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Special Issue Editorial

Plant proteases and programmed cell death

Proteolysis affects many processes in plant development 
and during stress responses, as well as being crucial in 
cellular protein homeostasis and recycling of resources. 
Beyond bulk degradation, proteases can have impor-
tant signaling functions or affect cellular pathways by 
precise cleavage of signaling proteins. This special issue 
covers key research themes in the diverse but increas-
ingly interconnected fields of programmed cell death 
(PCD) and plant protease activity. Future trends are 
also highlighted, such as accelerated substrate discovery 
facilitated by large-scale deposition of N-terminomic 
data to easily accessible databases, or better profiling 
using genetically encoded protease activity reporters.

Proteases encompass a diverse family of enzymes each with 
their own biochemical and regulatory characteristics. Although 
there are exceptions, they are mostly unified through their fun-
damental role in the hydrolysis of peptide bonds and cleavage 
of substrate proteins. The usual first step when talking about 
proteases is assigning their enzymatic class – they are classi-
fied hierarchically based on amino acid sequence similarity 
and chemical mechanism of catalysis. This is catalogued in the 
MEROPS database (Rawlings et  al., 2018) with class names 
based on the active site amino acid or metal that performs 
the hydrolysis, resulting in five major groups in plants: ser-
ine (S), aspartate (A), cysteine (C), threonine (T) and metallo-
proteases (M) (Box 1). Papers in this issue focus on members 
of the pepsin-like family (A1 using the MEROPS protease 
nomenclature) of aspartic proteases (Soares et al., 2019a), Clp 
(Caseinolytic protease) serine proteases (S14) (Rodriguez-
Concepcion et al., 2019), Lon proteases (named after the long 
filament phenotype of bacterial mutant cells; S16) (Tsitsekian 
et al., 2019) and metacaspases (C14B) (Klemencic and Funk, 
2019). Subtilisin-like serine proteases or subtilases (S8) have 
also recently been reviewed (Schaller et al., 2018).

Regulation of protease activity

Unlike many other post-translational modifications, proteolysis 
causes an irreversible change to its substrate proteins and so 
proteases need strict regulation of activity. Proteases are usually 
produced as pro-enzymes or zymogens. To be activated, they 
can perform autocatalytic cleavage in cis or trans, or be cleaved 
by upstream proteases from the same or completely different 

families. Classic examples of protease cascades from animals 
include blood coagulation upon injury and caspase activa-
tion during apoptosis, and Paulus and van der Hoorn (2019) 
have scrutinized the literature for evidence of such cascades in 
plants. While there are promising indications, the authors con-
clude that insufficient criteria have been met for known plant 
systems to qualify as true protease cascades. Nevertheless, given 
the sheer number and universal rule of signal amplification, 
they suggest that emerging evidence will soon change this or 
a new protease cascade will be identified in plants in the near 
future (Paulus and van der Hoorn, 2019).

Once proteases are activated, endogenous protease inhibi-
tors can act as safety valves or have specific signaling roles by 
modulating protease activity (Grosse-Holz and van der Hoorn, 
2016). Cohen et al. (2019) examine the serpins, a widely con-
served class of inhibitors, and how they exploit protease activ-
ity to covalently bind and distort protease structure. Although 
originally named from ‘serine protease inhibitor’, serpins 

Box 1. Protease and substrate cleavage site 
nomenclature

Cataloguing in the MEROPS database (Rawlings et al., 
2018) is based on the active site amino acid or metal 
that performs the hydrolysis. A curated estimate by 
Lallemand et al. counts 570 proteases in the Arabidopsis 
genome, from the most numerous serine (S) proteases 
(45% of the total), through cysteine (C) (25%), metallo 
(M) (15%), aspartate (A) (11%) and, least numerous, 
threonine (T) (4%) proteases (Lallemand et al., 2015).

Protease substrate cleavage site nomenclature follows 
the form:

P4P3P2P1↓P’1P’2P’3P’4
where the downward-pointing arrow indicates the 

cleaved peptide bond. The most prevalent amino 
acids are numbered outward from this point, from the 
preceding ones in P positions and subsequent ones 
in P’ positions. For example, metacaspases have a 
doublebasic cleavage-site pattern with arginine (R) or 
lysine (K) in position P3 and P1, respectively, and the 
typical substrate being valine (V) (position P4) – R (P3) 
– proline (P) (P2) – R (P1) (i.e. VRPR) (Klemencic and 
Funk, 2019). 
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can inhibit a wide range of proteases including cysteine pro-
teases. Irreversible or reversible inhibition within seconds of 
contact with a serpin can regulate biological functions, as in 
the case of set-point control of the pro-cell death protease 
RESPONSIVE TO DESICCATION 21 (RD21) (Lampl 
et al., 2013). Interestingly, serpins can also act as chaperones in 
other contexts, for example to increase beta-amylase activity in 
barley grains (Cohen et al., 2019).

Protease activity can also be controlled by physically separat-
ing the enzyme from its substrates through subcellular localiza-
tion. Remobilization of phytaspase, a subtilase with aspartate 
specificity, from the apoplast to the cell interior occurs under 
hypersensitive response (HR)-like cell death triggered by 
tobacco mosaic virus infection (Chichkova et  al., 2010; 
Salguero-Linares and Coll, 2019). In an intriguing Viewpoint 
article, Trusova et  al. (2019) put forward the hypothesis that 
this is caused by clathrin-dependent endocytosis, at least dur-
ing oxidative stress-triggered cell death. Furthermore, pro-
teases are present in all cellular compartments and can exert 
specific functions in these in isolation from the rest of the cell. 
Rodriguez-Concepcion et al. (2019) review the existing litera-
ture on the chloroplast-localized Clp complexes and substrates. 
While the authors put forward clear rules as to what consti-
tutes a confirmed Clp substrate, definite proof is hard to come 
by and ideally involves both in vivo and in vitro confirmation.

Protease substrates

For protein homeostasis-related proteases (proteasome and 
ATP-dependent proteases such as Clp, Ftsh and Lon) substrate 
identification remains a challenging task. Often because of 
severe and pleiotropic mutant phenotypes in combination with 
a lack of clear cleavage site (Box 1) motifs – instead of cleav-
ing a substrate once, resulting in a defined cleavage site motif, 
the enzyme can cleave at many sites in the substrate with lesser 
site specificity and so it is hard to assign a substrate through 
prediction of cleavage sites or matching to a known protease 
specificity profile. To obtain evidence for bona fide substrates, 
multiple follow-up experiments are required with substrate 
trapping being a particularly promising way forward (Rei Liao 
and van Wijk, 2019). In a substantial advance for serine and 
cysteine proteases, a proof-of-concept was recently established 
for substrate trapping by replacement of the active site cysteine 
or serine with the non-native amino acid 2,3-diaminopro-
pionic acid (DAP) (Huguenin-Dezot et  al., 2019). Although 
only performed with recombinant protein, the tobacco etch 
virus (TEV) protease and its native substrate were successfully 
trapped through a covalent amide bond. This opens up new 
routes for the identification of protease substrates from com-
plex protein extracts.

More established methods for proteomics-scale protease 
substrate discovery include terminal amine isotopic labeling 
of substrates (TAILS) and combined fractional diagonal chro-
matography (COFRADIC) (reviewed by Demir et al., 2018; 
Perrar et al., 2019). These rely on the enrichment and identi-
fication by mass spectrometry of N- or C-terminal start posi-
tions at the original protein terminus or internal proteolysis 

sites, hence the term N- or C-terminomics (or degradom-
ics). In fact, most studies in plants have focused on applications 
other than protease substrate discovery, including alternative 
translation initiation, post-translational modification of the 
N-terminus (e.g. by acetylation), and N-end rule substrate dis-
covery (Perrar et al., 2019). Some relate to protein homeostasis, 
but all emphasize the importance of the N-terminal amino 
acid for protein function.

Some studies challenge the idea that proteases must exert 
their function through substrate cleavage and these need to 
be taken into consideration when trying to uncover protease 
substrates. Ftshi proteins are presumably inactive Ftsh proteases 
as their active sites are mutated. In a comprehensive analysis 
of Ftshi mutant phenotypes, Mishra et al. (2019) have found 
that inactive FtsH homologs affect chloroplast function and 
plant development. Furthermore, in the right conditions, some 
proteases can ligate peptides, for example in the production 
of cyclic peptides by asparaginyl endopeptidases such as legu-
main and butelase (Zauner et al., 2018; James et al., 2019). Also, 
the presence of smaller molecular weight protein products is 
not necessarily the result of proteolysis. They might well result 
from alternative splicing or alternative translation initiation 
(see Willems et al., 2017; Perrar et al., 2019).

PCD and cell survival

Salguero-Linares and Coll (2019) review the roles of proteases, 
including papain-like cysteine proteases, metacaspases, vacuo-
lar-processing enzymes, proteasomal subunits and subtilases in 
HR-type cell death. HR is triggered upon pathogen infection 
and has been known for over a hundred years, receiving sig-
nificant attention for its role in pathogen resistance. Although 
the authors conclude that mechanistic insight into the process 
of cell death remains scarce, it is hoped that concerted action 
spanning the fields of both cell death and protease activity will 
accelerate this process in the near future (Salguero-Linares and 
Coll, 2019).

Andrade Buono et  al. (2019) review the roles and func-
tions of proteases during developmentally controlled pro-
grammed cell death (dPCD). Though several proteases and 
protease activities have been implicated in the regulation of 
cell death and corpse degradation, again little mechanistic 
insight into the precise role and targets of proteases during 
dPCD processes is available (Andrade Buono et  al., 2019). 
A  special type of dPCD occurring during the self-incom-
patibility (SI) response in field poppy has been reviewed by 
Wang et  al. (2019). A  self-recognition-based signaling net-
work leads to arrested growth and finally PCD of self-pollen. 
Pollen SI-PCD features prominent cytosolic acidification and 
caspase-like protease activity. Despite substantial efforts, the 
SI-PCD proteases responsible for this activity remain to be 
identified (Wang et al., 2019).

Escamez et al. (2019) report on the discovery of the novel 
extracellular peptide Kratos in the context of xylem cell death. 
Kratos is not involved in differentiation or PCD in the xylem 
tracheary elements, but is important for the protection of 
neighboring non-tracheary element cells from ectopic cell 
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death. This ectopic cell death occurs in metacaspase9 mutants 
and when autophagy is up-regulated in tracheary elements. 
Likely acting downstream of autophagy, Kratos acted to pro-
tect neighboring non-tracheary element cells from ectopic cell 
death during xylem differentiation. Furthermore, Kratos had 
an ameliorative effect on cell death in stresses other than xylem 
cell death, such as wounding and cell death triggered by reac-
tive oxygen species.

Functions other than PCD

Soares et al. (2019a) note the remarkable expansion of atypi-
cal aspartic proteases in plants, which has led to a diversity of 
specialized functions. These atypical and nucellin-like aspartic 
proteases vary widely in their enzymatic properties and subcel-
lular localizations, including activity at higher-than-acidic pH, 
incomplete pepstatin inhibition, and divergence from hydro-
phobic, aliphatic or aromatic amino acids in the P1 and P1’ 
position (e.g. Phe-Phe) (Soares et al., 2019a). The authors also 
discuss the various functions of aspartic proteases and additional 
research on the novel ATYPICAL ASPARTIC PROTEASE 
IN ROOTS 1 (ASPR1). The biochemical characteristics of 
ASPR1 were found to be surprisingly similar to fungal aspartic 
proteases. Expression analysis and gain- and loss-of-function 
experiments showed that ASPR1 has a role in primary root 
elongation and lateral root formation (Soares et al., 2019b).

Tornkvist et al. (2019) describe possible ways in which pro-
teases and proteostasis might contribute to nitrogen use effi-
ciency (NUE). Improving NUE is an important target for crop 
breeding, as run-off from excess nitrogen fertilization must 
be limited to enhance sustainable and environment-friendly 
farming. Digestive proteolysis mediated by the proteasome and 
autophagy would be expected to contribute to NUE. Symbiotic 
nitrogen fixation and nodule formation are in certain instances 
regulated by proteases. For less-explored scenarios, but draw-
ing from existing examples, the authors propose situations in 
which proteases could generate nitrate-sensing peptidic sig-
nals or alter peptide receptors, influence root cap sloughing, 
or directly regulate NO3- or NH4-transporters. They con-
clude with a familiar call that to improve our understanding 
we need to increase our knowledge of protease–substrate and 
protease–protease interactions, and that improvement in NUE 
seems feasible through manipulation of proteolytic pathways 
(Tornkvist et al., 2019).

Many C1A cysteine proteases, including the cathepsins, have 
typically been associated with nutrient recycling. Gomez-
Sanchez et al. (2019) found four genes to be up-regulated in 
barley leaves upon drought stress. Knock-down lines for two 
of these genes, HvPap-1 and HvPap-19, led to changes in leaf 
cuticle thickness and stomatal pore area, and photosystem effi-
ciency and protein homeostasis were much less affected than 
in drought-stressed wild-type plants. Unexpectedly, stress hor-
mone levels were altered and the changes in cuticle thickness 
and stomatal pore area had advantageous effects on leaf defense 
against fungi and mites (Gomez-Sanchez et al., 2019).

Protein homeostasis or proteostasis is intricately linked to 
protease activity and programmed cell death (Minina et  al., 

2017; Ustun et al., 2017; Have et al., 2018). Increasing inter-
connection between the protease field and the field of N-end 
rule-regulated proteostasis is to be expected. The N-end rule 
pathways recognize degradation signals that mainly depend on 
the N-terminal amino acid residue of a protein and determine 
its half-life. Protease-generated substrate fragments might well 
be subject to the N-end rule (Dissmeyer et  al., 2018; Millar 
et al., 2019).

Challenges and future perspectives

In comparison to animal or human studies, surprisingly few 
definite protease substrates have been identified in plants. The 
above-mentioned proteomic techniques (Demir et al., 2018) 
usually deliver long candidate lists from which few substrates 
are subsequently validated, and at present most substrates 
are still found on a gene-by-gene protease-substrate basis 
through logical deduction. Nevertheless, peptide signaling 
has proven to be a particularly strong area of substrate discov-
ery, partly because there is an obvious need to liberate small 
signaling peptides from their precursor proteins (Wrzaczek 
et al., 2015; Bessho-Uehara et al., 2016; Schardon et al., 2016). 
Elucidating the relevance and role (e.g. activation, deacti-
vation or neo-functionalization) of substrate cleavage will 
remain an arduous task.

Substrate discovery should accelerate in the future 
(Savickas and Auf dem Keller, 2017; Perrar et al., 2019). It 
would definitely help if there was increased interest in sub-
strate cleavage events and the proteases responsible, and to 
recognize substrate cleavage as a post-translational modifi-
cation (PTM) on a par with, for example, phosphorylation 
(Millar et al., 2019). Deposition of large-scale N-terminomic 
data to easily accessible databases, such as the Plant PTM 
viewer, could be one way to reach this goal (Willems et al., 
2018, Preprint).

Powerful new tools are increasingly becoming available for 
probing protease activity in plants or plant protein extracts, and 
these include (mainly) chemical tools for activity-based pro-
tein profiling (ABPP) (Morimoto and van der Hoorn, 2016). 
Far less explored in plants is a new generation of genetically 
encoded protease activity reporters (Fernández-Fernández 
et al., 2019), the majority of which have so far only been used 
in mammalian studies. These will help us gain a better under-
standing of protease activation and mode of action in plants 
(van der Hoorn and Rivas, 2018; Klemencic and Funk, 2019). 
As protease activity and substrate cleavage go hand in hand, it 
is crucial to understand the activity of the protease of interest 
both in vitro and in vivo to discover and make sense of the sub-
strate cleavage event.

Mechanistic insight into the initiation and execution of 
cell death remains a bottleneck (Andrade Buono et al., 2019; 
Salguero-Linares and Coll, 2019; Wang et al., 2019). The dis-
covery of new modalities of cell death in plants, such as ferrop-
tosis (Dangol et al., 2019), and potential cell survival strategies 
(Escamez et  al., 2019), will add new layers of complexity. 
Identifying the proteases responsible in this context will be an 
important target for the near future.
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