
Probabilistic Performance Modelling when using
Partial Reconfiguration to Accelerate Streaming

Applications with Non-Deterministic
Task Scheduling

Bruno da Silva1,2[0000−0002−4877−9688], An Braeken2[0000−0002−9965−915X], and
Abdellah Touhafi1,2[0000−0001−8891−180X]

1 Vrije Universiteit Brussel (VUB), ETRO Department, Brussels, Belgium
2 Vrije Universiteit Brussel (VUB), INDI Department, Brussels, Belgium

{bruno.da.silva,an.braeken,abdellah.touhafi}@vub.be

Abstract. Many streaming applications composed of multiple tasks self-
adapt their tasks’ execution at runtime as response to the processed data.
This type of application promises a better solution to context switches
at the cost of a non-deterministic task scheduling. Partial reconfigura-
tion is a unique feature of FPGAs that not only offers a higher resource
reuse but also performance improvements when properly applied. In this
paper, a probabilistic approach is used to estimate the acceleration of
streaming applications with unknown task schedule thanks to the appli-
cation of partial reconfiguration. This novel approach provides insights
in the feasible acceleration when partially reconfiguring regions of the
FPGA are partially reconfigured in order to exploit the available re-
sources by processing multiple tasks in parallel. Moreover, the impact
of how different strategies or heuristics affect to the final performance
is included in this analysis. As a result, not only an estimation of the
achievable acceleration is obtained, but also a guide at the design stage
when searching for the highest performance.

1 Introduction

Streaming applications are present in a wide range of domains such as digital
signal processing, audio, and imaging, which require several compatible modes or
configurations only active based on pre-defined contexts. Such dynamic stream-
ing applications are able to adapt their response as reaction to an environmental
change [9], [13], [2], [5]. For instance, multifunction array radars based on a
phased array need to execute multiple integrated functions such as tracking,
surveillance, communication, calibration or counter measures in an unspecific
order [12]. The multifunction radar has to search in multiple regions, which are
sub-divided into beam positions with each position executing a task based on
the previous monitoring operation. Hence, it is not possible to determine in ad-
vance what operations or tasks need to be computed at a certain moment [9].
However, such type of streaming applications can achieve high performance on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/196519376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 da Silva, B. et al

Table 1. Example of a cost table.

Task (Ti) Probability (pi) Time Cost (ti) Area Cost (ai) Compatibility (RMi)

TA 1/3 tA 1 RMTA
TB 1/3 tB 1/2 RMTB
TC 1/3 tC 1/4 RMTC

t

Without PR With PR

t
A

t
rc

t
B

t
rc

t
C

t
A

t
B

t
B

t
C

t
C

t
C

t
C

T
A

T
C

T
B

T
C

T
C

T
C

T
C

T
B

RM
TB

→ RM
TC

RM
TA

→ RM
TB

T
A

T
B

T
B

T
C

T
C

T
C

T
A

T
B

T
C

|T

RMT
C

RMT
B

RMT
A

RP

Without PR With PR

T
A

T
B

T
B

T
C

T
C

T
C

T
C

Fig. 1. Example of how PR can be used to increase performance (left) while maximizing
the reuse of the reconfigurable resources (right). The dashed framed area represents the
area consumption with and without PR.

FPGAs when they are properly designed to exploit pipeline-level and instruction-
level parallelism [8]. We believe that the use of Partial reconfiguration (PR) with
the proper heuristics can further improve the performance. PR is a unique fea-
ture of FPGAs which allows the change of the functionality of reconfigurable
partitions (RP) on the FPGA at runtime. The use of PR for such type of appli-
cations, where the order and the type of the tasks to be executed are not known
in advance, might not justify the additional design effort to achieve residual
performance acceleration.

In this paper, we not only present a general methodology to increment per-
formance by using PR to maximize the area reuse but also a probabilistic ap-
proach to predict the achievable speedup. This probabilistic performance model
provides performance insights at the design time, helping to decide parameters
like the size of the RP or to evaluate the PR performance overhead. The prin-
ciples of the methodology to exploit PR to accelerate a streaming application
with unknown task scheduling are depicted in Figure 1. The execution without
PR requires tA + 2 · tB + 4 · tC units of time to complete one execution, where ti
corresponds to the computation time of a task i detailed in Table 1. By partially
reconfiguring one RP with other configurations, called reconfigurable modules
(RM), like for instance RMTB

or RMTC
, multiple tasks can be computed in

parallel through the exploitation of the unused resources. The overall execution
time is then reduced to tA + tB + tC + 2 · tpr, where tpr is the time overhead due
to reconfiguring the RP . Moreover, this approach also leads to area savings as
illustrated in Figure 1. Instead of dedicating area to allocate each type of task,
one RP can be properly dimensioned to not only allocate one instance of the

Probabilistic Performance Model... 3

most area demanding task, but also multiple instantiations of low-area demand-
ing tasks (e.g. TB or TC in this example). This naive example, however, can
become significantly more complex when considering multiple RPs computing
hundreds of tasks that can be merged to share resources. As a result, the design
effort that is required to fully exploit PR for performance acceleration is not
negligible. The allocation of the tasks on the available RPs, the combination of
multiple tasks to reuse resources or the schedule of the merged tasks on the re-
configurable RP are challenges that our approach helps to predict. The ultimate
goal of our approach is to accurately predict the achievable acceleration when
using the proposed methodology to exploit the benefits of PR.

The use of PR to support multiple configurations and to improve perfor-
mance of streaming applications with unpredictable scheduling has been already
used in [4] to accelerate a platform supporting PR through PCIe [3]. Although
the approach used in [4] proposes heuristics to increase area reuse and perfor-
mance, we present in this paper a general methodology to increase performance.
For instance, our methodology introduces a parameter to reflect the reconfig-
uration cost which does not necessarily stands for PCIe-based reconfiguration
like in [3], [4] but it is also applicable for other reconfigurations interfaces like
the Internal Configuration Access Port (ICAP) on Xilinx FPGAs. Moreover, a
probabilistic approach to predict the achievable performance when using PR is
here presented in order to reduce the design effort required to apply the proposed
methodology. This probabilistic performance modelling can be used to evaluate
different strategies or heuristics targeting either area savings or performance im-
provements without the need of implementing them on the FPGA. The main
contributions of this work can be summarized as follows:

– We present a generalized heuristics-based methodology to exploit PR in
order to accelerate streaming applications.

– Our approach represents the basis for probabilistic performance predictions
when using PR to accelerate streaming applications.

This paper is organized as follows. Section 2 presents related work. The
methodology to use PR for performance acceleration is described in Section 3.
In Section 4 the problem formulation and the equations to predict performance
based on the application’s characteristics are introduced. An audio streaming
application is used to validate the performance predictions when applying our
methodology. The results are presented in Section 5. Finally, our conclusions are
drawn in Section 6.

2 Related Work

Different performance prediction models when using PR have been proposed
in the last decade. The authors in [6], [7] present a theoretical analysis of the
performance bounds of PR. The basis of their analysis is the full decomposition
of the application in tasks. The tasks’ timings and the operations involved in
the PR are used to estimate performance bounds and speedups. Similarly, the

4 da Silva, B. et al

authors in [10] propose a cost model to determine the performance impact of
PR. Both approaches, however, are not directly applicable to applications with
an unpredictable tasks’ scheduling.

Different strategies using PR to maximize the area reuse or to increase perfor-
mance have been proposed. The authors in [14], [15] present a novel approach for
the resource sharing of RPs by merging tasks of streaming applications with an
unpredictable tasks’ scheduling by identifying similarities between tasks. How-
ever, their approach targets the minimization of the FPGA reconfiguration time
by optimizing the allocation of the applications on the FPGA rather than incre-
menting the area reuse per RP . The authors in [1] present solutions to reduce the
PR cost. Their approach, consisting of an Integer-Linear Programming (ILP)
and a heuristic to exploit PR techniques such as module reuse, does not consider
the use of PR to increment the resource sharing of the RPs. Our methodology
not only addresses similar types of applications, but also reduces the number of
reconfigurations while prioritizing the area reuse of RP s by taking advantage of
similarities between tasks to share logic resources of RP s. In addition, our prob-
abilistic approach enables performance estimation at the design time, leading to
a reduction of the overall design effort.

3 Proposed Methodology

Our generalized methodology exploits PR to accelerate streaming applications
with non-deterministic task scheduling. This methodology consists of the three
heuristics depicted in Figure 2. An initial classification identifies the type of
incoming tasks and tags them based on the Cost Table (CT). The merging
heuristic groups tasks to be executed in parallel in the same RP based on their
compatibility. The execution of all the tasks is split in iterations or time slots
based on the number of tasks and RPs. Each RP has a dedicated task’s queue
which determines the time slot when the tasks are executed in the RP . However,
scheduling strategies are needed in order to minimize the PR impact, leading to
the desired performance [9]. A scheduling heuristic distributes the merged tasks
between the available time slots of the RPs. As a result, the heuristics allow a
performance acceleration by exploiting the area reuse.

Different heuristics can be applied on this methodology. For instance, the
authors in [1] propose a scheduling heuristic targeting performance compatible
with this methodology. A merging heuristic to exploit the compatibility of similar
tasks, leading to a higher reuse of the available area by allocating different types
of tasks in the same RM has been proposed in [4]. In any case, the proposed
methodology increases the area reuse by computing compatible tasks in the same
RP to accelerate the overall performance. Moreover, the proposed probabilistic
approach can be adjusted to reflect the characteristics of the heuristics, like done
in Section 4 for a merging and scheduling heuristics.

The usability of this general methodology is determined by the information
available in the CT . The construction of such a table does not demand additional
effort than some profilings and measurements at the design stage. The probability

Probabilistic Performance Model... 5

Q
U

E
U

E
 R

P
 1

TA

TB

TC

TC

TC

TC

TA

TB | TB

TB

Merging

RPnRP
RP1

...

TC | TC | TC | TC

Scheduling

ntask

tasks

nM
task

tasks

nM
iter

iterations

nRP Reconfigurable Partitions

...

Classification

Q
U

E
U

E
 R

P
 nR

P

Fig. 2. Overview of the proposed methodology to exploit PR for performance accelera-
tions.

of executing a specific task is defined by the application’s characteristics and can
be estimated in advance or obtained after multiple executions. The area cost of
each task (ai) is already known when implementing the task on the target FPGA.
The number of tasks that can be allocated on the RP , which is hereby called the
level of parallelism (LP), can be obtained based on the available resources in the
RP . The parameter ai represents the relative area demands of a task i in terms
of one RP , which corresponds to the inverse of LP . he time cost (ti) is obtained
through simulations at high level or execution profiles on the FPGA once the
task is implemented. The compatibility depends on the level of the desired area
reuse, the available I/O and the task’s characteristics. The area reuse can be
increased when combining the execution of the same, or even different types
of tasks on the same RM , like proposed in [4]. The available I/O bandwidth
determines, together with the demanded area consumption, the value of LP .
The task’s characteristics determine if multiple tasks of different types can be
executed in parallel. For instance, a high variance of ti might lead to performance
degradation when merging tasks with different ti, since the merged tasks would
have to wait for the most time demanding one. Finally, the size of PR must be
adjusted to provide enough resources to allocate the most area demanding task.
Nonetheless, its size can be enlarged to be able to allocate multiple instances
of other tasks. Despite such enlargements would reduce the area savings, they
might increase performance.

6 da Silva, B. et al

The cost of PR is reflected in tpr, which is the time needed to reconfigure
one RP . Moreover, tpr increases with the amount of resources available in the
RP , and must be considered when determining the size of the RP . The area
overhead due to supporting PR is not considered in our approach and is assumed
significantly lower than the area demanded by the streaming application’s tasks.

The proposed methodology targets streaming applications with the following
characteristics:

– Non-deterministic scheduling: The tasks and their schedule are not known
in advance.

– Non-priority tasks: The tasks can be executed without a priority order.
– Non-data dependencies between tasks: The tasks in the same execution are

not data dependent.

Notice that the non-data dependency between tasks enables the execution of
tasks without any priority order. This is not a strong constraint for our approach
since it can be overcome by considering data dependencies during scheduling.
However, a priority order might reduce the achievable performance acceleration.

Applications like smart cameras adapt their response to the environmen-
tal context, demanding runtime decisions under unknown beforehand condi-
tions [13]. The processing of SQL queries can also be accelerated by using PR
when treating each type of SQL query as independent task. Each SQL query
presents different query plan which can be implemented with a different archi-
tecture, like proposed in [11].

4 Problem Formulation

The following probabilistic approach intends to predict the achievable speedup
obtained by using the described methodology. Let us consider a streaming appli-
cation (Figure 2) composed of a certain number of tasks (ntasks) with a a number
of different types (ntypes), which must be executed without following any partic-
ular schedule. At a certain instant, a number of independent tasks (nI

tasks) must
be scheduled to be executed on the FPGA. The probability of having a task i
(Ti) is pi. Each Ti demands a computational time (ti) of the FPGA. Finally, tpr
is the time cost of the PR of one of the reconfigurable partitions (RPs) of the
FPGA, which has a certain number of RPs (nRP) available.

The tasks are grouped to be executed in parallel based on their area and
I/O bandwidth demand as part of the design flow. The level of parallelism of
each Ti is LPi. As a result, several RMs compatible with the available RPs are
generated to allocate all the tasks of the streaming application. A CT including
the time cost of the tasks, their area cost and the compatible RMs is generated to
be used by a set of heuristics designed to exploit the area reuse and to optimize
the merged tasks’ scheduling. The overall acceleration is determined by three
properties: the number of available RPs (nRPs), the average LP achieved by
merging tasks, and finally, the scheduling of the tasks. The performance impact
of the last two characteristics are firstly analysed from a probabilistic point of
view.

Probabilistic Performance Model... 7

4.1 Probabilistic Approach

Our methodology (Section 3) assumes that each execution on the FPGA is com-
posed of mutually exclusive and independent nI

tasks. The probability of a Ti in
nI
tasks follows a multinomial distribution. However, for a particular task it can

be approximated to a binomial. Thus, the probability of having r tasks Ti in
nI
tasks is:

P (Ti = r) =

(
nI
task

r

)
· pir · (1− pi)

(nI
tasks−r) (1)

=
nI
task!

r!
(
nI
tasks − r

)
!
· pir · (1− pi)

(nI
tasks−r)

The average execution time needed (texec) is:

tIexec =

⌈
nI
tasks

nRPs

⌉
·
ntypes∑

pi · ti (2)

which is simplified to Eq. 3 when assuming only one RP :

tIexec = nI
tasks ·

ntypes∑
i

pi · ti (3)

The average area cost (Acost) is defined based on the task’s relative area cost
(ai) and their probability (pi):

Acost =

ntypes∑
i

pi · ai (4)

4.2 Merging

As a consequence of the tasks’ merging, nI
tasks is reduced, the nI

types becomes
dependent of the number of RMs (nRMs) and pi is modified. The parameters
involved in the tasks’ merging have the following conditions:

nM
types ≤ nRMs (5)

nM
tasks ≤ nI

tasks ≤ ntasks (6)

where nM
types is the different types of merged tasks and nM

tasks is the number

of merged tasks to be computed. Finally, pMi is the probability of having one
particular type of merged task i. The value of these parameters depends on the
CT and the type of the tasks’ merging supported.

The example CT depicted in Table 1 shows how some of the tasks can be
allocated in the same RP . The compatibility list reflects that only the same type
of tasks can be merged, since an unique RM is exclusively dedicated to compute

8 da Silva, B. et al

each type of task. As a result of the tasks’ merging, the initial parameters of our
approach are modified for a post-merging analysis. Hence, the probability pMi
after merging tasks Ti becomes:

pMi = pi ·
ai∑nI

types

j aj

·

nM
types∑
k

ak∑nI
types

m am

−1

= pi · aMi (7)

where aMi represents the demanded area for the merged type of tasks i.
The computation time of Ti after merging tasks (ti) is not modified by com-

puting LPi tasks in parallel (Eq 8).

tMi = max(ti) = ti (8)

Notice that tMi would be the maximum of ti when merging different types of
tasks.

The number of different types of tasks after merging (nM
types) depends on the

nI
types (Table 1) and the probability of having a task of each type. This is only

true when merging the same type of tasks. If two compatible types of tasks are
merged, sharing the same RM , the value of nM

types will be lower than nI
types. The

approach can be adjusted to merge compatible types of tasks by accumulating
their probability. For the sake of simplicity, the following analysis only considers
the merging of the same type of tasks.

nM
types = nI

types ·
ntypes∑

i

pi = nI
types (9)

Notice that nI
types does not need to be equal to ntypes. In fact, nI

types is obtained

by considering the tasks’ probabilities and nI
task since it follows a multinomial

distribution. Finally, the number of tasks after merging (nM
tasks) depends on LP

and the probability of having a certain type of task (Eq 10).

nM
tasks = nI

tasks

nI
types∑
i

pi · ai (10)

The execution time after merging tasks, based on Eq (10), is similarly defined
like Eq (3):

tMexec =

nI
types∑
i

pi · ai

 · nI
tasks ·

nI
types∑
i

pi · ti =

nI
types∑
i

pi · ai

 · tIexec (11)

where
∑nI

types

i pi·ai must be lower than 1 in order to have acceleration. Therefore,
the theoretical acceleration by merging tasks (Speedupth) is defined as:

Speedupth =
tIexec
tMexec

=
tIexec

tIexec ·
(∑nI

types

i pi · ai
) =

1∑nI
types

i pi · ai
(12)

Probabilistic Performance Model... 9

Notice that the PR cost is not included yet in the theoretical acceleration. In
fact, this acceleration is reduced when considering the PR cost. Let ppr be the
probability of PR and tpr the time cost of such partial reconfiguration. Eq (11)
is readjusted as follows:

tMexec =

nI
types∑
i

pi · ai

 · (tIexec + nI
tasks · tpr · ppr

)
(13)

Therefore, the achievable acceleration thanks to merging tasks (Speedup)
becomes:

Speedup =
tIexec(∑nI

types

i pi · ai
)
·
(
tIexec + nI

tasks · tpr · ppr
)

= Speedupth ·
tIexec

tIexec + nI
tasks · tpr · ppr

= Speedupth · PRcost (14)

where PRcost represents the performance degradation due to PR and ranges
from 0 to 1.

PRcost =
tIexec

tIexec + nI
tasks · tpr · ppr

(15)

and, by applying Eq. 3, can be simplified to

PRcost =

∑ntypes

i pi · ti∑ntypes

i pi · ti + tpr · ppr
(16)

Due to the fact that PRcost might be lower than 1, there is acceleration only if:

Speedupth >
1

PRcost
(17)

4.3 Scheduling

A proper tasks’ scheduling minimizes the impact of PR by reducing the number
of PR (npr). The value of npr is directly related to ppr and the merged nM

tasks.
Moreover, ppr is determined by the supported RMs and the configuration of the
RP at a certain instant.

No Scheduling The number of iterations in one execution after merging (nM
iter)

is expressed as

nM
iter =

⌈
nM
tasks

nRP

⌉
(18)

which equals nM
tasks when considering only one RP . Hereby, only one RP is

assumed (nRP = 1) for the sake of simplicity while introducing the probabilistic
approach.

10 da Silva, B. et al

Let us consider i ∈< 1, ..., nRPs > and j ∈< 1, ..., nRMs >. The probabil-
ity to reconfigure a RPi configured with a RMj at a certain iteration kj ∈<
1, ..., nM

iter > can be expressed as:

ppr = P (RPi[k] 6= RPi[k − 1])

= P (RPi[k] = RMj ∩RPi[k − 1] 6= RMj) (19)

Notice that RPi[0] represents the initial configuration of the RPi. Each iter-
ation can be considered independent when there is no tasks’ scheduling. Hence,
ppr can be expressed as:

ppr = P (RPi[k] = RMj) · P (RPi[k − 1] 6= RMj) (20)

which, based on Eq. 7, is reduced to:

ppr =

nM
types∑

idx=1

pMidx · (1− pMidx) (21)

Without any tasks’ scheduling the probability ppr equally affects to each RP .
Similarly, ppr is independent between iterations. Hence, npr is expressed based
on Eq. 18 as:

npr = nM
tasks · ppr (22)

Therefore, Eq. 16 can be expressed as:

PRcost =
tIexec

tIexec + tpr · npr
(23)

Iteration-oriented Scheduling The iteration-oriented scheduling heuristic
proposed in [4] exploits the previous configuration of the available RPs to reduce
npr. This strategy searches for those tasks in the available nM

tasks compatible with
the configuration of a RP at a certain iteration. The probability of having at
least one task i in nM

tasks is equivalent to

P (ni > 0) = 1− P (ni = 0) (24)

where ni is the number of tasks i in nM
tasks. This probability is calculated as

a binomial distribution:

P (ni = 0) = (1− pMi)n
M
tasks (25)

Therefore, the probability of reconfiguring when computing nM
tasks is:

ppr =

∑nM
tasks

j=1

∑ntypes

i=1 pMi · (1− pMi)j

nM
tasks

(26)

The numerator is the value of npr since it considers all the possible nM
tasks.

Notice the difference with Eq. 21. The current strategy searches for a particular
task in nM

tasks to avoid reconfiguration while in Eq. 21 there is no search, and
therefore, the incoming tasks are randomly selected.

Probabilistic Performance Model... 11

Table 2. CT of the NE proposed in [4]. Each task emulates one node’s configuration,
which is determined by the number of active microphones. The compatibility shows that
only the same types of tasks are merged. The ti values are expressed in seconds.

Task (Ti) Probability (pi) Time Cost (ti) Area Cost (ai) Compatibility (RMi)

52 Mics 1/4 1.0834 ± 0.0029 1 RM52Mics

28 Mics 1/4 1.0753 ± 0.0024 1/2 RM28Mics

12 Mics 1/4 1.0679 ± 0.0023 1/4 RM12Mics

4 Mics 1/4 1.0677 ± 0.0023 1/4 RM4Mics

5 Case Study

Our approach is evaluated on the audio streaming application detailed in [4].
This case study is a FPGA-based microphone array network emulator (NE)
which has to combine the data received from multiple nodes processing streams
of audio. A node of the network supports different configurations based on the
number of active microphones, which directly determines the accuracy and the
power consumption [3]. The response of the nodes is combined to estimate the
location of sound sources, which is used to adapt the networks’ topology and the
node’s configuration to balance the network’s power consumption and its accu-
racy. The computation is repeated an undetermined number of times to evaluate
different topologies, sound-sources profiles, node’s configurations or data fusion
techniques. As a result, tens to hundreds of nodes with different configurations
must be evaluated before converging to a valid network configuration. This audio
streaming application satisfies the constraints detailed in Section 3:

Non-deterministic scheduling: One execution of the NE demands an unpre-
dictable number of nodes, each with a variable configuration.

Non-priority tasks: The NE needs to collect the node’s results without any
particular priority order.

Non-data dependencies between tasks: Each node can be considered like one
independent task without data dependencies.

5.1 Validation

Our probabilistic approach is validated through experimental simulations using
the heuristics proposed in [4]. The achievable speedup is estimated based on the
heuristics and their combination, providing an early performance estimation and
facilitating the generalized use of PR to accelerate similar applications.

The description of the application in [4] provides enough information to fetch
our approach. The evaluation presented here goes, in fact, beyond the original
evaluation and multiple tpr and LPs are used to better understand the perfor-
mance cost and acceleration when using PR. Table 2 is the CT obtained from
the node’s characteristics. The proposed probabilistic approach is used by con-
sidering a task as an emulation of one node of the NE. Therefore, the nodes of
the NE are hereby called tasks.

12 da Silva, B. et al

Despite the evaluation of our approach uses the basis of the application, it
presents some differences when compared to the experiments done in [4]:

– Single RP : The system analysed in [4] considered 4 RPs. For the sake of
simplicity, our evaluation only considers one RP (nRP = 1). Notice, however,
that our equations are general enough to be applied for any nRP .

– Classification heuristic: The tasks are not sorted per type during the clas-
sification heuristic performed before merging. This initial ordering already
improves the followed heuristics and masks their performance contribution,
justifying its absence in our approach. Furthermore, it provides a more gen-
eral evaluation by respecting the original order of the task’s execution. It
can, nevertheless, be inserted in our equations as additional parameter, but
its analysis is out of scope of this paper.

– Merging heuristic: The CT shown in Table 2 only considers the merging of
the same type of tasks. Therefore, each RM only allocates the same type of
task, which is not like in [4]. We consider that it is enough to evaluate the
accuracy of our performance prediction.

The impact of the PR is evaluated beyond the configurations detailed in
Table 2. The evaluation presented here explores the performance variance based
on tpr and Acost to show how the acceleration changes based on the tasks’ char-
acteristics detailed in Table 2:

– tpr: The original value of tpr of the system in [4] slightly changes per RP . The
average value of tpr is used as reference and scaled by a factor to evaluate
adverse situations where tpr is significantly higher than any ti. The consid-
ered scaling factor ranges from 0 to 2. Notice that there is no performance
degradation when tpr = 0.

– Acost: The original ai of the tasks is modified to cover a range of Acost

(Eq. 4). While originally Acost = 0.5, the explored range of Acost varies from
0.3 to 0.875.

Finally, notice that Table 2 provides information about pi which is not orig-
inally available in [4]. Despite there are also 4 types of tasks, each type of task
is assumed to be equally probable, since the authors in [4] do not specify this
parameter.

5.2 Results

The heuristics introduced in [4] have been implemented and simulated in Matlab
2016b. The tasks’ occurrence is expressed through probabilities due to the non-
deterministic scheduling. Therefore, the experimental results are average values
obtained after 100 executions of 100 tasks. This relatively large number of execu-
tions guarantees that the tasks’s occurrence is properly represented. Finally, our
probabilistic approach is used to predict the theoretical speedup and compared
to the experimental one. Notice that both speedups are averaged values due to
the non-deterministic nature of the task’s execution.

Probabilistic Performance Model... 13

0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cost

0

0.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

Theoretical when Merging

Theoretical when Merging

Theoretical when Merging and t
pr

Experimental when Merging and t
pr

= 0

Experimental when Merging

Experimental when Merging

Fig. 3. Average speedup due to merging tasks. No task’s scheduling is applied after
merging. Notice the impact of tpr in the performance degradation (Eq. 16).

Figure 3 depicts the speedup based on Acost when only merging the same
type of tasks. The theoretical speedup is obtained through Eq. 12. The experi-
mental speedup without PR cost is obtained when forcing tpr to zero in Eq. 16,
leading to no degradation in performance. A scaling factor of one (blue line)
and two (black line) are applied to tpr. The highest cost of PR occurs when
tpr = 2× ti, as shown in the bottom line in Figure 3. The difference between the
theoretical speedup and the speedup including the PR cost represents the per-
formance degradation due to PR without any scheduling strategy. Notice that
Acost decreases when more tasks can be merged, since their area demanding is
lower, leading to an increment of achievable speedup.

Figure 4 shows how the performance increments when applying the iteration-
oriented scheduling heuristic described in [4]. This heuristic schedules the tasks
based on the RP ’s previous configuration to reduce the overall npr. The achiev-
able acceleration is very close to the theoretical acceleration upper bound. The
theoretical values, obtained by applying the equations described in Section 4
follow the experimental trend. Nevertheless, this heuristic does not perform as
good when nRP increases, as the results in [4] reflect. Their results show a lower
performance besides 4 RPs are used. Further analysis on how nRP affects to
the achievable acceleration is needed to properly determine the reason of this
performance degradation. Different heuristics should be proposed to target mul-
tiple RPs in order to achieve a closer performance to the theoretical acceleration
upper bound.

The proposed probabilistic model needs to not only characterize the non-
deterministic nature of the task’s execution but also to reflect the behaviour
of the merging and scheduling heuristics required by the general methodology.
The comparison between the predicted acceleration and the experimental results

14 da Silva, B. et al

0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cost

0

0.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

Theoretical when Merging

Theoretical when Merging + Scheduling

Theoretical when Merging + Scheduling and t
pr

Experimental when Merging and t
pr

= 0

Experimental when Merging + Scheduling

Experimental when Merging + Scheduling and t
pr

Fig. 4. Average speedup due to merging and scheduling tasks. The iteration-oriented
scheduling is applied after merging.

depicted in Figure 3 and in Figure 4 demonstrate the accuracy of this model.
Nevertheless, the proposed methodology and its probabilistic model are flexible
enough to be adapted for different heuristics, like, for instance, the scheduling
heuristics proposed in [1].

6 Conclusions

The proposed methodology enables the acceleration of streaming applications
with non-deterministic task scheduling using PR. Moreover, the acceleration
upper bounds can be predicted at the design time based on the application’s
characteristics. We believe that many streaming applications can benefit from
our approach, specially the ones related to signal processing, to image processing
or even to data stream management systems which present a high parallelism
and multiple similar configurations. Future work includes the validation of our
probabilistic approach for multiple RPs, more case studies and the development
of optimized heuristics.

References

1. Cordone, Roberto, et al. ”Partitioning and scheduling of task graphs on partially
dynamically reconfigurable FPGAs.” IEEE transactions on computer-aided design
of integrated circuits and systems, 2009.

2. da Silva, Bruno, et al. ”Runtime reconfigurable beamforming architecture for
real-time sound-source localization.” Field Programmable Logic and Applications
(FPL), 26th International Conference on. IEEE, 2016.

Probabilistic Performance Model... 15

3. da Silva, Bruno, et al. ”A partial reconfiguration based microphone array network
emulator.” Field Programmable Logic and Applications (FPL), 27th International
Conference on. IEEE, 2017.

4. da Silva, Bruno, et al. ”Exploiting Partial Reconfiguration through PCIe for a Mi-
crophone Array Network Emulator.” Int. J. Reconfigurable Computing, Hindawi,
2018.

5. da Silva, Bruno, et al. ”A Multimode SoC FPGA-Based Acoustic Camera for
Wireless Sensor Networks.” 13th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC). IEEE, 2018.

6. El-Araby, Esam, et al. ”Performance bounds of partial run-time reconfiguration
in high-performance reconfigurable computing.”, In Proceedings of the 1st inter-
national workshop on High-performance reconfigurable computing technology and
applications: held in conjunction with SC07. ACM, 2007.

7. El-Araby, Esam, et al. ”Exploiting partial runtime reconfiguration for high-
performance reconfigurable computing.”, ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 2009

8. Gordon, I. Michael et al. ”Exploiting coarse-grained task, data, and pipeline paral-
lelism in stream programs.” ACM SIGARCH Computer Architecture News, 2006.

9. Jimenez, M.I. et al. ”Design of task scheduling process for a multifunction radar.”
IET Radar, Sonar & Navigation, 2012.

10. Papadimitriou, Kyprianos, et al. ” Performance of partial reconfiguration in FPGA
systems: A survey and a cost model.” ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS), 2011.

11. Malazgirt, Gorker Alp, et al. ”High level synthesis based hardware accelerator design
for processing SQL queries.” Proceedings of the 12th FPGAworld Conference.
ACM, 2015.

12. Sabatini, Sergio, et al. ”Multifunction array radar- System design and analysis
(Book)”. Norwood, MA: Artech House, 1994.

13. Wildermann, Stefan, et al. ”Self-organizing computer vision for robust object track-
ing in smart cameras.” In International Conference on Autonomic and Trusted
Computing. Springer, 2010.

14. Wildermann, Stefan, et al. ”Placing multimode streaming applications on dynami-
cally partially reconfigurable architectures.” International Journal of Reconfigurable
Computing, 2012.

15. Wildermann, Stefan, et al. ”Symbolic system-level design methodology for multi-
mode reconfigurable systems.” Design Automation for Embedded Systems, 2013.

	Probabilistic Performance Modelling when using Partial Reconfiguration to Accelerate Streaming Applications with Non-Deterministic Task Scheduling
	Introduction
	Related Work
	Proposed Methodology
	Problem Formulation
	Probabilistic Approach
	Merging
	Scheduling
	No Scheduling
	Iteration-oriented Scheduling

	Case Study
	Validation
	Results

	Conclusions

