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Abstract—Acoustic cameras allow the visualization of sound
sources using microphone arrays and beamforming techniques.
The required computational power increases with the number
of microphones in the array, the acoustic images resolution,
and in particular, when targeting real-time. Such computational
demand leads to a prohibitive power consumption for Wireless
Sensor Networks (WSNs). In this paper, we present a SoC
FPGA based architecture to perform a low-power and real-time
accurate acoustic imaging for WSNs. The high computational
demand is satisfied by performing the acoustic acquisition and
the beamforming technique on the FPGA side. The hard-core
processor enhances and compresses the acoustic images before
transmitting to the WSN. As a result, the WSN manages the
supported configuration modes of the acoustic camera. For
instance, the resolution of the acoustic images can be adapted on-
demand to satisfy the available network’s BW while performing
real-time acoustic imaging. Our performance measurements show
that acoustic images are generated on the FPGA in real time
with resolutions of 160x120 pixels operating at 32 frames-per-
second. Nevertheless, higher resolutions are achievable thanks
to the exploitation of the hard-core processor available in SoC
FPGAs such as Zynq.

I. INTRODUCTION

Acoustic cameras visualize the intensity of sound waves,
which is used to be graphically represented as an acous-
tic heatmap, allowing the identification and localization of
sound sources. Arrays of microphones are used to collect
the acoustic information from certain beamed directions by
applying beamforming techniques. The relatively low-cost of
the Micro-Electromechanical Systems (MEMS) microphones
together with recent advances in the MEMS technology fa-
cilitates the construction of large MEMS microphone arrays
with reasonable quality in their acoustic response [1]. As a
result, the development of acoustic cameras composed of tens
of MEMS microphones have became popular in the latest
years. Nevertheless, the computational demand increases with
the number of microphones present in the array, becoming
a challenge when targeting real-time. Due to the high I/O
capability required to interface such microphone arrays, the
high level of parallelism presented in such a systems and
the relative low-power that Field-Programmable Gate Arrays
(FPGAs) offer nowadays, most of the acoustic cameras use
this technology to compute the needed operations for acoustic
imaging. The use of microphone arrays for acoustic imaging,
however, has barely been considered for Wireless Sensor

Networks (WSN) applications due to the power constraints
and the limited bandwidth (BW) that WSN present.

In this paper, we propose the use of a Xilinx Zynq ar-
chitecture to enable the use of acoustic cameras for WSN
applications. Such System-on-Chip (SoC) FPGA architecture
not only provide relatively large reconfigurable logic resources
in the Programmable Logic (PL), but also a hard-core general
purpose processor in the Processing System (PS) in the same
die, enabling a fast communication between both. Our solution
exploits the heterogeneous nature of the Zynq architecture
by generating real-time acoustic images on the PL while
alleviating the WSN’s BW limitations by performing acoustic
imaging processing locally on the PS. As a result, our proposed
architecture supports multiple configuration modes, which are
managed by the WSN through the hardcore processor in order
to adapt the response of the system to the network’s context.

The main contributions of this work can be summarized as
follows:

• A SoC FPGA-based architecture for real-time acoustic
imaging.

• Multiple operational modes to satisfy the bandwidth
WSN demands.

• The use of image enhancement techniques and the de-
tection of Regions-of-Interest (ROIs) in a SoC FPGA
architecture.

This paper is organized as follows. Section II presents
related work. In Section III our approach is introduced. Sec-
tion IV describes the microphone array and the generation of
real-time acoustic heatmaps on the PL. The description of the
operations computed on the PS as well as the multiple modes
supported is done in Section V. In Section VI, our SoC FPGA
architecture is evaluated. Finally, our conclusions are presented
in Section VII.

II. RELATED WORK

Similar related work and the main differences with the
proposed architecture are discussed here.

The FPGA-based architecture proposed in [2] fully inte-
grates all the operations needed to generate acoustic heatmaps
in a Xilinx Spartan 3E FPGA. Despite their architecture
achieves up to 10 frames-per-second (FPS) for acoustic image
resolutions of 320x240 pixels, their architecture does not
include any filter further than the inner filtering during the
ADC conversion of the incoming data from their analogue
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electrec microphones. Furthermore, the acoustic images in-
clude ultrasound acoustic information since the frequency
response reaches up to 42 kHz due to a missed high-pass
filtering stage. Our architecture reaches the same performance
while generating lower resolution images on the PL to reach
real-time. Nevertheless, our proposed architecture is able to
increase the image resolution on the PS based on the WSN
demand.

The authors in [3] implemented a 3D impulsive sound-
source localization method on combining one FPGA with a
PC. Their system computes the delay-and-sum beamforming
operation on the PC while the FPGA filters the acquired audio
signals and displays through VGA the acoustic heatmap gener-
ated on the PC. Instead, our architecture is fully embedded on
the Zynq device the filtering and the beamforming operations
and the generation of the acoustic heatmap.

An architecture targeting a SoC FPGA is presented in [4].
The high parallelism offered by the FPGA part is used to
perform the filter operations needed to retrieve the audio
signals. The embedded processor, a dual core ARM processor,
handles the user communication. Our architecture, instead,
fully exploits the hard-core processor, enhancing and locally
processing the acoustic images further than managing the
communication. Moreover, the main goal of their architecture
is to generate acoustic images from a broadband acoustic
signals ranging from 20 kHz to 80 kHz. This range scopes
out of the audible range of human hearing and belongs to
ultrasound range. The proposed architecture uses only audible
acoustic signals to construct the acoustic heatmap.

The authors in [5] propose an architecture based on al-
ternative Cascaded Recursive-Running Sum (CRRS) filters
as replacement of the commonly used Cascaded Integrator-
Comb (CIC) filters for acoustic signal processing applications.
These filters are evaluated on a real-time acoustic camera
fully implemented on an FPGA. Nevertheless, the authors do
not provide information about the target resolution of their
acoustic camera neither specifications related to the overall
performance.

The system proposed in [6] combines a PC, an FPGA, an
embedded processor and a GPU to generate acoustic images
using a planar MEMS microphone array. Despite the high-
quality of the obtained acoustic images and the use of a
larger microphone array, the system does not generate real-
time acoustic images. Moreover, the distributed nature of
their system to generate acoustic images hinders the fully
embedding in a compatible system for WSN applications.

To our knowledge, our SoC FPGA based architecture is the
first one to fully exploit the combination of the reconfigurable
logics and the hard-core processors available in the current
SoC FPGA while targeting WSNs.

III. PROPOSED SOC FPGA-BASED ARCHITECTURE

The proposed architecture intends to exploit the combina-
tion for the PS and the PL of the Xilinx Zynq architectures
to extend the use of acoustic cameras to WSNs. While
the reconfigurable logic on the PL satisfies the low-power
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Fig. 1: Distribution of the components into the Zynq Processor.

demands of WSNs, it also provides enough computational
power to produce acoustic images in real-time. On the other
hand, the PS not only provides the necessary control to
interface WSN but also the flexibility to support multiple
configurations without the need to partially reconfigure the PL
logic. The computational balance between both components
presents, however, several trade-offs that must be analyzed
before reaching the truly potential of SoC FPGAs for this
particular application. Moreover, the presented architecture
supports multiple modes, which are decided by the WSN and
managed by the PS, to better respond to the WSN’s conditions.
Figure 1 depicts the proposed distribution of the computations
between the PS and the PL. The main components of the
proposed WSN node to produce acoustic images are the
microphone array, the PL and the PS parts of the Zynq
architecture, and the WSN mote. The microphone array and
the PL compose the front-end while the PS and the WSN mote
are the back-end.

At the front-end, the PL receives the acquired acoustic
signal from the microphone array. The audio signal is retrieved
from the microphone’s acquired signal after a filtering process
performed in the filter stage. The beamforming stage aligns
the audio signals in order to focus into a particular orientation
while discriminating the inputs from other orientations. The
sound relative power (SRP ) is calculated at the detection
stage. The SRP values obtained for each orientation are prop-
agated to the PS part to be represented as an acoustic heatmap.
The Xillybus [7] is used for the communication between the
PL and the PS part, achieving a BW of 103MB/s [8].

The back-end performs the local image processing and
manages the WSN communication. Moreover, several image
enhancement operations are supported on the PS. These op-
erations involved the generation of the heatmap from the
values generated on the PL, the scaling of the image, the
identification of ROIs and the image compression. The SRP
values of the 3D beamforming are graphically represented
in a heatmap format. The heatmap resolution determines the
number of orientations (No) performed by the beamformer.
While a low value of No leads to higher number of frames
per second (FPS), low resolutions are supported to satisfy the
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Fig. 2: The microphone array consists of 12 digital MEMS
microphones arrange in two concentric sub-arrays.

real-time constraints. The presented architecture offers a trade-
off in terms of performance and image resolution. Despite
a relatively low resolution acoustic heatmap is performed at
the FPGA side to provide a real-time response, image scaling
operations are supported on the PS to improve the image
resolution. Moreover, multiple modes are supported in order
to adapt the image operations on the PS to satisfy the WSN
demands. For instance, sound sources can be identified in the
heatmap, where ROIs are marked to be lately profiled. The
identified ROIs and it’s coordinates are compressed and sent
to the network by the WSN mote. In this operational mode,
the overall WSN BW consumption is reduced.

IV. FRONT-END

A. Microphone Array

The microphone array consists of 12 MEMS microphones
SPH0641LU4H-1 [9] provided by Knowles placed in 2 sub-
arrays (Figure 2). All microphones are bottom layer mounted
on a printed circuit board (PCB) with the aperture hole
facing upwards in the top layer. In order to reduce acoustic
scattering, all other components are mounted on the bottom
layer of the PCB. The output of the microphones is a PDM
signal, which is internally obtained in each microphone by
a sigma delta modulator typically running between 1 and
3 MHz. All microphones are paired such that 6 clock and 6
data lines are required to interface the FPGA, which is done
through two PMOD connectors. Despite the SPH0641LU4H-1
microphones are also suitable for ultrasound applications, in
this paper we only consider the audible acoustic frequencies.
The shortest distance between the microphones is 23.20 mm
and the longest distance equals 81.28 mm. These distances re-
spectively correspond to acoustic frequencies (λ2 ) of 7.392 kHz
and 2.110 kHz.

Detecting the direction of arrival of sound waves with
microphone arrays is applied by using a variation of the Delay-
and-Sum beamforming technique, which relies on the principle
of aligning the recorded sound samples in time before to
sum them. In order to properly delay the incoming sound
samples, a delay table with delays for each microphone in
all desired beamforming directions is calculated. Our acoustic
camera uses an adapted hypercube distribution [19] to the
field-of-view of the camera, which is 51◦. Here, only a portion
corresponding to the 51◦ in the xy-plane laying at z = 1 is

Parameter Definition Value
Fs Sampling Frequency 3.125 MHz
Fmin Minimum Frequency 1 kHz
Fmax Maximum Frequency 16.275 kHz
BW Minimum BW to satisfy Nyquist 32.55 kHz
DF Decimation Factor 96
DCIC CIC Filter Decimation Factor 24
NCIC Order of the CIC Filter 4
DFIR FIR Filter Decimation Factor 4
NFIR Order of the FIR Filter 24

TABLE I: small Configuration of the architecture under anal-
ysis.

used. A rectangular grid is then taken in this section and all
obtained points are then normalized to obtain unitary vectors
which are used to calculate the required delays.

B. A Filter-Delay-Decimate-and-Sum Architecture on the PL

The proposed architecture running on the PL is based on
the one presented in [11], and accelerated in [12]. These
filter-delay-and-sum architectures offer a response fast enough
to satisfy the performance demands of an acoustic camera.
Unfortunately, the price to pay is a relative degradation in the
accuracy of the beamforming, reflected in a relatively poor
frequency response [13]. The proposed architecture achieves
the same performance than in [12] while improving the
frequency response. The architecture parameters are detailed
in Table I.

Figure 3 depicts the inner components of the three stages
of the architecture implemented on the PL. The complete
architecture is processing in streaming and pipeline all the
operation within each stage.

1) Filter Stage: The first stage is the filter stage, which is
composed of multiple filter chains. The MEMS microphones
of the array provide an oversampled PDM signal that needs
to be processed to retrieve the original audio signal. Each
microphone is associated to a filter chain, which is composed
of a cascade of filters to reduce the signal BW and to remove
the high frequency noise. The first filter is a 4th order low
pass CIC decimator filter with a decimation factor of 24.
This type of filter has a lower resource consumption since
it only involves additions and subtractions [14]. The CIC
filter is followed by a moving average filter to remove the
DC offset introduced by the MEMS microphone. The last
component of each filter chain is a 23th order low-pass FIR
filter. The serial design of the FIR filter drastically reduces the
resource consumption but forces the maximum order of the
filter to be equal than the decimation factor of the CIC filter.
The data representation used in the filter chain is a signed
32-bits fixed point representation with 16 bits as fractional
part. Nevertheless, the bitwidth is increased inside the filters
to minimize the quantization errors that the internal filter
operations might be introduced. The data representation is
set to signed 32-bits at the output of each filter by applying
the proper adjustment. Finally, the FIR filter’s coefficients are
represented with 16 bits.
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Fig. 3: Overview of the FPGA’s components. The PDM input signal is converted to audio in the cascade of filters. The Delay-
and-Sum beamforming is composed of several memories, associated to each sub-array to disable those memories linked to
deactivated microphones, to properly delay the input signal. The SRP is finally obtained per orientation.

2) Beamforming Stage: The beamforming techniques pro-
vide directionality to the microphone array. Such type of
techniques allow to focus the array to a specific orientation
while suppressing the acoustic data coming from other di-
rections. The presented architecture uses the Delay-and-Sum
beamforming to focus the array to pre-configured orientations,
which are determined at pre-compile time based on the desired
resolution of the acoustic image. The filtered audio from the
filter stage is stored in banks of block memories (BRAM) in
order to be delayed by a specific amount of time determined by
the focus direction, the position vector of the microphone, and
the speed of sound [10]. All possible delays are precomputed,
grouped based on the supported beamed orientations, and
stored in BRAM during the compilation time. In order to
support a variable number of active microphones (Na), the
implementation of the beamforming operation groups in sub-
arrays the incoming signal of microphones. Therefore, the
beamforming operation is only executed on the active sub-
arrays, disabling all the operations associated to the inactive
microphones in order to reduce the power consumption.

3) Detection Stage: At the last stage, the delayed values
from the beamforming stage are accumulated before the cal-
culation of the SRP per orientation in the time domain. The
computation of SRP for different beamed orientations is used
at the PS to generate a heatmap. Thus, these orientations pre-
senting a higher SRP correspond to the location of potential
sound sources.

C. Trade-offs

The proposed architecture combines the beamforming oper-
ation with a downsampling operation. While the architectures
in [11], [12] and [13] downsample the filtered signal just
after the FIR filter in the filter chain, the presented archi-
tecture downsamples during the beamforming operation. The
sampling frequency at the beamforming stage in [10] and
[13] equals the clock frequency of the MEMS microphones
(2 MHz). The architectures in [11] and in [12] present,
however, a lower sampling frequency at the beamforming
stage (31.25 kHz). The accuracy in the first architectures is

higher than in the latest ones because the delay unit at the
beamforming stage is inversely proportional to the sampling
frequency at this stage. Therefore, the architectures in [10] and
[13] offer higher accuracy than the architectures in [11] and
in [12]. Nevertheless, the price to pay is the higher latency.
Our architecture solves the latency drawback by increasing the
memory consumption at the beamforming stage.

1) Performance: The proposed architecture is an interme-
diate solution where the highest performance is achieved while
preserving the level of accuracy. One of the main differences
of the presented architecture and the architectures in [11], [12]
is the location of the FIR filter decimation of a factor of DFIR

after the beamforming to increase accuracy. Thus, the accuracy
of the beamforming is increased but the strategies proposed
in [12] cannot be applied, drastically increasing the overall
latency. Moreover, the DFIR values read from the BRAMs at
the beamforming stage are discarded by the detection stage.
Instead, our architecture decimates while beamforming. The
read operation of the beamforming memories has increments
of DFIR, which is equivalent to decimation. On the one hand,
this solution allows to perform at the same speed than the
architectures in [12] while increasing by a factor of DFIR the
accuracy at the beamforming stage. On the other hand, the
memory requirements at the beamforming stage are increased
by a factor of DFIR due to all the undecimated filtered values
that must be stored in the beamforming memories.

2) Frequency Response: A higher accuracy at the beam-
forming stage directly affects to the overall frequency response
of the architecture. Figure 4 depicts the comparison of the
architectures in [12], [13] and the proposed one. Each archi-
tecture has been evaluated for one sound source from 100 Hz
to 12 kHz, with the same design parameters (Fs, DF , ...)
and considering 64 orientations in 2D for the SoundCompass
microphone array [10]. The quality of the frequency response
of each architecture is measured based on the directivity (DP ),
which reflects the ratio between the main lobe’s surface and the
total circle in a 2D polar map [10]. The average of all directiv-
ities along with the 95% confidence interval is calculated for
64 orientations. Moreover, the resulting directivities are based



Fig. 4: Comparison of the architecture in [13] (left), the proposed architecture (centre) and the architecture in [12] (right)
using the 2D directivity [10] as metric.
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on the active sub-arrays of the original SoundCompass for the
proposed architecture.

The proposed architecture provides a slightly worst DP

than the architecture in [13] while performing as fast as the
architecture in [12]. Nevertheless, the cost is a higher internal
memory consumption in order to store DFIR more delayed
values per microphone.

V. BACK-END

A. Acoustic Image Enhancements on the PS

Our prototype runs Xillinux 2.0 [7], a Linux OS (Ubuntu
16.04) on the PS to enable a graphical use of the C++ OpenCV
library (ver. 2.4.13.6) [15], which contains optimized functions
for computer vision applications. Figure 5 depicts our C++

OpenCV-based applications used by the PS to construct an
acoustic heatmap from the FPGA data, to generate the ROIs
and to compress the results. The complete dataflow starts with
the generation of a relatively low resolution heatmap. The
values from the FPGA are placed in an H×W matrix, where
H and W are the height and the weight of the target heatmap
resolution respectively. The communication with the PL is via
Xillybus [7], which is basically composed of FIFO buffers.
The application can then read the data generated on the PL
from this buffer. Once all data is received to construct one
acoustic heatmap frame. Depending on the selected operational
mode, the enhancement of the frame begins with the rescaling
of the heatmap. The rescaled heatmap is optionally displayed
by using the imshow function from OpenCV at this stage,
after applying a colormap to the grayscale heatmap by using
the applycolormap function from OpenCV. Based on the
selected mode, acoustic events are detected using the grayscale
heatmap to identify the ROIs (Figure 6). To detect acoustic
events, a threshold is applied to the grayscale heatmap to
form a mask. All values above the threshold become 1, the
other values 0. Thanks to this mask, it is possible to find
the contours of the sound sources louder than the selected
threshold. From these contours, the corner coordinates are
found using the function boundingrect from OpenCV and
ROIs are extracted from the heatmap. Each ROI is then
compressed in JPEG format and all the ROIs in the same
frame are further compressed before to be propagated to the
WSN. Such approach allows a more efficient consumption of
the BW of the network.

The acoustic image enhancement is not the only task
performed on the PS. The support of multiple modes (Figure 5)
is managed on the PS side based on the received WSN
commands. The supported modes are the following:

1) Raw Data (RD): The raw data from the PL is not
processed on the PS before being transmitted by the
WSN mote.

2) Compressed Heatmap (CH): The data from the PL is
compressed and transmitted by the WSN mote.

3) Compressed Scaled Heatmap (CSH): A grayscale scaled
heatmap is transmitted by the WSN mote.



Fig. 7: (Left) Zedboard and the microphone array used for
our measurements. (Center) Special anechoic boxes are used
to evaluate our acoustic camera. (Right) Typical acoustic
heatmap of 160× 120 pixels without scaling.

4) Compressed ROI (CR): ROIs are identified and com-
pressed together with their location in the image to be
transmitted by the WSN mote.

The optional visualization mode is not included in the list
above since it is not a WSN feature. This visualization mode
allows the user not only to visualize the acoustic images but
also to record video in the local SDCard.

B. WSN Communication

The acoustic image enhancements performed on the PS
compensate the lack of BW that WSN provides while enrich-
ing the acoustic information computed by this acoustic WSN
node. Moreover, the chosen WSN technology determines the
processing speed needed in the SoC FPGA. Current WSN
communication systems can be classified by range, data rate,
network topology, network size, power consumption, etc. Our
selection, however, targets WSNs with high data transmission
rates, usually with limited ranges, and relatively low power
consumption

VI. EXPERIMENTAL RESULTS

Our experiments evaluate the response of the microphone
array, the resource consumption and the performance of the
architecture and the overall performance of the system for
WSN. The supported modes have been evaluated in a stand-
alone node without the WSN mote.

A. Experimental Setup

Figure 7 (left) shows the experimental platform, which is
composed of a Digilent Zedboard interconnected to the mi-
crophone array through two PMOD connectors. An Anechoic
Box (Abox) [16] is used to evaluate our acoustic camera. The
Aboxes are designed to facilitate the evaluation of acoustic
WSN nodes, allowing the early identification of possible
incongruities in the beginning of the WSN development cy-
cle [16]. A wooden and a 3D printed structure are designed to
hold the sound source(s) (speaker(s)) against the wall, without
damaging the foam. Figure 7 (centre) shows our setup, where
a single speaker is placed at multiple positions inside the box
and connected via Bluetooth to a PC where the acoustic signals
under evaluation are generated. Figure 4 (right) depicts an
acoustic heatmap of 160×120 pixels without scaling obtained
using one loudspeaker generating 4 KHz and placed around
half-meter in front of the microphone array.

Resources Available Utilization Percentage
Registers 106400 29447 27.67 %

LUTs 53200 19538 36.72 %
BRAM18k 140 33 23.57 %

DSP48 220 28 12.72 %

TABLE II: Zynq 7020 resource consumption after placement
and routing of the proposed architecture.
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B. Resource Consumption

Table II summarizes the resource consumption on the PL.
The storage of the pre-computed orientations dominates the
consumption of LUTs, while the streaming and pipelined
implementation of the architecture increases the consumption
of registers. The consumption of DSPs, on the other hand,
is mainly produced in the filter stage. Despite the relatively
large resource consumption of our architecture, we believe
that further optimizations can significantly reduce the overall
resource consumption. For instance, the pre-computed delays
necessary to support thousands of orientations during the
beamforming operation can be generated on-the-fly on the PL
or stored in the external memory.

The relative low resource consumption of the architecture
enables the migration of the system to a more power efficient
SoC FPGA device like the Flash-based SoC FPGA considered
in [13]. Unfortunately, despite such low-power Flash-based
SoC FPGAs like the Microsemi’s SmartFusion2 promise a
low power consumption as low as few tens of mW, such
devices embed an ARM Cortex-M3 microcontroller, which is
not powerful enough to support a OS compatible with C++
OpenCV libraries.

C. Performance Analysis

1) Evaluation of the Scaling Methods: The OpenCV func-
tion resize scales the image to a desired resolution. This can
be done by multiple methods [17], [18]:

1) Nearest-neighbour
2) Bilinear
3) Bicubic
4) Lanczos



Resolution No tframe [ms] FPS
40 × 30 1200 1.92 520.8
80 × 60 4800 7.68 130.2

160 × 120 19200 30.72 32.5
320 × 240 76800 122.88 8.1

TABLE III: Performance of the supported resolutions on the
PL.

The timing measurements of these methods running on the
PS are detailed in Figure 8. The average values are obtained
after 1000 executions and with scaling factors ranging from 2
to 4. Thus, an image of 20×15 is scaled to 80×60, an image
of 40 × 30 is scaled to 160 × 120, and so on. The Nearest-
neighbour method has been discarded since it only selects the
value of the nearest pixel without performing interpolation.
Despite being the fastest method, its output images are highly
pixelated. The Bilinear method is the fastest of the other three.
This method calculates a new pixel value by taking a weighted
average of the four nearest neighbouring original pixel values.
A smoother result than the Nearest-neighbour is obtained at
the cost of undesired lines. The Bicubic interpolation provides
the best visual result, but also is the more time demanding
algorithm. Each new pixel is calculated by the bicubic function
using the 16 pixels in the nearest 4x4 neighborhood. The
result is a smooth heatmap image. Lastly, the Lanczos method
is also supported. This interpolation method is based on the
sinc function but it demands roughly the double of time to
resize an image than the Bicubic method. Despite the result is
closer to the Bicubic method, some artefacts might appear in
the rescaled image. Due to the performance/quality trade-off,
Bicubic interpolation is the selected method from here on.

2) PL Performance Analysis: The filtering and beamform-
ing operations at the PL can be adjusted to generate acoustic
heatmaps with different resolutions. The latency to process
a single beamforming orientation is determined by design
parameters like the sensing time (ts), the sampling frequency
(Fs) and the decimation factor (D). The value of ts is
the time the microphone array is monitoring a particular
orientation [12] and determines the probability of detection of
sound sources under low Signal-to-Noise (SNR) conditions.
Therefore, higher values of ts improve the profiling of the
acoustic environment by increasing the overall execution time
per frame (tframe). The proposed architecture calculates the
SRP with 64 samples, which represents 6144 input PDM
samples per orientation. Thus, for the Fs described in I,
ts ≈ 1.96ms. The latency to calculate the SRP with 64
samples per orientation is 80 clock cycles, independently of
the operational frequency.

The beamforming operation is performed at a higher clock
frequency than Fs as proposed in [12]. The operational
frequency at the beamforming and detection stage is 50MHz,
which corresponds to the Xillibus’ clock frequency. There-
fore, the time to calculate the SRP per orientation (to) is
approximately 1.6 µs. Table III details some of the possible
heatmaps resolutions and the expected FPS when operating

at 50 MHz. In order to reach real time, the time per frame
tframe must be between 33.3 ms and 50 ms to reach 30 FPS
or 25 FPS respectively. This requirement drastically reduces
the maximum heatmap resolution to 160× 120. On the other
hand, in order to guarantee the independency of each acoustic
heatmap, each acoustic image must be generated from the
acquired acoustic information in a period higher than ts/2.
Therefore, at least 32 out of the 64 samples used to calculate
SRP have not been already used to generate one acoustic
image. The number of orientations (No), which represents the
acoustic heatmap resolution, must be high enough to satisfy
the independency condition. Therefore, tframe ≥ ts/2. This
condition limits the minimum supported resolutions because
it is only satisfied when No > 612 based on the design
parameter in Table I and by operating at 50 MHz.

3) PS Performance Analysis: The acoustic image enhance-
ments at the PS side must be computed fast enough to
process the acoustic images generated on the PL and to
locally compute the acoustic information in order to adapt the
acoustic WSN note to the WSN conditions. The detection and
compression of ROIs is proposed in order to support higher
resolutions while detecting in real time a particular type of
acoustic events.

Table IV details the timing needed for the supported modes
and the throughput to the WSN mote. The time values de-
picted in the table are experimentally obtained by running
the required image enhancement operations on the PS and
include the PL-PS communication overhead. The CR mode,
which only transmits to the WSN the detected acoustic events,
is the most time demanding mode due to the scaling of the
acoustic image and the multiple ROI detection. The low
time differences between the CH mode and the CSH mode
reflect the low time cost of the bicubic scaling operation.
Nevertheless, the image scaling increments the total amount of
data to be sent to the WSN, which represents a significantly
higher throughput. The throughput values also consider the
PL’s latency (Table III). As expected, the modes demanding
lower amount of computations on the PS reach the higher
throughputs. These modes, however, can only be activated for
short periods of time due to the extremely limited BW that
most of the WSN standards provide.

4) WSN motes: Despite the required BW it is possible,
thanks to the techniques mentioned before, to acquire a real
time acoustic image. Table V contains motes that we propose
to use. The effective implementation of these motes is out of
the scope of this paper and considered as future work.

Depending on the power consumption, the communication
interface and the distance between motes, the most suitable
mote can be selected. BLE112 [20] is a valid solution if images
with a high resolution are needed, while the ReMote [21] is
a more viable solution for low-power demands.

VII. CONCLUSION

The proposed architecture demonstrates one of the potential
uses of SoC FPGA for WSN applications. In particular,
the task distribution between the PL and PS of the Zynq



Resolution
Modes without scaling Modes with scaling x2 Mode with scaling x4

RD CH CSH
CR

CSH
CR

1 2 4 8 1 2 4 8

Timings [ms]
40 x 30 2.32 2.80 3.82 4.00 4.95 7.14 11.99 7.12 5.51 6.93 9.89 15.67
80 x 60 9.33 10.48 14.28 12.60 14.11 16.96 22.33 26.88 17.64 20.10 24.94 34.81

160 x 120 37.09 40.92 55.28 46.03 48.52 53.46 63.35 105.92 65.29 71.01 82.66 105.82

Throughput [kb/s]
40 x 30 16569.22 571.86 628.43 173.86 280.97 389.45 463.84 857.21 235.81 375.36 525.86 663.63
80 x 60 16464.05 524.78 1890.43 103.14 184.28 306.68 465.68 3229.11 107.72 189.09 304.74 436.69

160 x 120 16563.82 481.40 1888.72 41.27 78.31 142.16 239.92 3257.15 61.27 112.66 193.56 302.40

TABLE IV: Experimental average time and throughput of the supported modes.

BLE112-A-V1[20] ReMote[21] RF266PC1[22]

Company Silicon Labs /
Bluegiga Zolertia Synapse Wireless

Comm. system Bluetooth 4.0
BLE

Zigbee/
6LoWPAN RF (IEEE 802.15.4)

Interface SPI, UART,
USB

SPI, UART,
I2C, USB I2C, SPI

Rate 3 Mb/s 250 Kb/s 2 Mb/s
Power < 119 mW < 66 mW < 429 mW

TABLE V: Comparison of considered wireless Motes.

architecture satisfies the computational needs that real-time
acoustic imaging applications demand. On the one hand, the
PL allows the acceleration of signal processing operations
with high parallelism. On the other hand, the PS not only
manages the WSN communication through a WSN mote, but
also allows the processing of the acoustic information in the
SoC FPGA. As a result, the SoC FPGA-based acoustic WSN
node supports multiple modes in order to satisfy the most
demanding WSN’s constraints.
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