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Abstract
Consider a large graph or network, and a user-provided set of query vertices between
which the user wishes to explore relations. For example, a researcher may want to
connect researchpapers in a citation network, an analystmaywish to connect organized
crime suspects in a communication network, or an internet user may want to organize
their bookmarks given their location in the world wide web. A natural way to do
this is to connect the vertices in the form of a tree structure that is present in the
graph. However, in sufficiently dense graphs, most such trees will be large or somehow
trivial (e.g. involving high degree vertices) and thus not insightful. Extending previous
research, we define and investigate the new problem of mining subjectively interesting
trees connecting a set of query vertices in a graph, i.e., trees that are highly surprising
to the specific user at hand. Using information theoretic principles, we formalize the
notion of interestingness of such trees mathematically, taking in account certain prior
beliefs the user has specified about the graph. A remaining problem is efficiently fitting
a prior belief model. We show how this can be done for a large class of prior beliefs.
Given a specified prior belief model, we then propose heuristic algorithms to find the
best trees efficiently. An empirical validation of our methods on a large real graphs
evaluates the different heuristics and validates the interestingness of the given trees.
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1 Introduction

Increasingly often, data presents itself in the form of a graph, be it edge- or vertex-
annotated or not, weighted or unweighted, directed or undirected. Gaining insights
in such graph-structured data has therefore become a topic of intense research. Much
related research focuses on the discovery of local structures in the graph, with dense
subgraphs or communities (Fortunato 2010) as the most prominent example.

The question this paper is focused on is: “How is a given set of vertices (the ‘query
vertices’) related to each other in a given graph?” This question is distinctive from
most prior work in two ways. First, the type of information it provides the user with
is of a different kind than the density of a subgraph, or other kinds of local patterns.
Second, the question relates to a particular set of query-vertices, i.e., it is driven by
a user query. The particular approach presented in this paper adds a third important
distinctive aspect (and in this way it also distinguishes itself fromAkoglu et al. (2013),
which is most directly related to our work—see Sect. 9): the fact that it aims to ensure
that the answer to this question is subjectively interesting to the user, i.e., taking into
account the prior beliefs the user holds about the graph.

More specifically, given a graph and a set of query vertices, this paper presents a
method that can explain to a user how these query vertices are connected in the graph,
and this in a minimal but highly informative manner. Informative indicates that the
connections should be interesting to the specific user at hand. An example: suppose we
have a scientific paper citation network, where edges denote that one paper references
another.Given a set of query papers, a directed tree containing these query papers is one
possible way to represent interesting citation relationships between these papers. The
root of the tree could represent a paper that was (perhaps indirectly) highly influential
to all the papers in the query set. Figure 1 shows the results of our algorithm when we
queried three recent KDD best paper award winners, when considering three different
types of users (all with different prior knowledge about the network).

We consider the case of connecting the query vertices through a subgraph that has a
tree structure. Themain question here is:whatmakes a certain tree interesting to a given
user? Finding connecting subgraphs between a set of vertices in a graph is a relatively
novel problem, and thus the number of attempts to quantify the interestingness of such
patterns is limited (see Sect. 9). One common aspect of all these approaches is that
their proposed measures are objective, i.e., independent of the user at hand.

In our work, we make no attempt at proposing another objective interestingness
measure. We believe that the goal of Exploratory Data Mining (EDM) is to increase
a user’s understanding of his or her data in an efficient way. However, we have to
consider that every user is different. It is in this regard that the notion of subjective
interestingnesswas formalised (Silberschatz and Tuzhilin 1996) andmore recently the
creation of the data mining framework FORSIED that we build upon (De Bie 2011a,
2013).

This framework specifies in general terms how to model prior beliefs the user has
about the data. Given a background distribution representing these prior beliefs, we
may find patterns that are highly surprising to the particular user. Hence in our setting,
a tree will generally be more interesting if it contains, according to the user’s beliefs,
more unexpected relationships between the vertices.
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Fig. 1 Trees connecting the three most recent KDD best paper award winners listed at the official ACM
SIGKDD webpage (http://www.kdd.org/awards/sigkdd-best-research-paper-awards) that are also present
in the Aminer ACM-Citation-network v8 (https://aminer.org/citation, Tang et al. (2008)). This is the result
of our algorithm with heuristic s-IR, for three different types of prior beliefs. a A prior belief on the overall
graph density. Each citation is equally interesting, and the algorithm simply prefers the smallest possible
connecting tree. Note that the root of the tree is a highly cited paper. b A prior belief on the number of
citations of each paper. If a user knows certain papers are widely cited, those papers are less interesting
to find in the connecting tree: the user already expects this connection to exist and hence does not learn
much. In this case, we find a tree with a less frequently cited paper as a root. c A combined prior belief
on both the number of citations and the time difference (in publication year) between cited papers. Larger
time differences between citing papers are more uncommon, and hence more interesting. The algorithm
now prefers less cited and older papers. See Sect. 5.1 for more details. In all cases, the resulting trees are in
direct contrast with the expectations the user has on the network
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Contributions To summarize, this paper contributes the following:

– We define the new problem of finding subjectively interesting trees and forests
connecting a set of query vertices in a graph (Sect. 2).

– Using group theoretic methods, we provide an algorithm for efficiently modelling
a highly generic class of prior beliefs, namely about the density of any particular
sub-graphs. We experimentally show the efficiency by fitting a background model
on a number of graphs (Sects. 4 and 6).

– We discuss two new realistic prior beliefs inmore detail.We showhow to formalize
knowledge about time relations in a graph (Sect. 5.1). Secondly, we discuss how
to model knowledge about a graph’s degree assortativity (Sect. 5.2).

– We propose heuristics for mining the most interesting trees efficiently, both for
undirected and directed graphs (Sect. 7).

– We evaluate and compare the effectiveness of these heuristics on real data and
study the utility of the resulting trees, showing that the results are truly and usefully
dependent on the assumed prior beliefs of the user (Sect. 8).

Relation to conference versionThis paper is based on the conference paper (Adriaens
et al. 2017). The following material is completely new:

– The pattern syntax is broader, covering also trees in undirected graphs. Previously,
only connecting arborescences were discussed (directed trees). We achieved this
by providing methods for finding connecting trees, forests, and branchings. This
broadens applicability to both undirected and directed graphs, as well as allowing
for a possible partitioning of the query vertices (Sect. 2.2).

– Thorough analysis of the Description Length of connecting trees (Sect. 3).
– A general method for efficiently fitting background distributions for a large class
of prior belief types. Adriaens et al. (2017) discussed how to model prior beliefs
about vertex degrees and a time-order relation between the vertices in the graph.
The current paper extends this to prior knowledge on the density of any part of the
adjacency matrix—a generalization of previous work, which also has important
applicability in contexts beyond this work (Sects. 4.3 and 6).

– A more thorough experimental evaluation and an empirical comparison with
related work. The efficiency of our proposed methods is tested in more detail
on a wider variety of different types of graphs, and a direct comparison with an
existing related method is added (Sect. 8).

2 Subjectively interesting trees in graphs

This section deals with the formalization of connecting trees as data mining pat-
terns, and the introduction of a subjective interestingness measure to evaluate them.
In Sect. 2.1 we introduce some notation and terminology, mostly adopted from graph
theory. Section 2.2 discusses the different types of patterns used in this work, while
in Sect. 2.3 we introduce the interestingness measure.
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2.1 Notation and terminology

We will mostly adapt a similar notation as in Korte and Vygen (2007). A graph1 is
denoted as G = (V , E), where V is the set of vertices and E is the edge set. For
undirected graphs, E is a set of unordered pairs of distinct vertices. For directed
graphs, E is a set of ordered pairs of distinct vertices. This definition disallows self-
loops, and each pair of vertices induces at most one edge. Often we will use V (G)

and E(G) to denote the vertex and edge set associated with G. For brevity, to denote
that a graph F is a subgraph of G (i.e., V (F) ⊆ V (G) and E(F) ⊆ E(G)), we may
write F ⊆ G. We denote the adjacency matrix of a graph as A, where Ai j = 1 if and
only if there is an edge connecting vertex i to j . We assume that the set of vertices V
is fixed and known, and the user is interested the network’s connectivity, i.e., the edge
set E , especially in relation to a set of so-called query vertices Q ⊆ V .

A forest is an undirected graph with no cycles. A tree is a connected forest. A tree
spans a graph G if all vertices in G are part of the tree. A directed graph is a branching
if the underlying undirected graph is a forest and each vertex has at most one incoming
edge. An arborescence is a branching with the property that the underlying undirected
graph is connected. Each arborescence has exactly one root vertex , and a unique path
from this root to all other vertices.2 For trees and forests, a leaf is a vertex with degree
at most 1. For arborescences and branchings, a leaf is a vertex with no outgoing edge.
In both cases, vertices that are not leaves are called internal vertices.

We denote both the directed and the undirected complete graph on n labeled vertices
v1, . . . , vn as Kn . The exact meaning of Kn will be clear from the context.

2.2 Connecting trees, forests, arborescences and branchings as datamining
patterns

The data mining task we consider is query-driven: the user provides a set of query
vertices Q ⊆ V between which connections may exist in the graph that might be of
interest to them. In response to this query, the methods proposed in this paper will thus
provide the user with a tree-structured subgraph connecting the query vertices. Trees
are concise and intuitively understandable descriptions of how a given set of query
vertices is related.More general classes of subgraphs would lead to a larger descriptive
complexity, and are at risk of overburdening the user. Cliques and dense subgraphs are
insightful and concise too, but well-studied elsewhere (see, e.g., Goldberg 1984; Lee
et al. 2010; van Leeuwen et al. 2016). The methods proposed in Sect. 7 will search for
interesting tree-structured subgraphs T— present in the graph G—-with the property
that the leaves of T are a subset of Q. Furthermore, we may allow this tree-structured
subgraph to be disconnected. In many cases, a tree connecting vertices in Q will be too
large or simply not exist. One solution for this is to partition Q and find a connecting
tree in each partition, leading to a different kind of pattern, i.e., a connecting forest.

1 In general we use the terminology of graphs (with vertices and edges), but when concerned with certain
data we use the term network if that is more natural.
2 More specifically, this defines anout-arborescence. An in-arborescence is defined byflipping the direction
of all edges of an out-arborescence.
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Fig. 2 Examples of the different types of connecting subgraphs considered in this paper, all connecting the
query set Q = {q1, q2, q3, q4}; a a connecting tree b a connecting forest c a connecting arborescence d a
connecting branching. In all cases we have the requirement that the leaves of these connecting subgraphs
are a subset of Q

To summarize, in this paper we will discuss four types of patterns (see Fig. 2). If G
is undirected, we will look for connecting trees and forests. If G is directed, we will
look for connecting arborescences and branchings.3,4

2.3 A subjective interestingness measure

To model the user’s belief state about the data, the FORSIED framework proposes to
use a background distribution, which is a probability distribution P over the data space
(in our setting, the set of all possible edge sets E over the given set of vertices V ). This
background distribution should be such that probability of any particular value of the
data (i.e., of any particular edge set E) under the background distribution represents
the degree of belief the user attaches to that particular value. To achieve this, it was
argued that a good choice for the background distribution is the maximum entropy
distribution subject to the prior beliefs as constraints (De Bie 2011a, 2013).

The FORSIED framework then prefers patterns that achieve a trade-off between
how much information the pattern conveys to the user (considering their belief state),
versus the effort required of the user to assimilate the pattern. Specifically, De Bie
(2011a) argued that the Subjective Interestingness (SI) of a pattern can be quantified
as the ratio of the Information Content (IC) and the Description Length (DL) of a
pattern, i.e.,

SI(pattern) = IC(pattern)

DL(pattern)
,

3 Often we will denote any of these patterns simply as a “connecting subgraph”.
4 We will exclude a forest or branching without any edges as a valid pattern. These patterns do not convey
any information to the user—the user already knows the query vertices—and thus will never be of interest.
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where the IC is defined as the negative log probability of the pattern w.r.t. the back-
ground distribution P (see Sect. 4 for a detailed discussion). The less likely a user
thinks that a certain data mining pattern is present in the data, the more information
this pattern conveys to the user if the pattern were to be found in the actual data. The
DL is quantified as the length of the code needed to communicate the pattern to the
user (see Sect. 3 for a detailed discussion).

The methods presented in this paper aim to solve the following (directed graph)
problems:

Problem 1 Given a directed graph G = (V , E) and set of query vertices Q ⊆ V . Find
a root r ∈ V and an arborescence A ⊆ G rooted at r with leaves(A) ⊆ Q ⊆ V (A)

that has maximal subjective interestingness.

Problem 2 Given a directed graph G = (V , E) and set of query vertices Q ⊆ V .
Find a branching B ⊆ G with that has maximal subjective interestingness.

As well as the undirected variants:

Problem 3 Given an undirected graph G = (V , E) and set of query vertices Q ⊆ V .
Find a tree T ⊆ G with leaves(T ) ⊆ Q ⊆ V (T ) that has maximal subjective
interestingness.

Problem 4 Given an undirected graph G = (V , E) and set of query vertices Q ⊆ V .
Find a forest F ⊆ G with leaves(F) ⊆ Q ⊆ V (F) that has maximal subjective
interestingness.

In all cases, we can additionally constrain the depth (i.e., the diameter) of the
connecting subgraphs not to be larger than a user-defined parameter k.

Since the SI depends on the background distribution and thus on the user’s prior
beliefs, the optimal solution to Problems 1–4 does as well. Section 4 discusses how
to efficiently infer the background distribution for a large class of prior beliefs, and
how to compute the IC of a pattern. The next section discusses how the DL of trees,
forests, arborescences and branchings is defined.

3 The description length of connecting trees, forests, branchings and
arborescences

The goal is to find an efficient encoding for communicating a tree T to the user,
with the constraint that leaves(T ) ⊆ Q ⊆ V (T ). This constraint can be equivalently
formulated by requiring all v ∈ V (T )\Q to be internal vertices. Communicating T can
be done by first communicating the set V (T )\Q (the user already knows Q). Because
V (T )\Q ⊆ V \Q, and V \Q has 2V \Q subsets, we need |V \Q| = |V | − |Q| bits to
describe V (T )\Q. Without extra knowledge on the possible connections amongst the
vertices in V (T ), E(T ) can then be described most efficiently by enumerating over
all possible trees. The following theorem enumerates all trees with the constraint that
all leaf vertices are query vertices.
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Fig. 3 An illustration of T (4, 1) = 7. There are 7 possible trees spanning {v1, v2, v3, v4} such that v1 is
an internal vertex

Theorem 1 Given a set of k labeled vertices in Kn. There are

T (n, k) =
k∑

i=0

(−1)i
(
k

i

)
(n − i)n−2

spanning trees in Kn, s.t. these k vertices are all internal vertices.

Note that we do not impose any restrictions on the other n− k vertices, they can be
internal or leaf vertices. Figure 3 illustrates all the spanning trees for the case T (4, 1).
The case k = 0 reduces to the well-known Cayley’s formula for counting labeled trees
(Cayley 1889; Moon 1970). The cases k ∈ {n − 1, n} reduce to T (n, k) = 0, since
any tree of size n > 1 must have at least 2 leaves. For the case k = n − 2 ≥ 0 we
have T (n, n − 2) = (n − 2)!, since the only possible trees are chains (i.e., all vertices
have degree ≤ 2) and there are (n − 2)! ways to permute the internal vertices in a
chain. This latter identity is also algebraically proven in Anglani and Barile (2007,
Proposition 3). We present a short proof of Theorem 1, using the inclusion-exclusion
principle.

Proof Let S = {spanning trees in Kn}. By Cayley’s formula, |S| = nn−2. Let
{v1, . . . , vk} be the vertices that we require to be internal. ∀i ∈ {1, . . . , k} define
the sets Ai = {spanning trees in Kn s.t. vi is internal}. By the inclusion-exclusion
principle,

T (n, k) = |∩Ai | =
∣∣∣∪Ai

∣∣∣ = |S| − ∣∣∪Ai
∣∣

= nn−2 −
k∑

i=1

(−1)i−1
(
k

i

) ∣∣A1 ∩ . . . ∩ Ai
∣∣ .

We can now easily compute
∣∣A1 ∩ . . . ∩ Ai

∣∣. There are (n − i)i ways to add i labeled
leaves to a tree consisting of n − i labeled vertices (each leaf can be attached to n − i
possible vertices). By Cayley’s formula, the number of trees on n − i labeled vertices
is equal to (n− i)n−i−2. Hence

∣∣A1 ∩ . . . ∩ Ai
∣∣ = (n− i)i (n− i)n−i−2 = (n− i)n−2,

and the claim follows. 	
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Thus, we can communicate a tree T consisting of n labeled vertices—with the require-
ment that a given n − |Q| of the vertices have to be internal—by using

DL(T ) = |V | − |Q| + log(T (n, n − |Q|))

bits. In a very similar manner, we can count the number of spanning arborescences,
branchings and forests in Kn (with the restriction that at least a given set of vertices
are internal vertices). We refer to the Appendix for the exact expressions and proofs.

4 The information content and inferring the background distribution

In the FORSIED framework, the Information Content (IC) of a pattern is defined as
the negative log probability of the pattern being present in the data. The background
distributions P for all prior belief types discussed in this paper have the property that P
factorizes as a product of independent Bernoulli distributions, 5 one for each possible
edge e ∈ V × V (see Sect. 4.1). Hence the IC of a connecting subgraph C—whether
it is a tree, arborescence, branching or forest—with edges EC decomposes as

IC(C) = −log

⎛

⎝
∏

e∈EC

Pr(e)

⎞

⎠ =
∑

e∈EC

IC(e), (1)

where we defined the IC of an edge e to be IC(e) = −log(Pr(e)), with Pr(·) denoting
the probability under the background distribution P .

As mentioned in Sect. 2.3, P is computed as the maximum entropy distribution
subject to the prior beliefs as constraints. Here we discuss how this can be done
efficiently for an important class of prior beliefs, i.e., when the user expresses prior
beliefs on the density of sets of edges in a graph. In this manner, we are able to model
a wide variety of prior beliefs a user has on a network. Some examples:

– In a friendship network, people with similar age/education/location aremore likely
to be friends.

– In a paper citation network, the number of papers citing a paper with an equal or
higher publication year is very low (i.e., the network is essentially a DAG).

– Search engines (e.g., Google, Bing) are hubs in the WWW graph.
– In some social networks, vertices tend to be connected to other vertices that have
similar degree values (assortative mixing).

Section 4.1 discusses how the background distribution is formally inferred. How-
ever, in many practical cases the number of prior beliefs is simply too large to
do this efficiently. To avoid these situations, Sect. 4.3 introduces a sufficient con-
dition to exploit symmetry in the optimization process. Section 6 provides a fast
heuristic that implements the ideas of Sect. 4.3. Finally, in Sect. 4.2 discusses what

5 This just happens to be true for the studied prior beliefs. Thismay indeed reduce computational complexity
and it certainly reduces the complexity of exposition.
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can be done when the stated prior beliefs do not accurately reflect the actual prior
beliefs.

In a first reading, Sects. 4.3 and 4.2 can safely be skipped, as they are more tech-
nical in nature and not essential for the reader to understand the logic of the main
contributions in this paper.

4.1 Prior beliefs on the density of sets of edges

This section discusses the case of fitting the maximum entropy model over the set
X = {0, 1}n , which trivially extends to fitting the model over the set of rectangular
binary matrices {0, 1}n×n (i.e., the set of all possible graphs over n vertices). The main
reason for this is notational simplicity. Let x = (x1, . . . , xn) be some element in X .
We are interested in efficiently inferring the MaxEnt distribution over X , subject to a
special class of linear constraints. The types of constraints we consider are in the form
of

∑

x∈X
P(x)

∑

i∈S
xi = c, (2)

where S ⊆ {1, . . . , n} and c is a specified value. These constraints can be regarded
as the formalization of certain expectations the user has about the data. Consider m
such constraints, with Sk denoting the associated set of indices and ck the associated
specified expected value, for k ∈ {1, . . . ,m}. Note that these specified values ck could
represent the actual sum of the elements in the sets Sk , as present in the actual data
(as we will commonly do in the experiments). The MaxEnt distribution is found by
solving

argmax
P(x)

−
∑

x∈X
P(x) log P(x),

s.t.
∑

x∈X
P(x)

∑

i∈Sk
xi = ck,

∑

x∈X
P(x) = 1. (3)

The resulting distribution will be a product of independent Bernouilli distributions,
one for each xi (De Bie 2011b, Section 3):

P (x) =
n∏

i=1

exp
((∑

k:i∈Sk λk

)
xi

)

1 + exp
(∑

k:i∈Sk λk

) , (4)

where λk is the Lagrange multiplier associated with the constraint on the set Sk . Note
that we allow λk → ±∞, in order to have P(x) = 0 or 1, as can be the case with
certain constraints. The success probability of each of these Bernouilli distributions is
given by
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Prob (xi = 1) =
exp

(∑
k:i∈Sk λk

)

1 + exp
(∑

k:i∈Sk λk

) , (5)

The parameters λ1, . . . , λm are inferred by minimizing the (convex) Lagrange dual
function, as given by:

L(λ1, . . . , λm) =
n∑

i=1

log
(
1 + exp

( ∑

k:i∈Sk
λk

)) −
m∑

k=1

λkck (6)

The optimal values of the parameters can be found by standard methods for uncon-
strained convex optimization, such as Newton’s method. Newton’s method requires
solving a linear system with computational complexity O(m3) per iteration. Clearly,
the number of parameters to be optimized over is crucial for the speed of convergence.
For large databases and cases where m = O(n), the optimization quickly becomes
unfeasible. However, in certain (practical) cases we can reduce the complexity by
beforehand identifying Lagrange multipliers that have an equal value at the optimum
of (6). The strategy is then to equate all these Lagrangemultipliers, and form a reduced
model with a smaller number of variables, and proceed to apply Newton’s method on
this reduced model. Section 4.3 discusses a way to identify these equal Lagrange
multipliers.

4.2 What if there is a mismatch between the stated and actual prior beliefs?

It may be infeasible in practice to sufficiently accurately state a user’s prior beliefs. If
the discrepancy is too large, the pattern with highest SI may not actually be the most
interesting one to the user. There are two easy ways of mitigating this risk, which we
briefly discuss here for completeness.

The first approach is to find the most interesting pattern subject to a range of
different background distributions. E.g. one could experiment with adding the degree
constraints or not.

The second approach is to mine the top-k most interesting patterns. As discussed by
De Bie (2011a), mining a set of top-k non-redundant patterns can be done iteratively,
yielding a 1 − 1/e approximation of the best set. In each iteration, we find the most
interesting pattern with respect to the current background distribution, followed by a
conditioning of the background distribution on the knowledge of this pattern. In the
case of the present paper, the conditioning operation simply amounts to equating the
probabilities of the edges or arcs covered by the pattern to one.

4.3 Identifying equivalent Lagrangemultipliers

As discussed in Sect. 4.1, we are interested in finding equal Lagrange multipliers at
the optimum of (6). To do so, we first look at the set M , consisting of all permutations
of the tuple (λ1, . . . , λm) that leave L invariant. For notational reasons, we will denote
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the tuple (λ1, . . . , λm) simply as λ. A permutation σ of λ is denoted as σ(λ). The i-th
element of this tuple is denoted as σ(λ)i . It is not hard to see that M is a subgroup of
the group of all permutations acting on λ.

Proposition 1 The set M, together with the group operation which is the composition
of two permutations, forms a group.

Proof Proposition 2.69 from Rotman (2006) states that a finite nonempty subset of
a group, that is closed under the group operation, is again a group. Now clearly, M
is a finite nonempty subset (it contains the identity permutation) of the group of all
permutations. It is also closed under the group operation, since L((σ · π)(λ)) =
L(σ (π(λ))) = L(π(λ)) = L(λ) for any two permutations σ, π ∈ M . 	

Next, we will look at the set of orbits of λ. An orbit of a Lagrange multiplier λi is
defined as the set of Lagrange multpliers for which there exists a permutation in M
that maps them onto λi . More formally, it is defined as

Orb(λi ) = {λ j : ∃σ ∈ M s.t. σ(λ) j = λi }. (7)

The set of all orbits form a partition of {λ1, . . . , λm}. One direct observation is that if
λi and λ j are part of the same orbit, we need to have ci = c j . Lemma 1 shows how
finding the orbits can directly help us to a priori recognize equal optimal Lagrange
multipliers.

Lemma 1 If λi and λ j belong to the same orbit, then there exists an optimal solution
to (6) for which λi = λ j holds.

Proof Suppose we have an optimal solution λ where λi �= λ j . Since every σ ∈ M
leaves L invariant, we have at least |M | other optimal solutions. By convexity of L ,
this implies that λ∗ = 1

|M|
∑

σ∈M σ(λ) is also optimal. Now we have

λ∗
i = 1

|M |
∑

σ∈M
σ(λ)i

= 1

|M |
∑

λk∈Orb(λi )

|M |
|Orb(λi )|λk

= 1

|Orb(λi )|
∑

λk∈Orb(λi )
λk,

where the second step follows from the fact that M is a group. We can write a similar
expression for λ∗

j . Because Orb(λi ) = Orb(λ j ), we have λ∗
i = λ∗

j . 	

Lemma 1 suggests that there is a possible speedup to be gained by first searching

for the orbits associated with (6), equating all Lagrange multipliers that are in the
same orbit, and then optimizing the reduced model. For this method to be a signif-
icant speedup we need a) the total number of orbits to be low, and b) a fast way to
(approximately) find them. For a general system of prior beliefs, finding the orbits is
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a difficult task. For many practical situations however, the total number of orbits is
low and certain equivalences can be found by exploiting the symmetry between the
prior belief constraints. Two such cases are discussed in Sect. 5. Section 6 details a
fast heuristic for approximately finding the orbits in a general prior belief system.

5 Discussing two prior belief types in more detail

Wediscuss two realistic prior beliefs inmore detail. These priors were fitted on the data
that was used for the experimental evaluation in Sect. 8. Section 5.1 discusses how to
efficiently model a prior of a partial or total ordering of the vertices, e.g., when a graph
is a DAG. Section 5.2 shows how to model knowledge about degree assortativity, i.e.,
when vertices have the tendency to connect to vertices of similar degree. Both priors
are in combination with a prior on the individual degrees of each vertex. We refer to
van Leeuwen et al. (2016) and De Bie (2011b) for a discussion on a prior solely on
the individual vertex degrees.

5.1 Prior beliefs when vertices represent timed events

If the vertices in G correspond to events in time, we can partition the vertices into
bins according to a time-based criterion. For example, if the vertices are scientific
papers in a citation network, we can partition them by publication year. Given these
bins, it is possible to express prior beliefs on the number of edges between two bins.
This would allow one to express beliefs, e.g., on how often papers from year x cite
papers from year y. This is useful if, e.g., one believes that papers cite recent papers
more often than older ones. We discuss the case when our beliefs are in line with a
stationarity property, i.e., when the beliefs regarding two bins are independent of the
absolute value of the time-based criterion of these two bins, but rather only depend on
the time difference.

Given an adjacency matrix A, this amounts to expressing prior beliefs on the total
number of ones in each of the block-diagonals of the resulting block matrix (formed
by partitioning the elements into bins), see Fig. 4 for clarification. Assuming we have
k bins, there are 2k − 1 such block constraints. On top of these block constraints, we
can additionally constrain the in- and out degree of each vertex. This amounts to a

Fig. 4 A resulting block matrix
with 3 bins b1, b2 and b3. There
are 5 block-diagonals Dk
(indicated by the same fill). For
each Dk , we express prior
beliefs on the sum of all
elements in Dk

b3

b2

b1

b1 b2 b3
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constraint on the sum of each row and column of A. There are 2n such constraints.
The MaxEnt model is found by solving (3), with 2(n + k) − 1 constraints.

Simply applying Newton’s method to minimize the Lagrange dual function would
then lead to solving a linear systemwith computational complexityO(n3) per iteration.
For practical problems involving large networks, this quickly becomes infeasable.
Hence we use the method described in Sect. 4.3 to speed up the optimization.

The remaining part of this section is dedicated to giving a bound on the total number
of unique Lagrange multipliers.We first note that there are some obvious equivalences
between Lagrange multipliers, that can be bounded in terms of the network’s sparsity.
These obvious equivalences are found by observing that if two row constraints have
equal c-values and belong to the same bin, then their associated Lagrange multipliers
must be equivalent. This can be seen by considering the Lagrange dual function. The
same argument holds for the column constraints. Let m̃i and ñi be the resp. number
of distinct row and column sums in bin i of the matrix A. The following Lemma
provides an upper bound on

∑k
i=1(m̃i + ñi ), i.e., the total number of free row and

column variables, in terms of the number of non-zero elements of A and the number
of bins k:

Lemma 1 Let A be a binary rectangular matrix and denote s = ∑
i, j A. Then it holds

that
∑k

i=1(m̃i + ñi ) ≤ 2
√
2ks.

Proof Let si (s′
i ) be the total number of ones in all the rows (columns) of the elements

in bin i . Then the following inequalities hold (De Bie 2011b):

m̃i ≤ √
2si , and ñi ≤

√
2s′

i .

So we have
∑

i (m̃i + ñi ) ≤ √
2(

√
s1 + . . . +

√
s′
k). Clearly also

∑
i si + s′

i = 2s and
thus by Jensen’s inequality

√
s1 + . . . + √

sk +
√
s′
1 + . . . +

√
s′
k

2k
≤

√
s

k
,

which proves the lemma. 	

Hence there will be an optimal solution that depends on at most

∑
i (m̃i + ñi )+2k−1

unique Lagrange multipliers. Using Newton’s method for this reducedmodel will then
require O(

√
s3k3 + k3) computations in each step, making it very efficient in many

real life applications (sparse networks and a small number of bins).

Remark 1 In general, binning is not limited to timed events. Any partition of the
vertices, and any prior knowledge on the connectivity between the partitions can be
dealt with in a very similar way. Stationarity is not a must.

Remark 2 Discretizing time is a drawback of the chosen approach. The proposed
method is just one possible way to model time dependencies as prior beliefs. However,
as shown in Sect. 8, these type of “discretized prior beliefs” in most cases result in
sufficiently useful trees.
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0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

S1

S2

S3

S4

(a)

2/3 2/3 2/3 1

1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

1 0 0 0

(b)

Fig. 5 a A 4x4 adjacency matrix with constraints on the connectivity of each vertex to vertices that
have a difference in degree of at most 1 (indicated by the sets Si ). b The edge success probabilities (see
(5)) according to the MaxEnt model, fitted with a combined prior on both vertex degree (row sums) and
the density of the sets Si . Note that although the original network was undirected, the MaxEnt model is
not symmetric. However, this can easily be enforced by also incorporating the symmetric versions of the
constraints

5.2 Prior beliefs on degree assortativity

Here we discuss how to model prior beliefs that a network has underlying assortative
mixing, i.e., the tendency of vertices to connect to other vertices with similar char-
acteristics (Newman 2003). In particular, we will discuss degree assortativity: when
vertices have the tendency to attach to vertices of similar degree. This has been empir-
ically observed in a lot of social networks (Newman 2002). We limit our discussion
to undirected networks, but we note that degree assortativity in directed networks can
be modelled in a very similar way.

Degree assortativity can be modelled—assuming the degree of each vertex is
known—by expressing prior beliefs on the connectivity of each vertex to vertices
that have a similar degree. Figure 5 shows an example of such a prior belief on a small
undirected network of 4 vertices. For each vertex i , the set Si represents the connec-
tivity to other vertices that have a difference in degree6 of at most 1. On a network
of n vertices, the combined prior beliefs on the densities of the sets Si , as well as on
the individual degree of each vertex, leads to 2n variables to be optimized over in the
Lagrange dual function, again making it infeasible in many practical scenario’s.

However, as in the previous section, we can prove that the total number of unique
Lagrange multipliers will be limited in the case of sparse networks. By considering the
Lagrange dual function, we observe that if two vertices i and j have equal degree and
the sets Si and S j have equal density and size, then these vertices are indistinguishable
to the MaxEnt model. This implies there is an optimal solution where λi = λ j (the
corresponding Lagrange multipliers for the sets Si ), as well as having equal row
constraint Lagrange multipliers. In fact, these are the only equivalences that can occur
between Lagrange multipliers. Similarly as in the proof of Lemma 1, one can show
that the total number of free variables is O(s3/4). Using Newton’s method for this
reduced model will then require O(s9/4) computations in each step, making it quite
efficient in the case of sparse networks.

6 In practice, this is a discrete parameter that can chosen differently for each network. It can be optimized
over in order to maximize the densities of the sets Si .
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S1

S3

S2

(a)

v1

v2

v3

v4

λ1

λ2

λ3

u

c1

c2

c3

(b)

Fig. 6 a A 2x2 adjacency matrix with constraints on the density of the sets of edges S1, S2 and S3. The
Lagrange dual (6) reduces to L(λ1, λ2, λ3) = f (λ1+λ2)+ f (λ1)+ f (λ3)+ f (λ2+λ3)−c1λ1−c2λ2−
c3λ3, with notation f (·) = log(1 + exp(·)). For generic c1 = c3 and c2, the orbits are {λ1, λ3} and {λ2}.
b The constructed graph G used to identify the orbits of L . If c1 = c3 there is an automorphism mapping
λ1 to λ3, and hence they are part of the same orbit

6 A fast heuristic for identifying equivalent Lagrangemultipliers

In Sect. 5, we discussed two realistic prior belief models and showed that some equiva-
lences can be found by simply exploiting symmetry in the sets of constraints associated
with these prior beliefs. However, there could be evenmore equivalences than the ones
discussed in Sects. 5.1 and 5.2. Moreover, there could be practical cases where the
prior beliefs are slightly different, and thus breaking symmetry. Hence it is in our
interest to design a method that identifies orbits in a general prior belief system. This
section provides a fast heuristic for (approximately) finding the orbits associated with
(6), by transforming the problem to a graph automorphism problem.

Given L , as defined by (6), we construct a weighted undirected graph G as follows.
The vertices are V (G) = {v1, . . . , vn}∪{λ1, . . . , λm}∪{u}. There is an edge between
vi and λk if λk occurs in the i-th term of the summation in (6). These edges all have
weight ∞. Furthermore, all the λk are connected to u, with weights ck . We refer to
Figure 6 for an example.

Now given this graph G, we are interested in the automorphisms of G, i.e., the
permutations σ of V (G) such that a pair of vertices (i,j) are connected if and only if
(σ (V (G))i , σ (V (G)) j ) are connected. This group of automorphisms naturally defines
an equivalence relation on V (G) by saying that i ∼ j if and only if there exists an
automorphism on G that maps i to j . The graph G is constructed in such a way that
no λk can be equivalent to any vi or u. It is clear now that finding the orbits of L is the
same as identifying equivalent λk vertices.

In general, determining the automorphism group of a graph is equivalent to the
graph isomorphism problem. For the latter problem, it is not known whether there
exists a polynomial time algorithm for solving it. Hence, we resort to using a simple
heuristic that was previously introduced in (Everett and Borgatti 1988) and used in
(Mowshowitz and Mitsou 2009).
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The algorithm exploits the fact that two vertices in a graph can only be equivalent
if they share the same structural properties, such as having the same degree. Roughly,
the procedure goes as follows:

1. Start by setting all λk vertices to be equivalent.
2. Run a number of tests (based on structural properties) to distuinguish between

vertices. If two vertices have different outcomes of a test, they are in different
equivalence classes.

Naturally, the tests need to be computed in reasonable (polynomial) time. In this
work we will use the following three structural tests, calculated for each vertex λk ∈
(λ1, . . . , λm):

T1. The degree of λk .
T2. The corresponding ck-value, i.e., the weight of the edge (λk, u).
T3. A sorted list of c-values of the neighbors of the vertices vi that are connected to

λk .

Applying this procedure to the example in Figure 6, assuming a case where c1 = c2 =
c3, yields the following results

a) The partition is initialized as P = {λ1, λ2, λ3}.
b) T1 gives (3, 3, 3) and does not further partition P .
c) T2 gives (c1, c2, c3) and does not further partition P .
d) T3 gives ([c1, c1, c2], [c1, c2, c2, c3], [c3, c3, c2]). Because c1 = c3, this test fur-

ther partitions P into P = {{λ1, λ3}, {λ2}}.
Remark 3 The actual equivalence classes can only be finer partitions than those found
by the heuristic. The heuristic may falsely conclude that two Lagrange multipliers
are equal. However, we emphasize that this is in general not a major problem for
the MaxEnt model. Equating two Lagrange multipliers without justification is equal
to replacing the respective constraints in (3) into a new constraint on the sum of the
original constraints. It thus becomes a relaxation of the originalMaxEnt problem, with
relaxed constraints. The patterns that are found to be interesting can potentially still
be explained by the original prior beliefs.

Remark 4 We note that other well-known graph automorphism heuristics can be used
as well, such as the Weisfeiler-Lehman procedure (Fürer 2017). The main advantages
of the heuristic discussed above is that it is fast for our purposes, and it correctly
identifies all the unique Lagrange multipliers that were discussed in Sect. 5. We refer
to Sects. 8.1 and 9 for a more detailed discussion.

7 Algorithms for finding themost interesting trees

Section 7.1 discusses the how to find a maximally subjectively interesting connect-
ing arborescence, i.e., the solution to Problem 1. Our proposed methods for solving
Problems 2–4 are direct applications of our solution to Problem 1, and are discussed
in Sect. 7.2.
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Algorithm 1 SteinerBestEdge [outline]
1: Steiner ← {}
2: f rontier ← Q
3: while f rontier �= ∅ do
4: for edges from f rontier → parents(frontier) do
5: pick best feasible edge (feasibility is checked by CheckChildren)
6: add edge to Steiner and update frontier

Problem 1 is closely related to the NP-hard problem of finding a minimum Steiner
arborescence (Korte and Vygen 2007; Charikar et al. 1998), defined for weighted
directed graphs as a minimal-weight arborescence with a given set of query vertices
as its candidate leaves. The connection with this well-studied problem allows us to
show that Problem 1, which is the problem of finding an arborescence (spanning all
the query vertices) with maximum SI, is NP-hard. Indeed, for constant edge weights
(e.g., if the prior belief is the overall graph density), the SI of an arborescence will be
a decreasing function of the number of vertices in the tree. Hence for this special case,
our problem is equivalent to the minimum Steiner arborescence problemwith constant
edge weights, which is NP-hard. For non-constant background models Problem 1 will
optimize a trade-off between the IC and the DL of an arborescence. In most cases, this
will amount to looking for small arborescences with highly informative edges.

There are a number of algorithms that provide good approximation bounds for the
directed Steiner problem (Charikar et al. 1998; Melkonian 2007; Watel and Weisser
2014), and this problem has also been studied recently in the data mining community
(e.g., Akoglu et al. 2013; Rozenshtein et al. 2016). However, Problem 1 is only equiv-
alent to the directed Steiner problem in the case of a uniform background distribution,
i.e., when the IC of the edges is constant.

A good overview of the currently known solutions to all sorts of variants to the
Steiner tree problem is given by Hauptmann and Karpiński (2013). Problems 1–4 are
not equivalent to any of these problems, because in general the subjective interesting-
ness of a tree does not factorize as a sum over the edges. For this reason we propose
fast heuristics for large graphs, that performwell on different kinds of background dis-
tributions. A Python implementation of the algorithms is available at https://bitbucket.
org/ghentdatascience/interestingtreespublic/.

7.1 Proposedmethods for finding arborescences

Our proposed methods for finding arborescences all work in a similar way. We apply
a preprocessing step, resulting in a set of candidate roots. Given a candidate root r ,
we build the tree by iteratively adding edges (parents) to the frontier7—initialized as
Q\{r}—, until frontier is empty. We exhaustively search over all candidate roots and
select the best resulting tree. The heuristics differ in the way they select allowable
edges. The outline of SteinerBestEdge is given in Algorithm 1.

Preprocessing All of the proposed heuristics have two common preprocessing steps.
First we find the common roots of the vertices in Q up to a certain level k, meaning

7 implemented as a FIFO queue.
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Algorithm 2 CheckChildren(H , edge, Steiner , k, SP) [detail]
1: f rontier ← frontier(Steiner), level ← level(Steiner), (source, target) ← edge
2: NewSP ← {source : SP(target) + 1}
3: if NewSP(source) = SP(target) then return True
4: else if NewSP(source) + level(source) > k then return False
5: else
6: children ← children(source)
7: while children do
8: nextChildren ← ∅
9: for c ∈ children do
10: if c /∈ Steiner\ f rontier then
11: updated P = parents(c) ∩ NewSP
12: other P = parents(c)\updated P
13: cand ← min(NewSP(p) : p ∈ updated P) + min(SP(p) : p ∈ other P) + 1
14: if cand > SP(c) then
15: NewSP(c) = cand
16: if c ∈ query and NewSP(c) > k then return False
17: if c is target then return False � Possible cycle avoided

18: nextChildren.add(children(c))
19: else
20: NewSP(c) = NewSP(Steiner Parent(c)) + 1
21: if c is target then return False � Possible cycle avoided

22: nextChildren.add(children(c))
23: children ← nextChildren
24: return True, NewSP

we look for vertices r , s.t. ∀q ∈ Q : SPL(q, r) ≤ k, with SPL(·) denoting the shortest
path length. This can be done using a BFS expansion on the vertices in Q until the
threshold level k is reached. Note that query vertices are also potential candidates for
being the root, if they satisfy the above requirement.

Secondly, for each r we create a subgraph H ⊂ G, consisting of all simple paths
q � r with SPL(q, r) ≤ k, for all q ∈ Q. This can be done using a modified DFS-
search. The number of simple paths can be large. However, we can prune the search
space by only visiting vertices that we encountered in the BFS expansion, making the
construction of H quite efficient for small k.

SteinerBestEdge (s-E)Given the subgraph H , we construct the arborescenceworking
from the query vertices up to the root.We initialize the frontier as Q\{r}, and iteratively
add the best feasible edge to a partial solution, denoted as Steiner, according to a greedy
criterion. The greedy criterion is based on the ratio of the IC of that edge to the DL8

of the partial Steiner that would result from adding that edge. This heuristic prefers to
pick edges from a parent vertex that is already in Steiner, yielding a more compressed
tree and thus a smaller DL.

Algorithm 2 checks if an edge is feasible by propagating its potential influence to
all the other vertices in H . The check can fail in two ways. First, the addition of an
edge could yield a Steiner tree with depth> k, see Figure 7 for an example. Secondly,

8 Note that during construction, the partial solution Steiner is often a forest. However, we compute the DL
as if it was an equally sized tree. This makes sense because the end result will in fact be a tree, and we are
optimizing towards the IR of that tree.
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Q1 Q2

R

X

Fig. 7 Example of why look-ahead is needed to ensure the returned tree has depth as most k. If k = 2, the
only valid tree is (Q1, R)(Q2, Q1). Initially, the frontier is {Q1, Q2} and X is a candidate parent for Q1
because there is a path Q � R of at most length 2. Yet, adding the dashed edge violates the shortest path
constraint for Q2

A

Q1

B

Q2 Q3

R

Fig. 8 Example of why look-ahead is needed for sets of edges. For k = 3, neither of the two dashed edges
violate the depth constraint—they are part of a valid tree—, but together they indirectly violate the shortest
path constraint for Q1. Regardless of which parent is chosen for A, the path from Q1 to R has length 4

the addition of an edge may lead to cycles in Steiner . Cycles are avoided by only
considering edges (s, t) that do not potentially change SPL(t, r). If SPL(t, r) would
change, the shortest path—given the current Steiner—from s to r is not along the
edge (s, t) and hence for all f ∈ f rontier we always have 1 feasible edge to pick
(i.e., an edge that is part of a shortest path f � r ). One way to select the best feasible
edge is to first sort the edges according to the greedy criterion. Then try the check from
Algorithm 2 on this sorted list (starting with the best edge(s)), until the first success,
and add the resulting edge to Steiner. Algorithm 2 will also return an updated shortest
path function NewSP, containing all the changes in SPL(n, r) for n ∈ H due to the
addition of that edge to Steiner. After performing the necessary updates on the SP
function, and the frontier, parents and level sets, we continue to iterate until frontier
is empty.

SteinerBestIC (s-IC) Instead of adding 1 edge at a time, this heuristic adds multiple
edges at once. We look for the parent vertex that (potentially) adds the most total
information content of allowable edges to the current Steiner. However, given such a
parent vertex, it not always possible to add multiple edges, see Figure 8. Instead we
sort the edges coming from such a parent vertex according to their IC, and iteratively
try to add the next best edge to Steiner.

SteinerBestIR (s-IR) A natural extension of SteinerBestIC is to actually take in
account theDLof the partial Steiner solution, aswe did in SteinerBestEdge. SteinerBe-
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stIR favors parent vertices that are already in Steiner, steering towards an even more
compressed tree.

SteinerBestEdgeBestIR (s-EIR) Our last method simply picks the single best edge
coming from the best parent, where the best parent is determined by the same cri-
teria as in SteinerBestIR. In general this will pick a locally less optimal edge than
SteinerBestEdge, but it will pick edges from a parent vertex that has lots of potential
to the current Steiner solution.

Correctness of the solutions The following theorem states that all the heuristics
indeed result in a tree with maximal depth ≤ k.

Theorem 2 Given a non-empty query set Q, a candidate root r and a depth k ≥ 1. In
all cases all four heuristics will return a tree with depth ≤ k.

Proof In all cases the proposed heuristics return a tree rooted at r with depth ≤ k.
We call a partial forest solution Steiner valid, if for all leaf vertices l ∈ Steiner :
SPL(l, r |Steiner) ≤ k, where SPL(·|Steiner) denotes a shortest path length given
the partial Steiner solution. Note that the initial Steiner is valid, due to the way the
subgraph H was constructed. It is always possible to go fromone valid Steiner solution
to another valid one, by selecting an edge (incident to a frontier vertex) along a short-
est path—given we have Steiner—from r that frontier vertex. This will result in an
unchanged SPL for all other vertices (in particular the leaf vertices), and hence remains
a valid Steiner. If we have n frontier vertices, we have at least n such valid edges to
pick from. Hence, all of the heuristics have at least n ≥ 1 valid edges to pick from.
The process of adding edges is finite, and will eventually result in an arborescence
rooted at r with depth ≤ k. 	


7.2 Proposedmethods for finding trees, branchings and forests

In this section we will sketch the outline of our methods for finding connecting trees
and forests in an undirected network, as well as finding connecting branchings in
a directed network. They all make direct use of the proposed methods for finding
arborescences, as described in Sect. 7.1. We transform an undirected graph G to a
directed graph G ′ by replacing each undirected edge {u, v} by two oppositely directed
edges (u, v) and (v, u).

Trees Given the transformed directed graph G ′, we consider the candidate root set
R = {q ∈ Q : SPL(q, x) ≤ ⌊ k

2

⌋
,∀x ∈ Q}. For each candidate root r ∈ R,

construct H by finding all simple paths from Q\{r} to r and apply one of the methods
Sect. 7.1. Take the r that gives the arborescence with maximal SI. Transform the
resulting arborescence back to a tree by removing the directionality of the edges. The
result will be a tree T = (V (T ), E(T )) with leaves(T ) ⊂ Q ⊂ V (T ) and depth ≤ k.

Branchings Find all vertices that are within a distance k from all q ∈ Q (by using a
BFS search). Let H denote the induced subgraph by these vertices on G. Then add
vertex r to H , and edges (x, r) ∀x ∈ H . Given H , apply one of the methods in
Sect. 7.1 with candidate root r and depth k + 1. Remove the vertex r and all edges to
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r . The result will be a branching B = (V (B), E(B)) with leaves(B) ⊂ Q ⊂ V (B)

and depth ≤ k.

Forests Given the transformed directed graph G ′, add a vertex r and edges (q, r)
∀q ∈ Q. Now construct H by finding all simple paths from Q to r with max. level⌊ k
2

⌋+1. Given H , apply one of the methods in Sect. 7.1. Remove the directionality of
the edges, the vertex r and any edges to r . The result will be a forest B = (V (F), E(F)

with leaves(F) ⊂ Q ⊂ V (F) and depth ≤ k.

Remark 5 A combination of these heuristics can also be used as a heuristic, e.g. for
finding forests, one can use the algorithm described above to find an initial partition
of the query set, after which one can use a method for finding trees on each partition.

8 Experiments

We evaluated the performance and utility of our proposed methods. Section 8.1 dis-
cusses the efficiency of fitting different background models on a variety of different
datasets. In particular, it shows the efficiency of the algorithm described in Sect. 4.3 for
fitting the prior beliefs that were discussed throughout Sect. 4. Given such a prior belief
model, Sects. 8.2 and 8.3 discuss the performance of the tree finding methods, both
in accuracy and in speed. Section 8.4 discusses to which extent the resulting trees are
indeed dependent on the prior beliefs. Finally, Sect. 8.5 shows some visual examples
for subjective evaluation, and a comparison with related methods. All experiments
were done on a PC with an Intel i7-7700K CPU and 32 GB RAM.

8.1 Fitting the different backgroundmodels

This section is dedicated to showing the efficiency of fitting the MaxEnt model on a
number of large networks, by making use of the heuristic for a priori identifying equal
Lagrange multipliers (Sect. 4.3). The second last column in Table 1 shows the runtime
for computing the heuristic. The last column indicates the time to runNewton’smethod
for finding the optimum of the (reduced) Lagrange dual function (6). The third column
shows the number of unique Lagrange multipliers as found by the heuristic. We note
that for the prior beliefs under consideration, the heuristicwas able to correctly identify
all the unique Lagrange multipliers (e.g. in the case of bins, this is true because the
upper bound from Sect. 5.1 on the number of equivalences reaches equality). Thus,
Remark 3 did not apply here, although this is not to be expected in all cases.

Clearly, Table 1 shows that even very large networks can be fitted efficiently with
these kind of prior beliefs. In comparison with the DBLP9 dataset, the roadNet-CA10

dataset requires less than 10% of fitting time, even though it is a larger network. This
can be explained by looking at the number of unique degrees in the network, which
is crucial for the number of unique Lagrange multipliers and hence total fitting time:

9 https://snap.stanford.edu/data/com-DBLP.html.
10 https://snap.stanford.edu/data/roadNet-CA.html.
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Table 1 Fitting times for the different prior belief models

Prior beliefs dataset |V | |E | unique Lagr. mult.
(% of total)

Time (s)
Heuristic

Time (s)
Newton

Degree

Amazon 334,863 925,872 218 (0.06) 2 3

DBLP-4-Area 329,541 1,093,877 198 (0.06) 1.5 8

Google web 875,713 5,105,039 894 (0.1) 14 22

Youtube 1,134,890 2,987,624 1194 (0.11) 20 47

Assortativity

DBLP 317,080 1,049,866 3262 (0.51) 5 75

roadNet-CA 1,965,206 2,766,607 72 (0.001) 14 5.4

LiveJournal 3,997,962 34,681,189 22,110 (0.27) 128 564

Bins

ACM v8 (16 bins) 2,381,688 10,476,564 4838 (0.11) 13 85

ACM v8 (78 bins) – – 13,429 (0.28) 48 1095

NBER (6 bins) 2,923,922 16,518,948 2262 (0.03) 11 24

NBER (59 bins) – – 8026 (0.14) 69 591

roadNet-CA has only 11 unique degrees, whereas DBLP has 199. TheNBER11 dataset
consists of citations between U.S. patents in the timeframe 1975-1999. The patents
can be binned according to categories such as ‘Chemical’,‘Computers & Commu-
nications’, etc., and then further refined into subcategories such as ‘Gas Chemical’,
‘Coating Chemical’, etc. This leads to resp. 6 and 59 bins. Expressing prior beliefs on
the number of citations between categories can then be done similarly as in Sect. 5.1.
The ACM citation dataset consists of research papers in the field of computer science.
The oldest paper is a seminal paper of C.E. Shannon from 1938, themore recent papers
are from 2016. Binning per 5 years leads to 16 bins, binning each year separately leads
to 78 bins. Table 1 shows the rather drastic influence on the number of bins on the
total fitting time. We refer to Sect. 5.1 for a complexity discussion.

8.2 Testing the relative performance of the heuristics

Since the algorithms for finding trees, forests and branchings directly make use of
the heuristic for finding aborescences, we only test the different heuristics that were
proposed for finding arborescences. We tested the performance on the ACM, DBLP
and Amazon datasets, all fitted with a different background model as indicated by
Table 1. We randomly generated a number of queries and compare our methods with
the optimal arborescence (over a large pool of arborescences) and the average over
this pool.

The experiment setting is similar to Akoglu et al. (2013). To generate a set of n
query vertices we used a snowball-like sampling scheme. We randomly selected an

11 http://www.nber.org/patents/.
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Table 2 The average number of
arborescences per query that
were found in the data and used
for the comparison in Fig. 9

Dataset |Q| = 4 |Q| = 8 |Q| = 12

ACM 134,740 174,910 30,878

Amazon 12,889 2570 780

DBLP 33,032 10,081 8527

initial vertex in the graph. Then, we explore n′ < n of its neighbors, each selected with
probability s. For each of these vertices we continue to test n′ of its neighbors until
we have n selected vertices. From this query set we randomly select a valid common
root within a maximum distance k.

To have a baseline, we tried to find the arborescence with maximal SI by exhaus-
tively enumerating all possible arborescences. To keep this search feasible, we stopped
adding to the enumeration once we have checked 10,000,000 arborescences12 per
random query. The enumeration of the arborescences is done in a random manner, by
looking at randomly shuffled cartesian products of paths from each query to the root,
and only keeping those cartesian products that form a valid tree. We tested 3 different
query sizes {4, 8, 12}, and for each query size, we generated 500 queries with k = 4,
n′ = 4 and s = 0.8.

Table 2 shows the average size of these pools of trees that were found in the data.
Over each pool we took the tree with maximal SI and the average SI over all trees as
a baseline.

Figure 9 shows a boxplot of the interestingness scores of the tree-building heuris-
tics (relative scores to the optimal arborescence interestingness in the pool) versus
query size. All four heuristics clearly are better strategies than randomly selecting an
arborescence (the Avg. case). s-IR outperforms s-IC in all cases, which makes sense
because s-IC has no regard for the DL of the tree. s-IR, s-E and s-EIR have compa-
rable performance for smaller query sizes, but s-IR seems to be the best option for
larger query sizes. Figure 10 shows the average runtimes of the heuristics for the dif-
ferent datasets. There is negligible difference between the heuristics, since the main
bottleneck is finding all the simple paths from the queryset to the root (in all cases
taking up more than 99% of the runtime). In comparison, for query sizes {4, 8, 12},
on the Amazon dataset it took on average resp. 13s, 27s and 31s to enumerate the
arborescences from Table 2, which is at least a 100 times slower than running any
heuristic. We expect a linear relationship between the query size and the runtime for
a fixed depth k (since for each query vertex all simple paths to the root are calculated
separately). Interestingly enough, there is a large difference in runtime between the
Amazon and DBLP datasets, yet the graphs are of comparable sizes (see Table 1).

8.3 Scalability with varying tree depth

In a second timing experiment, we tested the scalability of the tree finding algorithms
for increasing depth of the connecting trees. As discussed in Sect. 8.2, the running time
linearly increases for fixed depth and increasing query size. However, this is not to be

12 By empirical testing, this was found to be a good size for this experiment.
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Fig. 9 Relative performance of the proposed heuristics for finding arborescences

expected for fixed query size and increasing depth, since the running time for finding
all simple paths with length ≤ k depends exponentially on k. We used the Amazon
dataset, fitted with a prior on individual degrees. For finding (directed) arborescences
and branchings, we considered each undirected edge as consisting of two directed
edges. Queries were generated similarly as in Sect. 8.2, setting the query size n = 14,
n′ = 4 and s = 0.8. For each depth k, we generated 50 queries and calculated the
time it took to find a connecting arborescence, tree, branching and forest. The s-IR
heuristic was used as a basis for all the algorithms. Figure 11 shows the average over
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Fig. 9 continued
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Fig. 10 Average runtime for finding arborescences (s-IR heuristic) of fixed depth k = 4 and varying query
sizes. There is negligible difference between the heuristics, since the main bottleneck is finding all the
simple paths

these 50 queries. For k ≥ 12, the search for finding arborescences quickly became
unfeasible and was terminated early. Finding branchings seems to scale particularly
well, which is because there is no explicit procedure required to find all simple paths
(see Sec. 7.2). We conclude that most of our algorithms scale rather poorly for larger
depths, however one can argue that a user will be seldom interested in a connecting
tree having a depth that is greater than the query size.
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Fig. 11 Average runtime for finding arborescences, trees, forests and branchings for fixed query size n = 14
and varying tree depth k on the Amazon dataset

Table 3 Influence of the prior belief model on the average degree of the vertices in randomly generated
forests in the Amazon dataset

Amazon Uniform prior Degree prior Ties p-value

Avg. degree 11.28 10.2 143/200 2.71e–06

The p-value for the Wilcoxon signed-rank test (pairwise comparison) for the two different prior beliefs is
shown in the last column

8.4 Testing the influence of the prior belief model on the resulting trees

Here we evaluate the outcome of our tree finding methods w.r.t. the different prior
belief models. We tested to what extent the heuristics take into account the prior belief
model the user has about the data. To do so, we randomly generated queries similarly
as in Sect. 8.2. For each dataset, we generated 200 queries of size n = 8 and depth
k = 8.

TheAmazon dataset was fittedwith two different prior beliefmodels: one on overall
graph density and one on the degree of each individual vertex.According to theMaxEnt
model, a prior on overall graph density implies that each edge is equally interesting. In
this case the heuristics will look for the smallest possible connecting tree. A prior on
individual vertex degrees implies that in general, a connection between twohigh degree
vertices is more likely —and hence less interesting—than a connection between two
low degree vertices. We expect this to be reflected in the resulting trees. Table 3 shows
the average degree of the vertices in the connecting trees, for the two different priors.
There is a significant difference between the two prior belief models, confirming the
claim that a prior on individual vertex degree results in a preference for low degree
vertices as connectors between the query vertices.
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Fig. 12 Difference in publication year between citing papers in the ACM v8 citation network

Table 4 Influence of the prior belief model on the average difference in publication year of all the citing
papers in randomly generated branchings in the ACM dataset

ACM Degree prior Degree+time prior Ties p-value

Avg. difference in publication year 4.34 5.27 41/200 3.92e–13

The p-value for the Wilcoxon signed-rank test (pairwise comparison) for the two different prior beliefs is
shown in the last column

Table 5 Influence of the prior belief model on the average difference in vertex degree of all the connected
vertices in randomly generated trees in the DBLP dataset

DBLP Degree prior Degree+assortativity prior Ties p-value

Avg. degree difference 19.97 27 131/200 0.0015

The p-value for the Wilcoxon signed-rank test (pairwise comparison) for the two different prior beliefs is
shown in the last column.

The ACM citation network was fitted with an individual vertex degree prior, and
an additional prior on the difference in publication year between citing papers (see
Sect. 5.1). In general, citations between papers with a large difference in publication
year are less common and hence more interesting. Figure 12 shows a histogram plot of
the difference in publication year between citing papers in the ACM citation network.
Hence we expect our algorithms to incorporate this knowledge and prefer citations to
older papers. This is confirmed by Table 4.

Lastly, the DBLP co-authorship network was fitted with an individual vertex degree
prior, and an additional prior on the network’s degree assortativity. As reported by
Newman (2002), co-authorship networks have the tendency to be assortitive, i.e., high
degree vertices tend to be connected to high degree vertices and low degree vertices
to low degree vertices. The DBLP dataset has a positive assortativity coefficient13

of 0.27, confirming this observation. Hence, we expect our algorithms to incorporate
this knowledge and preferring links between authors that have a large difference in
degree. This is confirmed by Table 4, showing the significant influence of the prior
belief model on the average difference of the degrees between all connections in a tree
(Table 5).

13 Defined as the Pearson correlation coefficient of the degrees of pairs of linked vertices.
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8.5 Subjective evaluation

In a first visualization, we queried the threemost recent KDDbest paper awardwinners
that are present in the ACM citation network. Figure 1 shows the resulting connecting
arborescences, for 3 different types of prior beliefs. For all prior beliefs, the connecting
arborescences are in direct contrast with the expectations a user has on the network.
We compare14 our methods with the known Dot2Dot-MinArborescence algorithm
(Akoglu et al. 2013; Horng Chau et al. 2012). Interestingly, the Dot2Dot algorithm
does not find a connection between the papers: the solution consists of the 3 papers and
no edges between them. The Dot2Dot algorithm took about 50h to complete, whereas
our method finished in under a minute for all prior beliefs.

Secondly, we compare our methods on the Karate dataset (Zachary 1977). The
Karate dataset is a small social network of a university karate club. The network
consists of two predefined communities, simulating a conflict of leadership that arose
in the club. Figure 13 shows the resulting connecting treeswhen querying one complete
community (indicated by green), for a number of different types of prior beliefs.
Figure 13a shows the result for an overall graph density prior. Each connection is
equally informative, and hence the tree is formed by using a high degree connector as
one of the central vertices Figure 13b shows the result for an individual degree prior.
Connections involving high degree vertices are expected, and hence less interesting.
The tree is now constructed by using a central vertex having a lower degree than
the central vertex in (a). Figure 13c shows the result if there is a combined prior
on individual degree and on the density of the connectivity inside each community.
Edges between the two communities are now preferred, since they are less common
than edges inside communities and thus less expected. Moreover, because of the prior
on individual vertex degree, edges involving high degree vertices are again avoided
if possible. Figure 13d shows the result of the Dot2Dot-MinArborescence algorithm.
This method also prefers low degree vertices as internal vertices in the connecting
tree, similarly as in (b). Since the network is small, there is negligible difference in
running time between the methods.

Lastly, to compare speed and interestingness, we repeat an experiment fromAkoglu
et al. (2013). The DBLP-4-Area dataset15 is a subset of DBLP, containing meta info
about the specific conferences where authors have published. In their example, they
queried the top 5 authors from both NIPS (machine learning) and PODS (database sys-
tems). The result of theirDot2Dot-MinArborescence algorithm is shown in Figure 14c.
Their method partitions the query set into two parts, suggesting that the authors from
each community are sufficiently far apart. Our methods recover the same partitioning.
Figure 14a shows the result of our method with a prior on overall graph density. Since
there is no regard for the degree of each author, the connection is formed using highly
collaborative authors such as ‘Michael I. Jordan’, ‘C. Papadimitriou’ and ‘Christopher
K. I. Williams’. Figure 14b shows the result of our method with a prior on individual
vertex degree. Connections between highly collaborative authors are now expected

14 Dot2Dot only works for undirected graphs, hence we simply ignored the directionality of the edges to
run the algorithm.
15 https://arxiv.org/pdf/1701.05291.pdf. We note that this dataset is not cleaned and may contain spelling
errors in the authors’ names.
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(a) (b)

(c) (d)

Fig. 13 A comparison of our methods with the existing Dot2Dot algorithm on the Karate dataset. As a query
we took one of the 2 predefined communities present in the network (indicated by green). a The resulting
connecting tree for the s-IR heuristic if there is a prior belief on the overall graph density. b The resulting
connecting tree for the s-IR heuristic if there is a prior belief on the individual vertex degrees. c The resulting
connecting tree for the s-IR heuristic if there are prior beliefs on individual vertex degree, and additionally,
on the density of the connectivity inside each community. d The result of the Dot2Dot-MinArborescence
algorithm

and thus less interesting. The forest contains lesser known authors such as ‘François
Rivest’, a former PhD student from ‘Yoshua Bengio’ and a former MSc. student of
‘Doina Precup’. The forests from Figure 14b and Figure 14c are quite similar, since
both methods try to optimize a similar objective: a concise connecting forest with
preferably low degree connectors. Comparing the SI of both forests, we find that their
forest actually scores slightly better on our metric: 0.767 vs. 0.751. This is mainly
due to our forest having one internal vertex more and thus a slightly larger description
length. However, in terms of speed, the difference is more obvious. Their method
needed 27,310 seconds (about 7.5h) to finish, whereas we needed about 10s to fit the
background model and 22s to find the connecting forest.

9 Related work

Finding connecting subgraphs between a set of vertices in a graph is a relatively novel
problem. The most related algorithmic result is the Dot2Dot algorithm of Akoglu
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(a)

(b)

Fig. 14 Querying the top 5 authors (red square labels) from both NIPS (blue hull) and PODS (red hull).
Vertex degrees are indicated between brackets. a The connecting forest using the s-IR heuristic, with a prior
on overall graph density. b The connecting forest using the s-IR heuristic, with a prior on individual vertex
degrees. c The connecting forest from the Dot2Dot-MinArborescence algorithm
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(c)

Fig. 14 continued

et al. (2013). They study the problem of finding a good partitioning and connection
structure within each part on undirected graphs for a given set of query vertices. There
are some differences in philosophy. Their work assumes an encoding scheme, where
both the sender and user know the graph structure. The task is then, by using the
graph connectivity, to find a succinct encoding of the query vertices. They rely on the
Minimum Description Length principle (Rissanen 1978) to find such a description.
The resulting patterns happen to be forests: it only costs extra bits to refer a vertex
that is already encoded in a pathway. In this work, we assume the edges of the graph
are unknown, and we are interested in learning the graph’s connectivity, especially in
relationship to the query set. We refer to Sect. 2.2 as to why we choose tree structures
as data mining patterns. Our approach is more flexible; we are able to incorporate
user-defined prior knowledge about the graph, we have a parameter that controls the
depth of the trees and our methods work for both undirected and directed graphs.

Other closely related work includes the work of Faloutsos et al. (2004), which
adressed the problemoffinding a so called “ConnectionGraph”, i.e., a small interesting
subgraph that connects a pair of vertices. This was later extended by Ramakrishnan
et al. (2005) and Sevon and Eronen (2008) to find connections in multi-relational
graphs. However, these connection graphs are only defined for pairs of vertices and
are in general not tree-structured.

Langohr and Toivonen (2012) were interested in finding a set of “relevant and non-
redundant vertices” in relationship to a set of query vertices. The returned vertices
should have a high proximity to the query set (relevance), but far away from each other
(non-redundant).Moreover, it is possible to specifiy the irrelevance of a vertex, because
certain relationships regarding that vertex are already expected. Although similar in
intent, there are some differences with our work. Their idea of prior knowledge seems
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to be in regard to vertices, whereas ours is based on edge connectivity. Secondly, they
are not concerned with returning tree-structures, but rather with returning a list of
vertices.

Zhou et al. (2010) introduced the idea of simplifying weighted networks by pruning
the least important edges from them. They assume the number of edges to be removed
is a (fixed) parameter, and hence the result will not always be a tree. Moreover, they
are not concerned with a set of query vertices or a subjective interestingness measure
(the edges are scored by a path quality function, indicating how relevant a path is to
the overall graph connectivity). Instead, their aim is to maintain good overall graph
connectivity after the pruning.

Wu et al. (2018) proposed a visual analytic system called MERCER (Maximum
Entropy Relational Chain ExploRer), designed to help a user discover interesting
relationships, e.g. in large text datasets. They useMaxEnt modelling to find interesting
“bicluster chains” as a summary of how different entities in a document are related.
Similarly as our work, they discuss fitting a MaxEnt model over a binary matrix, with
the densities of certain tiles as constraints. They propose classical iterative scaling and
conjugate gradient descent methods to infer the distribution’s parameters, limiting
their approach to smaller datasets (experiments were done on 3000x3000 matrices).
Roughly speaking, MERCER finds all possible paths through a bicluster that a user
requests for evaluation. After that, each chain is translated into a unique set of tiles
and the maxent model is used to score them. The length of the chains is not a part of
the scoring process, making this a different framework than FORSIED. Instead, they
let the user visually decide which chain is the most useful. Their work is focused on
interactively mining multi-relational data, which is a different setting than ours.

In regards to fitting a probabilistic backgroundmodel as a reflection of a user’s prior
beliefs, this work is an extension of the work by De Bie (2011b) and van Leeuwen
et al. (2016). Their work was limited to the case of a prior belief solely on vertex
degrees. This work is an extension, showing how the MaxEnt model can be efficiently
used to model prior beliefs on the densities of any particular sub-networks.

We conclude this section by discussing some related work on graph automor-
phism problems. Another well-known heuristic for checking graph isomorphisms is
the Weisfeiler-Lehman procedure (Fürer 2017; Kersting et al. 2014). In its simplest
form (usually referred to asWL[1] vertex classification), it reduces to vertex classifica-
tion by coloring the vertices. Initially, all vertices are given the same color. The colors
are then refined in consecutive rounds. In each round, two vertices receive a different
color if the multiset of their neighbor’s colors are different in the previous round. The
procedure reaches a stable coloring after at most |V | rounds. The actual equivalence
classes can only be a finer partition than those found by the stable coloring, similarly
as with the procedure from Sect. 6. There are 3 main reasons we chose to not use the
WL[1] procedure:

1. The procedure from Sect. 6 is fast in practice, taking only a fraction of the total
time to compute the background distribution (see Sect. 8.1).

2. For all the prior beliefs discussed in this paper (individual degrees, time relations,
degree assortativity), the procedure was able to correctly identify all the equivalent
Lagrange multipliers (see Sect. 8.1).
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3. WL[1] needs |V | rounds in theworst-case to reach a stable coloring. Our procedure
only needs 3 rounds. Moreover, WL[1] finds a coloring of all the vertices in the
graph G from Sec. 6, while our procedure only finds equivalences between the λ

vertices, as this is our sole interest.

However, we do note that for more complex prior beliefs, it could be that the
procedure from Sect. 6 returns a refinement that is too coarse. In these cases, WL[1]
could be an alternative option, as well as the well-known practical NAUTY algorithm
(McKay and Piperno 2013) which identifies the exact equivalence relationships.

10 Concluding remarks

We studied the problem of finding interesting trees that connect a user-provided set of
query vertices in a large network. This is useful for example to, based on citation data,
find papers that (indirectly) influenced a set of query papers, perhaps to understand the
structure of an organization from communication records, and in many other settings.
We defined the problem of finding such trees as an optimization problem to find an
optimal balance between the inforativeness (the Information Content) and conciseness
(the Description Length) of a tree. Additionally, by encoding the prior beliefs of a user,
we propose how to find results that are surprising and interesting to a specific user.

We showed how theMaxEnt model can be efficiently used to model a wide range of
prior beliefs, namely about the density of any particular sub-networks. This allowed
us, for example, to model knowledge about a network’s degree assortativity, or to
model knowledge of the (time based) partial ordering of papers in a citation network.

The computational problem solved in this paper is related to the problem of
constructing a minimal Steiner arborescence. There is a long development of approx-
imation algorithms, e.g., (Charikar et al. 1998; Melkonian 2007; Watel and Weisser
2014). Faster special-purpose approximations have also been studied in the data min-
ing community, e.g., for temporal networks (Rozenshtein et al. 2016). However, in
general our problem does not reduce to any of the known Steiner problems, since the
SI of a tree does not factorize as a sum over the edges.

Future work includes the algorithmic improvement of the tree finding methods, the
investigation of more complex prior beliefs and the possible applications in biology
and social media.
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Appendix: Counting the number of arborescences, branchings and
forests

Similarly as Theorem 1, Theorems 3–5 can be proven by considering the base case
k = 0 and using the inclusion-exclusion principle.

Theorem 3 Given a set of k labeled vertices in Kn. There are

A(n, k) =
k∑

i=0

(−1)i
(
k

i

)
(n − i)n−1

spanning arborescences in Kn, s.t. these k vertices are all internal vertices.

Proof Since every spanning tree has n orientations as an arborescence (there are n
choices for the root), there are nn−1 spanning arborescencs in Kn . The rest of the
proof follows the same steps as in the proof of Theorem 1. 	

Theorem 4 Given a set of k labeled vertices in Kn. There are

B(n, k) =
k∑

i=0

(−1)i
(
k

i

)
(n + 1 − i)n−1

branchings in Kn, s.t. these k vertices are all internal vertices.

Proof There are (n + 1)n−1 branchings in Kn (Moon 1970). This can be counted in
the following way. Let r be a vertex in Kn+1. The number of branchings in Kn is equal
to the number of spanning arborescences in Kn+1 (rooted at r ), which is equal to the
number of spanning trees in Kn+1, i.e., (n + 1)n−1. The rest of the proof follows the
same steps as in the proof of Theorem 1, observing that there are (n + 1− i)i ways to
add i leafs to a branching consisting of n − i vertices (every leaf can be the child of
n − i possible parents, or just be an isolated new vertex in the branching). 	


A similar argument for counting forests in Kn does not hold. In fact, no nice
expression for the base case k = 0 is available. Let fm(n) be the number of forests
in Kn , consisting of m connected components. It is shown (Rényi 1959; Moon 1970,
Theorem 4.1) that

fm(n) =
(
n

m

) m∑

i=0

(
−1

2

)i

(m + i)i !
(
m

i

)(
n − m

i

)
nn−m−i−1.

Define F0(n) = ∑n
m=1 fm(n). It follows that

Theorem 5 Given a set of k labeled vertices in Kn. There are

F(n, k) =
k∑

i=0

(−1)i
(
k

i

)
(n + 1 − i)i F0(n − i)
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forests in Kn, s.t. these k vertices are all internal vertices.

Proof Using a similar argument as in the proof of Theorem 1, and observing that there
are (n + 1 − i)i ways to add i leafs to a forest consisting of n − i vertices (each leaf
can be attached to n − i possible vertices, or it can be added as an isolated new vertex
in the forest). 	


Thus, communicating an arborescence A, a branching B or a forest F (all of size
n) can be done efficiently by using this many bits:

DL(A) = |V | − |Q| + log(A(n, n − |Q|)),
DL(B) = |V | − |Q| + log(B(n, n − |Q|)),
DL(F) = |V | − |Q| + log(F(n, n − |Q|)).
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