄)
∂θ (τ)

∂τ
dτ +

tˆ

−∞

ϕ (t̄− τ̄) :
∂εtve(τ)

∂τ
dτ (24)
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The dissipation equation (11) and the heat equation (15) remain unchanged

(after neglecting the Λ term). In the isotropic case, Cve could be written as186

follows:

Cve (t̄) = 2G(t̄) Idev + 3K(t̄) Ivol (25)

where G(t̄) andK(t̄) are shear and bulk relaxation functions, respectively, which188

can be expressed using the Prony series:

G(t̄) = G∞ +

I∑
i=1

Gi exp

(
− t̄

gi

)
; K(t̄) = K∞ +

J∑
j=1

Kj exp

(
− t̄

kj

)
(26)

Here, gi(i = 1..I) and kj(j = 1..J) are the deviatoric and volumetric relaxation190

times respectively; Gi(i = 1..I) and Kj(j = 1..J) are the corresponding moduli

or weights, and G∞ and K∞ are the long-term elastic shear and bulk moduli.192

We recall that for the isotropic case, the thermal expansion is de�ned by

equation 2. After replacing the thermo-viscoelastic strain by its expression and194

in order to obtain familiar expression for the stress, an assumption was made for

the function ϕ to be de�ned as ϕij (t) = ϕ (t) δij = 3αK (t̄) δij . The following196

expressions for stress and entropy are obtained (cf. AppendixA for details). The

Cauchy stress is divided into deviatoric and hydrostatic parts:198

σ(t) = s(t) + σH(t)1 (27)

where


sij (t) = 2

tˆ

−∞

G(t̄− τ̄)
∂ξveij (τ)

∂τ
dτ

σH(t) = 3

tˆ

−∞

K(t̄− τ̄)
∂εveH (τ)

∂τ
dτ

(28)

with the viscoelastic strain tensor is also divided into deviatoric and dilatational200

parts:

εve(t) = ξve(t) + εveH (t)1 (29)

The equation 28 is equivalent to:202
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σ(t) =

tˆ

−∞

Cve(t̄− τ̄) :
∂εve(τ)

∂τ
dτ (30)

The entropy is then expressed as

ρS (t) =

tˆ

−∞

(
m (t̄− τ̄) + 9α2K (t̄− τ̄)

) ∂θ (τ)

∂τ
dτ (31)

2.4. Viscoplastic �ow rules204

Using the generalized normality as in (Krairi and Doghri, 2014; Chaboche,

1997), we have the following evolution laws:206

ε̇vp = γ̇
∂F

∂σ
, V̇ = γ̇

∂F

∂A
, (32)

here γ̇ is a viscoplastic multiplier and the potential F is the non-isothermal

extension of the one proposed by (Lemaitre and Chaboche, 1994):208

F (σ, R,X, T ) = f(σ, R,X, T ) +
b

2a
X : X (33)

where f(σ, R,X, T ) represents the viscoelastic domain if f < 0 , and viscoplas-

tic �ow if f > 0. The following expression for f is considered:210

f(σ, R,X, T ) = (σ −X)eq − σY (T )−R(T, p) (34)

here σY (T ) is the viscoelastic limit at a given temperature (T ) and (σ −X)eq

is chosen as the von Mises measure of (σ −X):212

(σ −X)eq =

[
3

2
(s−X) : (s−X)

]1/2

(35)

here s is the deviatoric part of σ. Using (eq. 32), the following evolution

equations are found :214

ε̇vp =γ̇N ,

ṗ =γ̇, (36)

χ̇ =γ̇(N − b

a
X)
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where the following notation was introduced :

N ≡ ∂f

∂σ
=

3

2

s

σeq
(37)

Since ε̇vp and N are deviatoric and (N : N = 3/2), the accumulated viscoplas-216

tic strain rate ṗ is related to ε̇vp by :

ṗ =

(
2

3
ε̇vp : ε̇vp

)1/2

(38)

and it is de�ned by:218

if f 6 0 ṗ = 0

if f > 0 ṗ = gv(σeq , p, T ) > 0

(39)

where gv is the viscoplastic function.

2.5. Summary of constitutive equations220

In summary, the main constitutive equations are the following:



ε = εth + εve + εvp

εve = ξve + εveH 1

sij (t) = 2

tˆ

−∞

G(t̄− τ̄)
∂ξveij (τ)

∂τ
dτ

σH(t) = 3

tˆ

−∞

K(t̄− τ̄)
∂εveH (τ)

∂τ
dτ

ε̇vp =
3

2

(s−X)

(σ −X)eq
ṗ,

f(σ, R,X, T ) = (σ −X)eq − σY (T )−R(T, p)

if f > 0 ṗ = gv(σeq , p, T ) > 0 otherwise ṗ = 0

Ẋ = (aε̇vp − bX ṗ)

ρS (t) =

tˆ

−∞

(
m (t̄− τ̄) + 9α2K (t̄− τ̄)

) ∂θ (τ)

∂τ
dτ

(40)

The dissipation is expressed by equation 11 and the heat equation is given by222

equation 15. It should be noted that using the von Mises yield criterion makes
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the viscoplastic behavior insensitive to change in hydrostatic pressure. How-224

ever the thermo-viscoelastic response should be in�uenced. This assumption is

further discussed in section 4.226

In the above equations the concept of reduced time is employed as in Schapery

(1969), however we are using a generalized shift function ASh which allows to

take into account the aging and the moisture e�ect, such that the reduced time

(t̄) is related to the real time (t) by the following expression:

t̄ =

tˆ

0

dt′

ASh (t′)
(41)

with ASh de�ned as follows:

ASh = aTamaa (42)

where aT is representing the e�ect of temperature, am is representing the e�ect228

of moisture and aa is representing the time shift due to material aging.

3. Experimental validation230

In order to validate the proposed thermo-mechanical model against ex-

perimental tests, it was implemented into the commercial �nite element code232

ABAQUS by combining user subroutines UMAT and UMATHT. The subroutine

UMAT allows to de�ne the stress-strain response and the heat production from234

mechanical dissipation at each integration point, based on an implicit numerical

algorithm following the methods in (Simo and Hughes, 1998; Doghri, 2000). At236

each time increment, the subroutine UMAT compute heat generated due to dis-

sipation through variable RPL. The temperature �eld is computed by ABAQUS238

as part of an iterative solution where UMATHT provides the heat �ux vector

and the thermal constitutive behavior. In the following, the thermo-mechanical240

behavior of Polyamide 66 and Polyproylene were studied. FE models for the

specimens used to perform the experimental characterization were created and242

the numerical simulation results are compared to experimental data. Two type

of specimens are modeled and simulated by �nite elements: tensile samples and244

shear samples. For the tensile samples which have rectangular and circular cross
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sections, based on the symmetry of the geometry and loading symmetry only246

fourth of the sample is modeled and meshed. Symmetry boundary conditions

are applied on the 3 symmetry surfaces. A controlled displacement is applied on248

the clamps specimen shoulders contact surface.However, for the shear sample

the whole geometry sample according to the standard ASTM D 5379. The ini-250

tial testing temperature is de�ned as a prede�ned �eld throughout the model.

The convection heat transfer is not taken into account since the external envi-252

ronmental conditions (i.e ambient air temperature and convection coe�cient)

are not known. The FE models are meshed using element C3D20T, a 20 node254

triquadratic displacement and trilinear temperature brick element.

The selected models and functions for the numerical simulations are the fol-256

lowing: The kinematic hardening is assumed to be negligible in the studied

cases. For the shift function (Ash), am and aa are equal to 1, since constant258

relative humidity and no e�ect of aging are assumed. The function aT is the

Williams�Landel�Ferry (WLF) equation de�ned as:260

log (aT ) = − C1 (T − Tref )

C2 + (T − Tref )
(43)

For the viscoplastic behavior,

σy (T ) = Γ (T )σy,ref

R(T, p) = Γ (T )R (Tref , p)

(44)

with σy,ref is a yield stress at a reference temperature Tref , it represents the262

limit of linear viscoelastic response of the material in term of stress. R (Tref , p)

corresponds to the isotropic hardening with material parameters identi�ed at264

the reference temperature. Γ (T ) is a temperature sensitivity function expressed

as:266

Γ (T ) = Γ (β, T ) = exp (−β (T − Tref )) (45)

β is a material parameter, Γ (Tref ) = 1, this function is inspired from the

observation made by Zhou and Mallick (2002) on polypropylene (PP) and talc-268

�lled polypropylene under di�erent strain rates and di�erent temperatures. The
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power law is selected for the viscoplastic function:270

gv =
σy
η

(
f

σy

)m
(46)

η is a variable that is taken constant for PP, since the temperature sensitivity of

σy is enough to capture the temperature sensitivity of the viscoplastic behavior.272

For PA66, η is considered to be temperature dependent.

For each material PA66 and PP, the needed material parameters are the274

viscoelastic parameters (Table 1 for PA66 and Table 3 for PP), the viscoplastic

parameters (Table 2 for PA66 and Table 4 for PP) and the WLF parameters, in276

addition to thermal properties which are given in the text in each corresponding

section.278

3.1. Case of Polyamide 66 (PA66)

Baquet (2011) and Maurel-Pantel et al. (2015) reported the results of thermo-280

mechanical uniaxial tensile and shear experimental tests on PA66 under di�er-

ent strain rates and temperatures. Digital image correlation (DIC) technique282

was used by the authors in order to analyze the deformation �eld on the front

surface of the samples. The authors also presented measurements of the self284

heating at the specimen's external surface. They employed an infrared camera

(see Maurel-Pantel et al. (2011) for more details about the employed proce-286

dure). The material was supplied by Solvay Performance Polyamides, it was

conditioned until equilibrium was reached with an air containing 50% of rela-288

tive humidity during the experiment, because of the high in�uence of relative

humidity on the Polyamide material.290

The proposed model is employed to simulate the material thermo-mechanical

response and its self heating. In order to identify the viscoelastic properties,292

DTMA is employed. It was performed at temperatures between -100°C and

210°C. For the current study, the selected range was 0°C to 100°C. Master294

curves for the storage and loss moduli were built in order to take into account

the e�ect of time and temperature simultaneously (cf. �gure 1). These curves296

were used in order to identify the Prony series coe�cients. Several numbers of

terms in the Prony series were tested and a minimum number of 20 terms was298

found to be needed in order to �t the master curve correctly. The instanta-

neous modulus E0 is not given for con�dentiality reasons, the Poisson's ratio300

15



is assumed to be constant and equal to ν = 0.42 and the identi�ed viscoelastic

parameters are listed in table 1. It should be noted that the Poisson's ratio302

is generally not constant for thermoplastic polymers and that the use of shear

and bulk time functions, expressed using Prony series determined directly from304

experiments is more appropriate to model the multiaxial aspects of material be-

havior. However, if the only available experimental data are uniaxial tests, then306

an estimate of the shear and bulk moduli may be found, assuming a constant

Poisson's ratio. With the latter assumption, parameters Gi, Ki, gi and kj are308

obtained by the following relations :


G∞ =

E∞
2(1 + ν)

; Gi =
Ei

2(1 + ν)
; gi =

τiEi
Gi

K∞ =
E∞

3(1− 2ν)
; Ki =

Ei
3(1− 2ν)

; ki =
τiEi
Ki

(no sum) (47)

More details about the viscoelastic material parameter identi�cation can be310

found in Krairi and Doghri (2014). The parameters for the WLF equation are

identi�ed using the shift factors at each temperature employed to construct the312

master curves (cf. �gure 2), Tref = 25°C, C1 = 26.21 and C2 = 153.16°C. The

material density, the thermal expansion coe�cient, the thermal conductivity314

and the speci�c heat capacity are ρ = 1140 kgm−3, α = 70.10−6K−1, k =

0.27W/(mK) and c =1670 J K−1 kg−1, respectively.316
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Figure 1: Master curve for PA66 conditioned at 50%
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i 1 2 3 4 5 6 7 8 9 10

log(τi) -6.59 -5.80 -5.01 -4.22 -3.42 -2.63 -1.84 -1.05 -0.26 0.53

Ei/E0 0.07 0.073 0.076 0.078 0.077 0.073 0.068 0.062 0.056 0.050

i 11 12 13 14 15 16 17 18 19 20

log(τi) 1.32 2.12 2.91 3.70 4.49 5.28 6.07 6.87 7.66 8.45

Ei/E0 0.027 0.023 0.019 0.016 0.014 0.014 0.015 0.018 0.024 0.034

Table 1: Identi�ed VE parameters for PA66 at T=23°C
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Figure 2: Shift factors for PA66 conditioned at 50%, employed to calibrate the WLF shift

function

The experimental stress strain curves at di�erent strain rates at temperatures318

T = 21.5̊C and T = 26̊C (See �gures 6 and 3) are used to identify the param-

eters for the yield stress, the isotropic hardening and the viscoplastic function,320

and to calibrate the function Γ (T ). The identi�ed viscoplastic material param-

eters are listed in table 2. In the following, the stress-strain curves for PA66 are322

plotted in terms of normalized stress (true stress divided by a constant stress

σ0) for con�dentiality reasons.324
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The predicted stress strain curves at temperatures T = 40̊C and T = 60̊C are

compared to the experimental ones in �gures 7 and 8. An acceptable agreement326

can be seen between the experimental data and numerical predictions.

The average self-heating at the specimens surface is predicted at temperatures328

T = 21.5̊C and T = 26̊C. From �gure 3, we can see that the self heating is well

predicted at T = 26̊C and a strain rate ε̇ = 2.4 10−1s−1, the �eld of temperature330

is plotted in �gure 4 at a strain of 25% . For lower strain rate ε̇ = 2.4 10−3s−1 at

the same temperature a slight over-estimation of predicted rise of temperature332

can be seen in �gure 5, but it is still within the measurement noise. It seems

that at small strain rates, the increase of the temperature is small, therefore334

it is di�cult to obtain accurate experimental measurements. In �gure 6, for

the case of the temperature T = 21.5̊C and strain rate ε̇ = 1.8 10−2s−1, a336

drop of temperature occurred mainly when the material response is linear, but

when the nonlinear regime is dominant, an increase of the temperature can be338

seen. The model is able to predict the increase and temperature with a small

overestimation for this case.340

Yield stress: σy (T ) = Γ (β1, T )σy,ref

Tref = 25 °C, β1 = 0.011, σy,ref = 15.5 MPa

Isotropic hardening: R(T, p) = Γ (β1, T ) kpn

k = 103MPa, n = 0.32

Viscoplastic function: gv =
σy
η

(
f

σy

)m
with η = η0Γ (β2, T )

η0 = 74 MPa.s, m = 2, β2 = 0.07

Table 2: Viscoplastic parameters for PA66
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Figure 3: Tensile tests under a strain rate ε̇ = 2.4 10−1s−1 at the temperature T = 26̊C

Figure 4: An example of the self-heating �eld within the dogbone specimen of PA66 under

uniaxial test at T = 26̊C and a strain rate ε̇ = 2.4 10−1s−1. The average strain is equal to

0.25. The values of temperature are in K̊.
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Figure 5: Tensile test under a strain rate ε̇ = 2.4 10−3s−1 at the temperature T = 26̊C
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Figure 6: Tensile test under a strain rate ε̇ = 1.8 10−2s−1 at the temperature T = 21.5̊C
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Figure 8: Tensile tests under di�erent strain rates at the temperature T = 60̊C

The proposed model is also employed to predict the behavior of PA66 un-342

der shear loading using Iosipescu con�guration (described in standard �ASTM

D 5379�), with di�erent strain rates at temperature T = 29̊C. The model344

predictions are compared to experimental data and numerical simulations of
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Maurel-Pantel et al. (2015) in �gures 9, 10, 11 and 12. It is seen that the346

proposed model better captures the material response under shear loading as

compared to Maurel-Pantel et al. (2015) model.348
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Figure 9: Shear test under a strain rate ε̇ = 4.0 10−1s−1 at temperature T = 29̊C
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Figure 10: Shear test under a strain rate ε̇ = 3.7 10−2s−1 at temperature T = 29̊C
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Figure 11: Shear tests under a strain rate ε̇ = 1.38 10−2s−1 at temperature T = 29̊C
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Figure 12: Shear tests under a strain rate ε̇ = 3.64 10−3s−1 at temperature T = 29̊C
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3.2. Case of polypropylene (PP)

In this section, experimental uniaxial tests were performed on injected polypropy-354

lene (PP 575P from Sabic) at di�erent temperatures and strain rates to calibrate

and validate the proposed constitutive material model. The digital image cor-356

relation (DIC) technique was employed in order to measure the local �eld of

deformation during the loading. The strain measurement was veri�ed with an358

extensometer at room temperature. The temperature was controlled by a ther-

mocouple inside the heat chamber. A second measurement was performed with360

a K-type thermocouple directly next to the sample. Dogbone-shaped samples

according to DIN EN ISO 527-2, type 1A were tested on an Instron 5800 tensile362

machine. The true strain was calculated with the correlation software VIC3D,

using the logarithmic Hencky tensor.364

Similar to the case of PA66, DMA was used in order to identify the vis-

coelastic properties (i.e. Prony series coe�cients). Injected PP was grinded366

and polished with water cooling to a thickness of 3 mm and dried afterwards in

a desiccator until constant weight. According to DSC results, the crystallinity368

remained unchanged. On a TA Q800 frequency sweeps of 0.1% strain were

performed using a dual cantilever clamp at frequencies between 1 Hz and 50370

Hz. In steps of 5°C with an isothermal step length of 15min to ensure uni-

form temperature distribution, the temperature was increased from 23°C to372

60°C. From the results, master curves for loss and storage moduli were con-

structed (cf. �gure 13). The instantaneous modulus is E0 = 2000MPa, the374

Poisson's ratio is assumed to be constant and equal to ν = 0.42 and the identi-

�ed viscoelastic parameters are listed in Table 3. The parameters for the WLF376

equation are Tref = 23°C, C1 = 61.22 and C2 = 178.5°C, identi�ed using the

experimental shift factors (cf �gure 14). The material density, the thermal ex-378

pansion coe�cient, the thermal conductivity and the speci�c heat capacity are

ρ = 943 kgm−3, α = 90.10−6K−1, k = 0.2W/(mK) and cp =1920 J K−1 kg−1,380

respectively.
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Figure 13: Master curves for PP

i 1 2 3 4 5 6 7 8 9 10

log(τi) -1.70 -0.55 0.59 1.73 2.88 4.02 5.17 6.31 7.46 8.60

Ei [MPa] 163 122 126 129 126 119 112 105 99 93.5

i 11 12 13 14 15 16 17 18 19 20

log(τi) 9.74 10.9 12.0 13.1 14.3 15.5 16.6 17.8 18.9 20.0

Ei [MPa] 88.8 84.6 81.4 79.7 79.8 80.4 77.4 64.1 51.1 91.7

Table 3: Identi�ed viscoelastic parameters for PP at T=23°C

382
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Figure 14: Shift factors for PP, employed to calibrated the WLF shift function

The experimental stress strain curves at di�erent strain rates at the reference

temperature Tref = 23̊C (See �gure 15) are used to identify the parameters384

for the yield stress, the isotropic hardening and the viscoplastic function, and

only one stress-strain curve at di�erent temperature than T = 23̊C, is used to386

calibrate the function Γ (T ), which is the one at the temperature T = 45̊C and

strain rate ε̇ = 9.3 10−6 s−1. The identi�ed viscoplastic material parameters388

are listed in table 4. The predicted stress strain curves at the temperatures

T = 45̊C and T = 60̊C are compared to the experimental ones in �gures 16390

and 17. Generally a good agreement can be seen between the experimental data

and numerical predictions.392

Yield stress: σy (T ) = Γ (β1, T )σy,ref

Tref = 23 °C, β1 = 0.018, σy,ref = 3.5 MPa

Isotropic hardening: R(T, p) = Γ (β1, T ) kpn1 (1− exp (−n2p))

k = 24MPa, n1 = 0.18, n2 = 230

Viscoplastic function: gv =
σy
η

(
f

σy

)m
η = 1.29 106 MPa.s, m = 4.75

Table 4: Viscoplastic parameters for PP
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Figure 16: Tensile tests under di�erent strain rates at temperature T = 45̊C
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Figure 17: Tensile tests under di�erent strain rates at temperature T = 60̊C

Similar to the case of PA66, the self heating of PP was estimated. The Figure394

18 shows an example of the self-heating �eld within the dogbone specimen of

PP under uniaxial test at T = 23̊C and a strain rate ε̇ = 1.8 10−2s−1. The396

predictions of the average surface temperature caused by self heating under

di�erent strain rates at initial temperature of T = 23̊C are plotted in �gure 19.398

28



Figure 18: An example of the self-heating �eld within the dogbone specimen of PP under

uniaxial test at T = 23̊C and a strain rate ε̇ = 1.8 10−2s−1. For the strain equal to 0.1. The

temperature values are in K̊.
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Figure 19: The predictions of the average surface temperature caused by self heating under

di�erent strain rates at initial temperature of T = 23̊C.

The proposed model was also employed to simulate the behavior of PP un-

der low cyclic fatigue loading. The results are compared to the experimental400

29



data of Shukla et al. (2014). The materials parameters already identi�ed (for

PP 575P from Sabic) were used in the following simulations. The performed402

fatigue tests by Shukla et al. (2014) are strain controlled tests. Specimens were

injected following the standard ASTM D368 - Geometry type I. The specimens404

are subjected to displacement controlled sinusoidal loading at 10 HZ with and

amplitude of 0.2 mm or 0.35 mm and a mean displacement of 1 mm. The tests406

are performed at room temperature (RT = 28̊C). The force needed to keep the

level of controlled strains, in the case of the amplitude equal to 0.2 mm, during408

the loading is plotted in �gure 20. The temperature at the surface of sample was

measured experimentally using a non-contact type Raytek MI (REYMID10LT)410

temperature sensor. The simulated and measured temperatures are plotted in

�gure 21. The temperature predictions are acceptable in the case of an am-412

plitude equal to 0.2 mm, however they are underestimated in the case of 0.35

mm. Possible improvements of the model's predictive capabilities are discussed414

in section 4.
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T = 28̊C.
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Figure 21: The surface temperature for PP specimens during the loading.

4. Discussion418

We presented model a fully coupled thermo-viscoelastic and thermo-viscoplastic

model which allows to capture the e�ects of both loading rate and temperature420

on the behavior of thermoplastic polymers. The thermodynamical derivation al-

lows to obtain an estimation of the material self heating under di�erent loading422

conditions. This e�ect may be the origin of material failure under speci�c load-

ing conditions. The model was validated against available experimental data424

on Nylon 66 (PA66) and PP under di�erent loading conditions (i.e. tensile and

shear loadings, monotonic and cyclic). The comparison between the predicted426

self heating and the experimental measurements showed an acceptable agree-

ment in the case of PA66 and PP. Some improvements discussed hereafter can428

only enhance the predictive capabilities of the proposed model.

This work is restricted to the regime of small perturbations (small strains,430

displacements and rotations). An extension to the large deformation regime

can be developed following the work of Gudimetla and Doghri (2017) who ex-432

tended the small strain viscoelastic-viscoplastic model of Miled et al. (2011).

The authors proposed an expression for the Helmholtz free energy de�ned as434

31



the sum of four contributions: viscoelastic, viscoplastic, softening and hyper-

elastic re-hardening. The viscoelastic part is de�ned by an extension of the436

work of Christensen and Freund (1971) to large deformations. For the other

contributions, Gudimetla and Doghri (2017) took advantage of employed the438

huge knowledge about �nite strain elasto(visco)plasticity which was developed

mainly for metals, with special choices in term of strain and stress measures.440

In the experimental validation section, The Poisson's ratio (PR) is assumed

to be constant. However, this is a simplifying assumption because the PR for442

thermoplastic polymers, is proven to be time, stress and thermal expansion de-

pendent, which makes PR values determined from a uniaxial test not applicable444

to other uniaxial loadings with di�erent time histories or to multi-axial load-

ings and thermal expansions. Rigorously, PR is not a material parameter for446

thermoplastics as already stated in Krairi and Doghri (2014). The use of shear

and bulk time functions, expressed using Prony series determined directly from448

experiments is more appropriate to model the multi-axial aspects of material be-

havior. However, if the only available experimental data are uniaxial tests, then450

an estimate of the shear and bulk moduli may be found, assuming a constant

Poisson's ratio using expressions given in eq.(47).452

Thermal properties mainly speci�c heating capacities, thermal conductivity

and thermal expansion are proved to be temperature dependent experimen-454

tally. In the presented simulations those parameters are assumed to be con-

stant. In the studied temperature range (lower than the melting temperature)456

small changes are expected. However further experimental investigations of the

studied materials are needed to con�rm this assumption.458

Frommodeling point of view, sophisticated evolution laws needs to be developed,

based on the material caloric behavior using accurate representation of material460

micro-structure characterized by its degree of crystallinity. Wunderlich (2003)

showed that semi-crystalline polymers micro-structure consists of three phases:462

crystalline phase, mobile amorphous phase and rigid amorphous phase. Those

phases exhibit changes in their densities and concentrations because thermo-464

mechanical histories of loading.

As already mentioned in the introduction taking into account the material466

micro-structure may be performed using micro-mechanical models such as Nikolov
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and Doghri (2000), or by phenomenological approach (e.g. Lion and Johlitz,468

2016; Lion et al., 2017). In the presented approach the e�ect of these micro-

structural changes are modeled in a macroscopic phenomenological way by us-470

ing thermo-viscoelasticity employing the TTS principle (via WLF function) and

thermo-viscoplasticity with temperature sensitivity function.472

For some thermoplastic polymers, it is important to take into account the

hydrostatic pressure sensitivity. This sensitivity may be characterized by several474

methods, for example by comparing the material response in terms of absolute

values of true stress and true strain under uniaxial tension and uniaxial compres-476

sion. Maurel-Pantel et al. (2015) assumed that PA66 is incompressible since the

volume variation remains close to zero under uniaxial tensile loading. However,478

the uniaxial tensile tests are not enough to judge about the pressure sensitivity

of the material. A complete multi-axial testing campaign is needed in order to480

check this sensitivity, an example of this study is the work of Farrokh and Khan

(2010) who studied the multi-axial behavior of Nylon 101, under several loading482

conditions: tension, compression, tension-torsion, torsion, biaxial compression

and reverse torsion. The authors were able to construct an experimental yield484

surfaces at di�erent strain rates, whose shape should show the pressure sensi-

tivity of the material. If the von Mises yield criterion is enough to capture the486

multi-axial behavior of the studied polymer, the proposed model may be used.

Otherwise, plastic deformation may occur due to hydrostatic pressure which488

is not captured by the proposed model. In fact, using von Mises yield crite-

rion makes the viscoplastic behavior insensitive to hydrostatic pressure, but the490

thermo-viscoelastic response should be in�uenced. Possible enhancement may

be achieved by using a pressure sensitive yield criterion such as Drucker-Prager492

(e.g. Gudimetla and Doghri, 2017).

As an experimental method to better capture the in�uence of hydrostatic pres-494

sure, several authors proposed the use of a notched bar (e.g. Cayzac et al.,

2013b; Laiarinandrasana et al., 2016; Ognedal et al., 2014). According to these496

authors a triaxial stress sate dominated by hydrostatic pressure is expected near

the notch. A so called plastic delation is observed by the authors for HDPE498

and PVC (Ognedal et al., 2014), and for PA6 (Laiarinandrasana et al., 2016).

Microscopic investigations showed that this deformation is found to be related500
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to the creation of voids inside the materials during loading and it is related to

material softening and damage. From a modeling point of view, mechanical502

damage (or softening) may be taken into account by two di�erent approaches.

The �rst approach is based on micromechanics, e.g. Gurson's model (Gurson,504

1975, 1977). The second one is continuum damage mechanics (CDM) (e.g.

Lemaitre and Chaboche, 1978; Lemaitre, 1992); (a list of works employing the506

di�erent approaches may be found in (Krairi and Doghri, 2014). Using CDM

may allow to capture the e�ect of hydrostatic pressure implicitly on the mate-508

rial behavior, through the damage evolution laws. The present model can be

extended in order to take the damage e�ect following the approach proposed in510

Krairi and Doghri (2014).

Actually, it is expected that better predictions of self-heating under cyclic load-512

ings can be achieved by making the viscoelastic response nonlinear instead of

linear in the present model. Indeed, in the isothermal case, Krairi and Doghri514

(2014) rendered the viscoelastic response nonlinear by coupling it to a damage

model, and obtained better predictions of hysteresis loops under cyclic loadings516

than with other models. Other nonlinear viscoelastic formulations exist (e.g.

Schapery, 1967).518

The proposed approach allows to model thermal softening. In the following,

a notched round bar is studied under uniaxial tensile loading with di�erent dis-520

placement rates. The presence of hydrostatic pressure is expected to increase

self heating compared to our model's predicted temperature increase. Experi-522

mental investigations are needed to check this assumption. The bar geometry is

taken from Laiarinandrasana et al. (2016) cf. �gure 22-(a). In order to show the524

e�ect of the notch on notched bar response, the case of unnotched sample (the

same geometry without a notch) is also studied. Based on the axi-symmetry of526

the sample, one fourth was used in the FEM simulation (cf. �gure 22-(b) and

(c)). The bars are assumed to be made with PA66 and the material parameters528

identi�ed in the previous section are used. Controlled displacement tensile tests

at di�erent displacement rates of the unnotched and notched bars are simulated.530

The �gure 23 shows the triaxiality ratio in the case of notched and unnotched

bars at their mid-sections. The triaxiality ratio is de�ned as the ratio between532

the hydrostatic pressure and the von Mises equivalent stress (σH/σeq). It allows
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to quantify the contribution of hydrostatic pressure to the stress state. It can534

be seen from �gure 23 that for the unnotched bar the triaxiality is constant

and rate independent, and it value is lower than the triaxiality in the case of536

notched bar. For the notched bar the triaxiality near the center of the bar mid-

section is higher than the one near the notch and its value is increasing with538

the increase of applied displacement. In contrast to the case of unnotched bar,

the triaxiality for notched bar is rate dependent. The presence of the notch540

caused a stress concentration and a hydrostatic pressure dominated stress state,

which in�uences the overall response of the notched samples in terms of reaction542

forces and generated temperature under increasing applied displacement with

di�erent rates. The �gures 24 and 25 show the reactions forces versus the ap-544

plied displacement, respectively for unnotched and notched bars. A drop of the

force can be noticed for the case of notched bar, which is explained by thermal546

softening due to high self heating near the notch as showed in �gure 26. The

values of self-heating in the case of unnotched bars at their external surface are548

plotter in �gure 27. Compared to notched bar case, these values are small and

are not in�uencing the bar response as in the case of notched bars.550

(a) (b) (c)

Figure 22: (a) The dimensions of the notched bar from Laiarinandrasana et al. (2016), (b)

The employed mesh for the FE simulations on Notched bar, (c) The employed mesh for the

FE simulations on Unnotched bar
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Figure 23: Unnotched and Notched PA66 bar. Triaxiality versus applied displacement curves

with di�erent displacement rates.
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5. Conclusions

The proposed constitutive behavior model is formulated within the frame-558

work of thermodynamics of irreversible processes, as an extension of the isother-

mal viscoelastic and viscoplastic model proposed by Miled et al. (2011). Based560

on the work of Christensen and Naghdi (1967); Christensen and Freund (1971)

on linear viscoelasticity, the time temperature superposition principle (Schapery,562

1969) is employed to extend the linear viscoelastic behavior to the non-isothermal

case. The model couples viscoelasticity to viscoplasticity which is also non-564

isothermal. The separation between the viscoelastic and the viscoplastic trans-

formations is made using a yield function based on the von Mises equivalent566

stress.

The experimental validation using uniaxial and shear tests at di�erent strain568

rates and di�erent temperature on Polyamide 66 (PA66) and Polypropylene

(PP) showed that the model captures successfully the rate dependency and570

temperature sensitivity of the polymer materials. Possible enhancement and

improvement of the proposed approach are presented in the discussion section.572
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AppendixA. Thermodynamical derivation of constitutive relations580

We make a uni�ed presentation for the two cases when viscoelastic properties

are temperature independent or dependent. In the former case, it su�ces to take582

t̄= t and aT = 1 in the following equations, while in the latter, t̄ and aT do

represent the reduced time and the time shift function, respectively.584

The proposed Helmholtz free energy function ψ is de�ned as:

ψ = ψve + ψh (A.1)

ψve and ψh are de�ned by the expressions 6 and 4, respectively. We also recall586

the following decomposition ε = εve + εth + εvp where ε is the total strain, εvp

the viscoplastic strain and the thermo-viscoelastic strain
(
εtve = εth + εve

)
. In588

the following, due to the hypothesis of small perturbation, we have
d

dt
=

∂

∂t
and similarly to Christensen (1982) in pure viscoelasticity, the expressions of590

the Cauchy stress and the entropy are found using the inequality of Clausius-

Duhem which requires the dissipation to be non-negative592

φ = σ :
.
ε− ρ

( .
ψ + S

.

T
)
−∇T. q

T
≥ 0 (A.2)

Applying the Leibnitz rule to time derivative of the free energy equations (3) to
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(6) . the Clausius-Duhem inequality can be re-expressed as:σ (t)−D (0)−
tˆ

−∞

Cve(t̄− τ̄ , 0) :
∂εtve(τ)

∂τ
dτ +

tˆ

−∞

ϕ (0, t̄− τ̄)
∂θ (τ)

∂τ
dτ

 : ε̇tve (t)

+

−ρS (t) + β (0) +

tˆ

−∞

m (t̄− τ̄ , 0)
∂θ (τ)

∂τ
dτ +

tˆ

−∞

ϕ (t̄− τ̄ , 0) :
∂εtve(τ)

∂τ
dτ

 .

θ (t)

−
tˆ

−∞

∂

∂t
D (t̄− τ̄) :

∂εtve(τ)

∂τ
dτ +

tˆ

−∞

∂

∂t
β (t̄− τ̄)

∂θ (τ)

∂τ
dτ + Λ

+ σ :
.
ε
vp −R(r)

dp(t)

dt
− aχ(t) :

dχ(t)

dt
−∇T. q

T
≥ 0 (A.3)

Where Λ is the dissipation term due to the time dependence of the relaxation

functions and is given by:594

Λ =− 1

2

tˆ

−∞

tˆ

−∞

∂εtve (τ)

∂τ
:
∂Cve(t̄− τ̄ , t̄− η̄)

∂t
:
∂εtve (η)

∂η
dτdη

+

tˆ

−∞

tˆ

−∞

∂ϕ(t̄− τ̄ , t̄− η̄)

∂t
:
∂εtve (η)

∂η

∂θ (τ)

∂τ
dηdτ

+
1

2

tˆ

−∞

tˆ

−∞

∂m(t̄− τ̄ , t̄− η̄)

∂t

∂θ (η)

∂η

∂θ (τ)

∂τ
dηdτ (A.4)

The following symmetry properties (Christensen and Freund, 1971; Christensen,

1982) and particular forms are used596

Cveijkl(τ, η) = Cveklij(η, τ) = Cveklij(η + τ)

ϕij(τ, η) = ϕji(η, τ) = ϕij(η + τ) (A.5)

m(τ, η) = m(η, τ) = m(η + τ)

The inequality A.3 must hold for all arbitrary values of the derivatives ε̇tve (t)

and
.

θ (t). Therefore their coe�cients should vanish. Hence,

σ(t) = D (0) +

tˆ

−∞

Cve(t̄− τ̄) :
∂εtve(τ)

∂τ
dτ −

tˆ

−∞

ϕ (t̄− τ̄)
∂θ (τ)

∂τ
dτ (A.6)

ρS (t) = β (0) +

tˆ

−∞

m (t̄− τ̄)
∂θ (τ)

∂τ
dτ +

tˆ

−∞

ϕ (t̄− τ̄) :
∂εtve(τ)

∂τ
dτ (A.7)
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The dissipation is then expressed as

φ =−
tˆ

−∞

∂

∂t
D (t̄− τ̄) :

∂εtve(τ)

∂τ
dτ +

tˆ

−∞

∂

∂t
β (t̄− τ̄)

∂θ (τ)

∂τ
dτ

+ Λ−∇T. q
T

+ σ :
.
ε
vp −R .

p− aχ(t) : χ̇ (t) ≥ 0 (A.8)

D (0) and β (0) are the initial stress and initial entropy, respectively, and they

are assumed to be null. According to Christensen (1982) in order to satisfy the598

inequality A.8 for all processes, it is necessary that:

∂

∂t
D (t̄) = 0,

∂

∂t
β (t̄) = 0 (A.9)

consequently

φ =−∇T. q
T

+ σ :
.
ε
vp −R .

p− aχ(t) : χ̇ (t) ≥ 0 (A.10)

where Λ being a second order term, it must be neglected. In equation A.6, if600

we replace εtve by its expression
(
εtve = εth + εve

)
then

σ(t) =

tˆ

−∞

{
Cve(t̄− τ̄) :

(
∂εve(τ)

∂τ
+
∂ (αθ (τ))

∂τ

)
−ϕ (t̄− τ̄)

∂θ (τ)

∂τ

}
dτ

(A.11)

In the isotropic case, ϕ can be expressed as ϕij = ϕ (t) δij . After replacing the602

relaxation tensor by its expression (cf. equation 25). The Cauchy stress may be

divided into deviatoric and hydrostatic stresses:604

σ(t) = s(t) + σH(t)1 (A.12)

The viscoelastic strain tensor may be also divided into deviatoric and dilata-

tional parts:606

εve(t) = ξve(t) + εveH (t)1 (A.13)
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Consequently,



sij (t) =

tˆ

−∞

2G(t̄− τ̄)
∂ξveij (τ)

∂τ
dτ

σH(t) =

tˆ

−∞

{
3K(t̄− τ̄)

(
∂εveH (τ)

∂τ
+ α (τ)

∂θ (τ)

∂τ
+
∂α (τ)

∂τ
θ (τ)

)
−ϕ (t̄− τ̄)

∂θ (τ)

∂τ

}
dτ

(A.14)

We assume that the absolute value of
∂α (τ)

∂τ
θ (τ) is negligible in front of608

the absolute value of α (τ)
∂θ (τ)

∂τ
. In order to retrieve familiar expressions by

choosing ϕ (t) = 3αK (t̄), the �nal expressions of the stress is610


sij (t) = 2

tˆ

−∞

G(t̄− τ̄)
∂ξveij (τ)

∂τ
dτ

σH(t) = 3

tˆ

−∞

K(t̄− τ̄)
∂εveH (τ)

∂τ
dτ

(A.15)

These expressions are equivalent to:

σ(t) =

tˆ

−∞

Cve(t̄− τ̄) :
∂εve(τ)

∂τ
dτ (A.16)

The �nal expression of the entropy is612

ρS (t) =

tˆ

−∞

(
m (t̄− τ̄) + 9α2K (t̄− τ̄)

) ∂θ (τ)

∂τ
dτ (A.17)
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