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Abstract: Objectives: Evidence of mitochondrial respiratory chain (MRC) dysfunction and oxidative 

stress has been implicated in the pathophysiology of multiple sclerosis (MS). However, at present, 

there is no reliable low invasive surrogate available to evaluate mitochondrial function in these 

patients. In view of the particular sensitivity of MRC complex IV to oxidative stress, the aim of this 

study was to assess blood mononuclear cell (BMNC) MRC complex IV activity in MS patients and 

compare these results to age matched controls and MS patients on β-interferon treatment. Methods: 

Spectrophotometric enzyme assay was employed to measure MRC complex IV activity in blood 

mononuclear cell obtained multiple sclerosis patients and aged matched controls. Results: MRC 

Complex IV activity was found to be significantly decreased (p < 0.05) in MS patients (2.1 ± 0.8 

k/nmol × 10-3; mean ± SD] when compared to the controls (7.2 ± 2.3 k/nmol × 10-3). Complex IV 

activity in MS patients on β-interferon (4.9 ± 1.5 k/nmol × 10-3) was not found to be significantly 

different from that of the controls. Conclusions: This study has indicated evidence of peripheral 

MRC complex IV deficiency in MS patients and has highlighted the potential utility of BMNCs as a 

potential means to evaluate mitochondrial function in this disorder. Furthermore, the reported 

improvement of complex IV activity may provide novel insights into the mode(s) of action of β-

interferon. 
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1. Introduction 

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system 

(CNS), in which cytokines and other inflammatory mediators are raised [1]. To date, the exact cause 

of MS has still to be fully elucidated, but it is believed to result from an abnormal response of the 

immune system to one or more myelin antigens in the CNS, such as components of the myelin [2]. 

The disease is characterized by an accumulation of macrophages and lymphocytes in the CNS leading 

to demyelination and destruction of neuronal axon [3]. These areas of demyelination are known as 

plaques and contain areas of gliosis and inflammation in most cases [4]. 

MS has a heterogeneous clinical presentation with symptoms including impaired vision, fatigue, 

spasms and paralysis of a number of muscle systems [5]. There are five basic types of MS of which 

relapsing remitting (RR) is the most common [6]. In RR-MS patients the disease develops in a 
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discursive manner with symptomatic and asymptomatic phases. Over time, RR-MS patients may 

develop chronic lesions that result in irreversible axonal damage and loss, resulting in the conversion 

of RRMS to secondary progressive MS (SPMS). 

Although MS is traditionally considered to be an autoimmune disease, neurodegeneration has 

also been implicated in disease progression [7]. One of the major factors that are responsible for 

neurodegeneration in MS is thought to be mitochondrial respiratory chain (MRC) dysfunction with 

evidence of impaired MRC complex I (NADH: ubiquinone reductase; EC: 1.3.5.1), III (Ubiquinol: 

cytochrome reductase; EC: 1.10.2.2.), and IV (Cytochrome c oxidase; EC: 1.9.3.1) activities being 

reported in post mortem cerebral tissue from MS patients, as well as in experimental autoimmune 

encephalomyelitis [8–10]. Although the cause of the MRC dysfunction in MS has still to be fully 

elucidated, oxidative and nitrosative stress are thought to be contributory factors [10]. Reactive 

oxygen species (ROS), such as superoxide (O2-) and reactive nitrogen species (RNS: nitric oxide (NO); 

peroxynitrite; ONOO-) are generated during neuro-inflammation in MS and have been implicated, 

by our research and that of others, as mediators of demyelination and axonal injury [11–14]. Although 

the inflammatory environment in demyelinating plaques is conducive to the generation of ROS, 

activated lymphocytes and macrophages also release a host of pro-inflammatory cytokines, such as 

interferon gamma (IFN-g), which results in an upregulation inducible nitric oxide synthase (iNOS) 

activity within the CNS and a concomitant increase RNS generation [15]. ROS and RNS are able to 

induce MRC dysfunction by causing oxidative damage to mitochondrial DNA, mitochondrial 

membrane phospholipids, and/or the protein subunits of the enzymes [16]. The continued 

inflammatory process in the CNS of MS patients coupled to the impaired immune regulation results 

in high circulatory levels of RNS [17], which may have the potential to impair MRC function in 

peripheral tissue. Although few studies have assessed this phenomenon, a study by Kumleh et al. 

[18] reported evidence of impaired skeletal muscle MRC complex I activity in a small cohort of MS 

patients. Although it is difficult in living MS patients to accurately determine evidence of cerebral 

MRC dysfunction, the presentation of mitochondrial dysfunction in systemic tissue may provide an 

appropriate surrogate for this evaluation. The liberation of a skeletal muscle biopsy, which is 

considered the “gold standard” for MRC enzyme determination [19] would be relatively invasive 

and may not always be possible. However, the use of blood mononuclear cells (BMNCs) may provide 

an alternative relatively low invasive means to assess the evidence of MRC dysfunction in MS 

patients. Furthermore, in view of the relatively small amount of biological material afforded from a 

BMNC preparation it would not be possible to assess the activity of all the MRC enzyme complexes. 

However, in view of the particular susceptibility of MRC complex IV activity to RNS induced 

inactivation [19], assessment of the activity of this enzyme complex may therefore be judicious in MS 

patients. Furthermore, this tissue may also be informative with regards to the efficacy and mode of 

action of therapeutic agents, such as β-interferon, which may slow disease progression.  

The purpose of this study was therefore to determine BMNC complex IV activity in MS patients 

and compare these results to age matched controls and MS patients receiving therapy in the form of 

β-interferon. 

2. Experimental Section 

2.1. Reagents 

All of the reagents were analytical grade and obtained Sigma Aldrich Chemical Company 

(Poole, Dorset, UK). PD10 column used in the preparation of reduced cytochrome c for complex IV 

spectrophotometric enzyme assay were obtained from Amersham Pharmacia (St. Albans, Herts, UK).
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2.2. Patients 

Patients were diagnosed and consented by a consultant neurologist at the National Hospital, 

Queen Square, London, UK, according to the guidelines of Poser et al. [20]. They were divided into 

two groups: 

(1) Patients not receiving β-interferon treatment. This group consisted of seven patients (male: 

female = 4:3). Six patients were aged between 30–39 years and one female patient was aged 65 years. 

(2) Patients receiving β-interferon treatment. This group consisted of four patients (male: female 

= 3:1). Patients were aged between 26-36 years. Patients were selected and received β-interferon in 

accordance with the National Institute for Health and Care Excellence (UK) guidelines. 

For this study, a control group of 24 healthy volunteers (aged 32–55 years, male: female = 9:15) 

were used. 

2.3. Blood Mononuclear Cell (BMNC) Preparation 

BMNCs were isolated from between 3–10 mL of lithium heparin blood by use of the ACCUSPIN 

system–Histopaque-1077 (Sigma-Aldrich, Poole, Dorset, UK). BMNCs were suspended in phosphate 

buffered saline, pH 7.2, and stored at –70 °C until analysis. 

2.4. Spectrophotometric Enzyme Assays 

Enzymatic determinations were undertaken at 30 °C using a Uvikon XL spectrophotometer 

(Northstar, Leeds, UK). 

MRC complex IV activity was measured by the potassium cyanide sensitive oxidative of reduced 

cytochrome c at 550 nm, according to the method of Wharton and Tzagoloff [21]. 

To account for the mitochondrial enrichment of the preparations used, activity of the 

mitochondrial marker enzyme, citrate synthase (CS) (EC 2.3.3.1) was evaluated. This was determined 

according to the method of Shepherd and Garland [22] by the formation of 5-thio-2-nitrobenzoic 

following the incubation BMNCs with acetyl-CoA, oxaloacetate, and 5,5-Dithiobis-(2-nitrobenzoic 

acid). 5-thio-2-nitrobenzoic absorbs at 412 nm.  

Complex IV activities were expressed as a ratio to CS activity (k/nmol) to take into account the 

mitochondrial enrichment of the BMNCs [23]. 

CS has units of activity of nmol/min/mL. Complex IV has units of activity of k/min/mL since the 

activity of this enzyme is expressed as a 1st order rate constant. Therefore, when complex IV activity 

is expressed as a ratio to CS activity the units are: k/min/mL divided by nmol/min/mL = k/nmol. 

2.5. Protein Determination 

Protein was determined according to the method of Lowry and colleagues [24] using bovine 

serum albumin as a standard. 

2.6. Statistical Analysis 

Statistical analysis was performed using one-way analysis of variance (ANOVA) followed by 

the least squared difference (LSD) multiple range test, the students t-test, and Spearman test was used 

to establish potential correlations between MRC complex IV activity, CS activity, and age. A 

p value < 0.05 was considered to be statistically significant. 

3. Results 

Recombinant β-interferon (4 and 16 million units) was not found to have an effect on MRC 

complex IV or CS activities in vitro. No correlation was found between age and BMNC MRC complex 

IV (r = 0.688; n = 21; p = 0.7703) or CS (r = –0.276; n = 21; p = 0.742) activities, respectively, in the control 

population. Gender was also not found to influence the activities of these enzymes in BMNCs, with 

no significant difference being found between male and female complex IV (p = 0.675) or CS (p = 0.691) 

activities. 
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BMNC MRC complex IV activity (expressed as a ratio to CS activity) was found to be 

significantly decreased (p < 0.05) in MS patients not on β-interferon (2.1 ± 0.8 k/nmol × 10-3; mean ± 

SD) when compared to the controls (7.2 ± 2.3 k/nmol × 10-3) (Figure 1). Complex IV activity in MS 

patients on β-interferon (4.9 ± 1.5 k/nmol × 10-3) was not found to be significantly different from that 

of the controls (Figure 1). No significant difference in BMNC CS activity was found between the 

control (45.24 ± 18.77 nmol/min/mg) and MS patients (33.65 ± 10.02 nmol/min/mg). 

 

Figure 1. Blood mononuclear cell Complex IV activity, expressed as a ratio to citrate synthase, in 

control individuals, MS patients and MS patients receiving β-interferon (IFN). * Statistically different 

from both control and MS patients receiving β-interferon. 

4. Discussion 

The results of this study have indicated evidence of a deficiency in MRC complex IV activity in 

BMNCs of MS patients. The impairment of BMNC MRC complex IV activity may result in an altered 

immune response, which may contribute to disease pathophysiology. At present, the factors 

responsible for this MRC dysfunction in the MS patients are as yet uncertain. However, the absence 

of a significance decrease in BMNC MRC complex IV activity in MS patients receiving β-interferon 

suggests that the loss of enzyme activity may be the result of a disease process that is reversed by β-

interferon. One of the mechanisms of action by which β-interferon elicits its beneficial effect in MS 

patients appears to be by its ability to inhibit astrocytic NO production [21], and thereby decreasing 

the availability of circulatory RNS that have the potential to induce MRC impairment, particularly at 

the level of complex IV. Whether such a mechanism occurs in the periphery requires further 

investigation. However, it is of note that serum levels of nitrite and nitrate (indices of RNS production) 

are reported to be elevated in MS patients [17]. Alternatively, the decrease in MRC complex IV 

activity detected in the MS patients may be the result of mitochondrial DNA deletions as reported in 

the neurons and choroid plexus of progressive MS patients [22]. Although, evidence of mitochondrial 

DNA mutations, and effects of β-interferon, in peripheral BMNCs has yet to be determined in MS 

patients [23]. Nonetheless, a study by Amorini el al. has reported a threefold elevation in serum 

lactate levels in MS patients [24]. Although this study supports evidence of mitochondrial 

dysfunction in MS, previous studies assessing both serum [25] and CSF (cerebral spinal fluid) [26] 

lactate levels in this disorder have failed to show any evidence of an increase in the level of this 

metabolite. Importantly, lactate levels may not necessarily be raised as a consequence of MRC 

dysfunction as evidenced in patients with primary mitochondrial disorders [27]. Furthermore, 

elevated serum lactate levels may not be a specific biomarker of MRC dysfunction, since this 

phenomenon has been reported to result from number of other clinical sequelae [27]. Therefore, the 

determination of MRC complex IV activity in BMNCs may serve as a more specific means of 

evaluating evidence of MRC dysfunction in MSA patients. In addition, in view of the association 

between oxidative and nitrosative stress and MRC dysfunction [11–14], BMNCs may also serve as a 

means of assessing the cellular antioxidant status of MS patients. In view of its association with MRC 

dysfunction, the status of the cellular antioxidant, reduced glutathione may be judicious for this 

assessment [28]. The possibility arises that MRC complex IV dysfunction may also be a contributory 



J. Clin. Med. 2018, 7, 36 5 of 6 

 

factor to the pathophysiology of other diseases that are associated with nitrosative stress, such as 

diabetes, cancer, and stroke [29–31], and therefore, BMNCs may have utility is assessing evidence of 

mitochondrial impairment in these disorders. 

In this study we have highlighted the feasibility of using BMNCs to assess evidence of MRC 

complex IV deficiency in MS patients. However, due to the limited amount of biological material 

available from BMNCs, it has not been possible to determine the activities of the other MRC enzymes 

(complexes I, II, and III) in the present study, and therefore, we cannot exclude the possibility that 

the MRC dysfunction in the MS patients is not solely restricted to complex IV. In spite of its 

limitations, this is the first study as far as the authors are aware to use BMNCs are a relatively low 

invasive surrogate to assess evidence of mitochondrial dysfunction in MS. This surrogate may also 

be of value in monitoring the therapeutic potential of pharmacotherapies on mitochondrial function 

in MS patients in view of the paucity of reliable biomarkers that are currently available. 
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