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Abstract

Antimicrobial resistance (AR) is a worldwide concern. Up to a 160% increase in antibiotic

usage in food animals is expected in Latin American countries. The poultry industry is an

increasingly important segment of food production and contributor to AR. The objective of

this study was to evaluate the prevalence, AR patterns and the characterization of relevant

resistance genes in Extended Spectrum β-lactamases (ESBL) and AmpC-producing E. coli

from large poultry farms in Ecuador. Sampling was performed from June 2013 to July 2014

in 6 slaughterhouses that slaughter broilers from 115 farms totaling 384 flocks. Each sample

of collected caeca was streaked onto TBX agar supplemented with cefotaxime (3 mg/l). In

total, 176 isolates were analyzed for AR patterns by the disk diffusion method and for

blaCTX-M, blaTEM, blaCMY, blaSHV, blaKPC, and mcr-1 by PCR and sequencing. ESBL and

AmpC E. coli were found in 362 flocks (94.3%) from 112 farms (97.4%). We found that

98.3% of the cefotaxime-resistant isolates were multi-resistant to antibiotics. Low resistance

was observed for ertapenem and nitrofurantoin. The most prevalent ESBL genes were the

ones belonging to the blaCTX-M group (90.9%), specifically the blaCTX-M-65, blaCTX-M-55 and

blaCTX-M-3 alleles. Most of the AmpC strains presented the blaCMY-2 gene. Three isolates

showed the mcr-1 gene. Poultry production systems represent a hotspot for AR in Ecuador,

possibly mediated by the extensive use of antibiotics. Monitoring this sector in national and

regional plans of AR surveillance should therefore be considered.

Introduction

Antimicrobial resistance (AR) is a worldwide concern. It is expected that deaths linked to AR

could rise from 700,000 to 10 million deaths per year by 2050[1]. On the other hand, In devel-

oped countries, an estimated 23,000 (United States) to 25,000 (Europe) deaths are attributable

to resistant pathogens each year [2].

In terms of economic loses, AR could cause a global loss of production as high as 100 tril-

lion dollars which represents a huge impact on the economy of all countries, especially
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developing countries [1]. This problem will not only result in increased illnesses, disabilities

and deaths but also puts at risk the achievement of Sustainable Development Goals for the

next 30 years [3,4].

It has been observed that AR in relevant pathogens has increased in recent years [5,6]. The

causes of this phenomenon are complex and are mainly linked to selective pressures triggered

by antibiotic usage [7]. Inappropriate prescription of antimicrobials, unauthorized sale of anti-

biotics and the extensive use of these drugs in animal production are mayor factors that contrib-

ute to this problem [8,9]. For example, in 2010, more than 63,000 tons of antibiotics were used

in livestock [10]. Moreover, it has been projected that by 2030 the use of antibiotics in livestock

will double in countries such as Brazil, Russia, India and South Africa. Furthermore, up to a

160% increase in antibiotic usage in food animals is expected in Latin American countries [11].

Worldwide, the poultry industry is an increasingly important segment of food production.

In fact, it is expected that by 2025, poultry will be the most important sector of meat produc-

tion [11,12]. Widespread use of antibiotics in the poultry industry impacts the AR problem.

This issue is especially relevant in developing countries where antimicrobials are not only used

therapeutically but also prophylactically and as growth promoters [13,14].

Among the antibiotics used in livestock production, some are listed in the WHO list of crit-

ically important antimicrobials for human medicine. This group includes third generation

cephalosporines, carbapenems and colistin, all of which are categorized as highest priority

[15]. Additionally, extended-spectrum β-lactamases (ESBL)- and AmpC-producing E. coli,
and carbapenem-resistant E. coli are listed as high priority organisms for which new antibiotics

are urgently needed [16].

E. coli harboring resistance determinants originating in the poultry industry are therefore

of great epidemiological interest because they can serve as reservoirs of resistance genes that

can be transferred to human pathogens [17]. A relationship between resistant strains of E. coli
from poultry and those found in humans has been suggested in several studies [18–20]. How-

ever, information about resistant E. coli in industrial poultry has been poorly studied in Latin

America. The objective of this study was to evaluate the prevalence and AR patterns of and to

characterize relevant resistance genes in ESBL and AmpC E. coli from large poultry farms in

Ecuador.

Material and methods

Study design and sampling

Pichincha, the province where Quito, the capital city of Ecuador is located, was selected for the

collection of samples since 36% of the total Ecuadorian broiler production is located in this

and surrounding provinces [21]. Eight large slaughterhouses are located in Pichincha [21] and

all were asked to participate in the study. Sampling was performed in the 6 participating

slaughterhouses which slaughter broilers from 115 farms with a median capacity of 100.000

broilers. These farms deliver broilers to be consumed mainly at Pichincha province. From

June 2013 to July 2014, a total of 384 flocks (birds coming from one house and slaughtered on

the same day) were sampled. All sampled flocks from the same farm originated from different

houses or birds reared during different periods in the same house.

In Ecuador, commercial broiler farm management includes the total depopulation of

houses and removal of the litter after every flock, cleaning and disinfection of the house fol-

lowed by a dormant period of 8 to 15 days. All sampled flocks were commercially reared and

slaughtered at the age of 6 to 7 weeks. From each batch, caeca from 25 randomly selected

chickens were collected, and transported in an ice box within 1 hour to the laboratory for

bacteriological analysis.
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Isolation and identification of ESBL/AmpC E. coli
Caeca from each flock were immersed in 98% ethanol to eliminate surface bacteria present due

to human handling. After evaporation of the ethanol, approximately 1 g of fecal content from

each of the 25 samples was collected and pooled in a sterile plastic bag. The pooled sample was

homogenized by hand for 1 minute.

Each sample was streaked onto chromogenic Tryptone Bile X-Glucuronide (TBX) agar

(BioRad) supplemented with cefotaxime (3 mg/l) [22]. Positive plates where considered when

at least one typical colony could be selected (when possible, two sample colonies were selected)

and confirmed to be E. coli using Triple Sugar Iron agar (Difco, BD) and by PCR [23]. From

this medium, one loopful was used to extract DNA by the boiling method. Another loopful

was used to subculture the isolate in trypticase soy broth (Difco, BD) and stored with glycerol

(60%) at -80˚C. All cefotaxime resistant E. coli isolates were further examined for the presence

of ESBL using ceftazidime, ceftazidime/clavulanate, cefotaxime, cefotaxime/clavulanate disks

[24] and for the AmpC phenotype using boronic acid, ceftazidime and cefepime disks [25].

Antimicrobial resistance and PCR screening

When detected, one isolate with ESBL phenotype and/or one isolate with AmpC phenotype

from each farm were selected for analysis by the Kirby Bauer method. AR profiles were evalu-

ated using clinical breakpoint values from the Clinical and Laboratory Standards Institute

(CLSI,2018) [24]. The following antibiotics were evaluated: trimethoprim-sulfamethoxazole,

nalidixic acid, ciprofloxacin, gentamicin, kanamycin, streptomycin, tetracycline, chloram-

phenicol, fosfomycin, tetracycline, doxycycline, ceftazidime and ertapenem. E. coli ATCC

25922 was used as a quality control strain.

Selected isolates for AR testing were studied by PCR to identify blaCTX-M, blaTEM, blaCMY,

blaSHV and blaKPC. PCR conditions and primers were those described by [26] for blaCTX-M,

[27] for blaTEM, [28] for blaCMY, [29] for blaSHV and [30] for blaKPC. Sub-families of blaCTX-M

genes were identified with PCR protocols described by [31] for blaCTX-M-1, [32] for blaCTX-M-2,

[33] for blaCTX-M-8, [34] for blaCTX-M-9 and [35] for blaCTX-M-14-like. Additionally, Isolates were

tested by PCR for the presence of mcr-1 [36] and mcr-2 [37] plasmid genes. Amplification

products were confirmed by gel electrophoresis using a 1% agarose gel. All PCR products were

purified and sequenced at Macrogen Inc. (Seoul, South Korea). Obtained sequences were

aligned against reference sequences with the online tool ResFinder 2.1 with an identity thresh-

old of 100% [38]. MIC values for ampicillin, piperacillin-tazobactam, cefoxitin, ceftazidime,

ceftriaxone, cefepime, doripenem, ertapenem, imipenem, meropenem, amikacin, gentamicin,

ciprofloxacin, tigecycline and colistin were obtained on mcr positive isolates using the Vitek 2

system with the AST-N272 card (Biomérieux, Marcy-l’Étoile, France). MIC values for colistin

were confirmed by microdilution using GNX2F plates (Thermo Scientific,West Palm Beach,

USA) The results were evaluated using the breakpoints recommended by CLSI (2018) [24].

Genetic characterization

Fingerprint characterization was performed in selected isolates for AR testing by repetitive ele-

ment palindromic PCR (REP-PCR) analysis [39]. Bands were analyzed using BioNumerics

software V.7.6 (Applied Maths, Sint-Martems-Latem, Belgium). Fragments between 200 bp

and 1500 bp in size were included in the analysis. The unweighted pair group method using

the arithmetic averages algorithm (UPGMA) with a 1.5% tolerance was used to construct a

dendrogram. Patterns with more than one isolate were arbitrarily numbered starting from I

and ordered from the most frequent one.

Cefotaxime resistant E. coli from broiler farms in Ecuador
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Statistical analysis

To determine the prevalence of E. coli ESBL at the farm level, a farm was considered positive

when at least one of the sampled batches was positive. Farms were assumed to be independent.

Differences in antibiotic resistances between ESBL E. coli and AmpC E. coli were calculated

by the chi-square test. Proportions were considered significantly different when the P value

was below 0.05.

Results

Prevalence of ESBL and AmpC E. coli isolates at poultry farms

ESBL and/or AmpC E. coli were found in 362/384 flocks (94.3%; CI95%: 93,39% - 95,26%). In

total, 112/115 farms (97.4%; CI95%: 96.37% - 98.94%) delivered a positive result at least once.

From all positive flocks, 62 (17.1%) delivered a combination of ESBL and AmpC isolates

while 223 (61.6%) and 51 (14.1%) flocks had exclusively the ESBL or AmpC phenotypes,

respectively. Only one colony could be isolated from 26 flocks, 21 (5.8%) and 3 (0.01%) show-

ing the ESBL and AMPC phenotypes respectively (colonies from 2 flocks could not be recuper-

ated for phenotypic testing).

For AR tests, 110 E. coli ESBL and 66 E. coli AmpC isolates were selected for further

analysis.

Antimicrobial resistance patterns

Antimicrobial susceptibility testing grouped ESBL and AmpC E. coli isolates in 26 patterns

that showed resistances to between 2 and 7 antibiotic families tested. Resistance patterns to at

least 3 antibiotic families (multi-resistant isolates) were present in 98.3% of all tested isolates.

Moreover, 92.1% of isolates presented resistance to between 4 and 7 antibiotic families. Pattern

number 3 was the most common one for ESBL and AmpC isolates with resistance to all tested

groups of antibiotics with the exception of nitrofurantoin (Table 1), while 9.7% of tested E. coli
isolates presented resistance to all tested groups of antibiotics.

Number of isolates and AR rates for ESBL and AmpC E. coli isolates are shown in Table 2.

Low resistance rates were observed for ertapenem followed by nitrofurantoin. For the remain-

ing antibiotics, resistance rates ranged from 29,1% to 93.9%. Antibiotics for which significant

differences were observed between ESBL and AmpC isolates were ceftazidime, kanamycin and

gentamicin. Resistance to ceftazidime and kanamycin was more frequent in AmpC isolates

while in ESBL isolates resistace to gentamicin was more frequent (Table 2).

Four isolates from the ESBL group (n = 110; 1CT86A, 1CT109B, 1CT136A and 1CT160A)

and 2 isolates from the AmpC group (n = 66; 1CT22A and 1CT188B) were positive for the

mcr-1 gene. The six isolates originated in different farms. MIC values of these isolates are

shown in Table 3. All these isolates presented resistance to ceftriaxone, and colistin. Resistance

to doripenem, imipenem, amikacin and tigecycline was not identified in any isolate.

Genetic characterization

Sequencing of genes in isolates with ESBL phenotype (n = 110) showed that the most prevalent

family of genes was blaCTX-M (90.9%). Forty-eight (43.6%) and 9 (8.2%) blaCTX-M positive iso-

lates presented the blaTEM-1A or blaTEM-1B, and blaSHV-5 alleles respectively. Three isolates had

the blaTEM-176 gene and 1 isolate presented the blaSHV-153 gene. Three and one isolates pre-

sented only blaSHV-5 and blaSHV-153 respectively. One and 4 isolates presented only blaTEM-1A

or blaTEM-1B genes respectively (4,5%) which do not hydrolyze cefotaxime. Within isolates

that presented genes of blaCTX-M family (n = 100), blaCTX-M-65, blaCTX-M-55 and blaCTX-M-3

Cefotaxime resistant E. coli from broiler farms in Ecuador

PLOS ONE | https://doi.org/10.1371/journal.pone.0207567 April 5, 2019 4 / 14

https://doi.org/10.1371/journal.pone.0207567


Table 1. Antibiotic resistance patterns of ESBL/AmpC E. coli isolated from poultry farms.

Pattern Resistance Pattern number No. of antibiotic groups No. of ESBL isolates (n = 110) No. of AmpC isolates (n = 66) Total isolates (%) (n = 176)

BQTAPNS 1 7 8 9 17 (9.7)

BQTANS 2 6 2 2 4 (2.3)

BQTAPS 3 6 42 19 61 (34.7)

BQTAPN 4 6 1 2 3 (1.7)

BQTPNS 5 6 1 1 2 (1.1)

BQTAS 6 5 9 6 15 (8.5)

BQTAN 7 5 1 1 2 (1.1)

BQTNS 8 5 1 1 (0.6)

QTAPS 9 5 4 4 (2.3)

BQTAP 10 5 6 3 9 (5.1)

BTAPS 11 5 1 2 3 (1.7)

BQAPS 12 5 4 3 7 (4)

BAPNS 13 5 1 1 (0.6)

BQTPS 14 5 2 1 3 (1.7)

BQTA 15 4 12 1 13 (7.4)

BQTS 16 4 2 2 (1.1)

BQAN 17 4 1 1 (0.6)

BAPS 18 4 2 1 3 (1.7)

BQPS 19 4 1 1 2 (1.1)

BQAP 20 4 3 2 5 (2.8)

BQTP 21 4 1 1 2 (1.1)

BTPS 22 4 2 2 (1.1)

BQT 23 3 5 1 6 (3.4)

BQA 24 3 1 1 2 (1.1)

BTA 25 3 1 2 3 (1.7)

BQ 26 2 3 3 (1.7)

B, Beta-lactam; Q, quinolone; T, tetracycline; A, aminoglycoside; P, phenicols; N, nitrofuran; S, sulfonamide.

https://doi.org/10.1371/journal.pone.0207567.t001

Table 2. Number of ESBL/AmpC E. coli isolates resistant to each tested antibiotic.

Antibiotic group Antibiotic No. of ESBL isolates (%) (n = 110) No. of AmpC isolates (%) (n = 66)

Beta-lactams �Ceftazidime 32 (29.1) 62 (93.9)

Ertapenem 0 (0) 1 (1.5)

Quinolones Nalidixic acid 103 (93.6) 61 (92.4)

Ciprofloxacin 80 (72.7) 47 (71.2)

Tetracyclines Tetracycline 95 (86.4) 27 (86.4)

Doxycycline 82 (74.5) 54 (81.8)

Aminoglycosides Streptomycin 91 (82.7) 56 (84.8)

�Kanamycin 44 (40) 42 (63.6)

�Gentamicin 52 (47.3) 18 (27.3)

Sulfonamide Sulfamethoxazole + trimethoprim 76 (69.1) 51 (77.3)

Phenicol Chloramphenicol 75 (68.2) 49 (74.2)

Nitrofuran Nitrofurantoin 15 (13.6) 16 (24.2)

� ESBL and AmpC isolates showed significantly different rates by chi-square test (p<0.05) for these antibiotics.

https://doi.org/10.1371/journal.pone.0207567.t002
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accounted for 77 isolates. One isolate was not positive for any of the studied ESBL genes

(Table 4).

Of the 66 AmpC isolates, 7 were PCR negative for blacmy, 58 were positive for blacmy-2, and

1 isolate was positive for blacmy-46. None of the 176 tested isolates were positive for blaKPC or

mcr-2.

REP-PCR delivered 121 genotypes (S1 Fig) from which 22 grouped to more than one isolate

(Table 5).

Genotypes II, III, IV, XVI and XVII were present in both ESBL and AmpC isolates. In total,

genotypes I and II were the most common ones, with 14 and 11 isolates, respectively. ESBL

and AmpC isolates from each genotype originated from different farms.

Discussion

The aim of this research was to study AR in E. coli from intensive poultry farming. The sparse-

ness of this kind of data from Latin America makes this study one of the few available reports

that demonstrate the extent of ESBL/AmpC E. coli in commercial poultry in the region [40–

42]. Nonetheless, developed countries have also reported both a high prevalence of ESBL E.

coli and the presence of multiresistant isolates from broiler flocks [43,44].

Similar to a previous studie in small-scale poultry farming in Ecuador [45], this research

shows high prevalence of ESBL genes (blaCTX-M) among cefotaxime-resistant E. coli. How-

ever, a study carried out in Colombia by Castellanos et al. [41] demonstrates a higher prevalence

of AmpC genes (blaCMY) in cefotaxime-resistant E. coli isolates from commercial poultry. Dif-

ferences in the epidemiologic patterns of enteric bacteria isolated from Ecuadorian and Colom-

bian poultry has been reported before and may be attributed to the ecological characteristics

(altitude above 2800 m.a.s.l.) of the boundary between these neighboring countries [13].

High AR rates and multi-resistance patterns could be related to the intensive use of antimi-

crobials in poultry production, which in some cases are not only used as therapeutics but also

as prophylactics and growth promotors [11,46]. On the other hand, it has to be considered

that the withdrawal of antibiotics from poultry production systems may not result in the dimi-

nution of ESBL/AmpC E. coli since ecological factors could be implicated in the dynamics of

AR determinants [47,48].

Increasing antibiotic resistance and the lack of new antibacterial agents have revived inter-

est in old compounds such as nitrofurantoin in clinical practice [49,50]. Despite the renewed

Table 3. MIC values of mcr-1 positive isolates.

Isolate Isolation date (mm/

yyyy)

ESBL/AmpC

genes

AMP TPZ FOX CAZ CRO FEP DOR ERT IMI MER AK GEN CIP TIG COL

1CT22A 08/2013 blaCMY-2 � 32 �

128

� 64 16 16 � 1 �0,12 �0,5 �0,25 �0,25 �2 � 16 � 4 �0,5 8

1CT86A 12/2013 blaCTX-M-2 � 32 � 4 16 4 � 64 �

64

�0,12 �0,5 �0,25 �0,25 �2 � 16 � 4 �0,5 8

1CT109B 01/2014 blaCTX-M-14 � 32 � 4 8 � 1 � 64 2 �0,12 �0,5 �0,25 �0,25 �2 � 16 � 4 �0,5 4

1CT136A 03/2014 blaCTX-M-65 16 � 4 � 4 � 1 16 � 1 �0,12 �0,5 �0,25 �0,25 �2 � 16 � 4 �0,5 8

1CT160A 04/2014 blaCTX-M-65 � 32 � 4 16 32 � 64 4 0,5 1 �0,25 4 4 � 16 � 4 �0,5 �

16

1CT188B 06/2014 blaCMY-2 16 � 4 � 64 4 8 � 1 �0,12 �0,5 �0,25 �0,25 �2 1 �0,25 �0,5 8

AMP: ampicillin; TPZ: piperacillin-tazobactam; FOX: cefoxitin; CAZ: ceftazidime; CRO: ceftriaxone; FEP: cefepime; DOR: doripenem; ERT: ertapenem; IMI:

imipenem; MER: meropenem; AK: amikacin; GEN: gentamicin; CIP: ciprofloxacin; TIG: tigecycline; COL: colistin.

Values in bold indicate resistance according to CLSI-2018.

https://doi.org/10.1371/journal.pone.0207567.t003
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importance of nitrofurantoin and the known role of food animals in resistance dissemination,

only a few studies include this antibiotic in AR screenings [51,52]. Resistance rates to nitrofur-

antoin in this study are higher than the ones reported in chicken meat samples (7,9%) in

Colombia by Donado-Godoy et al. [52]. Higher resistance to nitrofurantoin in extra-intestinal

clinical isolates of E. coli from chickens has been reported in China [51]. Although nitrofuran-

toin is not used in the poultry industry in Ecuador, surveillance of this antibiotic should car-

ried out in poultry production systems due to the possibility that the resistance to this

antibiotic could increase over time.

Carbapenems are not used in the poultry industry in Ecuador, resulting in a lack of selective

pressure by this antimicrobial in poultry production. This observation explains the low preva-

lence of carbapenem-resistant E. coli reported in poultry [53]. Concordantly, we only identi-

fied one isolate resistant to ertapenem and meropenem, although carbapenem resistance

mediated by blaKPC has been reported in clinical Enterobacteriaceae in Ecuador [54].

The association of ESBL and AmpC phenotypes with increased prevalence of aminoglyco-

side resistance has been reported [55]. In our study we identified a significant association of

kanamycin resistance with AmpC-producing isolates and gentamicin resistance to ESBL-

Table 4. Combination of blaCTX-M, blaTEM and blaSHV alleles in ESBL E. coli isolates.

blaCTX-M group (%) (n = 110) blaCTX-M allele (%) blaTEM blaSHV No. of isolates

Group 1

45.5%

(n = 50)

blaCTX-M-1 (3.6%) - - 2

- - 1

- - 1

blaCTX-M-3 (19.1%) - - 14

- - 2

- - 2

blaTEM-176 - 2

blaSHV-5 1

blaCTX-M-12 (2.7%) - - 1

- blaSHV-5 2

blaCTX-M-29 (0.9%) - - 1

blaCTX-M-55 (17.3%) - - 1

- - 13

- blaSHV-5 4

blaTEM-176 blaSHV-5 1

blaCTX-M-123 (1.8%) - - 2

Group 2

7.3%

(n = 8)

blaCTX-M-2 (7.3%) - - 3

- - 1

- - 3

- blaSHV-5 1

Group 8

0,9%

(n = 1)

blaCTX-M-8 (0.9%) - - 1

Group 9

37,3%

(n = 41)

blaCTX-M-14 (1.8%) - - 2

blaCTX-M-21 (0.9%) - - 1

blaCTX-M-27 (0.9%) - - 1

blaCTX-M-65 (33.6%) - - 15

- - 1

- - 1

- - 20

https://doi.org/10.1371/journal.pone.0207567.t004
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producing E. coli. Further genetic characterization should be performed in order to explain

whether these ARs are associated with specific genetic environments (the presence of amino-

glycosides modifying enzymes), In our study, all selected isolates were resistant to cefotaxime

(used for screening), however, AmpC isolates were significantly more resistant to ceftazidime

than ESBL isolates. This difference is explained by the enhanced hydrolyzation of ceftazidime

by the blaCMY gene product [56,57].

Several studies throughout the world have reported plasmid-mediated colistin resistance in

Enterobacteriaceae pointing to its global emergence [58]. In our study 6 out of 176 isolates

(3.4%) were PCR positive for mcr-1 and confirmed as phenotypically colistin resistant. In con-

trast, a study in Argentina reported that 49% (n = 304) of E. coli isolates recovered from broil-

ers were identified as colistin resistant by microdilution [59]. Another study in Brazil reported

that 19.5% of chicken meat samples (n = 41) were positive for mcr-1 [60]. Colistin resistant

Enterobacteriaceae have been described in humans and poultry in several Latin American

countries [61,62]. Considering these findings and because colistin has been largely used as a

growth promotor in Latin America, the poultry industry could be considered an important

hotspot for this kind of resistance. Additionally, it has to be considered that although we did

not find mcr-2 in our study, up to 8 genetic determinants for colistin resistance have been

described [63–65]. Therefore, a search for more genetic determinants along with a phenotypic

screening assay should be conducted to better understand the epidemiology of colistin resis-

tance in poultry from Ecuador.

Genes of the blaCTX-M family have been the most prevalent ones in poultry production,

even when there is no selective pressure due to antibiotic usage [47,66]. In our study,

Table 5. Genotypes of ESBL and AmpC E. coli with more than one isolate.

Genotypes No. of isolates

ESBL AmpC Total

I 14 14

II 10 1 11

III 3 2 5

IV 4 1 5

V 4 4

VI 3 3

VII 3 3

VIII 3 3

IX 2 2

X 2 2

XI 2 2

XII 2 2

XIII 2 2

XIV 2 2

XV 2 2

XVI 1 1 2

XVII 1 1 2

XVIII 2 2

XIX 2 2

XX 2 2

XXI 2 2

XXII 2 2

https://doi.org/10.1371/journal.pone.0207567.t005
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blaCTX-M-65 was the most prevalent allele of the blaCTX-M family (33,6% of the ESBL-producing

isolates) followed by blaCTX-M-3 (19,1%) and blaCTX-M-55 (17,3%) which differs from the results

of other countries in the region. Colombia reported blaCTX-M-2 as the most prevalent variant

followed by blaCTX-M-8 and blaCTX-M-15 [41], while Brazil identified blaCTX-M-8 and blaCTX-M-2

variants in chicken meat [40,42,67] In our case, blaCTX-M-8 and blaCTX-M-2 were present as a

small proportion. Other genes such as blaSHV-5, blaSHV-153 and blaTEM-176 were found in lower

proportions which agrees with the mentioned studies.

In Ecuador, there are no data about blaCTX-M-65 in E. coli from poultry. However, this vari-

ant has been identified in Salmonella from poultry and in human clinical samples in Ecuador

[68]. Likewise, blaCTX-M-3 and blaCTX-M-55 have been identified in human infections [36,69].

These findings suggest the presence of plasmids carrying these variants in our environment.

Therefore, transmission of resistance determinants from poultry to human may occur, but fur-

ther evidence is needed to confirm this hypothesis. Finally, 6 isolates did not present ESBL or

AmpC genes. In these cases, a broader panel of beta-lactamases genes should be used to iden-

tify the genetic determinants of resistance in these isolates.

Cross-contamination between farms could explain our finding that the same ESBL and

AmpC genotypes originated from more than one farm. This idea is supported by other studies

that found that Salmonella and Campylobacter isolated from different poultry farms are clon-

ally related [70,71]. In Ecuador, climatic and social factors lead to most poultry houses having

an open configuration in which implementation of rigorous biosecurity is difficult. Spread of

bacterial genotypes among farms and integrated companies can therefore be a common event

[72,73]. This highlights the importance of implementing effective biosecurity systems aiming

not only to avoid the spread of AR but also to improve poultry health. Additionally, the contri-

bution of factors like contamination of one-day-old chicks or feed should be studied in the

future to obtain more insights on clonal relatedness of AR bacteria. It must be considered that,

despite the relatively high concentration of cefotaxime used for screening of ESBL/AmpC phe-

notypes, a large number of isolates were recuperated.

In conclusion, poultry production systems represent a hotspot for AR in Ecuador, possibly

mediated by the extensive use of antibiotics in this industry. Monitoring this sector in national

and regional plans of AR surveillance should therefore be considered.
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