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A Commentary on

Age Differentiation within GrayMatter,WhiteMatter, and betweenMemory andWhiteMatter

in an Adult Life Span Cohort

by de Mooij, S. M. M., Henson, R. N. A., Waldorp, L. J., and Kievit, R. A. (2018). J. Neurosci. 38,
5826–5836. doi: 10.1523/jneurosci.1627-17.2018

Healthy aging is associated with changes in cognitive, perceptual, and motor abilities, as well as
changes in brain properties. Studies have shown that individual differences within such abilities and
brain properties become increasingly correlated in older age: this is known as the de-differentiation
hypothesis of aging. Using measures of brain function, prior studies have shown de-differentiation
in neural representations of cognitive (Carp et al., 2010; Park et al., 2010), perceptual (Park
et al., 2004; Carp et al., 2011b), and motor functions (Carp et al., 2011a; Bernard and Seidler,
2012). Older adults also show lower within-network and higher between-network functional
connectivity compared to younger adults, indicative of de-differentiation of functional networks
(Damoiseaux, 2017; Cassady et al., 2019). Less is known about whether the covariance within
structural brain properties changes with older age. Furthermore, it is unclear whether aging
affects the strength of brain-behavior associations. Recently, de Mooij et al. (2018) addressed these
open questions and assessed structural (gray/white matter) brain properties and cognitive abilities
in subjects aged 18–88 years. Results of their cross-sectional study showed that older age was
associated with lower covariance within both GM and WM, suggesting that these structural brain
properties become more specific (i.e., differentiated) with age. For cognitive abilities, covariance
was independent of age, suggesting that individual differences within this domain are stable across
the lifespan. Moreover, results revealed an age-related change in brain-behavior associations, in
that older age was associated with decreased covariance between hippocampal WM connectivity
and memory performance.

These findings have implications for our understanding of de-differentiation and theories
on the neurocognitive effects of healthy aging. The observation that structural properties of
individual brain regions become more distinct with older age suggests that aging is associated
with differentiation of brain structure. An explanation may be that some brain regions are more
sensitive to effects of aging than others. Alternatively, (learning) experiences in life may protect
from changes in some brain areas and/or accelerate changes in others. A challenge in interpreting
the results in light of the de-differentiation hypothesis is the discrepancy between these structural
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findings and prior functional findings. The observation that
brain structural covariance decreases with age contrasts results
from functional studies, which as aforementioned showed
that aging is associated with increasing covariance (i.e.,
de-differentiation) in brain activation patterns and resting-
state networks. Additionally, functional de-differentiation
typically refers to age-related increases in the covariance of
activation patterns within an individual (e.g., older adults
show increasingly similar patterns for left and right hand
movements), whereas de Mooij et al. (2018) assessed structural
and cognitive differentiation between people (e.g., older adults
doing poorly on memory tests also do poorly on language
tasks). Bridging these two fields, we suggest that localized
structural changes may actually drive the recruitment of
other (more intact) areas with older age to compensate for
anatomical deterioration. This would result in increasingly
overlapping recruitment patterns for different behaviors with
age and could explain why functional patterns across different
tasks become more similar. Such additional recruitment of
brain areas as a compensatory mechanism for structural
changes fits theories on age-related neurocognitive changes
that propose adaptive strategies to maintain relatively stable
performance with age (Cabeza et al., 2018). Compensation could
involve functional plasticity, where cognitive performance is
accompanied by functional alterations in the brain (Greenwood,
2007), or cognitive reserve, where additional recruitment reflects
cognitive processes or strategies that are engaged to cope with
structural declines (Whalley et al., 2004). However, a caveat in
establishing the here proposed relationship between functional
and structural results is that as aforementioned these measures
are determined differently (within vs. between individuals,
respectively), which poses a challenge for integrating these two
lines of research.

While de Mooij et al.’s (2018) results provide great insight
into structural (re)organization during the lifespan and its
relationship with cognitive function, we see some limitations
that require cautious interpretation of the findings. First, the
study involves a limited set of cognitive and neural variables,
leaving open the question of whether these findings can be
extended to other cognitive functions and other indices of
brain structure. In a previous study, Cox et al. (2016) used
a cross-sectional approach to examine various WM measures
and observed increased covariance of WMmicrostructure across
brain tracts with older age in 4 out of their 5 measures. These
measures included fractional anisotropy as used by de Mooij
et al., but also others such as mean diffusivity which proved
to be most sensitive to age-related changes. Cox et al. (2016)
thus provide strong support for robust de-differentiation of
structural WM networks with aging. While de Mooij et al.’s
(2018) findings contrast this notion, a notable strength is that
they used multiple strategies to analyze age-related covariance
changes. The observation that the results converged to the same
conclusion suggests that these findings may be quite robust, too.
The generalizability of the present findings should be further
investigated in future studies.

A second limitation is that the segmentation approach may
not be sensitive enough to detect subtler changes that occur
with aging. For example, in the GM analysis the frontal lobe
is considered as a single region, although prior studies have
shown that different sub-regions of the frontal lobe that underlie
distinct functions are differently affected by aging (e.g., Tisserand
et al., 2002; Resnick et al., 2003). Moreover, the fact that
the frontal lobe loaded onto each of the three modeled GM
factors (de Mooij et al., 2018, Figure 2) suggests that indeed
the brain may not be segmented very precisely, which could
artificially inflate the chances of finding significant correlations.
Evaluating sub-regions could be especially important when
investigating changes in covariance related to age-related
neurodegenerative disorders that affect specific regions/networks
in the brain.

Overall, de Mooij et al. (2018) demonstrate that aging is not
systematically associated with either increases or reductions of
differentiation, but that the effects of aging are more complex
and may differ for cognitive abilities and brain structural
properties. Moreover, their study suggests that the strength
of brain-behavior associations may change with age. While
these findings thus elucidate the (absence of) differentiation
in cognitive abilities and structural brain properties in healthy
aging, future studies should also evaluate changes related to
pathological aging. Furthermore, future work could consider
individual differences in dopaminergic gene profiles predictive
of cognitive and motor function (Hupfeld et al., 2018) and
investigate how these interact with aging. Longitudinal designs
may help to investigate these issues and adjudicate whether
the patterns of age-related changes observed by de Mooij et al.
(2018) are related to adaptive reorganization or cognitive reserve.
In addition, such designs would allow determining the relative
contribution of the degree of covariance vs. the amount of change
in structural brain properties to changes in cognitive abilities with
older age.
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