The Integration of LwM2M and OPC UA: An
Interoperability Approach for Industrial IoT

Abdulkadir Karaagac, Niels Verbeeck, Jeroen Hoebeke
Ghent University - imec, IDLab, Department of Information Technology
Technologiepark Zwijnaarde 15, B-9052 Ghent, Belgium
{abdulkadir.karaagac, jeroen.hoebeke} @ugent.be

Abstract—Over the past years, Internet of Things (IoT) has
been emerging with connected and smart things that can com-
municate with each other and exchange information. Similarly,
with the emergence of Industry 4.0, the industrial world is also
undergoing a strong evolution by connecting devices, sensors
and machines to the Internet. In this paper, we investigate the
integration of these two domains and examine the interconnection
of two of the promising interoperability standards in these
domains, namely OPC Unified Architecture and Lightweight
Machine-to-Machine (LwM2M) protocol. For this purpose, we
introduce an efficient and scalable approach, based on Docker
Containers, for the cross-domain integration and interoperation.
Besides, we also demonstrate and validate our interoperability
approach by means of real world implementations and also
theoretical and practical analysis.

Index Terms—Industry 4.0, IoT, interoperability, OPC UA,
Lightweight M2M, IPSO, docker containers

I. INTRODUCTION

By means of the recent advancements in the Internet of
Things (IoT) technologies, everyday, more and more things
and objects are becoming smart and connected and smarter ser-
vices are becoming reality, such as smart home, building and
city [1]. Similarly, we also have seen the uptake of connected
solutions in Industry to support and improve the operational
performance in manufacturing, warehousing and distribution
facilities. Especially, with the emergence of “Industry 4.0”
[2], the Industry is rapidly evolving into a more automated
and connected ecosystem with several applications, such as
self driving cars, Automated Guided Vehicles (AGVs), and
automatically controlled production lines.

Despite this plethora of technologies and the remarkable
interest in the Industry 4.0 and IoT, their interoperation with
and their integration into other ecosystems is still an open issue
that requires innovation. Recently, we see several standardiza-
tion initiatives and research efforts targeting interoperability
and Machine-to-Machine (M2M) understandability in the IoT
and Industrial domain. For instance, oneM2M [3], the Open
Mobile Alliance (OMA) [4] and the IPSO Alliance [5] are
some of the leading global organizations that deliver specifi-
cations and architectures for creating resource-efficient M2M
communication and global interoperability for the IoT. On the
other side, the Open Platform Communications Unified Archi-
tecture (OPC UA) [6] is a recent industry standard with several
capabilities targeting machine to machine communication and
interoperability for industrial applications. These efforts aim to

create better interoperable and connective devices via common
interfaces and data models. However, the devices and systems
from these two worlds are still not able to communicate or
interoperate with each other.

We believe that seamless and spontaneous interoperation of
Industrial and IoT technologies would be extremely beneficial
for both domains and would enable numerous new IoT and
Industrial applications with more capabilities. Therefore, in
this work, we study the first design for the integration of
OPC UA [6] and LwM2M [7] protocols in the pursuit of
the interoperability for Industrial IoT. Initially, we study the
theoretical aspects (data types, methods, data models) and
challenges for the integration of these technologies. Then,
we introduce a scalable and efficient integration approach,
by means of Docker Containers [8], where OPC UA Servers
can be virtualized as LwM2M Clients and LwM2M Clients
can be virtualized as OPC UA Servers with their objects
and resources. In addition, we also validate our approach by
means of practical implementation and detailed performance
evaluation.

The remainder of the paper is organized as follows: Section
II provides technical background about the target technologies.
Then, the challenges and proposed approach for the integration
of LwM2M and OPC UA protocols are described in Section
III, followed by a description of the practical implementation
in Section IV. After that, an evaluation of the implemented
concepts is presented in Section V and finally, section VI
concludes the paper.

II. BACKGROUND
A. OPC Unified Architecture

The OPC UA [6] is an industry standard developed by
the OPC Foundation [9] with several capabilities targeting
machine to machine communication and platform independent
operation for industrial applications.

First of all, OPC UA is a client-server protocol used for
industrial communication between multiple devices and it
offers an abstraction that describes what kind of messages can
be exchanged between a client and a server. As illustrated in
Figure 1, OPC UA is built on existing transport and security
protocols such as TCP/IP, TLS and HTTP. An OPC UA server
will provide data to clients through services as defined in [10].
Those services consist of a request-response structure similar
to Service Oriented Architectures.

Hybrid Web Services

Encoding

Message
Security

Transport

HTTPS

SN WAIN

Transport
Security

Fig. 1: OPC UA Stack

In addition to communication aspects, data modeling is
another important principal of OPC UA. The OPC UA object
models, which may be defined by standardization organiza-
tions, vendors or end users, allow devices to provide type def-
initions for objects and their components, along with a globally
unique identifier that can be used to provide description of
the information meaning and semantics. The data modeling
principals (e.g. type hierarchies and inheritance) of OPC UA
allow to generate simple, but also very complex, information
models. This data, that can be accessed by services, is stored
in the address space of an OPC UA server [11], while type
definitions of objects and data types are stored in the Types
section, and instances of the objects are stored in the Objects
section. Each object, both types and instances, contains a Node
ID which uniquely identifies the object within the address
space.

B. OMA LwM2M

LwM2M [7] is a secure and efficient client-server protocol,
specified by the OMA Alliance, with several functionalities
for managing resource-constrained devices on a variety of net-
works. Besides fundamental management functionalities such
as bootstrapping, registration and firmware updates, LwM2M
also defines efficient interactions for remote application man-
agement and the transfer of service and application data [7].
For this purpose, LWM2M provides several interfaces built
on top of the Constrained Application Protocol (CoAP) [14],
which is a REST-based application protocol for constrained In-
ternet devices. Figure 2 presents the LWM2M communication
stack and the interaction models related to device management
and information reporting.

LwM2M, like OPC UA, uses a client-server architecture
where a client can send CoAP messages (GET, POST, PUT
and DELETE) to the server to retrieve and update information.
Unlike OPC UA, CoAP uses UDP as transport protocol instead
of TCP. As a result of this, the protocol is transformed into
an asynchronous system in which requests and responses may
not follow each other immediately.

According to LwM2M, a client consists of one or more
instances of objects, which are typed containers that define
the semantic type of instances. Each object is a collection of

LWM2M client
Objects
LwM2M

LWM2M server

LwM2M

CoAP

CoAP
DTLS SMS
ubP

Interfaces for
Bootstrapping, Registration,
Resource Access. Reporting

DTLS SMS
uDP

Device Management
Read, Write, Execute, Create, Delete, Write Attribute, Discover

Information Reporting

Observe, Cancel Observation

Notify

Notify

Fig. 2: LwM2M Protocol Stack and Interaction Model

mandatory and optional resources, which are atomic pieces of
information that can be read, written or executed. These ob-
jects, instances and resources are mapped into the URI path hi-
erarchy with integer identifiers and can be accessed via simple
URIs in the form of /ObjectID/Instancel D/Resourcel D
[7]. For instance, a device model number can be read via a
GET request to the URI ““/3/0/1”.

C. Related Work

In literature, there are a number of research attempts to
extend OPC UA protocol and improve connectivity capabilities
by any means. In [12], Gruner et al. investigates RESTful
support in OPC UA, while [13] examines the transfer of
OPC UA messages over CoAP protocol. In addition to a
proxy (message translation) approach, the authors in [13]
also considers encapsulating the OPC UA message inside a
CoAP message. However, these works only target connectivity
between OPC UA devices and other networks but they do
not consider full-blown interoperability and understandability
between OPC UA and IoT technologies and/or do not provide
practical analysis about the proposed solutions.

III. INTEGRATION OF LWM2M AND OPC UA

The seamless connectivity and spontaneous interoperability
of OPC UA and LwM2M technologies would be extremely
beneficial for both domains and would enable numerous new
IoT and Industrial applications with more capabilities. How-
ever, for [oT Devices, which typically have strict energy and
memory constraints, the support of OPC UA functionalities,
communication profiles and services is not practical. And the
support for CoAP or LWM2M (or any of the IoT platforms)
in OPC UA devices is currently not in the scope of OPC UA
protocol and there is no clear intention from the foundation
to include this support. Therefore, in this paper, we propose a
scalable and efficient approach for the integration of these two
worlds which can also be applied on already existing OPC UA
and LwM2M devices, or also any other IoT interoperability
protocol.

On one hand, some common aspects of these two technolo-
gies ease this integration process. For instance, both of these
technologies harness client-server architecture. Moreover, they
both define uniform interfaces and services and enable to
define information and data models in a uniform way, which
ensures the M2M understandability. And, they also use unique
identifiers for the addressability of the information.

On the other hand, the fundamental differences in their
design make it complicated to integrate these two interop-
erability protocols. First of all, OPC UA is based on a
Stateful Communication and compulsory secure channels and
sessions that will expire if they are not renewed regularly
and it defines inherently stateful services (e.g. QueryNext,
BrowseNext). In contrast, LwWM2M/CoAP is based on UDP
and defines a stateless communication scheme which is crucial
for constrained devices. Secondly, OPC UA supports relatively
more complex data models (e.g. type inheritance, nested object
structure) compared to LwM2M, which only uses static object
models that are typed containers that define the semantic
type of instances and cannot consist of other objects. Also,
LwM?2M defines globally standardized information and object
models with semantics by means of LwWM2M object registry.
However, for the case of OPC UA, associations and vendors
can define object models, but there is no single authority which
guarantees a global uniformity of object models and their
identifiers. Last but not least, OPC UA supports a wide variety
of data types and methods, where LwWM2M only defines eight
data types and existing CoAP methods.

1) Architecture: The proposed interoperability system is
based on a virtualization/integration server that virtualizes the
OPC UA and LwM2M devices in the other network by means
of Docker Containers. As it is represented in Figure 3, an OPC
UA network with OPC UA servers and clients and a LwWM2M
network with LwM2M Servers and Clients can transparently
be integrated. The integration server in this network will
contain both OPC UA and LwM2M Clients and Servers that
can deliver application or management data from one protocol
into another. This approach will result in virtualized objects
from other networks as they are actually present in the target
network domain and they can be accessed directly.

Plant
Engineering

Manufacturing
Execution

VIRTUALIZATION SERVER

2) Data Types and Methods: As aforementioned, OPC UA
defines more number of data types and methods compared
to LwM2M. Therefore, a subset of these data types and
methods cannot be mapped into LwM2M. Table I illustrates
the mapping for data types and methods that we performed
between LwM2M and OPC UA protocols. As it is illustrated
in Table I, we used the None data type in LWM2M to translate
the unmappable data types from OPC UA and mapped the
available data types into corresponding data types. The OPC
UA methods which does not have any counterpart in LwM2M
cannot be supported, so are not included in this integration.

TABLE I: Data Types & Methods

Data Types Methods
OPC UA LwM2M OPC UA LWM2M
String String Read Read
Int16/32/64 | Integer Write Write
Float Float Call Execute
Boolean Boolean CreateMonitoredItems Observe
ByteString Opaque CreateSubscription)
DateTime Time DeleteMonitoredItems Cancel Observe
* None DeleteSubscription

3) Object Model: The object structure of a protocol in-
dicates how objects are represented and accessed. Therefore,
for interoperation of target technologies, their object models
needs to be understandable to each other. In this work, we
achieved this by using a configuration file in which Node IDs
from OPC UA are mapped to LWM2M Objects/Resources. As
an example, Figure 4 provides the mapping for a temperature
sensor resources in LwWM2M and OPC UA.

“50PC UA T

ns=3;i=1 <{EEmm—) 3303/0
————d vale | ns=2;i=1 <) 3303/0/5700
- Minvalue | ns=2;i=2 <) 3303/0/5603
] Maxvalie | ns=2;i=3 {EEEEEEp 3303/0/5604

Fig. 4: Temperature sensor model in OPC UA and LwM2M

Monitoring/Control
Application

LwM2M Server

OPC UA Server
GATEWAY / SCADA / ENGINEERING
Progltamm|lr1g OPC UA Client Vendor Specific
Configuration

OP: OPCUA
Client Server

HMI Controller

Vendor
Specific

Controller

OPCUA
Server

Controller

SHOPC YA Lorueoi (e

LwM2M
Client

Sensor Actuator

Fig. 3: Approach for the Integration of OPC UA and LwM2M Networks

For the mapping for the object models, we considered three
options; Tag, Batch and IPSO Composite Object.

a) Tag Mapping: The Tag approach maps each OPC UA
tag (Node ID) to a LWM2M Resource. This approach relies
on static mapping of all of the Node IDs and corresponding
LwM2M Resource URIs. It results in simpler configuration
files, however it does not reflect the structures, relationships
and/links between OPC UA tags or LwM2M resources into
other domain.

b) Batch Mapping: This approach maps OPC UA ob-
jects, which may consist of variables and/or methods, to
LwM2M objects by means of LwM2M Batch Object which
was proposed in [17]. This batch object allows individual
resources to be grouped, enabling them to be read and written
together in a single request. In this way, multiple requests and
their responses can be combined in in LwM2M and OPC UA
Network. This leads to a reduction in network traffic.

c) IPSO Composite Object Mapping: Last mapping ap-
proach is based on IPSO Composite Object [16] and creates
mapping between OPC UA objects and LwM2M Composite
objects. In this way, OPC UA objects can be mapped to
multiple grouped LWM2M objects. The difference with a batch
object is that the configuration file specifies which OPC UA
tag is an Input, Output or Setpoint tag and link it to a LwWM2M
resource with objlnk data type. Consequently, a LwM2M
server can follow the link to reach the correct object.

IV. IMPLEMENTATION

In order to validate and evaluate the proposed approach, we
developed an integration platform (runs a virtualization server)
which connect the OPC UA devices into the LwM2M world.
This virtualization server (implemented in Python) discovers
OPC UA devices and resources and then expose these re-
sources on self-managed LwM2M clients (named Anjay [18])
using a configuration file. The entire architecture consists of
OPC servers, an OPC manager, Docker Containers, and a
LwM2M server (named Leshan [19]).

As the schematic overview shows in Figure 5, the OPC
Manager connects to the existing OPC UA servers and is
responsible for starting up the corresponding Docker con-
tainers and forwarding particular traffic to the corresponding
Container. Each docker container includes an adapter, a virtual

“OPC UA OPC

OPC Server [¢—

Manager

device manager (VDM), and a stand-alone LwM2M client
which includes all the resources defined in the configuration
file for the corresponding OPC UA server. The adapter re-
quests a configuration from the OPC manager after start-up
and uses it to perform two tasks. On one hand, the adapter
will send an observation request to the OPC manager with
NodelDs that it is interested. Next, the adapter will ask the
VDM to create the corresponding LwM2M object instances
and receive back their URIs. This will create a link between
an OPC UA NodelD and an LwM2M URI in the adapter.
So, any update for those NodeIDs in the OPC server will be
sent to the corresponding LWM2M client and write commands
from LwM2M client are also forwarded to the corresponding
OPC server. So, any change on the OPC UA devices are
reflected to the virtualized LwM2M clients, while any change
applied to the virtual LWM2M client will be forwarded to the
corresponding OPC UA device.

Regarding the object model mapping, we applied the three
approaches defined in the previous section. An example con-
figuration for mapping of a temperature sensor is provided in
Figure 6. For the Tag mapping, each OPC UA tag resulted
in a LwM2M resource. While, for the Batch, in addition
to individual resources created for OPC UA tags, a Batch
object instance is created which combines these individual
resources. Lastly, the IPSO Composite Object is used by the
adapter to map an OPC UA object to a LwWM2M object. After
the LWM2M objects are created individually on the LwM2M
client based on the configuration file, the Input, Output and
Setpoint link of the IPSO composite object [16] will be filled
in with a reference to the individual objects.

OoPC
Server

ns=3;i=1002

Cafab

Composite Object

LwM2M Client
3303/0/5700
21.0

True
22.0
2346/0 (Batch)

2346/0/5913
[3303/0/5700,3306/0/5850,

08/0/5900] 3308/0

LwM2M Client

3303/0 8301/0 (Boiler)

8301/0/7100
3303/0*
3306/0
8301/0/7101
EEN[

8301/0/7102
3308/0 *

2346/0/5914
[21.0, True, True]

OPC Server [

“HPC UA | ! | >
OPC Server [« : © Y LM Lz o Lwmzm ™
TCPUA ISON Adapter VoM client | [Tlrco | o™
"PC UR ! o

Fig. 5: Implementation Overview

V. EVALUATION

In this section, we present the performance evaluation of
our integration approach and implementation in terms of
scalability, efficiency and latency. In order to perform this
evaluation, we created the setup in Figure 7, on different
server machines. A machine is used to run the OPC-servers
and another one to run the OPC Manager and several docker
containers and another one to run a LwM2M Server which
interacts with virtualized LwM2M Clients.

OPC Server Ml
Port 4841 Docker Container1 g
OPC Server M
Port 4842
Docker Container2 pamy
_‘ 0P Manager
_ Docker Container . e
[«
OPC Server N Docker Container N pamy
Port 49XX

Fig. 7: Evaluation Setup

LwM2M
I
Server

A. Scalability

Scalability test targets determining the maximum number
of servers and tags (with certain update rates) that can be
supported by the virtualization server. For this test, we first
run a scenario with varying number of OPC UA servers
which holds a single tag, then we performed the similar
measurements by running single OPC UA server which holds
varying number of OPC UA tags.

1) Multiple OPC UA Servers, Single Tag: In this scenario,
we run a setup with varying number of OPC UA servers that
hold a single Tag and we measured the maximum update
request rate that can be handled for the given setup. As
illustrated in Figure 8, a maximum of 160 requests/s can be
achieved for 10 OPC UA servers. As the number of servers
increases, the number of requests per second decreases, to
the point where 150 servers can be supported at an update
rate of 2.5 requests/s. Another outcome of this study is that
the virtualization server can handle a total request rate of
maximum 1600 requests/s, but this numbers starts to decrease
after when the number of OPC UA servers exceeds a certain
level. This is due to the fact that increasing number of
virtualized OPC UA servers (consequently TCP connections)
is affecting the performance of the OPC Manager.

2) Single OPC UA Server, Multiple Tags: In the second
scenario, we run only a single OPC UA server which holds
a varying number of Tags and we measured the supported
update rates that can be handled by the Virtualization Server
for the given number of Tags. As it is shown in Figure 9,
the supported update frequency decreases as we increase the
number of Tags exposed by the OPC UA server. In case of 10
Tags, an update rate of 32 requests/s is achieved, while only
2.5 requests/s update rate could be achieved when the OPC
UA server exposes 280 Tags.

According to this figure, the curve for the total requests
per seconds shows that a maximum of 700 updates could be

Req/s per server ~ —@—Total number of requests

0 25 50 75 100 125 150 175
Number of OPC UA-servers

Fig. 8: Scalability: Multiple OPC UA Servers & Single Tag

Total number of requests Req/s per tag

0 50 100 150 200 250 300 350
Number of tags

Fig. 9: Scalability: Single OPC UA Server & Multiple Tags

forwarded to the LwM2M Server which is a lot lower than
the maximum value of the previous scenario, 1600 requests/s.
Even this number was not achieved when there were very low
or high number of Tags. The performance drop for the high
number of Tags was expected due to increased load on the
virtualization server. But, the reason for the performance loss
in the low values was the fact that the OPC UA server was
experiencing limitations in updating the value of a certain Tag
in real time. But in real OPC UA Servers running on Real
Time Industrial Equipments, this issue would not appear.

B. Efficiency

The comparison for the data traffic in the OPC UA and
LwM2M network between batch and without batch can be
found in Table II.

First, the OPC UA network is observed, where messages are
sent via the TCP protocol. Therefore, an OPC UA Request
response will always consist of 4 messages (request, ACK,
response, ACK). When comparing the update of one tag with
the update of 10 tags, without using the batch implementation,
it can be shown that updating 10 tags at the same time
has a beneficial impact on network traffic because the ACK
messages are merged with the request response messages. A
total of 22 messages will be required for 10 tags, whereas,
for one message, 4 messages will be required. By bundling
10 write requests, the number of bytes per tag can be reduced
by a quarter.

TABLE II: Efficiency Analysis

of packets # of bytes # of bytes Total Bytes
(Req/Resp/ACK) (Req+ACK) (Resp+ACK) Bytes /value
No Batch - OPC UA
1 Tag 2+2 163+68 132+68 431 431
10 Tags 2*%10+2 163*10+68 132*10+68 3086 = 308.6
No Batch - CoAP
1 Resource 2 71 56 127 127
10 Resources 2*10 71*%10 56%10 1270 127
Batch - OPC UA
1 Tag 242 424+68 168+68 728 728
10 Tags 2+2 424+68 168+68 728 72.8
Batch - CoAP
1 Resource 2 106 56 162 162
10 Resources 2 106 56 162 16.2

Whereas, in CoAP network, a write communication only
consists of 2 messages. Again, a comparison can be made
between updating one versus 10 resources, without using a
batch implementation. By grouping the resources in a batch
object, the total number of bytes is reduced by a factor of 8.
The disadvantage of modifying one resource that is part of a
batch object is much more limited with CoAP than with OPC
UA. Here, the number of bytes per resource is only a factor
of 1.3 greater than sending a normal update message.

These measurements show that the batch operation can
improve the bandwidth efficiency in the both of the networks
drastically. However, the disadvantage is that when only one
tag is changed, the nine other tags are also transmitted, which
doubles the number of bytes per tag.

C. Latency

The last test examines the time responsiveness of our im-
plementation by measuring the delay between the generation
of a write request from LwM2M server and its delivery to the
corresponding OPC UA server. When the test was performed,
10 snapshots were recorded in Wireshark, consisting of 5 batch
and 5 ordinary write requests. In each case, the transmission
time of the first CoAP packet and the reception time of the
last OPC UA packet was noted. The time (t) between the two
determines the time needed to transfer a write request from
CoAP to the OPC UA network. When comparing the averages
in Table III, it becomes clear that sending a batch operation
is clearly faster than sending 10 stand-alone requests.

TABLE III: Latency Analysis

First CoAP message Last OPC UA message At(s)
timestamp (s) timestamp (s)
No Batch
RUN 1 57.90930 58.07579 0.166491
RUN 2 39.45434 39.61770 0.163365
RUN 3 90.14138 90.31221 0.170827
RUN 4 39.20719 39.36196 0.154773
RUN 5 67.59415 67.76161 0.167453
Average 0.164582
Batch

RUN 1 12.32476 12.38791 0.063158
RUN 2 14.25634 14.29041 0.034067
RUN 3 12.97906 13.02896 0.049901
RUN 4 11.92192 11.95757 0.035649
RUN 5 13.32792 13.35941 0.031487
Average 0.042853

VI. CONCLUSION

In this work, we investigated the integration of OPC UA
and LwM2M protocols in the pursuit of the interoperability for
Industrial IoT. We introduce a scalable and efficient integration
approach, by means of Docker Containers [8], where OPC UA
and LwM2M devices are virtualized in the contrary network
with their objects and resources. Besides the theoretical study,
we also demonstrate and validate our approach by means of
practical implementation and detailed performance evaluation.

We also performed experimental evaluations for our ap-
proach and implementation in terms of the scalability, latency
and throughput. These evaluations showed that our implemen-
tation is able to support 10 OPC UA servers with an update
rate of 160 update/sec, which means handling more than 1600
requests in total. Moreover, we also studied the contribution
of the Batch object in the Network performance in terms
of latency and throughput. Regarding the performance of the
Batch, updating 10 resources in a batch is 4 times faster than
updating the individual resources. In addition, the number of
bytes in OPC UA is reduced by a factor of 4.2 and by a factor
of 7.8 in LwM2M.

REFERENCES

[1] Li, S.; Xu, L.D.; Zhao S. The Internet of Things: A Survey. In Information
Systems Frontiers; Springer: Berlin, Germany, 2015; v. 17, pp. 243-259.
[2] Digital transformation in the manufacturing industry: challenges
and accelerators. Available online: https://www.i-scoop.eu/digital-
transformation/digital-transformation-manufacturing (accessed on 10

July 2018).
[3] OneM2M. White Paper: The Interoperability Enabler for the
Entire M2M and IoT Ecosystem. 2015. Available online:

http://www.onem2m.org/images/files/onem2m-whitepaper-january-
2015.pdf, (accessed on 22 May 2018).

[4] Open Mobile Alliance. Available online: http://openmobilealliance.org
(accessed on 22 May 2018).

[5] TIPSO Alliance, Internet Protocol for Smart Objects (IPSO). Available
online: https://www.ipso-alliance.org (accessed on 22 May 2018).

[6] OPC Foundation, OPC Unified Architecture Specification Part 1:
Overview and Concepts

[7] Open Mobile Alliance. Lightweight Machine to Machine Technical Spec-
ification, Approved Version 1.0; 2017.

[8] Docker: Software Containerization Platform. Available
https://www.docker.com, (accessed on 10 July 2018).

[9] OPC Foundation: The Industrial Interoperability Standard. Available
online: https://opcfoundation.org/ (accessed on 10 July 2018).

[10] OPC Foundation, OPC UA Specification: Part 4 Services

[11] OPC Foundation, OPC UA Specification: Part 3 Address Space Model

[12] S. Gruner, J. Pfrommer, F. Palm, "RESTful Industrial Communication
With OPC UA,” in IEEE Transactions on Industrial Informatics, vol. 12,
no. 5, pp. 1832-1841, Oct. 2016.

[13] P. Wang, C. Pu, H. Wang, Y. Yang, L. Shao, J. Hou, "OPC UA Message
Transmission Method over CoAP”, March 2018.

[14] P. van der Stok, C. Bormann, A. Sehgal, "PATCH and FETCH
Methods for the Constrained Application Protocol (CoAP),” April 2017.
https://tools.ietf.org/html/rfc8132.

[15] M. Van Eeghem, “Extensions to LwM2M for improved efficiency and
interoperability”, Master’s thesis, Universiteit Ghent 2017.

[16] J. Jimenez, M. Koster, H. Tschofenig, IPSO Smart Objects
http://www.ipso-alliance.org/wp-content/uploads/2016/01/ipso-paper.pdf.

[17] A. Karaagac, F. Van Den Abeele, J. Hoebeke, ”Challenges for semantic
LwM2M interoperability in complex IoT systems”, WISHI: Workshop on
IoT Semantic/Hypermedia Interoperability, 2017.

[18] AVSystem, Anjay: open-source LwM2M Library
https://www.avsystem.com/products/anjay, accessed on 1 July, 2018.
[19] Eclipse, Leshan: An OMA Lightweight M2M (LWM2M) implementation

in Java https://eclipse.org/leshan/, accessed on 1 July, 2018.

online:

