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Samenvatting

– Summary in Dutch –

In het Internet of Things (IoT) zijn objecten (of things) verbonden via een computernetwerk. Deze

objecten bestaan uit sensoren, die een deel van hun omgeving observeren, en actuatoren, die hun

omgeving kunnen aanpassen. De opkomst van het IoT zorgde voor een sterke toename in on-

derzoek en innovatieve toepassingen zoals smart homes, smart cities, pervasive health en smart

transport. In elk van deze toepassingen verzamelen de geconnecteerde objecten data die onmid-

dellijk verwerkt dienen te worden, zodat mensen kunnen worden ondersteund in hun dagelijkse

activiteiten. Men verwacht dat het aantal IoT-apparaten zal toenemen van 8.3 miljard geconnec-

teerde toestellen in 2019 tot 21.5 miljard in 2025. Verder wordt voorspeld dat tegen 2025 het

marktaandeel dat het IoT inneemt zal toenemen tot meer dan een biljoen dollar. Daarom is het

belangrijk dat IoT-serviceproviders het toenemende aantal aangesloten apparaten en de enorme

hoeveelheden geproduceerde data kunnen blijven verwerken. Wegens de doorgaans hoge data-

productie is het opslaan van alle gegenereerde data vaak onmogelijk. Bovendien wordt in het

IoT vaak verwacht dat acties onmiddellijk kunnen ondernomen worden, waardoor onmiddellijke

verwerkingstechnieken nodig zijn. De geproduceerde data zijn typisch ook erg heterogeen omdat

deze afkomstig zijn uit verschillende bronnen. Het is een uitdaging om zinvolle inzichten uit deze

heterogene IoT-data af te leiden. Omdat de geproduceerde sensordata op zich vrij betekenisloos

zijn, moeten deze vaak gecombineerd worden met andere bronnen, om de context van de obser-

vaties te kunnen capteren. Bovendien is ook de integratie van achtergrondkennis en informatie

over het domein noodzakelijk. Achtergrondkennis biedt aanvullende informatie, terwijl domein-

kennis het domein zelf beschrijft. Bijvoorbeeld, in een eHealth scenario, kan de achtergrondkennis

informatie verschaffen omtrent de patiënten, hun pathologie, en meer, terwijl de domeinkennis

beschrijft dat patiënten met een hersenschudding gevoelig zijn voor geluid en licht.

Semantische webtechnologieën, zoals de Web Ontology Language (OWL) en het Resource De-

scription Framework (RDF), maken het mogelijk om domeinkennis te modelleren en hebben zich

reeds bewezen als gepaste techniek om heterogene data te integreren. Een ontologie beschrijft

op een formeel niveau concepten, hun eigenschappen en hun relaties, binnen een bepaald domein.

Door de relaties tussen verschillende concepten te definiëren, kan een model de kennis over een

bepaald domein opnemen. Formele redeneertechnieken kunnen impliciete feiten over de gegene-

reerde data afleiden, in overeenstemming met de gedefinieerde domeinkennis. Hoe gedetailleer-

der het beschreven domein, des te expressiever de redeneertechnieken moeten zijn. Bovendien

hebben veel bestaande ontologieën expressieve redeneertechnieken nodig om hun domein cor-

rect te interpreteren. Er is echter nog steeds een tegenstrijdigheid tussen de frequentie waaraan

data in IoT-omgevingen worden geproduceerd en de beperkte snelheid waarmee expressieve re-

deneertechnieken data maar kunnen verwerken. Dit komt omdat de complexiteit van expressieve
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redeneertechnieken exponentieel is in functie van de grootte van de data. Daarom is er nood

aan een schaalbare oplossing die toelaat de heterogeniteit inherent aan het IoT te verwerken en

onmiddellijke resultaten te produceren.

De belangrijkste onderzoeksbijdrage van dit proefschrift is dan ook het ontwerp van een se-

mantisch IoT-platform dat verschillende optimalisaties biedt om expressief te redeneren over

stromen van IoT-data, zodat reactieve en slimme services aangeboden kunnen worden aan de

eindgebruiker. Meer concreet vertaalt dit zich in de volgende vier bijdragen.

De eerste uitdaging voor IoT-services die heterogene data verwerken, is het ophalen van de

juiste data. Data worden vaak geproduceerd op verschillende niveaus van granulariteit, waardoor

serviceontwikkelaarsmoeten onderzoekenmetwelk detail de data door elke databronworden ge-

produceerd. Als eerste bijdrage wordt daarom een semantisch publiceer/abonneer systeem voor-

gesteld waarmee services de geabstraheerde data kunnen ontvangen. Om de data te abstraheren,

worden expressieve redeneertechnieken gebruikt om het domein correct te interpreteren. Hier-

door kunnen services zich abonneren op ontologische concepten op hoog niveau, zonder zich zor-

gen te hoevenmaken over de details van de data op een lager niveau. Het gebruik van de ontologie

legt een gemeenschappelijke semantiek op zodat verschillende services kunnen samenwerken.

Omdat er een tegenstrijdigheid is tussen de snelheid waarmee data in het IoT worden gepro-

duceerd en de snelheid waarmee redeneertechnieken data kunnen verwerken, wordt als tweede

bijdrage een hiërarchisch redeneerplatform voorgesteld. Hiërarchisch redeneren is een visie die

een hiërarchie van verschillende verwerkingslagen voorstelt. Op het laagste niveau worden data

verwerkt met technieken met lage verwerkingscomplexiteit. Elke laag selecteert de relevante

delen van de data voor verdere verwerking en naarmate men stijgt in de hiërarchie, neemt de

complexiteit van de verwerking toe. Aangezien data door de verschillende lagen worden gese-

lecteerd en geëlimineerd, hoeven de meer complexe lagen slechts een selectie van de geprodu-

ceerde data te verwerken. Hierdoor kunnen veel hogere throughputs worden bereikt, aangezien

de hoeveelheid data uit de stroom die verwerkt dienen te worden tot een minimum wordt be-

perkt. Dit proefschrift stelt een hiërarchisch redeneerplatform voor dat het mogelijk maakt om

expressief en temporeel te redeneren over IoT-datastromen. Om relevante delen van de datastro-

men te kunnen selecteren, worden RDF Stream Processing (RSP) engines gebruikt. Deze engines

kunnen onbegrensde stromen van RDF-data verwerken, door gebruik te maken van windowing-

mechanismen om stukken uit de data te extraheren en queries continu te evalueren over de data-

stroom. De geselecteerde data van de RSP engines worden doorgestuurd naar meer expressieve

redeneertechnieken, die de data abstraheren. Zodra de data geabstraheerd zijn, kunnen temporele

redeneertechnieken worden toegepast bovenop deze abstracties.

Omdat de RSP engines, die in de onderste lagen van ons hiërarchisch redeneerplatform wor-

den gebruikt, de data selecteren die nodig zijn voor verdere verwerking, bepaalt hun verwerkings-

capaciteit de totale throughput van het platform. Bovendien zal het filteren exacter zijn naarmate

deze engines meer redeneermogelijkheden beziten. Bij het inzetten van verschillende onderdelen

in de edge, namelijk dicht bij de databronnen, zijn de beschikbare middelen vaak beperkt. Daarom

wordt als derde bijdrage een geoptimaliseerd algoritme voorgesteld dat in staat is om te redene-

ren over hiërarchieën, dit betekent het redeneren over subklassen en subproperties, in lineaire tijd

in functie van het aantal queries dat parallel geëvalueerd dient te worden. De voorgestelde oplos-

sing is minstens twee keer zo snel als vergelijkbare state-of-the-art RSP engines, terwijl slechts

een beperkte geheugenvoetafdruk gebruikt wordt.

Naast redeneren over datastromen, dient veel statische achtergrondkennis gecombineerd te
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worden met de datastromen vooraleer correcte conclusies kunnen genomen worden. Aangezien

meer data langzamere redeneertijden impliceert, is het een uitdaging om expressief te redeneren

over deze vaak veranderende data in combinatie met grote hoeveelheden statische achtergrond-

kennis. Het selecteren van relevante delen uit de datastromen biedt geen oplossing in dit scenario,

omdat de hoeveelheid statische data groot blijft. Daarom wordt als vierde contributie een bena-

deringstechniek voorgesteld die een deel van de data uit de achtergrondkennis extraheert, om zo

efficiënt te redeneren over de datastromen die gecombineerd dienen te worden met deze achter-

grondkennis. Dit laat toe om het redeneerproces tot 10 keer te versnellen voor kleine datasets en

tot 1000 keer voor grotere datasets.

Deze vier contributies hebben geleid tot een semantisch IoT-platformdat omkanmet de hete-

rogeniteit die inherent is aan het IoT en reactieve oplossingen op een onmiddellijke en schaalbare

manier kan verwezenlijken.
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In the Internet of Things (IoT), ubiquitous objects or things are connected through a computer

network. These objects or things typically consist of sensors, which capture a part of their envi-

ronment, and actuators, which canmodify their environment. The rise of the IoT enables a plethora

of new applications, such as smart homes, smart cities, pervasive health, and smart transport. In

each of these applications, the interconnected things collect data which should be processed as

fast as possible, to support humans in their daily activities. The number of IoT devices is predicted

to increase from 8.3 billion in 2019 to 21.5 billion in 2025, and the IoT market is expected to further

growwith more than a trillion dollars by 2025. Therefore, it is important that IoT service providers

can cope with the increasing amount of connected devices and the huge amounts of produced

data. As data production is typically high, storing all the generated data is often not possible. Fur-

thermore, many IoT domains require immediate actions, thus requiring reactive processing tech-

niques. The produced data is typically very heterogeneous as well, as it results from awide variety

of sources. It is challenging to extract meaningful insights from this heterogeneous IoT data. As

the produced sensor data itself is rather meaningless, it often needs to be combined with other

sources to capture the context the sensor readings are observed in. Furthermore, the integra-

tion of background knowledge and information regarding the domain is necessary. Background

knowledge provides additional information. For example, in an eHealth scenario, the background

knowledge could provide information regarding the patients and their pathology. The domain

knowledge describes the domain itself. For example, patients with concussions are sensitive to

sound and light.

Semantic web technologies, such as the Web Ontology Language (OWL) and the Resource De-

scription Framework (RDF), allow to model domain knowledge and have proven to be an ideal

tool to integrate heterogeneous data. An ontology formally describes concepts, properties, and

their relations within a certain domain. By defining the relations between various concepts, a

model can incorporate the knowledge about a certain domain. Reasoners can infer implicit facts

about the generated data, conform with the defined domain knowledge. The more detailed the

described domain, the more expressive the reasoning techniques are required to be. Furthermore,

many existing ontologies require expressive reasoning techniques to correctly interpret their do-

main. However, there is still a mismatch between the frequency at which data is produced in the

IoT and the rate at which expressive reasoners can process data, as the complexity of expressive

reasoning techniques is exponential to the size of the data. There is still a need for a solution that

can deal with the heterogeneity of IoT sources in a scalable and reactive fashion.

The main research contribution of this dissertation is the design of a semantic IoT platform

that provides various optimizations to perform expressive reasoning over volatile IoT data in order

to provide reactive and smart IoT services to the end users. This translates in the following four

contributions:
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The first challenge for IoT services processing heterogeneous data is the retrieval of the cor-

rect IoT data. Data is often produced at different levels of granularity, requiring service developers

to investigate the detail at which data is produced by each data source. Therefore, as a first con-

tribution, a semantic publish/subscribe system is proposed that allows services to subscribe to

abstracted data. To abstract the IoT data, expressive reasoning is employed to correctly inter-

pret the domain. This allows services to subscribe to high-level ontological concepts without the

need to worry about the lower level details. The use of ontologies imposes a common semantics,

whereby various services can collaborate.

As there is a mismatch between the rate at which data is produced in the IoT and the rate

expressive reasoners can process data, as a second contribution, a cascading reasoning platform

is proposed. Cascading reasoning is a vision that proposes a hierarchy of various layers of pro-

cessing. At the lowest level, data is processed with techniques with low processing complexities.

Each layer selects the parts of the data that are relevant for further processing and while going

up in the hierarchy, the complexity of processing increases. As data is selected and eliminated

throughout the various layers, the more complex layers only need to process a selection of the

produced data, allowing to achieve much higher throughputs as the amount of data from the

stream is minimized. This dissertation proposes a cascading reasoning platform that allows to

perform expressive and temporal reasoning over volatile data streams. To be able to select rel-

evant parts of the data streams, we utilize RDF Stream Processing (RSP) engines. These engines

allow to process unbounded streams of RDF data, by employing windowing mechanisms to cre-

ate processable chunks of data and by continuously evaluating queries over the streaming data.

The selected data from the RSP engines is forwarded to more expressive reasoning techniques,

which allow to abstract the data. Once the data is abstracted, temporal reasoning techniques can

be employed on top of these abstractions. This enables services to subscribe to only those parts

of the volatile data streams that should be reacted upon, by exploiting expressive and temporal

reasoning over data streams.

As the RSP engines used in the lower layers of our cascading reasoning approach select the

data that is required for further processing, their throughput defines the total throughput of the

platform. Furthermore, the more reasoning capabilities these engines posses, the more fine-

grained their filtering can be. When deploying various parts in the edge, i.e. close to the data

sources, available resources are often limited. Therefore, as a third contribution, an optimized al-

gorithm is proposed that is able to perform hierarchical reasoning, i.e. subclass and subproperty

reasoning, in linear time, proportional to the number of queries that need to be evaluated in par-

allel. The proposed RSP engine is at least twice as fast as the state-of-the-art while employing a

limited memory footprint.

Besides reasoning over volatile data streams, large amounts of static background knowl-

edge often need to be combined with the data streams. As more data implies slower reasoning

times, performing expressive reasoning over frequently changing data in combination with large

amounts of background knowledge is challenging. Selecting only relevant parts from the data

streams does not provide a solution in this scenario, as the amount of static data that needs to

be considered stays large. Therefore, as a fourth contribution, an approximation approach is pro-

posed, which approximates a subset of data, from the large knowledge base, to efficiently perform

reasoning over the streaming data that needs to be combined with the large knowledge base. This

allows to speed up the reasoning process up to 10 times for small datasets and up to 1000 times

for larger dataset.
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By combining these four contributions, a semantic IoT platform is proposed that is able to

handle the heterogeneity of data imposed by the IoT by providing a reactive solution that allows

to extract actionable insights in a reactive and scalable manner.





1
Introduction

“The beginning is the most important part of the work.”

–Plato

1.1 The Rise of the IoT

The Internet of Things (IoT) is the upcoming computing paradigm that enables ubiquitous objects

or things to be connected through a computing network [1]. These things are typically invisibly

embedded in the environment and mainly consist of sensors and actuators [2]. The sensors each

sense a specific part of our environment, for example, temperature, movement, light, or sound.

The actuators can interact with and adapt the environment. Examples of actuators are window,

door or blind automations, smart traffic lights or intelligent braking systems.

Figure 1.1 clearly shows an increase in the number of connected IoT devices. The number of

IoT devices has grown significantly since 2015 and according to the predictions, these numbers

will triple by 2025. Other sources confirm these numbers, such as Gartner2 and Cisco3 . Figure 1.2

shows that the IoT market size keeps growing and is predicted to grow exponentially in the next

years. The rise of the IoT enables a plethora of new applications, such as smart homes, smart

cities, eHealth, smart transport and logistics [1, 3].

1https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
2https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-

be-in-use-in-2017-up-31-percent-from-2016
3https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-

that-data-and-how
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Figure 1.1: Number of connected devices worldwide, both IoT as non-IoT devices, in number of billion devices

(Bn). Source: IoT analytics
1

Figure 1.2: The IoT market forecast, in billion of dollars. Source: IoT analytics
1
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However, processing this IoT data introduces some additional challenges:

1. Heterogeneity: To make meaningful decisions regarding the produced IoT data, data from

various heterogeneous sources needs to be combined [3], each source potentially having

a different format and data encoding. Data resulting from various sensors needs to be

combined, but also integrated with contextual information. For example, in an eHealth

scenario, simply processing the values produced by light or sound sensors is not enough.

It makes sense to consult the patient record in order to capture each patient’s diseases.

Furthermore, data is often produced at different levels of granularity. For example, this

means that a light sensor might publish its observations as a “light sensor observation”

or an “observation that observes the property light”. Semantically they denote the same,

however, on a data-level they describe different kinds of data.

2. Actionable Insights: Many IoT domains focus on automated decision making based on the

sensed sensor data [2]. To obtain actionable insights, meaning should be attached to the

raw IoT data and it should be integrated with context data, such as the patient informa-

tion from the previous example, as insights are typically context dependent. For example,

patients with a concussion, who are, according to the domain knowledge, sensitive to light

and sound, should not be exposed to sound or light stimuli above a certain threshold. If

this does happen, actions should be taken to relieve the patient from this stressful situa-

tion. Patients who do not have a concussion can be exposed to bright light, at least during

the day. As we can see from the example above, raw data is often meaningless, unless it is

properly processed to actionable insights taking the context into account.

3. Scalability: The increasing number of devices requires solutions that can easily integrate

new devices, ranging from additional devices of the same type or completely new devices.

More devices imply more data, scalable solutions thus have a clear advantage. This also

implies large numbers of services that process IoT data. It is thus important that a large

number of services can collaborate in an efficient and scalable manner. In our patient

example, we would like to provide personalized care for all patients, each with different

pathologies and different needs, requiring a multitude of sensors to be monitored and

large amounts of context to be considered.

4. Reactiveness: As the generated IoT data can grow to numbers that are impossible to store,

this data should be processed as fast as possible. Furthermore, many IoT domains require

reactive decision-making. For instance, in the concussion example, light levels should be

immediately reduced when a patient who is sensitive to light is exposed to it. In each IoT

domain, the interconnected things collect data that requires reactive processing, so that

humans can be supported in their daily activities. In this dissertation we aim to provide

answers or execute actions within a period that users do not have the feeling they have to

wait, typically within seconds.

In this dissertation, we focus on findingmeaning in IoT data and extracting actionable insights

by inferring implicit facts regarding the data, through the use of expressive reasoning techniques.
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Meaning can be attached by annotating the data through the use of SemanticWeb technologies [3].

Semantic Web technologies, such as ontologies [4], are the preferred model for the integration of

heterogeneous IoT data with background knowledge [5, 6]. Therefore, in the next section, a short

introduction to ontologies and reasoning is given, in order to provide the technical background to

clearly convey the current challenges in this domain.

1.2 Background on Ontologies, Reasoning, and Stream Reason-

ing

Gruber [4] defined an ontology as “an explicit specification of a conceptualization”. An ontol-

ogy formally describes concepts, properties, and their relations, within a certain domain, which

can easily be reused in different settings [7, 8]. This allows to model knowledge and to make

data machine-readable. In IoT settings, an ontology serves as a common semantic model, allow-

ing the integration of heterogeneous data [3]. The Web Ontology Language (OWL) [9] is a web

standard and is the most popular language to describe ontologies. Ontologies form an excellent

model to integrate data, exchange knowledge, and to reason upon. The ontology’s Terminology

Box (TBox) describes the concepts and their relations, while the Assertion Box (ABox) contains the

data instances with respect to the TBox. The concepts are also called classes and the relations

between classes are called object properties. Data properties describe the relation of a concept

to a specific data value. The ABox consists of entities of the defined classes (the individuals),

their relations, and their data properties (the literals). OWL builds on the Resource Description

Framework (RDF) [10]. RDF allows to link concepts, while OWL allows to represent knowledge

through complex class definitions, make distinctions between object and data properties, and de-

fine restrictions. RDF Schema (RDFS) is less expressive than OWL and allows to define ontologies

describing class hierarchies and properties. In this dissertation, we make a distinction between

context, background knowledge and domain knowledge. Context describes the current situation

of a certain individual, e.g. a patient that is currently in the hospital and has been diagnosed with

a concussion. Background knowledge consists of the collection of context information over all

observed individuals, note that individuals are not restricted to persons. The domain knowledge

describes the domain itself, e.g. patients with a concussion are sensitive to sound and light.

Figure 1.3 depicts an example of an ontology, modeling light sensor observations. The rounded

squares represent the various concepts in the domain, i.e. Observations, Sensors, Diseases, etc. The

thick arrows depict the object properties between the concepts, e.g. an Observation is observed by

a certain Sensor and a System is linked to a certain Person. The dashed arrows indicate inheritance,

e.g. a LightSensor is a type of Sensor and a Concussion is a type of Disease. The thin arrows

indicate instantiations, e.g. lightSensor_001.03 is of the type LightSensor. The ovals indicate data

properties, e.g. a SensorOutput can have a certain observed value.

A reasoner [11] allows to infer logical consequences based on the definitions in the ontology.

This allows to infer implicit facts from the data. For example, in Figure 1.3, a reasoner will infer

that lightSensor_001.03, which is a LightSensor, is also a Sensor and a System. This is very basic
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Figure 1.3: Example of an ontology, modeling sensor observations.

hierarchical reasoning, more complex definitions can be made in order to represent the domain

knowledge. For example, one could define that an AlarmingLightObservation is an Observation

that was observed by a LightSensor and that has a LightOutput with a value above 500 lumen,

where the sensor is linked to a Person that has a disease with light sensitivity symptoms. For-

mally this could be defined as:

AlarmingLightObservation≡Observation∧∃observationResult. (∃hasValue >500)∧
∃observedBy.(LightSensor∧∃linkedTo.(Person∧∃hasDisease.(∃hasSymptom.LightSensitivity)))

In an IoT context, this allows to model situations that need to be detected for further process-

ing. Furthermore, reasoning allows to largely simplify querying the data, as one can simply query

all the Sensors or all AlarmingObservations, without the need to worry about the exact definitions.

The more accurately one wants to define the domain, the more expressive the required reasoning

has to be to correctly interpret the domain. However, higher expressivity of reasoning requires

higher complexity of processing [12]. RDFS reasoning has a low expressivity, allowing to infer hi-

erarchies of concepts and properties, while Description Logic (DL) reasoning is very expressive,

allowing to model complex domains.

OWL, which uses DL as it logical-based formalism, contains multiple sublanguages, each with

different levels of expressivity. The sublanguages are listed below with increasing expressiv-

ity [13]:

1. OWL-Lite: supports classification and simple restriction functions.

2. OWL-DL: the largest subset without the loss of computational completeness, i.e. the system

will eventually come upwith an answer, with no guarantees regarding runtime or memory.

3. OWL-Full: maximal expressivity and syntactical freedom. However, the reasoning process

might not be computable.
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Table 1.1: Overview of the reasoning capabilities of existing RSP engines.

Reasoning Capabilities

C-SPARQL [28] RDFS

MORPHStream [30] None

EP-SPARQL [27] RDFS

CQELS [26] None

Sparkwave [31] RDFS

INSTANS [32] None

The popularity of OWL has led to the creation of three OWL 2 profiles [14], each offering a spe-

cific subset of the overall expressivity to obtain advantages in specific applications. Each profile

is a subset of the OWL DL language.

1. OWL 2 Existential quantification Language (EL) is useful in applications utilizing an ontol-

ogy that contains a large number of properties and/or classes.

2. OWL 2 Query Language (QL) is created for applications where query answering is the main

task.

3. OWL 2 Rule Language (RL) provides scalable reasoning without sacrificing too much ex-

pressiveness.

Besides the profiles, OWL 2 now also provides extended support for data types, annotations, re-

strictions on property definitions and syntactic sugar to make certain patterns easier.

Reasoners for each profile exist, exploiting some of the limitations in expressivity to obtain

higher performance. However, many of the designed ontologies still require OWL 2 DL expressivity,

as the profiles are not expressive enough to describe these domains. We note that 78% of the IoT

labeled ontologies in the Linked Open Vocabularies4 repository require the OWL 2 DL expressivity

to infer all concepts correctly5 . However, there is still a mismatch between expressive reasoning

and reactiveness requirements [15]. Expressive reasoning techniques, such as DL reasoning, can

have up to NEXPTIME complexity [16], resulting in slow reasoning times with growing datasets [17,

18]. For example, reasoning over well-known ontologies such as GALEN [19] and DOLCE [20] takes

up to 30 minutes [21]. The LUCADA ontology [22] provides guidelines for lung cancer treatment.

Reasoning over the LUCADA ontology increases from less than 1 second for a single patient to 70

seconds for 30 patients [22].

Expressive reasoners have mostly focused on the processing of static data [23] or slowly

changing data [24]. Many advances have been made in the Stream Reasoning domain [25–27]

to combine data from multiple streams with static background knowledge. Generated IoT data

produced by various sensors can be considered as data streams. To be able to process these un-

bounded streams of data, stream reasoning techniques consider the data within a defined time

frame, i.e., a window. By using windows, multiple data items can be processed simultaneously.

4lov.linkeddata.es
5Only the ontologies that were accessible at the time of writing were considered.

lov.linkeddata.es
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RDF Stream Processing (RSP), a sub-domain of Stream Reasoning, focuses on the integration

of highly volatile RDF streams with background knowledge and can continuously answer queries

while performing simple reasoning. The reasoning capabilities of these systems are typically ab-

sent or very low compared to the expressive OWL 2 DL reasoners because they need to be able

to handle volatile data streams. The current state-of-the-art in RSP has mainly focused on query

answering over RDF streams [26, 28]. However, to provide generic query answering, RSP engines

should provide some reasoning capabilities [29]. Even simple hierarchical reasoning capabilities,

such as subclass and subproperty reasoning, increase the expressivity of the query extensively and

simplify data integration. Table 1.1 provides an overview of the reasoning capabilities of the most

prominent RSP engines.

1.3 Open Challenges & Overall Goals

There are still many open challenges to process IoT data in a meaningful way:

• Challenge 1: There is still a need for a platform that abstracts the fact that IoT data is het-

erogeneous and might be produced at different levels of granularity. The platform should

be flexible such that services can easily filter the data they need and collaborate. Fur-

thermore, it should be user-friendly, allowing services to subscribe and obtain actionable

insights in a declarative manner, eliminating the need to write code.

• Challenge 2: Expressive reasoning provides a solution to align the heterogeneous data,

interpret the domain and infer actionable insights. However, there is still a mismatch be-

tween the rate at which data is produced in an IoT setting and the time it takes to perform

expressive reasoning. Therefore, solutions are needed that perform expressive reasoning

over these volatile data streams produced in IoT settings.

• Challenge 3: Many applications that process data streams need to detect temporal depen-

dencies between fragments in the stream. For example, in a patient pick-up scenario, the

patient is first scanned to verify that the correct patient will be transported. When, within

a certain amount of time, presence sensors detect that the patient is leaving the room, it

can be expected that the patient is being transported to the scheduled destination. To infer

that the patient is being transported to the scheduled destination, there is a temporal de-

pendency between the scanning of the patient and the detection by the presence sensors.

However, detecting temporal patterns is still challenging in complex domains [15].

• Challenge 4: In the edge computing paradigm, the processing of the produced data is

performed as close as possible to its source, such that the data does not (completely)

need to be transmitted and processed in the cloud [33]. However, this implies that the

available resources at the edge are typically limited compared to cloud computing [34]. In

IoT settings where many devices produce data, it makes sense to process the data close to

the source, i.e. at the edge. However, as the available resources at the edge are limited,
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solutions to reason upon the produced IoT streams should be as performant as possible

while utilizing limited resources.

• Challenge 5: To make meaningful decisions and infer actionable insights, services often

need to combine IoT data with large amounts of background knowledge. For example,

light observations need to be combined with information about the sensors, the room in

which they are employed, information regarding the patient in the room, etc. However,

reasoning is required to enable actionable insights. For example, deducing that the lights

should be turned off again, because the patient has a concussion and is thus sensitive

to bright light, requires a thorough understanding of the domain and can be achieved by

expressive reasoning. However, reasoning over large amounts of background knowledge is

still a challenge as the reasoning time increases exponentiallywith the size of the data [16].

The overall goal of this dissertation is to investigate a semantic-enabled IoT data processing plat-

form that allows services to efficiently filter the produced IoT data and obtain actionable insights,

without the need to worry about the heterogeneity of the data. The goal is to provide this func-

tionality in a user-friendly fashion, by enabling declarative definitions of the service subscriptions

and actions. This is done by enabling expressive reasoning over the data streams. This dissertation

discusses various reasoning techniques in order to efficiently process IoT data in a reactive and

scalable manner.

1.4 Research Questions & Hypotheses

To enable such a flexible semantic-enabled IoT data processing platform, some technical chal-

lenges need to be tackled:

In order to allow services to utilize IoT data, there is a need for a way to describe the data

they are interested in. Processing all IoT data is often infeasible, as data production in IoT settings

can be extremely high. Furthermore, as data is produced by various heterogeneous sources, data

is often produced at different levels of granularity. There should be a way for services to subscribe

in a flexible way to the data they are interested in. This leads to the first research question:

Research Question 1. How canwe provide IoT services fine-grained access to IoT data in a flexible

manner?

To answer this first question, we assume that services typically subscribe to data utilizing a

publish/subscribe paradigm, as it allows to decouple the interaction between data producers and

consumers [35]. However, matching the produced data with the subscription definitions is often

not straightforward, as data might be incomplete or produced at different levels of granularity.

Therefore, implicit facts should be automatically inferred based on the defined domain knowledge.

Furthermore, data subscriptions might be complex, making it hard to pinpoint the specific data a

service is interested in. It is thus important that the domain can be correctly interpreted by taking

reasoning capabilities into account. This allows services to subscribe to high-level ontological
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Table 1.2: An overview of the challenges tackled by each research question (RQ) and the different chapters.

Challenge 1 Challenge 2 Challenge 3 Challenge 4 Challenge 5

RQ 1 • Chapter 1

RQ 2 • • • Chapter 2

RQ 3 • • Chapter 2

RQ 4 • • Chapter 4

concepts that are not necessarily present in the data, but largely simplify the subscription def-

inition.

Hypothesis 1. Using an ontology-enabled publish/subscribe platform will allow semantic and

flexible service subscription.

As the data grows, a mismatch occurs between the rate at which data is produced and the

time it takes to perform expressive and temporal reasoning. Given that the reasoning process

takes longer than the rate at which data is produced by the sensors streams, data starts piling up

and the system eventually crashes [12]. However, inmany IoT settings, the domain is very complex,

e.g. in the eHealth domain, and data is typically produced at high frequencies. This leads to the

next research questions:

Research Question 2. Can expressive and temporal reasoning be performed over highly volatile

data streams?

A cascading approach might provide a solution. The idea of cascading reasoning [12] provides

a layered approach, which reduces in each layer the data that needs to be processed and increases

in each layer the complexity of processing. This allows to filter out most of the data utilizing effi-

cient processing techniques, so that only the relevant parts of the data are used for the expensive

processing steps, such as expressive and temporal reasoning.

Hypothesis 2. Using a cascading reasoning system will improve the efficiency of expressive OWL

2 DL reasoning and temporal reasoning over volatile data streams, enabling to process up to hun-

dreds of events per second.

As the layered approach depends on the lower layers consisting of less expressive RSP engines

performing the selection of the relevant parts in the data stream, these RSP engines should be as

performant as possible, in order to keep up with the data stream rate. When distributing certain

parts of the cascade to the edge, where the available resources are limited, efficient processing

techniques are required. However, these engines still need some reasoning capabilities. This leads

to the following research questions:

Research Question 3. Can RSP engines efficiently reason over highly volatile data streams?

To answer this question, we focus on hierarchical reasoning, i.e. subconcept and subproperty

reasoning. Event processing systems, which do not understand semantics, support subscriptions to
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hierarchical definitions of events by utilizing hierarchical encoding of event hierarchies. However,

these encodings have never been exploited in RSP and have no formalization. This leads to the

following hypothesis:

Hypothesis 3. Using a hierarchical encoding of concepts will improve the throughput while per-

forming hierarchical reasoning with at least a factor two and maintaining a minimal memory

footprint, compared to the state-of-the-art.

Even after efficiently filtering the data streams, there might still be a large static knowledge

base that needs to be combined with the sensor data to reason upon. As the complexity of ex-

pressive reasoning systems is typically exponential to the size of the data and large knowledge

bases need to be combined to extract correct decisions, the following research question can be

formulated:

Research Question 4. Can expressive reasoning over event data, that needs to be combined with

large static knowledge bases, be employed in time-critical use cases?

As this static data does not change very often, it is possible to precompute the data and ap-

proximate how much of the static data is necessary to reason upon the event data and the static

data together, without the need to reason upon the complete large static knowledge base. This

leads to the following hypothesis:

Hypothesis 4. Using an approximation technique that extracts a subset of data to reason upon,

we can speed up the expressive OWL 2 DL reasoning process at least 10 times, compared to the

state-of-the-art.

Table 1.2 indicates how the different challenges from Section 1.3 are tackled by each research

question and chapter.

1.5 Outline

This dissertation is composed of a number of publications that were realized within the scope of

this PhD. The selected publications provide an integral and consistent overview of the work per-

formed. The complete list of peer-reviewed publications that resulted from this work is presented

in Section 1.6.

Within this section, we give an overview of the remainder of this dissertation and explain how

the different chapters are linked. Fig. 1.4 positions the different contributions that are presented

in each chapter.

Chapter 2 presents the framework that allows services to subscribe to heterogeneous IoT

data. It describes a semantic publish/subscribe mechanism facilitating reasoning capabilities,

which allows services to describe the data they would like to subscribe to, utilizing high-level

ontological concepts.

Chapter 3 describes and formalizes how the framework can be further extended to allow the

subscription to highly volatile data streams. This is achieved by enabling a cascading reasoning
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Figure 1.4: Schematic overview of the different chapters in this dissertation.

approach, consisting of multiple layers of processing, each with different complexities of process-

ing. The idea is that data is selected through the less complex layers, so that only a relevant

selection remains to be processed with more complex techniques, such as expressive and tempo-

ral reasoning techniques. It extends the semantic publish/subscribe platform from Chapter 2 with

two additional layers: an RDF Stream Processing layer to select the relevant data from the data

streams and a temporal reasoning layer to detect temporal dependencies between the data.

Chapter 4 describes a reasoning optimization for the lower layer of the cascading approach

from Chapter 3. As the lowest layers have to process large amounts of data, their performance is

critical. We research and formalize how a hierarchical encoding of concepts can optimize hierar-

chical reasoning over highly volatile data streams.

Chapter 5 describes and formalizes how expressive reasoning can be enabled over more

slowly changing data that needs to be integrated with large static knowledge bases. This rea-

soning optimization can be employed in the semantic publish/subscribe mechanism to abstract

the data, or by the services that utilize the cascading reasoning platform to filter the IoT data.

Nowadayswe see an increasing demand for combining data-driven techniques into the knowl-

edge driven cascading reasoning hierarchy. These data-driven techniques allow to constantly ex-

pand the domain with new knowledge. A first step towards realizing this integration is discussed

Appendix A.

1.6 Publications

The research results obtained during this PhD research have been published in scientific journals

and presented at a series of international conferences. The following list provides an overview of
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the publications during my PhD research.

1.6.1 Publications in international journals

(listed in the Science Citation Index 6 )

1. Femke De Backere, Femke Ongenae, Floris Van den Abeele, Jelle Nelis, Pieter Bonte, Eli

Clement, Matthew Philpott, Jeroen Hoebeke, Stijn Verstichel, and Filip De Turck. Towards a

social and context-aware multi-sensor fall detection and risk assessment platform. Pub-

lished in Computers in biology and medicine, Volume 64, Issue 1, pages 307–320, Septem-

ber 2015.

2. Pieter Bonte, Femke Ongenae, Femke De Backere, Jeroen Schaballie, Dörthe Arndt, Stijn

Verstichel, Erik Mannens, Rik Van de Walle and Filip De Turck. The MASSIF platform : a

modular and semantic platform for the development of flexible IoT services. Published in

Knowledge and Information Systems, Volume 51, Issue 1, pages 89–126, July 2016.

3. Femke De Backere, Pieter Bonte, Stijn Verstichel, Femke Ongenae and Filip De Turck. The

OCarePlatform : a context-aware system to support independent living. Published in Com-

puter Methods and Programs in Biomedicine, Volume 140, pages 111–120, March 2017.

4. Mathias De Brouwer, Femke Ongenae, Pieter Bonte and Filip De Turck. Towards a Cascad-

ing Reasoning Framework to Support Responsive Ambient-Intelligent Healthcare Interven-

tions . Published in Sensors, Volume 18, Issue 10, October 2018.

5. Pieter Bonte, Riccardo Tommasini, Emanuele Della Valle, Filip De Turck and Femke Onge-

nae. Streaming MASSIF: Cascading Reasoning for Efficient Processing of IoT Data Streams .

Published in Sensors, Volume 18, Issue 11, November 2018.

6. Pieter Bonte, Femke Ongenae and Filip De Turck. Towards Optimizing Hospital Patient

Transports by Automatically Identifying Interpretable Causes of Delays . Accepted to Inter-

national Journal of Software Engineering and Knowledge Engineering.

7. Christof Mahieu, Femke Ongenae, Femke De Backere, Pieter Bonte, Filip De Turck and Pieter

Simoens . Semantics-based platform for context-aware and personalized robot interaction

in the Internet of Robotic Things . Accepted for Journal of Systems and Software.

8. Pieter Bonte, Femke Ongenae and Filip De Turck. Subset Reasoning for Event-Based Sys-

tems . Revisions submitted to IEEE Access, January 2019.

6The publications listed are recognized as ‘A1 publications’, according to the following definition used by Ghent Uni-

versity: A1 publications are articles listed in the Science Citation Index Expanded, the Social Science Citation Index or the

Arts and Humanities Citation Index of the ISI Web of Science, restricted to contributions listed as article, review, letter, note

or proceedings paper.
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1.6.2 Publications in international conferences

(listed in the Science Citation Index 7 )

1. Dörthe Arndt, Ben DeMeester, Pieter Bonte, Jeroen Schaballie, Jabran Bhatti, Wim Dereud-

dre, Ruben Verborgh, Femke Ongenae, Filip De Turck, Rik Van de Walle and Erik Mannens.

Ontology reasoning using rules in an eHealth context. Published in proceedings of Inter-

national Symposium on Rules and Rule Markup Languages for the Semantic Web, Berlin,

Germany, pages 465 – 472, 2015.

2. Femke Ongenae, Pieter Bonte, Jeroen Schaballie, Bert Vankeirsbilck and Filip De Turck.

Semantic context consolidation and rule learning for optimized transport assignments in

hospitals. Published in Posters & Demonstrations Track co-located with the Extended Se-

mantic Web Conference (ESWC), Heraklion, Greece, pages 88–92 2016.

3. Pieter Bonte, Femke Ongenae, Jelle Nelis, Thomas Vanhove and Filip De Turck. User-

friendly and scalable platform for the design of intelligent IoT services: a smart office

use case. Published in Posters & Demonstrations Track co-located with the International

Semantic Web Conference (ISWC), Kobe, Japan, 2016.
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Femke Ongenae. Towards Ontology-Based Event Processing. Published in proceedings of

the 13th International Workshop on OWL - Experiences and Directions (OWLED) / 5th Inter-

national Workshop on OWL Reasoner Evaluation (ORE), Bologna, Italy, 2016.

5. Pieter Bonte, Femke Ongenae, Jeroen Schaballie, Wim Vancroonenburg, Bert Vankeirsbilck,

Filip De Turck. Context-Aware and Self-learning Dynamic Transport Scheduling in Hospitals.

Published in Posters & Demonstrations Track co-located with the Extended Semantic Web

Conference (ESWC), Portoroz, Slovenia, pages 88–92, 2017.

6. Riccardo Tommasini, Pieter Bonte, Emanuele Della Valle, Femke Ongenae and Filip De

Turck. A Query Model for Ontology-Based Event Processing over RDF Streams. Published in

the proceedings of Knowledge Engineering and Knowledge Management (EKAW), Nancy,

France, pages 439–453 2018.

7. Pieter Bonte, Riccardo Tommasini, Femke Ongenae, Filip De Turck and Emanuele Della

Valle. C-Sprite: Efficient Hierarchical Reasoning for Rapid RDF Stream Processing. Submit-

ted to the Extended Semantic Web Conference (ESWC), Portoroz, Slovenia, 2019

7The publications listed are recognized as ‘P1 publications’, according to the following definition used by Ghent Univer-

sity: P1 publications are proceedings listed in the Conference Proceedings Citation Index - Science or Conference Proceed-

ings Citation Index - Social Science and Humanities of the ISI Web of Science, restricted to contributions listed as article,

review, letter, note or proceedings paper, except for publications that are classified as A1.
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2
The MASSIF Platform: a Modular & Semantic

Platform for the Development of Flexible IoT

Services

Semantic Web technologies, such as ontologies, have been proposed as an ideal candidate to

model IoT data. Ontologies allow to integrate the IoT data, that is heterogeneous by nature. How-

ever, there is still a need for platforms that provide IoT services easy access to IoT data. Data is

often produced at different levels of granularity, requiring service developers to investigate the

underlying structure and level of granularity by which data is produced by each data source. In

this chapter, we propose a semantic enabled publish/subscribe platform that allows IoT services

to subscribe to the data they need, by defining their data need on an ontological level. The plat-

form proposes reasoning capabilities, allowing services to subscribe to implicit data and which

largely simplifies the subscription process as services can subscribe to high-level ontological con-

cepts, eliminating the need to worry about the lower level details. The platform is more than a

semantic publish/subscribe system. It provides mechanisms to annotate raw data if data is not

yet mapped to the semantic model. It enables scalability by decoupling the data producers and

consumers, and improves performance by providing each consumer its own context model. This is

done while guaranteeing the correctness of the filtered data. Chapter 3 builds upon this platform

and further extends it to allow services to subscribe to volatile streams and incorporate time-

aware definitions. Chapter 5 provides approximate reasoning capabilities over large knowledge

bases, a technique that can be utilized by the services that subscribe to the platform discussed in

this chapter or within the semantic publish/subscribe mechanism. This chapter investigates Re-

search Question 1: “How can we provide IoT services fine-grained access to IoT data in a flexible
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manner?” and validates Hypothesis 1: “Using an ontology-enabled publish/subscribe platformwill

allow semantic and flexible service subscription.”.

? ? ?

P. Bonte, F. Ongenae, F. De Backere, J. Schaballie, D. Arndt, S. Verstichel, E. Man-

nens, R. Van de Walle and F. De Turck.

Published in Knowledge and Information Systems, Volume51, Issue 1, pages 89–126, July 2016

Abstract

In the Internet of Things (IoT), data-producing entities sense their environment and transmit

these observations to a data-processing platform for further analysis. Applications can have a

notion of context-awareness by combining this sensed data, or by processing the combined data.

The processes of combining data can consist both of merging the dynamic sensed data, as well

as fusing the sensed data with background and historical data. Semantics can aid in this task, as

they have proven their use in data integration, knowledge exchange and reasoning. Semantic ser-

vices performing reasoning on the integrated sensed data, combined with background knowledge,

such as profile data, allow extracting useful information and support intelligent decision making.

However, advanced reasoning on the combination of this sensed data and background knowledge

is still hard to achieve. Furthermore, the collaboration between semantic services allows to reach

complex decisions. The dynamic composition of such collaborative workflows that can adapt to

the current context, has not received much attention yet.

In this paper, we present MASSIF, a data-driven platform for the semantic annotation of and

reasoning on IoT data. It allows the integration of multiple modular reasoning services, that can

collaborate in a flexible manner to facilitate complex decision making processes. Data-driven

workflows are enabled by letting services specify the data they would like to consume. After

thorough processing, these services can decide to share their decisions with other consumers. By

defining the data these services would like to consume, they can operate on a subset of data,

improving reasoning efficiency. Furthermore, each of these services can integrate the consumed

data with background knowledge in its own context model, for rapid intelligent decision making.

To show the strengths of the platform, two use cases are detailed and thoroughly evaluated.

2.1 Introduction

2.1.1 Background

In the Internet of Things (IoT) paradigm, numerous things are connected to the Internet [1]. Through

interactions with these connected things, specific goals can be reached that support our daily

tasks. The data these things transmit, originates from numerous heterogeneous sources, each

sensing a part of the environment. Combining data from different sources facilitates applications

to support context awareness [2]. This enables applications to understand the given situation.
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For example, to allow elderly people to stay at their own home as long as possible, fall detection

systems combine multiple sensors with background knowledge, such as the profile of the elderly.

A high fall detection precision can be achieved by combining the profile, habits and whereabouts

of the elderly with multiple sensors, such as motion and pressure sensors. The IoT aims at creat-

ing intelligent systems that can support people as much as possible during their daily activities.

To achieve this awareness, understanding the raw sensor data is necessary. Collection, modeling,

reasoning, and distribution of context in relation to sensor data plays a critical role in order to

tackle this challenge [3].

Context-aware systems can acquire, interpret and use context information to adapt their be-

havior to the current context [4]. They have played an important role in tackling this challenge

in previous paradigms. Their proven previous success makes them a solution that is ought to be

successful in the IoT paradigm as well [3]. According to Perera, et al. [3], one of the important

design principles for context-aware systems is scalability and extensibility. Gartner1 expects 20

billion connected things to be in use worldwide by 2020. Thus, it should be straightforward to

add new sensors and devices to a context-aware system. Additional sensors and devices produce

new data that might need to be processed differently. Consequently, it should be possible to easily

add extra processing services to extract high-level knowledge. Following this thought, the number

of services and applications handling the produced IoT-data will increase rapidly. Consequently,

context-aware platforms for the IoT should be easily extensible.

According to Strang, et al. [5], semantics are the preferred mechanism of managing and mod-

eling context. Semantics can aid in the integration of the generated heterogeneous IoT data by

enabling interoperability between different sources and providing a uniform model [5, 6]. For

example, the profile information of the elderly, the floor plan of the house and the sensor read-

ings have different sources and data formats. Combining themwithin the semantic model enables

interoperability. A concise introduction to semantics can be found in Section 2.1.2.3. However, anal-

ysis and mapping of data to the semantic model has to be handled for each source individually.

Combining the domain information, such as the sensor readings, with profile information, allows

to make personalized decisions.

Semantic reasoning allows to compute logical consequences defined in the semantic model.

For example, themodel could define an alarming fall as a sensor reading from a fall detection sen-

sor with an accuracy above a certain threshold (e.g., 78%) resulting from a sensor in the home of a

resident with a profile that states that the patient is in awheelchair. When such a sensor reading is

detected by the reasoner, it will know it has detected a fall and someone should be called to assist

the patient, even when it is not explicitly stated in the sensor data. Utilizing semantic reasoning

enables transforming the integrated low-level data into high-level knowledge, allowing accurate

and intelligent decisions. However, expressive logics such as Description Logic (DL)-Reasoning

have EXPTIME complexity [7], resulting in slow reasoning times with growing datasets [8, 9]. This

is inconsistent with the vision that events in the IoT should be processed in a timely manner [2].

1http://www.gartner.com/
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2.1.2 Related Work

The following section describes existing context-aware and IoT frameworks. Ontologies are dis-

cussed and considered to be the most used semantic model in current practice. The discussion of

the context-aware and IoT frameworks will focus on four important aspects:

1. The capability to semantically annotate raw data. To be able to extract useful knowledge

from the IoT-data, the data needs to be semantically annotated first [10].

2. Inference techniques. The extraction of knowledge is an important instrument in the IoT [2].

More advanced techniques allow to extract more complex knowledge.

3. Context model. Platforms can utilize a central context model that contains all context

information in one central knowledge base for easy access, a duplicated context model for

resilience or a distributed context model for efficiency.

4. Service Collaboration. Service composition provides functionality to build a specific (IoT)

application, which is composed of various independent services [3]. By allowing services

to collaborate, more complex tasks can be tackled.

2.1.2.1 Context-Awareness

A system is context-aware if it uses context to provide relevant information and/or services to the

user, where relevancy depends on the user’s task [11, 12]. Context-awareness frameworks typically

support acquisition, representation, delivery and reaction [13].

Various methods have been proposed to model context information. The six most popular are:

key-valuemodeling, markup schememodeling, graphical modeling, object-basedmodeling, logic-

based modeling and ontology-based modeling. According to many surveys in context-aware com-

puting, ontologies are the preferred mechanism of managing and modeling context [3, 5].

Over 30 distinctive context-aware systems have been developed, each providing a different kind

of system. An exhaustive analysis of these systems can be found in Perera, et al. [3] and Li, et al.

[14]. The most recent and related semantic context-aware platforms are elaborated upon in the

following paragraphs.

SeCoMan [15] is a context-aware platform, designed to provide privacy-preserving solutions

in the design of context-aware services. These services or applications are in charge of managing

their own context for security issues. The privacy handling itself is implemented using a rule-

based approach. However, the platform is aware of locations only, other sensor data cannot be

semantically annotated and incorporated.

CoCaMAAL [16] is a cloud-oriented context-aware middleware solution for Ambient Assisted

Living (AAL). It is able to annotate and abstract raw data from the AAL systems, based on pre-

designed ontologies. Service providers enable specific applications based on the context-aware
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middleware. They can subscribe to the context-awaremiddleware by providing service rules. How-

ever, these service providers do not collaborate. The context model utilized in the context-aware

middleware is duplicated in the cloud, however, it is not possible to isolate the context model for

the various services providers.

CASF [17] is a framework for context-aware service discovery and integration. It consist of 3

layers: (i) a physical sensor layer which captures the raw sensor data, (ii) a public context layer

that processes the sensor data and administers various context providers, and (iii) a context ser-

vice layer, which consumes context information from one or more context providers. The context

services can consume the provided context, but are not capable of sharing conclusions. The plat-

form uses Web Services for automatic discovery and integration of context information.

Although these frameworks look promising, they do not provide advanced reasoning capabil-

ities, such as description logics, and lack the capability to coordinate high-level workflows.

2.1.2.2 IoT Frameworks

IoT frameworks serve as a middleware solution to provide connectivity for sensors and actuators

to the Internet. Numerous IoT frameworks exist, most of them focus on the integration of the

devices and sensors, less attention is given to intelligent data processing of IoT data [2]. The

following paragraphs discuss recent attempts to process IoT data, more specifically through the

use of semantics.

Patkos et al. propose an ambient intelligence framework that combines rule-based reason-

ing with causality-based reasoning, to reason about actions and causalities [18]. The proposed

framework does not provide capabilities to annotate raw IoT data.

The LinkSmart platform [19] was designed to support interoperability and integration of var-

ious devices, sensors and services. It provides an abstraction of the devices and sensors as regular

programming objects towards the application layer. It allows to compose workflows through the

use of business rules to optimize the service composition.

Gray et al., propose a system to annotate and integrate heterogeneous streaming data with

stored data, through the use of ontologies [20]. Their approach focuses on the discovery and

integration of data sources, both static as streaming data. Reasoning and service collaboration

techniques are not presented.

Sense2Web [21] is a multilayer platform, allowing to annotate and integrate sensor data in

the form of Linked Data and makes it available to other Web applications via SPARQL endpoints.

Its data source layer is modeled using expressive ontologies, allowing high-level data retrieval.

However, service collaboration and advance reasoning capabilities are not provided for the service

and application layer.

XGSN [22] is an end-to-end, semantic-enabled IoT platform that allows to semantically anno-

tate sensors and processes the produced sensor stream using the Linked Sensor Middleware (LSM).

The stream can be archived or processed using stream processors. External application can query

the context through Web Services. However, these applications cannot share conclusions back to

the context layer.
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Ali et al. propose an IoT-enabled communication system that allows the annotation of sensory

data through the use of XGSN and the continuous analysis of data streams through the use of

a stream query processing module for the detections of events [23]. These events can then be

further processed in the StreamReasoning component that can infer implicit semantic statements.

Applications can subscribe to events generated in the centralized streamprocessing and reasoning

layer. However, they cannot collaborate to achieve complex workflows.

OpenIoT [24] is an open source IoT platform enabling the semantic interoperability of IoT

services in the cloud. It allows the integration and annotation of virtually any sensor. LSM is

utilizes and acts as a cloud database which enables the storages of the annotated data streams.

Services can access the the annotated data through the use of SPARQL queries. However, service

collaboration and advanced reasoning capabilities are lacking.

SOFIA2 [25] is an ontology-based Big Data IoT middleware, allowing interoperability and se-

mantic annotation of multiple heterogeneous devices. It facilitates Complex Event Processing

(CEP) to orchestrate the context-data between context consumers. However, besides context sub-

scription based on CEP, there is no real semantic reasoning possible.

These frameworks can annotate data semantically and draw conclusions in an efficient reactive

manner. Efficient processing of data is often provided, however advanced reasoning capabilities

are still missing. Furthermore, these platforms fail tomutually collaborate in a high-level manner.

An overview of the discussed ontology-based context-aware and IoT platforms is summarized in

Table 2.1.

Table 2.1: Comparison of existing ontology-based context-aware and IoT platforms. With SP = Stream

Processing and SR = Stream Reasoning.

Year Semantic Inference Context Service

Annotation Model Collaboration

Patkos et al. [18] 2010 / Rules & Central /
Causality

LinkSmart 2011 X Rules Central X
Gray, et al. [20] 2011 X / Central /
Sense2Web 2012 X / Central /
SeCoMan 2013 locations Rules Distributed /
CoCaMAAL 2014 X Rules Duplicated /
CASF 2013 X / Distributed /
SOFIA2 2014 X / Central X
XGSN 2014 X Basic Stream Central /

Processing

Ali et al. [23] 2015 X SP & SR Central /
OpenIoT 2015 X / Central /
MASSIF 2016 X OWL DL Distributed X
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2.1.2.3 Ontology

Gruber [26] defined an ontology as “an explicit specification of a conceptualization”. An ontol-

ogy formally describes concepts, properties and their relations, within a certain domain, that can

easily be reused [27, 28] in different settings. This allows to model knowledge and make data

machine-readable. The Web Ontology Language (OWL) [29] is the most popular language to de-

scribe ontologies. Ontologies form an excellent model to integrate data, exchange knowledge

and to reason upon that enhanced information. The ontology’s Terminology Box (TBox) describes

the concepts and their relations, while the Assertion Box (ABox) contains the data instances with

respect to the TBox. The concepts are also called classes and the relations between classes are

called object properties. Data properties describe the relation of a concept to a specific data value.

The ABox consists of entities of the defined classes (the individuals), their relations and their data

properties (the literals). An OWL ontology is described as a collection of axioms, e.g., the class

axioms describe the concepts in the ontology in a formal manner. OWL contains multiple sublan-

guages, each of which varies between expressivity and complexity. The sublanguages are listed

below with increasing expressivity [30]:

1. OWL-Lite: supports classification and simple restriction functions.

2. OWL-DL: the largest subset without the loss of computational completeness.

3. OWL-Full: maximal expressivity and syntactical freedom. However, the reasoning process

might not be computable.

The popularity of OWL has led to the creation of three OWL 2 profiles [31], each offering a spe-

cific subset of the overall expressivity to obtain advantages in specific applications. Each profile

is a subset of the OWL DL sublanguage.

1. OWL 2 Existential quantification Language (EL) is useful in applications utilizing an ontol-

ogy that contains a large number of properties and/or classes.

2. OWL 2 Query Language (QL) is created for applications where query answering is the main

task.

3. OWL 2 Rule Language (RL) provides scalable reasoning without sacrificing too much ex-

pressiveness.

2.1.3 Objectives

There are still many challenges left to tackle in the IoT-paradigm. Over the past years, efforts in

IoT have mainly focused on developing infrastructures to collect and communicate IoT data. Less

attention was given to intelligent data processing of this data [2]. The aim of this research is to

propose a platform for reactive and real-time data processing, that complies with the following

objectives:
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• Semantic Annotation: To be able to extract useful knowledge from the IoT-data, the data needs

to be semantically annotated first [10]. Since it cannot be expected that all sensors and devices

generate semantically annotated data natively, it should be possible to enrich raw (sensor) data

according to the semantic model.

• Knowledge Extraction: The extraction of knowledge is an important instrument in the IoT [2].

It allows to analyze the data, infer new data and to abstract the data for easy data consump-

tion [32]. Utilizing advanced reasoning capabilities, such as description logics, allows the ex-

traction of intelligent high-level conclusions and the execution of intelligent decisions.

• Extensibility: To be able to cope with the ever growing amount and types of connected sen-

sors and devices, IoT platforms should be extensible [3]. This allows adding new functionality

without altering the existing components. Thus, a plug-in architecture is mandatory.

• Performance: Due to the fact that the produced data in the IoT is only temporary valid, a timely

processing is required [2].

• Scalability: Cisco2 expects there will be more than 50 billion devices connected to the Internet

by 2050. The processing of a growing number of connected devices requires a scalable platform.

• High-level Workflows: IoT data consumers are often interested in the high-level concepts, such

as concepts higher in the class hierarchy of ontologies or implicit concepts requiring reasoning

to infer [2]. Service composition provides functionality to build a specific (IoT) application, which

is composed of various independent services. The composition of these services, through the use

of workflows, should be possible base on these high-level concepts [3].

• Real-time Processing: Many solutions provide IoT analysis tools [33]. However, to detect and

immediately react to events, real-time processing of the IoT data is necessary [2].

2.1.4 Paper Organization

The remainder of this paper is structured as follows. Section 2.2 highlights our contribution and

provides an overview of the proposed platform. Section 2.3 elaborates on the implementation-

specific details of the platform. Two use cases are explained in Section 2.4 to illustrate the capabil-

ities of the platform to derive useful information in a timely manner. These use cases handle data

originating from a home care and media setting. The limitations of the platform are discussed in

Section 2.5. Section 2.6 highlights the conclusions and introduces tracks for the future work.

2.2 The MASSIF Platform

This section highlights the novelty of the presented work and provides an architectural overview

of the platform.

2http://www.cisco.com/
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2.2.1 Our Contribution

In this paper, we present ModulAr, Service, Semantic & Flexible platform (MASSIF) . It is designed for

rapid enrichment and reasoning on IoT data. It uses ontologies to represent context information

and different kinds of reasoning can be enabled to derive high-level knowledge. To be able to cope

with any kind of input data, the platform allows to semantically annotate raw data. Once the data

is annotated, it can be combined with static context data. The use of semantic reasoning allows

data consumers to extract useful knowledge, make intelligent decisions and take appropriate ac-

tions. Furthermore, the data consumers that extract this knowledge can become data producers

and share their findings with other data consumers. This allows the creation of workflows. Since

abstractions and high-level concepts are mandatory to create complex workflows, reasoning is

performed to coordinate the data flow. To allow dynamic and context dependent workflows, we

propose a data-driven workflow composition, where data consumers define the data they would

like to receive, based on high-level concepts. When data is processed by the platform, it will check

which data consumers are interested in the particular type of data. These types of workflows al-

low loosely-coupled modular services, which enable extensibility and scalability. Furthermore, a

distributed context model is utilized. Each of the data consumers manages its own context. The

distributed context model, combined with the data-driven workflows allows each data consumer

to operate on a subset of data. Minimizing the dataset enables more effective reasoning, even

when utilizing logics such as description logics.

MASSIF is a reactive data-driven platform, in the sense that it reacts to the received data and

handles accordingly. This eliminates the need for active polling the various MASSIF components

for updates or actions.

2.2.2 The Platform Architecture

The platform consists of five types of components, whereof two of them can be extended to provide

specific functionality in each use case. These are called API-components and can be distinguished

with the dotted lines in Figure 2.1.

The API-components consist of the Context Adapters, which can semantically annotate the

data and Services, which process the semantic data to retrieve high-level knowledge.

The various components that make up the MASSIF Platform are discussed below. The expla-

nation will start with the Semantic Communication Bus (SCB) [34], since it regulates the data flow

within the platform.

1. The SCB provides a publish-subscribe mechanism based on high-level ontology concepts. The

services can subscribe by defining what kind of data they would like to consume. These def-

initions are called semantic filter rules and are in fact OWL class expressions. The services can

be both consumers and producers. They can decide to share their conclusions by publishing

their findings on the SCB. The SCB has its own context model and utilizes reasoning on the

subscribed filter rules and the published data to determine which services subscribed to the

published data. Note that through the use of reasoning, services can define their input data in
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Figure 2.1: Conceptual Architecture of the MASSIF platform.

an abstract and high-level manner.

2. The Gateway serves as the primary communication interface of the platform. It allows both

input and output with external devices.

3. The Matching Service inspects the raw data that have been sent from an external source to the

Gateway. It selects a Context Adapter that is able to annotate the low-level data according to

the semantic model.

4. A Context Adapter receives low-level data from the Matching Service and semantically anno-

tates it. Multiple Context Adapters can be active to annotate numerous kinds of raw data. Once

the data is converted to OWL individuals, it is pushed on the SCB. The platform also allows Vir-

tual Context Adapters. These context adapters do not receive data from the Matching Service,

but annotate data they capture from existing sources, such as Twitter streams.

5. A Service subscribes to the SCB with one or more filter rules. These filter rules describe the

data that the Service would like to consume. Each Service performs a distinct reasoning task

or algorithm and can share its inferred knowledge with other Services, over the SCB.

Note that the SCB and the Services each contain their own ontology model and can preload it

with background knowledge, such as profile data.
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Figure 2.2: Overview of used extension of the SSN ontology.

2.3 Implementation Details

The following section explains the introduced components from Section 2.2 in greater detail. First,

a running example is presented that will be used to clarify the further details of the components

in the platform. Second, additional implementation details about the used technology are given

in Section 2.3.2. Third, more clarification is provided in Section 2.3.3 on how the ontologies are

internally represented. Finally, each component is described in great detail in Section 2.3.4, based

on the provided information from the first three subsections.

2.3.1 Running Example

To further explain the various components, a running example is introduced to provide practical

insights. In the example, amotion sensor is integrated in the home of a patient. The patient should

be active for a certain amount of time, to fully recover. The exact upper and lower bound of the

allowed active time is patient- and situation-dependent and should not be exceeded. The sensor

will capture the activity of the patient and send it to the platform, that will compare it against the

background knowledge, which describes the profile of the patient. If the platform detects that not

enough/too much activity has been reached, an alarm is triggered.

To model the different concepts and relations for the running example, the Semantic Sensor

Network (SSN) [35] ontology is utilized. Figure 2.2 shows the TBox of the extended SSN ontol-

ogy, describing the designed concepts and their relations. The MotionSensor, MotionOutput and

Observation concept are used to model the motion sensor readings.

2.3.2 OSGi

The platform has been developed utilizing the Open Services Gateway initiative (OSGi) [36], which

is an extra layer on top of the Java Virtual Machine, enabling modularity. It allows components to
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be dynamically added, even at run time. This enables our platform to be extended with additional

Context Adapters or Services, evenwhen the platform is fully operative. Additionally to the enabled

extensibility, OSGi allows straightforward scalability. All components are OSGi Services, which can

be distributed utilizing Distributed OSGi [36].

2.3.3 Ontology Representation

The ontologies are internally represented using the OWL API [37]. Data is shared, over the SCB,

as a set of OWLAxioms, describing the data semantically. The OWL API provides an OWLRea-

soner-interface, which is implemented by numerous popular reasoners [38] such as Pellet [39],

Hermit [40], Fact++ [41], JFact [42], Chainsaw [43] and RacerPro [44]. This allows services to

choose which reasoner to utilize. Various reasoners provide different functionality, complexity

and efficiency.

2.3.4 MASSIF Implementation

Since it cannot be expected that all data-producing entities transmit their sensory observations

semantically annotated, the platform can annotate raw sensor data itself. It is assumed that each

sensor is capable of transmitting its raw data in JavaScript Object Notation (JSON) [45], annotated

with a certain tag, which provides some extra information about the origin of the data. The tag

itself is added by the sensor gateway. The modular structure of the platform allows to extend the

platform in order to accept different input formats. If sensors are able to transmit semantic data,

the semantic annotation step can be skipped.

2.3.4.1 Gateway

Low-level data, in JSON format, enters the platforms through the Gateway, as depicted at the

bottom of Figure 2.1. Since the platform is fully data-driven, devices can push their data to the

platform. The Gateway serves as an entry point and forwards the data to the Matching Service.

2.3.4.2 Matching Service

Listing 2.1: Raw data fragment in JSON format.

{
"prefixes": {
"ssn": "http://purl.oclc.org/NET/ssnx/ssn"
},
"userID": "00001",
"data": {
"n": "motion_sensor",
"v": "0.85f",
"tag": "MotionSensor"
}
}
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The Matching Service analyses the data and decides which Context Adapter can semantically an-

notate the received data. The decision is made based on the tag in the arriving JSONmessage. The

tag indicates which type of device sent the low-level data. An example of this low-level data can

be seen in Listing 2.1. The data describes a motion sensor reading with a precision of 85%.

2.3.4.3 Context Adapters

When a Context Adapter is added to the platform, it provides the types of sensors, i.e., tags of low-

level data, it is able to annotate semantically. Each Context Adapter can annotate a specific kind

of received data to the semantic model. The result of the annotation phase is semantic annotated

data, i.e., ontological individuals. Since each Context Adapter indicates the type of data it is able

to annotate itself, additional adapters can easily be added to cope with new types of raw data,

such as additional sensors. The Context Adapters enrich the data to a set of OWLAxioms, which

are pushed on the SCB. Each Context Adapter provides a mapping, describing how the raw data

translates to the semantic data. Listing 2.2 shows an extract of the created OWLAxioms in the

annotation phase for the fragment in Listing 2.1.

Listing 2.2: Enriched data as OWLAxioms

ClassAssertion(pre:Event pre:event_1),
ClassAssertion(ssn:Observation ssn:observation_1),
ClassAssertion(pre:MotionSensor pre:motionSensor_1),
ClassAssertion(pre:MotionOutput pre:motionOutput_1),
ObjectPropertyAssertion(pre:hasContext pre:event_1 pre:observation_1),
ObjectPropertyAssertion(ssn:observedBy pre:observation_1 pre:motionSensor_1),
ObjectPropertyAssertion(ssn:observation_result pre:observation_1 pre:

motionOutput_1),
DataPropertyAssertion(ssn:hasValue pre:motionOutput_1 "0.85f"^^xsd:float)

The fragment illustrates various assertions: ClassAssertions, ObjectPropertyAssertions and a Dat-

aPropertyAssertion. For example, the first ClassAssertion states that the event_1 individual is a

member of the class Event. It indicates that an Event has been created that is linked to an Obser-

vation. The Observation states the kind of sensor that made the observation and the output of the

observation, combined with the actual measured value.

Event MotionSensor

hasContext observedBy

MotionOutput
observation 

Result
hasValue

0.85f

Observation

Figure 2.3: Conceptual representation of the events in the platform.

All semantic data passing through the platform are Events. Figure 2.3 shows an example of

how the Event is linked to the data. From now on, all data flowing through the platform will be

called events. Each event has a starting point of the type Event in the graph-like data structure.

With the relation hasContext it is linked to the actual data. Note that the Event concept and the
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hasContext relation are pictured in grey, since they are required by the platform. All other types

and relations, such as the Observation and the MotionSensor are use case specific and are not

obliged by the platform.

Virtual Context Adapters are a special type of Context Adapters that do not receive data from

the Matching Service, and thus do not register a tag. These adapters annotate data they capture

from external sources, such as Facebook and Twitter streams.

2.3.4.4 Semantic Communication Bus

The SCB supports communication and collaboration between the different components. The dif-

ferent components publish their data on the SCB in the form of OWLAxioms. Each component can

subscribe to the SCB by passing a filter rule in the form of an OWL class expression. The class de-

scribes the kind of data the component wants to consume, on a semantic level. Upon subscription,

the registered classes are added to the ontology model of the SCB. Note that the SCB loads its on-

tology, describing its domain, at startup. When data gets published on the SCB, the published data

is temporarily added to the ontology model. The SCB’s ontology model now contains the loaded

concepts from startup, the registered filter rules as OWL class expressions and the temporary data

as OWLAxioms. Through the use of semantic reasoning on the ontology, the type of the published

event is retrieved, which matches the subscribed filter rules of those services that would like to

consume the data. This way, high-level data coordination is achieved. When the data is forwarded

to the selected services, it is removed from the ontology.

In axiom (2.1), an example filter rule is depicted. It shows that the MotionFilter is an Event

with a relation hasContext to an Observation and that the Observation should have a relation

observedBy with a MotionSensor.

MotionFilter ≡ Event

∧ ∃hasContext.(Observation ∧ (∃observedBy.MotionSensor)) (2.1)

A direct match can be seen between the Event in Figure 2.3 and the filter. When the reasoner in

the SCB is asked for the type of the event, it will also return the MotionFilter.

Assume that the following classes are also present in the ontology:

MotionSensor v Sensor (2.2)

MotionObservation v Observation ∧ ∃observation_result.MotionOutput
(2.3)

The class definition in (2.2) defines the MotionSensor as a subclass of Sensor. To subscribe to

all Sensors, including the MotionSensor, one can easily subscribe the filter rule in (2.4).

MotionFilter2 ≡ Event

∧ ∃hasContext.(Observation ∧ (∃observedBy.Sensor)) (2.4)
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To show the added value of the reasoning in the SCB, an additional filter is added in (2.5).

MotionFilter3 ≡ Event ∧ ∃hasContext.MotionObservation (2.5)

This rule makes use of the axiom in (3). Even though the MotionObservation is not explicitly de-

fined in the received data, the reasoner knows what a MotionObservation is and will return the

filter rule as the type of the event. This enables collaboration between services based on high-

level concepts.

The SCB enables intelligent collaboration and distribution of retrieved knowledge between

Services.

2.3.4.5 Services

Each Service subscribes to the SCB through the use of one or more filter rules. After processing the

consumed data, inferred knowledge can be published to the SCB, to notify other Services about its

findings. Each Service contains its own ontology and reasoner. The use of filter rules limits the

data each Service receives, resulting in more efficient reasoning, since each Service only needs to

incorporate a subset of data. Note that reasoningmight become slowwhen the size of the dataset

increases.

Lets assume a new Service, the MotionService, which loads profile information in its ontology

at startup and subscribes to all motion data with axiom (2.5). Compared to the event data, big

datasets are typically loaded directly into the ontology model of the Services, through the use of

tools such as Ontop3 and D2R4 . The loading of such static background data allows to combine the

low-level event data with background knowledge. This combination facilitates the extraction of

high-level knowledge. At run time, the sensor data from the motion sensor is combined with the

profile data to check the activity of recovering patients. Note that the time period a patient needs

to be active is person-dependent. When aberrant activity has been detected, a Task is generated

indicating that someone should check on that person.

A second Service captures all Tasks and tries to assign the most suited person to perform

these Tasks. The Service could subscribe to all tasks with the following filter rule:

TaskF ilter ≡ Event ∧ ∃hasContext.Task (2.6)

Additional Services can easily be added to provide extra functionality. Let us assume that the

lifetime of certain sensors is limited and when a sensor fails, it starts to produce random values.

A Service can be added that captures all sensor values and analyses them to see if they start to

produce aberrant values. It can then choose to share this knowledge with the other Services over

the SCB.

When ontologies have been constructed with modularity in mind, each Service can load only

the necessary parts of the whole ontology, again improving performance. A modular ontology is

3http://ontop.inf.unibz.it/
4http://d2rq.org/
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an ontology that consists of multiple stand-alone ontology modules which improves reasoning

efficiency [46]. When a part of the ontology holds a specific profile [47] (e.g., OWL 2 EL, OWL 2 QL,

OWL 2 RL) instead of OWL 2 DL, different reasoners can be utilized in each service to optimize per-

formance. Even when no specific profile can be used or no modularity can be detected, different

reasoners or techniques can still be used on the whole ontology in each Service to optimize the

performance of the task at hand.

Each Service can share its inferred knowledge through the SCB, which might be of interest to

other Services which can also process the data and share its knowledge. Combining and passing

the results of each Service allows the creation of complex reasoning chains. Since each Service only

defines its data of interest and shares its conclusions, dynamic workflows can be created without

the need to predefine a static workflow. A special Service, the Notification Service, gathers all final

knowledge and sends it to all interested parties outside the platform, through the Gateway. Each

service can decide if the data is ready and label it as final knowledge. The flexibility of the platform

allows multiple implementations for the Service components. Multiple types of reasoners can be

used and other techniques such as data mining and machine learning can easily be applied within

these Services to process and retrieve knowledge.

2.3.5 Policy Management

This section elaborates on how inconsistencies are handled in the platform. Since the platform

allows users to define their own mapping, describing how raw data should be semantically anno-

tated in the Context Adapters and which data their Services should consume through registering

OWL class expressions, inconsistencies can occur. The following scenarios can occur:

1. A Service subscribeswith anOWL class expressionwhichmakes the SCB’s ontology inconsis-

tent. To resolve this, the SCB will check at the time of subscription whether the registered

OWL class expression is consistent with the remainder of the ontology. If this is not the

case, the subscription of the expression is deemed unsuccessful and it is not added to the

ontology. A warning is sent to the service provider that the subscription has failed.

2. A Context Adapter or Service publishes data on the SCB and when reasoned upon in the

SCB, a realization inconsistency occurs. This inconsistency can have two causes:

(a) A Context Adapter or Service failed to format the semantic data correctly. When the

malformed data is reasoned upon in the SCB, a realization inconsistency occurs. For

example, the types of an individual have been modeled as two classes that are in

fact disjoint with each other.

(b) A Service has recently added an OWL class expression that does not make the ontol-

ogy inconsistent upon consistency checking, but does causes problems upon real-

ization. For example, a Service can subscribe a new class expression that is disjoint

with a previously subscribed filter rule.



The MASSIF platform 35

When these types of inconsistencies occur, the cause of the problem is first determined. To

achieve this, all class expressions that have been registered by the Services are removed

and a realization consistency check is performed on the SCB’s core ontology and the pub-

lished data. When this causes inconsistencies, this means that we are dealing with incon-

sistencies of type 2.a. The platform can then track which component published the data,

deactivate it and send a warning.

If this does not cause any problems, this means that we are dealing with inconsistencies

of type 2.b. The platform needs to trace the Service that subscribed the OWL class expres-

sion that is causing problems. Therefore, the subscribed class expressions are added one

by one to the SCB’s core ontology and for each addition a consistency check is performed

on the published data. The expression that causes the inconsistency is removed from the

ontology and a warning is sent to the subscriber.

2.3.6 Supporting Components

The platform provides multiple additional services such as logging, back-up of the knowledge in

the Services and visualization of the workload.

2.3.6.1 Journaling

Tailored logging is provided in the core of the platform to track the data flowbetween the different

components. Each component logs its output data, if any, and its destination in the platform. The

Services typically log their inferred knowledge they would like to share and indicate the SCB as

the destination. After determining which Services are interested in the data, the SCB will log to

which Services the data is sent. Logging is important to provide accountability. It allows to justify

the choices made at a given time.

2.3.6.2 Backup

Since robustness and resilience is an important aspect in the IoT, a specialized backup system is

provided to minimize the data loss upon failure. All messages between components are logged

using the journaling and each service makes a backup of its current knowledge base at discrete

intervals to further minimize data loss.

2.3.6.3 Cached SCB

The SCB is the central communication link between different components and can thus easily

become a bottleneck. The performance of the SCB is dependent on the used ontology, because

reasoning is used to determine the services that are interested in the arriving data. To optimize

the performance of the SCB, intelligent caching is introduced to match similar events without the

need to reason.
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Figure 2.4: Visualization of a data flow in the MASSIF platform, visualized as a graph. The vertices represent

the components and the edges represent the dataflows between them.

Since the platform is closed, all data traveling through the SCB has been produced in the

platform, it can be assumed that each Context Adapter or Service can only produce a finite number

of conceptually distinct messages. Note that only the difference in structure of these messages

on a TBox level is considered, not the specific ABox initializations.

The filter rules in the SCB define the high level structure of the expected data. When a filter

is triggered, it is possible to map the specific part of the message, responsible for the match, on

the filter rule. If this is done on a high level, the presence of the specific structure can be checked

with other messages to decide if there is a match.

To determine the data in the message, responsible for the match, the reasoning needs to be

reversed and investigated to see which axioms led the reasoner to infer the data as the selected

rule, which is an OWL class. The structure of the responsible data is saved in a cache, enabling a

simple look-up the next time a similar message passes by. The cache utilizes the Least Recently

Used (LRU) strategy, discarding the least used entries first.

2.3.6.4 Visualization

Visualization tools are available to monitor the data flow through the platform. Keeping a global

overview of the data flow when operating in a data-driven, service-oriented environment can

become complicated. The use of visual aids simplifies this process.

Figure 2.4 depicts how the flow through the platform can be monitored on a graphical level.

The workflow is visualized as a graph. The vertices represent the services and the edges represent

the dataflows between them. Each color represents a different flow of data.

The workload inside the platform is visualized in Figure 2.5. For each component, the num-

ber of messages that are being processed are visualized. This provides a visual understanding

of the work distribution. Clicking on one of the components enables a deeper inspection. As vi-

sualized in Figure 2.6, the initial JSON-message is shown and the executed SPARQL Protocol and
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Figure 2.5: Visualization of the platform workload. The number of the current processed messages is shown

for each component.

Figure 2.6: A detailed inspection of the PressureMonitoringService, showing the initial JSON-message and

the executed SPARQL-queries in the Service.
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RDF Query Language (SPARQL) [48] query in the selected component. These tools allow a better

understanding of the internal flow of messages in the platform.

2.3.6.5 Message Broker

To enable resilient distributed communication, MASSIF allows the integration of highly efficient

message brokers such as RabbitMQ 5 and Kafka 6 . The integration of a message broker allows

to communicate with non-semantic services. Communication wrappers have been provided, such

that nothing needs to be changed in the implementation of existing Context Adapters or Services.

These wrappers function as an additional layer between the existing components and the mes-

sage broker and handle all communication. Furthermore, one can choose how to distribute the

components over various distributed nodes, e.g., Services requiring huge amounts of processing

power can be run on separate nodes of a processing cluster. Figure 2.7 visualizes the message

broker integration in MASSIF. As depicted in Figure 2.7, one can choose to distribute the Gateway

and Context Adapters on one node, since they require low processing, the SCB on another node and

to distribute the Services over two node since they require most processing resources.

5https://www.rabbitmq.com/
6http://kafka.apache.org/
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2.4 Two Use Cases

MASSIF has been evaluated in the Organizing Home Care Using a Cloud-based Platform (OCCS)7

project and the R.A.M.P.8 project. R.A.M.P. is short for Real-time Automation of Media Production

for interactive radio and conferences. The use cases illustrate the strengths and the performance

of the platform in two real-life scenarios. Both cases combine low-level data with background

knowledge to extract high-level knowledge.

2.4.1 eHomeCare

The following sections describe the realization of the OCCS project and give a general overview, a

description of the used ontology, an overview of the created Services and Adapters and finally an

evaluation of the created system.

2.4.1.1 General Overview

The OCCS project presents a pervasive health use case, demonstrating how healthcare can benefit

from the IoT. The OCCS project tackles problems in the home care environment, enabling care

organization through cloudy-like services. Hospitals and residential care homes need to cope

with the increasing elderly population and the shift from acute to chronic diseases, resulting in a

reduced number of available places. An elaborative project description can be found in De Backere

et al. [49].

The care receiver’s home has been provided with a small amount of discrete sensors and a

specialized TV or tablet to interact with. Each caregiver has a smartphone to interact with the

platform. By combining the low-level data from the sensors and the smartphones through se-

mantic reasoning, high-level knowledge can be retrieved. From this high-level knowledge, it can,

for example, be decided that a care receiver has not been able to get out of bed alone, since the

bed pressure sensor is abnormally long active. The system can then decide who might be the des-

ignated person to help the care receiver. The selection of the best suited caregiver is based the on

the type of relationship the patient has with his helping staff, the competences of the caregivers

and their status.

2.4.1.2 The Ontology

The Ambient-Aware Continuous Care Ontology (ACCIO) [50] is used to model all data in the home

care environment. Figure 2.8 shows that it is a modular ontology, containing multiple ontology

layers. This allows each distinct Service to load only the necessary part of the ontology. An exten-

sive elaboration of the ontology can be found in Ongenae, et al [50].

7http://www.iminds.be/en/projects/2014/04/07/ocareclouds
8http://www.iminds.be/en/projects/2014/03/05/ramp
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Figure 2.8: Import schema of the used ontology.

The ambient-aware continuous care ontology describes the eHealth sector. It has been con-

structed in collaboration with stakeholders, such as nurses, caregivers and physicians, social sci-

entists and ontology engineers.

• The Upper ontology describes general classes, relations and axioms. The Upper ontology allows

data to be related with a unique ID.

• The Sensor & Observation ontology allows the filtering of data. It imports the Wireless Sensor

Network (WSN) ontology and extends it with additional eHealth related concepts.

• The Context ontology describes the contextual information regarding the environment. It con-

tains all localization information.

• The Profile ontology models all profile information about the patients and the staff members.

Each Person is linked to a Profile, that can either be a basic profile or a risk profile. This has

been described as axioms, allowing the risk patients to be automatically inferred.

• The Role & Competence ontology describes roles and competences in the eHealth sector. Roles,

based on competences, can be automatically inferred through the use of axioms.

• The Task ontology models the task and call handling.

• The Medical ontology models medical concepts such as observed parameters and pathologies.

Table 2.2 summarizes the metrics of the proposed ontology.

2.4.1.3 Designed Adapters

Multiple Context Adapters have been implemented, to semantically annotate the raw data. There

are seven Adapters present in the OCCS project. Figure 2.9 shows the created Adapters and Services.
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characterize the environment, enabling context-awareness in the home of the care receiver. These sensors

transmit their observation through an IoT sensor gateway to the MASSIF platform.

Table 2.2: Ontology metrics for the used ontology in the eHomeCare use case.

#Axioms 3065

#Logical Axioms 1736

#Individuals 147

#Classes 409

#Object Properties 185

#Data Properties 53

DL Expressivity SHOIQ(D)

• A PressureAdapter, enriches all data transmitted by a pressure sensor.

• A RFIDAdapter, translates all received Radio Frequency Identification (RFID)s from caregivers

logging in, indicating their presence in the home of the care receiver.

• A TVAdapter, annotates all data sent by the TV, capturing the activity of the patient, such as

volume and channel changes.

• The TaskAdapter handles all data regarding tasks: newly created tasks, task updates, finished

tasks. Some examples of possible tasks are: doing groceries, helping the care receiver out of

bed, cooking and cleaning.

• The VisitAdapter handles all data regarding planned visits: new visits, updated visits and can-

celed visits.
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• The PersonAdapter enriches all data describing relations between caregivers and care receivers.

For example, when a new caregiver will aid a care receiver, the caregiver is first added to the

trust circle of the care receiver. The trust circle indicates which persons the care receiver is

familiar with.

• The TrendAdapter shows how the data-driven platform can handle specific requests. Trend in-

formation about the activity can be requested, based onmultiple sensors. The TrendAdapter only

enriches the request data. The processing of the trend data is done in the TrendManagerService.

The trend information can give an indication of how active a care receiver is. Some care receivers

should do at least some movement during the day.

2.4.1.4 Specific OCCS Services

Multiple Services have been implemented, these are thoroughly discussed below. Note that the

Services load static data from a database at startup. This data contains the profile information

about the caregivers and the care receivers, information about the numerous sensors and devices

and recurrent tasks. This data is parsed to the semantic model and loaded in the individual on-

tologies of these Services.

• The RFIDMonitoringService registers itself to all semantic RFID-data passing over the SCB. The

Service receives this particular data by registering the filter rule depicted in Listing 2.3.

Listing 2.3: Example filter rule for retrieving RFID data.

RFIDFilter ≡ Event and (hasContext some
(isObservationOf some (hasSensorPart some RFIDSensor)))

The service captures the RFID-data and retrieves the person who is linked to the received RFID,

which is not available in the raw sensor data. Finally, it sends an event to the SCB, stating that

a specific person has logged in at a given location. Other services, e.g., the TaskManagerService,

might be interested in this kind of information. Listing 2.4 shows the generated event from the

Service.

Listing 2.4: Resulting Event from the RFIDMonitoringService

ClassAssertion(upper:Event regEvent)
ClassAssertion(careTask:RegistrationTask regTask)
ClassAssertion(profile:Person regPatient)
ClassAssertion(profile:Person regHelper)
...
ObjectPropertyAssertion(upper:hasContext regEvent regTask)
ObjectPropertyAssertion(task:assignedTo regTask regHelper)
ObjectPropertyAssertion(task:checkedInWith regHelper regPatient)
...

The last axiom indicates that the regHelper, which resembles the registered caregiver, has

checked in with the patient.
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• The TaskManagerService handles all task information. The initial tasks are loaded from the

database into the ontology of the TaskManagerService. These tasks cover all activities a care-

giver performs to aid the patient. When a location update, originating from the RFIDMonitor-

ingService, arrives, all the tasks that this specific person should perform will be calculated and

send, through the NotificationService, to the device of the caregiver. These tasks are derived

based on the profile of the caregiver. New, updated and finished task information will also

arrive in this service, to be able to keep an up-to-date overview of the task lists.

• The HelpSelectionService receives all activated tasks and determines who is the most suited

person to execute these tasks, depending on location, relation with the care receiver and profile.

It links the selected person to the task, labels it as final and sends it to the SCB. A thorough

discussion of the task assignment can be found in Bonte, et al [51].

• The PressureMonitoringService receives data originating from a pressure sensor, located in the

bed of a care receiver. The sensor data indicates the activity of the pressure sensor and thus

the presence of the patient. If a patient is longer in bed than usual, without being able to get

out alone, a task is generated to get this person out of bed. Listing 2.5 shows an example query

that determines if the patient is longer in bed than usual. Note that the time a patient sleeps

on average is calculated before and inserted in the query at query time.

Listing 2.5: Example query

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX task: <http://occs.intec.ugent.be/ontology/TaskAccio.owl#>
PREFIX profile: <http://occs.intec.ugent.be/ontology/ProfileAccio.owl#>
PREFIX wsna: <http://occs.intec.ugent.be/ontology/WSNadjustedAccio.owl#>
PREFIX temporal: <http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal

.owl#>

SELECT ?patient ?time ?timeTask ?date
WHERE {
?getup task:executedOn ?patient.
?getup task:executedDuring ?period.
?period temporal:hasFinishTime ?timeTask.
?sensorBoard profile:associatedWith ?patient.
?observation wsna:isObservationOf ?sensorBoard.
?observation temporal:hasValidTime ?validTime.
?validTime temporal:hasTime ?time.
FILTER (?time>=AVGSLEEP())}

To better involve the patient in the process, the care receiver is asked if help is necessary. The

option to stay in bed is still possible. If help is required, the task is updated, picked up by the

HelpSelectionService and the most suitable person is asked to help the care receiver out of bed.

• The TrendManagerService obtains all kinds of sensor data, enabling trend analysis. Compared

to the filter in Listing 2.3, the TrendManagerService registers a filter describing the interest in

all types of sensor data, as shown in Listing 2.6.

Listing 2.6: Example filter rule for retrieving all sensor data.

SensorFilter ≡ Event and (hasContext some
(isObservationOf some (hasSensorPart some Sensor)))
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The Service stores all sensor data in an external triplestore9 . This allows the analysis of the

activity of the care receiver. The Service allows to request a summary of the activity of one or

more sensors. The caregivers can interpret the summary to determine how active the patient

has been in a given time interval.

• The MedicationManagerService will not receive any data, but will inform care receivers when

they should take their medication and the specific amount. This information is retrieved from

Vitalink10 , which is an online government platform, containing a complete patient information

dossier. The Service will analyze the dossier and determine which medications should be taken

at what intervals. It will send reminders what medication to take at given time intervals to

stimulate the patients to take their medication.

• The NotificationService captures knowledge from the SCB that is ready to be shared with the

outside world. Other services can indicate that their knowledge can be sent to the caregivers

by making it an instance of the Notification ontology concept. It will analyze the arriving event

andmake sure the information is sent to the correct device. The NotificationService will register

to all Notifications on the SCB, as depicted in Listing 2.7.

Listing 2.7: Example filter rule for retrieving all Notifications.

NotificationFilter ≡ Event and (hasContext some Notification)

Additional services can be added to the platform, providing the caregivers and care receivers

with supplementary information.

2.4.1.5 Results

To evaluate the performance of the platform in the described use case, the time necessary to

complete one scenario is presented. According to Alshareef et al. [52], an eHealth help system

should be able to respond within 5 seconds. The scenario consists of an automatic trigger from a

pressure sensor, informing the system that the patient is still in bed. The system will notice that

the patient is longer in bed than usual andwill automatically send a notification to the patient. The

patient can inform the system if help is needed. This way, the patient is involved in the automated

decision process. If the patient decides that help is required, the system will search for the most

suited caregivers to aid the patient. They automatically receive a message with the question if

they could go and help the patient out of bed. Note that the message automatically disappears if

one of the caregivers accepts the task.

The scenario was evaluated 35 times. The first three and the last two results were dropped

to eliminate the influence of the warm-up and cooling down period. The averages are calculated

over the remaining 30 iterations. The evaluation was done on a Ubuntu 14.04 server with an Intel

Xeon CPU E5520 (16 cores) @ 2.27GHz with 12 GB of memory.

9http://stardog.com/
10http://www.vitalink.be/
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Table 2.3: An overview off all average processing times for each component in each system call. The

averages (µ) and the standard deviation (σ) are both given in milliseconds.

Pressure Sensor Help Needed Task Accepted

µ(ms) σ(ms) µ(ms) σ(ms) µ(ms) σ(ms)

Gateway <1 <1 <1 <1 <1 <1

MatchingService 0.62 0.49 0.54 0.50 0.54 0.50

ObservationAdapter 5.77 1.22 - - - -

TaskAdapter - - 3.15 0.82 3.31 0.87

SCB-0 0.62 0.49 0.46 0.50 0.62 0.49

SCB-1 0.50 0.50 0.54 0.50 0.54 0.50

SCB-2 0.54 0.50 - - - -

HelpSelectionService 55.50 14.18 75.96 14.23 57.54 11.24

PressureMonitoringService 230.50 23.17 - - - -

TaskManagerService 32.65 15.96 31.50 13.25 31.62 8.96

NotificationService 19.38 2.76 22.81 12.99 19.62 1.62

As presented in Table 2.3, it is clear that the platform overhead (Gateway, Adapters, SCB)

has limited influence. The table shows multiple SCB entries, this is because the Services need to

exchange their inferred knowledge and thus messages pass the SCB multiple times for each call.

Figure 2.10 visualizes the time spent in the Services, grouped for each call. The time spent in

the various Services differs, this is due to the fact that each Service performs a different reasoning

task. The PressureMonitoringService performs the most complex task in this scenario, as it needs

to decide if help should be requested to aid the patient. The HelpSelectionService takes longest in

the second call, where the system needs to select the best suited caregivers to aid the patient in

the current situation.

Figure 2.11 visualizes the performances of the Cached SCB as discussed in Section 2.3.6.3, com-

pared to the normal SCB. The graph shows the time needed for both buses to execute 15 successive

calls. Thus, the x-axis can be seen as a timeline. Note that the warm-up period was not omitted

to investigate the performance of the cache over time. At first, the cached SCB is less efficient,

because additional reasoning needs to be performed to select the dominant parts of data that

should be cached. After a few misses in the cache, only hits occur and the needed time declines

to less than 1 millisecond. The normal SCB also starts performing better after a few calls, this is

due to the performed optimizations inside the reasoner. Eventually the time spent in the Cached

SCB gets down to less than one millisecond.

2.4.2 Media

The following sections describe the realization of the media use case and give a general overview,

a description of the used ontology, an overview of the created Services and Adapters and finally

an evaluation of the created system.
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their observation through an IoT sensor gateway to the MASSIF platform.

2.4.2.1 General Overview

The general idea behind the media use case is elaborated below, or more specifically the Real-

time Automation of Media Production (R.A.M.P.) project. Both a visual radio and conference use

case have been designed, however only the radio case will be elaborated upon. The idea behind

both cases is equal: the studio or conference room has been equipped with multiple ubiquitous

devices, producing contextual data continuously. Combining these with background knowledge

allows to infer high-level knowledge to control various cameras and video overlays. A mapping of

the created system to the MASSIF platform is depicted in Figure 2.12.

2.4.2.2 Radio

The radio scenario aims at providing visual radio with interactive content, based on the subject of

the radio show or the played song in an automated manner, with minimal input from the DJ. The

MASSIF platform is the brain of the designed system. It captures and integrates all available data

regarding the show and the events inside the studio. The different triggers contain the activity

of each microphone, the status of the played songs and commercials, information about certain

detected keywords and the configuration of the studio and the cameras. These triggers result in
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Figure 2.13: Import schema of the used ontology. The external imported ontologies are depicted in grey.

the selection of the best suited camera or the activation of certain visual overlays.

2.4.2.3 The Ontology

The created radio ontology makes use of existing ontologies, as shown in Figure 2.13. The used

ontologies are:

• The Music Ontology11 describes music related concepts.

• Friend of a Friend12 (FoaF) defines people-related terms.

• Sioc Core Ontology13 is an ontology for describing the information in online communities.

• The vCard Ontology14 describes electronic business cards. They contain names, addresses, phone

numbers, email addresses, etc.

• The Time ontology15 describes the temporal content.

Table 2.4 summarizes the metrics of the proposed ontology.

2.4.2.4 Designed Adapters

To allow extracting useful information from the data originating from multiple sources, the data

is first semantically annotated in one of the various created Context Adapters.

• The CommercialAdapter receives data describing the start and the stop of a commercial and

enriches it to the semantic model.

11http://musicontology.com/
12http://xmlns.com/foaf/spec
13rdfs.org/sioc/ns
14http://www.w3.org/2006/vcard/ns-2006.html
15http://www.w3.org/TR/owl-time
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Table 2.4: Ontology metrics for the used ontology in the media use case.

#Axioms 4989

#Logical Axioms 1582

#Individuals 109

#Classes 247

#Object Properties 384

#Data Properties 203

DL Expressivity SHOIQ(D)

• The TrackAdapter annotates data regarding the start and stop of a music track.

• The MicrophoneStatusAdapter receives data describing the microphone activity of one of the

speakers. This alternates between active and inactive.

• The KeywordAdapter receives the detected keywords during the show and enriches the data.

The keywords are detected through the use of speech recognition. The detector listens for a list

of keywords that have been extracted from the DJ preparation. The DJ prepares a document a

few minutes before the start of the show, containing a summary of the various topics handled

during the show.

• The ManualDirectorAdapter is used for the semantic annotation of the data resulting from the

overruling mechanism allowing to show a specific person. This is further explained in Sec-

tion 2.4.2.6.

2.4.2.5 Specific R.A.M.P. Services

The various Services react on the received data and decide to manipulate the cameras or visualize

additional data if necessary. Each Service reasons on the integrated data and generates a Sequence

of shots that could be shown in the video stream. The creation is based on some precondition, e.g.,

when the DJ’s microphone is active. Semantic Web Rule Language (SWRL)-rules [53] are used to

create these Sequences. Listing 2.8 shows this first type of rules in (1). The use of rules allows

easy adaptation of the automated process. The rule creates a Sequence when the microphone of

the DJ is active.

Listing 2.8: SWRL-rule examples

(1) Microphone(?m),capability(?m,DJ),unitState(?m, On)
-> Sequence(Sequence_dj)

(2) Track(?t),capability(?g,MainGuest)
-> member(Sequence_dj ,Shot1),show(Shot1 ,?g)

A second type of rule in (2) generates Shots to be shown in the Sequence. It shows how the

Shot is added to the created Sequence. The Shot can show the main guest and can only be added

if there is such a guest. The separation of the two types of rules allows multiple combinations in
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each Service, where multiple rules of each type can be active. When an event arrives at one of the

Services, the reasoner retrieves all instances of the type Sequence and Shot and their attributes,

leaving the creation of the Sequences and Shots up to the reasoner.

The created Services are elaborated below:

• The Select Speaker Service gathers all information regarding the microphone activity, the con-

figuration of the room and the information of who is sitting on which seat. Combining the low-

level microphone activity with the room configuration allows to determine which exact person

is speaking. Note that only the microphone activity arrives as an event at run time, the room

configuration and the profile information is loaded into the ontology at startup. Based on the

defined rules, the outcome of the reasoning task determines who should be selected to show.

• The Decide Camera Service captures the possible shots, e.g., from the Select Speaker Service and

determines what the best suited cameras and camera positions are to show a given person. The

service loads the camera configuration at startup, stating the possible presets for each camera.

The presets define which seats can be shown with a given certainty and quality. The Decide

Camera Service will use reasoning to determine the best camera preset for a specific shot in a

selected sequence. The sequence gets selected based on its priority. When a sequence of shots

arrives with a higher priority, the current sequence will be interrupted and the new sequence

will be shown. To provide fluent camera switching towards the viewer, the service will make

sure that the same camera with a different preset is never selected sequentially. If this would

be the case, the viewer would witness the repositioning of the camera. Therefore, after the

selection of a new camera shot, the service will wait until the repositioning has finished before

switching shots. Reasoning is performed to enable the camera selection which facilitates fluent

camera positioning.

• The Decide Overlay Service captures the various activities in the studio and selects the correct

overlay based on those activities. For example, different overlays are shown based on the fact

that someone is speaking, a keyword has been detected or a song is playing.

• The Commercial Service contains all the information regarding the played commercials. It pro-

vides rules that can specify how to react on the starting or stopping of a commercial. These

rules define who should be shown in case of the described event.

• The Song Service captures the information about the played songs. The rules can define how to

react when a song is started or stopped.

• The Keyword Service is a bit different since it does not allow any manipulation through the use

of rules. It receives a spoken keyword as input and will determine which overlay should be

shown upon detecting the keyword. This means that the outcome cannot be adapted.

2.4.2.6 Reasoning Manipulation

To allow control over the automated video composition, a visual Rule Adapter is provided which

allows end users to adapt the reasoning decisions in the Services.
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Figure 2.14: User interface for the adaptation of the rules by non-technical users.

The rules in each Service can be adapted to manipulate the automated process. The manip-

ulation of the rules has been abstracted, eliminating the need for the end user to have specific

knowledge regarding rules or the ontology. Each Service provides high-level generic rules, which

can be made more specific. The provided rules are based on the possible events, during the show

or conference. As shown in Figure 2.14, a possible rule might be the fact that a track starts play-

ing and multiple predefined actions can be chosen for that fact. Listing 2.9 shows an example of

a high-level rule with the possible event as the antecedent in (2) and the predefined actions as

consequences in (5) and (7).

Listing 2.9: High-level rule example

(1) {"description": "A track starts playing",
(2) "antecedent": {
(3) "rule": ["Track(?t), q:isActive(?t,true) -> Sequence(Sequence_Song)"

]},
(4) "consequences": [
(5) {"subRule":"Track(?t), capability(?guest, MainGuest)

-> member(Sequence_Song , Shot1), show(Shot1, ?guest)",
(6) "description":"Show the main guest"},
(7) {"subRule":"Track(?t), capability(?dj, DJ)

-> member(Sequence_Song , Shot2), show(Shot2, ?dj)",
(8) "description":"Show the DJ"}]}

The descriptions in (1), (6) and (8) show how the rules are mapped to readable sentences,

alleviating the non-technical user from the technical details.

The antecedent and the consequences contain a (sub)rule, which is a valid SWRL-rule. When

the end user selects one (or more) of the predefined consequences, the antecedent rule (3) and

the selected subrules (5) or (7) are added to the ontology, allowing the reasoner to incorporate

the users preferences.

To provide the viewer a more natural experience, additional properties can be set.

• Priorities: Since multiple rules can be activated at the same time, the video composition

can be fine-tuned by specifyingwhich rules have a higher priority than others. For example,

the fact that the DJ is speaking might be more important than the fact that a track starts

playing.

• Randomness: As depicted in Figure 2.14, multiple actions (subrules) can be selected for one

antecedent. The order in which these actions occur can be specified. However, one can add

a randomness factor to mix up the order and provide a more natural flow.

• Timing: The time period each camera shot is selected, can be specified. For example, one

could opt to capture the DJ longer than his guests.
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The Decide Camera Service takes all these options into account when deciding what to show and

when to show it. When a high-priority Sequence arrives, the current camera shot should be inter-

rupted, even when the specified timing has not been passed.

2.4.2.7 Reasoning Overruling

A Manual Director tool was designed to explicitly overrule the automatic camera selection. This

provides the end users control over the automated process. Through the use of theManual Director

tool, one can manually select the seat that should be captured on camera. This overrules the

selection made by the automated reasoning process. A special Context Adapter can enrich this

data and directly create a shot sequence of one shot with the highest possible priority. This shot

sequence will be captured by the Decide Camera Service. This Service will show the desired seat

directly since this sequence has the highest possible priority. In the manual director, it is possible

to define how many seconds the manual director should overrule the system, which corresponds

to the time period a shot should be shown in a shot sequence. After the defined period of time,

the automatic selection of shots continues.

2.4.2.8 Results

To evaluate the performance of the platform in the described use case, the time the system needs

to coordinate a typical radio show was evaluated. Since this coordination should be visually ap-

pealing, the system should react within 100 milliseconds. According to Card et al. [54], a delay of

100milliseconds is not troublesome for the human perception. The show consists of the following

events:

1. The DJ turns on his microphone and talks for 5 seconds.

2. A special keyword is detected.

3. The DJ turns off his microphone.

4. A new track starts playing

5. The track stops playing.

6. A commercial starts playing.

7. The commercial stops.

The scenario was evaluated 35 times. The first three and last two results were dropped to

eliminate the influence of the warm-up and cooling down period. The averages are calculated

over the remaining 30 iterations. The evaluation was done on a Ubuntu 14.04 server with an Intel

Xeon CPU E5520 (16 cores) @ 2.27GHz with 12 GB of memory.
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Table 2.5: An overview off all average processing times for each component in each system call. The

averages (µ) and the standard deviation (σ) are both given in milliseconds.

Mic Keyword Mic Track

On Detected Off Start

µ(ms) σ(ms) µ(ms) σ(ms) µ(ms) σ(ms) µ(ms) σ(ms)

Gateway <1 <1 <1 <1 <1 <1 <1 <1 …

MatchingService 0.31 0.46 0.38 1.00 0.23 0.42 0.38 0.49 …

MicrophoneAdapter 1.85 0.82 - - 1.81 0.83 - - …

KeywordAdapter - - 1.58 0.57 - - - - …

TrackAdapter - - - - - - 1.50 0.57 …

CommercialAdapter - - - - - - - - …

SCB-0 0.46 0.50 0.42 0.49 0.42 0.49 0.50 0.50 …

SCB-1 0.58 0.49 - - 0.54 0.50 0.69 0.46 …

SelectSpeakerService 13.92 7.52 - - 11.27 2.30 - - …

SongService - - - - - - 13.81 2.67 …

CommercialService - - - - - - - - …

KeywordService - - 1.23 0.50 - - - - …

DecideCameraService 18.27 3.61 - - 2.46 0.63 20.92 8.13 …

DecideOverlayService 1.00 <1 1.02 <1 1.08 0.47 1.46 0.50 …

Track Commercial Commercial

Stop Start Stop

µ(ms) σ(ms) µ(ms) σ(ms) µ(ms) σ(ms)

… <1 <1 <1 <1 <1 <1

… 0.31 0.46 0.19 0.39 0.23 0.42

… - - - - - -

… - - - - - -

… 1.65 1.00 - - - -

… - - 1.50 0.57 1.88 0.97

… 0.69 0.72 0.42 0.49 0.42 0.57

… - - 0.81 0.39 - -

… - - - - - -

… 12.23 2.55 - - - -

… - - 13.31 3.11 9.92 1.47

… - - - - - -

… 1.12 0.51 20.62 5.37 - -

… 1.19 0.62 - - - -

Table 2.5 presents the overall average times for all components in each call. It is clear that

the Services have the greatest impact on the system, since these components perform reasoning.

Figure 2.15 visualizes the average time spent in each Service in each step of the scenario. The

other components have negligible impact and have thus been omitted. It shows that the Decide

Camera Service needs about 20 milliseconds when the microphone gets turned on, a track starts

or when a commercial starts. However, when the microphone is turned off, only a small fraction

of time is spent in the Decide Camera Service. This is due to the fact that the system is configured

(through the use of the rules) to show an overview camera shot when nobody is speaking. The

overview shots do not change and are cached for performance measures. In the other scenario

steps (Keyword detected, Track stops and Commercial stops), there is no camera activity, because

these Services have been configured not to manipulate the cameras as a results of its incoming

triggers. Note that this can be easily changed by updating the rules. It is notable that the Decide
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Figure 2.15: Evaluation results of the designed Services for the R.A.M.P. use case. The scenario consist of

seven calls, which are explained in the beginning of this Section.

Overlay Service is quite efficient. This is due to the fact that most of the overlay extraction has

been done as a preprocessing step. During the show this is only a simple look-up.

Furthermore, it is clear that the system is efficient and causes a maximum delay of less than

35 milliseconds. This is more than acceptable, since a delay of less than 100 milliseconds is not

troublesome for the human perception [54]. It is important for visual radio that delays are mini-

mized as much as possible to provide a fluent flow to the end user. The high performance results

in a scalable platform that enables the possibility for multiple concurrent scenarios.

2.5 Discussion

We have presented the MASSIF platform, a platform that can successfully enable dynamic and

high-level coordination between IoT services. Through two use cases, we have shown that the

platform can efficiently handle generated IoT data and also allows to perform complex reasoning.

However, there are some known limitations that will be addressed in our future work.

MASSIF is an event-based system, in the sense that it can perform advanced reasoning on

event data. Processing of continuous flows of streaming data is currently not the focus of MASSIF.

Examples of such streaming data are Facebook and Twitter streams or current measurements

of streaming sensors. Each of these streams would be annotated by its own Context Adapter.

Currently a single adapter can annotate more than 100 messages per second, as presented in

Table 2.3 and 2.5. However, more than 500messages per second would flood the Context Adapter.

Since each component can run on a separate node of a processing cluster, the rest of the system

might not suffer from this congestion. Once the data is annotated, the Services need to process the

data, these can again congest if the arrival rate is higher than the processing rate. Similarly, if the
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MASSIF platform is deployed in a distributed fashion, the rest of the platform will not be hindered

when one service congests, at least if they are not dependent on the outcome of the congested

service. One way to mediate this congestion is to subscribe the filter rules, which indicate the data

the services will consume, more intelligently. One could opt to filter most of the data in the SCB,

limiting the data arrival rate in the services. The uptake of stream reasoning is a high priority in

our future work. However, current stream reasoning systems do not support complex reasoning.

A second limitation is the use of the tag in the low-level sensor data. In the presented use

cases, the sensor integration is supported by the DYnamic, Adaptive MAnagement of Networks

and Devices (DYAMAND) platform [55], which was developed at the IBCN16 research group. The

DYAMAND platform allows the detection and integration of sensors and devices. It utilizes amodel

to make a distinction between sensors. The tag is a result of this model. Similar functionality

could be offered by mapping the internal model used by other sensor gateways on the tags. In

the future, we wish to offer an API to sensor (gateway) developers that allows them to request the

available tags in the system. These tags would be accompanied by a human-readable description.

This would allow these developers to choose the appropriate tags for the data they send to the

platform. Offering such an API enables the integration of data into the platform that has not

been semantically annotated in an easy and straightforward way. When the data does not have

a tag, it is filtered by the gateway and thus not processed by the MASSIF Platform. In the future,

we wish to make the Matching Service more intelligent by incorporating machine learning and

text analysis algorithms that allow to automatically process the incoming data and choose the

most appropriate Context Adapter. As such, the platform would be able to handle data that is not

tagged.

2.6 Conclusions & Future Work

The number of connected devices will know a rapid increase due to the rising popularity of the IoT.

The need to capture, transform and process the produced data by these devices grows. Moreover,

the number of services processing the produced data will also increase.

In this paper, the MASSIF platform is presented. It allows semantic annotation of IoT data and

the high-level coordination between semantic IoT-services. The platform is fully data-driven and

by representing the data semantically, Services can indicate their input data on an abstract level.

Each Service can process the received data and share its gained knowledge with other Services

through the use of the Semantic Communication Bus. This allows the creation of data-driven

workflows that can fulfill complex reasoning chains. By defining their input data, Services operate

on a subset of the available data, achieving more efficient reasoning. The applicability of the

platform has been shown by presenting two concrete use cases: an eHomeCare case and a media

case. The platform has also been thoroughly evaluated by means of the same two use cases.

These use cases demonstrate the performance of the platform. Furthermore, they indicate that

the platform can be extended to cope with additional data producers and new Services to provide

16https://www.ibcn.intec.ugent.be/
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extra processing capabilities.

In our future work, stream reasoning techniques will be incorporated for the efficient pro-

cessing of data streams for less complex reasoning scenarios. To be able to annotate unknown

sensor data, machine learning techniques will be investigated enabling the platform to learn how

to annotate unknown data. Furthermore, load balancing techniques and automated duplication

of the Services will be investigated to provide a truly scalable system.
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3
Streaming MASSIF: Cascading Reasoning for

Efficient Processing of IoT Data Streams

IoT data is often very volatile, however, there is still a mismatch between expressive reasoning

and volatile data. The data frequency is often too high to enable traditional reasoning techniques.

In this chapter, we investigate a cascading reasoning approach, consisting of various layers of

processing. The lower layers consist of low complexity processing, such that they can handle large

amounts of data. When going up in the hierarchy of layers, the complexity of processing rises and

the size of data decreases as each layer only selects the relevant parts of the data. This allows to

perform expressive reasoning in the top layers. This chapter extends the platform from Chapter 2,

by allowing services to subscribe using high-level ontological concepts to data that is also very

volatile. Furthermore, we define how temporal dependencies within the data can be detected.

The platform in Chapter 2 was not able to handle data streams, nor was it able to model temporal

dependencies between the data. The platform from Chapter 2 is extended by two additional layers

in order to efficiently process volatile data streams and detect temporal dependencies. Chapter 4

is an optimization of one of the lower RSP layers of the cascading reasoning approach. Chapter 5

can be utilized to efficiently abstract the events to high-level concept when dealing with large

knowledge bases. This chapter investigates Research Question 2: “Can expressive reasoning be

performed over highly volatile data streams?” and validates Hypothesis 2: “Using a cascading

reasoning system will improve the efficiency of expressive OWL 2 DL reasoning over volatile data

streams, enabling to process up to hundreds of events per second.”.

? ? ?
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Abstract In the Internet of Things (IoT), multiple sensors and devices are generating heteroge-

neous streams of data. To perform meaningful analysis over multiple of these streams, stream

processing needs to support expressive reasoning capabilities to infer implicit facts and tempo-

ral reasoning to capture temporal dependencies. However, current approaches cannot perform

the required reasoning expressivity while detecting time dependencies over high frequency data

streams. There is still a mismatch between the complexity of processing and the rate data is

produced in volatile domains. Therefore, we introduce Streaming MASSIF, a Cascading Reason-

ing approach performing expressive reasoning and complex event processing over high velocity

streams. Cascading Reasoning is a vision that solves the problem of expressive reasoning over

high frequency streams by introducing a hierarchical approach consisting of multiple layers. Each

layer minimizes the processed data and increases the complexity of the data processing. Cascad-

ing Reasoning is a vision that has not been fully realized. Streaming MASSIF is a layered approach

allowing IoT service to subscribe to high-level and temporal dependent concepts in volatile data

streams. We show that Streaming MASSIF is able to handle high velocity streams up to hundreds

of events per second, in combination with expressive reasoning and complex event processing.

Streaming MASSIF realizes the Cascading Reasoning vision and is able to combine high expressive

reasoning with high throughput of processing. Furthermore, we formalize semantically how the

different layers in our Cascading Reasoning Approach collaborate.

3.1 Introduction

Due to the rise of the Internet of Things (IoT) and the popularity of Social Media, huge amounts

of frequently changing data are continuously produced [1, 2]. This data can be considered as un-

bounded streams. In order to extractmeaningful insights from these streams, they should be com-

bined and integrated with background knowledge [3]. For example, in the Smart City of Aarhus [4],

sensors have been integrated intomultiple aspects of the city: traffic sensors to measure the traf-

fic density, sensors to capture the occupation of parking spots, and pollution sensors to measure

the pollution values over the city. Since the sensory data typically only describe the sensor read-

ings, it needs to be combined with additional data, e.g., the type of measurement linked to the

sensor and the location of the sensor. Combining streams and integrating background knowledge

introduces more context and ensures more accurate results. Semantic Web technologies proved

to be an ideal tool to fulfill these requirements [5–7]. Ontology languages, such as Web Ontology

Language (OWL), allow one to model a certain domain and formally specify its domain knowledge.

Expressive reasoning and Complex Event Processing (CEP) techniques allow one to extract implicit

facts from the streams, enabling meaningful analysis [8–10]. Expressive reasoning, such as De-

scription Logic (DL) reasoning [11], which can be used to reason about ontology models, allow one

to infer implicit facts conform to the domain knowledge defined in the model. We focus on DL
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reasoning, as it is a web standard and widely adopted.

For example, a street can be considered to be a ‘high traffic street’ when there have been at

least two high traffic observations and each type of street has other thresholds and requirements

in order to accurately label an observation as a high traffic observation. In order to accurately

interpret the traffic stream, a well-defined background model is necessary. The more accurately

one wants to define its domain, the more expressive the required reasoning has to be to correctly

interpret the domain. However, higher expressivity of reasoning requires higher complexity of

processing [9]. If we want to detect decreasing levels of traffic, we need to detect a temporal

relation between low traffic observations and high traffic observations. More specifically, we need

to detect when high traffic observations are followed by low traffic observations within a certain

amount of time. Furthermore, we need to be able to filter out only those traffic updates going

from high to low occurring in the same location.

RDF Stream processors (RSPs) [12–14] tackle the problem of combining various streams, in-

tegrating background knowledge and processing the data. They focus on efficiency of processing

streams and only allow low expressive reasoning or no reasoning at all. Existing work on ex-

pressive DL reasoning has focused on static [15] or slowly changing [16] data. The problem of

performing expressive reasoning over high velocity streams is, however, still not resolved [17].

Furthermore, temporal DL tends to become easily undecidable [18], making it even harder to per-

form temporal reasoning over high velocity streams. Through the use of CEP engines, temporal

dependencies can be defined in various patterns.

However, CEP engines struggle to integrate complex domains, which makes it difficult to de-

fine complex patterns [10].

Stuckenschmidt et al. [9] envisioned the possibility to trade off complexity of processing

and data change frequency in order to perform expressive reasoning over high velocity streams.

They named this vision Cascading Reasoning, presenting various layers of processing, each with

different complexities. To the best of our knowledge, this vision inspired several RSP works, but

this paper reports the first attempt to realize the vision and offers blueprints for practitioners

willing to exploit it in alternative implementations.

To allow the development of services that can provide intelligent decision making based on

heterogeneous streaming data, we set the following objectives:

1. Combine various data streams: To make meaningful analysis we need to combine streams

from various sensors.

2. Integrate background knowledge: Since the sensory data typically only describe the sensor

readings, we need to be able to link additional data, e.g., the type of measurement linked

to the sensor and the location of the sensor.

3. Integrate complex domain knowledge: In order to correctly interpret the domain, domain

knowledge needs to be integrated. The more accurate the domain definition, the more

complex the domain knowledge and the higher the required reasoning expressivity.

4. Detect temporal dependencies: Understanding the temporal domain is often necessary
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when processing streaming data, as many events in data streams have temporal depen-

dencies.

5. Easy subscription: To allow service to subscribe to the data of their interest, they should

be able to define their information need in a straightforward and declarative manner.

To tackle the challenges of performing expressive reasoning and detecting temporal depen-

dencies over high velocity streams, we introduce Streaming MASSIF, a layered Cascading Reason-

ing realization. Streaming MASSIF allows IoT services to subscribe to high-volatile streams using

high-level concepts and temporal dependencies, which can be evaluated using expressive reason-

ing techniques. This allows one to tackle highly complex domains, while keeping the subscription

definitions simple. For example, since more and more employees have flexible working hours,

we would like to create a service that notifies them when it is a good time to go home. More

specifically, that is when traffic near their offices starts decreasing. This notification should only

be considered if the office allows flexible working hours. To enable this, multiple streams need to

be combined and integrated with background knowledge, complex domain knowledge needs to

be considered in order to correctly interpret the observations, and temporal dependencies need

to be detected to observe the decrease in traffic.

Our Cascading Reasoning approach combines RDF Stream Processing (RSP), expressive DL rea-

soning, and CEP, in order to perform expressive and temporal reasoning over high volatile streams.

We seamlessly combine DL and CEP, enabling the definition of patterns using high-level concepts.

This enables the use of complex domain models within CEP and integrates a temporal notion in

DL. The integration of RSP tackles the high velocity aspect of the streams. Furthermore, we in-

troduce a query language that bridges the gap between stream processing, expressive reasoning,

and complex event processing. This allows the service to easily define the data they would like to

subscribe to. Furthermore, we formalize semantically how the different layers collaborate.

We show that Streaming MASSIF is able to handle expressive reasoning and complex event

processing over high velocity streams, up to hundreds of events per second.

The paper is structured as follows: Section 3.2 describes the related work. Section 3.3 de-

scribes all the required background knowledge to understand the remainder of the paper. Sec-

tion 3.4 introduces the Streaming MASSIF platform, while Section 3.5 describes the implications of

combining layers more formally. Section 3.6 details the evaluation of our platform. Section 3.7 dis-

cusses the results, the limitations of the platform, and how our platform compares to the state of

the art. The conclusion and our outlook and direction for future work is elaborated in Section 3.8.

3.2 Related Work

We now elaborate on the related work in the literature and the drawbacks of these previous ap-

proaches.

EP-SPARQL [13] is an RSP engine that focuses on event processing over basic graph patterns

using Allen’s Algebra for detecting temporal dependencies. However, the reasoning expressivity

is low (RDFS) and the definition of event patterns is complex.
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StreamRule [19] is a two-layered platform that combines RSP with Answer Set Programming

(ASP) [20]. However, there is no support for additional layers such as CEP and the two layers are

not integrated in a unifying query language for easy usage.

Ali et al. [21] proposed an IoT-enabled communication implemented on StreamRule that per-

forms event-condition-actions rules in ASP. This allows one to define action rules on specific events

detected in the stream.

In the CityPulse project [22], the combination of RSP, CEP and expressive reasoning through

ASP is presented. The combination of RSP and ASP is supported by StreamRule. In order to handle

CEP rules, the system can be extended programmatically, whichmakes the definition and overview

of event patterns complex.

To the best of our knowledge, existing Semantic Complex Event Processing (SCEP) solutions

focus on enriching events with semantic technologies.

Teymourian et al. [10] proposed a knowledge-based CEP approach where events are enriched

using external knowledge bases. The enrichment is defined using multiple SPARQL queries. How-

ever, the system is event-based, there is no support for streaming data, and reasoning is only

provided in the external knowledge base that is used for the event enrichment. Thus, no reason-

ing on the events themselves is possible.

Taylor et al. [23] proposed a SCEP approach that allows one to generalize query definition for

CEP engines, enabling interoperability. This is done by defining the event processing operators

as ontology concepts. These generalized queries can then be translated into a target language,

for example in Event Processing Language (EPL). However, reasoning and streaming data are not

taken into account.

Gillani et al. [24] extended the SPARQL query language to include CEP operators. However,

reasoning is not taken into account. The benefits of decoupling expressive ontological and tem-

poral reasoning through the use of CEP has been shown in Tommasini et al. [25] and Margara et

al. [26].

The MASSIF platform [27] is an event-driven platform IoT platform, allowing service subscrip-

tion using high-level ontological concepts. MASSIF facilitates the annotation of raw sensor data

to semantic data and allows the development and deployment of modular semantic reasoning

services which collaborate in order to allow scalable and efficient processing of the annotated

data. Each one of the services fulfills a distinct reasoning task and operates on a different on-

tology model. The Semantic Communication Bus (SCB) facilitates collaboration between services.

Services indicate in which types of data they are interested in, referring to high-level ontology

concepts. The SCB can coordinate the data on a high-level through the use of semantic reasoning.

Although MASSIF is an event-driven platform, it processes one event at a time and is thus not

able to process streams nor capture temporal dependencies between events.

3.3 Background on Cascading Reasoning

In this section, we introduce the necessary knowledge to understand the content of the paper.

First, we introduce the original cascading reasoning vision and all the frameworks contained in
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its layers.

3.3.1 The Original Cascading Reasoning Vision

Stuckenschmidt et al.’s vision of Cascading Reasoning [9] consisted of four layers: Raw Stream

Processing, RDF Stream Processing (RSP), Logic Programming (LP), and Description Logics (DL),

as depicted in Figure 3.1. Starting from the bottom, each of the layers increases in complexity of

processing and reduces the amount of data that is forwarded to the next level. By reducing the

data in each layer, higher complexity layers receive fewer data and can still be utilized efficiently.

Description Logic Programming

Description Logics

RDF Streams Processing

Raw Stream Processing

Rewriting

Querying

Reasoning

Complexity

PTime
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Figure 3.1: Cascading Reasoning.

3.3.1.1 Raw Stream Processing

This application domain comprises the bottom layer of the Cascading Reasoning pyramid and

refers to those systems capable of processing large amounts of information in a timely fashion.

Raw Stream processing or Information Flow Processing (IFP) [28] describes how to timely

process unbounded sequences of information, also called streams. IFP systems are divided into

Data Stream Management Systems (DSMS) and Complex Event Processing (CEP) engines.

DSMSs extend traditional Data Base Management Systems to answer continuous queries that

are registered and continuously evaluated over time.

CEP Engines [29] are able to capture time dependencies between events. Complex events can

be defined through event patterns consisting of various event operators. Examples of these event

operators are the time-aware extensions of boolean operators (AND, OR) and the sequencing of

events (SEQ). In the following, we present a list of the most prominent CEP operators, guards, and

modifiers:

• AND is a binary operator: A AND Bmatches if both A and B occur in the stream and turns true

when the latest of the two occurs in the stream. In Figure 3.2, A AND B matches at t2 in both

Stream 1 and Stream 2.

• OR is a binary operator: A OR B matches if either A or B occurs in the stream. In Figure 3.2, A

OR B matches at t1 in both Stream 1 and Stream 2.
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• SEQ is a binary operator that takes temporal dependencies into account. A SEQ B matches

when B occurs after A, in the time-domain. In Figure 3.2, A SEQ B matches at t3 in Stream 1

and at t2 in Stream 2.

• NOT is a unary operator: NOT A matches when A is not present in the stream. NOT A matches

at t1 in Stream 1 and t2 at Stream 2.

• WITHIN is a guard that limits the scope of the patternwithin the time domain. A SEQ AWITHIN

2s matches in Figure 3.2 at t3 in Stream 2 and has no match in Stream 1.

• EVERY is a modifier that forces the re-evaluation of a pattern once it has matched. EVERY A

SEQ B matches at t3 in Stream 1 and at t2 & t5 in Stream 2 for (A2, B2) and (A3, B2).

Figure 3.2: Two example streams to illustrate the various event operators. Each of the streams produces

events of the type A or B at different time steps, indicated by ti .

For example, we can define a decreasing traffic observation as every high traffic observation

followed by a low traffic observation within a certain amount of time, with the following event

pattern:

DecreasingTraffic = EVERY HighTraffic SEQ LowTraffic WITHIN 10m.

However, it is not straightforward in CEP to define what a HighTraffic or LowTraffic exactly is.

For a comprehensive list of operators, we point the reader to Luckham [29]. Note that more

advanced temporal relations exist, such as the ones presented in Allen’s interval algebra [30].

3.3.1.2 RDF Stream Processing

RDF Stream Processing (RSP) [3] is an extension of IFP that can cope with heterogeneous data

streams by exploiting semantic technologies. Resource Description Framework (RDF) streams are

semantically annotated data streams encoded in RDF. RSP-QL [31] is a recent query language for-

malization that unifies the semantics of the existing approaches with a special emphasis on the

operational semantics. In the following, we introduce some of RSP-QL definitions that are relevant

to understand the next sections:
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Definition 1. An RDF Stream S is a potentially infinite multiset of pairs (Gi , ti), with Gi an RDF

Graph and ti a timestamp:

S = (g1, t1), (g2, t2), (g3, t3), (g4, t4), . . . .

Since a stream S is typically unbounded, a window is defined upon the stream in which the

processing takes place.

Definition 2. A Window W (S) is a multiset of RDF graphs extracted from a stream S. A time-

based window is defined through two time instances o and c that are respectively the opening

and closing time instants of each window: W (o,c](S) = {(g, t)|(g, t) ∈ S ∧ t ∈ (o, c]}.

Note that physical windows, based on the number of triples in the window, also exist [12].

Definition 3. A time-based sliding windowW consumes a stream S and produces a time-varying

graphGW . W operates according to the parameters (α, β, t0): it starts operating at t0 , and it

has a window width (α) and sliding parameter (β).

We now introduce the concepts of time-varying graphs and instantaneous graphs. The former

captures the evolution of the graph over time, while the latter represents the content of a graph

at a fixed time instant.

Definition 4. A time-varying graph GW is a function that selects an RDF graph for all time in-

stants t ∈ T whereW is defined:

GW : T → {G|Gi anRDF graph}.

The RDF graph identified by the time-varying graph, at the time instant t, is called an instan-

taneous graphGW(t).

A dataset used within RSP-QL is defined as follows:

Definition 5. AnRSP-QL dataset SDS is a set consisting of an (optional) default graph andn named

graphs describing the static background data and m named time-varying graphs resulting from

applying time-based sliding windows over o ≤ m streams, withm,n ≥ 0.

Example 1. In our example, the SDS is defined as

SDS = {G0 =

Gsensors, (w1,W1(Straffic1)), (w2,W2(Straffic2)), ...(wn,Wn(Strafficn))}.

Gsensors describe the domain knowledge and the static data about the sensors such as their

kinds and their locations. Straffici describes the traffic observations and is windowed in Wi .

wi is the window name.

To be able to query the SDS dataset, we define an RSP-QL query:

Definition 6. An RSP-QL queryQ is defined as (SE, SDS, ET, QF) where



Streaming MASSIF 69

• SE is an RSP-QL algebraic expression;

• SDS is an RSP-QL dataset;

• ET is a sequence of time instants on which the evaluation of the query occurs;

• QF is the Query Form (e.g., Select or Construct)

3.3.1.3 Description Logic Programming

The reasoning application domain consists of the top two layers of the Cascading Reasoning pyra-

mid. It refers to systems capable of deriving implicit knowledge from the input data combined

with rules and domain models. The first reasoning layer in the original Cascading Reasoning vi-

sion was Logic Programs.

Logic Programs (LPs) are sets of rules of the form head← body that can be read as head

“if” body. The original vision of Cascading Reasoning referred to a specific fragment of LPs, called

Description Logic Programs (DLPs) [32], which consists of the intersection between Description

Logics and those LPs also expressible in First Order Logics. DLPs can be seen of an ontological

sub-language of DL that can be encoded in rules.

3.3.1.4 Description Logics

The popularity of OWL has led to the design of OWL2, defining the foundations of OWL2 DL reason-

ing.

Description Logics [11], the second reasoning layer of the Cascading Reasoning pyramid, are

the logical-based formalisms on which OWL2 DL has been built. We introduce the syntax of a

simplified DL, explaining the basic notions to understand the remainder of the paper. We refer the

reader to Horrocks et al. [33] for a more thorough description of the OWL2 DL logic (SROIQ)

and its semantics.

DL languages contain concepts namesA1, A2, . . . , role namesP1, P2, . . . and individ-

ual names a1, a2, . . . A role R is either a role name Pi , its inverse P−
i , or a complex role

R1 ◦ · · · ◦ Rn consisting of a chain of roles. Concrete roles (or data properties) are roles with

datatype literals (D) in the second argument. ConceptsC are constructed from two special primi-

tive concepts⊥ (bottom) and> (top) or concepts names and roles using the following grammar:

C ::= Ai|>|⊥|¬C|C1 u C2|C1 t C2|∃R1.C1|∀R1.C1|∃R1.D1|∀R1.D1.

Note that the two last concepts are called, respectively existential (∃) and universal (∀) quan-
tifiers.

A Terminological Box (TBox) T is a finite set of concept (C) and role (R) inclusion axioms of

the form

C1 v C2 andR1 v R2
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withC1 ,C2 concepts andR1 ,R2 roles. A concept equation (C1 ≡ C2) denotes that bothC1

andC2 include each other:

C1 v C2 andC2 v C1.

An Assertion Box (ABox)A is a finite set of concept and role assertions of the form

C(a) andR(a, b)

with C a concept, R a role, and a and b individual names. We call the concepts assigned to an

individual the types of the individual. A Knowledge baseK = (T ,A) combines T andA. I is

an interpretation forK. I is a model ofK if it satisfies all concept and role inclusions of T and

all concept and role assertions ofA. This can be written as I |= K.

OWL2 contains three profiles, each limiting the expressivity power in a different way, to ensure

efficiency of reasoning:

• OWL2 RL, which does not allow existential quantifiers on the right-hand side of the concept

inclusion, eliminating the need to reason about individuals that are not explicitly present in

the knowledge base. Furthermore, it does not allow quantified restriction, e.g., a minimum

number of roles, a maximum number of roles or exactly a specific number of quantified

roles. This profile is ideal to be executed on a rule-engine.

• OWL2 EL, which mainly provides support for conjunctions and existential quantifiers. This

profile is ideal for reasoning over large TBoxes that do not contain, among others, universal

quantifiers, quantified restrictions or inverse object properties.

• OWL2 QL, which does not allow, among others, existential quantifiers to a class expression

or a data range on the left-hand side of the concept inclusion. This makes the profile ideal

for query rewriting techniques.

Note that each of these profiles is a subset of OWL2 DL.

Example 2. In the ontology used to model our domain from our example in Section 3.1, we assign

each Office various Policies. Based on these Policies, an Office can be considered a FlexibleOffice

or not:

NoFixedHoursOffice ≡ Office u ∃hasPolicy.FlexibleHours,

NoFixedHoursOffice v FlexibleOffice,

StartEarlyOffice ≡ Office u ∃hasPolicy.StartEarly,

StartEarlyOffice v FlexibleOffice,

StopEarlyOffice ≡ Office u ∃hasPolicy.StopEarly,

StopEarlyOffice v FlexibleOffice.

To model the observations that capture the various sensor readings across the city, we use

the SSN Ontology [34]. We first model observations near flexible offices, and we then model ob-
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servations near flexible offices that also capture congestion levels:

FlexibleOfficeObservation ≡ Observation

u (∃observedFeature.(∃isLocationOf.FlexibleOffice))

CongestionFOObservation ≡ FlexibleOfficeObservation

u ∃observedProperty.CongestionLevel

We can now model for each type of street, which is located near a flexible office, when it

should be considered congested. With the congestion level defined as the number of detected

vehicles divided by the street length (in meters):

HighTrafficMainRoadNearFlexibleOffice ≡
CongestionFOObservation

u ∃observedProperty.MainRoad

u ∃hasLocation.Location
u ∃hasV alue > 0.025,

LowTrafficMainRoadNearFlexibleOffice ≡
CongestionFOObservation

u ∃observedProperty.MainRoad

u ∃hasLocation.Location
u ∃hasV alue < 0.01.

Note that similar constructions can be made for different types of streets and that all these

constructs are also subclasses of the concepts HighTrafficObservation or LowTrafficObservation.

Example 3. In Example 2, we havemodeled the TBox. Let us consider aminimal ABoxA describing

the office, the road, and their property:

Office(office), hasPolicy(office, pol1),

StopEarly(pol1),MainRoad(road),

CongestionLevel(prop), propertyOf(prop, road),

isLocationOf(road, office).

The observation capturing the current congestion level can be modeled as

Observation(obsi), observedProperty(obsi, prop),

hasV alue(obsi, 0.03).

By applying reasoning, we can infer fromK = (T ,A) that

K |= FlexibleOffice(office),

K |= FlexibleOfficeObservation(obs1),

K |= CongestionFOObservation(obs1),

K |= HighTrafficMainRoadNearF lexibleOffice(obs1),

K |= HighTrafficObservation(obs1).
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Figure 3.3: A generalization of Cascading Reasoning.

3.3.2 Cascading Reasoning Generalization

Since Stuckenschmidt et al.’s vision of Cascading Reasoningwas proposed, several new approaches

populated the Stream Reasoning state of the art [17]. We slightly generalize the vision such that

it is up to date with the latest developments within the Stream Reasoning domain.

The initial scope of reasoning frameworks was focused mainly on DL and DLP. Recently, tem-

poral logics, non-monotonic LPs and technique for reasoning about timewere proposed beside the

traditional Stream Reasoning research areas. In the future, we also imagine the integration of on-

line machine learning application, which already showed appealing results, and the combination

of deductive and inductive reasoning [35, 36].

In the original cascading reasoning pyramid, the role of RSP was limited to streaming data in-

tegration. Although this is utterly meaningful in combination with DL reasoning, data integration

is a much more general problem to investigate when data are continuously changing. Moreover,

RSP, but also stream processing, can support reasoning tasks (e.g., RSP under entailment or query

rewriting).

The updated and generalized cascading stream reasoning pyramid is depicted in Figure 3.3.

As in the original vision, it aims at presenting the trade-off between expressiveness and rate of

changes in the data.

We now detail each of the layers:

1. Stream Processing: At the lowest level, the data streams are processed. Different process-

ing techniques can be used accordingly to the levels above, e.g., which information integra-

tion technique is used (if any). This layer can implement stream processing techniques like

DSMSs and CEPs or use RSP when dealing with semantically annotated data. Moreover, this

level can also solve part of the analytic needs, since it is able to compute descriptive analysis

of the streaming data.

2. Continuous Information Integration: In order to achieve a high-level view on the stream-

ing data, we need an information integration layer that offers a homogeneous view over the

streams. The Continuous Information Integration layer combines data from heterogeneous

streams into a common semantic space by the means of mapping assertions that populate
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a conceptual model. Two approaches are then possible to access the data: (i) Data Annota-

tion (a.k.a. data materialization), i.e., data are transformed into a new format closer to the

information need (ii) Query Rewriting (a.k.a. data visualization), i.e., the information need is

rewritten into sub tasks that are closer to each of the original data formats.

3. Inference: In a cascading approach, an information need (IN) is formulated accordingly to

a high-level view of the data. To enable efficient IN resolution, we need an inference layer

that mediates the IN with domain-specific knowledge to the lower layers. Computational

tasks at this level have a high complexity. This reduces the volume of data this level can

actually process. Therefore, it is necessary to select, from the lower layers, the relevant

parts of the streams that this layer has to interpret to infer hidden data. Possible inference

implementations range from expressive reasoning, such as DL, ASP, metric temporal logic

(MTL), or CEP, to machine learning techniques such as Bayesian Networks (BN) or hidden

Markov models (HMM).

The original vision—which consists of raw streamprocessing, RSP, DL, and logic programming—

fits this more general view: the raw stream processing is contained in our Stream Processing layer,

RSP is contained in the continuous information integration layer, and DL & logic programming are

part of the inference layer.

3.4 Cascading Reasoning with Streaming MASSIF

In this section, we explain how we realized Cascading Reasoning with Streaming MASSIF. We in-

troduce the architecture of Streaming MASSIF and present a Domain Specific Language (DSL) that

allows one to target the different layers of the cascading approach.

3.4.1 Layer Design

In the following sections, we design a stream reasoning architecture that fulfills the Objectives and

fits the generalized Cascading Reasoning vision. As depicted in Figure 3.4b, our approach consists

of two layers that perform four tasks, starting from the bottom: (i) An RSP layer selects the parts

of the streams that are relevant. (ii) It also integrates data from different streaming and static

sources. (iii) An inference layer enriches the output of the previous layer by deriving implicit data

using DL reasoning. (iv) It also performs temporal reasoning via CEP on the inferred abstractions.

3.4.2 Architecture

As discussed in Section 3.2, MASSIF is an event-driven platform that processes one event at a time

and is, thus, not able to process streams nor capture temporal dependencies between events.

However, its layered architecture and the ability to perform service composition over high-level

concepts offer a good base to extend it into a Cascading Reasoning approach. We note that other
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Figure 3.4: Streaming MASSIF architecture and the alignment of the inference (consisting of the DL and CEP

layer) and stream processing layer with the event processing, abstraction, and selection modules.

platforms could have been used to realize our Cascading Reasoning approach; however, the lay-

ered architecture of MASSIF and enabled service subscription made it an ideal candidate.

To realize our cascading stream reasoning approach, two additionalmodules have been added

on the MASSIF platform, as depicted by the rounded blocks in Figure 3.4a, i.e., a Selection and Event

Processing Module. We named the resulting platform Streaming MASSIF. Compared to the original

MASSIF platform, the Selection Module allows one to handle streaming data and select only the

parts from the data stream that are relevant for further processing. These selections then can be

abstracted in the Abstraction Module. The Event Processing Module allows one to detect temporal

dependencies between events. Thus, the MASSIF platform allows services to subscribe to high-

level events. Streaming MASSIF allows services to subscribe to data streams, extract high-level

events, and detect temporal dependencies between those events. Furthermore, this can all be

declaratively defined in a unifying language, which is further elaborated in Section 3.4.3.

3.4.2.1 Selection Module

The Selection Module implements both the Stream Processing and the Continuous Information

Integration Layer of the Cascading Reasoning approach and selects, through RSP, those parts of

the RDF stream that are relevant. As depicted in Figure 3.4, the goal of this layer is to minimize

that data stream and select only those parts of the stream that are relevant for further processing.

We utilized YASPER [37], i.e., an RSP engine recently developed, that fully implements RSP-QL [31]

semantics and can consumes RSP-QL queries. YASPER, differently from C-SPARQL [12] or CQELS [14]

consumes time-annotated graphs instead of time-annotated triples. Only the selected data are

forwarded to the next module. Note that multiple RSP engines can optionally run in parallel, for
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Figure 3.5: Processing steps of the Streaming MASSIF Cascading Reasoning Approach.

example, to distribute the load of various queries or handle multiple data streams.

For example, at the bottom of Figure 5.6, a traffic observation data stream is visualized. As in

a realistic situation, the events in the stream only describe that they are observations (e.g., Obser-

vation(obs1)), that they observe a certain property (e.g., observedProperty(obs1,propX)) and that

a specific value has been observed (e.g., hasValue(obs1,0.03)). Note that these observations need

to be combined with background knowledge to figure out if the event was observing congestion

levels. Since we are only interested in traffic observations that can be considered high-traffic, we

select only the congestion level observations in the stream with a value above 0.03 or below 0.01,

as indicated in the domain knowledge. However, to determine that an observation is, in fact, a

congestion level, we need to integrate with static background data describing the sensors. We

also extract the information regarding the office near the location where the observation comes

from, so we can determine later if these are flexible offices or not. Listing 3.1 shows a query Q

that selects the relevant portion of the stream.

In Figure 5.6, this query will select Observation(obs1) and Observation(obs6) from the stream.

It will also add some additional data to the event, such as information regarding the road and the

offices that can be used in the next layer for the expressive reasoning step.

Example 4. (cont’d) One of the selected events describes the first observation in the stream:

Observation(obs1),

observedProperty(obs1, propX),

hasV alue(obs1, 0.03).
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In the Selection Module, it has also been enriched with the following data:

CongestionLevel(propX),

Office(office1),

MainRoad(road1),

isLocationOf(road1, office1),

StopEarly(pol1),

hasPolicy(office1, pol1).

Listing 3.1: Example of the RSP-QL Query used in the Selection Module.

C O N S T R U C T {

? o b s _ X a s s n : O b s e r v a t i o n .

? o b s _ X s s n : o b s e r v e d B y ? s e n s o r _ X .

? o b s _ X s s n : o b s e r v e d P r o p e r t y ? p r o p e r t y _ X .

? p r o p e r t y _ X a C o n g e s t i o n L e v e l .

? o b s _ X h a s V a l u e ? v a l u e .

? p r o p e r t y _ X i s P r o p e r t y O f ? f o i .

? f o i i s L o c a t i o n O f ? l o c .

? l o c h a s P o l i c y ? p o l . }

FROM NAMED WINDOW : t r a f f i c [ RANGE 5m , S L I D E 1m ] ON S T R E AM : T r a f f i c

WHERE {

? p r o p e r t y _ X a C o n g e s t i o n L e v e l .

? p r o p e r t y _ X i s P r o p e r t y O f ? f o i .

? f o i i s L o c a t i o n O f ? l o c .

? l o c h a s P o l i c y ? p o l .

WINDOW ?w {

? o b s _ X a s s n : O b s e r v a t i o n .

? o b s _ X s s n : o b s e r v e d B y ? s e n s o r _ X .

? o b s _ X s s n : o b s e r v e d P r o p e r t y ? p r o p e r t y _ X .

? o b s _ X h a s V a l u e ? v a l u e .

F I L T E R ( ? v a l u e > 0 . 0 3 | | ? v a l u e < 0 . 0 1 )

}

}

3.4.2.2 The Abstraction Module

The Abstraction Module implements the DL inference sub-layer. It receives the selected events

from the Selection Module and abstracts them to high-level concepts. The Abstraction Module

consists of a semantic publish/subscribe mechanism and allows the subscription to abstracted

events, through high-level concepts. Each service in the service module can subscribe to events

by defining event descriptions.

Technically, the AbstractionModule operates on an OWL reasoner, i.e., the HermiT [15] reasoner

(note that, due to the modularity of the platform, other reasoners can easily be plugged in). Each

time events have been selected in the Selection Module, they are added to the ontology in the

AbstractionModule. Through the use of reasoning, we checkwhich inferred types of the individuals

are the types that one of the services subscribed to. When these types are found, the abstracted
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events are constructed using the found types, the underlying event, and the processing time. The

abstracted event is then forwarded to those services that subscribed to the found types. Lastly,

the events are removed from the ontology ABox. When new events have been selected by the

underlying module, they are added to the ontology and the types of new events can be checked.

Example 5. (cont’d) The selected events from the Selection Module can now be abstracted ac-

cording to the defined ontology in Example 2. Through reasoning we obtain that

HighTrafficStreet(obs1),

HighTrafficMainRoadNearF lexibleOffice(obs1),

HighTrafficObservation(obs1),

F lexibleOffice(office1).

Let us assume that a service is interested in all HighTrafficObservations. The selected event,

enriched with the inferred types, is forwarded to that service or to its Event Processing Module.

3.4.2.3 The Event Processing Module

The Event Processing Module implements the temporal reasoning sub-layer. When event pro-

cessing is necessary, the Event Processing Module receives the abstracted events from the Ab-

straction Module. Each of the received abstracted events is checked if it matches an event pattern,

through the use of the Esper CEP engine (http://www.espertech.com/esper/). We choose Esper

since it supports the declarative language EPL. Note that, when multiple abstracted events are

inserted at once, they are first ordered according to their timestamp. We allow one to define ad-

ditional filter restrictions, such that the patterns can be matched on a fine-grained level.

In CEP, filter restrictions can be defined on the event values, e.g., Event A (speed = 45) has

the property speed with a value of 45, and one can restrict events to have speed values above

a certain threshold. Join restrictions can be defined over events, e.g., if each event type has a

location A (location = loc1) and B (location = loc1), then we can impose the restriction that Events

A and B should have the same location. We allow one to define additional queries to specify both

restrictions.

Example 6. (cont’d) Let us assume that the pattern defined in the Event Processing Module is

looking for all HighTrafficObservations followed by LowTrafficObservation within 10 min, which

detects decreasing traffic. This can be defined through the pattern:

EVERY HighTrafficObservation SEQ LowTrafficObservation WITHIN 10m.

We need to add additional restrictions to ensure that both the HighTrafficObservation and

low TrafficObservation occurred in the same street. This can be done by filtering on the location.

We know from Example 2 that each HighTrafficObservation should have a hasLocation relation.

Therefore, we can enforce that they should be linked to the same location. In Section 3.4.3, we

show how this can easily be defined.

http://www.espertech.com/esper/
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When filter restrictions have been defined, these restrictions are checked first before adding

the event to the CEP engine. When a join-restriction has been detected (e.g., the TrafficObser-

vations should have the same location), the bindings of those variables are used within the CEP

engine to perform the joins. When an event pattern matches, it is forwarded to the associated

service.

3.4.2.4 The Remaining Modules

TheMASSIF platformalso consists of an InputModule that serves as the entry point of the platform

and an Annotation Module, where raw data can be semantically annotated if necessary.

Finally, the Service Module receives the processed data and can perform additional analysis.

Through the Service Module, information needs formulated using our DSL (see Section 3.4.3) can

be issued to Streaming Massif. Therefore, services can subscribe to all underlying modules with

one query.

Listing 3.2: Syntax of the Streaming MASSIF DSL.

1 D S L −> N am e S p a c e * E v e n t D e c l * R S P Q L ?

2 E v e n t D e c l −> ‘ NAMED EVENT ’ E v e n t N am e ( A b s t r a c t E v e n t |

C o m p l e x E v e n t )

3 A b s t r a c t E v e n t −> ‘ AS ’ D L D e s c r i p t i o n

4 C o m p l e x E v e n t −> ‘ MATCH ’ ( M o d i f i e r ) ? E v e n t P a t t e r n ( G u a r d ) ? (

I F C l a u s e ) ?

5 E v e n t P a t t e r n −> E v e n t P a t t e r n E v e n t O p e r a t o r E v e n t P a t t e r n |

A b s t r a c t E v e n t | ‘ NOT ’ E v e n t P a t t e r n

6 I F C l a u s e −> ‘ I F ’ ‘ { ’ ( ‘ EVENT ’ A b s t r a c t E v e n t ‘ { ’ BGP ‘ } ’ ) * ‘ } ’

7 E v e n t O p e r a t o r −> ‘ AND ’ | ‘ OR ’ | ‘ SEQ ’

8 M o d i f i e r −> ‘ EVERY ’ | ‘ F I R S T ’ | ‘ L A S T ’

9 G u a r d −> ‘ WITH IN ’ Num ‘ ( ’ T I M E U N I T ‘ ) ’

10 T I M E U N I T −> ‘ s ’ | ‘m ’ | ‘ h ’ | ‘ d ’

11 E v e n t N am e −> S t r i n g

12 Num −> [0 −9]+

13 N am e S p a c e −> S P A R Q L P R E F I X S Y N T A X

14 D L D e s c r i p t i o n −> MAN CH E S T E R S Y N T A X

15 BGP −> S P A R Q L BGP S Y N T A X

16 R S P Q L −> RSP−QL S Y N T A X

3.4.3 A Domain Specific Language for Streaming MASSIF

In this section, we introduce a DSL that allows users to formulate information needs by using

the proposed Cascading Reasoning approach. In order to explain the DSL, we provide an example

of information need and we explain how each part of the query maps to the different module

described in Section 5.6.

Listing 3.2 describes the grammar of the proposed query language. Note that for conciseness

reasons, we did not incorporate the following sub-grammars:

1. DLDescription: The definition of the abstract event types is based on the Manchester syntax.

For more information regarding this syntax, we refer the reader to the Manchester W3C page
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Input

Module
Gateway

Context

Adapter

Context

Adapter

Context

Adapter

RSP

Engine

RSP

Engine

RSP

Engine

EP

Engine

EP

Engine

EP

Engine

Semantic

Publish/

Subscribe

Annotation

Module

Selection

Module

Abstraction

Module

Event Processing

Module

Service

C

Service

B

Service

A

Service

Module

Data Stream

Legend

MASSIF
Streaming

MASSIF

a) b)

1 PREFIX : <http://streamreasoning.org/iminds/massif/>

2 PREFIX iot: <http://IBCNServices.github.io/SSNiot#>

3 PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn/>

4 PREFIX dul: <http://www.loa-cnr.it/ontologies/DUL.owl#>

5

6 NAMED EVENT :HighTra cEvent AS subClassOf 

7    (HighTra cObservation) 

8 NAMED EVENT :LowTra cEvent AS subClassOf 

9   (LowTra cObservation)  
10

11 NAMED EVENT :DecreasingTra cEvent {

12 MATCH every :HighTra cEvent 

13             SEQ :LowTra ucEvent WITHIN (10m)

14 IF {

15  EVENT :HighTra cEvent { ?o iot:hasLocation ?loc.}

16  EVENT :LowTra ucEvent { ?2o iot:hasLocation ?loc.}

17   }

18 }

19 FROM NAMED WINDOW :tra c 

20 [RANGE 5m, SLIDE 1m] ON STREAM :Tra c

21 WHERE {

22  ?property a CongestionLevel.

23  ?property isPropertyOf ?foi.

24  ?foi isLocationOf ?loc.

25  ?loc hasPolicy ?pol.

26 WINDOW ?w {

27   ?obs a ssn:Observation.

28   ?obs ssn:observedBy ?sensor.

29   ?obs ssn:observedProperty ?property.

30   ?obs hasValue ?value.

31   FILTER(?value >0.03 || ?value<0.01)

32 }

evalRSP-QL

evalCEP

evalDL

SCB

Figure 3.6: (a) Example of the Streaming MASSIF DSL and how it targets the Streaming MASSIF achitecture

(b).

(https://www.w3.org/TR/owl2-manchester-syntax/).

2. BGP: In the definition of the complex events, one can define Basic Graph Pattern (BGP) for

restricting the validity of the events. We did not incorporate the explanation of the syntax

of BGP in this proposal.

3. RSPQL: For targeting the RSP module, we utilize RSP-QL. The full syntax of RSP-QL has not

been incorporated in our syntax proposal, more information regarding RSP-QL can be found

in Dell’Aglio et al. [31].

As defined in Listing 3.2, an information need comprises multiple namespaces (NameSpace),

multiple event declarations (EventDecl) and an optional RSPQL declaration. Figure 3.6a shows an

information need from the example use-case. We now explain how this DSL targets each module

of the cascading stream reasoner.

3.4.3.1 DSL Fragment for the RSP Layer

From Line 19 in Figure 3.6a, the RSP-QL syntax is used for selecting the relevant events from various

streams. Note that there is no query form defined, since we restrict the use to the construct query

https://www.w3.org/TR/owl2-manchester-syntax/
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form. The construct query template is generated from the BGP in the WHERE clause. This part of

the query targets the Selection Module of the Streaming MASSIF architecture. Note that the def-

inition of the RSP-QL clause is optional in the language. In the absence of the RSP-QL clause, all

streaming data is directly processed by the next layer (i.e., the abstraction layer). In this case, each

event in the stream is processed one by one.

3.4.3.2 DSL Fragment for the DL Sub-Layer

An information need typically requires one to define multiple events. An event declaration

(EventDecl) starts with the declaration of a NAMED EVENT, a name for the event (EventName),

and either the definition of an abstract event (AbstractEvent) or a complex event (ComplexEvent).

The abstract event definition start with the ‘AS’ keyword to indicate how the event name should

be interpreted, followed by a declaration in Manchester DL syntax. This is shown in Figure 3.6a

on Lines 6–9. We chose the Manchester Syntax1 for the definition of these events since its very

concise and expressive.

The defined abstracted event definitions are used in the Abstraction Module to indicate the

high-level concepts that should be abstracted and forwarded to the next layers.

3.4.3.3 DSL Fragment for the CEP Sub-Layer

Besides the AbstractEvents, the EventDecl clause can also define complex events (ComplexEvents).

These are declared with the ‘MATCH’ keyword, followed by a modifier (Modifier), an event pattern

(EventPattern), a guard (Guard), and an optional restriction clause (IFClause). The EventPattern is

constructed from various abstract events and event operators (EventOperators). These declara-

tions are used within the Event Processing Module. Figure 3.6a shows an example event pattern

defined over high and low traffic abstractions on Lines 11–13.

The restrictions (IFClause) are declared using the ‘IF’ keyword, followed by the abstract event

name used in the pattern that needs to be restricted. The restriction itself is defined in a BGP.

Both filter and join restrictions can be modeled in this manner. An example on how to define join

restrictions over multiple events can be found in Figure 3.6a on Lines 14–16. The restriction states

that the high and low traffic abstractions should occur in the same location. Note that the variable

name ‘loc’ is the same in both restrictions.

Listing 3.3: DSL Event Restriction Clause Example.

1 NAMED EVENT :DecreasingTrafficEvent {

2 MATCH EVERY :HighTrafficEvent

3 SEQ :LowTrafficEvent WITHIN (10 m)

4 IF {

5 EVENT :HighTrafficEvent { ?o timeStamp ?time.

6 FILTER(hours(?time) > 15) }

7 EVENT :LowTrafficEvent { ?o2 timeStamp ?time2.

8 FILTER(hours(?time)>15) } }

9 }

1https://www.w3.org/TR/owl2-manchester-syntax/

https://www.w3.org/TR/owl2-manchester-syntax/
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We can also define restrictions to filter individual events. Listing 3.3 shows a filter restriction

example over the high and low traffic abstractions that restricts observations to be after 3 o’clock

in the afternoon.

Note that the SPARQL FILTER clause is optional. When the defined BGP does not match the

underlying event, i.e., no results are returned, the event is filtered out and not considered in the

complex event processing.

3.5 Streaming MASSIF’s Formalization

Now that we have described the architecture we formalize how the different layers of Streaming

MASSIF collaborate. We do this by focusing on the Cascading Reasoning pyramid that abstracts

Streaming MASSIF, as shown in Figure 3.4b. The cascading approach consists of CEP and DL as

inference methods and RSP for continuous information integration.

3.5.1 RDF Stream Processing Layer

The RSP layer receives RDF streams (as defined in Definition 1) as input and answers continuous

queries written in RSP-QL (see Definition 3.3.1.2). A given RSP-QL query Q is evaluated against a

RSP-QL dataset SDS (as defined in Definition 5). The result of the defined queries is forwarded to

the next layer. Therefore, we fix the Query Form to the CONSTRUCT query form.

3.5.2 Continuous Information Integration Layer

As we previously mentioned, we assume that data streams arrive directly encoded as RDF streams.

This assumption allows us to perform stream processing and continuous information integration

in the RSP layer by means of a common vocabulary.

Notably, we do not consider the annotation task (a.k.a. the data materialization task) as part

of the approach. If the data are not natively RDF streams, approaches such as TripleWave [38],

which rely on mapping techniques such as RML [39] and R2RML2 , can be utilized. Note that the

Annotation Module in the Streaming MASSIF architecture can be used for this goal.

3.5.3 The Inference Layer

The inference layer of our architecture consists of two sub-layers: (i) Description Logics, since we

want to infer information not explicitly available in the streams, and (ii) Temporal Logics, because

we aim at deducing information based on temporal relations between the data.

In the following, we explain how we link those sub-layers together.

First, we need to make a distinction between physical events and abstract events:

2https://www.w3.org/TR/r2rml/

https://www.w3.org/TR/r2rml/
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Definition 7. A physical event ephy is an event that occurs directly in the input stream S or is

a result of the RSP layer. Note that, in the latter, the event may also include background data. A

collections of physical events is defined asEphy .

In Figure 5.6, multiple physical events are depicted in a stream. Four physical events are

detailed. Example 4 describes the physical event that contains the first observation in the stream.

Note that, in the RSP layer, the physical events can still be enriched with additional information.

Definition 8. A subscription TBox E consists of those TBox concepts that have been used as high-

level concepts in a service subscription. It bridges the gap between domain ontology and the

physical events. E contains all the NAMED EVENTS defined for the Abstraction Module.

The use ofE allows us to select only those physical events that services are actually interested

in. From these physical events we derive abstract events:

Definition 9. An abstract event eab consists of one or more physical events ephy and hides

their low-level details. An abstracted event eab can be inferred under an entailment Σ from a

collection of physical eventsEphy iff∃ei ∈ Ephy : (T +,A+) |= CE(ei)withCE ∈ E and

K = (T +,A+), withK the knowledge based used in the reasoning process. T + = T ∪ E
is the TBox and A+ the ABox, with A+ = A ∪ Ephy . We can now define the abstracted

event as the triple eab = (CE , E
′
phy, t), withE′

phy the collections of physical events inEphy

that lead to infer CE(ei) and t the processing time at which the first physical event in E′
phy

was produced. Eab represents a collection of abstracted events. This is the case when multiple

abstracted events can be abstracted.

Example 7. (cont’d) In the DSL defined in Figure 3.6a, the services subscribed to HighTrafficObser-

vations by defining the named event HighTrafficEvent. Let us assume that only HighTrafficEvent

is contained in E . The physical events can now be abstracted according to the defined ontology in

Example 2. Through reasoning we obtain that

HighTrafficObservation(obs1),

HighTrafficMainRoadNearF lexibleOffice(obs1),

F lexibleOffice(office1),

HighTrafficEvent(obs1).

This results only in the abstracted event (HighTrafficEvent, ephy, ti) with ephy ,

the physical event, and ti , the time ephy is produced, since only HighTrafficEvent is defined in E .

We now want to identify temporal dependencies between the abstracted events provided by

the DL sub-layer.

We build upon the definitions from CEP to detect the temporal dependencies between ab-

stracted events provided by the DL sub-layer.

Definition 10. An event patternEP is a statement of the form

[O](E1 ∧ · · · ∧ Ek)|(E1 ∨ · · · ∨ Ek)[4]
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with Ei either (i) an event type, (ii) a complex event using AND, OR, NOT, or SEQ, or (iii) another

event pattern (recursively). O is an optional modifier, e.g., EVERY, and4 is an optional guard, e.g.,

WITHIN.

We use these patterns to instantiate complex events that represent inferred information.

Definition 11. A complex event ce definition is a triple ce = (h, p,R) with

• h as the complex event type,

• p as the pattern defined using operators, modifiers, and guards, and

• R as a set of restrictions.

h is instantiated when p andR are satisfied.

The set of abstracted events (i.e., the collection of triples (CE , ephy, t)) is used in the event

pattern matching. More specifically, each typeCE is checked if it matches the event types within

the pattern. Additionally, the restrictions R = (CRE , qSPARQL) can be defined on each

event type in an event pattern. CRE is an event type (i.e., defined in E ) and qSPARQL is a

SPARQL query. The SPARQL query is evaluated over each ephy contained in the abstracted event

(eab = (CE , ephy, t)), where CE == CRE . Restrictions over multiple events in the event

pattern can be achieved by creating multiple restrictionsR with the same variable names in the

qSPARQL . The variable bindings are extracted and used for joining the events. This is shown in

the restrictions of Example 8 through the use of the reoccurring variable name “?loc”.

Example 8. (cont’d) To detect the decreasing traffic, we need to monitor for a high amount of

traffic near flexible offices followed by low amounts of traffic near the sameflexible officeswithin

a certain time range. This can be done by defining the complex event definition triple: ce =

(CEE , p, R) with

• CEE as the complex event typeDecreasingTraffic,

• p as the pattern describing EVERYHighTraffic Abstraction SEQ

LowTrafficAbstractionWITHIN 10m, and

• R as a set of restrictions of the form (CRE , qSPARQL) consisting of

* (HighTrafficAbstraction, q1) with q1 =

1 Select * WHERE {
2 ?o ssniot:hasLocation ?loc.}

* (LowTrafficAbstraction, q2) with q2 =

1 Select * WHERE {
2 ?o2 ssniot:hasLocation ?loc.}

Note that the restrictions state that high and low traffic events need to have the same loca-

tion. The value in ?locwill be used to restricts the complex events, since its the only variable with

the same name in q1 and q2 .
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3.5.4 Unified Evaluation Functions

In the following, we explain, by means of Figure 5.6, how to combine the different layers into a

single evaluation framework. At the lowest level, we have the evaluation of the RSP layer. Let us

consider an RSP-QL queryQ. The evaluation ofQ over dataset SDS is defined as

Ω(t) = eval(SDS, SE, t), with t ∈ ET

whereET represents all the time instances where SDS is defined, andΩ is a time-varying mul-

tiset of solution mappings that maps time T to the set of solution mappings multisets [31]:

Ω : T → {ω|ω is a multiset of solution mappings}.

We consider only the CONSTRUCTS query form; therefore, the solution mappings still need to

be substituted in a graph template defined in the query (as defined in the SPARQL 1.1. specification:

https://www.w3.org/TR/sparql11-query/#construct):

GΩ(t) = σ(Gtemplate,Ω(t)).

with σ the substitution function andGtemplate the graph template defined inQ. The solution

GΩ(t) , for each t ∈ ET , is a subset of the data in SDS and is sent to the next layer in the

cascading reasoner for further processing. We can define the evaluation of the RSP layer as

evalRSP−QL(SDS,Q) = GΩ(t),∀t ∈ ET.

Each time the RSP layer produces results, they are sent to the DL layer as a set of physical

events Ephy = GΩ(t). The DL layer converts the physical events Ephy to a set of abstracted

eventsEab under a certain entailmentΣ.

Eab = {CE(ei)|∃ei ∈ Ephy : (T +,A+) |= CE(ei)∧CE ∈ E with T + = T ∪E
andA+ = A ∪ Ephy}. The evalDL reasoning step is defined as

evalDL(Ephy, E ,O,Σ) = Eab

where Eab is the set of abstracted events and the quadruple < Ephy, E ,O,Σ > comprises

the following:

• Ephy—a set of one or more selected physical events contained inGΩ(t).

• O—the ontology describing the domain knowledge. O = (T ,A) with T the TBox and

A the ABox describingO.

• E—an ontology TBox that bridges the domain ontologyO and the physical eventsEphy .

This describes formally the abstraction based onO. Only the concepts in E will be con-

sidered as abstracted events.

• Σ—the entailment regime under which the reasoner has to extract the abstract events

fromEphy .

https://www.w3.org/TR/sparql11-query/#construct
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Finally, we define the result of the evaluation of the CEP layer as a set of abstract events:

evalCEP+(CE,Eab) = {(CEE ,
⋃

ephy, t)}

with CEE the complex event type of the complex event ce ∈ CE that matched, ephy the

physical events inEab that cause the patterns to trigger and t the processing time at which the

patterned triggered. In the resulting complex event, the union of the underlying physical events

is taken and the complex event type is assigned.

Since complex events are still physically represented as RDF graphs, in order to evaluate re-

strictions we can simply extend evalCEP with evalSPARQL that evaluates the restrictions

describes as SPARQL queries.

To ensure termination, we restrict to non-recursive pattern definitions, i.e.,∀p ∈ CE, @E ∈
p : CEE == E . The complex event type is thus not allowed in the definition of the pattern.

3.5.5 Summary

To conclude, we described a stream reasoning stack that is able to (a) select the relevant por-

tions of the stream using RSP, (b) abstract the selected RDF graphs using expressive reasoning

techniques and selecting only those that match the expected abstractions, and (c) apply complex

event processing over these abstractions to detect temporal dependencies.

3.6 Evaluation

To evaluate StreamingMASSIF, we extended the City Bench benchmark [4]with expressive ontology

concepts, as those described in Example 2. We also extended the ABox and added various offices

located near themonitored streets, eachwith a set of randompolicies. Among these office policies

is the possibility to start early, to stop early, and to have flexible work hours and the presence of

childcare. To further increase the complexity, we also added some complex roles which are used

within the high and low traffic modeling, e.g.,

observedFeature v observedProperty ◦ isPropertyOf.

For streaming the City Bench data, we utilized RSP Lab (https://github.com/streamreasoning/

rsplab) and ran the streamers on a different node. The evaluation was conducted on a 16 core Intel

Xeon E5520 @ 2.27 GHz CPU with 12 GB of RAM running on Ubuntu 16.04.

We first show the need for Cascading Reasoning when dealing with high-volatile streams.

3.6.1 The Need for Cascading Reasoning

To illustrate the need for Cascading Reasoning, we first show that current approaches have prob-

lems performing expressive reasoning over high-volatile streams. For now, we do not consider

the temporal aspect. Reasoning techniques exist with different trade-offs between expressivity

https://github.com/streamreasoning/rsplab
https://github.com/streamreasoning/rsplab
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Figure 3.7: The comparison in terms of throughput and correctness for various approaches. A monolithic

approach needs to trade off correctness for performance, whereas combined Cascading Reasoning

approaches can cover both. This allows one to achieve high throughput and high expressivity.

of reasoning and complexity of processing. Very low expressive reasoners are more performant

as their complexity of processing is lower. We compare various reasoners within the spectrum of

expressivity.

3.6.1.1 Setup

To show the need for Cascading Reasoning, we provide batches of events, ranging between differ-

ent number of events, to various reasoning techniques and measured the time it took each engine

to process a specific number of events. The events themselves were captured from a City Bench

event stream and the extended City Bench ontology was utilized to perform the reasoning. As

the expressivity of each reasoning approach differs, we calculated the correctness of each engine.

The correctness is measured as the percentage of concepts in the ontology that can be correctly

calculated considering the expressivity of the reasoner.

The throughput is calculated by serving batches of 1, 10, 100, 1000, and 10,000 traffic obser-

vation events and calculating how long each approach takes, on average, to process the events.

The batches are considered, as data is typically windowed when considering streaming data.

3.6.1.2 Results

Figure 3.7 shows a comparison of various reasoners in terms of throughput and correctness, while

Table 3.1 provides the processing time for each reasoner in function of the number of events pro-

cessed in each batch. HermiT was not able to handle batch sizes larger than 10,000 events due to

out-of-memory exception. Therefore, the averages in Figure 3.7 are taken over batch sizes between

1 and 10,000 events.
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Table 3.1: Evaluation of the processing time (in ms) of the different reasoning techniques. By combining very

expressive reasoning with very efficient processing, we can achieve high expressivity and high throughput.

Engine/#Events 1 10 100 1000 10,000 …

RSP 15 15.1 23.1 127.3 398.3 …

RDFox 21.2 21.6 27.7 130.7 500.15 …

TrOWL 440.3 455.9 415.7 702.8 1292.45 …

Hermit 12,895.0 12,972.0 13,440.0 27,885.0 170,532.5 …

Cascading 74.2 76.9 74.4 147.5 443.3 …

… 25,000 50,000 80,000

… 973.5 2011.4 3291.3

… 1230.7 2453.3 4405.5

… 3205.6 7083.3 14,153.0

…

… 1040.0 2303.9 3754.4

RSP engines typically have very low to no reasoning capabilities, as they specifically aim at

processing high volatile streams. As depicted in Figure 3.7, they have a high throughput, but very

low expressivity as their correctness is very low. RDFox [16] is the fastest reasoner currently avail-

able. It supports OWL2 RL reasoning, a subset of OWL2 DL reasoning. It does not consider var-

ious ontology construction in order to achieve high performance. As can be seen in Figure 3.7,

its throughput is rather high but it is not completely correct, as it lacks the expressivity to rea-

son about all concepts correctly. Hermit [15] is a fully fledged OWL2 DL reasoner consisting of the

needed expressivity to reason correctly about OWL2 DL ontologies. However, due to this expressiv-

ity, it is rather slow. TrOWL [40] is an OWL2 DL reasoner that allows one to perform approximation

to enable stream reasoning over ontologies. Its throughput is higher than HermiT but lower than

RDFox. However, its expressivity is higher than RDFox’s but lower than HermiT’s, as it does not

support all OWL2 DL concepts. We show that, by combining the highest throughput approach, i.e.,

RSP, with the highest expressivity approach, i.e., HermiT, we can achieve both a high throughput

and high expressivity approach. This is depicted as Cascading in Figure 3.7. The processing time is

not simply the addition of the two layers. The speedup is achieved because of two reasons. The

first reason is that the RSP layer can select only relevant parts of the streams to be processed with

the expressive reasoner, resulting in fewer events being processed in the second layer. The second

reason is that a lower amount of background data is necessary in the second layer, as the tasks

of integrating the sensor data with the background data can now be performed in the RSP layer.

From there, the relevant information for further processing can be selected and used in the sec-

ond layer. The arrow indicates that possible higher throughputs can be achieved by duplicating

and distributing the various parts of the Cascading Reasoning approach. For example, multiple

streams can first be processed with its dedicated RSP engine before the results are combined and

processed with a higher expressivity approach. This scalability is not possible with the other ap-

proaches, as they are monolithic systems. We also note that 78% of the IoT-labeled ontologies in

the Linked Open Vocabularies repository (lov.linkeddata.es) (we only considered the ontologies

lov.linkeddata.es
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Figure 3.8: The influence of an increasing event rate on the number of the to-be-processed events (left) and

the performance (right) of the Selection Module.

that were accessible at the time of writing) require the OWL2 DL expressivity to infer all concepts

correctly.

3.6.2 Test 1: Increasing Event Rate

To test the scalability of the StreamingMASSIF itself, we first artificially sped up the traffic streams

to see how many events the platform can handle. Each stream in City Bench produces data every

5 min. We sped up the stream to produce multiple events per second. Figures 3.8–3.10 visualize

for each component the number of processed events and the processing time for a specific event

rate. The RSP processing time in Figure 3.8 denotes the time taken to select the events within

the window, the Abstraction time in Figure 3.9 denotes the time taken to abstract the received

events from the RSP layer to high-level concepts, and the CEP processing time in Figure 3.10 mea-

sures how long it takes for the pattern to match, when the last event that causes the pattern to

match arrives. On the x-axis, for all of the figures, we plotted the (rounded) actual event rate

as they entered the platform. Note that, each time the stream produces data, five observations

are produced: the average speed, the vehicle count, the measured time, the estimated time, and

the congestion level. However, it is not stated explicitly in the stream what kind of observation is

transmitted. Integrating with background knowledge is thus required to filter out the congestion

level observations. This is performed in the RSP layer. We evaluated our results over eight streams

and calculated the averages over the first 120,000 events. To easily calculate the processing time

in each layer, we used a tumbling window (the sliding parameters is the same as the window

width) of 2 s for each event rate. Using a tumbling window, each event only occurs once, and this

simplifies the processing time calculations. To perform the evaluation, we used the example query

from Figure 3.6a.



Streaming MASSIF 89

0 50 100 150
0

10

20

30

40

50

60
Number of events in Abstraction

0 50 100 150

500

1000

Abstraction time

events per second

nu
m

be
r o

f e
ve

nt
s

pr
oc

es
sin

g 
tim

e 
(m

s)

Figure 3.9: The influence of increasing event rate on the number of the to-be-processed events (left) and

the performance (right) of the Abstraction Module.

From Figure 3.8, we can see that the greatest selection of events happens in the RSP layer,

while fewer events are selected in the abstraction layer. This is clear, since the number of events

in the abstraction decreases when forwarded to the Event Processing Module, as depicted in Fig-

ure 3.10. Furthermore, the processing time in the Abstraction layer rises more quickly than it does

in the other layers, which can be expected of an expressive reasoning process. However, we see

that, when abstracting even more than 50 events, the abstraction time is lower than 1 s. The total

latency of the abstraction remains well below 2 s (the size of the window), and the system thus

stays reactive even when processing 300 events per second.

Figure 3.11 shows the influence of the event rate on the different layers combined. It is clear

that the abstraction is most influenced by the event rate. This is because more events need to be

abstracted. As the time for the event processing is very low, it is hardly visible in the graph.

3.6.3 Test 2: Increasing Window Size

The performance of each layer is clearly dependent on the number of considered events. We in-

vestigated the processing time of each layer when the window size in the RSP layer increases. This

forces the processing of an increasing number of events in each layer. Figures 3.12–3.14 visualize

the number of processed events and the processing time for each layer when the window size

increases from 1 to 100 s. We see a clear increase in the processing time of each layer. The Ab-

straction time increases exponentially, which can be expected of an expressive reasoning process.

However, abstracting up to 100 events takes about 15 s, still much faster than the 100 s it takes

for the window to slide.



90 Chapter 3

0 50 100 150
0

10

20

30

40

50

60

Number of events in CEP

0 50 100 150
0.0

0.5

1.0

1.5

2.0

2.5
CEP processing time

events per second

nu
m

be
r o

f e
ve

nt
s

pr
oc

es
sin

g 
tim

e 
(m

s)

Figure 3.10: The influence of increasing event rate on the number of the to-be-processed events (left) and

the performance (right) of the Event Processing Module.
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Figure 3.12: The influence of increasing the window size on the number of the to-be-processed events (left)

and the performance (right) of the Selection Module.
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Figure 3.13: The influence of increasing the window size on the number of the to-be-processed events (left)

and the performance (right) of the Abstraction Module.
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Figure 3.14: The influence of increasing the window size on the number of the to-be-processed events (left)

and the performance (right) of the Event Processing Module.

3.6.4 Test 3: The Influence of the Selection Rate

Besides the size of the window, the percentage of events that are selected in the Selection Module

influences the abstraction time in the Abstraction Module. This is because the more events that

are selected, the more events that need to be abstracted through expressive reasoning, and the

expressive reasoning is expensive. Figure 3.15 shows the influence of a decreasing selection rate

on the abstraction time. When the selection rate decrease, the number of events that need to be

abstracted decreases and has thus less influence on the reasoning time. It is thus important that

the Selection Module carefully selects only the relevant events.

3.6.5 Test 4: Comparison with MASSIF

Since we extended the MASSIF platform to implement the adapted Cascading Reasoning vision, we

also measure how fast the MASSIF platform could process the event stream. Note, however, that

the MASSIF platform needs to perform the abstraction on all the background data, consisting of all

the information of all the sensors, the streets, the offices, etc. All of the background data contain

more than 60,000 statements. In the RSP layer, we select the relevant portion from the stream

but also select the relevant data from the background knowledge. This eliminates the need for the

Abstraction layer to contain the whole background knowledge. The TBox is most important there.

Without this selection step, the abstraction of a single event in the MASSIF platform takes up to 20

s. Figure 3.16 shows the comparison for different event rates. The figure shows that the layered

approach is much more scalable. The first reason for the speedup is because, compared to MASSIF,

Streaming MASSIF can process events in windows, while MASSIF processes each event one by one.

The second reason is that events are filtered in Streaming MASSIF before they are exposed to the
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Figure 3.16: Throughput of Streaming MASSIF and MASSIF.

expressive reasoning, while each event in MASSIF goes through the expressive reasoning step. The

last reason is that the whole background needs to be used for the reasoning step in MASSIF, while

in Streaming MASSIF the background is spread between the Selection and Abstraction Module.

3.7 Discussion

The aim of this research was to design a layered Cascading Reasoning realization that can perform

both expressive and temporal reasoning over volatile data streams. The evaluation sections shows
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that Streaming MASSIF is able to perform high expressive OWL DL reasoning with high throughput.

Note that other reasoning approaches exist, such as ASP [41], but we opted for DL since it is a web

standard and widely adopted.

3.7.1 Objectives Discussion

Looking back at the Objectives set in Section 3.1, we can now discuss how Streaming MASSIF tackles

the various objectives:

1. Combine various data streams: Streaming MASSIF can combine various heterogeneous

data streams by utilizing a common semantic model, i.e., an ontology, that can be un-

derstood throughout the platform. The Selection Module allows one to process multiple

streams, combining them together, while keeping a common semantics. From these var-

ious streams, the Selection Module selects those parts that are relevant for further pro-

cessing.

2. Integrate background knowledge: Streaming MASSIF allows the integration with back-

ground knowledge both in the Selection Module and in the Abstraction Module. The inte-

gration in the Selection Module allows one to combine the data streams with more static

data, in order to retrieve more information about the observations in the streams, which

typically do not describe the full context they observe. The integration in the Abstraction

Module allows one to take more context into account to perform the expressive reasoning.

The tight coupling between these two modules also allows parts of the static background

to be selected in the Selection Module, such that it can be used in the Abstraction Module.

3. Integrate complex domain knowledge: The integration of complex domain knowledge is

achieved by allowing expressive reasoning in the Abstraction Module in order to correctly

interpret the domain. The domain knowledge itself is modeled in the ontology.

4. Detect temporal dependencies: Streaming MASSIF can detect temporal dependencies be-

tween abstracted events. This is achieved by first abstracting selected observations in the

data streams and performing CEP over these abstractions. This allows one to efficiently

introduce a temporal aspect in ontology reasoning and integrate complex domain knowl-

edge in CEP. This ismore efficient as the direct integration of the temporal domain in DL, i.e.,

temporal DLs, as they easily become undecidable [18] and CEP is unable to model complex

domains [17].

5. Easy subscription: StreamingMASSIF allows services to easily subscribe to the data streams,

enabling filtering, abstraction, and temporal reasoning, through the use of its unifying

query language. This allows services to define their information need in a declarative way,

without the need for writing code.



Streaming MASSIF 95

Table 3.2: Related work based on the set objectives. (1: not for streams, 2: complex definitions, 3: only

programmatically, 4: no unifying subscription language, 5: only incremental changes, 6: using

approximations)

Data

Streams

Background

knowledge

Complex

Domains

Temporal

Dependencies

Unifying

QL

Service

Subscription

EP-SPARQL [13] X / RDFS Allen Algebra X2 /

StreamRule [19] X /1 ASP / / /

Ali et al. [21] X /1 / ASP / /

CityPulse [22] X /1 ASP CEP3 / X4

HermiT [15] / X OWL2 DL / / /

RDFox [16] /5 X OWL2 RL / / /

TrOWL [40] /5 X OWL2 DL6 / / /

MASSIF [27] / X OWL2 DL / / X

Streaming

MASSIF
X X OWL2 DL CEP X X

3.7.2 Related Work Comparison

Table 3.2 compares the related work and the engines used in the evaluation based on the ob-

jectives. We also added a column Service Subscription, as most engines typically focus on data

processing and do not provide mechanisms for service subscription. We note that, even though

EP-SPARQL has a query language, the definition of the temporal patterns is complex compared to

the pattern definition over abstracted events, as provided by Streaming MASSIF. Furthermore, the

reasoning expressivity of EP-SPARQL is low, i.e., RDFS. StreamRule, Ali et al. and CityPulse do not

allow the integration of background knowledge when handling the data streams, since they uti-

lize the CQELS RSP engine, which does not allow the integration of static data. Furthermore, their

expressive reasoning is done through ASP, while we opted for DL, since it is a web standard and

widely adopted. CityPulse also allows the definition of temporal dependencies through CEP; how-

ever, the patterns need to be defined programmatically, which further complicate the definition

of the information need. Streaming MASSIF integrates CEP and DL reasoning both syntactically,

through the use of its unifying query language, and semantically.

Compared to HermiT, RDFox, and TrOWL, Streaming MASSIF is a cascading approach, able to

combine the streaming domain with complex and temporal domains, while HermiT, RDFox, and

TrOWL focus on performing expressive reasoning on static or slow-moving data. It is clear that

Streaming MASSIF targets all objectives.

Table 3.3 provides an overview of the systems discussed in the related work and how they fit

the generalized Cascading Reasoning vision. We see that StreamRule, Ali et al., and CityPulse uti-

lize the CQELS RSP engine for Stream Processing. As seen in Table 3.2, this is the reason they fail to

integrate background knowledge in the stream processing, as CQELS is not able to integrate static

data. Most of the approaches use annotations to convert data to the common semantic model,

while EP-SPARQL is able to rewrite but only from a prolog statement. The inference entailments

differ for each platform. Streaming MASSIF is able to achieve the highest expressivity by com-
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Table 3.3: Overview of the related work and how they relate to our generalized Cascading Reasoning vision.

(1: only programmatically, 2: via CEP rules)

Name Stream Processing
Continuous Information

Inference Entailment Unifying QL
Integration

EP-SPARQL Etalis Rewriting RDFS & Allen Algebra X
StreamRule CQELS Annotation ASP None

Ali et al. CQELS Annotation Action-Rules in ASP None

CityPulse CQELS Annotation ASP & CEP1 None

Streaming MASSIF Yasper Annotation OWL2 DL & CEP2 X

bining OWL2 DL with CEP. We note that the Allen Algebra utilized in EP-SPARQL for the temporal

detections, is typically broader than the temporal patterns allowed in CEP. However, the ontology

reasoning supported in EP-SPARQL is low (RDFS) and the definition of the temporal patterns is

rather complex compared to Streaming MASSIF.

3.7.3 Evaluation Discussion

In Section 3.6.1, we evaluated the throughput of different reasoning systems and compared them

to a cascading approach. The evaluation shows that, by combining different approaches, both high

throughput and high expressivity can be achieved, what is not possiblewith amonolithic approach.

The achieved throughput and expressivity is depending on the components used in the layered

approach. Different throughputs can be achieved by combining different engine complexities. For

example, if we would combine RSP with RDFox (instead of HermiT), the throughput would be even

higher; however, the expressivity would be lower as the expressivity of RDFox is lower as the on

of HermiT. Furthermore, higher throughputs can be achieved by duplicating certain components in

the layered approach. For example, by distributingmultiple RSP engines that each handle different

streams and select the relevant parts from their streams, higher throughputs can be achieved.

Furthermore, by more intelligently selecting the relevant parts and decreasing the selection rate,

the throughput can also be increased, as fewer data need to be processed by the more complex

layers.

In the evaluation, we can see that the Abstraction Module can easily become the bottleneck

with a high number of events, so incremental reasoning techniques should be further researched.

Currently, there are no efficient expressive incremental reasoning techniques that also incorporate

data property reasoning. We could easily perform the abstraction in parallel and load balance

eventsto increase the performance. This is possible in the cases that the events are independent

of each other. Whenmultiple physical events should be abstracted together, the query in the lower

RSP layer could be adapted to link them together. This would allow one to scale the abstraction

module even more since the abstraction of a low number of events is still rather quick, i.e., less

than half a second for 30 events. We also note that the higher the selection rate, i.e., the fewer

events are selected in the Selection Module, the higher the throughput of the complete system, as

the abstraction time is still the most time-consuming. It is thus important that only the relevant

events can be selected and forwarded.
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3.7.4 Streaming MASSIF Limitations & Future Work Directions

One of the limitations of Streaming MASSIF is the fact that the user still manually needs to define

a query over all the layers. The query mediation and query rewriting process [42] are currently

not researched yet. By enabling the query mediation and rewriting, the query could be defined on

a high-level and the query necessary for the selection of the relevant events in the stream could

automatically be constructed. This would result in an even easier subscription language.

Another limitation, as discussed above is that the Abstraction Module can become the bottle-

neckwhen the selection rate is high, i.e., many events still need to be abstracted. As the throughput

of the abstraction layer is typically lower than the selection layer, the more data there are that

still need to be abstracted, the lower the total throughput will be.

The fact that each layer currently consists of a single engine can be limited as well. As we

discussed above, distributing various parts of each layer can further increase the throughput.

In futurework, wewish to investigate querymediation and rewriting techniques, such that the

query definition can be defined on high-level event definitions and that the parts for the selection

over the data streams can be automatically defined. This would further simplify event definitions

and service subscriptions. To target the abstraction bottleneck, incremental reasoning techniques

or efficient caching techniques need to be further investigated. This would further improve the

performance of the expressive reasoning layer and thus improve the total performance of the

cascading platform. This is especially necessary when the selection layer is unable to select only

a small portion of the stream, and many events need to be abstracted. To further increase the

throughput, distribution techniques should be investigated in order to distribute and duplicate

various components and layers.

3.7.5 Applicability for Real-World Use-Cases

Table 3.4 describes some of the sensors and their frequencies in two Smart Cities, i.e., the City of

Things in Antwerp (www.imec-int.com/en/cityofthings) and the Aarhus City Lab. (www.smartaarhus.

eu/). We see that the frequency of most sensors is typically low and thus Streaming MASSIF can

easily process these data streams. Compared to Aarhus, the city of Antwerp transmits all the sen-

sor changes without aggregating them. This means that each Traffic Count sensor transmits the

observation of a passing vehicle, while in Aarhus the exact number of measured vehicles since

the last transmission is provided. The busier the road, the higher the transmission frequency of

the sensor. This shows the strength of Streaming MASSIF and the use of a declarative language.

The Selection Module utilizes an RSP engine which can easily perform aggregations. The change

between the two different types of traffic count sensors would thus only result in the addition

of a Count statement in the query language. Even if the number of Traffic Count sensors would

be very high and they transmit data very frequently, since the data first need to be aggregated,

this would result in a very low selection rate, filtering only a very select fragment of aggregated

events. The same goes for the Traffic Lights in the smart city of Antwerp. There are eight sensors

per intersection transmitting five observations each second. These data typically first need to be

aggregated, which results in a very low selection rate; thus, a very small number of events even-

www.imec-int.com/en/cityofthings
www.smartaarhus.eu/
www.smartaarhus.eu/
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Table 3.4: Overview of the produced IoT sensor data in two real-life Smart Cities.

Frequency Single Sensor Events/s #Sensors Total Events/s

Antwerp

Air Quality 1 per 30s 0.034 22 0.667

Temperature 100 per day 0.001 2 0.002

Rain 250 per day 0.003 4 0.012

Traffic Count ±800 per day ±0.01 ±115 ±1.15

Traffic Lights 5 per second 5 8 40

Aarhus

Air Quality 1 per 5 min 0.0034 449 1.5

Weather 1 per 5 min 0.0034 9 0.03

Parking 1 per 5 min 0.0034 449 1.5

Traffic Count 3 per hour 0.0008 1 0.008

tually needs to be abstracted. Data from other Smart Cities tell the same story, e.g., in the city of

Padova in Italy, data are transmitted once every 10 min [43] by each device. These findings allow

us to conclude that Streaming MASSIF can handle cases of real-life smart-city use.

3.8 Conclusions and Future Work

In this paper, we presented Streaming MASSIF, a Cascading Reasoning approach that allows one to

perform expressive and temporal reasoning over volatile data streams. Special attention was

given to ensure that the platform could combine various data streams, integrate background

knowledge, integrate complex domain knowledge, detect temporal dependencies and allow for

the easy subscription of services. In order to tackle these objectives, we propose a cascading

reasoning approach, consisting of various layers, each specialized in specific tasks. We defined

semantically how these layers collaborate.

Streaming MASSIF is thus a Cascading Reasoning realization consisting of stream processing,

continuous information integration, and inference layers. The layers are instantiated by combin-

ing RSP, DL reasoning, and CEP to enable expressive reasoning and event processing over high-

velocity streams. We described a query languages that combines these various layers, allowing

easy querying of the whole reasoning stack without the need to write any code. Our approach can

perform expressive reasoning and event processing over high-velocity streams by selecting only

the relevant events from the stream.

We have shown that Streaming MASSIF is able to combine high expressive reasoning with a

high throughput of processing by combining techniques with different complexities in a layered

approach. Furthermore, we have defined on a semantic level how the layers in our cascade coop-

erate, allowing one to assess the correctness of the approach.

However, when the RSP layer is not able to make this selection from the stream and huge

numbers of events need to be abstracted, the platform might become slow. In our future work,
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we will try to tackle this issue by incorporating load balancing and caching techniques.

We will also investigate query mediation and rewriting to automatically construct the queries

on the lower levels, based on the defined concepts on the highest layer. This will further simplify

the query definition and bring Stream Reasoning closer to the masses.
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4
C-Sprite: Efficient Hierarchical Reasoning for

Rapid RDF Stream Processing

This chapter discusses how RSP engines that process large amounts of RDF data, can efficiently

provide lower expressive reasoning capabilities, such as hierarchical reasoning. As the amount of

produced data streams keeps rising, stream processors need to be able to keep up with the data

rates. Furthermore, in order to integrate data and combine background knowledge to provide

insights into a certain domain, these engines should propose some reasoning capabilities. This

chapter focuses on efficient hierarchical reasoning over volatile RDF data streams. The solution

proposed in this chapter can be utilized in the lower layers of the cascading reasoning approach

in Chapter 3. The performance of a cascading approach depends on the efficiency of the lower

layers. Furthermore, the more reasoning capabilities can efficiently be executed by these lower

layers, themore specific their filtering can be. This chapter investigates Research Question 3: “ Can

RSP engines efficiently reason over highly volatile data streams?” and validates Hypothesis 3: “

Using a hierarchical encoding of conceptswill improve the throughput and performing hierarchical

reasoning with at least a factor two, compared to the state of the art.”.

? ? ?

P. Bonte, R. Tommasini, F. Ongenae, F. De Turck and E. Della Valle .

Submitted to the Extended Semantic Web Conference (ESWC), December 2018.
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Abstract

Many domains, such as the Internet of Things and Social Media, demand to combine data

streams with background knowledge to enable meaningful analysis in real-time. When back-

ground knowledge takes the form of taxonomies and class hierarchies, Semantic Web technologies

are valuable tools and their extension to data streams, namely RDF Stream processing (RSP), of-

fers the opportunity to integrate the background knowledge with RDF streams. In particular, RSP

Engines can continuously answer SPARQL queries while performing reasoning. However, current

RSP engines are at risk of failing to perform reasoning at the required throughput. In this paper,

we formalize continuous hierarchical reasoning. We propose an optimized algorithm, namely C-

Sprite, that operates in constant time and scales linearly in the number of continuous queries (to

be evaluated in parallel). We present two implementations of C-Sprite: one exploits a language

feature often found in existing Stream Processing engines while the other is an optimized imple-

mentation. The empirical evaluation shows that the proposed solution is at least twice as fast as

current approaches.

4.1 Introduction

Data stream intensive domains, such as the Internet of Things (IoT) and social media, are still gain-

ing popularity. Huge amounts of frequently changing data are continuously produced [3, 7]. How-

ever, to extract meaningful insights from multiple heterogeneous data streams, these streams

should be combined and integrated with domain knowledge [10].

For instance, industrial IoT is about deploying sensors on production lines to continuously

monitor temperature, pressure, vibrations and hundreds of other types of observations about

the production tools deployed along the line1 . On those industrial settings, it is easy to observe

throughputs of MB per second (which means GB per hour)2 . Both the observations and the tools

are often classified using taxonomies. For instance, a taxonomy may tell that a pneumatic drill

is as a power drill, a drill, a tool, an instrumentation, etc. All this background knowledge is use-

ful to meaningfully analyze the time-series of observations at-rest, but it challenges real-time

analytics. A real-time analysis, willing to aggregate observations about drills, implicitly requires

to collect also observations about power drills and pneumatic drills. Naïve implementations may

simply register multiple queries and union the resulting stream, but this is a resource-aggressive

and human-intensive approach. It would be better that the user declares only the most abstract

query (e.g., observations about drills) and a system takes care of efficiently solving the task (e.g.,

looking for all the specific types of drills).

Semantic Web technologies are valuable tools to combine various heterogeneous data and

integrate it with the domain knowledge [7, 19, 23]. Stream Reasoning (SR) is the research domain

that investigates how to infer implicit facts about rapidly changing data through reasoning tech-

1Interested readers can learn more on https://opcdatahub.com/WhatIsOPC.html
2A typical process industry deployment with 200 sensors, which record 20 measurements in 32 bytes messages every

200 ms, generates 0.61 MB/sec (2 GB/hour) per machine. In the oil & gas industry, the number of sensors can easily grow

up to hundreds of thousands considering all the machines.

https://opcdatahub.com/WhatIsOPC.html
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niques, such as found in the Semantic Web [11]. RDF Stream Processing (RSP), a sub-domain of

SR, focuses on the integration of highly volatile RDF streams with background knowledge and can

continuously answer SPARQL queries while performing simple reasoning.

The need for SR is rising as data stream production increases and the need for real-time ana-

lytics over heterogeneous streams keeps growing. The current state-of-the-art in RSP has mainly

focused on query answering over RDF streams [6, 18] while more expressive incremental reason-

ers [22, 26] have focused on providing expressive reasoning capabilities over slower changing

data. However, to provide generic query answering, RSP engines should provide some reasoning

capabilities [14]. Even simple hierarchical reasoning capabilities, such as subclass and subproperty

reasoning increase the expressivity of the query extensively and simplifies data integration.

Currently, there are three approaches to perform reasoning, each with their own drawbacks:

• Materialization: the process of computing all possible inferences, such that the query can

be evaluated without reasoning. Therefore, it also produces data that is not relevant for

the Query Answering (QA), resulting in many unnecessary computations and redundant

statements. Incremental approaches allow to maintain the materialization in a streaming

context, however, this can be very expensive depending on the number of changes in the

data [5]. The approach pays off when multiple queries consume the materialized stream.

• Goal driven: relies on backward reasoning to infer only what is relevant for the QA. How-

ever, backward chaining causes the same intermediate results to be produced over and

over again, resulting in redundant computations [24]. Furthermore, in a streaming con-

text, many recomputations occur since there is no incremental approach possible over the

data stream.

• Query Rewriting: is the process of injecting the logic inside the query. This results in a

query with multiple UNION clauses. However, UNION is not supported in most DSMS on

which RSP engines rely. To solve this problem, multiple parallel queries are registered [8].

However, the number of queries is inversely proportional to the throughput.

So even for simple reasoning tasks, such as instance checking over hierarchies of classes and

properties, each of these techniques has some serious drawbacks. Furthermore, as data stream

production keeps rising, current RSP engines are at risk of failing to perform the reasoning at the

required throughput3 .

Information Flow Processors (IFPs), such as Complex Event Processing (CEP) engines and Data

Stream Management System (DSMS), often support hierarchical reasoning as a standard language

feature. Note that the language feature defines hierarchies over relational data and is not re-

lated to RDF. However, if the underlying system inherently understands hierarchies, this could

be beneficial for each of the mentioned approaches. Namely, it would result in less unnecessary

statements, less recomputations and less queries for the materialization, goal driven and query

rewriting approaches respectively.

3In the industrial IoT example, each machine produces 20k measurements per second. Each measurement is typically

described by at least two RDF triples. In the evaluation, we will see that current RSP engines have a maximum throughput

of about 60k triples per second.
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This language feature was never before exploited in stream reasoning, since current ap-

proaches either pipelined the IFPwith a SPARQL engine [6] or integrated limited amount of stream

processing inside the reasoner [22]. Furthermore, even though this feature seems very interesting

to exploit, its semantics were never formalized, only defined by implementation.

Therefore, in this paperwe formalize continuous hierarchical reasoning and introduce C-Sprite,

an optimized hierarchical reasoning algorithm that operates in constant time and scales linearly

in the number of continuous queries. We present two implementations of C-Sprite: one exploiting

the hierarchical features found in existing IFP and one fully optimized based on the theoretical

formalization.

In this paper we tackle the following Research Question:

1. Can we formalize continuous hierarchical reasoning?

2. Can we exploit the formalization to speed up continuous RSP querying under hierarchical

entailment?

We summarize the main Contributions as:

1. Continuous Taxonomy-based Relational Algebra (C-TRA), the continuous extension of the

existing Taxonomy-based Relational Algebra (TRA) model.

2. The formalization of the hierarchical reasoning through the means of C-TRA.

3. An optimized hierarchical reasoning algorithm, i.e. C-Sprite.

4. An empirical study that validates the approach.

Paper organization: Section 4.2 introduces an example that will be used throughout the

paper. In Section 4.3 all necessary background is introduced to understand the remainder of the

paper. Section 4.4 and 4.5 formalize the approach, while in Section 4.6 we provide a possible

data structure and algorithm to efficiently perform the hierarchical reasoning in continuous query

answering. Section 4.7 discusses the relatedwork and in Section 4.8we provide the empirical study

to show the feasibility of the approach. Section 4.9 discusses the contributions and Section 4.10

elaborates on the limitations of the approach and concludes the paper.

4.2 Running Example

Suppose we are interested in retrieving all Wikipedia changes in creative work-related articles.

Wikipedia exposes the changes that have been made as a data stream, detailing the changes to

each article and the category it is contained in. These categories are very specific, e.g. videogame,

novel, article, etc. However, it is not straightforward to target the categories that should be con-

sidered creative works.

By introducing a hierarchical description of the various categories, its is possible to define

how the categories relate on a hierarchical level. Utilizing a system that understands this hierar-

chy, one can query the changes stream for changes in creative work-related articles and retrieve
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Figure 4.1: Hierarchical structure of Wikipedia categories

the specific underlying changed articles, without the need to query all the categories separately.

Figure 4.1 visualizes the hierarchy for the creative work categories.

Throughout the remainder of the paper, we will introduce examples based on this creative

work taxonomy.

4.3 Background

This section introduces the background material necessary to understand the remainder of the

paper.

4.3.1 RDFS entailment

In our approach, we focus on simple hierarchical reasoning, i.e. reasoning over hierarchies of

classes and properties. RDF Schema (RDFS) entailment defines 13 rules4 to express, among others,

hierarchical reasoning but also domain/range reasoning and schema reasoning. We focus specifi-

cally on the entailment rules rdfs7 and rdfs9 since they specify the hierarchical reasoning we are

interested in:

• rdfs7 states that if p is a subproperty of q and a and b are connected through a property

p, then the property q holds between a and b:

rdfs7:
(p subPropertyOf q) (a p b)

(a q b)

• rdfs9 states that ifA is a subclass ofB and a is of the typeA, then it holds that a is of

the typeB:

rdfs9:
(A subClassOf B) (a type A)

(a type B)

We note that there exists rules with respect to the transitive properties of the subPropertyOf/sub-

ClassOf. However, they are not important in this context as the transitivity can be obtained by the

execution of a sequence of rdfs7/9 rules.

4https://www.w3.org/TR/rdf11-mt/#rdfs-entailment
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Example 9. As shown in Figure 4.1 VideoGame is a subclass of Software and Software is a sub-

class of CreativeWork. When we have an instance, i.e. Doom, of the type VideoGame (Doom type

VideoGame) and execute the rdfs9 rule we obtain that Doom is also a Software:
(V ideoGame subClassOf Software)(Doom type V ideoGame)

(Doom type Software)

Since Software is also a subclass of CreativeWork and we now know that Doom is a Software, we

obtain through similar means that Doom is also a CreativeWork:
(Software subClassOf CreativeWork)(Doom type Software)

(Doom type CreativeWork)

Definition 12. The materialization of a knowledge base under RDFS entailment is the process of

computing and storing all the inferred facts derived from the executing of the RDFS rules. The

materialization stops when no new facts can be derived from the execution of the RDFS rules.

Example 10. (cont’d) The materialization of the knowledge base containing the triple (Doom

type V ideoGame) according the the schema depicted in Figure 4.1 results in the triples:

(DoomtypeV ideoGame), (DoomtypeSoftware), (DoomtypeCreativeWork).

4.3.2 SPARQL under RDFS entailment

SPARQL is the query language for RDF data5 , different from other QA systems, it can match data

that is not explicitly stated, but can be derived under a certain entailment6 . More specifically,

implicit data can be derived from the given data, the ontology and an ontological language (or

entailment).

Definition 13. We define the evaluation of SPARQL under entailment as

eval(G,BGP,O,RDFS9) with RDFS9 the entailment regime, O the ontology, BGP

the basic graph pattern used in the SPARQL query and G the RDF dataset.

Example 11. Lets consider again our simple dataset containing the single tripleG = {(Doom

type V ideoGame)}. We are interested in querying for all CreativeWork concepts, as defined

in the ontology hierarchy in Figure 4.1. The BGP consists thus of ”?w type CreativeWork”. The

ontology O is the ontology represented by the hierarchical definition of concepts as depicted in

Figure 4.1 and the entailment is the RDFS entailment consisting of the rdfs9 rule. When evaluating

the query without the ontology and the entailment regime only the explicit data can be queried

and no matches are found:

eval(G,BGP, ∅, ∅) = ∅
When considering the ontology and the entailment regime, we can find a match through the

derivation of the implicit data as described in Example 9 (we derive thatDoom is a

CreativeWork) while executing the query:

eval(G,BGP,O,RDFS9) = {?w : Doom}
Another option is to first materialize the dataset and then evaluate the query without the need

for the entailment regime during the query evaluation. First, we obtain the materialize dataset:

5https://www.w3.org/TR/rdf-sparql-query/
6https://www.w3.org/TR/sparql11-entailment/
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(Grdfs9={(Doom type V ideoGame), (Doom type Software), (Doom type

CreativeWork)}). Then we can evaluate the query without the entailment regime:

eval(Grdfs9, BGP, ∅, ∅) = {?w : Doom}

4.3.3 Stream Processing

We introduce a window operator to be able to process the content in the stream, based on the

definitions from CQL [2] and RSP-QL [13].

Definition 14. AwindowW (S) is a set of data extracted from a streamS . A time-based window

is defined based on two time instances o and c, respectively the opening and closing time instant,

such that: W (S) = {d|(d, t) ∈ S ∧ t ∈ (o, c]}. With d all data in S at a specific time

instant.

Definition 15. A time-based sliding window operatorW is defined based on three parameters

(α, β, t0), such that α is the width of the window, β is the slide and t0 is the time instant on

whichW starts to operate. The sliding window operator produces a sequence of time-based

windowsW1,W2, ... such that: 1) the opening of the first window (W1) is t
0; 2) each window

has width α, i.e. window Wi is defined through (oi, ci) with ci − oi = α; 3) the differences

between the opening times of two consecutive windows is β , i.e. the difference between the

opening time oi+1 ofWi+1 and oi ofWi is β .

4.3.4 Hierarchies in Stream and Event Processing Languages

Since we are exploiting the hierarchical language feature found in IFP, we introduce an example to

show the hierarchical definitions in these languages. The Event Processing Language (EPL) used

in Esper7 allows to define the hierarchies of events in its language. Listing 4.1 shows an example

of defining a small part of the category taxonomy from Figure 4.1 in EPL.

Listing 4.1: Hierarchical definition in EPL

1 create schema CreativeWork(id string, ts double);

2 create schema Software() inherits CreativeWork;

For other examples, we direct the reader to Eckert et al. [15].

4.3.5 TRA

The Taxonomy-based Relational Algebra (TRA) [20] introduces taxonomies to relax query answer-

ing in relational databases. We introduce some of the key concepts of TRA, since they will be used

later in the formalization of C-Sprite.

First, we define an h-domain and taxonomies.

Definition 16. An h-domain h is composed of:

7http://www.espertech.com/esper/
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Figure 4.2: T-relation, t-schema and upward extension TRA example.

• a finite set L = {l1, ..., lk} of levels, each associated with a set of values, i.e. the

members of the level and denoted byM(l);

• a partial order≤L on L having a bottom (⊥L) and a top element (>L).

• a family of functionsLMAP l2
l1

: M(l1)→M(l2), called level mappings.

A taxonomy is a set of h-domains.

Example 12. In our running example from Section 4.2 we can create a set of levels

L = {creativework, general, specific, ...} with

M(creativework) = {CreativeWork},
M(general) = {Software,WrittenWork, ...},
M(specific) = {V ideoGame,Article, Book, ...}.

Besides ordering between levels, there is also an ordering between members:

Definition 17. Let h be an h-domain and m1 and m2 are members of respectively l1 and l2 .

There exists an ordering on the members m1 ≤M m2 if l1 ≤L l2 and LMAP l2
l1
(m1) =

m2 .

We can now define a schema over taxonomies and t-relations, as the natural extension of a

relation table built over taxonomy defined values:

Definition 18. Let T be a taxonomy. A t-schema (schema over taxonomies) for T, is denoted by

S = {A1 : l1, ..., Ak : lk}, with Ai the attribute name of the h-domain and li the level of

some h-domain in T.

Example 13. Figure 4.2 depicts the t-schema S1 = {Time : day, Cat : specific}.

Definition 19. A t-tuple over a t-schema S = {A1 : l1, ..., Ak : lk} for a taxonomy T is a

function mapping each attribute Ai to a member of li . A t-relation r over S is a set of t-tuples

over S.

Example 14. In Figure 4.2 we can see the t-tuples t1a & t1b in the t-relation r1 .

Last but not least, we introduce the upward extension operator that allows to take the tax-

onomy into account:
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Figure 4.3: Example ontology and taxonomy alignment

Definition 20 (upward extension). Let r be a t-relation over S, A an attribute in S defined over a

level l, and l′ a level such that l ≤L l′ . The upward extension of r to l′ , denoted by εA:l′

A:l (r), is

the t-relation over S ∪ {A : l′} defined as:

εA:l′

A:l (r) = {t|∃t ∈ r : t[S] = t′, t[A : l] = LMAP l′

l (t′[A : l])

Example 15. Figure 4.2 depicts the upwards extensions εgeneralspecific(r1) in r2 .

Besides the upward extension, TRA also provide downward extension, upward/downward se-

lections, projections, unions, differences and joins, which are omitted because they are not rele-

vant for the remainder of the paper. We note that the TRA upward extension and the rdfs9 rule

are alternative formalisms to capture the same idea.

Definition 21. TRA- is the subset of TRA without the downward extension, join and difference

operators.

In the remainder of the paper, we will assume the usage of TRA-.

4.4 From TRA to SPARQL under entailment

In our approach, we want to formalize the semantics of the hierarchical reasoning inside the IFP,

which is built upon Relational Algebra (RA). This can be achieved by extending the RA inside the

IFP to include hierarchies, which is exactly what TRA does. Therefore, in this section, we align our

approach with TRA.

4.4.1 TRA for Ontologies

We first describe how we can align TRA with ontologies, we limit the ontological language to the

definition of classes and properties w.r.t. RDFS rules 7 and 9, thus the hierarchical definitions of

classes and properties.

4.4.1.1 Alignment of taxonomies with ontologies

Since ontologies and TRA have a different data model, we first describe how they can be aligned.

TRA starts from the assumption of levels and members that is missing in ontologies. However,
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Figure 4.4: Alignment of a) triples with relation data and b) back to triples.

we can introduce the notion of levels by visualizing the ontology classes as one or more trees

and assigning all classes that have the same path length from the root to the same level in an

h-domain. The members of the levels are the ontology classes themselves. The ordering between

the classes is maintained by the ordering between the levels and the members. This is depicted

in Figure 4.3. Note that when multiple inheritance occurs in the ontology, multiple h-domains are

created. For example, RSP is a subclass of both the Semantic Web and Stream Processing. This

results in two h-domains, one with RSP in a sublevel of Semantic Web, and one with RSP in the

sublevel of Stream Processing. The alignment for the ontology properties is similar.

4.4.1.2 Alignment of triples with Relational Data

Since we focus on hierarchical reasoning, we limit our discussion to two types of triples, i.e. class

assertions and object property assertions. We utilize the Manchester syntax8 for this purpose:

class assertions (i.e. ClassAssertion(C,s), with C an ontology class and s an individual) and ob-

ject property assertions (ObjectPropertyAssertion(s,P,o), with P an object property and s and o

individuals). For simplicity we focus on the class assertions, however, the definitions for object

property assertions are straightforward.

Definition 22. We define the function T2R: {triples} → R that maps a set of triples to rela-

tional data through the use ofmappings. Each class assertion triple (i.e. ClassAssertion(Ci,

x)) has a relational presentation where the schema consists ofS = {Subject, Aj : lk}with

Subject the individual name,Aj the taxonomy attribute ofCi and lk the level ofCi in the tax-

onomy. Adding a new class assertion (e.g. ClassAssertion(Cq, x)) results in updating the

schema by adding a new column to store the additional type.

Example 16. The class assertion (ClassAssertion(Article, editx)) translates to the first

row (t1a) of Figure 4.4 a).

4.4.1.3 Alignment of Relational Data with triples

Definition 23. We define a function R2T: R→ {triples} that maps relational data (obtained

by T2R) to triples through the use of mappings. Each tuple in S = {Subject, Aj : lk}
results in a triple (ClassAssertion(Ci, x)) with t[Aj : lk] = Ci . When the schema

8https://www.w3.org/TR/owl2-manchester-syntax/

https://www.w3.org/TR/owl2-manchester-syntax/
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Figure 4.5: Flow of using TRA’s upward extension compared to RDFS9.

contains multiple columns (e,g, S2 = {Subject, Aj : lk, Ap : lq}) then multiple triples are

generated.

Example 17. The first row (after extending the table through the upward extension εgeneralspecific)

(t2a) of Figure 4.4 b) translates to the class assertions:

ClassAssertion(Article, editx), ClassAssertion(WrittenWork, editx).

The functions R2T and T2R are also known as direct mappings and its inverse application. We

refer the interested reader to Sequeda et al. [25] for more a more detailed description.

4.4.2 Alignment of SPARQL under RDFS entailment with TRA

Now that we have aligned ontologies with TRA, we can further formalize our approach by aligning

with SPARQL under entailment.

Theorem 1. The SPARQL evaluation of a dataset under RDFS9 entailment and a dataset under

upward extension are equal.

Proof. As the evaluation of SPARQL under entailment can be implemented as first materializing

the dataset and then evaluating the query, we need to prove:

eval(Grdfs9, BGP,∅,∅) = eval(Gε, BGP,∅,∅) (4.1)

Through the materialization, we can further limit the proof to the alignment of the dataset

under RDFS9 entailment and upward extension: Grdfs9 = Gε .

Figure 4.5 shows how the use of TRA’s upwards extension compares to RDFS9.

Assumptions:

1. We assume that the ontology O contains a hierarchy of a certain number of subclasses:

∃C0, .., Ck+1 ∈ O : Ci v Ci+1 ∧ level(Ci) 6 level(Ci+1) with i <= k and

level(Cj) the mapping of each ontology class to a certain level in the h-domain.

2. There is a functionT2R (R2T ) thatmaps triples to relation data (relation data to triples),

as described in Section 4.4.1.2.
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3. There is a function rdfs9i..j that applies the sequence of RDFS9 rules9

(Ci subclassOf Ci+1), .., (Cj−1 subclassOf Cj)

4. n is the depth of the hierarchy used in the reasoning.

Since RDFS9 entailment over a dataset equals the union of the entailment on each triple in the

dataset [27], we can simplify the proof for a single triple.

We prove that rdfs9(x ∈ Ci) = R2T (ε(T2R(x ∈ Ci))) for a certain ontology O, with

x ∈ Ci = ClassAssertion(Ci, x):

Base case (n=1): In this case we apply one hierarchical reasoning step. This means that

C0 v C1 ∧ level(C0) 6 level(C1) while its known that x ∈ C0 . For readability we show

the base case forC0 v C1 but it holds for every i such thatCi v Ci+1 .

We need to prove that: rdfs90..1(x ∈ C0) = R2T (εl1l0(T2R(x ∈ C0)))

Applying the RDF9 entailment we obtain that x ∈ C1:

(x type C0)(C0 subclassOf C1)

(x type C1)
rdfs9 (4.2)

Through the upward extension we maintain a table with an additional column:

εl1l0(r) = r ∩ T2R((x type C1)) (4.3)

By the definition ofR2T and T2R we can conclude that the result of (4.2) equals R2T(4.3).

Inductive hypothesis (n=k): We assume that the theorem holds for all values of n up to

some k, k ≥ 0. With k the difference in hierarchy level.

rdfs90..k(x ∈ C0) = R2T (εlkl0 (T2R(x ∈ C0)))

Inductive step (n=k+1): Lets assume that the hierarchy is of size k + 1.

rdfs90..k+1(x ∈ C0)

= R2T (ε
lk+1

l0
(T2R(x ∈ C0)))

= R2T (ε
lk+1

lk
(εlkl0 (T2R(x ∈ C0)))) def ε

= R2T (ε
lk+1

k (T2R(rdfs90..k(x ∈ C0))) inductive step

= rdfs9k..k+1(rdfs90..k(x ∈ C0)) base case

= rdfs90..k+1(x ∈ C0) def transitivity rdfs9

Q.E.D.

The proof for rdfs7 was omitted, as it is similar to the proof for rdfs9. In Figure 4.5 we have

windowed the data and used the RStream function to assign timestamps to the resulting solution

mappings. The RStream function allows you to stream out the obtained answers. We refer the

interested reader to Arasu et al. [2] for more information. The incorporation of the streaming

operators is further detailed in Section 4.5.

9The semantics of the transitive property of subclassof is the same as the sequental excecution of RDFS9.
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Figure 4.6: Window sequence timeline of a) TRA and b) ε(RA). In a) events e1 and e2 need to wait for the

shifting of the window (W2) to be taken into account, while in b) this period is used to perform the upward

extension.

4.5 C-TRA: Continuous TRA

Now that we have aligned our approach in a rather static context, we formalize the applicability in

a streaming environment. Therefore, we extend TRA, which has been built for static environments,

to Continuous TRA (C-TRA).

To extend TRA to C-TRA, we rely on the “black box” components of CQL [2] that state that

instead of integrating the streaming operators in the algebra, it is possible to convert the stream

to a relational form through a Stream-to-Relation (S2R) operator. The remaining operations can

be performed in relational form, allowing to exploit well-understood relational semantics. CQL

can be composed of a S2R operator, followed by well-known relation algebra operations and a

Relation-to-Stream (R2S) operator to stream out the results:

CQL = S2R+RA+R2S (4.4)

Defining a Stream-to-Stream (S2S) operator in CQL is done by combining a S2R operator with

a Relation-to-Relation (R2R) operator that exploits relation algebra and an R2S operator:

S2SCQL = S2R+R2RRA +R2S (4.5)

4.5.1 A continuous taxonomy query language

A continuous taxonomic query language (CTQL) that takes taxonomies into account can be defined

as standard CQL, but operating on TRA instead of standard RA:

CTQL = S2R+ TRA+R2S (4.6)

The S2S operator over CTQL can then be defined as10:

S2SCTQL = S2R+R2RTRA +R2S (4.7)

=W(α, β, t0) +R2RTRA +RStream (4.8)

We can further decompose this formula since TRA = ε(RA). Figure 4.6 a) visualizes a

timeline that illustrates the usage of TRA and Figure 4.6 b) its further decomposition. The figure

10Note that there are many options to perform the S2R operation. We opted for a sliding window and leave the further

generalization for future work.
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shows that the events e1 and e2 , arriving between the shifting of the window, can be upward

extended in an additional window, exploiting the wait time in between windows. The decoupling

of the upwards extension form the RA allows to perform the upward extension in betweenwindow

shifts while the RA is executed upon the window. We define this decoupling more formally:

S2SCTQL =W(α, β, t0) +R2RTRA +RStream (4.9)

=W(α, β, t0) +R2Rε(R2RRA) +RStream (4.10)

=W0(β, β, t0) +R2Rε +RStream

+W1(α, β, t0) +R2RRA +RStream (4.11)

withW0(β, β, t
0) opening at the previous evaluation ofW1(α, β, t0) and closes on the next

evaluation. This enforces that each window’s t0 , i.e. the time instant on which each windowWi

starts to operate, are synchronized.11

This shows that we can extract the extension and execute it before the rest of the processing,

while we can rely on RA for the further processing steps. Furthermore, it allows to eliminate data

early on, when they do not meet the hierarchical conditions.

4.5.2 C-TRA for Stream Reasoning

Since IFP operate on RA, we extended the use of RA to TRA. We have shown that TRA aligns with

ontologies and that C-TRA can be used in a streaming fashion. Furthermore, the decomposition

described in C-TRA allows to perform the hierarchical reasoning before the RA. This means that we

can perform our triple based hierarchical reasoning inside a IFP and perform the reasoning before

other operations such as joins or aggregations. This allows to eliminate triples early on based on

the hierarchical requirements in the query.

4.6 Efficient Hierarchical Reasoning

This section discusses how we can efficiently store and retrieve the hierarchy for QA. We begin by

describing a data structure for storing the data and the queries and then we discuss the algorithm

for querying and study its complexity.

4.6.1 Data structure

A possible data structure for efficient lookup of the parent classes for a specific class in the hier-

archy is by saturating the hierarchy and storing for each class a list of all the parents, as visualized

in Figure 4.7 a). By storing the list of parents in a hashmap, using the class name as the key and

storing the list of parents as the value, one can look up the parents for a specific class in constant

time (O(1)).

11 In the remainder of the paper we will focus on a windowW0(1, 1, t0)without losing generality, but relaxing the

need for synchronizing t0 .



C-Sprite 119

Figure 4.7: Flow of the algorithm

Since we need a way to efficiently query the data, we create a new instance of the hierarchy

that only contains the concepts (keys) that have the queried type in their list of parent concepts.

When the concepts have been filtered, we link each concept to the query. When multiple queries

are added, each concept contains a list of queries it matches according to the hierarchy. We focus

specifically on queries asking for specific type instances (queried types). In Figure 4.7, query Q1

asks for all instances of CreativeWork related categories. The concepts that are not CreativeWorks,

such as Concept and Work, are dropped and a direct link is made to the query.

When new data arrives, such as an Article in Figure 4.7, a simple lookup in the hashmap allows

us to detect that a match for query Q1 has been found.

4.6.2 Algorithm

A possible algorithm to query hierarchical classes can easily be defined on the data structures

introduced above. Algorithm 1 shows the algorithm in pseudo-code that describes how the data

structure is constructed to efficiently perform the querying. First, we convert the ontology hier-

archy in a hashmapH containing for each class all its parents. Each time a query is registered, a

copy of the hierarchy is pruned such that it only contains the concepts that have the queried type

in their list of parents. The selected concepts are then directly linked to the queries. This allows

to perform the hierarchical reasoning as a simple lookup in a hashmap.

Algorithm 2 is executed on the ingestion of a new triple. When a new triple is received, we

execute theCheckHierarchyMatch function that takes the triple and the pruned hierarchy

hashmap as arguments. By looking up the asserted types of the triple in the hashmap, we can

directly detect which queries the triples matches.

4.6.2.1 Complexity study:

Let’s assume that the number of queried classes in all the queries ism (i.e. m =∑len(Q)
i=0 len(Qi)). Thus, the complexity of first looking up in the pruned hashmap if the triple’s

type matches any queries and then iterating over them isO(1)+O(m)). However, the number

of queried classes is typically low. Furthermore, this is independent of the stream itself, i.e. for

each triple in the stream, we have the same complexity. We can conclude that the complexity is

linear in the number of queries, however constant in the execution over the stream.
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Algorithm 1: Query registering

Precondition: Q a collection of queries, each interested in one or more types.

1 H←ConvertToHierarchy(O) . Stores parents for each class in the OntologyO
2 function PrepareHierarchy(H,Q)

3 H ′← []
4 for q ∈ Q do

5 for (concept, parents) ∈ H do

6 if q ∈ parents then

7 H ′[concept].append(q)
8 end if

9 end for

10 end for

11 returnH ′

12 end function

Algorithm 2: Calculate the query matches on a hierarchical level

Precondition: Q a collection of queries, each interested in one or more types.

1 H←ConvertToHierarchy(O) . Stores parents for each class in the OntologyO
(preprocessing step)

2 H ′← PrepareHierarchy(H,Q) . (preprocessing step)

3 triple← ClassAssertion(type,subject)

4 function CheckHierarchyMatch(H ′, triple)
5 QueryMatches←H ′(types(triple)) . types extracts the type assertions of a

triple

6 returnQueryMatches
7 end function

4.6.3 Definition in EPL

If we want to exploit the hierarchical reasoning inside the IFP, we need to align the triples with

the IFP events. One possible way to achieve this is by defining the class and property names as

event definitions. For example, the class assertion triple (ClassAssertion(Article,edit)) becomes

Article(edit), (with Article an event definition and edit a parameter) and similar for the property

assertions. This way Article is an event definition that can exploit the hierarchy.

4.7 Related Work

In this section, we elaborate on the related approaches in the literature that are able to perform

hierarchical reasoning (or more) and describe how they compare to C-Sprite. Table 4.1 summarizes

the related work.

Compared to C-Sprite, current approaches suffer from the problems that accompany materi-
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alization, backward chaining or query rewriting. Either they infer too many triples, perform re-

dundant computations or suffer from a large number of queries.

The C-SPARQL engine [6] builds on existing IFP and SPARQL engines to respectively perform

the windowing of the streams and the querying of the data captured in the window. C-SPARQL

supports reasoning and query through the use of Jena12 . However, C-SPARQL is pluggable, allowing

the support of other reasoners.

EP-SPARQL (JTalis) [1] is an event processing enabled SPARQL engine that builds on top of

logic programming. To perform reasoning EP-SPARQL supports event-driven backward chaining

by relying on Prolog.

SPARKWAVE [17] exploits the Rete algorithm [16] to materialize the RDF streams through an adap-

tion of Rete that also incorporates the query answering. Even though it exploits Rete in a smart

way, it is prone to the usual materialization problems, i.e. the inference of many unnecessary

triples.

StreamQR [8] enables the execution of continuous queries under entailment by rewriting the

queries in multiple parallel queries. CQELS [18] is utilized to execute the rewritten queries. It

is a very promising technique, however, the query rewriting easily results in a high number of

rewritten queries, drastically lowering the engine’s performance.

LiteMat [9] uses an encoding scheme to encode the hierarchies to improve materialization and

query rewriting in time and space complexity. The encodings allow to translate the entailment

problem to a rewriting problem in terms of filtering the hierarchical entailment as numbers. C-

Sprite does not encode the hierarchies in a numerical representation, but exploits the hierarchical

support of the underlying IFP.

RDFox [22] is the fastest incremental reasoner currently available, utilizing an optimized version

of the Delete and Rederive (DReD) algorithm [28] for efficient incremental reasoning. However, it

does not provide any mechanisms to deal with high-volatile data streams.

IMARS [5, 12] keeps an incrementalmaintenance of thematerialized knowledge that is valid within

a given window of time. It adapts DReD for its applicability in SR. Even though incremental main-

tenance of the materialization is more efficient than rematerializing each window, its efficiency

is dependent on the percentage of changes in the stream.

4.8 Evaluation

To evaluate the feasibility of C-Sprite, we compared C-Sprite’s maximum throughput with other

engines when increasing the window size and the size of the ontology used to perform the rea-

soning. Before jumping to these evaluations, we first describe the used dataset and argue the

selected engines we compare against.

The evaluation itself was conducted on a 16 core Intel Xeon E5520 @ 2.27GHz CPU with 12GB

of RAM running on Ubuntu 16.04 and utilizing Esper 6.1.0.

12https://jena.apache.org/
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Table 4.1: Comparison C-Sprite and related approaches

Reasoning Components Problems

C-SPARQL Materialization IFP + SPARQL engine Unnecessary triples

EP-SPARQL Backward Chaining Prolog Redundant computations

IMARS
Incremental

IFP + SPARQL engine Dependent on changes
Materialization

SPARKWAVE Materialization Rule engine Unnecessary triples

StreamQR Query rewriting Rewriter + CQELS Many Queries

LiteMat Encodings encoding + SPARQL engine Vector representation

C-Sprite Hierarchies inside IFP Simple entailment

Table 4.2: Dataset statistics

Absolute Number Relative Number

all triples 3.511.629 100%

Creative Works 56.581 1,61%

Top 5 Creative Works:

MusicalWork 21.438 0,61%

Film 13.890 0,40%

WrittenWork 6.814 0,19%

TelevisionShow 4.579 0,13%

Software 4.493 0,13%

4.8.1 Dataset

DBpedia [4] is Wikipedia content represented as a Semantic Web. DBpedia live [21] provides the

Wikipedia changes as structured data, conform to the DBpedia ontology 13 . We have used these

changes to re-stream the wikipedia changes as structured data, such that we can control the

stream rate in orde to evaluate the throughput of C-Sprite. The evaluation thus consists of query-

ing all the changes to creativeworks that are happening to DBpedia. The RSP-QL query usedwithin

the evaluation is shown in Listing 4.2.

We loaded all the additions made between November 2013 and May 2018. As we are only

interested in querying the types of the concepts, we filtered the triples in the data that did not

describe a type assertion. Furthermore, when multiple types have been provided in the data, we

only keep the most specific type assertions, such that the hierarchical reasoning is necessary to

discover the different Creative Works in the data. The final dataset contains more than 3 million

triples, of which more than 56 thousand describing Creative Works. Table 4.2 summarizes the

characteristics of the used dataset.

13https://wiki.dbpedia.org/services-resources/ontology
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4.8.2 Engines Selected as Terms of Comparison

We have selected C-SPARQL, StreamQR and SPARKWAVE as they are themost prominent RDF stream

processors currently available. We also added StreamFox, i.e. a C-SPARQL approach utilizing RDFox

instead of Jena. As some of these approaches can perform more advance reasoning than the

hierarchical reasoning discussed in this paper, we carefully adapted their configuration such that

the reasoning tasks only consists of hierarchical reasoning such that it is a fair comparison.

Esper implements a similar algorithm as the one we discussed in Section 4.6. Therefore, we

build upon Esper to perform the evaluation. Note that we convert the ontology to EPL rules that

can be interpreted by Esper and convert the triples in the stream to Esper events. The approach ex-

ploiting Esper’s internals is further denoted as C-SpriteEsper. As Esper providesmore functionality

than needed to efficiently perform hierarchical reasoning over data streams and the algorithm is

not as optimized as the one described in Section 4.6, i.e. it does not prune the list of parents based

on the registered queries. Therefore, in this evaluation we have added our own algorithm as an

upper bound. The latter is denoted as C-SpriteOpt14 and provides the implementation of the op-

timized algorithm described in Section 4.6. We can thus consider C-SpriteEsper as a lower bound

and C-SpriteOpt as an upper bound of the possible C-Sprite performance.

Listing 4.2: High level query in RSP-QL utilized in the evaluation

1 REGISTER QUERY <http://streamreasoning.org/csprite/s1> AS

2 PREFIX : <http://streamreasoning.org/csprite/>

3 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>

4 PREFIX dbpedia: <http://dbpedia.org/ontology/>

5 SELECT *

6 FROM NAMED WINDOW :win1 [RANGE 1s, SLIDE 1s]

7 ON STREAM :dbpediaChanges

8 WHERE {

9 WINDOW ?w {

10 ?change rdf:type dbpedia:CreativeWork.

11 }

12 }

4.8.3 Throughput Evaluation

First, we evaluate the maximum throughput by streaming the DBpedia changes at the highest

possible rate. This is done by setting up a websocket such that each engine can consume the

stream at the highest possible rate. Figure 4.8 shows the throughput for each of the engines with

increasing window sizes. As there are no joins, the window has no significant influence on most

engines. C-SPARQL and StreamFox show limited influence as their query engine processes the

whole content of the window when the window shifts. The other approaches process each triples

as it is injected. We can see that both C-Sprite implementations (i.e., C-SpriteOpt and C-SpriteEsper)

clearly outperform all the other approaches.

Figure 4.9 depicts the memory consumption during the same experiment. It is clear that the

materialization approaches, i.e. C-SPARQL and StreamFox, have an increasing memory footprint

14The source code of CSprite together with the experiment data can be found on https://github.com/pbonte/C-Sprite
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Figure 4.8: Evaluation of the maximum throughput (more is better) of C-Sprite when increasing the window

size, compared to StreamQR, C-SPARQL, StreamFox and SparkWave.
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Figure 4.9: Evaluation of the memory consumption (less is better) of C-Sprite when increasing the window

size, compared to StreamQR, C-SPARQL, StreamFox and SparkWave.

when the window increases. This can be expected as more andmore triples need to bemaintained

inside the window. The other approaches are less prone to the memory increase. We see that

the memory footprint of SPARKWAVE is even lower than the one of C-SpriteEsper but similar to

C-SpriteOpt. This is due to encoding techniques specially incorporated in SPARKWAVE to lower

the memory footprint. Said techniques have not yet been incorporated in C-Sprite. However, the

most important message is that C-Sprite’s memory consumption is not increasing as with the

materialization approaches.

We evaluated the correctness of the various approaches, by analyzing if all the correct query

matches were found. We report that each of the approaches produced correct results, even under
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Figure 4.10: Evaluation of the maximum throughput (more is better) of C-Sprite when increasing the

ontology depth, compared to StreamQR, C-SPARQL, StreamFox and SparkWave.

high load.

4.8.4 Ontology depth Evaluation

The complexity study in Section 4.6 clearly shows that the number of parents which a class has,

should not influence the complexity of the approach. Therefore we made the DBpedia ontology

artificially deeper. This is done by adding artificial subclasses between the CreativeWork class and

the specific classes used within the stream. With the ontology depth, we mean the length of the

path from the root to the classeswithout children if we visualize the ontology as a tree. Figure 4.10

shows the influence of increasing ontology depth on the throughput. We can clearly see that the

materialization approaches become less performant when the ontology depth increases. This is

due to the fact that more triples need to be inferred.

Figure 4.11 shows the consumed memory while increasing the ontology depth. Almost all

the approaches are influenced by the increase in depth. C-Sprite stays rather constant as it is

not materializing all the triples. StreamQR and SPARKWAVE show a small increase in memory

consumption.

We also evaluated the correctness when increasing the ontology depth of the various ap-

proaches. Also in this scenario, all the engines produced the correct results.

4.8.5 Conclusion

It is clear that both C-Sprite implementations outperform the other approaches in terms of maxi-

mum throughput. Only SPARKWAVE has a smaller memory footprint than C-SpriteEsper due to its

special encoding schemes but similar to it is C-SpriteOpt. C-SpriteOpt sets a realistic upper bound

for the performance while C-SpriteEsper sets a possible lower bound. Even if the performance of
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Figure 4.11: Evaluation of the memory consumption (less is better) of C-Sprite when increasing the ontology

depth, compared to StreamQR, C-SPARQL, StreamFox and SparkWave.

C-SpriteOpt is too optimistic as it currently focuses only on the hierarchical reasoning functionality,

the lower bound performance set by C-SpriteEsper still clearly outperforms current approaches.

4.9 Discussion

In this section, we discuss how the approach is positioned in terms of traditional reasoning tech-

niques and we discuss if the approach is feasible for non-streaming situations. As we stated in

the introduction there are three approaches to perform reasoning. However, it is not clear where

our approach fits. We will now discuss each of the approaches and how they relate to C-Sprite:

• Materialization: It is clear that we are not performing materialization since we do not

populate the Assertion Box (ABox) with new facts. However, we have precomputed the

hierarchy and when a new triple arrives, we link in a memory efficient way its parents to

the triple. In this sense, it is an efficient way of performing materialization.

• Query Rewriting: We are not performing query rewriting sincewedo not rewrite any queries

to contain Terminological Box (TBox) information. However, we do adapt the underlying

data structure to create references between the queried concepts and the hierarchies.

• Goal driven: The approach is not goal driven since we are not performing backward rea-

soning from the goals (the queried types) to the data. However, we are maintaining the

relations between the queried types and the hierarchies in the underlying data structure.

It is clear that the C-Sprite does not fit into one specific category. We can conclude that it is a

hybrid approach that allows to optimize the underlying data structures for a specific entailment

that can be modeled in the form of hierarchies.
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The power of the approach lies in the fact that we can check for each triple in the stream

directly if it is needed for further processing. The question remains if this approach is feasible

for non-streaming approaches. We argue that the approach is beneficial in situations where the

data needs to be read from file, in this case we can process triple by triple and start answering the

query while reading the data from file. In other cases, the approach is still feasible, but it will not

result in the speed-up as in the streaming or reading from file cases. In Section 4.5, we formalized

that the hierarchical reasoning can be performed before the rest of the processing, justifying that

we can process triple by triple.

4.10 Conclusion

In this paper, we proposed a Stream Reasoning approach that exploits hierarchical language fea-

tures from the underlying IFP. We have formalized the approach and shown in the evaluation that

C-Sprite outperforms existing RSP engines for simple hierarchical reasoning tasks. We have fo-

cused on two types of triples only: class assertions and object property assertions. Furthermore,

we formalized the approach for reasoning over the classes and did not take joining into account.

We argue that the joins can be done at a later stage by utilizing, for example, a left-linear tree.

In future work, we wish to further formalize the approach, i.e. further generalize certain as-

sumptions such as the sliding window of size 1 in Section 4.5. We also wish to exploit the hierarchy

to enable more expressive reasoning.
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5
Subset Reasoning for Event-Based Systems

Chapter 3 explained how relevant data in data streams can be selected in order to perform expres-

sive reasoning over volatile data streams. However, this does not provide a solution to caseswhere

there are large amounts of static background knowledge that need to be combined with event

data. This chapter tackles this exact problem by approximating a relevant subset of ABox data,

such that the amount of data to reason upon can be minimized. Chapter 2 and 3 described how

services can subscribe to semantic IoT data. However, these services often still need to combine

the subscribed event data with large amounts of background knowledge in order to make accu-

rate decisions. Furthermore, the solution described in this chapter can be utilized in the platforms

described in Chapter 2 and 3 when large amounts of static background knowledge are required to

correctly handle the abstraction of the various events. This chapter investigates Research Ques-

tion 4: “Can expressive reasoning over event data, that needs to be combined with large static

knowledge bases, be employed in time-critical use cases?” and validates Hypothesis 4: “Using

an approximation technique that extracts a subset of data to reason upon, we can speed up the

expressive OWL 2 DL reasoning process at least 10 times, compared to the state of the art.”.

? ? ?

P. Bonte, F. Ongenae, F. De Turck.

Submitted to IEEE Access, January 2019.

Abstract In highly dynamic domains such as the Internet of Things (IoT), Smart Industries, Smart

Manufacturing or Social Media, data is being continuously generated. By combining this generated
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data with background knowledge and performing expressive reasoning upon this combination,

meaningful decisions can be made. Furthermore, this continuously generated data typically orig-

inates from multiple heterogeneous sources. Ontologies are ideal for modeling the domain and

facilitate the integration of heterogeneous produced data with background knowledge. Further-

more, expressive ontology reasoning allows to infer implicit facts and enables intelligent decision

making. The data produced in these domains is often volatile. Time critical systems, such as IoT

Nurse Call systems, require timely processing of the produced IoT data. However, there is still a

mismatch between volatile data and expressive ontology reasoning, since the incoming data fre-

quency is often higher than the reasoning time. For this reason, we present an approximation

technique that allows to extract a subset of data to speed-up the reasoning process. We demon-

strate this technique in a Nurse Call proof of concept where the locations of the nurses are tracked

and the most suited nurse is selected when the patient launches a call. Furthermore, we evaluate

using an extension of an existing benchmark. We managed to speed up the reasoning process up

to 10 times for small datasets and up to more than 1000 times for large datasets.

5.1 Introduction

5.1.1 Problem Description

Highly dynamic domains such as the Internet of Things (IoT), Smart Industries, Smart Manufac-

turing, financial sector or Social Media require real-time processing of heterogeneous generated

data [1]. These time critical systems need to react as quick as possible to newly generated event

data. However, many of these systems need to integrate background knowledge with the event

data on the fly, to enable real-time interpretation of these events and execute advanced logics

to make correct decisions [2, 3]. For instance, in an IoT nurse call system, expressive reasoning

is required to capture the capabilities of the nurse, the pathologies of the patients, the relation

between the patients and the staff, etc [4]. To automatically determine the priority of a launched

patient call, the pathology of the patient needs to be inspected. Depending on the patient’s dis-

ease, the call gets a higher priority. Similar examples can be thought of in other domains such as

detecting hazard situations in a smart manufacturing scenario or reacting to traffic jams in smart

cities.

Semantic web technologies, such as ontologies, are the preferred model for the integration

of the generated heterogeneous data with background knowledge [5, 6]. An ontology formally

describes concepts, properties, and their relations, within a certain domain. By defining the rela-

tions between various concepts, a model can incorporate the knowledge about a certain domain.

Through the use of a reasoner, implicit facts can be automatically inferred. For example, bymodel-

ing that a ‘high priority call’ is a call made by a patient that has a certain risk profile, the reasoner

can automatically decide which calls should be handled with higher priority. Note that the fact

that a patient has a risk profile can be inferred based on the pathology and the history of the

patient. To make intelligent conclusions, the reasoner should be able to handle highly expressive

definitions in the ontology. We opted for Web Ontology Language (OWL) reasoning, which uses
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Description Logic (DL), as OWL is widely used and it is a web standard.

However, currently, there is still a mismatch between expressive reasoning and real-time re-

quirements [1]. Expressive reasoning techniques such as DL reasoning can have up to NEXPTIME

complexity [7], resulting in slow reasoning times with growing datasets [8, 9]. In this paper, we

present a practical subset reasoning technique that combines expressive reasoning and event-

based requirements by extracting and approximating a subset of data. The subset minimizes that

dataset to reason upon, speeding up the reasoning process.

Many advances have been made in the Stream Reasoning domain [10–12] to combine data

frommultiple streams with static background knowledge. Generated event data produced by var-

ious sources can be considered as data streams. To be able to process these unbounded streams

of data, stream reasoning techniques consider the data within a defined time frame, i.e., a win-

dow. Expressive reasoning platforms have mostly focused on the processing of static data [13]

or slowly changing data [14]. When these systems try to process data streams, newly incoming

data will pile up, eventually crashing the system, since each item needs to be processed one by

one [15]. By using windows, multiple data items can be processed simultaneously. However, a

problem that arises when using windows in combination with expressive reasoning, is the possi-

ble inconsistency within a window. For example, when an individual is a member of two disjunct

classes due to considering the datawithin thewindow. However, the content of thewindow should

never be inconsistent, only the most recent statement should be considered [16]. Handling these

inconsistencies within a window is still an open problem [16].

5.1.2 Related Work

We now discuss the most prominent works in the literature and their drawbacks.

Traditional OWL2 DL reasoner such as HermiT [13] and Pellet [17] focus on the processing of

static or very slow changing data. They provide no mechanisms for the processing of event data

and are typically too slow to handle event data.

PAGOdA [18] is a hybrid approach that combines a datalog reasoner with an OWL2 reasoner.

Most of the computations are executed by the fast datalog reasoner and only if necessary the

OWL2 reasoner computes themissing facts. Although it is a very promising technique, in its current

state PAGOdA focuses on querying and does not allow the adding and removal of facts which is

necessary in a changing environment. This means that the PAGOdA reasoner would need to be

restarted each time new data arrives. PAGOdA uses RDFox [14] as its datalog reasoner. RDFox is

the fastest incremental OWL2 RL reasoner currently available. As we will discuss in Section 5.3,

OWL2 has three profiles that minimize the expressivity to increase the efficiency of reasoning.

RDFox is thus not as expressive as OWL2 DL reasoning. Furthermore, as PAGOdA and RDFox focus

more on static domains, they do not provide any mechanisms to process data streams, such as

windowing or update policies.

TrOWL [19] offers a subset of OWL2 DL expressiveness while maintaining tractable, by using

language transformations. It supports stream reasoning by incrementally processing the addition

and removal of facts. As only a subset of OWL2 DL is supported, TrOWL does not support nominals
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or datatype reasoning.

Many RDF Stream Processing (RSP) techniques exist [10, 11] that consider streams of RDF data

within a predefined window and process only the content within the window. When new data

arrives, or when time passes, the window slides over the data stream and a new portion of the

data stream is processed. These techniques support the integration with background data and

support various streaming operators such as aggregations. However, due to the high velocity

of data these systems need to process, the reasoning capabilities are low. The most expressive

RSP engine is StreamQR [20], which supports the ELHIO logic, which falls under the OWL2

EL fragment, one of the most expressive logics currently used for query rewriting. As OWL2 EL is

another profile of OWL2 DL, it is less expressive.

Other techniques such as module extraction and ontology partitioning focus on minimizing

the ontology Terminological Box (TBox). Module extraction techniques [21] allow to extract a part

of the TBox to speed up the reasoning process in a specific case, e.g. to type check some specific

classes. While ontology partitioning techniques split the ontology into smaller self-contained

modules [22]. Both techniques focus on minimizing the TBox but provide no solution for growing

Assertion Box (ABox)es. Anagnostopoulos et al. [23] highlights the importance of approximate

reasoning in order to perform time-critical decision making. They utilize probabilistics to approx-

imate certain reasoning tasks, based on the similarity with other situations, without dealing with

highly expressive ontologies. This implies that the results might not always be correct. In our

approximation approach, we aim for correct answers achieved by approximating a subset of data

to perform the expressive reasoning upon.

5.1.3 Objectives & Solution

To allow the design of time critical systems within highly dynamic domains, we set the following

objectives:

1. Heterogeneous data: Since data typically needs to be combined from various heteroge-

neous sources, we need to be able to integrate this heterogeneous data.

2. Event data: Data is produced continuously, therefore new data should be added to the

system and old data should be updated or removed.

3. Large knowledge bases: Many domains have large knowledge bases that need to be com-

bined with the generated data, e.g. sensors typically only describe their sensor readings

and still need to be combined with the sensor itself and the location of the sensor, etc.

4. Expressive reasoning : In order to correctly interpret the domain, expressive reasoning is

required to correctly analyze the domain definitions.

To tackle these challengeswepropose an approximation technique thatminimizes the dataset

to reason upon, in order to speed up the reasoning process in an event-based environment. To
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solve the windowing problem, we define various update policies that describe how the most re-

cent data in the stream should be captured. As such, instead of a window, we maintain a recent

view on the stream and use this recent view to compute our subset.

We show that our subset approach scales very well, even with large amounts of data (i.e.

instantiation data), making it an ideal tool for time critical systems that require expressive rea-

soning.

5.1.4 Paper Organization

The remainder of this paper is structured as follows: Section 5.2 introduces the nurse call use case

used throughout the paper. In Section 5.3 the background to understand the remainder of the

paper is explained. Section 5.4 describes the policies that allow to maintain a recent view on the

data stream. Section 5.5 explains the subset approximation algorithm, while Section 5.6 describes

the implementation details of the system. Section 5.7 evaluates our technique by comparing the

execution time of the use case from Section 5.2 and a benchmark to existing techniques and dis-

cusses the results. We show that our technique is up to 10 times faster for really small datasets

and up to more than 1000 times faster for larger datasets. Section 5.8 discusses how the results

should be interpreted and Section 5.9 concludes the paper and identifies future research paths.

5.2 Use Case Description

In the remainder of the paper we focus on an IoT nurse call system to introduce and explain our

approach. We note that our approach is applicable for any event-based environment requiring

expressive reasoning.

The IoT plays a crucial role in providing optimal and personalized care for patients. The ad-

vances in this field allow patients to be easily monitored [24] and to localize the necessary staff

members [25]. However, to achieve truly personalized care, profile, context and domain informa-

tion needs to be considered. Most of this information is rather static, e.g., the patient’s profile and

pathology, the competences of the nurses and the floor-plan of the hospital. Discrete streams of

events representing, e.g. patient’ calls, person location updates, call status updates, need to be

combined with the static data to derive actionable insights. In this use case, we consider a call

assignment scenario, where the most suited staff member at a particular moment should be as-

signed to a patient call. The nurse selection procedure is made up out of a rather large decision

tree consisting of 36 leaves [4]. The treewas constructed togetherwith domain experts, i.e. nurses,

doctors and patients, and a company specialized in nurse call systems (Televic Healthcare1). The

selection procedure takes into account, amongst others, the personal relation of the staff mem-

bers with the patients, the location of the staff members and their competences. We consider

the following scenario within this paper, which typically occurs during the night, consisting of the

following steps:

1http://www.televic-healthcare.com/

http://www.televic-healthcare.com/
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1. Call Launched: A patient launches a call and the selection procedure is started to assign

the most appropriate nurse to the call. The nurse is notified of this assignment.

2. Call Redirect: The nurse is currently busy and indicates that the call should be redirected.

The selection algorithm runs again to assign and notify another nurse.

3. Call Temporary Accept: The new nurse temporary accepts the call. This is a temporary

accept because the call can only be completely accepted once the nurse is with the patient.

This allows easy re-assignments in case of interruptions or delays.

4. Corridor: The nurse moves towards the room of the patient and continuous location up-

dates are registered by the IoT system.

5. Patient Location: When the nurse arrives in the patient room, a new location update is

sent. Some lights in the room automatically turn on at the appropriate low level, since a

staff member is present in the room.

6. Presence on: The nurse logs into the terminal in the patient room. The call is now accepted

and the correct lights, depending on the procedure, turn on. For example, for a medical

procedure, the spot lights above the bed turn on, while for an assistance procedure the

mood lighting is activated.

7. Presence off: The nurse inputs some additional administrative information about the pro-

cedure of the call on the terminal and logs out. The call is now finished and the procedure

lights turn off.

8. Corridor: The nurse leaves the room. The location of the nurse is updated and since no

staff member is in the room, all the lights turn off.

Since regulations stipulate that a nurse should be present in the room within three or five min-

utes (depending on the country) when a call has been made, the allowed decision time should be

limited to five seconds, to allow for plenty of time for the nurse to move to the room. Therefore,

the data should be processed in a timely manner to meet these timely requirements. To represent

the eHealth knowledge, the ACCIO ontology2 is used, which has been constructed in collaboration

with domain experts. An elaborate description can be found in Ongenae, et al. [4].

The decision tree of the selection procedure was translated into SPARQL queries, that takes

into account the background, profile and context information captured within the ACCIO ontology.

5.3 Background

This section introduces the necessary background on which the remainder of this paper is built.

2https://github.com/IBCNServices/Accio-Ontology/

https://github.com/IBCNServices/Accio-Ontology/
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5.3.1 Description Logics

The popularity of OWL has led to the design of OWL2, defining the foundations of OWL2 DL reason-

ing [26]. Description Logics [27] are the logical-based formalisms on which OWL2 DL has been

built [28]. We introduce the syntax of a simplified DL, explaining the basic notions to understand

the remainder of the paper. We refer the reader to Horrocks et. al. [29] for a more thorough de-

scription of the logic SROIQ (which is used within OWL2 DL) and its semantics. DL defines

concepts to represent the classes of individuals and roles to represent binary relations between

the individuals. Concrete roles (or data properties) are roles with datatype literals in the second

argument.

DL languages contain concepts names A1, A2, ..., role names P1, P2, ... and individual

names a1, a2, .... A role R is either a role name Pi , its inverse P−
i or a complex role R1 ◦

· · · ◦ Rn consisting of a chain of roles. ConceptsC are constructed from: two special primitive

concepts⊥ (bottom) and> (top) or concepts names and roles using the following grammar:

C ::= Ai|>|⊥|¬C|C1 u C2|C1 t C2|∃R1.C1|∀R1.C1

Note that the two last concepts are called, respectively existential (∃) and universal (∀) quanti-
fiers. More expressive constructs such as qualified number restrictions are allowed as well:

C ::=≥ nR.C1| ≤ nR.C1

Meaning that at least or at most a specific number n of relationsR should be present. Nominal

support allows to restrict to specific individuals instead of concepts:

C ::= ∃R.{a}|∃R.{a1, a2, ..an}

Where the latter can be seen as “one-of”. Data property restrictions can restrict the values of data

properties:

C ::= ∃R. ≥ n|∃R. ≤ n

A TBox T , is a finite set of concept (C) and role (R) inclusion axioms of the form

C1 v C2 andR1 v R2

withC1 ,C2 concepts andR1 ,R2 roles. A concept equation (C1 ≡ C2) denotes that bothC1

andC2 include each other:

C1 v C2 andC2 v C1

An ABoxA is a finite set of concept and role assertions of the form

C(a) andR(a, b)

with C a concept, R a role and a and b individual names. ind(A) denotes the set of individ-

uals occurring inA. A Knowledge baseK = (T ,A) combines T andA.

We can now define the semantics using an interpretationI . I is a pair (∆I , ·I ) consisting of

a non-empty domain of interpretation ∆I and an interpretation function ·I . The interpretation

function assigns:
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• an element aIi ∈ ∆I to each individual name ai ,

• a subsetAI
i ⊆ ∆I to each concept nameAi ,

• a binary relation P I
i ⊆ ∆I ×∆I to each role name Pi .

We can now use the interpretation function to define the semantics of the above defined grammar:

(P−)I = {(v, u)|(u, v) ∈ P I},
>I = ∆I ,

⊥I = ∅,
(¬C)I = ∆I\CI ,

(C1 u C2)
I = (C1)

I ∩ (C2)
I ,

(C1 t C2)
I = (C1)

I ∪ (C2)
I ,

(∃R1.C1)
I = {u|∃v ∈ CI ∧ (u, v) ∈ RI},

(∀R1.C1)
I = {u|∀v ∈ CI ∧ (u, v) ∈ RI}.

We callM = K∞ the materialization of K = (T ,A), i.e. all inferred axioms w.r.t.

explicit individuals inK are computed and explicitly stored. For example, based on the knowledge

defined in T , additional axioms regardingA can be extracted.

OWL2 contains three profiles, each limiting the expressivity power in a different way, to ensure

efficiency of reasoning:

• OWL2 RL: does not allow existential quantifiers on the right-hand side of the concept inclu-

sion, eliminating the need to reason about individuals that are not explicitly present in the

knowledge base. Furthermore, it does not allow quantified restriction, e.g. minimum, max-

imum or exactly a specific number of quantified roles. This profile is ideal to be executed

on a rule-engine.

• OWL2 EL: mainly provides support for conjunctions and existential quantifiers. This pro-

file is ideal for reasoning over large TBoxes that do not contain, among others, universal

quantifiers, quantified restrictions or inverse object properties.

• OWL2 QL: does not allow, among others, existential quantifiers to a class expression or a

data range on the left-hand side of the concept inclusion. This makes the profile ideal for

query rewriting techniques.

Note that each of these profiles is a subset of OWL2 DL. Expressive logics such as OWL2 DL require

special techniques to support their reasoning, such as the tableaux algorithm [30, 31] which are

provided by reasoning systems [13, 17, 32, 33].
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5.3.2 Reasoning Techniques

Looking at the literature, we can distinguish three categories of reasoning techniques within our

domain:

• Reason on query time: These approaches perform the reasoningwhile executing the query.

The query evaluation itself is then performed under a certain entailment, in order to incor-

porate the reasoning. The query evaluation can be formalized as eval(Q,K, E), withQ

the query that needs to be evaluated,K the ontology ABox and TBox andE the entailment

regime that defines the expressivity of the reasoning during query evaluation.

• Materialization: Materialization approaches materialize their data, such that queries can

be executed without the need for reasoning during query execution. The query evaluation

can be formalized as eval(Q,K∞, ∅), withK∞ the materialization ofK. The entail-

ment regime is ∅, denoting that there should be no reasoning while evaluating the query.

• Query Rewriting: Rewriting approaches rewrite the provided queries based on the ontol-

ogy TBox, such that the query contains all the information from the ontology. The query

evaluation can here be defined as eval(Q′,K, ∅), withQ′ the rewritten query such that

the reasoning is contained within the query. The entailment regime is here also ∅, thus no

reasoning should be executed while evaluating the query. We note that only a subset of

OWL2 DL can be rewritten.

Figure 5.1 visualizes the flow of the different reasoning techniques. We make a distinction

between the loading of the data at start-up, at the top, and the adding of event data during run-

time, at the bottom. The figure shows that, once the event data has been added to the ontology

at runtime, the rewriting and materialization approaches don’t require reasoning at query time.

However, the materialization results in computing all possible assertions in the knowledge base,

some might be irrelevant for the query answering. While the query rewriting results typically in a

very complex query and only a small subset of OWL2 DL can be rewritten.

5.4 Update Policies

In an event-based environment, data is continuously produced and special techniques are nec-

essary to capture the current view on the data streams. We introduce the definition of Update

Policies that allow to define how the current view should be constructed. The current view differs

from the window operator as it is updated based on the previous current view, while the window

is an operator that captures the stream in processable chunks. We start with the definition of a

current view on a data stream:

Definition 24. Ax is a set of ABox axioms and S = Ax1, Ax2, ..., Axn is a time varying

sequence of axioms. AxS(t) is a function that extracts a view at a specific time instant from the

Stream S . Axcurrent is a current view on an axiom Stream S , it describes as a set of axioms

how the updates in the stream should be interpreted at the current time.
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Figure 5.1: Visualization of the flow of materialization, query rewriting and reasoning on query time

approaches.

We can now introduce the notion of an update policy:

Definition 25. An Update PolicyUp is a function that updates the viewwith the incoming axioms

of the stream to a current view:

Axcurrent(t) = Up(Axcurrent(t− 1), AxS(t)), with t the latest time instant.

Let’s say we have a stream S of axiom sets Axi , i.e. S = Ax1, Ax2, ..., Axn with

i = 1..n time instances.

We define three basic update policies. Figure 5.2 visualizes the differences between these

policies based on different axioms set in the data stream.

1. Latest: always takes the latest axiom set in the data stream, similar to the Now operator

that can be defined for window functions in streams, namely:

UPLatest(Ax1, Ax2) = Ax2

2. Combine: merges the sets of axiom’s together.

UPCombine(Ax1, Ax2) = Ax1 ∪Ax2

3. Update: overwrites existing relations and merges new ones.

UPUpdate(Ax1, Ax2) = (Ax1 \Ax−(Ax1, Ax2)) ∪Ax2
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Figure 5.2: Visualization of resulting current views based on the different update policies.

with

Ax−(Ax1, Ax2) = {R(a, b) ∈ Ax1|∃R(a, c) ∈ Ax2 ∧ b 6= c}

Note that more advanced policies are possible, however, out of scope for this paper.

5.5 Subset Reasoning

Now that we can maintain a view on the data stream according to the defined policy updates, we

introduce the concept of subset reasoning as an approximation technique to efficiently speed up

the reasoning process. The technique calculates a subset of ABox data from the knowledge base,

based on the new axioms in the data stream. The extracted subset allows to efficiently calculate

the materialization of the new axioms. Note that this requires the knowledge base to be in a

materialized state.

5.5.1 Defining Subset Reasoning

Before we define how to extract the subset, we need to identify how big the subset should be

(similar to the Modal depth [34]):
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Definition 26. We define the Concept Depth as a recursive function, starting from all axioms

Ceq ∈ T withCeq a concept inclusion or concept equivalence andCi concepts andRi roles:

depth(C1 v C2) = max(depth(C1), depth(C2))

depth(C1 ≡ C2) = max(depth(C1), depth(C2))

depth(Ci) = 0 withCi a concept name

depth(C1 u C2) = max(depth(C1), depth(C2))

depth(C1 t C2) = max(depth(C1), depth(C2))

depth(∃R.C1) = depth(R) + depth(C1)

depth(∀R.C1) = depth(R) + depth(C1)

depth(R1o...oRn) = depth(R1) + ...+ depth(Rn)

depth(Ri) = 1

The Concept depth thus calculates the number of relations defined in a concept. We can now

calculate the deepest concept within the TBox:

Definition 27. We define the TBox Depth as:

depth(T ) = max({depth(C)|C ∈ T }).

The TBox depth will define how big the subset should be.

Example 18. We calculate the TBox depth based on the following example TBox:

T = {
NormalCall ≡ Call u ∃callMadeBy.

∃hasRole.(Patient tResident)

CareCall ≡ NormalCall u ∃hasReason.CareReason

PriorityCall ≡ Call u ∃callMadeBy.

∃hasProfile.RiskProfile

Patient ≡ Role u ∃hasDetails.

∃isAdmittedTo.Hospital

Resident ≡ Role u ∃hasDetails.

∃isAdmittedTo.ResidentCareCenter

}
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The depths for each of these concepts is respectively:

depth(NormalCall) = 2

depth(CareCall) = 1

depth(PriorityCall) = 2

depth(Patient) = 2

depth(Resident) = 2

The TBox depth ismax({2, 1, 1, 2, 2}) = 2.

Before introducing the definition of a subset, we define the collection of all outgoing relations

as the function rout:

Definition 28. The outgoing relations of an individual i in a knowledge baseK is defined as:

rout(i,K) ={R(i, j)|R(i, j) ∈ A}

The types of the individuals that are linked through these outgoing relations are defined

through the function cout:

cout(i,K) = {C(j)|R(i, j) ∈ rout(i,K) ∧ C(j) ∈ A}

The combination of all the outgoing relations with the types of the linked individuals is then

defined as rcout
rcout(i,K) = rout(i,K) ∪ cout(i,K)

We can now define how a subset for a set of ABox axiomsAx can be calculated with respect

to a materialized knowledge base K∞ . We denoted ind(Ax) as the collection of individuals

contained inAx and depthmax the TBox depth.

Definition 29. A subset Sub(Ax,K∞, depthmax) =

{Rout(i,K∞, depthmax)|i ∈ ind(Ax)} with

Rout(i,K, 0) =rcout(i,K),
Rout(i,K, depth) =rcout(i,K)

∪{Rout

(
i′,K, depth− 1)|i′ ∈ ind

(
rout(i,K)

)
}

So the subset method of an ABoxAx based onK∞ extracts recursively all relations, individuals

and their types linked to the individuals inAx that are also inK∞ . The recursion is dependent

on the TBox depth. Note that to make the theory work in practice two special cases need to be

incorporated:

• When in the latest step of the scenario (depth=0) there are transitive relations, the recur-

sion should continue to follow these relations (and these relations only) until no more of

the transitive relations are found.
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• In each step, we store the ABox relations that have been followed before and make sure

we do not follow previously visited relations. This is to prevent that the algorithm gets

stuck in a loop.

These special cases were not included in the formalization in order to maintain clarity.

Example 19. (cont’d) We extend the TBox from Example 18 with the following axioms:

T ′ = T ∪ {BehaviourRiskProfile v RiskProfile

MedicalRiskProfile v RiskProfile}

We introduce the following ABox:

A′ = {Person(p1), hasRole(p1, r1), Role(r1),

Hospital(h1), hasProfile(p1,m1),

MedicalRiskProfile(m1), Detail(d1)

hasDetails(r1, d1), isAdmittedTo(d1, h1),

...

Person(p2), P erson(p3), P erson(p4),

hasRole(p2, r2), hasRole(pr, r3), hasrole(p4, r4),

StaffMember(r2), CareRole(r3),

StaffMember(r4)

}

Note thatA′ contains more axioms (indicated by ‘...’), but these were omitted for conciseness rea-

sons. When we materialize the knowledge base, we can infer (among others) thatPatient(r1)

andRiskProfile(m1). Consider now the following update in the stream:

Ax = {Call(c1), callMadeBy(c1, p1)}
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Figure 5.3: Visualization of the example illustrating that subset technique can extract a subset of data and

still infer the types of the individuals in the event data due to the materialization of the knowledge base.

The circle visualizes the data in the subset, the dotted rectangles depict the data necessary to infer that c1

is a NormalCall and r1 is a Patient.

If we calculate the subset forAx in function of T ′ andA′ , we obtain the following axioms:

Sub(Ax,K∞, 2)

= {Rout(c1,K∞, 2), Rout(p1,K∞, 2)}
= {Call(c1), callMadeBy(c1, p1), P erson(p1),

hasRole(p1, r1), Rout(r1,K∞, 1), Rout(m1,K∞, 1)}
= {Call(c1), callMadeBy(c1, p1), P erson(p1),

hasRole(p1, r1), Role(r1), hasDetails(r1, d1),

Rout(d1,K∞, 0), hasProfile(p1,m1),

MedicalProfile(m1), RiskProfile(m1)}
= {Call(c1), callMadeBy(c1, p1), P erson(p1),

hasRole(p1, r1), Role(r1), hasDetails(r1, d1),

Detail(d1), hasProfile(p1,m1),

MedicalProfile(m1), RiskProfile(m1)}

Which is a subset and still allows us to calculate the fact that c1 is a NormalCall and a

PriorityCall.

The example is visualized in Figure 5.3 where we can see that we don’t need all information

in the knowledge base to infer the types of c1. To infer that the Call c1 is a NormalCall, we need
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Figure 5.4: The different processing steps of the practical subset reasoning approach. WithAc the current

view (Acurrent) on the streamAS .

to know that r1 is a Patient. However, the subset does not contain all the data to infer that r1 is

a Patient. Since we operate on a materialized knowledge base, we already inferred in a previous

step that r1 is, in fact, a Patient. Since the inferred types are part of the subset, we can successfully

infer that c1 is a NormalCall. Since the knowledge base is materialized, a smaller set of data can

be extracted to infer the types of the data inAx.

5.5.2 SubsetReasoning: a practical approach towards expressive Event-Based

reasoning

The subsetting technique is very useful upon frequently changing data. We define an axiom

streaming dataset as follows:

Definition 30. An axiom streaming dataset ADS is a set of the form {(AS , Up), ...} with

AS a stream of events described as axioms andUP its update policy, as defined in Section 5.4.

In an event-based environment such as the IoT, there are multiple streams to be considered

since data from various sources needs to be combined. The calculated subsets for each of these

streams should thus be combined with the knowledge base to allow querying of the integrated

streams. The process of the various steps for one stream is depicted in Figure 5.4. First, we cal-

culate the new current view through the selected policy update and based on the new view we

extract a subset of data from the materialized knowledge base. The subset is then materialized

and combined with the materialized knowledge base in the Subset knowledge base. The Subset

knowledge base can then be queried.

Definition 31. A Subset Knowledge Base is the union of the materialized knowledge base and the

materialized axioms sets fromADS : K∞
ADS =

⋃
A∞

S ∪ K∞

withA∞
S =M(Sub(UP (AScurrent, AS(t)),K∞, depth, T ))

This allows to combine the materialized views on the different streams with the static data in

the knowledge base. For each AS we use a subset of K∞ to materialize AScurrent. Due
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Figure 5.5: Visualization of the limitations of the subset technique when the events update parts of the

knowledge base outside the subset.

to the monotonicity property, K∞ does not need to be updated when data is removed from

AScurrent since the materialization of AScurrent is maintained outside of K∞ . Addi-

tional information regarding K∞ can be inferred in AScurrent but it does not inflict K∞

directly. Since the union ofK∞ and all the AScurrent ∈ ADS are used for query answer-

ing, these results are taken into account. Note that when AScurrent is updated, the previous

materialization is removed and a newmaterialization based on the extracted subset is calculated.

This methodology bypasses the difficulties attached to removals in an incremental reasoning ap-

proach [35, 36] (i.e. detecting which inferred facts should be removed when removing data).

5.5.3 Extension of Subset Reasoning

Since the subsetting technique is an approximation technique it is not always complete. It is how-

ever always sound. The technique focusses on the efficient materialization of the new events,

however, updating the knowledge base according to the new events might sometimes be incom-

plete if these updates fall outside of the subset. We first introduce a pure fictional scenario to

highlight the possible risks and afterwards we present a solution. Note that in the practical im-

plementation of the nurse call system, wewere never confrontedwith these limitations. Figure 5.5

visualizes these limitations. Let’s consider the following TBox consisting of wards, patients and



148 Chapter 5

calls that might be at risk:

RiskWard ≡Ward t ∃hasPatient.RiskPatient

RiskPatient ≡ Patient t ∃madeCall.RiskCall

RiskCall ≡ Call t ∃hasStatus.RiskStatus

callMadeBy ≡ madeCall−

Say that the knowledge base consists of the following ABox:

Ward(w), Patient(p), hasPatient(w, p),

Call(c),madeCall(p, c), callMadeBy(c, p)

The stream that updates the call statusesAS produces the following axioms that state that the

call made by the patient has a risk status:

Call(c), hasStatus(c, rs), RiskStatus(rs)

Since the TBox depth is only one in this example, we extract the following subset:

Call(c), hasStatus(c, rs), RiskStatus(rs),

callMadeBy(c, p), Patient(p)

Upon materialization of the subset based on the introduced TBox, we can infer that that call c is

a RiskCall and that patient p is a RiskPatient.

RiskCall(c), RiskPatient(p)

However, since the wardw was not in the subset, we do not infer thatw is a RiskWard.

RiskWard(w)

As a solution to this problem, we can gradually increase the subset in size when individuals at

the edge of the subset have changed type. With the edge of the subset, we denote the individuals

that are present in the subset but are not inAS .

edge(AS ,K∞, d) = {c|c ∈ (ind(Sub(AS ,K∞, d)) \ ind(AS))}

The set of individuals that changed type in the edge of the subset can be captured by the following

function:

edgeChanges(AS ,K∞, d) =

{c|∃c ∈ edge(AS ,K∞, d) ∧ ∃C ∈ T
∧ C(c) ∈ Sub∞(AS ,K∞, d)

∧ C(c) /∈ Sub(AS ,K∞, d)}
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With Sub∞ the materialization of the subset. In the case that the changes Ac in the edge (i.e.

Ac = edgeChanges(AS ,K∞, depthmax)) is not empty, we extend the subset by adding

the changesAc to the ABox we want to calculate the subset upon:

Sub(AS ∪Ac,K∞, depthmax)

We keep increasing the subset ABox, with the changesAc , until there are no more individuals

at the edge that have changed type, i.e. until Ac = ∅. By also including changed individuals in

the edge in the calculation of the subset, individuals that should be influenced by these changes

will also be correctly materialized.

Furthermore, when calculating the subset, we also take the incoming relations rin and their

types rcin into account in this extension.

rin(i,K) ={R(j, i)|∃R ∈ T : R(j, i) ∈ A}
cin(i,K) ={C(j)|∃R(j, i) ∈ rin(i,K) : C(j) ∈ A}
rcin(i,K) =rin(i,K) ∪ cin(i,K)

Whenwe redefine rcout used in the subset extraction function, then these relations are also taken

into account:

rcout(i,K) = rout(i,K) ∪ cout(i,K) ∪ rcin(i,K)

Note that the incoming relations in the original subset approach are not necessary since there we

only want to infer the types of the newly added data and its closest relations.

In the example, Patientp became a RiskPatient andpwas in the edge of the subset. Therefore

we add p to the arriving data and calculate the subset on their union. This results in the following

subset:

Call(c), hasStatus(c, rs), RiskStatus(r, s),

callMadeBy(c, p), Patient(p),Ward(w), hasPatient(w, p)

This subset is sufficient to infer thatw is a RiskWard. We note that inmost of our scenarios it is the

knowledge base that influences the arriving events and its nearest relations instead of the other

way around. Therefore, we propose the latter solution as an optional configuration as it needs to

verify the types of the individuals at the edge and thus slightly slows down the process.

5.6 Realizing Subset Reasoning

In this section we describe how we practically implemented the subset reasoning approach3 . Fig-

ure 5.6 visualizes the various steps.

For simplicity, we first assume that different streams of observations can be distinguished

from each other. For example, in our use case, we have a location stream that transmits the

3The implementation itself is available on github.com/pbonte/SubsetReasoning

github.com/pbonte/SubsetReasoning
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Figure 5.6: The different processing steps of the subset reasoning approach.

observations regarding the new locations of the personnel, a call stream regarding new calls and

their updates, a light stream that captures the current status of lights and a presence stream

that indicates whether the personnel logs in on the various devices. If these streams cannot be

distinguished, additional filtering, such as defined in Section 5.6.5, can further split the streams up.

The streams can be modeled as OWLAPI4 axioms or Jena5 statements. Furthermore, in the below

explanation we assume that the background knowledge is alreadymaterialized in a preprocessing

step and the queries are already defined, such that they can be continuously executed. If this is

not the case, we also provide the mechanisms to materialize an ontology.

5.6.1 Updating

As each stream produces data, the stream updates are first fed through their own policy updater

that calculates the current view on the stream according to the policies defined in Section 5.4. This

is visualized in Figure 5.6 as step 1. The systemmaintains a current view for each stream and when

new data arrives the current view is updated according to the policy. In Example 19 we already

showed an update in the call stream.

AS = {Call(c1), callMadeBy(c1, p1)}

4http://owlapi.sourceforge.net/
5https://jena.apache.org/

http://owlapi.sourceforge.net/
https://jena.apache.org/
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Since this is the beginning of a call, the current view will be empty and the whole update will be

considered the new current view.

One can register a new stream by indicating the stream name and the policy update for that

stream. When adding new data, the name of the stream should also be passed as an argument.

This allows to extract the correct current view of the stream and update it according to the defined

update policy.

5.6.2 Subset Extraction

Once the current view on the stream has been fixed, the subset can be calculated from all the indi-

viduals in the current view and the (materialized) background knowledge. This is done according

to the description in Section 5.5 and visualized in Figure 5.6.2. We refer the reader to Example 19

for an example of the extracted subset based on the above defined current view.

5.6.3 Materializing Subset

Once the subset is extracted, the whole subset is materialized according to the used ontology

TBox (Figure 5.6.3). An example of the materialization of the extracted subset can be found in

Example 19. The reasoning is performed with the Hermit reasoner. However, other reasoners

could easily be plugged in.

5.6.4 Named Graph Insertion

Each of the materialized subsets is then added as a named graph to an RDF store. The background

knowledge details the default graph. Upon querying, the various graphs are merged together and

the querying is done on the union of all the graphs. We utilized the jena Dataset to store the

various graphs and to query them.

5.6.5 Fine Grained Filtering

As one can imagine, the performance of the system strongly depends on the size of the subset that

needs to be materialized. It is possible that the arriving streams produce observations that could

be further split up. For example, in our hospital setting, the location updates could come from

multiple wards, while it is only necessary to combine updates from the same ward. Therefore we

support finer grained filtering of the observations to split them up according to some parameter,

e.g. a ward in the hospital. This is done by allowing additional SPARQL queries that select that

parameter. To do this filtering, the streamobservation needs to be combinedwith thematerialized

background knowledge.

Example 20. To filter each location update according to theward it is produced in, we combine the

produced data, containing the observation, with the knowledge base and execute the following

query that selects the ward:
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1 SELECT DISTINCT ?ward WHERE {

2 GRAPH :location {?s ?p ?o}

3 ?s context:hasLocation ?loc.

4 ?loc context:hasCentreCoordinate ?coord.

5 ?coord context:hasZCoordinate ?ward.

6 }

The ward level is then used as an additional identifier to select the current view of the location

stream for that specific ward.

5.6.6 Differences Traditional Reasoning Techniques

Looking back at the reasoning techniques introduced in Section 5.3.2, i.e. reasoning at query time,

materialization and query rewriting, Subset reasoning is clearly a materialization approach. How-

ever, it differs in the way the materialization is calculated and maintained. In Figure 5.1 we have

seen that data is typically just added to the ontology (step c), then the knowledge base is ma-

terialized (step d) and then the querying can be executed (step e). Our Subset reasoner takes a

different approach where the updates to the ontology are stream specific and can overwrite and

update data through the use of the update policies. Thus step c of Figure 5.1 aligns with Figure 5.6.1.

The materialization of the runtime data is also specific for each stream and utilizes the subset ex-

traction to minimize the data to reason upon. Thus step d of Figure 5.1 aligns with both Figure 5.5.2

and Figure 5.5.3. The querying itself requires an additional step, as first all the materializations of

all the streams need to be combined with the materialized background knowledge. By extracting

only a subset of data, the reasoning process can be speed up.

5.6.7 Subset Reasoning Configuration

The Subset reasoner can be configured utilizing the following parameters:

• The ontology: The ontology used for the reasoning process, this is typically the TBox.

• Static knowledge base: The static data that needs to be combined with the event data.

There is an additional option to materialize this static data if this is not the case.

• Data Streams: The data streams that will produce event data.

• Update Policies: For each data stream, an update policy can be defined.

• Queries: Multiple queries can be registered, allowing to execute all the queries when new

data arrives. There is also the option to execute specific queries.

• Subset size: The size of the subset can be set manually or can be automatically extracted

from the registered ontology.
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Table 5.1: Summary of the ACCIO ontology for different number of wards.

#Wards: 0 1 10 25 50 75 100

Axioms 2169 2942 10643 19879 41438 63399 85094

Logical Axioms 1225 1835 7893 15151 32115 49396 66467

Individuals 88 250 1894 3871 8467 13147 17771

Classes 282

Object Properties 131

Data Properties 37

DL Expressivity SHOIQ(D)

When data arrives, it is added to the registered streams and the assigned update policy will

update the current view on that stream. The subset calculation will extract the necessary data and

then the event data can be materialized. Once the materializations are combined, the knowledge

base can be queried.

5.7 Evaluation

This section evaluates both the performance of the proposed approach and the completeness. The

evaluation was conducted on a 16 core Intel Xeon E5520@ 2.27GHz CPU with 12GB of RAM running

on Ubuntu 16.04.

5.7.1 Evaluation Set-up

To evaluate the performance and completeness of the proposed approach, we evaluate our Subset

approach in a real-life use case (as described in Section 5.2) in Section 5.7.2 and through an existing

benchmark in Section 5.7.3. To evaluate the performance of the system, in Section 5.7.2.1 and 5.7.3.1

we compare with reasoners with the same expressivity and for purely illustrative purposes we

compare in Section 5.7.2.2 and 5.7.3.2 with less expressive reasoners, however, they are unable to

infer all answers.

The reasoners with same expressivity consist of the Pellet reasoner, the Stardog triple store6 ,

and two versions of the Hermit reasoner, one where we always materialize the whole knowledge

base with Hermit and then query it (further referred to as ‘hermit’) and one where the basic graph

patterns are evaluated inside the query engine with OWL 2 DL reasoning [37] (further referred to

as ‘owlbgp’).

The selected reasoners with a lesser expressivity are RDFox, TrOWL and the jena incremental

rule engine inferring the fragment of the ontology that can be represented as rules. The latter

was incorporated because the C-SPARQL RSP engine [10] allows the use any kind of rules within

6www.stardog.com

www.stardog.com
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its query engine. We also incorporate the query rewriting method from StreamQR, i.e. we rewrote

the queries for theELHIO fragment of the ontology using the StreamQR rewritting techniques

(further referred to as ‘elhio’). We could not incorporate StreamQR directly, as it does not support

static background data, such as the details regarding the staff members, hospital layout, etc.

We note that the results of these reasoners are not completely comparable as the expressivity

of these approaches is lower than our Subset approach. These approaches could not produce all

required results in the evaluated scenarios. In Section 5.7.2.3 and 5.7.3.3, we evaluate and discuss

the correctness of the approaches.

5.7.2 Use-case Evaluation

We implemented the scenario from the use case introduced in Section 5.2. In each step of the

scenario, an observation is sent andmultiple queries are executed to determine the correct actions.

To measure the scalability, we calculated how long the reasoning and querying took for each step

in the scenario for a hospital ranging from 1 to 100 wards. We executed the scenario 35 times

for each number of wards, dropped the first three and last 2 execution times and calculated the

averages over the remaining 30 samples.

Table 5.1 shows the different amounts of axioms used for each number of wards and the

complexity of the ontology. With 0 wards we denote the case where we only consider the minimal

set of individuals that allow to run the scenario, namely three locations and three persons (one

patient and two staff members) each with their properties. This makes it the smallest ABox the

scenario can run on. Note that the TBox depth of the ontology is three.

5.7.2.1 Performance Evaluation Comparable Reasoners

In Figure 5.7, we compare the execution time for the reasoners with OWL2 DL expressivity and

our Subset approach. Note that the y-axis is in logarithmic scale. Furthermore, for the other

approaches we use the same update policies used in the Subset approach, but update on the

whole knowledge base.

It is clear that the other reasoners with the same expressivity do not scale very well in our

scenario. As the number of wards and thus the ABox data increases, all of the approaches, except

the Subset approach, become unusable slow for real-time decision making.

Since it is hard to see the performance of the Subset approach, we plot each step of the sce-

nario for each number of wards in Figure 5.8. We can clearly see that the size of the ABox has

a small influence on the execution time. This is because the subset can efficiently extract the

necessary data. When the subset would be affected by an increase in data that could be logically

separated, e.g. the number of wards, we can use a more fine grained filtering, as described in

Section 5.6.5, to separate the data in the subsets.

Note that in a preprocessing step, we need to materialize the static background knowledge

for the Subset approach. This can be very time consuming for larger knowledge bases and is not

taken into account in this comparison. However, since it only needs to be done once and the static

knowledge typically does not change (often), it causes no real issues. In our use case, the static
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Figure 5.7: Comparison of the performance of various reasoners, with OWL2 DL expressivity, for increasing

ABox data in the real-life use case.

Figure 5.8: Performance of the Subset approach for increasing ABox data in the real-life use case.
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Figure 5.9: Comparison of the performance of various reasoners, with lower expressivity, for increasing

ABox data in the real-life use case. Note that these lower expressive reasoner are not able execute the

scenario correctly.

data contains the various locations in the hospital; the staff members and their capabilities; and

the patients and their pathologies. Note that when the patients change too often, they can be

modeled as a stream instead of static data.

5.7.2.2 Performance Evaluation Non-Comparable Reasoners

Figure 5.9 details the performance evaluation for the non-comparable reasoners. The less expres-

sive reasoners (TrOWL, RDFox, owl rl (jena)) are more performant than the Subset approach. Even

though TrOWL gets quickly caught up by the Subset approach when the ABox increases in size. The

OWL RL approaches are faster than the Subset approach, which can be expected as they only infer

a fragment of the ontology. The fragment has been selected in such a way that it can be efficiently

computed. An interesting observation is that rewriting of the queries based on an expressive on-

tology results in queries with many unions (between 430 and 138158, with an average of 34276

unions). The execution of these queries is very expensive due to the large number of unions. Even

though our Subset approach is slower, yet more expressive, we see a similar trend in terms of

scalability as for the OWL2 RL reasoners.

We point out to the reader that the most important comparison is to compare the Subset

approach with the two hermit approaches (hermit and owlbgp) since they use the same reasoner.

We chose to use Hermit within our subset reasoner since it is the most complete. However, the

technique is reasoner independent. This means that the subset technique can be ported to other

reasoners as well.
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Table 5.2: Correctness of the different approaches. The correctness is calculated as the number of correct

class assertions. The last column details whether each engine was able to correctly run the scenario.

Engine Correctness Scenario Correct

Subset 100% yes

Rdfox 98.3% no

Jena OWL-RL 97.2% no

TrOWL 99.6% no

ELHIO 87.1% no

5.7.2.3 Correctness Evaluation

Since the Subset approach (without the extension from Section 5.5.3) is an approximation tech-

nique, and we have included less expressive reasoners, we now discuss the correctness of each

approach. To calculate the correctness we have run the scenario with the hermit reasoner and

saved a materialized snapshot of the knowledge base in each step of the scenario. We view this

as our baseline and compare for each approach the percentage of class assertions that have been

correctly assigned to the individuals in the knowledge base.

Table 5.2 shows the correctness of each of the approaches. The last column indicates if the

scenario was executed correctly. Our Subset approach is correct in this scenario, however none

of the less expressive reasoners where able to execute the scenario correctly, even though the

correctness level was already rather high. This is because the majority of concepts in the scenario

do not always require expressive reasoning, however, to facility correct decision making in criti-

cal situation, e.g. correctly classify each call, expressive reasoning is necessary. Even though the

frequency for the expressive reasoning might seem low, it is necessary to enable correct decision

making as up to 40% of the scenario steps really depend on the results that require expressive rea-

soning (that cannot be inferred within the OWL2 RL fragment). The correctness results in Table 5.2

should thus be interpreted carefully as they indicate the correctness over the whole knowledge

base. Even a small lack of correct results can lead to missing important events. This is clear for

TrOWL, even with a correctness of 99.6% the scenario is not able to execute correctly.

In Table 5.3, we listed the OWL2 RL coverage for the IoT labeled ontologies in the Linked Open

Vocabularies repository (lov.linkeddata.es)7 . In the right column, the table shows the number of

subclass definitions that each ontology contains. Note that a class equivalence can be seen as two

subclass definitions. The table shows that many of these ontologies consist of definitions that

are not fully covered by the OWL2 RL semantics. Even though the OWL2 RL reasoners are more

performant, many existing ontologies still require higher expressive reasoning, such as OWL2 DL.

5.7.3 UOBM Evaluation

The University Ontology Benchmark (UOBM) [38] is an existing reasoning benchmark consisting of

universities of various sizes containing professors, assistant professors, undergraduate students,

7We included all the ontologies that were accessible at the time of writing.
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Table 5.3: OWL2 RL coverage of the IoT labeled ontologies in the Linked Open Vocabularies repository

(lov.linkeddata.es).

Ontology Name
OWL2 RL

Coverage

#subclass

def

The NASA Air Traffic Management Ontology 92.7% 263

Climate and Forecast (CF) standard

names parameter vocabulary
95.6% 405

Data Value Vocabulary (DaVe) 50% 6

Ontology Modeling for Intelligent

Domotic Environments
63.1% 2963

FIESTA-IoT Ontology 79.6% 598

Home Weather 49.2% 313

Iot-lite ontology 100% 11

The Machine-to-Machine Measurement (M3)

Lite Ontology
82.2% 544

MobiVoc: Open Mobility Vocabulary 100% 17

SAN (Semantic Actuator Network) 64.3% 42

SAREF: the Smart Appliances

REFerence ontology
76.2% 248

The SEAS Device ontology 58.3% 36

The SEAS Forecasting ontology 45.4% 11

The SEAS Time Ontology. 84.6% 13

Sensor, Observation, Sample, and Actuator

(SOSA) Ontology
100% 0

Semantic Sensor Network Ontology 68.8% 80

Semantic Sensor Network Ontology

(old version)
80.9% 89

VoCaLS: A Vocabulary and Catalog

for Linked Streams
100% 13
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Table 5.4: Summary of the UOBM ontology for different number of university departments.

#Departments 1 2 3 4 5 10

Axioms 12405 26490 38849 52486 63949 133809

Logical Axioms 11943 25871 38075 51545 62870 131888

Individuals 1158 3141 4461 5937 7082 14063

Classes 113

Object Properties 35

Data Properties 9

DL Expressivity SHOIN(D)

students, courses, publication, etc. The benchmark comes with four queries requiring expressive

reasoning:

• Q1: Retrieve all women students. UOBMdefines awoman college as: WomanCollege ≡
School ∧ ∀hasStudent.Student ∧ ∀hasStudent.(¬Man). Thus as a school

where the students are not of the gender man. When a student is attending a woman col-

lege, the reasoner can infer that the student is female as Man and Women are defined as

disjoint classes.

• Q2: Retrieve all people with many hobbies. UOBM defines people with many hobbies as:

PeopleWithManyHobbies ≡ ≥ 3 like.>. They thus should like at least

three things.

• Q3: Retrieve all people who love sports. UOBM defines people who like sports as:

SportsLover ≡ ∃like.Sports. This means that there should exist a sport that the

person likes.

• Q4: Retrieve all people with at least one hobby. People with a hobby are defined in UOBM

as: PeopleWithHobby ≡ person∧ ≥ 1 like.>. This means that the person

should like at least one thing.

It is clear that the UOBM defines some complex concepts. However, compared to the ACCIO on-

tology used in Section 5.7.2, UOBM has a depth of one. UOBM is by default a static benchmark, so

we extended the benchmark such that has a streaming characteristic. This is done by allowing

students to join a college over the year. This means that we extracted the generated students

from the benchmark and stream them together with the courses they take, the college they at-

tend, their interests and friends, etc. We have evaluated the average performance of processing

the students stream over a university with 1, 2, 3, 4, 5 and 10 departments. Table 5.4 describes this

in detail. As each student typically changes friends, courses and interests over the course of time,

we have modeled each student and its updates as a distinct stream.
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Figure 5.10: Comparison of the performance of various reasoners, with OWL2 DL expressivity, for increasing

ABox data on the UOBM benchmark.

5.7.3.1 Performance Evaluation Comparable Reasoners

In Figure 5.10, we compare the average time to process a new student for the reasoners with OWL2

DL expressivity and our Subset approach. Note that the y-axis is in logarithmic scale. It is clear

that the other approaches do not scale well.

5.7.3.2 Performance Evaluation non-Comparable Reasoners

In Figure 5.11 we show the comparison with reasoners with lower expressivity. It is clear that they

are typically faster than our approach. However, as we will see in the completeness evaluation,

in Section 5.7.3.3, these approaches are fast in this scenario but are unable to infer a complete

answer set. We even see that the rewriting approach, i.e. elhio, becomes slower as well due to the

many unions in the rewritten queries. Furthermore, our Subset approach is faster than TrOWL.

5.7.3.3 Completeness Evaluation

Figure 5.12 shows the correctness of the approaches in the UOBM scenario in terms of the com-

pleteness of the given query answers. For each query, we evaluate the percentage of correctly

derived results. It is clear that only HermiT, Pellet, OWLBGP and our Subset approach are able to

provide correct answers. TrOWL is unable to provide correct answers to the first two queries. The

other reasoners fail to make most of the derivations. Even though these reasoners are fast, they

are incomplete in scenarios where expressive reasoning is required.
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Figure 5.11: Comparison of the performance of various reasoners, with lower expressivity, for increasing

ABox data on the UOBM benchmark.

Figure 5.12: Correctness comparison UOBM evaluation for different reasoners.
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5.8 Discussion

In this section, we discuss how our solutions tackles the set objectives, how Subset reasoning

compares to the relatedwork, how the evaluation results should be interpreted and the drawbacks

and future work directions for Subset reasoning.

5.8.1 Objectives Discussion

Looking back at the Objectives set in Section 5.1.3, we can now discuss how our Subset reasoning

approach tackles the various objectives:

1. Heterogeneous data: Our Subset reasoner can combine various heterogeneous sources by

utilizing a common semantic model, i.e., an ontology.

2. Event data: The Subset approach can handle the addition and removal of event data through

the use of its update policies that allows the system to have a clear view on the current

context. Furthermore, the Subset approach utilizes an approximated extraction method to

minimize the data to reason upon, decreasing reasoning time. Fast reasoning times are

necessary in event-based system such that the system stays reactive and real-time deci-

sions can be made.

3. Large knowledge bases: Many domains have large knowledge bases that need to be com-

bined with the generated event data. However, reasoning over these large knowledge

bases in combination with the changing event data might become slow. The Subset rea-

soner tackles this problem by exploiting the fact that the large knowledge bases typically

consist of static data that does not change very often. Therefore, this data is materialized

and due to the monotonicity property, adding data will not lead to the removal of facts in

the static data. The Subset reasoner extract data from the materialized knowledge base in

order to compose a minimal subset to reason upon.

4. Expressive reasoning : Expressive reasoning is necessary to interpret many complex do-

mains. The Subset approach supports OWL2 DL reasoning. It is able to perform this highly

expressive reasoning over event data by computing a subset of data to reason upon.

5.8.2 Related Work Comparison

Table 5.5 summarizes the related work and how they relate to our Subset approach. As we have

seen in the evaluation in Section 5.7, traditional reasoners such as Pellet and Hermit are very ex-

pressive, however, they have problems processing event data in a timely fashion. They become

very slow when the data increases and do not have any mechanisms to process event data be-

sides adding and removing of data. The Pagoda reasoner tries to solve the performance problem

by combining the Hermit reasoner with a less expressive OWL2 RL reasoner. However, Pagoda can-

not be used with event data as it does not allow the addition and removal of data. RDFox is the
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Table 5.5: Comparisson of the related work to the Subset approach. (With W = windowing and UP = update

policies.)

Add/

Remove

Event

Data

Expressive

Reasoning

Large

KB
View

Traditional

Reasoners
x / x (OWL2 DL) / /

Pagoda / / x (OWL2 DL) x /

RDFox x / / (OWL2 RL) x /

TrOWL x x x (SHIQ) / /

RSP x x / (RDFS) x x (W)

StreamQR x x / (ELHIO) / x (W)

SubSet x x x (OWL2 DL) x x (UP)

fasted OWL2 RL reasoner currently available. It is very performant within its OWL2 RL fragment,

however, as we have seen in Section 5.7.2.3 and 5.7.3.2, many use cases and ontologies require

expressive OWL2 DL reasoning to correctly interpret the domain knowledge. Even though RDFox

allows efficient addition and removal of data, it does not provide anymechanism such as window-

ing or update policies to process the event data and keep a view on the current context. TrOWL

provides almost OWL2 DL expressivity, however, in Section 5.7.3.2 we saw that even some unsup-

ported constructions lead to incomplete answers. Furthermore, in the evaluation we have seen

that TrOWL becomes rather slow when the background knowledge increases. RSP engines pro-

vide all the mechanisms to handle event data, however, due to their low expressivity, they cannot

interpret complex domains. Query rewriting techniques such as provided by StreamQR can only

inject a small part of their expressivity in the query and tend to become slow when the static data

increases. Our Subset reasoner can perform expressive reasoning over event data, in combina-

tion with large knowledge bases by approximating a subset of data to reason upon. It is the only

approach that fulfills all the set requirements.

5.8.3 Evaluation Discussion

In section 5.7.2.1 we have shown that the Subset approach is a good candidate to make expressive

reasoners more scalable and applicable in real-time scenarios were expressive reasoning is nec-

essary. From section 5.7.2.2 and 5.7.3.2 it is clear that OWL2 RL reasoners, which are less expressive,

are more efficient. However, as we have shown in Section 5.7.3.3, these techniques are incomplete

when expressive reasoning is required. Furthermore, in section 5.7.2.3 we have shown that only a

small fragment of the IoT labeled ontologies are completely covered by the OWL2 RL fragment.

This implies that ontology designers either do not take efficiency into consideration when de-

signing ontologies or ontology designers feel that the OWL2 fragments are lacking expressivity to

model their domains.

We agree that some of the OWL2 DL definitions that cannot be represented in OWL2 RL, such

as quantified number restrictions (e.g. there should be exactly one person present in a certain
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room), could (in some form) be represented as standard existential quantifiers (e.g. there should

be a person present in a certain room). However, such adaptations should be conducted very

carefully as the semantics of the concepts are changing.

Thus, as expressive ontologies are still being designed and it is not trivial to convert expressive

ontologies to their lesser expressive variants, techniques to efficiently reason upon expressive

ontologies are still needed.

5.8.4 Subset Reasoning Limitations & Future Work Directions

A first limitation of the subset approach is that the data streams are handled separately, this

means that if data from stream A has influence on data from stream B, that this will not be de-

tected. This is because each stream is handled by its own update policy. This can be bypassed by

combining various streams in the same update policy, however, this will have a negative impact

on the performance. A second limitation is the fact that the update policies are currently not time

based. This means that one has to explicitly remove facts in order to deprecate data. Time-based

windows allow facts to be removed after a certain period of time, something which is not sup-

ported yet by our update policies. A third limitation is that our approach currently extracts ABox

data only and takes the complete TBox each time into account, when performing reasoning.

In future work, we wish to further extend the subset approach and provide mechanisms to

detect influences between streams. This would allow to efficiently process various streams that

have influences on each other. Furthermore, we wish to further extend the update policies such

that facts can be automatically removed after a certain period of time. This will eliminate the

need to explicitly remove facts. This would also allow us to integrate aggregation mechanisms,

as supported by RSP engines. We also wish to investigate mechanisms to efficiently minimize the

TBox utilized in the reasoning process to further increase the reasoning performance.

5.8.5 Problems of Using Windowing

In this Section, we describe the implications of using windowing8 , instead of the update policies,

has on the scenario, as visualized in Figure 5.13. Say we have two events (eventE1 and eventE2),

E1 can be inferred through reasoning as a NormallCall, when adding the information described

in E2 , that says that the call has a medical reason, to E1 , the call can now be inferred as a

MedicalCall. These kinds of dependencies occur throughout the use case. Different queries are

executed in a certain order on these events and when one of the queries triggers, a certain action

is executed. WhenE1 arrives, describing a new call has been launched by a certain patient, query

Q1 that selects staff members for new calls (status active) is executed and notifies the selected

staff member. This is step 1 (Call Launched) in the scenario. In step 2 (Call Redirect) the staff

member is busy and redirects the call and indicates that the call has a medical reason. This is

described in E2 . Normally, query Q2 should select a new staff member for medical calls that

have been redirected.

8There exists various entailment regimes [1], we explain graph-level entailment as it is currently the most commonly

used.
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Figure 5.13: Complications of using windowing. The figure shows a typical dependency between events in

the scenario. As reasoning is involved, the events need to be combined to infer the correct types that are

used in the queries. However simply combining them, as in the sliding window, results in duplicate

triggering queries (and thus duplicate actions). When the events are in different windows, incorrect actions

are taken because the inferred information is missing.

However, when using windowing, the dependencies between the events can be lost. Fig-

ure 5.13 shows both the problems for both tumbling and sliding windows. When using a tumbling

window (Figure 5.13 a),Q1 is executed uponE1 and as a resultE2 is sent. However, in the next

window W2 , the information regarding the call described in E1 is lost and now it is unknown

that the call was a NormalCall and therefore Q2 will not be executed. Query Q3 that redirects

any kind of call will match and an incorrect action will be taken. When using a sliding window

(Figure 5.13 b), both events can be comprised in the same window, however, as the call keeps its

initial status (active) queryQ1 will trigger for a second time and duplicate actions will be taken.

This problem occurs due to the lack of an update policy that should overwrite the call status.

5.9 Conclusion and Future Work

In this paper, we presented a technique that allows to bridge the gap between volatile data and

expressive reasoning. Our techniquemaintains amaterialized view on the ontology ABox and uses

a subset approximation to efficiently update the materialized view. To define how these updates

should happen, we introduced the notion of update policies. The subsetting enables a scalable

system even with highly increasing ABoxes.

In our future work, we will investigate the possibility to perform aggregations, as supported

by RSP, within the update policies. Furthermore, we will investigate the integration of module
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extraction techniques [21] to, besides minimizing the ABox, minimize the used TBox within the

reasoning process. Our technique achieves a speed-up of up 10 times for small ABoxes and more

than 1000 for larger ones.

We show that the subsetting technique is a valid tool to enable expressive reasoning in time

critical scenarios, allowing time-critical systems to make complex decisions based on expressive

reasoning solutions.
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6
Conclusion and Future Work Perspectives

“A conclusion is the place where you got tired of thinking.”

–Martin H. Fischer (1879, 1962)

In IoT settings, data results from various heterogeneous sources. To enable meaningful deci-

sion making, this data needs to be combined, and background and domain knowledge should be

incorporated. Ontologies serve as a common formal model, allowing the integration of various

heterogeneous data sources. Furthermore, ontologies allow to describe the domain through the

use of formal descriptions. Reasoning techniques can then be employed to interpret the domain

and infer implicit facts regarding the data. The more detailed the domain description, the higher

the expressivity the reasoner should possess. However, expressive reasoning techniques are very

complex. There is still a mismatch between the rate at which data is produced in IoT settings and

the throughput of existing expressive reasoning techniques.

This dissertation proposed several techniques to enable reactive question answering through

expressive reasoning over IoT data streams. Firstly, a semantic publish/subscribe platform is intro-

duced, allowing IoT services to subscribe to high-level ontological concepts. The platform employs

reasoning to enable fine-grained data access. To enable expressive reasoning over volatile data, a

layered cascading reasoning approach was introduced. The lowest layers employ low complexity

processing techniques that allow to process large volumes of data. Going up in the layers, the

amount of data decreases as each layer selects only the relevant parts and the complexity of pro-

cessing increases. This allows to employ expressive and temporal reasoning techniques at the top

layers. The performance of the lower layers that employ RSP solutions have been further opti-

mized, allowing to efficiently perform hierarchical reasoning over volatile data streams. Lastly,
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an approximation technique is introduced, allowing to perform expressive reasoning over a large

amount of static knowledge.

6.1 Review of the Research Questions

Section 1.4 proposed four research questions, their outcome can now be evaluated. To allow IoT

services to consume the heterogeneous IoT data, I proposed Research Question 1:

“How can we provide IoT services fine-grained access to IoT data in a flexible manner?”

As IoT data is typically heterogeneous, a common semantics is required to enable interoper-

ability. Ontologies serve as an ideal tool to integrate various data sources. However, data is often

produced at different levels of granularity, requiring services to investigate the data sources in

order to know what level of detail the produced data contains, so that they can subscribe to the

correct data. The use of a reasoning-enabled publish/subscribe system allows to abstract these

different levels of granularity according to the defined ontology. Compared to the state-of-the-

art, our proposed solution enables expressive reasoning to perform intelligent filtering on IoT

data. This allows services to subscribe to higher level concepts, without the need to worry about

the lower level details at the data level. Furthermore, the platform is user-friendly, allowing ser-

vices to subscribe to their data of interest in a declarative way. Compared to the state-of-the-art,

our platform is fully decoupled, data-driven and the events are processed by the publish/subscribe

system in a stateless fashion, allowing scalability. Furthermore, as services can filter the data very

precisely, they only need to process a small subset of data, which improves performance.

This allows to validate Hypothesis 1: “Using an ontology-enabled publish/subscribe platform

will allow semantic and flexible service subscription”.

As there is still a mismatch between the rate data is produced in IoT settings and performance

of current expressive reasoning techniques, I proposed Research Question 2:

“Can expressive reasoning be performed over highly volatile data streams?”

The introduction of a layered cascading reasoning approach allows data to be processed at

different levels of update frequency and complexity of processing. At the lowest layers, data is

processed at a low complexity of processing that can process large amounts of data. These lower

layers can select possible relevant events from the volatile data streams, so that only a selection

of data needs to be processed by the more complex layers, such as the expressive reasoning lay-

ers. Our cascading approach is the first approach that realizes the Cascading Reasoning vision,

combining RSP to filter the relevant parts of the RDF stream, DL reasoning to abstract the data,

and CEP to detect temporal patterns defined on these abstractions. Furthermore, we provide a

unifying query language that tightly couples DL definitions and CEP patterns. The performance of

the cascading approach is dependent on the selection rate, i.e. the rate of events that are selected
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by the lower layers. When the selection rate is high, and most events in the data streams are

forwarded to the next layer, the performance of the cascading approach will be low, because the

complex layers still need to process large amounts of data. However, when the selection rate is

low, only a small percentage of events is selected and the performance increases significantly. We

show that our approach can process data streams of up to hundreds of events per second, while

performing expressive and temporal reasoning.

This allows to validate Hypothesis 2: “Using a cascading reasoning system will improve the

efficiency of expressive OWL 2 DL reasoning over volatile data streams, enabling to process up to

hundreds of events per second”.

As the layered approach depends on the performance of the lower layers to handle large

amounts of data and each layer can be more selective by employing reasoning capabilities, I pro-

posed Research Question 3:

“Can RSP engines efficiently reason over highly volatile data streams?”

Threemain approaches to perform reasoning over data streams exist, i.e. materialization, goal

driven reasoning, and query rewriting. However, each of these approaches has some drawbacks.

Materialization approaches infermany irrelevant facts as they infer all possible facts in the knowl-

edge base. Goal driven approaches often redo the same work and query rewriting approaches end

up in large and complex queries. Information Flow Processors often support hierarchies of events

as part of their language features. They employ a hierarchical encoding of events, something that

has not been exploited to perform reasoning over RDF data. To perform efficient reasoning over

volatile data streams, we focus on hierarchical reasoning, i.e. subclass/subproperty reasoning.

Employing hierarchical reasoning already significantly simplifies the query definition process and

allows to target the data granularity problem on a hierarchical basis. We have compared our hi-

erarchical reasoning approach with the state-of-the-art in a thorough evaluation and shown that

our approach can perform hierarchical reasoning in constant time. Furthermore, our approach is

at least twice as fast as the state-of-the-art and employs a minimal memory footprint. Compared

to the state-of-the-art, our approach has the highest throughput of 30k triples/s compared to an

average throughput of 5k triples/s when considering the various engines in the state-of-the-art.

Our approach also has the lowest memory footprint, i.e. 1.2 Gbytes compared to an average of

4Gbytes considering the state-of-the-art. The latter is important when deploying the RSP engines

as part of a cascading approach at the edge, i.e. close to the source and on resource constrained

hardware. These findings allow to validate Hypothesis 3: “ Using a hierarchical encoding of con-

cepts will improve the throughput while performing hierarchical reasoning with at least a factor

two and maintaining a minimal memory footprint, compared to the state-of-the-art”.

IoT services often need to combine the selected events from the data streams with large

amounts of static knowledge, however, reasoning over these large knowledge bases is typically

slow, therefore I proposed Research Question 4:
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“Can expressive reasoning over event data that needs to be combined with large static knowl-

edge bases be employed in time-critical use cases?”

A cascading reasoning approach can select the events from large data streams, so that the

more complex layers have to process only a selection of the data. However, when dealing with a

large amount of static knowledge, special techniques need to be employed to perform expressive

reasoning over event data that needs to be combined with large static knowledge bases. As in-

cremental reasoning approaches cannot be applied to the required expressivity of reasoning, the

only option is to minimize the amount of data to reason upon. This can either be the ABox or TBox.

We focus on minimizing the ABox, as minimizing the TBox might still run into performance prob-

lems when the corresponding ABox keeps growing and the TBox cannot be further minimized. We

propose a solution that approximates a subset of ABox data to reason upon, so that the event data

can be correctly materialized. We have shown that our approach is up to 10 times faster for small

datasets of up to 2,000 statements and up to more than 1,000 times faster for larger datasets

up to 80,000 statements, compared to the state-of-the-art. This validates Hypothesis 4: “Using

an approximation technique that extracts a subset of data to reason upon, we can speed up the

expressive OWL 2 DL reasoning process at least 10 times, compared to the state-of-the-art”

6.2 Value & Impact for the IoT Domain

Looking back at the different challenges that accompany the processing of IoT data introduced in

Chapter 1, we can now explain how the research in this dissertation impacts the IoT domain.

As IoT applications typically process data resulting from many different devices, with their

own data format and encoding, there should be a way to abstract this heterogeneous data. Other-

wise, data from different data sources cannot be integrated, eliminating interoperability. A com-

mon model is important in the IoT, as the number of involved devices is expected to become ex-

tremely high, resulting in challenges on how to represent, interconnect and search the produced

IoT data [1]. We employ a common semantics through the use of an ontological model, enforc-

ing different data sources to adhere to the same model. This means that even though two data

sources have different data formats, their data can be combined and used to obtain advanced

insights.

However, employing a commonmodel might not be enough to ensure interoperability. As dif-

ferent data producers are involved in the IoT, it is not possible to ensure well-defined and agreed-

upon content syntax [2]. Even if they employ a common model data could still be produced at

different levels of granularity. For example, observations from a light sensor might be modeled

as ’light sensor observations’ as well as ’observations that observe the property light’. Semanti-

cally they denote the same, however, on a data level they are not equal. The employed semantic

model allows to abstract these observations to the same level by employing reasoning. We em-

ploy expressive reasoning to abstract the data even in complex domains and broaden the search

space by elevating data from different sources to the same abstractions.
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Many IoT domains try to aid us in our daily activities through some sort of automated decision

making. In order to do this, the context and the domain should be taken into account. For example,

this allows to automatically reduce the lights levels when a patient with a concussion is exposed

to bright light, while this is not needed for patients who are not sensitive to light, at least during

the day. We employ expressive reasoning to extract these actionable insights. This allows to de-

fine the business logic in a declarative way in the well-defined logic of the ontology model. This

reduces the amount of code that needs to be written and allows to easily maintain and extend

the business logic. Furthermore, reasoning techniques can explain why and how they took certain

decisions [3], in comparison to black box machine learning techniques [4]. The topic of explain-

ability will become very important, as the European Union’s General Data Protection Regulation

(GDPR) imposes that users have the right to an explanation regarding the automated decisions

an algorithm takes [5]. It is worth noting that reasoning over well-defined logics, such as DL, en-

sures complete and correct answers [6]. This means that, given the available facts, the reasoner

will infer correct decisions, in comparison to probabilistic methods that provide an answer with a

certain probability [7].

Data streams are a common characteristic within the IoT. In order to make actionable insights

on this streaming data, they should be processed as fast as possible. However, to obtain these

insights, expressive reasoning capabilities are required, which by default cannot handle the up-

date frequency of these data streams. We propose a cascading approach that allows to reach the

required level of expressivity while processing data streams by filtering out parts of the streams

with less complex techniques. This allows to perform expressive reasoning over volatile data

streams. Furthermore, this enables extracting actionable insights in a flexible, easily adaptable

and declarative manner, by defining the information need on a high-level.

Detecting temporal patterns is important in the IoT, as many domains have temporal depen-

dencies. However, efficient techniques such as CEP fail to model the complexity of the domains

employed in the IoT [8], while expressive reasoning techniques that incorporate temporal rea-

soning easily become undecidable [9]. We propose a solution that orthogonally combines the

detection of temporal patterns with expressive reasoning. This means that temporal patterns can

be defined while using high-level ontological concepts. This largely simplifies the definition of

temporal patterns in complex domains. Furthermore, we provide a query language that enables

the definition of temporal patterns over complex domains in streaming data. This unifying query

language allows to 1) model complex domains, 2) use high-level abstraction to define temporal

patterns, and 3) define how relevant parts should be selected from volatile data streams.

Edge computing allows to process the generated data as close as possible to its source. This

means that the generated data could be processed as close as possible to the sensors in the IoT.

However, resources are typically limited compared to a cloud computing setting. Therefore, pro-

cessing techniques should be very efficient. We propose a hierarchical reasoning RSP engine that

is at least twice as fast as the state-of-the-art and employs only a minimal memory footprint.

This efficiency allows to extract actionable insights in a reactive fashion, close to the generated

data. As data does not need to be transferred to the cloud for processing, this enables minimal

response times, increased security and privacy and limited network usage.
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Expressive reasoning techniques have some drawbacks when reasoning over large amounts

of data, as their reasoning time can increase exponentially with the size of the data. However, in

many IoT domains, large amounts of background knowledge are often necessary in order to make

meaningful decisions. We propose an approximation technique that increases the reasoning scal-

ability when reasoning upon large datasets. This allows to make actionable insights that require

large amounts of contextual data in order to make the right decisions.

Specifically, we propose an IoT platform that allows services to filter the produced IoT data,

hiding the heterogeneity and problemswith the granularity for the service developers. This allows

to obtain data produced by different sources even if they employ different content syntaxes. Since

data in the IoT is often volatile, we propose solutions to handle these data streams, without losing

the advantages of being able to abstract the data to a high level in order to broaden the search

space. We make sure services can extract actionable insights both from volatile data streams and

in scenarios where large amounts of data need to be considered in order tomake correct decisions.

6.3 Open Challenges and Future Directions

We list the remaining open challenges and provide future work directions.

6.3.1 Cloud and edge deployment

We have currently focused on showing the feasibility of a cascading reasoning platform, with

multiple optimizations in the various layers. However, scalability remains a challenge as we have

mainly focused on single node solutions. To be deployed in a real-world scenario, the platform

should be deployed in the cloud and at the edge so that the platform can automatically be scaled

and duplicated. The lower layers of the cascade can easily be duplicated and deployed at the

different locations in the edge, close to where the data is produced. This reduces the need to

transmit large amounts of data to the back-end and improves latency. The layers that employ

solutions with higher complexity of processing and thus demand more resources, can be deployed

in the cloud. Intermediate modules would be necessary to combine and process the data from the

edge at intermediate nodes. Additional algorithms need to be investigated to enable automatic

distribution and duplication of various layers, so a more scalable system can be realized. First

steps towards the investigation of how cascading reasoning can be distributed across the cloud

and the edge have been made by my colleague Mathias De Brouwer [10], who will focus his PhD

on this specific problem.

6.3.2 A user-friendly query language for streaming data & IoT services

To provide an easy to use platform, users should be able to define an easy to express Information

Need [11]. The usability of the current platform remains a challenge, even the special designed

query language for the cascading platform requires some knowledge regarding the data. Ad-

ditional research is required that allows users to define their Information Need on a high-level
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while the platform takes care of federating and rewriting the Information Need to the lower and

possibly distributed layers.

6.3.3 Privacy and security

Privacy and security are important requirements for IoT platforms, as they often handle sensitive

and personal data. For example, as the goal of the IoT is to make personalized decisions, IoT

applications need to collect personal data. In a security breach, attackers could extract sensitive

data, such as when a user is at home or away. Therefore, authentication and access control need

to be incorporated in various layers of the IoT, so that users and their data can be kept safe [12]. By

distributing parts of the platform in which data is processed as close to the source as possible, a

part of this problem can be eliminated, as all data does not need to be transmitted to the back-end.

Policies should be designed that allow to restrict the access to certain sensitive data.

6.3.4 Integration data-driven technologies

The IoT is a dynamic environment, resulting in rapid changes. A remaining challenge is the adapt-

ability of the platform to changing environments. For example, concept definitions might change

or new concepts might occur. We have currently focused on declaratively defining our informa-

tion needs. However, when the environment is rapidly changing, data-driven techniques would

allow to anticipate these changes and learn how the environment is changing, so that the plat-

form can automatically adapt. In Appendix A, a first step towards learning concept definition from

a data-driven perspective is proposed.

6.3.5 Anomaly detection

A specific use case that requires data-driven techniques is the detection of anomalous behavior.

The techniques described in this dissertation can declaratively define what can be considered nor-

mal/abnormal behavior. However, in changing environments, the system needs to learn how its

environment is changing, such that it can distinguish normal from abnormal behavior. Further

investigation is necessary on how data-driven anomaly detection techniques can be coupled with

the declarative techniques defined in this dissertation. It is worth noting that existing anomaly

detection techniques are typically trained for a specific environment, lacking the flexibility to be

used in other contexts. Solutions that can identify the differences between the context it was

previously applied in and its new context can pinpoint how the detection techniques should be

updated. Thus, the combination of the data-driven anomaly detection techniques with the con-

textual declarative techniques discussed here can result in a best of both worlds solution.

6.3.6 Integration with big data platforms

In order to perform cascading reasoning on an extreme scale, existing big data stream processing

solutions should be integrated allowing to exploit the scalability and fault-tolerance capabilities
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of these platforms. Many of these platforms exist, such as Apache Flink, Apache Spark or Apache

Beam. Further research is required to investigate how the different layers of the cascade can scale

and how they map on the semantics of these big data platforms.

6.4 Lessons Learned & Limitations

It is clear that the proposed solution in this dissertation is powerful enough to tackle the problems

inherent to the IoT. However, each solution has limitations. This section describes some of the

limitations of the current proposed solution.

6.4.1 Open World Assumption

We have currently focused on OWL2 DL reasoning, which uses the Open World Assumption. This is

a powerful tool to deal with missing information, however, it comes with the cost that it lacks the

possibility to use default negation, i.e. detect the absence of a certain event. Additional research

is required to find a symbiosis between open and closed world reasoning frameworks.

6.4.2 Out-of-scope use cases

Even though the platform can deal with data streams, the solution cannot solve all use cases. Use

cases requiring video stream analysis cannot be solved with the current solution. However, addi-

tional adapters that perform image processing can produce events that can be further processed

with the proposed solution in order to achieve more accurate results. Use cases requiring hard

real-time processing are currently also out-of-scope. These use cases would require optimized

adapters that can automatically be deployed by the platform once it has determined a way to

distribute the Information Need that needs to be solved.

6.4.3 Manual definitions

Declarative languages are very powerful, however, it can be time-consuming to define all required

knowledge or queries. Especially the definitions of ontologies can be time-consuming as they

require tomodel the domain knowledge. There is ongoing research that allows to extract ontology

definitions form various document types in order to lower this burden.

6.5 Conclusion

This dissertation presents a cascading reasoning platform that allows to process volatile IoT data

streams into actionable insights by taking into account the current context and domain knowledge.

Many challenges still lie ahead, however, first steps have been taken to find valuable insights

in large volumes of high-velocity data streams, regardless of their inherent heterogeneity and

variety.
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A
Towards Optimizing Hospital Patient

Transports by Automatically Identifying

Interpretable Causes of Delays

The previous Chapters explained how expressive reasoning can efficiently be executed over IoT

data streams. However, over the course of time, the definition of concepts might change, or new

concepts might occur. This Appendix explains how new concepts can be learned. More specifically,

we provide a solution to learn concept definitions that explain groups of certain events. Data-

driven techniques can be incorporated in the cascading reasoning approach, allowing to constantly

expand the domain with new knowledge. Starting from a data perspective, clusters of events can

be semantically explained, such that these definitions can update the knowledge base and be

used to detect future events in the various layers of the cascading reasoning approach. This is

presented through a hospital use case, where we learn the reason why hospital transports are

delayed. Historical transport data is used to learn definitions that explain why transports were

late or on time. These definitions can then be used to detect, while the transports are being

scheduled, which transports will be late. However, learning techniques can be employed in any

domain which requires to adapt to dynamic changes. These techniques can be employed in the

services that subscribed to the IoT data through the use of the platforms described in Chapter 2

and 3, to update the definitions used to reason about large knowledge bases as in Chapter 5 or to

directly update the knowledge that is employed to filter the data streams in Chapter 3.

? ? ?
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Abstract The continuous financial pressure on hospitals forces them the rethink various work-

flows. We focus on optimizing hospital transports, within the hospital, as they count up to 30%

of the overall hospital cost. In this paper, we discuss a self-learning platform that learns the

causes of transport delays, in order to avoid these kinds of delays in the future. We pay special at-

tention to the explainability of the self-learning system, such that management understands the

learned causes and remains in control over the automated process. This is achieved by providing

the learned causes as sentences that can be understood by non-technical personnel and allowing

these causes to first be supervised before the system takes them into account. Once approved,

the system will calculate how much more time should be assigned to these transports in order

to avoid future delays. As a result, the scheduling of patient transportation can be automatically

optimized, while management remains full control of the process.

A.1 Introduction

A.1.1 Background

Due to the continuous financial pressure, hospitals struggle to balance budget while maintaining

quality of care [1, 2]. Hospitals are forced to rethink and optimize various workflows in order to

meet the financial constraints. In this paper, we focus on the transportation of patients within

hospitals, as in-hospital transportation counts up to 30% of the total hospital cost [3]. Further-

more, not all transport tasks are performed by logistic personnel. It is estimated that nurses spent

up to 10% of their time performing transportations of patients or goods [4], instead of taking care

of patients. This leads to cost and care implications, but most importantly, due to the shortage of

healthcare personnel, to social implications, such as stress-related diseases [4].

The increase in ICT infrastructure in hospitals can aid in the optimization of hospital’s work-

flows, as the better use of ICT infrastructure is essential to providing better care at lower cost [5, 6].

The advent of the Internet of Things (IoT) allows the usage of non-intrusive sensors and devices

to capture the environment through sensor readings [7]. These sensors and devices can be used

to track the locations of various transports, to localize beds & wheelchairs, to easily notify staff

members, etc.

Existing solutions have three major shortcomings. Firstly, the algorithms to schedule trans-

ports are based on fixed predefined parameters. For example, a transport from a patient room to a

medical room always takes the same amount of time. They do not take the hospital’s context into

account. For example, the current occupancy level of the hospital is disregarded, thus regardless

of the hospital’s occupy, the same amount of time is scheduled to perform a transport. During

visitor hours, the additional visitors might cause the transports to move more slowly. Secondly,

the transport schedule is made in advance and last minute changes in the schedule are hard to
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achieve as the scheduler cannot be dynamically updated. Lastly, since these solutions lack the

ability to model the context of what is happening inside the hospital, they are oblivious to why

certain transports are late. As such, they cannot learn from past delays and keepmaking the same

sub-optimal decisions.

The high cost and involvement of the nursing staff and the lack of automation make in-

hospital patient transport an ideal candidate for optimization.

A.1.2 Related Work

Previouswork has focused on learning delays in the health, financial and transport domain. Laskowski

et al. [8] investigated how to reduce the patient wait time in the emergency department. The

technique is specifically for the emergency department and does not provide interpretable expla-

nations on the algorithmic suggestions.

Markovic et al. [9] proposed a system to learn the passenger train arrival delays, while Rebollo

et al. [10] focused on predicting air traffic delays. Xu et al. [11] have focused on predicting traffic

delays and Silva et al. [12] investigated the influence and delays on the public transports when

certain stations or lines have been closed. However, these techniques predict the amount of time

a certain transport will be late, but do not provide interpretable rules that can be supervised and

provide an explanation of why the delays occur.

Lecue et al. [13] have shown the importance of explainability, as they allow flagged expenses

to be explained to auditors in the financial sector. This allows the auditors to understand why cer-

tain expenses were flagged. Diagnosis of traffic congestion has also been investigated, allowing

to explain and identify why certain roads are congested [14]. Even though these systems enable

explanation, they provide the explanation in the form of rules, which still require domain experts

to understand them.

Previous research has also focused on the scheduling of dynamic changing tasks in hospi-

tals. Fiegl et al. [15] describe an online algorithm for dynamic scheduling of pick-up and delivery

tasks in hospitals. Hanne et al. [16], on the other hand, have focused on transport between hos-

pital buildings. Beaudry et al. [17] provide a solution to scheduling dynamic hospital transport

requests. They take both in-house transports, i.e. transports within the same hospital building, as

campus-based transports, i.e. transports between hospital buildings that need to be provided by

an ambulance. Kergosien et al. [18] take into account additional constraints, such as disinfection

of a vehicle or type of vehicle needed. These algorithms are able to cope with the dynamic nature

of the tasks requests, however, no insights are provided in why these transports are late.

A.1.3 Objective

In this paper, we present a solution, designed in collaboration with two Flemish hospitals, that

models the hospital’s context by integrating various sources of information: static information

regarding the hospital layout, patient & staff information and dynamic data resulting from the

sensor stream, such as sensor readings that capture the location of the transports. Based on a
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historical view of this context, we provide a self-learning module that learns the causes of trans-

port delays. These causes are presented as human-interpretable sentences that can be supervised

by management. Upon supervision, when one or more of these causes are accepted by manage-

ment, the system takes these causes into account and when transports that adhere to the selected

causes are requested in the future, the system will calculate the additional time needed to enable

accurate scheduling and avoid future delays. Note that highly accurate scheduling is important.

When too much time is assigned and a transport is finished too early, the next transport might

not be ready for transportation yet. When too little time is assigned, the next transports need to

wait until the transport is ready and the whole schedule gets turned over.

A.1.4 Requirements

To provide a system that can learn the causes of delayed hospital transports, provide them in a

fashion that non-technical users can understand them and allow these causes to be taken into

account such that future delays can be avoided, the following requirements should be adhered:

• Extendability: since the ICT infrastructure in hospitals keeps evolving, it should be possi-

ble to easily incorporate new sources of information, such that this new information can

also be used to learn the causes of delays. These sources can be either sensors & devices

providing dynamic data or databases providing descriptions regarding the hospital’s static

context.

• Human-involvement: since it is sensitive to allow an automated system to directly adapt

the hospital work processes, it should, therefore, be possible to involve human decision

making.

• Explainability/Interpretability: to involve human decision making, it should be possible

for non-technical users to interpret and understand which causes the self-learning algo-

rithm is suggesting. It is important that users understand the decisions of an automated

system [19].

• Scalability: to be applicable to different sizes of hospitals, the algorithms should scale

adequately.

• Usability: non-technical users must be able to operate the system and evaluate the de-

cisions from the self-learning module. The system should be easily accessible through a

Graphical User Interface (GUI). Furthermore, the GUI should provide an easily interpretable

overview of the findings of the module. Lastly, it should be intuitive to accept certain iden-

tified causes and update the system.

A.1.5 Paper organization

The remainder of the paper is organized as follows. Section A.2 details the designed architecture

to optimally schedule requested hospital transports, notify the staff, capture the data to learn
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upon and describes how it can be deployed as a whole in a hospital. In Section A.3, we zoom in

on the self-learning component and detail the devised algorithms. Section A.4 describes how we

enabled explainability of the learning component, such that non-technical personnel, can under-

stand the outcome of the learning system. The evaluation of the learning module is described

in Section A.5 and the outcome is discussed in Section A.6. In Section A.7 we highlight the most

important conclusions and describe opportunities for future work.

A.2 The AORTA platform

In this section, we describe how the data originating from various sources can be integrated and

interpreted and detail the overall architecture of the designed Adaptive Optimization for Resource

& Task Assignment in Hospitals (AORTA) platform.

A.2.1 Ontologies & Reasoning

To enable heterogeneous data integration and interpretation, an ontology [20] is composed that

models the hospital’s context. Ontologies are formal models that semantically describe a cer-

tain domain, in this case, the hospital domain. This description is made by modeling the different

concepts within the domain and how they relate through the use of relations. Each concept, rela-

tion or individual (an instance of the former) is referenceable through a unique Uniform Resource

Identifier (URI), e.g. http://aorta.intec.ugent.be/ontology/aorta.owl#PatientTransport. Ontologies

are also an ideal tool for integrating IoT data [21], as it provides a uniform model for multiple

heterogeneous data sources to adhere to. A part of the ontology designed to describe the hospi-

tal transports is depicted in Figure A.11 . As Figure A.1 describes, there are two types of transports,

i.e. LogisticTransportTasks and PatientTransportTasks, that each are executed by a certain Person,

that has a certain Role and each TransportTask has a specific Location as destination, etc. Since

the ontology is a uniform and formal model, different data sources can map their data onto the

ontology allowing to integrate data from various sources. As such we get a complete, interpreted

overview of the current context and status of the hospital transports.

The ontology can define implicit relations within the data, that can be inferred through the

use of a reasoner. The reasoning process is comparable to the execution of rules but in a more

formal environment. For example, as depicted in Figure A.1, a Nurse is a subclass of Staff, which is a

subclass of Role. The reasoner will infer that each Nurse is also a type of Role, when it is provided

with an instance of the type Nurse. However, more complex constructions can be defined in the

ontology. For example, we could define that a PatientTransport that has a relation hasTransport-

Type to a Bed and a relation hasErrorCode to a PatientNotReady error code can be considered a

1The full ontology can be found on http://pbonte.github.io/Ontologies/aorta/aorta.owl
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Figure A.1: Overview of the most important concepts (visualized in the rectangles) and relationships

between concepts (visualized through the dotted arrows) and the hierarchical interpretation of the

concepts (interpreted as subconcepts and visualized through full arrows) of the designed hospital transport

ontology.

late transport. This could be defined in a formal way as2:

LateTransport ≡∃hasTransportType.Bed

u∃hasErrorCode.PatientNotReady

When a transport is requested that adheres to this definition, the reasoner will infer that the

transport is a LateTransport. Say the following fragment describes a newly requested transport:

PatientTransportTask(p1), hasTransportType(p1, t1), BedWithPatient(t1)

hasErrorCode(p1, e1), PatientIsEating(e1)

The reasoner will infer that the individual p1 is aLateTransport because it knows that Bed-

WithPatient is a subclass of Bed and PatientIsEating is a subclass of PatientNotReady. Note that

p1, t1, e1 are data instances (individuals) that have a certain type and relations, e.g. p1 has the

type PatientTransportTask and has a relation hasTransportType to t1.

The definition of these rules allows to incorporate the logic that is specific to a certain domain.

Here, we will use the reasoning capabilities to identify transports that adhere to the previously

learned causes that identify that a transport might be late. Note that the system assigns more

time to these late transports, such that the scheduling can be defined more accurately.

2The ∃ denotes an existential quantifier and can be interpreted as ‘there exists’.
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Figure A.2: Architecture of AORTA project.

A.2.2 Architecture

Now that we can model the context in our hospital and integrate the data from various data

sources, we can describe the components in the AORTA architecture. Figure A.2 provides a visual

overview of the different components and how they interact.

To capture the hospital’s environment, smart devices, wearables, and sensors are introduced

into the hospital’s environment. These devices generate the dynamic data, e.g. data describing the

location of the staff or the status of the transport. Each staff member is equipped with a smart

wearable that allows to receive, accept/decline transports notifications and transmit location up-

dates. Furthermore, the smart wearable allows to scan, through the use of NFC or QR codes, each

patient that needs to be transported, eliminating mix-ups. All this information is pushed on the

Message Bus that routes the generated data to the interested services, which can subscribe to

particular data on the bus. The Notification Manager communicates with the wearable devices

and notifies the staff members about new tasks or updates. It captures whom of the staff are

available on which devices, allowing the Context Layer to target the correct staff members when

dispatching tasks.

The EAI Application module is responsible for integrating the existing hospital data tools,

such as the electronic health records of patients and information regarding the staff members and

the logistics. This module is responsible for extracting from these existing tools, the information

relevant for scheduling and executing the transportation tasks and providing it to the Context

Layer.

The Transport Manager allows the different hospital departments to request transport tasks,

which are forwarded to the Context Layer for optimal scheduling.

The Context Layer captures the current context in the hospital by combining and integrat-
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ing the data resulting from the EAI Application and Transport Manager with the dynamic sensor

data. The ontology described above is exploited for this purpose. This contextual information is

stored in a triple store, i.e. a database for ontological data. The Context Layer provides data to the

Dynamic Scheduler that needs to know which tasks to be scheduled, which personnel is available

and what are their locations, the achievable walking speed considering the current commotion of

the hospital, etc. The Context Layer uses reasoning to infer missing and implicit data, based on

the ontological definitions. The reasoning can indicate which transports need more time to be

executed, e.g. by detecting delays and interruptions.

TheDynamic Scheduler receives the transportation requests from the Context Layer and uses

its context to construct an optimal schedule such that all the requests can be handled in a timely

manner with an optimal use of resources. To achieve this optimal rostering, the scheduler will

request the dynamic context information from the Context Layer, e.g., the locations, availability,

competences, work load & average walking speed of the staff, busy areas and possible causes

of delay. It constantly maintains an overall optimal schedule and updates this schedule as new

requests and status updates of on-going transports come in. When a staff member indicates that

a transport has been finished, the Context Layer will communicate this to the Dynamic Scheduler,

which will then assign a new task to this staff member based on this overall optimized schedule.

Note that it is the Context Layer that indicates how much more time should be assigned to the

transports that are expected to be late. The scheduler will try to optimally schedule the tasks

based on the provided information from the Context Layer. To be able to dynamically update its

schedule when new transports are requested, the scheduler uses a dynamic pick-up and delivery

model [22].

The Self-Learningmodule consists of four components, the learner, the visualizer, the verbal-

izer and a historical database. The later keeps a historical view of the Context Layer. The learner

requests the data from the historical database, such that it can learn from the historical data

why certain transports were delayed. Based on this historical context, the learner identifies why

transports in the past were delayed, such that these delays can be prevented in the future. For

example, the module could learn that certain transports during the visiting hour on Friday are

often late and more time should be reserved for them. Once the learner has learned the causes as

ontological rules, the verbalizer can transform these rules to human readable sentences such that

management can access the identified causes through the visualization and argue their validity

while remaining control over the automated system. Once approved, these rules are added to the

Context Layer. When similar transports are scheduled, they will be identified through the use of

the reasoner and the platform will calculate how much more time will need to be incorporated to

schedule these kinds of transports accurately. This module is further detailed in Section A.3.

A.2.3 Implementation

We now explain some of the implementation details of the components that are not discussed in

detail in the remainder of the paper.
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Figure A.3: Example of the verbalized rules.

The Message Bus is based on Mirth Connect3 , a message broker optimized for the transmis-

sion of healthcare messages.

The Notification Manager receives the scheduled tasks from the Message Bus, which are

already targeted for a given user. The Notification Manager chooses the best way to notify the

user, i.e. choose the most convenient device that the user is carrying at a given moment. Then, the

Notification Manager transforms the tasks into notifications that are tailored to be presented on

the selected device.

The Context Layer utilizes RDFox [23] to store the contextual data and perform the reason-

ing on it. RDFox is the fastest reasoning-enabled triplestore, i.e. a database to store ontological

data, currently available. The Context Layer also needs to map the healthcare messages from the

Message Bus to the ontological data, this is done through the use of RML [24], that allows to map

raw data to the ontology model.

A.2.4 Workflow Self-Learning component

When a new transport is requested, it is captured by the Context Layer thatmodels the current view

of the hospital’s context. After its execution, the details of the transport are communicated with

the Self-Learning module, such that the module can store a history of past transports. Figure A.2

shows the components of the learning module. The new transport arrives through the Message

Bus, the Learner component first captures the transport and stores it in the historical database. It

also does some quick preprocessing such that a real-time overview of the transports can be shown

in the Visualization.

When a more in-depth description of the causes of delays is necessary, through the visualiza-

tion one can request the Learning component to start learning the delays of the transports in the

selected time range, e.g. the last month. It will load the data from the historical database and

start one of the learning algorithms detailed in Section A.3. The Learner passes the learned rules

to the Verbalizer and sends them to the Visualization so they can be shown in the visualization

dashboard. Figure A.3 shows an example of the verbalized rules in the dashboard.

When one of the verbalized causes get accepted by management, the learning module cal-

3https://www.nextgen.com/products-and-services/integration-engine
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culates the average delay that was caused by these transports. The additional time is added as

part of the rule. The Context Layer is then updated by adding the new cause as a rule that will

be invoked by the reasoner when a similar transport is being scheduled. Since the extra time

necessary to execute the transport within accepted time is part of the rule, the additional time is

automatically added to the new transport.

Example 21. (Adding time to late transports) Say the following rule has been accepted:

hasTransportType.Bed ∧ hasPeriod.visitingHour → LateTransport

When adding this rule to the reasoner and a transport is requested with the transport type bed

and requested during visiting hours, the reasoner will know that the transport will be late. We

can now calculate how much more time, on average, is necessary to provide the scheduler with

as accurate data as possible, to prevent future delays. This can be done by calculating how much

more time is necessary to finish this task within time. This calculated time can then be added as

part of the rule. If 10 additional minutes are required, we can update the rule, to automatically

add this time to the transport:

hasTransportType.Bed∧hasPeriod.visitingHour

→LateTransport, addT ime(10min)

When the Context Layer adds this rule to the reasoner, and a new transport is requested that

adheres to this rule, it will know that the transport will be late and that 10minutes additional

time should be reserved to perform the transport.

A.3 Rule Learner module

The Self Learning module and more specifically the Learner, learns from historical information

regarding the transports why certain transports are delayed. By indicating the causes of these

delays, future delays can be prevented. We investigated and optimized two techniques to learn

the transport causes: an Assocation Rule Mining (ARM) [25] and an Inductive Logic Programming

(ILP) [26] technique. We detail each technique and how we combined them for the best perfor-

mance.

A.3.1 Association Rule Mining

ARM was originally developed to discover hidden knowledge from transactional data, such as re-

lational databases. A transaction is an observation of the co-occurrence of a set of items.

I = {i1, i2, . . . , im} is defined as a set ofm items describing the different elements the

database could contain andD = {t1, t2, . . . , tn} as a database ofn transactions, where each

transaction inD is a subset of I and can be seen as a database entry. We name a subset of items

an itemset. supp(X) is the support of an itemsetX , i.e. the percentage of transactions in the

databaseD that containX .
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Table A.1: Example transactions

transactionID Walking WheelChair VisitingHour Late

t1 1 0 1 0

t2 0 1 0 0

t3 0 1 1 1

t4 1 0 0 0

t5 0 1 1 1

An association rule r can then be defined as a rule of the form X ⇒ Y where X and Y

are non-empty subsets of I , and X ∩ Y = ∅. X is called the antecedent of r and Y is the

consequent of r. The support and confidence of a rule are respectively denoted as

supp(r) =
|{t ∈ D ∧X ⊆ t}|

|D|
(A.1)

and

conf(r) =
supp(X ∪ Y )

supp(X)
(A.2)

where the confidence describes the how confident one can be that the antecedent is related to

the consequent of the rule.

Mining association rules is the process of finding all association rules with a support and con-

fidence greater than a predefined threshold. This mining process can be divided into two phases.

First, frequent itemsets of the transactions have to be computed according to the minimum sup-

port threshold. Second, rules are generated from these frequent itemsets with respect to the

minimum confidence threshold.

Example 22. (Association RuleMining) Table A.1 shows a databasewith four items: I = {Walking,

WheelChair, V isitingHour, Late} and five transactions. If we want to calculate if the

association rule r = {WheelChair, V isitingHour} => {Late} holds, we calcu-

late the support as supp(r) = 2
5 , as only two transactions (t3 , t5) consist of the itemset

{WheelChair, V isitingHour} and the database consists out of five transactions. The

confidence is calculated as

conf(r) = supp(X∪Y )
supp(X) = supp({WheelChair,V isitingHour,Late})

supp({WheelChair,V isitingHour}) = 2/5
2/5 = 1.

Since ARM works specifically on items and transactions, it needs to be adapted to work with

semantic data. Our previous work [27] describes in detail how the ontological data can be con-

verted to items and transactions and how various optimizations can be executed. This conversion

is necessary as the semantic data described by the ontology can be seen as a graph rather than a

set of transactions. The conversion consists of the following steps:

1. We identify a concept in the ontology we want to get insights from and retrieve all indi-

viduals from that concept, e.g. all patient transports in a certain hospital.



192 Appendix A

2. We follow all the relations the selected individuals have to other individuals, store them as

so-called features, and follow the relations from the new concepts until we reach a certain

threshold that indicates how many concepts to follow.

3. We also store the types of each followed individual, i.e. the ontology concept they have

been assigned to and look up the hierarchy of these concepts in the ontology and store the

hierarchy as well.

4. The stored features can now be used as items for the transactions database.

Example 23. (Converting ontological data to transactions)

Say we have the following five (simplified) transports in our ontology:

• PatientTransport(t1), hasTransportType(t1,walking), Walking(walking), duringPeriod(t1,vis-

itorHours),

• PatientTransport(t2), hasTransportType(t2,wheelchair), Wheelchair(wheelchair), duringPe-

riod(t2,morning),

• PatientTransport(t3), hasTransportType(t3,wheelchair), Wheelchair(wheelchair), duringPe-

riod(t3,visitorHours),

• PatientTransport(t4), hasTransportType(t4,walking), Walking(walking), duringPeriod(t4,morn-

ing),

• PatientTransport(t5), hasTransportType(t5,wheelchair), Wheelchair(wheelchair), duringPe-

riod(t5,visitorHours)

When we follow the above described steps, we can convert the ontological data into transactions:

1. The individuals we want to learn about are t1, t2, t3, t4, and t5, which are all PatientTrans-

ports.

2. When following their relations we obtain for each individual the feature hasTransportType

and when coupling the relation to the linked individual we obtain the features: hasTrans-

portType.walking and hasTransportType.wheelchair. Following the next relations, we ob-

tain the features: duringPeriod,duringPeriod.visitingHours and duringPeriod.morning.

3. When taking the types into accountwe obtain the features: hasTransportType.Walking, has-

TransportType.Wheelchair, duringPeriod.TimePeriod. Taking the hierarchy of the ontology

into account we obtain the feature: hasTransportType.TransportType.

4. We can now convert the selected features to items and use each patient transport individ-

ual as a transaction. Table A.2 shows a part of these transactions. Note that some items

should be filtered out as they do not provide any information gain, e.g. all transaction have

the item hasTransportType.
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Table A.2: Example ontology conversion to transactions
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2 1 1 0 1 0

3 1 1 0 1 0

4 1 0 1 0 1

5 1 1 0 1 0

A.3.2 Inductive Logic Programming

ILP is a machine learning technique that combines inductive machine learning and logic program-

ming. ILP is able to learn rules as ontology concepts and fully exploits the semantics describing

the data. Thus, ILP can work directly with the semantic data and generates very accurate rules,

however, it is less scalable than statistical approaches such as ARM. Statistical relational learn-

ing [28] is an extension of ILP that incorporates probabilistic data and can handle observations

that may bemissing, partially observed, or noisy. However, since our observations are not possible

missing or partially observed, we do not consider it here.

ILP starts from the idea of positive and negative examples and a background describing the

domain. ILP tries to learn a hypothesis such that the positive examples follow from the hypothe-

sis but the negative examples do not. Finding the hypothesis is, of course, the difficult part. The

Class Expression Learning for Ontology Engineering (CELOE) algorithm [29] fromDL-learner4 takes

a generate and test approach where it appends ontology concepts and relations to the learned

hypothesis in order to achieve the highest possible accuracy. This is possible by making the hy-

pothesis more generic or more specific. The latter is calculated on the fact that more positive

examples are contained by the hypothesis compared to negative examples.

Example 24. (Inductive Logic Programming) We reuse the transports from Example 23 where

both transport t3 and t5 are positive examples. The algorithm will take the following steps:

1. Create a new concept, e.g. LateTransport;

2. Add a new concept or relation to the concept, e.g. adding the relation hasTransportType.

We thus generate a new concept that says that a LateTransport has a relation hasTrans-

portType.

3. The algorithm tests the coverage of the new concept and sees that both positive and neg-

ative examples have the relation hasTransportType. The coverage is tested by adding the

4http://dl-learner.org/
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new concept to the ontology and ask the reasoner for all the individuals that have the new

concept as a type. The accuracy is calculated as the percentage of individuals that have

the type LateTransport and were in fact in the positive examples.

4. The algorithm can decide to make the generated class more specific by changing any has-

TransportType relation specifically for one type of transport, i.e. for wheelchairs. After

specifying this relation, all the positive examples are contained, however, one negative

example (transport t2) is also contained.

5. Therefore, the algorithm tries to add another relation, i.e. the duringPeriod.visitorHours

relation. Now all the positive examples are contained and none of the negative examples.

Eventually the algorithm generates a new class:

LateTransport ≡ PatientTransport ∧ ∃hasTransportType.{wheelchair}
∧∃duringPeriod.{visitorHours}.

In a realistic dataset, there are many reasons that might cause transport delays. This means

that multiple rules need to be identified. In previous work, we coupled the ILP technique with an

ontological clustering technique to split the dataset into some more manageable clusters, such

that the algorithm can easier find the various delays [30].

A.3.3 Combining ARM & ILP for optimal identification of causes of delays

We have combined the two approaches such that we can benefit from the scalable statistical anal-

ysis from ARM and the correctness of ILP. Our technique is based on a statical evaluated generate

and test method. Thus the statistical evaluation from ARM combined with the generate and test

methodology from CELOE. ARM generates rules that are applicable to the whole dataset, how-

ever, since we are only interested in rules detailing the lateness of transports, many rules need

to be filtered. Furthermore, since we have positive and negative examples, more rules need to

be filtered that occur both in the positive and negative examples. Thus, there are many unnec-

essary computations as many rules need to be filtered to make the technique applicable. CELOE

has the advantage of testing each addition it generates but requires for each addition a call to the

reasoner, that does not scale very well, to compute the coverage.

In this approach, we directly compare the support, see Equation A.1, of each item in the rule in

both the positive and negative examples. We take a Breadth-First Search (BFS) through the graph

to compose the rules. Each edge we transverse, we test if the information is adding value to the

generation of the rule. For each edge, we take four steps which are visualized in Figure A.5 that

executes the algorithm on an example detailed in Figure A.4. These four steps are:

1. We add the edge (relations) to the path and use it as a feature.

2. We add the URIs of the individuals to the path and use it as a features.

3. Instead of the URI we add the type of the individual to the path and use it as a feature.
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transport1

toLocation executedBy

location_000_02 staffmember_2_01_3

PatientTransport

ConsultationRoom Person

"N2.W4.CR.9"

ID

"John Doe"

name hasRole

nurseRole

hasEdge

edge_01_72 NurseRole
Edge

...

Figure A.4: Example of a fragment of a transport described by the ontology schema.

transport1

toLocation executedBy

location_000_02 staffmember_2_01_3

PatientTransport

1) PatientTransport.toLocation
    PatientTransport.executedBy

2) PatientTransport.toLocation.location_000_02
    PatientTransport.executedBy.staffmember_2_01_3

ConsultationRoom Person 3) PatientTransport.toLocation.ConsultationRoom
    PatientTransport.executedBy.Person

MedicalRoom

Room

... 4) PatientTransport.toLocation.MedicalRoom
                                ....
     PatientTransport.toLocation.Room

"N2.W4.CR.9"

ID

5)PatientTransport.toLocation.ID=N2.W4.CR.9
    PatientTransport.executedBy.name=JohnDoe 

"John Doe"

name

Figure A.5: The algorithm traverses the graph in BFS mode and first adds the relations as items, then the

individual names, followed by the types and super types and finally the data properties.
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Table A.3: Example of conjunction.

t hasTransportType hasPeriod isLate

.Wheelchair .visitingHours

1 0 1 0

2 1 0 0

3 1 1 1

4 0 0 0

5 1 1 1

4. Instead of the type we generate for each super type (defined in the ontology hierarchy) of

the type a new feature.

5. Instead of the super types, we add the data properties with their values to the path and

use them as features.

We test which one of the four steps is the best feature candidate, both in terms of support and

interpretability. The interpretability hierarchy is configurable, standard the most specific type has

priority over the concepts in the type hierarchy, then the data properties, the relations and lastly

the individual names. Note that this is only considered if multiple of these produce the same

results. Once all the potential candidates have been generated we test which conjunctions enable

a significantly higher drop in the support of the negative dataset, compared to the positive set.

Example 25. (Conjunction example) Let us consider the transports from Example 23 where t3 and

t5 were late. We will calculate the conjunction between the transports with wheelchair transport

type and the transports scheduled during visiting hours. Table A.3 shows the transactions that

allow us to calculate the support of the conjunction. Table A.4 shows the support calculation for

each of the positive (t3, t5) and negative (t1, t2, t4) examples. The table shows the support for

the transports scheduled with the transport type wheelchair, i.e. a support of 2/5 for the positive

set and 1/5 for the negative. The support for the transports scheduled during visiting hours are

2/5 for the positive and 1/5 for the negative. The table also shows that the support drops in

the negative set when calculating the conjunction between the rules, while the support in the

positive set remains. This means that this conjunction should be considered as a candidate result

or temporarily result, e.g. when additional conjunctions are required to find significant difference

in support.

A.3.4 Related approaches

Nebot et al. [31] proposed an ARM technique for ontological data. The concept and the features to

learn about are defined through a SPARQL query , i.e. a query language for ontological data, and

translated to transactions for the ARM algorithm. Our ARM approach builds upon their proposed

technique in the sense that no explicit indication of the learning features is necessary and various

optimizations are proposed to prune the learned rules.
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Table A.4: Support calculation of the conjunction between transports with the transport type wheelchair

and transports scheduled during visiting hours.

Positive Negative

support(hasTransportType.Wheelchair)
|{t3,t5}|

5 = 2/5 |{t2}|
5 = 1/5

support(hasPeriod.visitingHours)
|{t3,t5}|

5 = 2/5 |{t1}|
5 = 1/5

support(hasTransportType.Wheelchair

∧ hasPeriod.visitingHours)

|{t3,t5}|
5 = 2/5 |{}|

5 = 0/5

AMIE [32] and its successor AMIE+ [33] provide an algorithm for mining rules in large knowl-

edge bases where there are no negative examples. The technique is more scalable than standard

ILP techniques, however, it does not enable reasoning during the learning phase. This means that

the algorithm cannot make a rule more specific or more generic to match the examples. Further-

more, it is not optimized to cope with positive and negative examples.

A.4 Interpretable Results

In Section A.3, we have shown how we can learn rules that describe why transports are late. How-

ever, as can be seen in Example 24 and 25, these rules are not very interpretable or intuitive for

non-technical end-users, e.g. management of a hospital.

A.4.1 Verbalizing Rules

To make the learned rules more interpretable, we can convert the rules to human readable sen-

tences. Since we make use of an ontological model, the model describing the rules is fixed. There-

fore, we can make use of a verbalizer such as NaturalOWL [34] that can convert ontology concepts

to readable sentences. By defining how the classes and properties in the ontology should be

verbalized, NaturalOWL can generate fluent human-readable text. This makes it easier for the

management to interpret the learned rules. In practice, to enable this, the ontology needs to be

annotated and indicated which concepts should be interpreted as adjectives, nouns or verbs and

how they construct readable sentences when combined. However, this typically needs to be done

only once, since the ontology itself does not change (often).

Example 26. (Verbalization) The concepts in the ontology are annotated with verbalization infor-

mation and various sentence plans are defined to be able to construct human-readable sentences.

The class assertion definitions can be verbalized through the following sentence plan:

[OWNEROWNER][isverb][a kindstring][ofprop][FILLERFILLER]

This means that the assertion PatientTransport(trans1) will be verbalized as ”trans1
is a kind of PatientTransport” . Where OWNER is the individual assigned to the class, here

trans1 and FILLER is the class itself, here the class PatientTransport.
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The relation transportMode can be verbalized through the sentence plan:

[OWNEROWNER][hasverb][astring][transportmodenoun]

[of the typestring][FILLERFILLER]

Thismeans that the relationhasTransportMode(trans1, bed)will be verbalized as “trans1
has a transport mode of the type bed”. Here OWNER is the individual from where the rela-

tion starts, here trans1 andFILLER is the individual that is linked by the relation, here the

individual bed.

A.4.2 Dashboard

We are now able to learn the causes of the delays and verbalize them such that management

can interpret them. However, they are still not usable as distinct tools. Therefore, we provide a

visualization through a dashboard that enables insights into the transports and allows to activate

the learning-verbalization-chain. Figure A.6 visualizes the dashboard. It provides some graphical

analytics such as:

• An overview of the number of tasks that were on-time versus the ones that were late.

• An overview of all the transport modes and how they influence the arrival times.

• An overview of both the location the transport came from/is going to and how they relate

to the arrival times.

The exact metric for what is shown in the overview can be easily configured through the use of

a query. For example, in Figure A.6 two queries are defined, one for selecting the transport types

and one for selecting the destination location of the transports. When a more in-depth analysis

is necessary, the learning module can be activated from the dashboard to inspect the causes of

transports delays over a specific time range. Figure A.3 shows an example of how the verbalized

rules in the dashboard are shown. Each of the learned rules is translated into readable sentences

and can, after inspection of management, be incorporated into the system to avoid future delays.

A.5 Evaluation

This section elaborates on the evaluation of the Self-Learning module and more specifically on its

learning capabilities. We make a comparison between the learning capabilities of the different

algorithms discussed in Section A.3.

A.5.1 Dataset

As the IoT system described in Section A.2.2 can only be deployed in a real hospital setting after

thorough evaluation and proof that the system functions correctly, we do not have enough real-

time data to be used in the evaluation. We note that the IoT platform has been evaluated in
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Figure A.6: Overview of the AORTA Self-Learning Dashboard.
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a controlled hospital environment, to prove its feasibility. To enable the learning phase, data of

many transports is necessary and since the platform could only be deployed in a smaller controlled

environment, capturing enough data to enable the learning phase was not possible. However, the

hospitals currently have a static scheduling system, describing the various dispatched tasks. Even

though the static schedule does not contain all the context as it would in the IoT case, it is still

a good starting point to show the feasibility of the learning component. As this static data is

maintained in a relational database, we extract the data, map the data to the semantic model

through the use of RML [24], which allows non-semantic data to be mapped to a semantic model,

such that it can be used by the learning algorithms. We note that in the IoT deployment, when

more data is available, more accurate rules can be learned.

We received static transport data from two Flemish hospitals describing over three months

worth of patient transports details, based on 40 variables. On average, around 10000 transports

are scheduled each month and about 26% of these transports are late. For the first two evalua-

tions, i.e. Section A.5.2 and Section A.5.3, we adapted the hospital dataset so we can manipulate

its distributions in order to illustrate the underlying mechanics of the learning algorithms. We

selected one month worth of data and removed all transports that were late and added on time

transports from the next months to obtain a total of 10000 transports. To evaluate the learning

capabilities of the algorithm, we injected several causes of delays in the dataset, allowing to eval-

uate accurately if the algorithm is capable of detecting these causes. Among these causes are 1)

transports from a patient room to a consultation room where the patient had to walk, 2) trans-

ports on Friday in the evening and 3) transports in the afternoon towards the operating room. For

the last evaluation, Section A.5.4, we used the received dataset to explain why certain transports

were late.

The dataset itself contains 474 unique locations, each mapped to the hospital layout and

specific function of the location, 8 transport modes (e.g. bed, wheelchair, walking, etc.), the period

of the day (i.e. morning, afternoon, evening), the exact time, etc. Sincewe started from the received

dataset, the data distributions are realistic.

A.5.2 Minimum number of late transports

The cause of the late transports can only be detected if a sufficient number of these transports

are contained in the positive examples. The question remains, how frequent should they occur

to be detected? This is defined by the support parameter that defines the minimum frequency

a candidate item should occur before it can be considered. This filters out very low occurring

items and reduces the number of generated rules. Thus, the lower the support parameter the

higher the chances it is detected by the algorithm. However, since lower support parameters

imply more generated rules, more noise will be produced and complicates the interpretability

by management. Figure A.7 shows the influence of the support parameter on the dataset, OWN

indicates our combined algorithm, ARM our ARM approach and DL the CELOE approach provided

by DL-learner. It is worthing noting that the CELOE does not have a support parameter and needs

to be configured in the function of the number of results it may generate and the amount of time
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Figure A.7: Influence of the support parameter on the number of rules.
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Figure A.8: Influence of the support parameter on the duplicates.

it may execute. We fixed the number of results to the same number as the expected number of

results, i.e. the number of rules contained in the data and the correct execution time was obtained

by iterating over various execution times until the causes were detected by the algorithm. The

figure shows that for ARM and OWN, the lower the parameter, the more rules are generated. This

makes sense as none of the injected rules are contained in more than 30% of the late transports.

Therefore, the causes are only starting to be detected as the support threshold decreases below

0.3. It is clear that the ARM approach generatesmanymore rules, butmore rules do not necessarily

mean better results.

Figure A.8 shows the percentage of duplicates contained in the results. These duplicates are

unique rules that have the same meaning, e.g., each transport mode has a certain ID, resulting

in two rules, one stating that the transport mode ‘Running’ causes transports to be late or one

stating that the transport mode with id ‘131’ causes transports to be late. These are different rules
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Figure A.9: Influence of the support parameter on the execution time.
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Figure A.10: Influence of the support parameter on the false negatives.

but have the same meaning. As explained in Section A.3.3 our own algorithm is tailored to only

generate the most meaningful features and rules. This is reflected in the results of Figure A.8 as

the percentage of duplicates is low for our algorithm.

In Figure A.9 the execution time of each algorithm is plotted. The ARM and OWN algorithms

are faster than the CELOE algorithm as they take a more scalable statistical approach. For low

support thresholds the execution time increases, this is because more features are selected which

results in more combinations that need to be tested to detect the rules. Our own algorithm is less

prone to this, as it uses a generate and test approach and only considers combinations of features

if they are improving the accuracy. The ARM approach generates more combinations and is thus

slower.

Figure A.10 shows the percentage of false negatives, i.e. the percentage of rules that should

have been detected but were not. It is clear that as the support parameter decreases, more rules



Rule Learning 203

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise percentage

0

50

100

150

200

Nu
m
be
r o

f r
es
ul
ts

Influence noise on the number of results
OWN_0.2
OWN_0.1
OWN_0.05
ARM_0.2
ARM_0.1
ARM_0.05

Figure A.11: Influence of the noise on the number of results.

are found for the ARM and OWN approach and the percentage of false negatives drops. As the

support parameter has no influence on the DL approach, it remains constant. However, it fails to

find most rules even after long execution times. The false negatives decrease faster in the ARM

approach, however, only our OWN approach finds all rules. The reason for this slower decrease is

because our OWN approach is very selective in which rules to generate.

A.5.3 Noise in the dataset

A second important aspect is the ability to cope with is noise. Many transports are late for no

reason and are thus adding noise to the positive examples as there is not a straightforward ex-

planation.

Figure A.11 shows the number of found rules in function of the percentage of noise in the

dataset for a support threshold of 0.2, 0.1 and 0.05 for the ARM and OWN approach. We did not

further include the DL approach, as it has troubles to deal with noisy data. We artificially added

additional late transports to the dataset, which were selected from the set of transports that were

on time and thus do not contain any real causes for their delays and can be considered as noise.

The figure shows that as the noise increases, the number of found rules decreases. This is because

the percentage of the late transports in the dataset that should be detected decreases and random

causes increase. When further decreasing the support parameter, the rules can be detected again.

However, when decreasing too much, random rules will start populating the results. Table A.5

shows this trend for a dataset containing 80% noise. The table shows for both OWN and ARM

that as the support parameter decreases, more rules are generated. However, as the support

parameter decrease, more random rules are considered as well. This can be expected, as with a

support parameter of 0.001, a rule only needs to occur in 0.01% of the examples. For a dataset of

one month, this means that only two occurrences should be present in the data. This leads to the

production of many random results. The ARM approach is not able to produce rules for a support



204 Appendix A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise percentage

0

20

40

60

80

100

120

Ex
ec
tio

n 
tim

e 
(s
)

Influence noise on the execution time

OWN_0.2
OWN_0.1
OWN_0.05
ARM_0.2
ARM_0.1
ARM_0.05

Figure A.12: Influence of the noise has the execution time.

Table A.5: The influence of the decreasing support parameters for a dataset with high number of noise

(80%). Both the number of generated results (#res) are compared to the number of correct results

(#correct).

Support OWN ARM

#res #correct #res #correct

0.2 1 1 2 1

0.1 2 2 2 1

0.05 7 7 50 16 (56% duplicates)

0.01 16 14 - -

0.005 35 14 - -

0.001 198 14 - -

parameter of 0.01 and lower. This is due to the fact that too many conjunctions need to be tested

and therefore the execution time explodes.

A.5.4 Evaluating the unmodified dataset

We also executed the algorithms on the datasets received from the hospitals, i.e. the dataset

described in Section A.5.1 without the artificially injected late transports. Sincewe did not inject the

transports, there is no objective metric to evaluate the correctness of the learned rules. Therefore,

we provide a discussion of our findings. Figure A.13 depicts the dashboard of the received dataset

and shows some of the dataset characteristics.

While executing the learning algorithms, we found that some of the learned causes are rather

trivial, such as the fact that if the task started on time or the priority of the task is low, then

transports are often late. Other causes are however less trivial. In one of the hospitals, transports

in the morning that need a wheelchair are often late. Transports on Friday or Saturday or to the

consultation room share the same fate. However, transports that need a bed with a bed mover or
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Figure A.13: The dashboard visualizing some of the characteristics of the dataset received from the hospitals.
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Figure A.14: Example of the verbalized rules for the hospital datasets.

transports planned onWednesday/Thursday afternoon aremostly on time. However, the algorithm

also reveals more sensitive data, such as certain persons or teams that cause more delays than

other. Figure A.14 provides an example of the verbalization of some of the learned rules on the

static dataset.

In Section A.6 we discuss how to deal with sensitive data and the advantages of having a

system that provides explanations in these situations.

A.5.5 Comparison

Compared to ARM our technique scales very well as it does not need to generate rules regarding

the whole dataset that later on needs to be filtered out. Furthermore, since we pick the features

very carefully, the number of elements that are used to calculate the conjunctions is limited and

thus faster. We also have a different algorithm for creating conjunctions of rules. ARMhasmultiple

algorithms to achieve this but essentially checks if the support of the conjunction is above a certain

threshold. We take a different approachwherewe only consider conjunctions that enable a greater

drop in the support of the negative dataset, compared to the positive dataset. This means that the

conjunction occurs more frequently in the positive dataset compared to the negative dataset and

it also appears relatively more as a conjunction. Furthermore, because we filter the features early

on by selecting only themost interpretable features, fewer conjunctions need to be calculated and

less duplicate results are produced.

Compared to ILP (DL/CELOE) we take a statistical approach to test the coverage of the rule

and not a logical one. This is possible by converting the graph to features, by the generation of

the paths. This is more scalable than the ILP approach as the coverage is easier to compute. The

CELOE algorithm generates possible rules from the ontology concepts and checks if it matches the

dataset. We take another approach by starting from the dataset and generalize the found rules
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by incorporating the knowledge in the ontology. The ILP algorithm has also troubles to find rules

in a noisy dataset. The ILP technique is more suited when one specific and possibly complex rule

needs to be found. In our case, becausemultiple causes for delay exist in the dataset and noise can

be present, the technique is not ideal. Furthermore, the configuration of our algorithm is easier

than to configure the CELOE algorithm, as it requires to indicate the execution time.

It is clear that our approach is the fastest in execution time and also produces the most cor-

rect results. By incorporating the filtering techniques during the generation of the features, the

number of duplicate rules is minimized. Also, the detection of the correct rules is higher than in

the other algorithms. This allows to provide only the essential rules and give a clear overview and

insights into the data.

A.6 Discussion

The proposed system is able to learn rules that identify possible causes of why transports in hos-

pitals are late. By identifying the context in which transports are often late, we can predict which

transports will be late in the future and more importantly avoid future delays. Both patients, staff

members and hospital management benefit from more accurate scheduling. Currently, patients

often have towait before being picked up before or after amedical intervention, which is often un-

comfortable. For staff members, it is stressful to see their tasks pile up as the assigned transports

take longer than expected.

Furthermore, by explaining the cause as human-readable sentences, management gets un-

derstandable insights into their underlying hospital’s mechanics. The fact that these causes can

be understood by non-experts, allows management to be involved in the automated process and

provides them with the final judgment.

The use of the semantic model allows to easily extend the platform and integrate additional

data that could offer more accurate insights. For example, a new sensor could be added that

captures the exact route a transport takes. This would allow to detect various bottlenecks in the

transport routes, such as taking a specific elevator that is slow during certain times of the day

(maybe visitors tend to use the elevator as well) or routes that pass a certain corridor in the

hospital that is often very busy.

The learning phase can also detect sensitive data, such as certain staff members or teams that

are underperforming. These are scenarios wheremanagement should open a discussionwith their

employees to find out the real cause of the problem. By first providing the causes to management

for verification, management is provided with the opportunity to have this discussion and staff

members are not rewarded for executing their tasks more slowly. In a fully automated system, the

system would detect that a certain staff member takes more time and automatically assign more

time to the tasks this staff member has to execute. Other insights can also provide opportunities

for optimizations, e.g. transport towards certain specific locations that are always late could in-

dicate that there is a structural problem in the department and perhaps a reorganization of the

department would be beneficial.

The dashboard provides an easy access to the learning tool. By providing some graphical
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overviews of the transport distributions between timely and late transports, management can

have a quick visual overview. By making the overviews adaptable through queries, the content

can be easily adapted. However, the construction of these queries might not be trivial for non-

technical persons. Therefore, we provide some basic queries and allow the option to monitor the

transports that adhere to the previously selected causes of delays. This allows to quickly validate

if the system is now assigning the required time to execute these transports more accurately.

A disadvantage of learning from past transports is that data about past transports need to

be available. If management restructures the execution of transports, it takes time to see the

influence in the learned causes. One solution to solve this is to only take the transports into

account that were conducted from the time the restructuring took place. However, data about the

transports is still necessary.

Besides late transports, theremight also be caseswhere the transports are assigned toomuch

time, i.e the transports arrive too early compared to the assigned delivery time. These transports

can be identified in the same way we identified late transports. By alternating both identifying

the early and late tasks, the system will converge to an optimal setting.

A.7 Conclusion & Future Work

In this paper, we propose a learning system that can indicate the causes of why certain hospital

transports are late. Special precautions are taken to make sure that the learned causes can be

explained to management, enabling management to remain in full control of the automated sys-

tem. We have shown that our platform is capable of learning said causes and verbalize them in

interpretable sentences for further inspection by the hospital management.

In future work, we wish to incorporate additional sensors to allow the detection of more

accurate and complex rules. We also wish to further extend the usability of the dashboard. For ex-

ample, allow management to easily construct the overview queries in a natural and interpretable

manner for non-technical users.
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