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Highlight  

Secondary sulfur metabolism produces several metabolites which regulate various aspects of 

cellular signalling and homeostasis in response to environmental perturbations.  

 

Abstract  

The sulfur metabolism pathway in plants produces a variety of compounds that are central to 

the acclimation response to oxidative stresses such as drought and high light. Primary sulfur 

assimilation provides the amino acid cysteine, which is utilized in protein synthesis and as a 

precursor for the cellular redox buffer glutathione. In contrast, the secondary sulfur metabolism 

pathway produces sulfated compounds such as glucosinolates and sulfated peptides, as well as 

a corresponding by-product 3’-phosphoadenosine 5’-phosphate (PAP). Emerging evidence 

over the past decade has shown that secondary sulfur metabolism also has a crucial engagement 

during oxidative stress. This occurs across various cellular, tissue and organismal levels 

including chloroplast-to-nucleus retrograde signalling events mediated by PAP, modulation of 
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hormonal signalling by sulfated compounds and PAP, control of physiological responses such 

as stomatal closure, and potential regulation of plant growth. In this review, we examine the 

contribution of the different components of plant secondary metabolism to oxidative stress 

homeostasis, and how this pathway is metabolically regulated. We further outline the key 

outstanding questions in the field that are necessary to understand how and why this 

‘specialized’ metabolic pathway plays significant roles in plant oxidative stress tolerance.  
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ABA abscisic acid 

APK Adenosine Phosphosulfate Kinase 
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PAP 3’-phosphoadenosine 5’-phosphate 

PAPS 3’-phosphoadenosine 5’-phosphosulfate 

PAPST 3’-phosphoadenosine 5’-phosphosulfate Transporter 

ROS reactive oxygen species 

SA salicylic acid 

SOT Sulfotransferase 

TPST Tyrosyl Protein Sulfotransferase 

XRN exoribonuclease 
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Introduction  

Plant responses to environmental conditions that invoke reactive oxygen species (ROS) over-

accumulation leading to photo-oxidative stress in leaves, such as drought and high light, and 

combinations thereof, involve coordinated acclimation processes across biochemical, cellular 

and physiological levels. Processes that are activated include the synthesis and downstream 

signalling of hormones (Galvez-Valdivieso et al., 2009), alterations in metabolism of nutrients 

such as sulfur (Malcheska et al., 2017; Rizhsky et al., 2004), chloroplast-to-nucleus retrograde 

signalling (Chan et al., 2016b), secondary messenger signalling involving reactive oxygen 

species (ROS) and Ca2+
 (Steinhorst and Kudla, 2013). Each of these processes impinge on 

physiological responses such as stomatal closure (Murata et al., 2015) and regulation of plant 

growth (Bechtold and Field, 2018). Intriguingly, multiple facets of the plant response to 

oxidative stress are regulated by components of sulfur metabolism (Estavillo et al., 2011; 

Speiser et al., 2018; Zechmann, 2014).   

 

Plants assimilate sulfur in the form of sulfate anions, which are first taken up into root cells and 

then transported between and within plant cells via four groups of sulfate transporters 

(SULTRs) with differing subcellular localizations and substrate affinities (Takahashi et al., 

2011). The sulfate is first activated in the cytosol and chloroplasts to adenosine phosphosulfate 

(APS) through the action of ATP sulfurylases (ATPSs) (Figure 1). APS contains a high-energy 

P-S bond which enables it to act downstream as an S-donor in the contrasting branches of a 

bifurcated metabolic pathway. In the primary branch, the sulfate moiety of APS is successively 

reduced and integrated into the carbon skeleton of O-acetyleserine for the synthesis of cysteine. 

Cysteine serves as a substrate for biosyntheses of methionine, as well as the cellular redox 

buffer glutathione (GSH) (Takahashi et al., 2011), which has well-established important roles 

in redox control during growth and development and oxidative stress homeostasis (Mhamdi and 

Van Breusegem, 2018). Alternatively, APS can enter the secondary sulfur metabolism pathway 

to be phosphorylated by APS kinase (APK) enzymes in the cytosol and chloroplasts to produce 

3’-phosphoadenosine 5’-phosphosulfate (PAPS) (Mugford et al., 2009). The chloroplastic 

PAPS can be transported to the cytosol by at least two chloroplast envelope-localized PAPS 

Transporters (PAPSTs) (Ashykhmina et al., 2018; Gigolashvili et al., 2012), while cytosol-to-
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Golgi PAPS is hypothesized to occur though the transporter is yet to be identified. The activated 

sulfur in PAPS is then transferred to various acceptor molecules including hormones, 

xenobiotics and growth-regulating peptides by cytosolic and Golgi-resident sulfotransferases 

(SOTs) (Hirschmann et al. (2014)). As a by-product, 3’-phosphoadenosine 5’-phosphate (PAP) 

is formed, which is dephosphorylated by the SAL1 phosphatase to adenosine monophosphate 

(AMP) in chloroplasts and mitochondria (Estavillo et al., 2011). (Figure 1).  

 

Interestingly, plastidial APS is utilized by both primary and secondary sulfur metabolism 

(Figure 1), which necessitates coordination between these pathways at multiple levels, 

although the mechanism(s) are not fully understood (Kopriva et al., 2012). For example, loss 

of APK activity at the entry point into secondary sulfur metabolism re-directs sulfur flux into 

cysteine and GSH synthesis (Mugford et al., 2011). Conversely, loss of SAL1 activity leads to 

decreased levels of both primary and secondary sulfur metabolites, as well as that of sulfate 

(Lee et al., 2012). Therefore, the control of sulfur partitioning between primary and secondary 

sulfur metabolism still remains to be elucidated, particularly during oxidative stress conditions 

such as drought stress when multiple sulfur metabolites participate in the cellular response 

(Chan et al., 2013). Indeed, evidence over the past decade increasingly point towards crucial 

roles for secondary sulfur metabolites in oxidative stress signalling and responses. 

  

APS Kinases: Facilitators of sulfur flux into secondary sulfur metabolites  

The APK enzymes constitute a branching point of sulfur flux into secondary sulfur metabolism, 

as they direct sulfur away from primary sulfur assimilation through conversion of APS into 

PAPS. Three of the four APK isoforms in Arabidopsis (APK1, APK2, APK4) are localized to 

chloroplasts. APK1 and APK2 are the major isoforms with partially overlapping tissue 

expression patterns and functional redundancy (Mugford et al., 2009). This is evidenced by 

lack of visible growth phenotypes in any of the single apk genetic lesions and a dwarfed 

phenotype of apk1apk2 which possesses significantly lower levels of PAPS-requiring 

metabolites such as glucosinolates, and correspondingly accumulate the precursor 

desulfoglucosinolates (Mugford et al., 2009). Plastidial APK4 and cytosolic APK3 play 

relatively minor roles in the provision of PAPS (Mugford et al., 2010), since analysis of higher-

order apk mutant combinations show that apk3apk4 is aphenotypic while apk1apk2apk3 and 

apk1apk2apk4 phenotypes are additive to apk1apk2. The decreased growth in plants with low 

APK activity is hypothesized to be caused at least in part by loss of sulfated peptides with 

growth-promoting roles (Mugford et al., 2009), but this has not been confirmed. Importantly, 
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these findings indicate that APK dependent PAPS production is rate-limiting for the production 

of downstream secondary sulfur metabolites catalyzed by the SOTs. Indeed, APK2 alone is not 

sufficient for PAPS provision since apk1apk3apk4 is embryo-lethal (Mugford et al., 2010)  The 

contribution of APKs to oxidative stress tolerance has not been tested. Intriguingly, APK1 is 

inactivated by oxidation in vitro (Ravilious et al., 2012) (discussed in more detail below), and 

apk1apk2 accumulates higher levels of the redox buffer GSH. These findings may indicate that 

APK inactivation could be favoured under oxidative stress conditions. However, it can also be 

expected that severe limitation of PAPS supply can be deleterious since many of the SOT 

products can play important functions in response to oxidative stress as discussed below.  

 

Regulation of hormones, growth and stress homeostasis by sulfur-containing secondary 

metabolites and sulfotransferases 

In mammalian systems, the physiological functions of SOTs are relatively well-characterized, 

with known substrates including carbohydrates, proteoglycans, proteins, xenobiotics, and 

various steroid hormones (Gamage et al., 2006; Mueller et al., 2015). Diseases caused by loss-

of-function of specific SOTs in humans are also described (Mueller et al., 2015). In contrast, 

plant SOT research still presents many unknowns. For example, there are 71 predicted SOTs in 

Brassica napus, but they remain poorly characterized with a few notable exeptions 

(Hirschmann and Papenbrock, 2015). Of the 22 SOTs encoded by the Arabidopsis genome, 

only ten have known in vitro substrates or in vivo physiological roles (Figure 2) (Hirschmann 

et al., 2014). Their substrates include desulfoglucosinolates, hormones or hormone derivatives 

(brassinosteroids, salicyclic acid, hydroxy-jasmonic acid), flavonoids, xenobiotics, and 

peptides (Hirschmann et al., 2014).  

 

Glucosinolates – defense compounds with additional roles in oxidative stress 

In Brassicaceae, the bulk of sulfur flux via the SOTs under steady-state conditions is utilized 

for the synthesis of glucosinolates, which are anti-herbivory defence compounds (reviewed by 

Kliebenstein et al in this issue). The final step of glucosinolate biosynthesis involves the transfer 

of the sulfate moiety from PAPS to desulfoglucosinolates by SOT16, SOT17 and SOT18 

(Piotrowski et al., 2004). Interestingly, both foliar and root glucosinolate accumulation have 

been observed in several Brassica species subjected to abiotic stresses such as drought and salt 

stress (Del Carmen Martínez-Ballesta et al., 2013), and deletion of two MYB transcription 

factors which abolish accumulation of aliphatic glucosinolates was correlated with increased 

salt stress sensitivity (Martínez-Ballesta et al., 2015). The downstream breakdown products of 
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glucosinolates might be involved in the oxidative stress responses. The myrosinase enzyme 

TGG1 which degrades glucosinolates into active isothiocyanates is highly abundant in guard 

cells, its mutation led to loss of ABA sensitivity (Zhao et al., 2008), and exogenous application 

of isothiocyanates also closed stomata (Khokon et al., 2011). Exogenous isothiocyanate also 

increased NADPH oxidase activity and nitric oxide levels in guard cells (Khokon et al., 2011), 

and stimulates large-scale transcriptomic changes associated with oxidative stress responses 

(Kissen et al., 2016). It can be hypothesized that the effects of isothiocyanate is due to either 

the activation of specific signalling proteins, or the stimulation of cellular responses to the 

increased ROS and NO levels, or both. In animal systems the proposed modes of action for 

ingested isothiocyanates include direct binding to reactive thiol groups of proteins (Nakamura 

et al., 2018). Whether such mechanisms also hold true in plants will need further investigation.   

 

Growth regulating peptides 

Whereas the sulfation of desulfoglucosinolates by SOT16, 17 and 18 produce glucosinolates 

which are themselves inert until further activation by myrosinases, sulfation processes by other 

SOTs have been linked to direct modulation of bioactivity of their substrates. This is best 

examplified by the Tyrosyl Protein Sulfotransferase (TPST) (Komori et al., 2009). TPST-

mediated sulfation of peptides phytosulfokine (PSK), plant peptide containing sulfated tyrosine 

1 (PSY1) and root growth factor (RGF) is critical for the growth-promoting functions of these 

peptides (Komori et al., 2009; Matsuzaki et al., 2010; Zhou et al., 2010). Indeed, loss-of-

function of TPST results in severe developmental defects, such as strongly decreased root 

growth and loss of stem cell identity in roots. The crucial role of TPST is exemplified by its 

strong evolutionary conservation pre-dating the emergence of land plants, in contrast to 

cytosolic SOTs such as SOT15 (Zhao et al., 2019). It has been hypothesized that TPST’s 

evolutionary conservation is due not just to its growth promoting effects, but also due to its 

involvement in stomatal regulation (Zhao et al., 2019) and in balancing the plant’s growth and 

stress responses (Figure 2). Its sulfated products, PSK and PSY1, function in both the induction 

of defense responses to pathogens and as growth factors; these two peptides also function 

antagonistically (reviewed in Sauter (2015)). This hypothesis is corroborated by the enhanced 

root growth sensitivity of tpst to copper deficiency compared to wild type (Wu et al., 2015). 

However, it is currently unknown whether TPST also coordinates growth and acclimation to 

other oxidative stresses such as drought or high light.  

 

Hormones and hormone derivatives 
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SOTs are also capable of targeting at least four other classes of compounds involved in the 

coordination of growth and stress responses (Figure 2): brassinosteroids (SOT10, SOT12); 

salicylic acid (SA; sulfated by SOT12), flavonoids (SOT5, SOT8, SOT12, SOT13), and 

hydroxy-jasmonate (OH-JA; sulfated by SOT15). However, these reported substrates for SOTs 

have been mostly identified from in vitro assays and corresponding in vivo validation using 

genetic mutants have been largely lacking.  

 

Brassinosteroids are regulators of growth and development (Wei and Li, 2016), but can also 

enhance oxidative stress tolerance through multiple mechanisms when applied exogenously 

(Sharma et al., 2017). SOT12 can sulfate multiple brassinosteroids in vitro but shows a 

preference for the brassinosteroid precursor 24-epicathasterone (Marsolais et al., 2007). 

Surprisingly, it is not known whether sot12 loss of function mutants display defects in 

brassinosteroid signalling. SOT10 prefers the biologically active end products of 

brassinosteroid biosynthesis such as 24-epibrassinolides and the naturally occurring (22R, 

23R)-28-homobrassinosteroids. Interestingly, sulfation of 24-epibrassinolides can lead to 

suppression of its bioactivity (Rouleau et al., 1999). However, brassinosteroid-related 

phenotypes were not observed in sot10 loss-of-function or SOT10-overexpressing plants 

(Sandhu and Neff, 2013). These findings parallel that for the Brassica napus Sulfotransferase 

3 (BnST3) and BnST4 enzymes, which are capable of targeting multiple brassinosteroids 

(Rouleau et al., 1999) but did not lead to BR-related phenotypes when over-expressed in 

Arabidopsis (Marsolais et al., 2004). Conjugation of polar moieties (e.g. through sulfation) to 

the relatively non-polar brassinosteroids has also been proposed to improve intracellular 

movement of brassinosteroids from their site of synthesis at the endoplasmic reticulum to their 

site of perception at the plasma membrane (Symons et al., 2008). Thus, it is suggested that 

brassinosteroid sulfotransferases regulate brassinosteroid activity, mobility and/or perception, 

although the exact mechanism(s) remain unknown.  

 

Salicylic acid (SA) is a regulator of pathogen responses and cell death (Seyfferth and Tsuda, 

2014). Baek et al. (2010) reported that SOT12 is able to transfer sulfate to SA. The authors 

proposed that sulfation of SA by SOT12 may be a key regulatory point for SA induction in 

response to pathogens, since sot12 sensitivity to the pathogen Pseudomonas syringae is 

accompanied by an inability to accumulate SA. The sot12 mutant is also more sensitive to some 

abiotic stresses such as salt stress. In rice, the Resistance to Rice Stripe Virus on Chromosome 

11 (STV11) gene encodes a SOT that sulfates SA (Wang et al., 2014). STV11 mediates SA 
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accumulation in vivo and Japonica rice varieties lacking functional STV11 are sensitive to Rice 

Stripe Virus (Wang et al., 2014).  

 

Another known substrate for SOTs in Arabidopsis is hydroxyl-jasmonic acid (OH-JA), which 

functions synergistically and antagonistically to SA in regulating pathogen responses and cell 

death (Caarls et al., 2015; Tamaoki et al., 2013). Signalling by the biologically active JA can 

be controlled stepwise through enzymatic conjugation to amino acids, methylation, and 

hydroxylation to give rise to 12-hydroxy-JA (reviewed in Wasternack and Strnad (2016)). 

Interestingly, 12-hydroxy-JA and its related compound, 11-hydroxy-JA, can be further 

modified via sulfation by SOT15 to give rise to 12- and 11-hydroxy-JA sulfate respectively 

(Gidda et al., 2003). Both 12-hydroxy-JA and 12-hydroxy-JA sulfate appear to be inactivated 

forms of JA, and they also down-regulate the expression of genes encoding for enzymes in JA 

biosynthesis (Miersch et al., 2008). This suggests that 12-hydroxy-JA sulfate, and by extension 

SOT15, may constitute part of an “off” switch in JA signalling (Miersch et al., 2008).  

 

Other stress-associated metabolites 

Flavonoids have diverse roles including UV protection, growth regulation and plant-microbe 

interactions (Falcone Ferreyra et al., 2012). At least four SOTs are capable of sulfating a variety 

of flavonoids but with subtly different substrate preferences and enzymatic rates (Hashiguchi 

et al., 2013; Hashiguchi et al., 2014). Both SOT13 and SOT5 showed strong preference for the 

flavonol galangin, although the latter also has significant affinity for kaempferol. In contrast, 

the most preferred substrate for SOT12 is the flavonone naringenin, although it also processes 

galangin and kaempferol at similar rates to SOT13 and SOT5 (Hashiguchi et al., 2013). 

Significantly, SOT12 is also active against quercetin, with a specific activity that is 

approximately 50% of that against its preferred substrate naringenin (Hashiguchi et al., 2013). 

This raises the question whether SOT12 might also participate in auxin homeostasis in vivo, 

since quercetin-3-sulfate is proposed to regulate auxin transport in Flaveria bidentis 

(Ananvoranich et al., 1994). However, auxin-related phenotypes have not been reported yet for 

sot12.  

 

SOT12 is also capable to detoxify xenobiotic compounds produced by soil bacteria, such as the 

protein translation inhibitor cycloheximide (Chen et al., 2015). While xenobiotic compounds 

are not regulators of plant growth and stress responses per se, these metabolites are also 
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produced endogenously in plants during high light stress and hence require detoxification 

(D’Alessandro et al., 2018).  

 

Biochemical basis for diversity of SOT substrates and functions 

The high number and variety of SOT substrates can be explained by the structural features of 

the SOT active site. Analysis of the SOT18 crystal structure reveals that plant SOTs have highly 

conserved catalytic residues and PAPS binding region which are also shared with orthologues 

from many different species (Hirschmann et al., 2017). In contrast, the binding site of the sulfate 

acceptor substrate along with three flexible loops gating the entrance to the active site are poorly 

conserved, thus providing the means for substrate specificity and specialization between SOTs 

(Hirschmann et al., 2017). Indeed, a small number of amino acid changes can lead to different 

activity levels and substrate preference of the same SOT enzyme from different Arabidopsis 

ecotypes (Klein and Papenbrock, 2009; Luczak et al., 2013); although these polymorphisms 

have not been mapped to the recent structural data. These findings could provide the basis for 

understanding the function and regulation of multi-substrate SOTs such as SOT12 during 

oxidative stresses. For example, the reported KM of SOT12 against 24-epicathasterone (6.9 µM) 

is several times lower compared to salicylic acid (440 µM), and the SOT12 specific activity 

against different flavonoids varies across two orders of magnitude (Baek et al., 2010; 

Hashiguchi et al., 2013; Marsolais et al., 2007). It will be interesting to explore the structural 

basis for these substrate preferences with respect to its protein structure. 

 

PAP-mediated chloroplast-to-nucleus retrograde signalling and physiological responses 

to abiotic stress  

While the different SOTs might process substrates with diverse chemical structures and roles 

in stress and growth homeostasis, one commonality shared between these enzymes is that they 

all consume PAPS, thereby producing PAP as a by-product (Figure 2). Early work on PAP-

accumulating mutants showed that constitutively high PAP impedes auxotrophic growth in 

yeast and E. coli (Glaser et al., 1993; Masselot and De Robichon-Szulmajster, 1975; Neuwald 

et al., 1992). PAP most likely blocks sulfate assimilation through the inhibition of PAPS 

reductase in these organisms, which have a different sulfate assimilation pathway to plants and 

lack sulfotransferases (Murguia et al., 1995, 1996).  In mammals, which lack a cysteine 

biosythesis pathway but do possess sulfotransferases (Gamage et al., 2006; Mueller et al., 2015; 

Stipanuk, 2004), PAP accumulation inhibits sulfotransferase reactions and also interferes with 

protein translation through a sulfotransferase-independent mechanism (Frederick et al., 2008; 
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Hudson et al., 2013). PAP-accumulating mice are non-viable (Frederick et al., 2008; Hudson 

et al., 2013). In contrast, in plants PAP is not simply a toxic metabolite: although sal1 mutants 

in Arabidopsis show a dwarfed phenotype, PAP accumulation is not lethal and the mutants are 

also drought-tolerant (Estavillo et al., 2011; Phua et al., 2018a; Phua et al., 2018b; Wilson et 

al., 2009). Indeed, PAP acts as a chloroplast-to-nucleus retrograde signal during oxidative 

stresses such as drought and high light. Under these conditions, intracellular PAP accumulation 

and its perception in the nucleus activates stress-responsive gene expression, leading to 

acclimation responses and drought tolerance (Estavillo et al., 2011; Pornsiriwong et al., 2017).  

 

Degradation, intracellular transport, and nuclear function of PAP 

Unstressed plants maintain very low (almost undetectable) levels of PAP through the action of 

the PAP catabolic phosphatase SAL1, which hydrolyses PAP to AMP in chloroplasts and 

mitochondria (Estavillo et al., 2011; Quintero et al., 1996). During oxidative stress, however, 

PAP accumulates up to 30-fold higher under drought and by 50% higher under excess light 

(Estavillo et al., 2011). This accumulation is achieved at least in part via an oxidative post-

translational inactivation of SAL1 (Chan et al., 2016a). Biochemical and structural analysis of 

the SAL1 protein show that formation of inter- and intra-molecular disulfide bonds in the SAL1 

protein under oxidizing conditions decreases its capacity to degrade PAP. Modification of the 

redox-sensitive cysteines on SAL1 through glutathionylation similarly decreases its activity 

against PAP (Chan et al., 2016a). Redox regulation of SAL1 was also observed in vivo. 

Therefore, at least in chloroplasts, SAL1 functions as an oxidative stress and redox sensor by 

regulating PAP levels (Chan et al., 2016a; Estavillo et al., 2011) (Figure 3).  

 

PAP is relocalised between organelles and the cytosol via the PAPS/PAP transporter 1 

(PAPST1) and PAPST2, two antiporters which are able to exchange any two of PAPS, PAP, 

ATP and ADP (Ashykhmina et al., 2018; Gigolashvili et al., 2012). PAPST1 is localized to 

chloroplasts whereas PAPST2 is dual-targeted to both chloroplasts and mitochondria (Figure 

3). Non-aqueous organelle fractionation experiments showed that PAP is present in the cytosol 

and the plastids, with lesions in PAPST2 causing altered intracellular distribution of PAP 

(Ashykhmina et al., 2018). Complementation experiments targeting SAL1 separately to either 

the chloroplast, cytosol or the nucleus in a sal1 loss-of-function mutant demonstrated that the 

different transgenic lines had almost equal reversion to the wild type phenotype (Estavillo et 

al., 2011). These results indicate that while PAPS and PAP are present predominantly in 

plastids and the cytosol, PAP can also move into the nucleus (Figure 3). The movement of PAP 
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between the nucleus and the cytosol is assumed to occur via passive diffusion through the 

nuclear membrane pores (Estavillo et al., 2011). 

 

In the nucleus, PAP primarily targets 5’-3’ exoribonucleases XRN2 and XRN3, which have 

roles in the degradation of uncapped transcripts, removal of RNA Polymerase II (Pol II) from 

DNA to terminate transcription, and maintenance of gene silencing (Crisp et al., 2018; Gy et 

al., 2007). Inhibition of XRNs by PAP (Dichtl et al., 1997), leads to the activation of 25 % of 

the high light stress transcriptome, including genes encoding antioxidant enzymes such as 

Ascorbate Peroxidase 2 (APX2) (Estavillo et al., 2011). Recent work by Crisp et al. (2018) and 

Krzyszton et al. (2018) provided valuable insights into the paradox of how specificity in the 

regulation of nuclear gene expression by PAP is achieved, given that the XRNs are not 

transcription factors which bind to specific DNA motifs. PAP-mediated inhibition of XRNs 

leads to inefficient removal of Pol II upon completion of transcription a particular gene, thereby 

facilitating polymerase read-through to the downstream gene and increasing transcription of 

this downstream gene. Indeed, the majority of the highest up-regulated genes in sal1 mutants 

are located downstream of an endogenously highly expressed gene. The effect of read-through 

on transcriptional up-regulation is also correlated with the distance between the upstream and 

downstream genes (Crisp et al., 2018). Of the genes up-regulated in sal1, 23% are directly up-

regulated by read-through. Therefore, it is possible that genes up-regulated by Pol II read-

through then lead to further up- and down-regulation of other genes via feedback effects or 

downstream signalling. Significantly, transcriptional read-through events were also observed 

in wild type plants during drought stress, indicating that Pol II regulation by PAP-XRN can be 

one of the mechanisms modulating gene expression for oxidative stress homeostasis (Crisp et 

al., 2018).   

 

The characteristics of the PAP-responsive transcriptome are correlated with the increased 

oxidative stress tolerance phenotype in both sal1 and xrn2 xrn3 mutants. Constitutive up-

regulation of stress homeostasis genes in these mutants lead to decreased hydrogen peroxide 

accumulation in response to high light stress, decreased ion leakage in response to osmotic 

stress, and accumulation of various osmoprotectants (Estavillo et al., 2011; Wilson et al., 2009). 

These biochemical alterations are in turn correlated with physiological outcomes such as 

increased drought tolerance, enhanced resistance to cadmium stress, and suppression of cell 

death (Bruggeman et al., 2016; Estavillo et al., 2011; Xi et al., 2016). Collectively, these results 

indicate that chloroplastic PAP-mediated signalling, via redox-inactivation of SAL1 and 
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intracellular PAP movement to the nucleus, can activate multiple molecular and physiological 

acclimation responses to oxidative stress.  

 

Beyond retrograde signalling: connections between PAP and other pathways 

The intersection(s) between PAP-mediated signalling and other stress signalling pathways are 

only just beginning to be defined. Pornsiriwong et al. (2017) showed that PAP complements, 

and participates in, the abscisic acid (ABA) signalling pathway in guard cells, which regulate 

water loss through stomata. Constitutive accumulation of PAP in sal1 mutants rescued ABA 

sensitivity, stomatal closure and drought tolerance in ABA-insensitive mutants such as open 

stomata 1 (ost1), which lacks a key activator kinase downstream of ABA perception. 

Exogenous PAP is also able to close stomata in both wild type and ost1. The ost1 xrn2 xrn3 

triple mutant also had restored ABA sensitivity and stomatal closure, indicating that PAP is 

restoring ABA sensitivity via inhibition of the XRNs. Activation of PAP-XRN signalling in 

guard cells up-regulates the expression of multiple genes involved in ABA signalling, including 

transcription factors and calcium signalling proteins such as Calcium Dependent Protein 

Kinases 32 (CPK32) and CPK34. Importantly, both CPK32 and CPK34 can phosphorylate, and 

activate, the SLAC1 anion channel whose activity is necessary for stomatal closure 

(Pornsiriwong et al., 2017; Vahisalu et al., 2008). Given that SLAC1 is also a phosphorylation 

target for the major ABA signalling kinase OST1 and other CPKs (Geiger et al., 2010; Geiger 

et al., 2009), these findings provide one mechanism by which PAP-mediated retrograde 

signalling complements hormonal signalling by converging upon common protein targets to 

regulate physiological responses to drought stress (Pornsiriwong et al., 2017). Significantly, 

exogenous PAP application induces stomatal closure in representative species of all land plant 

clades, and PAP influences guard cell ion fluxes and ROS production in the same manner across 

multiple plant species (Zhao et al., 2019). These findings, together with the targeting of SAL1 

to plastids predating the emergence of stomata, indicate that the PAP-mediated retrograde 

signalling network had the capacity to be integrated with multiple cellular signalling networks 

throughout plant evolution (Zhao et al., 2019).    

 

The connections between PAP-mediated chloroplast communication and other signalling 

pathways still require extensive elucidation. Prolonged PAP accumulation exerts additional 

impacts on hormonal homeostasis and signalling. This was recently reviewed in Phua et al. 

(2018b) and thus will not be discussed in detail here. Nevertheless, it is intriguing to note that 

PAP accumulation alters JA metabolism and SA levels, and PAP also decreases glucosinolate 
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levels (Ishiga et al., 2017; Lee et al., 2012; Rodríguez et al., 2010). These alterations are linked 

to decreased plant immunity (Bruggeman et al., 2016; Ishiga et al., 2017), but have not been 

explored in the context of oxidative stress tolerance. PAP accumulation also increases tolerance 

to cadmium stress (Xi et al., 2016). The tolerance might be associated to altered levels, or 

signalling, of stress in the endoplasmic reticulum (ER), since sal1 shows lower induction of ER 

Unfolded Protein Response (UPR) marker genes in response to cadmium (Xi et al., 2016). 

However, direct links between chloroplastic PAP and ER signalling have not been 

demonstrated.   

 

Co-operativity between secondary sulfur metabolites and intracellular signalling 

pathways 

The substrates and/or products of the different sulfotransferases discussed above have partially 

overlapping functions in different cellular and physiological responses to oxidative stress. 

(Figure 2).  In particular, it is noteworthy that PAP is involved in multiple physiological 

responses and would be produced regardless of which of the sulfotransferase(s) are activated,  

for example in the coordination of stress responses and growth (Figure 2). TPST and its sulfated 

peptide products are known regulators of growth especially in roots, while the putative 

SOT10/SOT12 substrate, brassinosteroids, are well-established regulators of root and shoot 

development. Similarly, sulfation of SA and 12-OH-JA by SOT12 and SOT15 respectively 

might affect the balance between SA and JA signalling in the regulation of stress responses and 

cell death. PAP accumulation concurrently up-regulates stress homeostasis genes and 

suppresses growth (Estavillo et al., 2011; Phua et al., 2018b; Rossel et al., 2006; Wilson et al., 

2009). One possible mechanism by which PAP regulates growth and metabolism over short 

periods of drought stress is by extending the circadian period (Litthauer et al., 2018). Both sal1 

and xrn mutants have extended circardian period and application of osmotic stress also prolongs 

the circardian clock (Litthauer et al., 2018). Primary metabolism and growth are strongly 

associated with circadian regulation; thus PAP together with other signal(s) might contribute to 

the regulation of these processes during oxidative stress (Jones, 2018). For instance, the effect 

of PAP on circadian rhythm is most pronounced under blue light (Litthauer et al., 2018). 

Enhanced activity of the blue light receptor proteins, cryptochromes, inhibits rosette growth 

(Lin et al., 1996); and cryptochromes have been implicated in responses to various oxidative 

stresses (D’Amico-Damião and Carvalho, 2018). PAP accumulation can suppress the 

abundance and/or downstream signalling of growth-promoting hormones such as gibberelic 

acid (GA) and auxin while up-regulating signalling by stress-responsive hormones such as 
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ABA (Phua et al., 2018b). Furthermore, the effects of PAP on growth can vary depending on 

its intracellular concentration. While strong PAP accumulation impedes growth, a small 

increase in cytosolic PAP pools can actually promote growth although the mechanism is 

currently unknown (Ashykhmina et al., 2018).  

 

The involvement of secondary sulfur metabolites in guard cell regulation also highlights an 

interesting potential divergence in the roles of primary and secondary sulfur metabolism during 

drought. Various reports indicate that primary sulfur metabolism largely influences ABA 

synthesis; whereas secondary sulfur metabolism components are more prominent in ABA 

signalling. During drought, sulfate is actively loaded into xylem sap in a manner associated 

with ABA synthesis (Ernst et al., 2010). Indeed, sulfate up-regulates expression of ABA 

biosynthesis genes, and blocking sulfate transport into guard cells attenuates stomatal closure 

in leaves (Ernst et al., 2010; Malcheska et al., 2017). Sulfate and cysteine availability are 

important for ABA synthesis, with decreased sulfate and cysteine reducing ABA levels and 

impacting on stress tolerance (Cao et al., 2014). Direct feeding of cysteine to guard cells 

stimulates expression of the rate-limiting ABA biosynthesis gene NCED3, induces ABA 

accumulation, and closes stomata via the canonical ABA signalling pathway (Batool et al., 

2018; Rajab et al., 2019). Accumulation of glutathione also leads to enhanced ABA levels, up-

regulation of ABA synthesis and signalling genes at the translational level, and improved 

drought tolerance (Chen et al., 2011; Cheng et al., 2015). In contrast, PAP accumulation has 

variable impacts on ABA accumulation (Pornsiriwong et al., 2017; Rossel et al., 2006) but 

clearly activates multiple components of downstream ABA signalling via a parallel pathway 

that is independent of the canonical ABA signalling proteins (Pornsiriwong et al., 2017). The 

putative SOT substrates such as brassinosteroids and SA are also known to influence ABA-

mediated guard cell responses (Ha et al., 2016; Prodhan et al., 2018).  

  

Collectively, understanding the precise roles of PAP and other sulfotransferase substrate(s) and 

product(s) in stress and growth regulation networks may help to uncover how drought-stressed 

plants manage the dual problem of increased ROS production and diminished supply of water 

and carbon (Bechtold and Field, 2018).  

  

Regulatory mechanisms in secondary sulfur metabolism 

Secondary sulfur metabolism is tightly regulated at various levels (Figure 3). This regulation 

is important for at least two reasons. Metabolically, sulfur consumption through cysteine and 
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glutathione synthesis in primary assimilation needs to be coordinated with that of the 

aforementioned secondary sulfur metabolites (Chan et al., 2013; Mugford et al., 2011). In the 

context of cellular signalling and oxidative stress tolerance, metabolites such as PAP can play 

critical roles but also have strong impacts on various aspects of plant physiology (Phua et al., 

2018b); thus their synthesis and degradation require tight control.    

 

Regulation of APKs catalyzing PAPS synthesis 

The biosynthesis of PAPS by the APK enzymes is subject to transcriptional and postranslational 

control (Figure 3). The levels of APK1 and APK2 transcripts are regulated by MYB 

transcription factors which also regulate the glucosinolate biosynthesis genes (Yatusevich et 

al., 2010). In contrast, APK3 seems to be only weakly activated, while APK4 is not regulated, 

by these MYBs (Yatusevich et al., 2010). Low sulfur availability down-regulates APK 

expression alongside those of the glucosinolate genes, presumably to conserve sulfur for 

primary assimilation (Yatusevich et al., 2010). This down-regulation is mediated by the central 

transcription factor Sulfur Limitation 1 (SLIM1); as well as nuclear-localized transcriptional 

regulator proteins Sulfur Deficiency Induced 1 (SD1) and SDI2 which directly bind to, and 

inactivate, MYB28 (Aarabi et al., 2016; Maruyama-Nakashita et al., 2006).  The APK enzymes 

are redox-sensitive in vitro; with cysteine disulfide-mediated dimerization strongly decreasing 

PAPS biosynthetic activity (Ravilious et al., 2012). This redox regulation appears to have 

evolved during the transition from cyanobacteria to land plants (Herrmann et al., 2015); and 

involves disulfide bonding between a cysteine present on a land plant-specific N-terminal 

domain with a cysteine located on the catalytic core. Disulfide bond formation inverts the 

binding affinities at the ATP/ADP and APS/PAPS sites (Ravilious and Jez, 2012; Ravilious et 

al., 2013). This altered order of adenosine binding decreases APK activity because binding of 

APS prior to ATP to the APK active site traps the enzyme in a dead-end complex (Ravilious 

and Jez, 2012; Ravilious et al., 2013). Due to the technical challenge to measure APK activity 

in leaf extract, the redox control of APK enzymes still awaits experimental validation in vivo 

(Mugford et al., 2009). During oxidative stress, it can be expected that APKs retain a degree of 

activity since the metabolites downstream of PAPS, such as glucosinolates and PAP, 

accumulate during drought (Estavillo et al., 2011; Mewis et al., 2012).  

 

Regulation of SOTs 

The transcriptional and posttranslational control of SOTs are still under-explored in the context 

of oxidative stress responses. Most SOTs have very low expression levels at unstressed 
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conditions (Hirschmann et al., 2014). However, the expression of some SOTs can change 

significantly in response to oxidative stress and hormonal treatments (Baek et al., 2010; De 

Clercq et al., 2013; Ng et al., 2013).  

 

The best-characterized SOTs at the level of transcriptional regulation are the glucosinolate-

producing SOTs. Expression of SOTs 16, 17 and 18 is regulated by a group of six R2R3 MYB 

transcription factors including MYB28 and MYB29 (Burow et al., 2015; Frerigmann and 

Gigolashvili, 2014; Gigolashvili et al., 2009; Sønderby et al., 2010) (Figure 3). Similar to 

APK1 and APK2, the transcriptional repression of SOT17 and SOT18 under sulfur-deficient 

conditions is mediated by SDI1 and SDI2 through physical interaction with MYB28 (Aarabi et 

al., 2016). However, these SOTs do not seem to be targeted by the SLIM1 transcription factor 

since their repression by sulfur deficiency is unchanged in slim1 (Maruyama-Nakashita et al., 

2006).  Expression of SOT16 is also regulated through feedback regulation mediated by the 

glucosinolate biosynthesis gene 2-oxo acid-dependent dioxygenase 2 (AOP2) independent of 

MYB28 and MYB29 (Burow et al., 2015).  

 

During drought stress, aliphatic glucosinolates were increased while indolic glucosinolates 

decreased in Arabidopsis phloem sap. The significance of these glucosinolate changes with 

regards to PAP levels is unclear, and it is currently not known whether and how the central 

transcriptional regulators SDI1/2 and SLIM1 might be involved in the drought stress response. 

Whether this process also involves differential regulation of SOTs 16, 17 and 18 will need to 

be investigated since SOT16 is specific for tryptophan-derived indolic desulfoglucosinolates 

whereas SOT17 and SOT18 process methionine-derived aliphatic desulfoglucosinolates (Klein 

and Papenbrock, 2009; Piotrowski et al., 2004). A recent survey of the sulfenylated plastid 

proteome shows that many amino acid metabolism enzymes, including those involved in 

tryptophan biosynthesis, contain oxidized cysteines after hydrogen peroxide treatment (De 

Smet et al., 2018). This raises the question whether GL synthesis and diversity could also be 

regulated upstream at the level of amino acid availability during oxidative stresses.  

 

The expression of SOT12 is up-regulated in response to multiple abiotic stresses and hormonal 

treatments (Baek et al., 2010). Interestingly, SOT12 expression is also highly responsive to 

mitochondrial oxidative stress, for example in response to antimycin A treatment which blocks 

mitochondrial respiration (De Clercq et al., 2013; Ng et al., 2013). The SOT12 promoter 

contains a mitochondrial dysfunction motif (MDM) which is targeted by a group of ANAC 
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transcription factors responsive to mitochondrial oxidative stress (Figure 3). Mutation of the 

MDM in SOT12 abolishes its up-regulation under antimycin A treatment (De Clercq et al., 

2013). Interestingly, the ANAC proteins regulating SOT12 expression are in turn regulated 

through protein-protein interactions by Radical-Induced Cell Death 1 (RCD1), a redox-

sensitive WWE domain-containing protein which is suppressed by PAP accumulation 

(Shapiguzov et al., 2019). One recent hypothesis is that the SOT12 up-regulation could be 

linked to PAP signalling for maintaining mitochondrial homeostasis and suppression of cell 

death (Shapiguzov et al., 2019; Van Aken and Pogson, 2017). There is limited evidence for 

regulation of SOTs at the protein level through post-translational modifications, although 

enzymatic activity of SOTs is feedback-inhibited by high PAP levels (Hirschmann et al., 2017).  

 

Regulation of SAL1 and PAP degradation 

In contrast to SOTs, SAL1 transcript is readily detectable in multiple tissue types and 

developmental stages in unstressed conditions (Hruz et al., 2008). There is strong up-regulation 

of SAL1 during seed imbibition (Hruz et al., 2008) which also corresponds with the relatively 

higher SAL1 protein abundance in leaf tissue compared to dry seed (Pornsiriwong et al., 2017). 

Inducible or strong constitutive promoter-driven artificial micro RNA and RNA interference 

silencing lines of SAL1 show up to 90% reduction in SAL1 transcript abundance, but do not 

have a corresponding increase in PAP levels (Phua et al., 2018a). Furthermore, while PAP 

accumulation extends the circadian period, the expression of SAL1 is diurnal rather than 

circadian (Litthauer et al., 2018). Therefore, there is limited evidence for transcriptional 

regulation of SAL1 being a mechanism for regulation of PAP levels during stress. It is likely 

that the regulation of PAP is primarily driven by SAL1 enzymatic activity, which is consistent 

with SAL1’s relatively high affinity for PAP (KM < 10 µM) and its inactivation via redox 

regulation (Chan et al., 2016a). 

 

Under oxidative stress conditions, the regulation of SAL1 activity is largely mediated at the 

post-translational level through redox regulation rather than changes in protein abundance. The 

redox regulation of SAL1 is already discussed above in the context of PAP retrograde 

signalling, but two additional points are worth discussing. First, protein modelling through 

molecular dynamics simulations suggest that formation of the disulfide bonds in oxidized SAL1 

decreases flexibility of Loop 1, a flexible protein loop that overhangs the active site (Chan et 

al., 2016a). Rigidification of Loop 1 is proposed to inhibit accessibility of the active site for 

substrate entry or product release (Chan et al., 2016a), and could represent an additional 
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regulatory target for modulation of SAL1 activity. Secondly, the redox midpoint potential (Em) 

of SAL1 is approximately -308mV and -284mV at pH 7.5 for monomeric and dimeric SAL1 

respectively. These values overlap with those of oxidation-inhibited APKs (-286mV at pH 7.5) 

and oxidation-activated primary sulfur metabolism enzymes (−330 mV at pH 8.0 for APR and 

−318 mV at pH 7.0 for the glutathione biosynthesis enzyme GSH1) (Chan et al., 2016a; Hicks 

et al., 2007; Ravilious et al., 2012). This suggests that under oxidative stress, the redox status 

in the chloroplast may simultaneously regulate the activities of all three enzymes towards a 

coordinated sulfur consumption for protein and GSH synthesis, PAPS synthesis, and PAP 

accumulation.  

 

Transporters as enigmatic gatekeepers of organellar PAPS/PAP flux    

The coordination of PAP intracellular localization and movement via transporters is an 

emerging extra level of regulation for the secondary sulfur metabolism (Figure 1 and Figure 

3). The localization of the PAPST1 and PAPST2 is consistent with the chloroplastic localization 

of APK1 and APK2 which are the major sources of PAPS for sulfation reactions (and most 

likely, PAP production); and with the chloroplastic-mitochondrial dual localization of SAL1 

for PAP degradation. A simplistic model would have envisaged both transporters facilitating 

the export of PAPS from chloroplasts to the cytosol and import of cytosolic PAP into plastids 

for degradation. In vitro characterization of PAPST1 and PAPST2 show that both transporters 

are capable of transporting any two of ADP, ATP, PAP and PAPS in antiport mode. However, 

while recombinant PAPST1 shows a clear trend of substrate preference (ATP > PAPS > PAP 

>> ADP) when the counter-substrate is ATP; PAPST2 appears to have almost equal preference 

for PAP and ATP, with ADP and PAPS being only slightly less preferred. PAPST1 also shows 

an approximately nine-fold higher affinity for PAPS compared to PAPST2 (Ashykhmina et al., 

2018; Gigolashvili et al., 2012).    

 

Importantly, genetic data indicate that PAPST1 and PAPST2  play different roles in vivo 

(Ashykhmina et al., 2018).  The papst1 mutant shows a significant decrease in glucosinolates, 

strong accumulation of desulfo-glucosinolates, up-regulation of glucosinolate biosynthetic 

genes, and accumulation of the primary sulfur metabolites cysteine and GSH. These features 

indicate that PAPST1 is important for the shuttling of PAPS produced in the chloroplast into 

the cytosol for utilization by SOTs for example in glucosinolate biosynthesis, and that its 

absence leads to re-direction of sulfur flux into primary sulfur metabolism (Gigolashvili et al., 

2012). In contrast, papst2 only shows a small reduction in glucosinolates and correspondingly 
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low accumulation of desulfo-glucosinolates, with no up-regulation of glucosinolate 

biosynthetic genes. The accumulation of GSH and cysteine is also less marked in papst2. 

Therefore, PAPST2 is less important in provision of PAPS to the cytosol. Organelle 

fractionation experiments show higher cytosolic PAP accumulation in papst2, but not in papst1, 

compared to wild type plants (Ashykhmina et al., 2018). Importantly, crossing papst2, but not 

papst1, to the sal1 mutant allele fry1 exacerbates cytosolic PAP accumulation and the fry1 

phenotype; and the fry1papst2 phenotype cannot be rescued by complementation with 

mitochondrial-targeted SAL1. Collectively, these results indicate that PAPST2 has a greater 

role in the transport of cytosolic PAP into organelles for degradation by SAL1, although 

PAPST1 is still able to transport PAP into the chloroplast. Indeed, targeting PAPST1 to the 

mitochondria also fails to rescue the papst2 phenotype, indicating independent roles for these 

two transporters (Ashykhmina et al., 2018). . Therefore, it is possible that under oxidative stress 

conditions PAPST1 and PAPST2 contribute to the control of PAPS availability for sulfation 

and PAP localization for signalling respectively. 

 

There are several unanswered questions with respect to PAPS/PAP transport (Figure 3). First, 

given the multiple possible substrates for PAPST1 and PAPST2, the kinetics and direction of 

transport for PAPS and PAP mediated by these two transporters during oxidative stress is 

difficult to predict (Ashykhmina et al., 2018). Second, PAPS is clearly needed in the Golgi for 

TPST-mediated sulfation reactions (Komori et al., 2009), but a PAPS/PAP transporter has not 

been identified for the Golgi. Third, that both PAPST2 and SAL1 co-localize to the 

mitochondria would suggest that either PAP has a metabolic role in this organelle, or that SAL1-

PAP are involved in mitochondrial retrograde signalling (Van Aken and Pogson, 2017; Van 

Aken and Whelan, 2012). Fourth, low cytosolic PAP accumulation in papst2 enhances growth 

(Ashykhmina et al., 2018) (possibly through stimulation of SOTs) whereas high cytosolic PAP 

accumulation in sal1 mutants suppresses growth (Phua et al., 2018b). Whether this growth 

suppression in sal1 is due to the primed stress responses (Estavillo et al., 2011; Wilson et al., 

2009), suppression of circadian rhythm (Litthauer et al., 2018), sulfur deficiency (Lee et al., 

2012), alteration of hormonal signalling (Phua et al., 2018b), or all of the above, will need to 

be addressed. Since papst2 does not share the abovementioned sal1 phenotypes such as low 

sulfate and GSH content but both mutants do have lower glucosinolates (Ashykhmina et al., 

2018; Lee et al., 2012), it is possible that different levels of cytosolic PAP activate different 

signalling pathways. The contribution of the PAPST proteins in regulating these different 

pathways during oxidative stress conditions will need to be critically addressed.    
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The road forward: how do we uncover new insights into secondary sulfur metabolism?  

Some key questions in secondary sulfur metabolism (also indicated in Figure 3) that are still 

awaiting resolution include: 1) What are the functions and in vivo substrates of the SOTs? 

Would SOT functions dramatically differ in non-Brassicaceae species which lack 

glucosinolates? 2) What is the identity of the elusive Golgi PAPST(s)? 3) How is secondary 

sulfur metabolism coordinated across PAPS synthesis, PAP production and degradation, and 

intracellular shuttling of metabolites in response to different oxidative stresses? 4) Are there 

additional regulatory mechanisms beyond transcriptional control and redox modulation of 

protein activity? 5) What is the wider intersection network with other oxidative stress signalling 

pathways for plant acclimation to stress?      

 

The plant sulfur metabolism pathways are extensively studied using a combination of 

biochemistry, protein structural biology and mutant characterization. These approaches provide 

a high degree of detail on individual protein(s) but are less helpful in identifying new pathway 

components. Most likely, the latter will be facilitated by utilization of “big data” and next-

generation ‘omics technologies (reviewed in Kopriva et al. (2015)). For example, PAPST1 was 

identified through co-expression analysis of publically available transcriptome data for putative 

transporters strongly co-expressed with glucosinolate metabolism (Gigolashvili et al., 2012). 

The increasing availability of genome sequences, for example through the 1000 Plants (1KP) 

project (Matasci et al., 2014), will allow investigation of how SOTs have diversified and 

identify “core” SOTs with key roles throughout evolution. A recent analysis shows that only 

TPST and SOTs 19-21 are evolutionarily conserved from lycophytes (moss) to higher land 

plants, whereas most of the cytosolic SOTs arose much later in evolution (Zhao et al., 2019); 

suggesting that SOTs 19-21 play (unknown) conserved roles in plant function. Mining of 

unbiased proteomics data could also reveal new questions. Our quick survey of SOTs 16-18 

using the PTMViewer database (https://dev.bits.vib.be/ptm-viewer/index.php) (Willems et al., 

2018) shows that these enzymes can be acetylated and/or contain reversibly oxidized cysteines: 

how do these posttranslational modifications affect protein function and overall regulation of 

the metabolic pathway? A complement of “new” and “old” strategies can help to reveal new 

insights into a pathway that is of secondary importance by classical definitions of metabolism, 

but that is clearly playing primary roles in plant acclimation to oxidative stresses and beyond. 

 

 

https://dev.bits.vib.be/ptm-viewer/index.php
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Figures 

 

Figure 1. The secondary sulfur metabolism pathway in Arabidopsis.  

Inorganic sulfate anions taken up from the soil are transported into the cell via SULTR 

transporter proteins. ATP-consuming sulfate activation by ATPS isoforms in chloroplasts and 

the cytosol provides APS which feeds into either primary sulfur assimilation via APR for 

cysteine and glutathione synthesis, or into secondary sulfur metabolism through APK-mediated 

phosphorylation to PAPS. SOT-catalyzed reactions in the cytosol and Golgi transfer the S 

moiety from PAPS to acceptor compounds, thereby producing PAP as a by-product. PAP is 

degraded by SAL1 enzymes which are localized to both chloroplasts and mitochondria. The 

shuttling of PAPS and PAP between plastids and the cytosol is mediated by PAPST1 and 

PAPST2. Accumulated PAP can also traverse to the nucleus to alter RNA metabolism and gene 

expression. Transporters are shown as dark blue boxes, enzymes as light blue boxes, and 

metabolites as light yellow ovals. Black arrows indicate enzymatic reactions while blue arrows 

indicate metabolite movement. The un-identified Golgi PAPS/PAP transporter(s) and transport 

mechanism are indicated by a blue box with dashed outline and dashed blue lines respectively. 

Abbreviations: SULTR, sulfate transporter; ATPS, ATP sulfurylase; APS, adenosine 

phosphosulfate; APK, APS Kinase; APR, APS Reductase; PAPS, 3’-phosphoadenosine 5’-

phosphosulfate; SOT, sulfotransferase; TPST, tyrosyl protein sulfotransferase; PAP, 3’-

phosphoadenosine 5’-phosphate; PAPST, PAPS/PAP transporter; AMP, adenosine 

monophosphate; XRN, exoribonuclease; Cys, cysteine; GSH, glutathione.        
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Figure 2. Inter-cooperativity between secondary sulfur metabolism components and 

hormonal signalling for cellular homeostasis during oxidative stress .  
The different secondary sulfur metabolism metabolites are able to intersect with different facets 

of oxidative stress signalling pathways or physiological responses mediated by hormonal 

signalling such as ABA, SA and JA. In several cases the putative substrates or products of SOTs 

converge on the same process. Note that a commonality shared between the diverse SOT 

reactions is that they all produce PAP as a by-product. PAP accumulation also impacts on the 

three aspects of oxidative homeostasis outlined above (see text). Metabolite and protein colour 

schemes are the same as for Figure 1, except that phytohormones are shown as purple ovals. 

Abbreviations: ABA, abscisic acid; GLs, glucosinolates; SA, salicylic acid; JA. Jasmonic acid; 

OH-JA, hydroxy jasmonic acid; BR, brassinosteroids; Flv, flavonoids, PSK, Phytosulfokine; 

RGF, Root Growth Factor   
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Figure 3. Regulation of secondary sulfur metabolism components and SAL1-PAP 

retrograde signalling during oxidative stress.  
During conditions of oxidative stress such as drought and high light, a shift in the chloroplast 

redox poise decreases SAL1 activity against PAP, and is expected to have similar effects on 

APK activity. The accumulated PAP is able to travel intracellularly and inhibit XRNs in the 

nucleus, causing RNA Pol II read-through and activation of gene expression. PAP is also able 

to feedback-inhibit SOT activity. Red diamonds indicate the outstanding questions relating to  

transcriptional regulation of SOTs, the identity and role of SOT substrates and products,  redox 

regulation of APKs, and transport mechanisms of PAPS and PAP during oxidative stress.  
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