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Abstract

The study of conditions, under which the existence of an

“absolute” best winner can be assured, is a hot topic in

the field of social choice. Unanimity is an evident

example of a condition under which the winner is

obvious. However, many more properties weaker than

unanimity have been analysed in literature: the presence

of a Condorcet winner, strong stochastic transitivity, the

presence of a candidate that Borda dominates all other

candidates, etc. Unfortunately, one could easily find a

prominent ranking rule, for which the outcome does not

agree with these relaxed conditions. In this study, we

aim to identify a condition weaker than unanimity, but

under which the social outcome is still obvious. This

condition, defined as the conjunction of three properties

already studied by the present authors and hereinafter

referred to as acclamation, will be proven to be a

meeting point for the most prominent ranking rules in

social choice theory, and will be used for introducing an

intuitively appealing ranking rule.
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1 | INTRODUCTION

The property of unanimity or Pareto efficiency, which appears as one of the three irreconcilable
properties in Arrow’s impossibility theorem,1 requires that if every voter prefers a candidate to
another one then so must the collective. The situation itself, in which all voters have the same
preferences (loosely called unanimity also), is implicitly used in the definition of the most
prominent ranking rules in the field of social choice. For instance, the method of Kemeny2
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could be understood as the search for the ranking that is the closest to becoming the unanimous
ranking, and the Borda count3 could be understood as the search for the candidate that is the
closest to becoming the unanimous winner. Indeed, the search for unanimity is considered the
standard procedure, not only for the aggregation of rankings,4,5 but also for the aggregation of
other types of mathematical objects. See, for instance, the use of penalty functions measuring
the deviation from a ‘consensus’ element in the aggregation of real numbers.6 Unfortunately,
unanimity is no more than a utopian situation that rarely happens in real‐life situations.
Therefore, any method based on the search for unanimity strongly relies on the chosen measure
of closeness to this unanimity. In order to reduce this importance of the chosen measure of
closeness, the notion of unanimity needs to be softened.

A first example of a voting procedure in which unanimity was considered too strong, a
requirement dates back to the times of Ancient Greece, where the Spartan Council’s members were
elected by the shouts of the attendees to the Assembly.7 Although there was no full unanimity while
choosing the elected members, the loud shouts of the people usually pointed to an obvious winner
among all candidates. The fact of being the most applauded candidate was referred to as winning
the election by acclamation. Another voting procedure, in which the notion of unanimity is clearly
softened, is the method of Dodgson,8 where the search for a unanimous winner is replaced by the
search for a Condorcet winner.9 For a more recent example, we refer to the search for the property
of monotonicity proposed by Rademaker and De Baets.10 Indeed, there exists a clear interest in the
broadening of the notion of unanimity. Such broadened notions of unanimity are usually referred to
as consensus states11 and are considered a key element in the metric rationalisation of ranking
rules,11–14 which is the branch of social choice theory that aims to characterize a ranking rule as a
procedure minimizing the distance to some consensus state.

In this study, we aim to identify the largest consensus state for which the winning ranking
still is the obvious winner. For doing so, we recall three consensus states previously analysed by
the present authors, namely, recursive monotonicity of the scorix,15,16 monotonicity of the
votrix17 and monotonicity of the profile of rankings,18 and introduce a stronger version of the
latter one. The conjunction of these consensus states results in a new and natural consensus
state that will be proven to be a meeting point for many prominent ranking rules found in the
literature. Said consensus state will be hereinafter referred to as the acclamation consensus
state. This term should be understood as a wink at the aforementioned Spartan voting system,
for which the winner could be obvious, even in the absence of a unanimous winner. Moreover,
we propose a Kemeny‐like ranking rule based on the search for acclamation that will result in a
more intuitive winner than the method of Kemeny itself.

The rest of the article is structured as follows: Section 2 is devoted to recalling some preliminary
notions needed for the development of the article. In Section 3 we introduce the consensus state of
acclamation and we prove it to be the cornerstone of social choice theory in absence of which the
need of making a decision arises. A ranking rule based on the search for acclamation is proposed in
Section 4. We end with some conclusions and open problems in Section 5.

2 | PRELIMINARIES

In this section, we recall several monotonicity‐based consensus states that can be considered as
cornerstones of social choice theory where families of ranking rules lead to the same social
outcome. For more details concerning Sections 2.1, 2.2, and 2.3 we refer to Pérez‐Fernández and
co‐workers.15–18 In the considered problem setting, each of r voters expresses a strict total order
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relation or ranking j≻ on a setC a a= { , …, }k1 of k candidates, that is, the asymmetric part of a
total order relation j≽ onC . The set of all rankings onC is denoted by C( ) and the position at
which candidate ai is ranked in a ranking j≻ is denoted by P a( )j i (we consider position 1 to be
the best). Any list of r rankings is called a profile of rankings and is denoted by R = ( )j j

r
=1≻ .

2.1 | Recursive monotonicity of the scorix

Each profile of rankings defines a matrix, henceforth called a scorix*, where each row
represents a candidate inC and each column represents a position k{1, …, }ℓ ∈ . In this way, the
element at the i‐th row and ℓ‐th column equals the number of times that the i‐th candidate is
ranked at the ℓ‐th position.

Definition 1 (Pérez‐Fernández et al16). Let C be a set of k candidates and R be the
profile of r rankings on C given by the voters. The matrix S r{0, 1, …, }k k×∈ defined as

S j r P a= #{ {1, …, } ( ) = },i j i∈ ∣ ℓℓ

for any Cai ∈ and any k{1, …, }ℓ ∈ , is called the scorix induced by R .

Borda3 proposed to exploit these positions, at which every candidate is ranked, resulting in
the introduction of the Borda ranking†.

Definition 2. LetC be a set of k candidates,R be the profile of r rankings onC given
by the voters and S be the scorix induced by R . A ranking ≻ on C is called the Borda
ranking if, for any Ca a,i i1 2

∈ such that a ai i1 2
≻ , it holds that

k S k S( − ) > ( − ) .
k

i

k

i

=1 =1

1 2∑ ∑ℓ ℓ
ℓ

ℓ

ℓ

ℓ

A scorix is called monotone w.r.t. a ranking on the set of candidates if the vector of positions
of each candidate dominates the vector of positions of all candidates ranked at a worse position
in the given ranking.

Definition 3 (Pérez‐Fernández et al16). Let C be a set of k candidates and r be the
number of voters. A scorix S is said to be (strictly) monotone‡ w.r.t. a ranking ≻ onC if,
for any Ca a,i i1 2

∈ such that a ai i1 2
≻ and any j k{1, …, }∈ , it holds that

S S ,
j

i

j

i

=1 =1

1 2∑ ∑≥
ℓ

ℓ

ℓ

ℓ

*The scorix is an old acquaintance of scholars in social choice theory,19 usually considered either in the form of a matrix or in the form of a list of vectors (often

called vectors of positions or vectors of ranks) corresponding to the different rows of the scorix.

†Note that some authors consider the Borda ranking to be a ranking with ties, thus being its existence assured. Here, because the Borda ranking is required to be

strict, it is unique in case it exists.

‡For short, the word ‘strictly’ will be henceforth omitted. The same applies to, Definitions 5, 8, 10 and 11.
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and there exists at least one j k{1, …, }∈ such that

S S> .
j

i

j

i

=1 =1

1 2∑ ∑
ℓ

ℓ

ℓ

ℓ

In the following example, the notions of scorix and monotonicity of a scorix are illustrated.

Example 1. Let C a b c d= { , , , } be a set of candidates and R be the profile of r = 13

rankings given in Table 1. Candidate a is ranked eight times at the first position and five
times at the second position, while not being ranked at the third or fourth position.
Therefore, the vector of positions of candidate a is (8, 5, 0, 0). In the same way, the vector of
positions of candidate b is (3, 5, 5, 0), the vector of positions of candidate c is (1, 2, 5, 5) and
the vector of positions of candidate d is (1, 1, 3, 8). The scorix induced byR is then given by:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟S =

8 5 0 0
3 5 5 0
1 2 5 5
1 1 3 8

.

In Figure 1, the scorix is represented on the Hasse diagram20 of ≻ for the ranking
a b c d≻ ≻ ≻ . Note that the vector of positions of candidate a dominates the vector of
positions of candidates b c, , and d. Analogously, the vector of positions of candidate
b dominates the vector of positions of candidates c and d, and the vector of positions of
candidate c dominates the vector of positions of candidate d. Therefore, the scorix induced by
the profile of rankings given in this example is monotone w.r.t. the ranking a b c d≻ ≻ ≻ .

For any non‐empty subsetC C′ ⊆ , the restriction of a profileR of r rankings onC toC ′ is
the profile R′ = ( ′ )j j

r
=1≻ of r rankings on C ′ such that, for any j r{1, …, }∈ and any

Ca a, ′i i1 2
∈ , it holds that a a′i j i1 2

≻ if a ai j i1 2
≻ . A matrix is said to be a sub‐scorix of a scorix if it is

the scorix associated with the restriction of the given profile of rankings to a subset of the set of
candidates.

TABLE 1 Profile R of r = 13 rankings on C a b c d= { , , , }

Frequency Rankings onC

3 a b c d≻ ≻ ≻

2 a b d c≻ ≻ ≻

2 a c b d≻ ≻ ≻

2 b a c d≻ ≻ ≻

1 a d b c≻ ≻ ≻

1 b a d c≻ ≻ ≻

1 c a b d≻ ≻ ≻

1 d a b c≻ ≻ ≻
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Definition 4 (Pérez‐Fernández and De Baets15). LetC be a set of k candidates,R be the
profile of r rankings onC given by the voters and S be the scorix induced by R . For any
non‐empty subset C C′ ⊆ , the scorix S r′ {0, 1, …, }k k′× ′∈ (where Ck′ = ′∣ ∣) on C ′
induced by the restriction of R to C ′ is called the sub‐scorix of S on C ′.

In the same way a scorix can be monotone, the respective sub‐scorices can also be monotone.
The monotonicity of all the sub‐scorices of a scorix leads to a stronger type of monotonicity:
recursive monotonicity of the scorix*.

Definition 5 (Pérez‐Fernández and De Baets15). LetC be a set of k candidates and r be the
number of voters. A scorix S is said to be (strictly) recursively monotone w.r.t. a ranking≻ on
C if, for any nonempty subsetC C′ ⊆ , the sub‐scorix S′ of S onC ′ is (strictly) monotone w.r.t.
the restriction of ≻ toC ′.

In the following example, the notions of sub‐scorix and recursive monotonicity of a scorix
are illustrated.

Example 2. LetC a b c d= { , , , } be a set of candidates andR be the profile of rankings
on C given in Example 1. The restriction of R to C a b c′ = { , , } is the profile R′ of
rankings on C ′ listed in Table 2.

The scorix induced by R′ is given by:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟S′ =

9 4 0
3 7 3
1 2 10

.

Thus, S′ is the sub‐scorix of S on C ′.
In Figure 2 the scorix and all its sub‐scorices are represented on the Hasse diagram of

≻ and its restriction to each subset ofC (of cardinality greater than or equal to two) for
the ranking a b c d≻ ≻ ≻ . Note that the scorix and all its sub‐scorices are monotone w.r.t.
the corresponding restriction of a b c d≻ ≻ ≻ . Therefore, the scorix given in this example
is recursively monotone w.r.t. the ranking a b c d≻ ≻ ≻ .

FIGURE 1 The scorix induced by the profile of rankings in Table 1 represented on the Hasse diagram
of ≻ for the ranking a b c d≻ ≻ ≻

*Recursive monotonicity of the scorix actually is a property of the profile of rankings and not of its scorix. This means that, given a scorix, it is not possible to identify

whether or not it is recursively monotone without knowing the profile of rankings. For more details, we refer to Pérez‐Fernández and De Baets15 (Remark 3).
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From a totally different perspective than that advocated by Borda, Condorcet9 proposed to
exploit the pairwise comparisons of the candidates, resulting in the introduction of the
Condorcet ranking*.

TABLE 2 Profile R′ of r = 13 rankings on C a b c′ = { , , }

Frequency Rankings on C

7 a b c≻ ≻

3 b a c≻ ≻

2 a c b≻ ≻

1 c a b≻ ≻

FIGURE 2 The scorix and sub‐scorices induced by the profile of rankings in Table 1 represented on the
Hasse diagram of ≻ and its restriction to each subset of C a b c d= { , , , } for the ranking a b c d≻ ≻ ≻

*The Condorcet ranking is unique in case it exists.
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Definition 6. LetC be a set of k candidates,R be the profile of r rankings onC given
by the voters and S be the scorix induced byR . A ranking≻ onC is called the Condorcet
ranking if any sub‐scorix S′ of S on a subsetC ′ ofC of cardinality two is monotone w.r.t.
the restriction of ≻ to C ′.

Recursive monotonicity of the scorix obviously is a stronger property than monotonicity of
the scorix and a weaker property than unanimity. Furthermore, it guarantees the existence of
(and compliance with) both the Borda ranking and the Condorcet ranking.

Theorem 1 (Pérez‐Fernández and De Baets15). Let C be a set of k candidates, R be the
profile of seven rankings onC given by the voters, S be the scorix induced by R and ≻ be a
ranking on C . The following statements hold:

(i) If R is the unanimous profile of rankings where every voter expresses ≻, then S is
recursively monotone w.r.t. ≻.

(ii) If S is recursively monotone w.r.t. ≻, then S is monotone w.r.t. ≻.
(iii) If S is recursively monotone w.r.t. ≻, then ≻ is the Condorcet ranking.
(iv) If S is recursively monotone w.r.t. ≻, then every elimination method based on a scoring

ranking rule defines a ranking (with ties) on the set of candidates that is linearly
extended* by ≻.

(v) If S is monotone w.r.t. ≻, then every scoring ranking rule defines a ranking (with ties)
on the set of candidates that is linearly extended by ≻.

(vi) If S is monotone w.r.t. ≻, then ≻ is the Borda ranking.

2.2 | Monotonicity of the votrix

A common representation of votes based on pairwise information is the votrix†, a matrix
where the element at the i‐th row and j‐th column equals the number of times that the i‐th
candidate has been preferred to the j‐th candidate in the profile of rankings given by the
voters.

Definition 7 (Pérez‐Fernández et al17). Let C be a set of k candidates and R be the
profile of r rankings on C given by the voters. The matrix V r{0, 1, …, }k k×∈ defined as

V j r a a= #{ {1, …, } },i i i j i1 2 1 2
∈ ∣ ≻

for any Ca a,i i1 2
∈ , is called the votrix induced by R .

It is known that the Borda ranking and the Condorcet ranking can also be defined in terms
of the votrix. Actually, the definition of the Condorcet ranking is commonly given by the
following characterization, rather than by Definition 6.

*A ranking with ties is linearly extended by a ranking if any candidate that is ranked at a better position than another candidate in the ranking with ties is also

ranked at a better position than this other candidate in the ranking.20

†The votrix is an old acquaintance of scholars in social choice theory21,22 (for more details on representations of votes based on pairwise information, we

refer to Pérez‐Fernández and De Baets23), commonly referred to as the voting matrix.
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Proposition 1 (Pérez‐Fernández et al17). LetC be a set of k candidates,R be the profile of
r rankings on C given by the voters and V be the votrix induced by R . The following two
statements hold:

(i) A ranking ≻ on C is the Borda ranking if and only if, for any Ca a,i i1 2
∈ such that

a ai i1 2
≻ , it holds that

C C

V V> .
a a

i

a a

i

\{ } \{ }i i1

1

2

2∑ ∑
∈

ℓ

∈

ℓ

ℓ ℓ

(ii) A ranking≻ onC is the Condorcet ranking if and only if, for any Ca a,i i1 2
∈ such that

a ai i1 2
≻ , it holds that

V V> .i i i i1 2 2 1

Any ranking ≻ on C naturally defines a strict partial order relation
on C Ca a a a= {( , ) }i i i i

2 2
1 2 1 2

∈ ∣ ≠≠ .

Proposition 2 (Rademaker and De Baets10). Let C be a set of k candidates. A ranking ≻
on C induces the following strict partial order relation ⊐≻ on C :2

≠

C{ }( ) )a a a a a a a a a a a a= ( , ), ( , ) ( ) ( ) ( ) ( .i i i i i i i i i i i i
2 2

1 2 3 4 1 3 4 2 1 3 4 2
⊐ ∈ ∣ ≽ ∧ ≽ ∧ ≻ ∨ ≻≻ ≠

Intuitively, given a ranking ≻, a couple of candidates is greater than another couple of
candidates if the candidates in the first couple are more distant in ≻ than the candidates in the
second couple. In Figure 3 the Hasse diagram of ⊐≻ for the ranking a b c d≻ ≻ ≻ on the set of
four candidates C a b c d= { , , , } is shown.

In case the values of the votrix decrease on the strict partial order relation⊐≻ associated with
the given ranking ≻ onC and, in addition, ≻ is the Condorcet ranking, the votrix is said to be
monotone w.r.t. this ranking.

Definition 8 (Pérez‐Fernández and De Baets24). LetC be a set of k candidates and r be
the number of voters. A votrix V is said to be (strictly) monotone w.r.t. a ranking ≻ onC
if, for any Ca a a a( , ), ( , )i i i i

2
1 2 3 4

∈ ≠ such that a a a a( , ) ( , )i i i i1 2 3 4
⊐≻ , it holds that

V V ,i i i i1 2 3 4
≥

and, for any Ca a( , )i i
2

1 2
∈ ≠ such that a ai i1 2

≻ , it holds that

V V> .i i i i1 2 2 1

In the following example, the notions of votrix and monotonicity of a votrix are illustrated.

Example 3. LetC a b c d= { , , , } be a set of candidates andR be the profile of rankings
given in Example 1. For instance, candidate a is ranked at a better position than
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candidate b ten times. Therefore, the element at the first row and second column equals
ten. The votrix induced by R is then given by:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟V =

0 10 12 12
3 0 10 11
1 3 0 8
1 2 5 0

.

In Figure 4 the votrix is represented on the Hasse diagram of ⊐≻ for the ranking
a b c d≻ ≻ ≻ . Note that the values decrease when going from top to bottom in the Hasse
diagram of ⊐≻. Therefore, the votrix induced by the profile of rankings given in this
example is monotone w.r.t. the ranking a b c d≻ ≻ ≻ .
One could note that monotonicity of the votrix has a pairwise nature. Thus, a potentially‐

definable property of recursive monotonicity of the votrix would simply be equivalent to
monotonicity of the votrix.

Monotonicity of the votrix obviously is a weaker property than unanimity. Furthermore, it
guarantees the existence of (and compliance with) both the Borda ranking and the Condorcet
ranking.

Theorem 2 (Pérez‐Fernández et al17). LetC be a set of k candidates,R be the profile of r
rankings onC given by the voters, V be the votrix induced by R and ≻ be a ranking onC .
The following statements hold:

(i) If R is the unanimous profile of rankings where every voter expresses ≻, then V is
monotone w.r.t. ≻.

FIGURE 3 Hasse diagram of the order relation ⊐≻ for the ranking a b c d≻ ≻ ≻
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(ii) If V is monotone w.r.t. ≻, then ≻ is the Borda ranking.
(iii) If V is monotone w.r.t. ≻, then ≻ is the Condorcet ranking.

2.3 | Recursive monotonicity of the profile of rankings

Each ranking≻ onC defines an order relation on C( ) according to how far two rankings
in C( ) are from ≻ in terms of reversals.

Definition 9 (Pérez‐Fernández et al18). LetC be a set of k candidates. A ranking≻ onC
induces the following partial order relation on C( ):

C C{ }( )( )a a a a a a a a= ( ′, ″) ( ) ( , ) (( ) ( ″ )) ( ′ ) .i i i i i i i i
2 2

1 2 1 2 1 2 1 2≻ ≻ ∈ ∣ ∀ ∈ ≻ ∧ ≻ ⇒ ≻

Figure 5 displays the Hasse diagram of the order relation for the ranking a b c d≻ ≻ ≻ on
the set of four candidates C a b c d= { , , , }. Clearly, every ranking ′≻ is closer (in terms of
reversals) to ≻ than ′′≻ if it holds that ≻″.

Without taking the order of the voters into account, any profile of rankings is determined by
the number of times that each ranking is expressed. The (absolute) frequency of the ranking ≻,
that is, the number of voters that have expressed the ranking ≻ in the profile R of rankings, is
denoted by Rn ( )≻ . Note that it holds that

L C

R rn ( ) = .
( )

∑ ≻
≻∈

FIGURE 4 The votrix induced by the profile of rankings in Table 1 represented on the Hasse diagram of⊐≻
for the ranking a b c d≻ ≻ ≻
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Under the assumption that there exists a true ranking ≻ on C , it seems natural that the
frequencies of the rankings in the given profile of rankings decrease when going from top to
bottom in the Hasse diagram of . A profile of rankings satisfying this property is said to be
monotone w.r.t. the ranking ≻.

Definition 10 (Pérez‐Fernández et al18). Let C be a set of k candidates and r be
the number of voters. A profileR of r rankings onC is said to be (strictly) monotone
w.r.t. a ranking ≻ on C if, for any C′, ″ ( )/{ }≻ ≻ ∈ ≻ such that ≻″, it holds
that

R R Rn n n( ) > ( ′) ( ″).≻ ≻ ≥ ≻

In the following example, the notion of monotonicity of a profile of rankings is illustrated.

FIGURE 5 Hasse diagram of the order relation for the ranking a b c d≻ ≻ ≻ , where xyzt is a
shorthand for x y z t≻ ≻ ≻
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Example 4. LetC a b c d= { , , , } be a set of candidates andR be the profile of rankings
given in Example 1. In the left side of Figure 6 the profile of rankings is represented on
the Hasse diagram of for the ranking a b c d≻ ≻ ≻ . Note that the values decrease when
going from top to bottom in the Hasse diagram of . Therefore, the profile of rankings
given in this example is monotone w.r.t. the ranking a b c d≻ ≻ ≻ .

Unlike (recursive) monotonicity of the scorix and monotonicity of the votrix, monotonicity
of the profile of rankings w.r.t. a ranking does not result in an agreement of a family of ranking
rules. Rather, as discussed in Pérez‐Fernández et al,18 monotonicity of the profile of rankings is
linked to the real existence of a true ranking on the set of candidates. This complies with the
philosophy advocated by Rousseau25 and Condorcet,9 where personal preferences are not
considered and the goal is to identify the ‘general will.’ This philosophy is clearly described by
Arrow1: “each individual has two orderings, one which governs him in his everyday actions,
and one which would be relevant under some ideal conditions and which is in some sense truer
than the first ordering. It is the latter which is considered relevant to social choice, and it is
assumed that there is complete unanimity with regard to the truer individual ordering.” From
this reflection, one could conclude that there are two different settings for the aggregation of
rankings: there exists a latent true ranking that voters try to identify, the goal of the aggregation
being to identify said true ranking, or, contrarily, voters have conflicting opinions, the goal of
the aggregation being to agree on a compromise ranking. In Pérez‐Fernández et al,18 a statistical
test for testing the existence of a latent true ranking based on the notion of monotonicity of a
profile of rankings is described. In the following, we provide an example of a profile of rankings
for which its aggregation should be considered as a search for a compromise ranking.

Example 5. LetC a b c d= { , , , } be a set of candidates and R be the profile of r = 100

rankings given in Table 3.

FIGURE 6 Profile of rankings in Table 1 (left) and profile of rankings in Table 3 (right) represented on the
Hasse diagram of for the ranking a b c d≻ ≻ ≻
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In the right side of Figure 6 the profile of rankings is represented on the Hasse diagram
of for the ranking a b c d≻ ≻ ≻ . Note that the values do not decrease when going from
top to bottom in the Hasse diagram of . Therefore, the profile of rankings given in this
example is not (close to being) monotone w.r.t. the ranking a b c d≻ ≻ ≻ (or w.r.t. any other
ranking on C ). This hints that, when aggregating the rankings in this profile, we are
seeking for a compromise solution rather than a true ranking.

Like in the case of the scorix, it seems intuitive to extend the property of monotonicity of a
profile of rankings to all possible restrictions of this profile of rankings.

Definition 11. LetC be a set of k candidates and r be the number of voters. A profileR
of r rankings onC is said to be (strictly) recursively monotone w.r.t. a ranking≻ onC if,
for any nonempty subsetC C′ ⊆ , the restriction of R toC ′ is (strictly) monotone w.r.t.
the restriction of ≻ to C ′.

In the following example, the notion of recursive monotonicity of a profile of rankings is
illustrated.

Example 6. LetC a b c d= { , , , } be a set of candidates andR be the profile of rankings
given in Example 1 In Figure 7 the profile of rankings and all its restrictions are
represented on the Hasse diagram of and each ′ corresponding to each restriction
′≻ of ≻ to each subset of C (of cardinality greater than or equal to two) for the ranking

a b c d≻ ≻ ≻ . Note that the profile of rankings and all its restrictions are monotone w.r.t.
the corresponding restriction of a b c d≻ ≻ ≻ . Therefore, the profile of rankings given in
this example is recursively monotone w.r.t. the ranking a b c d≻ ≻ ≻ .

Recursive monotonicity of a profile of rankings obviously is a stronger property than
monotonicity of a profile of rankings* and a weaker property than unanimity. Furthermore, it
guarantees the existence of (and compliance with) the Condorcet ranking, although it does not
guarantee the existence of (nor compliance with) the Borda ranking†.

Theorem 3. LetC be a set of k candidates, R be the profile of r rankings onC given by
the voters and ≻ be a ranking on C . The following statements hold:

TABLE 3 Profile R of r = 100 rankings on C a b c d= { , , , }

Frequency Rankings onC

70 a b c d≻ ≻ ≻

30 d c b a≻ ≻ ≻

*Recursive monotonicity of a profile of rankings obviously implies its monotonicity. However, the converse is not true. Consider the setC a b c d= { , , , } of k = 4

candidates and the profile of r = 13 rankings where five voters express the ranking a b c d≻ ≻ ≻ , four voters express the ranking a c b d≻ ≻ ≻ and four voters

express the ranking a c d b≻ ≻ ≻ . This profile of rankings is monotone w.r.t. a b c d≻ ≻ ≻ , but its corresponding restriction toC a b c′ = { , , } is not monotone

w.r.t. a b c≻ ≻ .

†Consider the set C a b c= { , , } of k = 3 candidates and the profile of r = 9 rankings where five voters express the ranking a b c≻ ≻ , two voters express the

ranking b a c≻ ≻ and two voters express the ranking b c a≻ ≻ . This profile of rankings is recursively monotone w.r.t. a b c≻ ≻ , whereas the Borda ranking

is b a c≻ ≻ .
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(i) If R is the unanimous profile of rankings where every voter expresses ≻, then R is
recursively monotone w.r.t. ≻.

(ii) If R is recursively monotone w.r.t. ≻, then R is monotone w.r.t. ≻.
(iii) If R is recursively monotone w.r.t. ≻, then R is the Condorcet ranking.

3 | ACCLAMATION

Some works have addressed the computation of the probability of the agreement between
different ranking rules. For instance, for the case of three‐candidate elections, Gehrlein and
Lepelley26 computed the probability that both the Condorcet winner and the Borda winner
coincide and Merlin et al27 computed the probability of all Condorcet procedures, all scoring
rules and all runoff methods resulting in the same outcome. Unfortunately, the computation of
these probabilities becomes a difficult task for a (moderately) large number of voters.

FIGURE 7 Profile of rankings and restrictions of the profile of rankings in Table 1 represented on the Hasse
diagrams of and each ′ corresponding to each restriction ′≻ of≻ to each subset ofC a b c d= { , , , } for the
ranking a b c d≻ ≻ ≻
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Here, the aim is not to compute the probability of the agreement between different ranking
rules, but rather to analyse the conditions under which determining the winning ranking on the
set of candidates is obvious. Unanimity obviously is one of this situations and, unfortunately, it
is the only situation under which the winning ranking on the set of candidates is indisputably
determined. Fortunately, as discussed in the previous section, monotonicity of different
representations of votes can be understood as a cornerstone of social choice theory where
almost all ranking rules lead to the same social outcome.

First, recursive monotonicity of the scorix assures that all ranking rules based on positional
information lead to the same ranking on the set of candidates. Second, (recursive) monotonicity
of the votrix assures that all ranking rules based on pairwise information lead to the same
ranking on the set of candidates. Third, recursive monotonicity of the profile of rankings
assures that the result of the ranking rule is not a compromise solution.

In this section, we propose to jointly consider these three types of (recursive) monotonicity
in order to define a weaker condition than unanimity, but that still leads to an obvious social
outcome. From now on, a ranking w.r.t. which the scorix is recursively monotone, the votrix is
(recursively) monotone and the profile of rankings is recursively monotone, is referred to as an
acclaimed ranking*.

Definition 12. LetC be a set of k candidates,R be the profile of r rankings onC given
by the voters, S be the scorix induced byR and V be the votrix induced byR . A ranking
≻ on C is called the acclaimed ranking for R if the following three statements hold:

(i) S is recursively monotone w.r.t. ≻.
(ii) V is monotone w.r.t. ≻.
(iii) R is recursively monotone w.r.t. ≻.

In case there exists an acclaimed ranking for a given profile of rankings, we say that the
profile of rankings belongs to the acclamation consensus state.

By definition, acclamation is a weaker property than unanimity and, obviously, a stronger
property than (recursive) monotonicity of the scorix, monotonicity of the votrix and (recursive)
monotonicity of the profile of rankings.

Theorem 4. LetC be a set of k candidates, R be the profile of r rankings onC given by
the voters, S be the scorix induced byR V, be the votrix induced byR and≻ be a ranking on
C . The following statements hold:

(i) If R is the unanimous profile of rankings where every voter expresses ≻, then ≻ is the
acclaimed ranking for R .

(ii) If ≻ is the acclaimed ranking for R , then S is (recursively) monotone w.r.t. ≻.
(iii) If ≻ is the acclaimed ranking for R , then V is monotone w.r.t. ≻.
(iv) If ≻ is the acclaimed ranking for R , then R is (recursively) monotone w.r.t. ≻.
(v) If ≻ is the acclaimed ranking for R , then ≻ is the Condorcet ranking.
(vi) If ≻ is the acclaimed ranking for R , then ≻ is the Borda ranking.

*The term acclamation historically refers to a voting system used in Ancient Greece, where the winning candidate was decided by the (loudest) shouts of the

people.7
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Corollary 1. LetC be a set of k candidates andR be the profile of r rankings onC given
by the voters. If there exists an acclaimed ranking for R , then it is unique.

Figure 8 illustrates the relations between the different types of properties discussed here. In
this figure, an arrow indicates that the property from which the arrow starts implies the
property to which the arrow points.

As illustrated in Table 4 in case≻ is the acclaimed ranking for a given profile of rankings, the
ranking≻ is a winning ranking and/or the first ranked candidate in≻ is a winning candidate for
the most prominent voting rules. In,Table 4 a symbol ✓ (resp.−) in the column WC means that
the first ranked candidate in the acclaimed ranking is (resp. does not need to be) a Winning
Candidate for the method corresponding to the row; a symbol ✓ (resp. −) in the column UWC
means that the first ranked candidate in the acclaimed ranking is (resp. does not need to be) the
Unique Winning Candidate for the method corresponding to the row; a symbol ✓ (resp. −) in
the column WR means that the acclaimed ranking is (resp. does not need to be) a Winning
Ranking for the method corresponding to the row; and a symbol ✓ (resp. −) in the column
UWR means that the acclaimed ranking is (resp. does not need to be) the Unique Winning
Ranking for the method corresponding to the row. The symbol * means that the method
corresponding to the row is not explicitly defined for identifying a winning ranking. We refer to
the Appendix of this article for a formal proof of these results.

4 | THE RANKING RULE

4.1 | Definition

Several authors, such as Nitzan,28 Lerer and Nitzan,29 Campbell and Nitzan,30 Meskanen and
Nurmi,11,31 Andjiga et al12, and Elkind et al13 have advocated that (most) ranking rules can be
characterized as minimizing the distance to a consensus state for some appropriate metric (for a

FIGURE 8 Relations between the different properties
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discussion on classical metrics for rankings, we refer to Cook32). This characterization is known
as metric rationalisation of ranking rules.

However, when we are not dealing with a notion of closeness in the most geometrical sense,
the symmetry axiom of a metric might not be necessary. Quoting Tversky and Gati on the study
of similarity measures,33,34 one can understand that the term closeness is not always interpreted
as a symmetric term: “The poet writes ‘my love is as deep as the ocean,’ not ‘the ocean is as deep
as my love,’ because the ocean epitomizes depth.” Even more importantly, the triangle
inequality of a metric may not always be linked to a notion of closeness. For instance, when
thinking of a human, a centaur and a horse, the term closeness is not related with the triangle
inequality (the perceived distance of a human to a horse exceeds the perceived distance of a
human to a centaur, plus that of a centaur to a horse). Nevertheless, there is a clear betweenness
relation: a centaur is between a human and a horse and, therefore, a human should always be
closer to a centaur than to a horse.

Closeness is a vague term here. From a geometrical point of view, symmetry and the triangle
inequality are needed. Nevertheless, in the rationalisation of ranking rules, closeness is not
defined by a geometrical concept. Here, this closeness is related to the notion of (local) penalty
function used in the aggregation of real numbers,6 where the axioms of symmetry and the
triangle inequality are no longer required, but an additional axiom providing the penalty with a
well‐founded semantic basis is required. In this work, this well‐founded semantic basis is
captured by requiring the preservation of a natural betweenness relation. Therefore, closeness is
no longer measured by a metric, but by a monometric*.

TABLE 4 Concordance with the notion of acclamation by the most prominent methods in social choice
theory

Method WC UWC WR UWR

Plurality ✓ – ✓ –
Borda count ✓ ✓ ✓ ✓

Veto ✓ – ✓ –
Best‐worst voting systems ✓ – ✓ –
Scoring (ranking) rules ✓ – ✓ –
Elimination methods based on a scoring (ranking) rule ✓ – ✓ –
Simple majority rule ✓ ✓ ✓ ✓

Dodgson ✓ ✓ * *

Condorcet’s least‐reversals ✓ ✓ * *

Kemeny ✓ ✓ ✓ ✓

Copeland ✓ ✓ ✓ ✓

Tideman ✓ ✓ ✓ ✓

Schulze ✓ ✓ ✓ ✓

Simpson ✓ ✓ ✓ –
Bucklin ✓ – * *

*Note that every metric is a monometric w.r.t. a certain betweenness relation.14
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Definition 13 (Pérez‐Fernández et al14). Let C be a set of k candidates and r be the
number of voters. A function C CM: ( ) × ( )r r →  is called a monometric (w.r.t.
the betweenness relation introduced by Kemeny2) if it satisfies the following three
properties:

(i) Non‐negativity: for any R R L C, ′ ( )r∈ , it holds that R RM ( , ′) 0≥ .
(ii) Coincidence: for any R R L C, ′ ( )r∈ , it holds that R R R RM ( , ′) = 0 = ′⇔ .
(iii) Compatibility: for any R R R L C, ′, ″ ( )r∈ such that

K K K( , ″ ) = ( , ′ ) + ( ′ , ″) ,
j

r

j j

j

r

j j

j

r

j j

=1 =1 =1

∑ ∑ ∑≻ ≻ ≻ ≻ ≻ ≻

where K denotes the Kendall metric35 between rankings*, it holds that

R R R RM M( , ′) ( , ″) .≤

Due to all aforementioned reasons, it was advocated by Pérez‐Fernández et al14 that monometrics
(instead of metrics) should be considered in the rationalisation of ranking rules, leading to the
introduction of the monometric rationalisation of ranking rules. This direction was further extended
in Pérez‐Fernández et al36 by introducing the search for consensus states in the case of rankings
with ties.

We recall that the introduction of consensus states broader than unanimity, but that still
lead to an obvious ranking on the set of candidates, represents a valuable topic in the field of
social choice theory because the broader the consensus state, the less the choice of (mono)
metric matters. This is due to the fact that the profile of rankings is typically not close to
belonging to the unanimity consensus state (thus, the choice of (mono)metric plays a key
role), whereas the profile of rankings is always closer to belonging to a broader consensus
state than unanimity (thus, the choice of (mono)metric plays a lesser role). For this reason,
we advocate for the use of acclamation, which is the broadest consensus state for which we
could not identify a prominent ranking rule disagreeing with the associated winning
ranking (as shown in Table 4).

Similarly to the method of Kemeny where we compute the Kemeny score for each ranking≻,
here we have the corresponding cost associated with a closest profile of rankings for which≻ is
the acclaimed ranking (measured by means of the chosen monometric CM: ( ) ×r

C( )r → ). Formally, given the profile R of r rankings on C given by the voters, we have
the following cost for each ranking ≻:

R R
R C

C M( ) = min ( , ′).M
′ ( ) s.t.

is acclaimed ranking

r
≻

∈

≻

In particular, we propose to consider the monometric L C L C: ( ) × ( )r r →  defined by the
sum of Kendall distances (as proposed by Pérez‐Fernández et al14), that is,
R R K( , ′) = ( , ′)

i

r
i i=1

∑ ≻ ≻ for any R R C, ′ ( )r∈ . This leads to the introduction of a
Kemeny‐like method where instead of unanimity we search for acclamation.

*The Kendall metric K is defined as, CK a a a a a a( , ) = #{( , ) , }i i i i i i1 2 1 2
2

1 1 2 2 2 1≻ ≻ ∈ ∣ ≻ ≻ , for any two rankings 1≻ and 2≻ .
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Thus, we advocate that a winning ranking should be one whose corresponding closest profile of
rankings for which ≻ is the acclaimed ranking is the closest to the profile of rankings given by the
voters:

C

Carg min ( ).
( )

≻
≻∈



Obviously, like in almost all methods for the aggregation of rankings, the winning ranking does
not need to be unique.

4.2 | Correspondence with intuition

Although the Condorcet ranking is a popular notion among social choice theorists, it has also
withstood some criticism. For instance, see the following quote by Saari37: “the combination of
the pairwise vote with the Condorcet terms loses the crucial fact that voters have transitive
preferences. [...] An equally surprising assertion is that rather than being the standard, the
Condorcet winner must be held suspect.” In most situations, the Condorcet ranking is indeed
the most natural winning ranking. However, one could find some examples in which the
Condorcet ranking is at the very least an arguable winner.

Consider the setC a b c d= { , , , } of k = 4 candidates and the profile R of r = 101 rankings
onC given in Table 5 For this profile of rankings, there exists a Condorcet winner (candidate a)
and a Condorcet ranking (the ranking a b c d≻ ≻ ≻ ).

In case we apply the ranking rule introduced in this paper based on the search for acclamation,
we obtain the ranking b a c d≻ ≻ ≻ (Table 6), which seems to be a more intuitive winning ranking
for this profile of rankings than the ranking a b c d≻ ≻ ≻ obtained by the method of Kemeny.

4.3 | Analysis of the properties

Obviously, simple axioms, such as non‐dictatorship*, non‐imposition†, anonymity‡ and
neutrality§, are trivially satisfied by the ranking rule.

The profile of rankings in Table 5 also implies the failure of several well‐known properties for
ranking rules. First, as candidate a is the Condorcet winner and is chosen the winner by more than
half of the voters while not being the winner for our proposed ranking rule, we conclude that the
properties of Condorcet consistency¶ and the majority criterion# are not satisfied.

TABLE 5 Profile R of r = 101 rankings on C a b c d= { , , , }

Frequency Rankings on C

51 a b c d≻ ≻ ≻

50 b c d a≻ ≻ ≻

*A ranking rule is said to satisfy the non‐dictatorship criterion if there is no voter whose ranking is always elected the winner.

†A ranking rule is said to satisfy the non‐imposition criterion if every ranking is selected as the winner in case it is unanimously decided by the voters.

‡A ranking rule is said to satisfy the anonymity criterion if reassigning the rankings over the voters does not change the outcome.

§A ranking rule is said to satisfy the neutrality criterion if some permutation of the candidates is applied to each voters’ ranking, the winner is the result of this
same permutation.

¶A ranking rule is said to be Condorcet consistent if the first ranked candidate by the ranking rule always coincides with the Condorcet winner in case the latter

exists.
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Unfortunately, this ranking rule is not independent of clones*, as S b c d= { , , } clearly is a set
of clones, but b is no longer the winner in case c and d are eliminated from the ballot
(contradicting the first condition for the independence of clones).

The axiom of independence of irrelevant alternatives† is not satisfied either. Indeed, for the
profile of rankings in Table 7 candidate a is ranked at a better position than candidate b in the
winning ranking (a b c d≻ ≻ ≻ ), whereas for the profile of rankings in,Table 5 candidate b is
ranked at a better position than candidate a in the winning ranking (b a c d≻ ≻ ≻ ). Note that
the relative order of candidates a and b has not been altered, while their order in both winning
rankings has.

Moreover, the proposed ranking rule is not homogeneous‡. For instance, consider the set
C a b c d= { , , , } of k = 4 candidates and the profile R of r = 10 rankings given in Table 8

According to the ranking rule introduced in this paper, there are six winning ranking for this
profile of rankings (a b c d a c b d b a c d b c a d c a b d, , , ,≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻

and c b a d≻ ≻ ≻ ). However, in case we repeat the rankings of the voters twice, the winning
ranking is solely the ranking a c b d≻ ≻ ≻ .

In addition, due to the fact that a closest profile of rankings for which each ranking onC is
the acclaimed ranking needs to be obtained, the computation of the winning ranking for this
ranking rule is a difficult problem. As discussed in Bartholdi et al,39 this is a common issue with
many voting schemes.

TABLE 6 Values C ( )≻ for each ranking ≻ on C a b c d= { , , , } given the profile of rankings in Table 5

Ranking () C ( ) Ranking () C ( ) Ranking () C ( ) Ranking () C ( )

a b c d≻ ≻ ≻ 100 b a c d≻ ≻ ≻ 85 c a b d≻ ≻ ≻ 132 d a b c≻ ≻ ≻ 203

a b d c≻ ≻ ≻ 151 b a d c≻ ≻ ≻ 104 c a d b≻ ≻ ≻ 191 d a c b≻ ≻ ≻ 210

a c b d≻ ≻ ≻ 127 b c a d≻ ≻ ≻ 86 c b a d≻ ≻ ≻ 105 d b a c≻ ≻ ≻ 192

a c d b≻ ≻ ≻ 202 b c d a≻ ≻ ≻ 103 c b d a≻ ≻ ≻ 154 d b c a≻ ≻ ≻ 203

a d b c≻ ≻ ≻ 202 b d a c≻ ≻ ≻ 133 c d a b≻ ≻ ≻ 204 d c a b≻ ≻ ≻ 211

a d c b≻ ≻ ≻ 205 b d c a≻ ≻ ≻ 128 c d b a≻ ≻ ≻ 203 d c b a≻ ≻ ≻ 206

TABLE 7 Profile R of r = 101 rankings on C a b c d= { , , , }

Freq. Rankings onC

51 a b c d≻ ≻ ≻

50 b a c d≻ ≻ ≻

#A ranking rule is said to satisfy the majority criterion if the first ranked candidate by the ranking rule always coincides with a candidate that is ranked first by

more than half of the voters in case the latter exists.

*According to Tideman,38 “a proper subset of two or more candidates, S , is a set of clones if no voter ranks any candidate outside of S as either tied with any

element of S or between any two elements of S . [...] A ranking rule is said to be independent of clones if and only if the following two conditions are met when

clones are on the ballot: 1. A candidate that is a member of a set of clones wins if and only if some member of that set of clones wins after a member of the set is

eliminated from the ballot. 2. A candidate that is not a member of a set of clones wins if and only if that candidate wins after any clone is eliminated from the

ballot.”
†A ranking rule is said to be independent of irrelevant alternatives if the order between two alternatives x and y depends only on the relative positions of x and

y in the rankings given by the voters.

‡A ranking rule is said to be homogeneous if a winner remains the same in case the rankings of the voters are repeated a finite number of times.
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The reader may note that (unsurprisingly) all the previously discussed non‐satisfied
properties (except for the above‐discussed Condorcet consistency and homogeneity) are also not
satisfied by the method of Kemeny,2 probably the best‐known ranking rule. Actually, the
ranking rule proposed in Section 4 would satisfy the property of homogeneity in case we would
consider a slight variation of the Kendall metric,35 as discussed by Fishburn40 for the method of
Dodgson.8

5 | CONCLUSIONS AND OPEN PROBLEMS

In this article, we have analysed a new consensus state, acclamation, that serves as a meeting
point for the most prominent ranking rules in social choice theory. Acclamation results in a
natural condition under which methods based on either positional or pairwise information lead
to the same social outcome. In particular, the acclaimed ranking is a natural sufficient condition
for the Borda ranking and the Condorcet ranking to exist and coincide. Moreover, a Kemeny‐
like ranking rule based on the search for acclamation has been introduced, resulting in an
intuitively appealing winning ranking. Like unanimity, acclamation is a natural consensus state
leading to an obvious winning ranking, and the search for acclamation does not rely on the
choice of the Kendall metric as strongly as the search for unanimity.

For computing the winning ranking of this ranking rule, we are currently solving the
cumbersome Integer Linear Programming problem discussed in.14 As mentioned in Section 4.3
computing the winning ranking is a difficult problem. However, there is still a lot of room for
improvement in the computational implementation of this method. We highlight the
introduction of effective pruning techniques reducing the number of rankings for which we
need to compute the cost associated with a closest profile of rankings for which ≻ is the
acclaimed ranking. Another reasonable possibility would be to adopt a heuristic approach41,42

that would speed up the computation time of our proposed ranking rule, although some voters
could feel deceived if a (slighlty) different outcome than the optimal one would be obtained.
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TABLE 8 Profile R of r = 10 rankings on C a b c d= { , , , }

Freq. Rankings onC

4 b a d c≻ ≻ ≻

2 c a b d≻ ≻ ≻

1 a c d b≻ ≻ ≻

1 b c a d≻ ≻ ≻

1 c a d b≻ ≻ ≻

1 d c b a≻ ≻ ≻
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APPENDIX

In this Appendix, we prove the results illustrated in Table 4.
For plurality,43 the Borda count,3 veto,44 best‐worst voting systems,45 scoring (ranking)

rules,46 and elimination methods based on a scoring (ranking) rule,15 the facts that the first
ranked candidate in the acclaimed ranking is a winning candidate and that the acclaimed
ranking is a winning ranking are a direct result from Theorem 1. This theorem also implies that
the first ranked candidate in the acclaimed ranking is the unique winning candidate for the
Borda count and that the acclaimed ranking is the unique winning ranking for the Borda count.
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We prove that the uniqueness is not assured for the remaining ranking rules mentioned in this
paragraph by providing a counterexample.

Consider the set C a b c d= { , , , } of k = 4 candidates and the profile R of r = 28 rankings
given in Table A1.

The scorix induced by R is:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟S =

11 9 6 2
11 9 4 4
3 5 10 10
3 5 8 12

.

Although a b c d≻ ≻ ≻ is the acclaimed ranking for R , all rankings
a b c d a b d c b a c d, ,≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ and b a d c≻ ≻ ≻ are winning rankings for the
plurality rule. Analogously, in case we reverse the order of the candidates in all rankings in
the profile of rankings, we obtain a profileR′ of rankings where, although d c b a≻ ≻ ≻ is the
acclaimed ranking for R′, all rankings c d a b c d b a d c a b, ,≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ ≻ and
d c b a≻ ≻ ≻ are winning rankings for the veto rule. As best‐worst voting systems, scoring
(ranking) rules and elimination methods based on a scoring (ranking) rule have both the
plurality and the veto rules as a particular case, we conclude that the first ranked candidate in
the acclaimed ranking does not need to be the unique winner, and the acclaimed ranking does
not need to be the unique winning ranking for any of the aforementioned ranking rules.

By definition of the simple majority rule,47 in case of existence of the Condorcet ranking,
which is assured to coincide with the acclaimed ranking in case the latter exists, the (unique)
winning candidate coincides with the first ranked candidate in the Condorcet ranking and the
(unique) winning ranking coincides with the Condorcet ranking. Similarly, as both the method
of Dodgson8 and Condorcet’s least‐reversals method11 are based on the search for the candidate
that is the closest to becoming the Condorcet winner, in case of existence of the Condorcet
winner, the (unique) winning candidate for both methods coincides with the first ranked
candidate in the Condorcet ranking.

The methods of Kemeny,2 Copeland,48 Tideman,38 Schulze,49 and Simpson50,51 are
Condorcet methods, that is, in case of existence of a Condorcet winner, they select this
Condorcet winner as the unique winning candidate. Moreover, the first four are additionally
Condorcet ranking methods, that is, in case of existence of a Condorcet ranking, they select this
Condorcet ranking as the unique winning ranking. Due to the property of monotonicity of the
votrix, the method of Simpson, which ranks the candidates according to their greatest pairwise

TABLE A1 Profile R of r = 28 rankings on C a b c d= { , , , }

Ranking Frequency Ranking Freq. Ranking Frequency Ranking Frequency

a≻ b≻ c≻ d 4 b≻ a≻ c≻ d 3 c≻ a≻ b≻ d 1 d≻ a≻ b≻ c 1

a≻ b≻ d≻ c 3 b≻ a≻ d≻ c 2 c≻ a≻ d≻ b 1 d≻ a≻ c≻ b 1

a≻ c≻ b≻ d 1 b≻ c≻ a≻ d 2 c≻ b≻ a≻ d 1 d≻ b≻ a≻ c 1

a≻ c≻ d≻ b 1 b≻ c≻ d≻ a 1 c≻ b≻ d≻ a 0 d≻ b≻ c≻ a 0

a≻ d≻ b≻ c 1 b≻ d≻ a≻ c 2 c≻ d≻ a≻ b 0 d≻ c≻ a≻ b 0

a≻ d≻ c≻ b 1 b≻ d≻ c≻ a 1 c≻ d≻ b≻ a 0 d≻ c≻ b≻ a 0
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defeat, is trivially assured to select the acclaimed ranking as the winning ranking. However, the
uniqueness is not assured in this case.

Consider the set C a b c d= { , , , } of k = 4 candidates and the profile R of r = 11 rankings
given in Table A2.

The votrix induced by R is:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟V =

0 6 11 11
5 0 11 11
0 0 0 11
0 0 0 0

.

Note that candidates c and d have the same greatest pairwise defeat. Therefore, although
a b c d≻ ≻ ≻ is the acclaimed ranking for R , both rankings a b c d≻ ≻ ≻ and a b d c≻ ≻ ≻ are winning
rankings for the method of Simpson.

As the vector of positions of candidate a (strictly) dominates the vectors of positions of all
other candidates, we conclude that the first ranked candidate in the acclaimed ranking is a
winning candidate for the method of Bucklin,52 For proving that the uniqueness does not hold,
consider again the profile R of r = 28 rankings given in Table A1. Note that there is no
candidate that is ranked at the first position by more than half of the number of voters.
Therefore, according to the method of Bucklin, we need to consider also the number of times
that each candidate is ranked at the second position. Now, candidates a and b are ranked at the
first or second position by 20 voters, which is more than half of the number of voters. Therefore,
candidates a and b are winning candidates for the method of Bucklin, while candidate b is not
the first ranked candidate in the acclaimed ranking.

TABLE A2 Profile R of r = 11 rankings on C a b c d= { , , , }

Frequency Rankings on C

6 a b c d≻ ≻ ≻

5 b a c d≻ ≻ ≻
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