
Received: 6 August 2018 Revised: 2 January 2019 Accepted: 9 February 2019

DOI: 10.1111/bcp.13902

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography
OR I G I N A L A R T I C L E
A semiphysiological population pharmacokinetic model of
agomelatine and its metabolites in Chinese healthy volunteers
Feifan Xie1 | An Vermeulen1 | Pieter Colin1,3 | Zeneng Cheng2
1Laboratory of Medical Biochemistry and

Clinical Analysis, Faculty of Pharmaceutical

Sciences, Ghent University, Ghent, Belgium

2Research Institute of Drug Metabolism and

Pharmacokinetics, Xiangya School of

Pharmaceutical Sciences, Central South

University, Changsha, China

3Department of Anesthesiology, University of

Groningen, University Medical Center

Groningen, Groningen, The Netherlands

Correspondence

Feifan Xie, Laboratory of Medical Biochemistry

and Clinical Analysis, Faculty of Pharmaceutical

Sciences, Ghent University,

Ottergemsesteenweg 460, B‐9000 Ghent,

Belgium.

Email: feifan.xie@ugent.be
The authors confirm that the PI for this paper is Zeneng C

Br J Clin Pharmacol. 2019;85:1003–1014.
Aims: Agomelatine is an antidepressant for major depressive disorders. It

undergoes extensive first‐pass hepatic metabolism and displays irregular absorption

profiles and large interindividual variability (IIV) and interoccasion variability of phar-

macokinetics. The objective of this study was to characterize the complex pharmaco-

kinetics of agomelatine and its metabolites in healthy subjects.

Methods: Plasma concentration–time data of agomelatine and its metabolites

were collected from a 4‐period, cross‐over bioequivalence study, in which 44

healthy subjects received 25 mg agomelatine tablets orally. Nonlinear mixed effects

modelling was used to characterize the pharmacokinetics and variability of

agomelatine and its metabolites. Deterministic simulations were carried out to

investigate the influence of pathological changes due to liver disease on

agomelatine pharmacokinetics.

Results: A semiphysiological pharmacokinetic model with parallel first‐order

absorption and a well‐stirred liver compartment adequately described the data.

The estimated IIV and interoccasion variability of the intrinsic clearance

of agomelatine were 130.8% and 28.5%, respectively. The IIV of the intrinsic

clearance turned out to be the main cause of the variability of area under the

curve‐based agomelatine exposure. Simulations demonstrated that a reduction in

intrinsic clearance or liver blood flow, and an increase in free drug fraction had a

rather modest influence on agomelatine exposures (range: −50 to 200%).

Portosystemic shunting, however, substantially elevated agomelatine exposure by

12.6–109.1‐fold.

Conclusions: A semiphysiological pharmacokinetic model incorporating first‐pass

hepatic extraction was developed for agomelatine and its main metabolites.

The portosystemic shunting associated with liver disease might lead to significant

alterations of agomelatine pharmacokinetics, and lead to substantially increased

exposure.
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TABLE 1 Baseline characteristics of study patients (n = 44)

Characteristics Median (interquartile range)

Age (y) 22 (21–24)

What is already known about this subject

• Agomelatine undergoes extensive first‐pass hepatic

metabolism and displays irregular absorption profiles

and large interindividual variability and interoccasion

variability of pharmacokinetics.

• Substantial alterations of agomelatine pharmacokinetics

were reported in patients with hepatic impairment.

• The noncompartmental pharmacokinetics of agomelatine

and its metabolites have been published. However, there

has been no previous attempt to integrate the results

into a (semiphysiological) population pharmacokinetic

model for characterize the complex pharmacokinetics

of agomelatine and its metabolites.

What this study adds

• We show a detailed example of constructing a

semiphysiological pharmacokinetic model through

incorporating first‐pass hepatic extraction to

characterize the pharmacokinetics of agomelatine and

its metabolites and to quantify sources of variability.

• Through deterministic simulations with this

semiphysiological model, a substantially more‐than‐

dose‐proportional increase in agomelatine exposures in

relation to portosystemic shunting in the presence of

liver disease was observed.
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1 | INTRODUCTION

Agomelatine, a melatonin MT1 and MT2 receptor agonist,1,2 is a

novel antidepressant for the treatment of major depressive disorders.

It was approved for clinical use in Europe since 2009, where it is

marketed under the names Valdoxan or Thymanax.3 Agomelatine has

a relatively favourable side effect profile, while providing similar thera-

peutic benefits compared to the antidepressants currently in use.2,4

The recommended oral daily dose of agomelatine is 25 mg.

Agomelatine is classified as a biopharmaceutical classification sys-

tem (BCS) class II drug with low solubility and high permeability.5 Fol-

lowing oral administration, agomelatine is rapidly and almost

completely (≥80%) absorbed, and it undergoes extensive hepatic

first‐pass metabolism.5 Agomelatine is almost entirely metabolized

by the hepatic cytochromes CYP1A2 (90%) and CYP2C9/CYP2C19

(10%), with a very low urinary excretion of unchanged drug (0.01%

of the dose).5,6 The major metabolites, 3‐hydroxy‐agomelatine, 7‐

desmethyl‐agomelatine, and 3‐hydroxy‐7‐methoxy‐agomelatine are

not pharmacologically active and are rapidly conjugated and renally

eliminated. The absolute oral bioavailability of this drug is approxi-

mately 1%, and its half‐life is 1–2 hours. The interindividual variability

(IIV) and interoccasion variability (IOV) in bioavailability is 160% and

104%, respectively, and is mainly driven by the first‐pass effect and

the interindividual differences in CYP1A2 activity.5,6 The steady state

volume of distribution of agomelatine is 35 L, while its plasma protein

binding is 95% and does not depend on the concentration in the ther-

apeutic range (5–1000 ng/ml).5-7

The pharmacokinetics (PK) of agomelatine have been studied in

Caucasian and Chinese healthy volunteers and/or patients.5,6,8,9 In a

previous study on the bioequivalence of agomelatine formulations in

Chinese male volunteers using reference‐scaled average bioequiva-

lence, no significant differences in relative bioavailability between the

test and reference agomelatine formulations were found.8 However,

the atypical absorption profiles (i.e. the occurrence of double peaks

and an apparent concentration plateau) and the origin of the huge var-

iability were left uncharacterized. So far, there are no reports describing

the population pharmacokinetics of agomelatine and its metabolites.

The present study aimed to characterize the pharmacokinetics of

agomelatine and its metabolites and to quantify sources of variability

using a mechanistic modelling approach. The study objectives were:

(i) to develop a semiphysiological population PK model incorporating

the first‐pass effect for agomelatine and its metabolites; (ii) to describe

the absorption process and identify the IIV and IOV of agomelatine;

and (iii) to study the sensitivity of the different components of the

semiphysiological model on agomelatine exposure.
Height (cm) 171 (168–175)

Body weight (kg) 60 (56–65)

Body mass index (kg/m2) 20.2 (19.4–21.6)

Serum creatinine (μmol/L) 81.5 (74.8–88.0)

Alanine transaminase (U/L) 16 (12–20)

Aspartate aminotransferase (U/L) 19.5 (16.0–22.3)

Total bilirubin (μmol/L) 13.4 (11.3–16.5)
2 | METHODS

2.1 | Study data

The data were obtained from a randomized sequence, 2‐treatment

and 4‐period cross‐over study of agomelatine administration to 44
healthy Chinese male subjects published previously.8 Briefly, during

the 4 treatment sessions separated by a 1‐day washout period, the

volunteers were orally administered 25 mg agomelatine reference for-

mulation (Valdoxan™, Servier, France) or test formulation (Chongqing

Fuke pharmaceutical group Co., Ltd., China). The baseline characteris-

tics of study patients are summarized in Table 1. All subjects had nor-

mal hepatic and renal functions, and were nonsmokers. No drugs were

taken for all subjects at least 2 weeks before the start of this study.

The study protocol was approved by the institutional review board

of Third Xiangya Hospital of Central South University (approval num-

ber: 12066).

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=198
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=224
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=287
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=288
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1319
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1326
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Venous blood samples were collected before the administration

and at serial time points up to 8 hours postdose. Plasma was separated

by centrifugation and stored at −40°C until analysis. The agomelatine,

3‐hydroxy‐agomelatine and 7‐desmethyl‐agomelatine concentrations

were determined by a validated LC–MS/MS method.10 The lower limit

of quantification of agomelatine, 7‐desmethyl‐agomelatine and 3‐

hydroxy‐agomelatine in plasma were 0.046, 0.137 and 0.460 ng/mL,

respectively. The method precisions were <6.6% and accuracies were

in the range of 90.2–105.1%.

A total of 2464 plasma samples were analysed for the simultaneous

determination of agomelatine, 7‐desmethyl‐agomelatine, and 3‐

hydroxy‐agomelatine. 408 (16.5%) of agomelatine concentrations were

reported as below the limit of quantification (BLQ). 560 (22.7%) of 7‐

desmethyl‐agomelatine samples were documented as BLQ, and 52

(2.1%) of 3‐hydroxy‐agomelatinemeasurementswere regarded as BLQ.

2.2 | Model development and evaluation

Population PK modelling was performed in NONMEM (version 7.3,

Icon Development Solutions, Ellicott City, MD, USA), assisted

by Perl‐Speaks‐NONMEM (version 4.60, Uppsala University,

Uppsala, Sweden) in combination with the Pirana software
TABLE 2 Population pharmacokinetics model development procedure fo

Mod no.
Ref
no.

OFV
(mean ± SD) ΔOFV AIC

Residual error varia

Agomelatine
3‐hy
agom

1 3299.7 ± 0.9 3333.7 0.691 0

4 1 1712.8 ± 2.8 −1586.6 1762.8 0.536 0

10 4 −1423.1 ± 2.7 −3135.9 −1371.1 0.359 0

18 10 −3791.1 ± 8.8 −2368.0 −3737.1 0.309 0

25 18 −6035.9 ± 1.6 −2244.8 −5979.9 0.268 0

26 25 −6738.4 ± 2.0 −702.5 −6680.4 0.215 0

30 26 −7763.9 ± 2.4 −1025.5 −7701.9 0.191 0

32 30 −7943.6 ± 1.8 −179.7 −7879.6 0.182 0

34 32 −8753.7 ± 2.5 −810.1 −8685.7 0.147 0

36

(final model)

34 −8684.4 ± 10.4 69.3 −8616.4 0.152 0

AIC, Akaike's information criterion; IIV, interindividual variability; IOV, interocc
(version 2.9.6)11 as graphical interface. The stochastic approximation

expectation–maximization method was used to estimate parameters,

combined with the importance sampling method assisted by mode a

posteriori estimation (IMPMAP) to calculate the objective function

for hypothesis testing. Beal's M3 method was used to handle BLQ

data of agomelatine and 7‐desmethyl‐agomelatine.12,13 The BLQ data

of 3‐hydroxy‐agomelatine were dropped directly as it was only 2.1%.

Data processing and graphical evaluation were carried out in R (ver-

sion 3.4.1, R Foundation for Statistical Computing, Vienna, Austria).

Our model building started with a semiphysiological model

accounting for the first‐pass effect, previously proposed for other

drugs with a high hepatic extraction ratio.14,15 In short, a hepatic com-

partment is introduced to account for the conversion of agomelatine

to its metabolites both pre‐systemically and systemically. A well‐

stirred hepatic elimination is assumed taking into account hepatic

blood flow (QH), agomelatine plasma protein binding (fu) and intrinsic

clearance (CLint). The latter is comprised of 3 components, conversion

of agomelatine to 7‐desmethyl‐agomelatine, agomelatine to 3‐

hydroxy‐agomelatine, and agomelatine to other species. The forma-

tion of metabolites in the hepatic compartment was assumed to be

first‐order. The elimination of unchanged agomelatine by the kidney

is negligible and was assumed to be 0.
r agomelatine and its metabolites

nces (log‐domain)

No. of
parameters Description

droxy‐
elatine

7‐desmethyl‐
agomelatine

.349 0.521 17 First‐order absorption + pre‐
systemic model +

1‐compartment model

for agomelatine and

its metabolites

.248 0.382 25 Parallel first‐order absorption

.109 0.218 26 Add IOV on K13

.082 0.190 27 Add IOV on ALAG2

.064 0.145 28 Add IOV on K23

.066 0.157 29 Add IOV on CLint

.069 0.108 31 Add peripheral compartment

for 7‐desmethyl‐agomelatine,

and fix IIV_V7 due to estimated

variance near to zero

.051 0.088 32 Add IOV on F1

.057 0.082 34 Add peripheral compartment for

agomelatine, and fix IIV_Q7DM

and IIV_V8 to 0 due to large

relative standard error

.052 0.089 34 Add correlations for

the formation fractions

and clearances,

respectively, between

7‐desmethyl‐agomelatine

and 3‐hydroxyagomelatine

(this reduced model uncertainty)

asion variability; OFV, objective function value.
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Equations 1–3 describe the well‐stirred model16 and define the

hepatic extraction ratio (EH), hepatic plasma clearance (CLH), and the

fraction of absorbed drug escaping hepatic first‐pass extraction (FH)

EH ¼ fub × CLint= QH þ fub × CLintð Þ (1)

CLH ¼ QH × EH=PBR (2)

FH ¼ 1–EH (3)

In these equations, fub is the ratio of unbound concentration in plasma

to whole blood concentration, which is the mathematical product of

unbound fraction of drug concentration in plasma (fu) and plasma to

blood drug concentration ratio (PBR). The fu and PBR of agomelatine

are reported to be 0.05 and 1.45, respectively.6

The hepatic volume (VH) in litres was associated to the subject

body weight (WT, kg) as indicated by Noda et al.17 in Equation 4:

VH ¼ 0:05012 ×WT0:78 (4)

Hepatic blood flow in males was reported as 50.4 L/h/L of hepatic

volume.18
FIGURE 1 Schematic representation of the semiphysiological pharmaco
dose absorbed via gut depot 1; K13, first‐order absorption rate constant th
gut depot 2; ALAG1, absorption lag time of gut depot 1; ALAG2, absorptio
clearance; EH, hepatic extraction ratio; FH, fraction of absorbed drug escapi
agomelatine; FM3OH, the fraction of agomelatine converted to 3‐hydroxy‐
desmethyl‐agomelatine; CL3OH, clearance of 3‐hydroxy‐agomelatine; CL7D
clearance between the central and peripheral compartment of 7‐desmethyl‐
peripheral compartment of agomelatine
QH ¼ 50:4 × VH (5)

To describe the disposition of agomelatine and its metabolites, both 1‐

and 2‐compartmental models were tested. Regarding the absorption of

agomelatine from the gut to the hepatic compartment, various

absorption models with or without a lag time were tested, including

single or parallel first‐order absorption, single or parallel mixed 0‐ and

first‐order absorption, parallel transit compartment absorption, and

single or parallel 0‐order input into the depot and then first‐order

absorption.19,20 Both linear and nonlinear (Michaelis–Menten)

elimination of agomelatine from the hepatic compartment were tested.

The formation fractions of agomelatine to 3‐hydroxy‐agomelatine

(FM3OH) and of agomelatine to 7‐desmethyl‐agomelatine (FM7DM)

are described by Equations 6 and 7.

FM3OH ¼ exp θ3ð Þ= 1þ exp θ3ð Þ þ exp θ4ð Þð Þ (6)

FM7DM ¼ exp θ4ð Þ= 1þ exp θ3ð Þ þ exp θ4ð Þð Þ (7)

Where θ3 and θ4 are parameters describing the formation fractions.

Additive normal distribution was assumed for the IIVs of θ3 and θ4.

When parallel absorption processes applied, a logit model was

used for F1 representing the fraction of dose absorbed via gut depot
kinetic model for agomelatine and its metabolites. F1, the fraction of
rough gut depot 1; K23, first‐order absorption rate constant through
n lag time of gut depot 2; QH, liver blood flow; CLH, hepatic plasma
ng hepatic first‐pass; PBR, plasma to blood drug concentration ratio of
agomelatine; FM7DM, the fraction of agomelatine converted to 7‐

M, clearance of 7‐desmethyl‐agomelatine; Q7DM, compartmental
agomelatine; QAGM, compartmental clearance between the central and



TABLE 3 Parameter estimates of the pharmacokinetic model

Parameter name Estimate (RSE%)a [Shrinkage%]

Fixed effects (unit)

K13 (1/h) 4.54 (19.0)

V4 (L) 64.6 (4.1)

CLint (L/h) 111 000 (25.0)

FM3OH exp(θ3)/(1 + exp(θ3) + exp(θ4)): 0.142

FM7DM exp(θ4)/(1 + exp(θ3) + exp(θ4)): 0.016

θ3 −1.78 (6.6)

θ4 −3.95 (3.3)

CL3OH (L/h) 44.9 (3.1)

CL7DM (L/h) 52.9 (3.7)

ALAG1 (h) 0.185 (4.0)

K23 (1/h) 4.23 (36.2)

ALAG2 (h) 0.305 (30.7)

F1 0.681 (5.7)

Q7DM (L/h) 28.1 (1.6)

V7 (L) 536 (1.4)

QAGM (L/h) 4.36 (26.1)

V8 (L) 157 (3.4)

Inter‐individual variability (IIV)

K13 (CV%) 32.6 (117.8)[21.9]

V4 (CV%) 19.5 (48.4)[0.1]

CLint (CV%) 130.8 (32.5)[17.0]

θ3 (CV%) 43.7 (88.0)[0.1]

θ4 (CV%) 50.9 (41.3)[0.1]

ωθ3,θ4(covariance between θ3 and θ4) 0.153 (75.8)

CL3OH (CV%) 20.6 (14.7)[42.0]

CL7DM (CV%) 28.4 (24.7)[38.5]

ω3OH,7DM (covariance between CL3OH and CL7DM) 0.0492 (46.3)

ALAG1 (CV%) 25.4 (11.4)[44.2]

K23 (CV%) 654.3 (12.3)[48.3]

ALAG2 (CV%) 511.0 (8.4)[78.9]

F1b (CV%) 83.2 (91.6)[27.9]

Q7DM (CV%) 0 FIX

V7 (CV%) 0 FIX

QAGM (CV%) 181.8 (22.7)[20.7]

V8 (CV%) 0 FIX

Inter‐occasional variability (IOV)

K13 (CV%) 189.0 (8.4)[2.6–20.8]

ALAG2 (CV%) 861.3 (2.9)[47.3–64.2]

K23 (CV%) 1220.2 (10.6)[0.1–29.4]

CLint (CV%) 28.5 (37.0)[0.1–32.4]

F1 (CV%) 302.9 (10.6)[15.8–35.6]

Residual variability

Proportional errorc (%) of agomelatine 39.0 (8.5) [35.6]

(Continues)
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TABLE 3 (Continued)

Parameter name Estimate (RSE%)a [Shrinkage%]

Proportional errorc (%) of 3‐hydroxy‐agomelatine 22.8 (8.3) [34.7]

Proportional errorc (%) of 7‐desmethyl‐agomelatine 29.7 (8.1) [24.5]

ALAG1, absorption lag time of gut depot 1; ALAG2, absorption lag time of gut depot 2; CLint, intrinsic clearance; CL3OH, clearance of 3‐hydroxy‐agomelatine;

CL7DM, clearance of 7‐desmethyl‐agomelatine; F1, the fraction of dose absorbed via gut depot 1; FM3OH, the fraction of agomelatine converted to 3‐hydroxy‐
agomelatine; FM7DM, the fraction of agomelatine converted to 7‐desmethyl‐agomelatine; K13, first‐order absorption rate constant through gut depot 1; K23,

first‐order absorption rate constant through gut depot 2; QAGM, compartmental clearance between the central and peripheral compartment of agomelatine;

Q7DM, compartmental clearance between the central and peripheral compartment of 7‐desmethyl‐agomelatine; V4 is the central volume of distribution of

agomelatine; V7, peripheral volume of distribution of 7‐desmethyl‐agomelatine; V8, peripheral volume of distribution of agomelatine.

CV (%) is calculated according to: CV %ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ω2ð Þ − 1

p
× 100%. ω2: the variance estimate in the log‐domain.

aRSE, relative standard error. RSEs were calculated from the R−1SR−1 matrix outputted by the $COVARIANCE step of NONMEM.
bEstimates of variability on F1 within the logit function.
cAn additive error model in the log‐transformed domain was used to characterize the residual unexplained variability, which approximates to a proportional

error in the normal domain.
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1. The additive random effect of F1 was used on the logit‐scale. The

individual values of F1 were thus constrained between 0 and 1 by

using the inverse logit transformation on its random effect.

For all other parameters, IIV was assumed to be log‐normally dis-

tributed. When applicable, IOV was taken into account. The residual

error model was described by an additive error model using the log‐

transform‐both‐sides approach. The following covariates were tested:

formulation (test vs reference), age, body weight, serum albumin, ala-

nine transaminase and aspartate aminotransferase.

Model selection was guided by changes in the objective function

value (OFV) between nested models, and Akaike's information crite-

rion between non‐nested models in combination with other metrics

(e.g. % relative standard error of estimates, and residual error variance)

and goodness of fit plots. For nested models, significance was

assumed whenever the OFV decreased by >2× the standard deviation

of the OFV during the IMPMAP evaluation.21 The final model was val-

idated by means of a visual predictive check (1000 simulations).

Extrapolation of the semiphysiological model from healthy adults

to cirrhosis disease patients. Cirrhosis is frequently observed in the

setting of alcoholic liver disease, and represents the final common

pathway of a number of chronic liver diseases such as hepatitis B.22

Cirrhosis may lead to portosystemic shunting, reduced plasma protein

binding and decreased activity of drug‐metabolizing enzymes (i.e. a

reduction in CLint), etc.
22,23 Portosystemic shunting may substantially

decrease the presystemic elimination (i.e. first‐pass effect) of high

extraction drugs following their oral administration, thus resulting in

a substantial increase in the bioavailability.23 The influence of

portosystemic shunting on hepatic extraction ratio was implemented

as indicated below by the modification of Equation 1.22,24

EH ¼ fub × CLint= QH þ fub × CLintð Þ × 1 − fshuntð Þ (8)

Where fshunt is the shunted fraction of total liver blood flow.

To investigate the effects of changes in the major determinants

(CLint, fu, QH and fshunt) of hepatic drug clearance under liver disease,
the final population PK model was used to conduct deterministic sim-

ulations to represent the typical population (mean) response. The sim-

ulation was performed with a single dose of 25 mg agomelatine given

to patients weighing 70 kg under 4 scenarios: (i) 100% functional CLint

under healthy conditions, and for decreases to 90, 80, 70, 60 and 50%

of CLint under liver disease conditions; (ii) normal fu (0.05) under

healthy conditions, increases to 1.2‐, 1.4‐, 1.6‐, 1.8‐ and 2.0‐fold of

fu; (iii) normal QH for a healthy status, and reductions to 90, 80, 70,

60 and 50% of QH under liver disease conditions; and (iv) no

portosystemic shunting (fshunt is zero) for a healthy status, and fshunt

increases to 10, 20, 30, 40 and 50% for liver disease conditions.
2.3 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY,25 and are permanently archived in the Concise Guide to

PHARMACOLOGY 2017/18.26
3 | RESULTS

3.1 | Model development and evaluation

The model development path is summarized in Table 2. The parallel

first‐order absorption model with an absorption lag time gave the low-

est Akaike's information criterion among all of the tested absorption

models and was thus selected for further model development. Adding

IOVs in absorption‐related parameters such as absorption lag time and

absorption rate constants substantially improved the model fit (ΔOFV

of –4612.8). IOV in CLint was significant, leading to a reduction of

residual error variance of agomelatine from 0.268 to 0.215.

Implementations of a peripheral compartment for 7‐desmethyl‐

agomelatine, adding IOV on F1, and introducing a peripheral compart-

ment for agomelatine further improved the model.

http://www.guidetopharmacology.org
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The final model comprised parallel first‐order absorption from 2

gut depots to liver compartment, followed by 2‐compartment model

for agomelatine, 1‐compartment model for 3‐hydroxy‐agomelatine,

and 2‐compartment model for 7‐desmethyl‐agomelatine. A schematic

representation of the final model is depicted in Figure 1 and described

in further detail below. The NONMEM code of final model is provided

in the online supplement.

The rate of change of the amount of agomelatine in the liver com-

partment was described by Equation 9 as follows:

dAH=dt ¼ K13 × A1 þ K23 × A2–QH × FH × AH=VH

þQH × A4=V4–CLH × AH=VH (9)
FIGURE 2 Goodness‐of‐fit plots of the final population pharmacokinet
concentrations vs individual predictions of agomelatine A, 3‐hydroxy‐agom
conditional weighted residuals (CWRES) vs time after dose of agomelatine
panels: CWRES vs population predicted concentrations of agomelatine G,
Where A1, A2, AH, and A4 are the amounts of agomelatine in the gut

depot 1, depot 2, liver compartment, and central compartment,

respectively. K13 and K23 are first‐order absorption rate constants of

depot 1 and depot 2, and V4 is the central volume of distribution of

agomelatine.

The rate of change of agomelatine, 3‐hydroxy‐agomelatine and 7‐

desmethyl‐agomelatine in the central and peripheral compartments

were described by Equation 10–14.

dA4=dt ¼ QH × FH × AH=VH–QH × A4=V4–A4 × QAGM=V4

þA8 × QAGM=V8

(10)
ics model for agomelatine and its metabolites. Top panels: observed
elatine B, and 7‐desmethyl‐agomelatine C; Middle panels:
D, 3‐hydroxy‐agomelatine E, and 7‐desmethyl‐agomelatine F; Bottom
3‐hydroxy‐agomelatine H, and 7‐desmethyl‐agomelatine I
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dA5=dt ¼ FM3OH × CLH × AH=VH ×MPR1–A5 × CL3OH=V5 (11)

dA6=dt ¼ FM7DM × CLH × AH=VH ×MPR2–A6 × CL7DM=V6–A6

× Q7DM=V6 þ A7 × Q7DM=V7

(12)

dA7=dt ¼ A6 × Q7DM=V6–A7 × Q7DM=V7 (13)

dA8=dt ¼ A4 × QAGM=V4–A8 × QAGM=V8 (14)

Where A5 is the amount of 3‐hydroxy‐agomelatine in central compart-

ment, A6 and A7 are the amounts of 7‐desmethyl‐agomelatine in the

central and peripheral compartment, and A8 is the amount of

agomelatine in the peripheral compartment. CL3OH and CL7DM are

the clearances of 3‐hydroxy‐agomelatine and 7‐desmethyl‐

agomelatine. V5 and V6 are the central volume of distributions of 3‐

hydroxy‐agomelatine and 7‐desmethyl‐agomelatine, which were

assumed to be equal to V4 because of the identifiability issue. V7

and Q7DM are the peripheral volume of distribution and compartmen-

tal clearance between the central and peripheral compartment for 7‐

desmethyl‐agomelatine. V8 and QAGM are the peripheral volume of

distribution and compartmental clearance between the central and

peripheral compartment for agomelatine. MPR1 and MPR2 are
FIGURE 3 Representative plasma concentrations and individual predictio
are observed concentrations, and the solid lines are individual predictions
molecular weight ratios of 3‐hydroxy‐agomelatine to agomelatine,

and 7‐desmethyl‐agomelatine to agomelatine, accounting for the mass

differences between agomelatine and its metabolites. MPR1 and

MPR2 were 1.0658 and 0.9424, respectively.

None of the covariates, including formulation, was found to have a

significant influence on the estimated PK parameters. Our results con-

firmed the previous bioequivalence finding using a noncompartmental

analysis approach.8 Population PK parameters of the final pharmacoki-

netic model are presented in Table 3. To evaluate the impact of the

assumed QH and fu on the final parameter estimates, a change to a

25% lower or higher QH and fu was separately explored by sensitivity

analysis, and percentage changes of the parameters were all within

±20%.

The goodness of fit plots demonstrate that the final model ade-

quately described the data (Figure 2). Figure 3 shows the model's abil-

ity to describe the individual concentrations of agomelatine and its

metabolites on different occasions for some selected representative

patients. The individual predictions are in good agreement with the

observations and are substantially different by each occasion and sub-

ject, reflecting the irregular and complex PK patterns of agomelatine

and its metabolites. The visual predictive check plots indicate that

the model generally captured the central tendency and spread of
ns of agomelatine and its metabolites on different occasions. The dots
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observed plasma concentrations for agomelatine and its metabolites

(Figure 4). Of the observations of agomelatine, 9.3% laid outside the

90% prediction interval. 6.1% and 6.8% of the observations of 3‐

hydroxy‐agomelatine and 7‐desmethyl‐agomelatine fell outside the

90% prediction interval.
3.2 | Simulation‐based analysis

The typical plasma concentration time‐courses of agomelatine under

healthy status and liver disease are shown in Figure 5. A 50% reduc-

tion of CLint leads to a doubling of agomelatine's maximum concentra-

tion (Cmax) and area under the plasma concentration–time curve

(AUC), while a 2‐fold increase in fu results in a 50% decrease in Cmax

and AUC. A 50% decrease in QH causes a 40.8% lower agomelatine

Cmax but unchanged AUC. Ten percent of portosystemic shunting

leads to an increase of agomelatine Cmax and AUC by a factor of

12.6 and 13.9 respectively, and the values rise to 58.6 and 109.1 in

case of 50% portosystemic shunting. Changes in CLint and fu do not

significantly impact the half‐life of agomelatine, while a 50% decline

of QH or the presence of 50% fshunt doubles the half‐life of

agomelatine. The simulations demonstrate that changes in CLint, fu

and QH have minor impacts on agomelatine exposures. Instead, the

presence of portosystemic shunting greatly increases the
FIGURE 4 Visual predictive check plots for the final population pharmaco
7‐desmethyl‐agomelatine C, and E. The upper panels represent simulation
data. The black solid line represents the median of the observations, and the
horizontal dashed lines indicate the lower limit of quantification (LLOQ) of
7‐desmethyl‐agomelatine (0.137 ng/mL). The lower panels display simulat
median (dashed black lines) for the fraction of below LLOQ observations. T
black lines
exposures of agomelatine. Both the reduction of QH and the

presence of portosystemic shunting significantly prolonged the half‐

life of agomelatine.
4 | DISCUSSION

An integrated population PK model of agomelatine and its metabolites

incorporating parallel first‐order absorption and hepatic first‐pass

extraction was developed in healthy subjects and the influence of

pathological changes in liver disease on agomelatine's PK profile was

investigated through a simulation approach.

Drugs with very low aqueous solubility are believed to exhibit

dissolution‐rate limited absorption thus atypical absorption pro-

files.27,28 Agomelatine is slightly soluble in aqueous solution

(<0.1 mg/ml) over the physiological pH range. In this study, secondary

peaks (23 occasions, 12%), notable delayed absorptions (20 occasions,

10.4%), and the occurrence of a concentration plateau during the

absorption phase (25 occasions, 13%) in the concentration–time pro-

files of agomelatine were observed following oral administration of

agomelatine tablets to fasted subjects. These irregular PK phenomena

cannot be well described by a conventional single‐order absorption

model. In our model, the parallel 1stfirst‐order absorption model with

a lag time was applied representing different absorption rates and
kinetics model of agomelatine A, and D, 3‐hydroxy‐agomelatine B, and
‐based 90% prediction intervals (grey shaded areas) of the continuous
black dashed line represents the median of the model predictions. The

agomelatine (0.046 ng/mL), 3‐hydroxy‐agomelatine (0.460 ng/mL), and
ion based 90% confidence intervals (grey shaded areas) around the
he observed fraction samples below LLOQ are represented with solid



FIGURE 5 Typical concentration–time profiles of agomelatine for healthy status and for liver disease. Top left panel: the impact of reductions in
intrinsic clearance (CLint) on agomelatine pharmacokinetics profile. Top right panel: the impact of increases in free plasma agomelatine fraction (fu)
on agomelatine pharmacokinetics profile. Bottom left panel: the impact of decreases in hepatic blood flow (QH) on agomelatine pharmacokinetics
profile. Bottom right panel: the impact of extents of shunted fraction (fshunt) of hepatic blood flow on agomelatine pharmacokinetics profile
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lag times of agomelatine due to its different between‐subject and

between occasion dissolution rates and lag times in the gut sites.

Due to the extensive hepatic first‐pass extraction of agomelatine

following oral administration, the concentrations of metabolites are

much higher than those of the parent drug agomelatine. To mechanis-

tically integrate the PK profiles of agomelatine and its metabolites, we

implemented a hepatic compartment describing the well‐stirred model

based hepatic extraction for agomelatine. According to the well‐stirred

model, the typical hepatic extraction ratio of agomelatine was 99.1%.

Assuming that 80% of the dose is absorbed from the gut to the liver,

the resulting bioavailability of agomelatine is 0.7%. The apparent vol-

ume of distribution was 64.6 L, and the apparent total clearance of

agomelatine was 47.5 L/h. With the assumption of 80% dose absorp-

tion, the estimated systemic clearance of agomelatine would be

38 L/h in Chinese subjects. The clearance of agomelatine in Chinese

subjects is lower than the corresponding value (66 L/h) in Cauca-

sians.5,6 This might be explained by the lower intrinsic clearance of

CYP1A2 in Chinese population compared to Caucasians, as reported

previously.29

The PK model demonstrated very large IOV and also IIV (k23 and

ALAG2) of absorption related parameters. This indicates that the

absorption patterns greatly differ within subjects for each occasion

and also between subjects, which reflects the irregular absorption

phenomena of agomelatine. This could be the result from the environ-

mental differences in the gut between subjects and the dynamically
changing gut environment within subjects for the dissolution of

agomelatine. Previous reports6 declared that the interindividual differ-

ences of CLint are 1 of the sources leading to large variability of

agomelatine exposures. Our study quantified the IIV and IOV of CLint

as 130.8% and 28.5%, respectively. Given that the drug is at least 80%

absorbed, our results indicate that the IIV of CLint is the main source

for the variability of the AUC‐based exposure of agomelatine.

Agomelatine is contraindicated in patients with hepatic impair-

ment, as indicated in the drug insert package. It was shown that fol-

lowing oral administration of 25 mg agomelatine, the Cmax increased

by a factor of 60 and 110, while AUC increased by 70 and 140 times,

in cirrhotic patients with mild (Child–Pugh type A) and moderate

(Child–Pugh type B) hepatic impairment, respectively, compared to

healthy subjects.6 Therefore, it is recommended to perform liver func-

tion tests in all patients receiving agomelatine at treatment initiation

and during treatment. In this study, we used the developed model to

further explore impacts of hepatic impairment to check the recom-

mendations and as a further external validation of the

semiphysiological model. Our simulations demonstrated that single

alterations of CLint, fu, and QH within 2‐fold caused by the pathological

changes in liver disease will not result in clinically relevant changes in

drug exposures due to the high inter‐individual variability of

agomelatine pharmacokinetics, while the presence of portosystemic

shunting is the most influential factor that significantly increases

agomelatine exposures. Previous studies reported that a significant
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degree (27%) to extensive shunting (70%) of live blood flow can occur

in chronic liver disease patients.30 Our simulation results of

portosystemic shunting confirmed this many‐fold observed increases

in agomelatine exposures, and indicate that portosystemic shunting

is the main underlying mechanism for the extreme increases in

agomelatine exposures. It should be noted that our simulations only

investigated the impact of single changes in each of the determinants

of hepatic clearance. Clinically, the changes in hepatic blood flow, liver

enzyme activity, plasma protein binding, and the presence of

portosystemic shunting can occur alone and most often in combina-

tion.23 When they coexist, their effect on drug PK is synergistic.

Through the semiphysiological PK model, pharmacokinetic outcomes

of these complicated situations that were not studied here can also

be easily predicted.

One limitation of this study is that the (individual) metabolic capac-

ity of liver CYP1A2 in the target population was not described in the

model. CYP1A2 phenotyping (e.g. caffeine‐based measurement of

CYP1A2 activity)31 was not carried out due to the bioequivalence

study nature of the original study. Although the estimated CLint in

the model can approximately represent the metabolic capacity of

CYP1A2 since CYP1A2 accounts for 90% metabolism of agomelatine,

it is a merit to further incorporate phenotyping based CYP1A2 activity

into the model. An integrated semiphysiological model with CYP1A2

phenotyping would well predict metabolism extent of agomelatine

beforehand, thus potentially useful for individualized dosing.

In conclusion, we have presented here for the first time a

semiphysiological PK model including hepatic first‐pass extraction for

agomelatine and its main metabolites in healthy subjects. The pro-

posed model adequately described the plasma concentration–time

data of agomelatine and its metabolites. The model was used to simu-

late pharmacokinetic alterations in the presence of liver disease, and a

substantially more‐than‐dose‐proportional increase in agomelatine

exposures in relation to portosystemic shunting was observed.
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