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Abstract—We investigate how the flow of energy and the
flow of jobs in a service system can be used to minimize the
average response time to jobs that arrive according to random
arrival processes at the servers. An interconnected system of
workstations and energy storage units that are fed with randomly
arriving harvested energy is analyzed by means of the Energy
Packet Network (EPN) model. The system state is discretized,
and uses discrete units to represent the backlog of jobs at the
workstations, and the amount of energy that is available at
the energy storage units. An Energy Packet (EP) which is the
unit of energy, can be used to process one or more jobs at a
workstation, and an EP can also be expended to move a job
from one workstation to another one. The system is modeled as
a probabilistic network that has a product-form solution for the
equilibrium probability distribution of system state. The EPN
model is used to solve two problems related to using the flow of
energy and jobs in a multi-server system, so as to minimize the
average response time experienced by the jobs that arrive at the
system.

Index Terms—Renewable energy, Energy harvesting, Energy
Packet Network, G-networks, Optimization

I. INTRODUCTION

ARGE numbers of heterogeneous digital devices and
computer servers are being incorporated through the In-
ternet of Things (IoT) [1]-[5] to manage cities and various ser-
vice activities [6], including environmental monitoring, health,
security, vehicles, emergency evacuation, smart grids, etc. [7]-
[9]. Such systems must operate autonomously over long time
spans, and can benefit from energy harvesting from renewable
energy sources, such as wind, liquid flows, photovoltaic, and
ambient electromagnetic fields. In addition, such systems need
energy storage to be able to smooth the effects over time of
the intermittent sources of renewable energy [10]-[12]. Thus
there has been considerable interest in understanding how
harvested energy can be used to optimize the consumption
of energy and quality of service (QoS) of communication
systems [13]-[15]. In [16] a framework of energy cooperation
sharing in communication networks with energy harvesting is
discussed, while [17] considers energy harvesting in a two user
cooperative Gaussian multiple access channel (MAC). In [18]
some of the work until 2015 is reviewed, regarding energy
harvesting wireless communications and energy transfer from
the perspective of communication and information theory. A
queueing model of an energy efficient base station is presented
in [19].
Sharing of power from a common rechargeable battery
for different wireless channels is considered in [20]. Since
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the sustainability of information and computer technology
improves with energy saving techniques [21], [22], much
work was devoted to communication networks that manage
energy consumption while meeting or optimising QoS [23],
[24]. Optimal routing policies for energy savings [25], [26],
and optimal scheduling of data transmission for energy usage
optimization [27], have also been studied. Energy efficient
Cloud servers and data centres are also very important [28],
[29].

Motivated by these considerations, recent work has de-
veloped the Energy Packet Network (EPN) paradigm [30]-
[32], which is a discrete state-space modelling framework
based on G-networks [33] which have a broad range of
applications [34], [35], and can be used for evaluating both
the performance, and the energy consumption, in a system
where computer jobs, data in the form of packets, and energy
represented by energy packets (EPs), interact in a complex in-
terconnected computer-communication system. This approach
uses queueing theory, so that the joint behaviour of discretized
energy flows, and the flows of computer jobs and data, are
analyzed within a single model. It was recently used for
the analysis of the backhaul of mobile networks operating
with intermittent renewable energy [36]. In previous work
[37]-[39] optimization algorithms were developed based on
queuing networks, to dispatch network packets and minimize
composite cost functions combining overall network energy
consumption and QoS. In [40] the use of a central energy
store is compared with a distributed storage facility with regard
to overall efficiency, while in [41] a utility function, which
combines throughput and the probability that the system does
not run out of energy, is used for system optimization. The
EPN model has also recently generated further interest [32],
[42], [43] to optimize sensor networks and computer systems
that operate with harvested energy.

In [44], a new product form solution (distinct from G-
networks) is derived for a tandem network of N nodes using
harvested energy stored in batteries; this analytical approach
was initiated in [45] for single node systems and developed
in [46] for two-node systems. In addition, the work in [44]
only applies to tandem networks (while in this paper we
consider more general network structures) and furthermore
[44] assumes that one EP can only serve to process exactly
one job, while the current paper discusses the case where one
EP processes a batch of jobs.

Other work (also unrelated to G-networks) has proposed a
practical hardware based design for switching and forwarding
power and data simultaneously in a “power packet” system
that can be implemented on indoor power lines as well as on
computer boards and chips [47], [48].

Here we consider servers or workstations (WS) which are
powered by a battery or an energy store (ES), which is
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charged from a source of intermittent energy such as wind
or photovoltaic. Energy leakage can also occur from an ES.
Energy is represented by discretized energy packets (EPs), and
one EP is the smallest amount of energy represented in the
system.

Thus an EP is a basic unit of energy (for instance 100W-sec
or 100 Joules) that is common to the system as a whole. With
one EP we assume that a WS can execute one or more jobs.
Thus if a WS is more energy efficient, it will execute more jobs
with a single EP. A WS (i.e. computer) that is more energy
efficient will execute more jobs on average with a single EP.
These assumptions generalize earlier work [41] where an EP
was used to process a single job. On the other hand, this paper
does not address synchronization or dependencies between
jobs in different workstations, as would occur when multiple
jobs on different servers may be updating a shared set of data
[49].

Specifically, we address two relevant problems of practical
interest:

1) In Problem 1, we assume that EPs cannot be moved
from one ES to another. Similarly we assume that jobs
cannot be moved from one WS to another. The system
as a whole receives a total fixed power rate, expressed
in EPs per second. Each single ES ¢ is assigned to feed
energy to a specific WS ¢ where s = 1, ... , IV, however
energy leakage can also occur from each ES. We are
given the probability distribution of the number of jobs
that a single EP can process at each given WS, and this
distribution may differ at different WSs. The problem
we solve is to select the fraction of power that is sent to
each of the ESs so as to minimize the overall average
response time R of the jobs in the system. If we denote
by w; (in 1/seconds) the maximum rate at which the ES ¢
feeds energy to WS i, then the peak power consumption
of WS ¢ is obviously also w; EPs/sec.

2) In Problem 2, again we have N ESs, each of which
is allocated to its corresponding WS. We assume that
EPs are allocated at a fixed rate to each ES. With
probability D; we move a job that is at the head of
the WS queue at node ¢, and if the job is moved it
enters the queue at WS j with probability M;;. The
corresponding probability matrix is M = [M;,]. If a job
is moved, then just moving it will consume one EP. Thus
the second problem considered is to select the vector
D = (D;, ... Dy) so as to minimize R. Basically this
means that we are deciding whether to move a job or
not from any of the WS ¢ so as to reduce the workload
at WS ¢ and increase it at WS j, knowing that moving it
will itself consume one EP at WS ¢, which then cannot
used to process another job. On the other hand, with
probability (1 — D;) the decision will be to execute jobs
locally rather than to move a job, in which case (as in
Problem 1) a batch of jobs will be executed at WS 1.

To solve these problems, we use the EPN model with time
independent or stationary parameters, and we solve it in steady
State.

Because the energy sources are time varying, one can

ask whether a stationary model is useful. In fact, the time

variations in energy harvesting, for Photo-Voltaic or Wind,
would be in the tens of minutes, half-hour to hour (time of day)
range. On the other hand, our model deals with millisecond up
to tens of seconds time constants which concern the execution
times of computer programs. Thus during the execution of
hundreds to thousands of consecutive computer programs, the
energy flow parameters will not change significantly, which
is why we are justified in using a stationary model and in
computing steady-state values. Therefore over the longer time
range, the optimizations described in this paper can be applied
for different time-of-day effects, and the optimal parameters
would be re-computed each time the energy flow parameters
change.

Since in this paper one EP can be used to execute one or
more jobs, the size of an EP has been chosen to be quite
large. We could have also selected a “dual model” where one
job is executed with one or more EPs, which would have been
justified if an EP is a small unit of energy. The EPN paradigm
admits both approaches, and in both cases we can exploit the
theory of G-Networks. However in this paper we have just
taken one of these two approaches, i.e. one EP is used to
execute one or more jobs.

In the sequel, Section II, summarizes some of the properties
of G-Networks, and shows how the EPN model is based
on such models. The EPN model parameters are detailed in
Section III. In Sections IV and V we solve two optimization
problems related to the allocation of jobs to different work-
stations based on their energy efficiency and the availability
of energy, and provide illustrative examples. Conclusions are
drawn in Section VI.

II. ENERGY PACKET NETWORK AND ITS G-NETWORK
REPRESENTATION

The EPN system considered is schematically presented
in Figure 1. Jobs that must be executed in the system are
modelled as ordinary customers in a queueing network. They
arrive at one of the NV WSs, say WS 4, at a rate of \; jobs/sec.
Each WS is represented as a queue containing jobs. Jobs first
arrive at a given WS ¢, Each WS ¢ has an energy storage
battery denoted ES i, and there are a total of NV ESs. EPs
arrive from an external intermittent energy source at rate +y;
EPs/sec to the ES ¢ which can be viewed as a “queue of EPs”.

As shown in Figure 1, in the EPN model the EPs in ES i
either can be forwarded to the corresponding WS ¢ on demand
with probability d;, or moved to another ES node j with
probability P;; to balance the energy distribution. However
in the sequel, we assume that d; = 1. The jobs in the WS
i can be processed locally with probability D; or forwarded
to some other WS j with probability M;; for further steps
of execution. In this figure w; is the rate at which EPs are
forwarded from ES 7 to one of the workstations. On the other
hand §; is the loss rate of energy (i.e. leakage) from ES i.

We denote the number of jobs at WS ¢ by K;(¢), while L;(t)
denotes the number of EPs at ES 4, at time ¢. We assume
that both the WS queues, and the ES queues (i.e. batteries)
are unbounded, i.e. of infinite capacity. EPs at the ES i are
expended due to energy leakage, consumed by the WSs, or
moved in the following manner:
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o If L;(t) > 0 then ES i will:

— Either leak energy at some rate §; > 0 EPs/sec, and
after a time of average value ¢, 1, we will have one
less EP at ES ¢ due to energy leakage. The successive
EP leakage times for the i—th ES are modelled as in-
dependent and identically distributed (i.i.d.) random
variables having a common exponential distribution
with parameter J;.

— Or the ES ¢ will forward one EP at rate w; to WS
7. A more general scheme is described in Figure 1
where EPs are allowed to move between ESs.

o Each EP is used locally by WS ¢ as follows:

— With probability 1 > D; > 0, one EP will be ex-
pended to serve a batch of up to B; jobs at the WS 1.
If K;(t) > 0 then the EP will serve max[K;(t), B;]
jobs in one step and after service we end up with
K;(t*) = K;(t) — maz[K;(t), B;]. Since each job
may have different energy requirements at WS ¢, we
assume that the number of jobs that can be processed
with a single EP at WS 7 is a random variable.

— Since our purpose is to model different WSs that
have different levels of energy efficiency, a single
EP is used to process one or more jobs, if there are
jobs waiting in the WS queue. Thus a WS where an
EP

— With probability 1 — D;, if K;(¢) > 0 one EP will
be used to serve just one job, and then forward
that job to another WS j according to the transition
probability matrix M = [M;;]. As a result we will
have K;(t7) = K;(t) — 1, K;(t7) = K;(t) + 1.

— If an EP arrives at a WS ¢ and K;(t) = 0, then
the EP will just be expended to keep the WS in
working order (i.e. to keep it on), and no jobs will
be processed or moved.

Thus if d; = 1 and D; = 1, then the EPs at each ES i are
only used locally to process the jobs at WS i, and keep WS ¢
“on” when there are no jobs to process.

A. The G-Network Model

The EPN model discussed above is a special case of a
family of queueing networks known as G-Networks that are
developed work starting around 1990 [50], continuously over
the years [51] including models for system security [52], to
today [53]-[55]. A remarkable and useful property of a G-
Network is the “product form solution” (PFS), which we recall
at the end of this section, and which we use to analyze the
EPN.

The queueing model we discuss here corresponds to a multi-
class G-Network with Batch Removal and multiple classes
of customers [56], [57]. It is an open network containing
a finite number v of queues or service stations, in which
customers circulate. These customers can belong to one of
C' classes, so that each customer class can have different
arrival rates to the network, and can also have different routing
probabilities within the network. Each of the C classes can
contain customers of the three Types. These Types are the
“positive” or “negative” customers, and “triggers”. Other types

Energy Storage
Unit
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Energy Flow J
Work Flow
With prob. D, With prob. D,
—»

Work-Stations

A A

Fig. 1: Schematic representation of an EPN system with NV
WS (workstation) nodes and N ES (energy storage) nodes.
The EPs are accumulated in the ESs (amber) and jobs are
accumulated in the WSs (green). The EPs in ES i either can
be forwarded to the corresponding WS i on demand with
probability d;, or moved to another ES node j with probability
P;; to balance the energy distribution. The jobs in the WS ¢
can be processed locally with probability D; or forwarded
to some other WS j with probability M;; for further steps
of execution. In this figure w; is the rate at which EPs are
forwarded from ES 7 to one of the workstations. On the other
hand ¢; is the loss rate of energy (i.e. leakage) from ES 1.

of customers that were developed more recently, e.g., “resets”
[58] and “adders”, are not used in this paper.

Positive customers are the normal queueing network cus-
tomers which request and obtain service at the queues. They
belong to one of C' classes. We denote by £, ;(t) the number
positive customers of class ¢ at node ¢ at time t. The total
number of positive customers at node ¢ at time t is denoted
Ki(t) = Y0 kealt).

At all of the v queues, positive customers have i.i.d. expo-
nential service times of rate (1), ..., r(v) which are assumed
in this paper to be identical for all classes of customers. After
completing service and leaving a node ¢, a positive customer
of class ¢ can become:

o A positive customer of class ¢’ at node j with probability
Hzi,c’, ;» and we denote the corresponding transition

probability matrix as TT* = [II7, , ], or

o The positive customer can leave the network with prob-
ability I, ;, or

« It can change into a negative customer of class ¢’ and join
node j with probability II; , ., in which case it will
remove, or “instantaneously serve”, a batch of positive
customers of class ¢/, and the batch is of maximum size
B ; at queue j. For the purpose of this paper, we assume
that the probability distribution of the batch size B ;
does not depend on the class ¢, so that B, ; is a random
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variable with probability distribution:

7j(s) =Pr[By =5 >0, s > 1. (D)

Thus if the negative customer of class ¢ at node 7 then
arrives to queue j as a class ¢’ customer at time ¢, , then
a total of max [k ;(t), Be ;] positive customers of class
¢ will be instantaneously removed from the queue at j
so that ko j(t1) = 01if By j > ke j(t), and ke (tF) =
Kej— Bej if Berj < ke j(t). Furthermore the negative
customer disappears at time ¢T after it has had its effect
on the queue. Also, if k. j(t) = O then the negative
customer itself disappears and no customer is removed
from queue j.

« Finally, the positive customer of class c¢ leaving queue
i can become a “trigger” of class ¢’ at queue j with
probab1l1ty HC i.cr j» in which case it will move a class
¢ customer from queue j to queue [, and that customer
becomes a class ¢ customer at queue [, with probability
Qc jerqy > 0. If queue j does not contain a class
¢ customer when the trigger arrives to queue j, then
no customer is transferred from j to [, and the trigger
disappears.

o The effect of a negative customer and of a trigger are
instantaneous: they occur in zero time; i.e. a negative
customer or trigger arriving to a queue at time t will
modify the queue’s state at time ¢*. Furthermore, both a
negative customer and a trigger will themselves disappear
after they have visited a queue.

o Queues also have external positive negative and trigger
type customer arrivals at rates )\CZ, Acis )\( , which
can differ for each class ¢ and queue ¢, accordmg to
independent Poisson processes at each of the queues. Fur-
thermore, externally arriving customers will have exactly
the same effect at a queue as the ones that arrive from
another queue.

« Positive customers at WS ¢ have service times which are
mutually independent and exponentially distributed with
rate 7(7); note that the service rate is the same for any
class c.

For all (¢, 1), the probabilities introduced above will satisfy:

c
T
°’+ZZ CLL] czc’ +chc ]] 17(2)
c/'=1j5=1
C v

> Qeicra=1. 3)
c’'=11=1

Let Ajl, A;, , denote the total arrival rate to queue i of

class ¢ customers that are of positive, negative and of trigger
type, respectively. Then the “traffic equations” for the system

4
are given by:
A+ _>‘c+i + ZZ 7)4er 511 c”ac% T
o= 1] 1
C v
)DPIULIND 3) w AIT VI
c/=1j=1 c’=11=1
A= Ac,ﬁZZ D W e @
c'= lj 1
N Y T
o/ = 1] 1
where
AL
Qeji = — _ 71—2?2 g mi(s);
r(i) + AL + A [

In the sequel we will assume that:

e At any queue ¢ only positive customers, negative cus-
tomers, and triggers of a specific single class c; can

arrive.
o Therefore for a specific ¢; we have: AT, = A7, = AT, =
0 if ¢ # ¢;.
e Also, AT ;>0,A; ;>0,Af >0
As a consequence we have:
AL
Geri = — TS IO
r(i) + AL A [

With these assumptions, the following result follows from
previous work [56], [57]:

Result 1 — Product Form Solution (PFS) Let K(t) =
(K1 (t), ..., K,(t)). If the traffic equations (4) have an unique
solution such that all the g.; in (5) lie between 0 and 1, i.e.
0<¢qei<lforl<i<wandl<c<C(, then denoting by

= deiis ©6)

Ci:].
the following result holds:

v

k)l =1l —-¢).

i=1

lim Pr[K(t) = (kq, ...

t—o0

Directly following from the above PFS (7), we can see that the
marginal queue length probability distribution for any queue
7 is given by:

lim Pr[K;(t) = kj]

t—o0

= > > [wra-a)
i=1,i#7 k;=1, i#j i=1
=lg;]"(1 - q5). ®)
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III. THE EPN AS A G-NETWORK AND ITS OPTIMIZATION

We now refer to the EPN of Figure 1 and to the discussion
in Section II and Section II-A. The EPN of Figure 1 can be
represented by a G-Network with v = 2N queues, where the
WSs are represented by the queues 1,..., N, while the ESs
are represented by the queues N +1,...,2N.
Specifically, with regard to the notation in Section II and
Section II-A, we have:
e The network has C' = 2, i.e. two classes of customers:
Class 1 refers to the jobs to be executed in the WSs. Class
2 refers to the EPs.

« Note that negative customers and triggers cannot arrive
at any of the queues from the outside world, i.e. A_; =
/\Zi =0forc=1, 2andi€e{l,...,2N}.

o Class 1 customers can only be “positive customers” and
they represent the jobs being served at the WSs. Hence
A y=Xand \j, =0fori=1,...,N.

o Furthermore jobs at the WSs are only removed or moved
to another WS, under the effect of EPs, i.e. 7(¢) = 0 and
1172' :lgﬂ' =0 fori= 1,...,N.

o EPs are positive customers at the ES (Energy Storage)
queues N+1, ... ,2N. Hence fori,j € {N+1,...2N}:
/\;,z = Y, )‘2_,1 =0, /\IZ = /\1_’1 =0, and T(Z) = w; + 9;.

o Also Il3, , ; = P;; where Pj; is the probability that EPs
are moved from ES ¢ to ES j. However, in the system
that we will analyze, EPs cannot be moved from one ES
to another, so that H;i,lj =0.

e 5,5 ; = 0 because EPs cannot “eliminate or destroy”

other EPs.

e Iy;q,; = Ij,;,; = 0 because jobs cannot eliminate
other jobs or EPs.
o Note that l5; = &_‘?jw is the probability that an EP is

leaked out of ES ¢ rather than being forwarded to WS 1.

o EPs that leave ES (queue) j = N + ¢ and arrive at WS ¢
with ¢ € {1,..., N}, become either negative customers
(serving a batch of jobs) or triggers (moving a job to
another queue), with probability d;. S0, +w

e On arrival at WS ¢, 1 < ¢ < N, with probab111ty D;
an EP becomes a negative customer with batch removal,
representing that an EP is used to process one or more
jobs at the WS. The probability distribution of the size
of the batch of jobs that can be served or removed” is
mi(s) = Pr[B; = s], and I, ,, ; = D;.d;. S +w~’ with
jeE{N+1,...2N}and i=j — N.

e On arrival at ¢, with probability 1 — D; an EP becomes

a trigger, so that TI3 ;,; = (1 — Di)d; 554, and
Q1i1,m = Mip, for j € {N +1,...2N}, Z—j*N
1<m<N.

o Note that 113, ; = II{ ; 5, = TI{ ; , ; = 0 for all 4, €
{1,...,2N}, andH%jj,Li =0ifi#j—Nfor N+1<

j <2N.
. H1+11]:( D)MU’H112J—O’H;i,l,jzo’ll,i:
0, fori,j € {1,...N}.
. llz—O ZQL—Ofori—l,...,N,andlli:(), 12,7;:
6+w fore=N+1,...,2N.
e 1- d_zjlpwfom_1 LN and YN M =1
fori=1,.

With regard to (5) of the the G-Network Model, the corre-
sponding expressions for the EPN model are given for Classes
1 and 2 by the following expressions:

ari = ik 9)
i — 1-37%2, 45 ,mi(s),”’
@2+ Nwidi[(1 — D;) + Dz%]
where
A, =X+ Zm j i)djwi Mjiga jy N,

and N
Vi + ijl w;iq2,j+NPji

42,i+N = (10)

A. The Product Form Solution for the EPN Model

Because the EPN model we have described is a special case
of a G-Network with two classes of customers, namely jobs
for Class 1, and EPs for Class 2, we can directly apply the PFS
of equation (7). For this case, i.e. where we model an EPN,
each of the queues is either a WS or a ES. WSs only contain
Class 1 customers, and ESs only contain Class 2 customers.

Here v of (7) has the value v = 2N, and queues 1, ... | N
are WSs, while the queues N + 1, .. ;2N are the ESs.

As a consequence, the value ¢} of (7) is given by:

4 =qi 1<i<N,andq; = q2i, N+1<i<2N, (11)
and therefore:

tliglo PriK(t) = (k11 -

th;

if (9) and (10) have an unique solution such that all the 0 <
geiy < 1for1 <7 < 2N and 1 < ¢ < 2. The marginal
probability of the queue length for the queue ¢ and class ¢ =
1,2 is

JkiN ko Ng1s s keon)] = (12)

k2it+N

= 1) N (1= @2i4n)-

lim Pr[K.;(t) = ke

kciirq .
t— o0 - qc,i (1 qc,z) (13)

B. Cost Function, Parameters and Optimization

Here will address two related optimization problems that
are outlined below. The objective is to minimize the average
response time for jobs that come into the system, where the
jobs arrive from the outside world to WS ¢ at a given rate
;. Furthermore, the total arrival rate of EPs is fixed at some
value v and each of the ESs has a transfer rate of EPs to the
corresponding WS given by WS ¢ and a local energy leakage
rate §;, for i =1, , N. Note that the transfer times for EPs
from ESs to the corresponding WS are i.i.d. and exponentially
distributed random variables with parameter WS ¢. Similarly
the successive leakage times for the EPs in the ¢ — th ES are
also i.i.d and exponentially distributed with parameter ;.

To simplify the analysis, we make an assumption regarding
the probability distribution 7;(s). Specifically we assume that:

o0
mi(s) = (1—u)ui 0 <u; < 1,8 > 1,2@-%)“
s=1

s—1 __
=,
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The average of the maximum number of jobs that can be
processed by a single EP at WS i is:

o0

E[Bc,y,i} = Z 8(1 — ui)uf_l —

s=1

T (14)

Although this geometric assumption regarding the probability
of the number of jobs being serviced by a single EP, is
convenient for computational purposes, analytical results can
also be obtained for general distributions when the ¢; ; are
quite large and hence close to one for a heavily loaded system,
or very small and close to zero for a lightly loaded system.

1) Problem 1: Consider the case where the EPs cannot
move between ESs so that Pj; = 0 and d; = 1. Also assume
that jobs cannot be moved between WSs, i.e. D; = 1. In this
case, assume that the total renewable energy flow into WS i
is vi = pi.y-

The cost function that needs to be minimized represents the
overall average job response time:

i\’: q1,i
K
1

— 1,

1
R= (15)
N
Zi:l )\1 i=1
Regarding equations (9) and (10) with the specific restrictions
for this case with d; =1, D; =1, for 1 <i < N, we have :

i
q1,i = -3 ¢5 . . mi(s),’ (16)
G2, Wi S_ll,q;l’fi
TDi
i = . 17
q2,i+N B (17)

Furthermore, there is only one class of customers (the com-
puter jobs) at WSs, i.e. queues 1, ... , N, and similarly just
one class of customers (the EPs) at the ESs, i.e. queues
N +1, ... ,2N, we can write: q; = q1; and g}, y = G2+ N
forie {1, .. ,N}

Problem 1 is then to choose p = (p1, ... ,pn) SO as to
minimize R for a given value of y and for given energy leakage
rate d; at each ES 3.

2) Problem 2: In the second problem, we assume that d; =
1, =1, ... , N so that EPs stay in the same ES unit where
they have been initially allocated. However in Problem 2, we
do allow jobs to be moved between WSs, and their movement
is specified via a fixed probability matrix M = [M,;] where
M;; is the probability that a job that is currently at WS i is
moved for execution to WS j.

Recall that D; is the probability that at station ¢ the job at
the head of the queue is allowed to move to station j with
probability M;;. Note that in this case, because the jobs do
move, the average response time R will be based on the total
effective arrival rate of jobs to each WS, including the jobs
arriving from other workstations. Thus:

Problem 2 is to find the value of D = (D;, ... Dy) that
minimizes R the overall average response time of jobs, for a
given fixed movement matrix M.

6
IV. ANALYSIS OF PROBLEM 1
Using Little’s Formula we write:
1 & qr
R=—) —— 18
“Z;*@’ (18)

where AT = Zfil Ai-
Note that A, = A; when D; = 1 forall i = 1,...,N.
(I—u;)u;

Substituting ~——= into (16), we have

1—ug)u;
1-377, %qi °
1—gqf

e AN
Qi - * X [
Wiq; 1 N
Ai

Wi + wiqy, N

}—1

19)

Substituting (19) into the cost function R, we obtain:

1 & i
k= /\T; oiypi + Ni(u; — 1)’

(20)

where
w;

_— 21
- 1)

g; =
denotes the energy efficiency, with regard to leakage, of i —th
ES node.

Choosing the p; > 0 so as to minimize R is an optimization
problem subject to the constraint Zf\; p; = 1. Therefore we
use Lagrange multipliers with the Lagrangian

N
L=R+B0 pi—1) (22)
i=1

Here the Lagrange multiplier /5 is a real number.
Suppose p* = (p}, ... ,pYy) is a local solution of the opti-
mization problem. Then the necessary Kuhn-Tucker conditions

are:

and
N
> opi—-1=0, (24)
i=1
where p* is a regular point for the constraint.
Solving for (23), we know that
(9R —/\'O'i
= =, (25)
Ipi A+ [oivpi + Au; — 1)]
must hold. Then rearranging (25), the solution p; is
¥ = . 26
b oy +7V AMtoiyB (20
Moreover, the second necessary condition
N
=1 27
; < o - >\+Ui75> ’ &7

also must hold. Solving (26) and (27) simultaneously, we
obtain:
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Result 2 The optimal solution to Problem 1 is given by:

N
)\i 1-— i
V(a2 e
>im1 o (=1 i

3

Ai

/\i 1—u7; o

P = ( i
a7y

However, the sufficient condition that there exists an opti-
mum solution p* also needs to be examined. To guarantee the
existence of the strict constrained local minimum, the Hessian
V ppL must be positive definite. Notice that V,,, £ is a diagonal
matrix with diagonal entries:

O?L(p*,p*) O°R 2022
5 = = 7. (29
op; Op; A+ [oivpy + Aiu; — 1)]
Thus the sufficient condition holds if the inequality
oiyp; > i1 —wi), (30)

is satisfied for all ¢ = 1,..., N. Substituting p; into (30),
we see that the inequality is equivalent to the following
expression.

Result 3 The necessary condition for the optimal solution of
Result 2, is given by:

N
v>y
=1

ﬁ(l_ui)-

i

€29

This condition is physically meaningful since it implies that
the total rate of harvested EPs has to be sufficiently large so
as to provide enough energy to power all the WSs, despite the
energy leakage that also will occur at each ES.

Note from (14) that 1 —u; = [ E[B, ;] |7%, ie. (1 —w;)
is the inverse of the average of the maximum number of jobs
that WS ¢ can process with a single EP.

A. An Example

In order to illustrate the analytically obtained optimal solu-
tion of Problem 1, we will consider a numerical example with
three pairs of WS and ES nodes, and the parameters shown
in Table I.

TABLE I: Parameters in Problem 1

Parameters Values
0% 150 EPs/sec
A1, A2, A3 50, 30, 10 jobs/sec
Dl,DQ,Dg 1,1, 1
w1, w2, W3 100, 80, 50 EPs/sec
U1, U2, U3 0.2,0.2,0.2
M;; for all 4, j 0
P;; for all 4,5 0
61, 92, 03 10, 8,6 EPs/sec
di, d2, d3 1,1,1

We first examine the sufficient condition with respect to
(30) to find the range of p;, ps and p3 respectively, and to

guarantee that every ES can provide sufficient power to its
corresponding WS. The numerical conditions are:

0.2933 < p; < 1,
0.1760 < py < 1,
0.0597 < p3 < 1,

with the constraint p; + p2 + ps = 1. Then we calculate the
values of delay R with all (p1,p2,p3) and compare them to
the optimal solution given by (28). The results are shown in
Figure 2 and 3 in which the x-axis and y-axis are p; and po,
while ps follows from p3 =1 — p; — po.

Hence a 3-D plot can be used to illustrate the relation of the
average overall response time R and probability (p3,p5,p3).
The theoretical result from (28) gives the optimal solution
(p1,p5,p5) = (0.5049,0.3399,0.1552) that produces the
minimal overall delay W = 42.9 ms.

delay in seconds

Fig. 2: The average job response time R for all (p1,ps) pairs.
Note that the range p; for all 7 is not [0, 1] due to the constraints
and the sufficient conditions.

0.048
0.046

0.044 |

delay in seconds

0.042 -

0.04 L
0.8 — —

Py

Fig. 3: The neighbourhood of the optimum point at a much
smaller scale of the average response time R along the z-axis.

V. ANALYSIS OF PROBLEM 2

Here, as before, EPs from ES ¢ are only consumed at WS
1. Furthermore from (9) and (10) we obtain the steady-state
probabilities g1 ; that the WS queues are non-empty, as well
as the probabilities g ; that the ESs are non-empty:
Afi(l — Uiq1,i)
qi1: = )
! Q2,it NWi[1 — uiq1 i + wiqu i D]

Vi
; = 33
q2,i+N wi + 0 , (33)

(32)
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where:
=\ +quj DdjwiMigajin,  (34)
and we have used:
1—wu)u?
mi(s) = (Gl S (35)
u;
Note that using Little’s Formula, we again have:
Z q1,i (36)
z 1 l i=1 _qll

but of course the ¢; ; will be different. The partial derivatives
with respect to Dy, k=1, , N will therefore be needed:

0q1; 1 "
0D, qoirNwi[l —wiqri + wiqi i D;]?
a(h i
([1 — uiq1; + wiqi i D[ — Afz oDy, + (1 —uiqu,:) %
N
dq1.; dD;
; (¢2,j+vw; M;i(1 = Dj) aD: - qz’”ijMjiql’de),i)]
Oq1,i dD;
+ AT ui(1 = wiqu ) [(1+ Dy) 85k + Ch,idka]
37
Note that
ap, 1, ifi=k
R (38)
dDy, 0, otherwize.
Rearranging (37), we have
8(11 7 6(]1,‘
ZqZJ-HVwJ M;;i(1 - D;) 8D]
9
dD; dD;
_ . M, . J B; J
q2,j+NW; Mjid1,5 dD,, + dDy,’
where
1 i 7 1 Di
A = A [—+ “ — us(1+ Dy) ,
i l—wqrs 1 — g +uiqrD;
B — AlyiUiQI,i '
1 —wiqrs +uiqr i D;
Let us use the conventional notation diag(z1, xp) for
the diagonal matrix with diagonal entries of (1, JIN).

Furthermore, define the following matrices:

A = diag(A1, ... ,An),

B = diag(B1, ... ,Bn),
Cq = diag(geawi(1 —D1), ... ,q2.vwn(l— Dn)),
Cp = diag(qg21wiq1,1, --- ;G2 NWNG1,N)-

Using the above notation, by augmenting the scalars
0q1,i/0Dy, and dD;/dDy, into a vector representation:

8q1 oD
d 4
oD, """ 8D, (40
we obtain:
Oq1 T -1rg T oD
=[A-M -M 41
oD, | Cal (B Colgp, @D

Moreover, define Jg = V,, R as the gradient of R with
respect to the elements of the vector qq, or:

1
At(1—q1,n)? |0

Ir = |ty “2)

which is a 1 x N Jacobian matrix. By the chain rule, the
gradient of the average response time, R with respect to Dy
is

OR oD

— B-M’C

aDy, ' 5D, -
Since R is continuous and differentiable, gradient descent is
useful for this optimization problem. At a given operation

point Xr = (v, w, d,u, A, M), the gradient descent algorithm
th

=Jr[A - MTCq]” (43)

at its m*" computational step is:
(m4+1) _ (m) OR
Dy, =D, = aD |Dk D™ (44)

where o > 0 is the rate of descent. The steps of the gradient
algorithm are:

1) Initialize the vector D and choose «,

2) Solve the non-linear equations given in (32) and (33) to
yield steady state utilizations g ; and g2 ;,

3) Calculate the partial derivatives as given by (43),

4) Update the control parameter D; using (44).

5) Go to the Step 2 (above) until a sufficient number of
iterations have been made so that the difference between
the absolute difference in the values of R in successive
iterations is smaller than a preset value € > 0.

Note that in practice, this approach can also be used to
apply a gradual optimization of the system, since the D;
are progressively modified, while the system may operate
normally and slowly shifts towards the optimum.

A. An Example

In order to illustrate the type of system that can be opti-
mized, we consider a remote sensing station that is powered
by energy harvesting devices with three ES nodes, each of
which powers a specific WS node, as shown in Figure 4 in
which ES ¢ forwards EPs to WS 4. For instance:

e« WS 1 is a server for the main sensor (e.g. a radar), with

a local arrival rate A\; of jobs;

¢ WS 2 is a communication device that is used to link the
remote sensing location with the outside world, with an
arrival rate of jobs \o;

o WS 3 is a monitoring server that processes sensor data
for environmental data or security, with an arrival rate of
jobs As.

The EPs stay in the ES where they are initially stored.
However, jobs are moved between the WSs to minimize the
average time response time. Parameters are as shown in Table
II, and the matrix M is chosen as follows:

0.10 045 045
045 0.10 045
0.45 045 0.10

M = (45)

When we apply the gradient descent algorithm with initial
value D = (0.5,0.5,0.5), after 100 iterations we are close
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=X
o

E}
Energy Flow
Work Flow
3

Fig. 4: Schematic representation of an EPN system with three
WS and ES nodes that models a remote sensing facility. WS 1
may represent the compute server for a radar or other sensor.
WS 2 may be a communication server transmitting data to the
external world and WS 3 may be monitoring the temperature
and security conditions at the remote station.

TABLE II: Parameters in Problem 2

Parameters Values

Y1, V2, V3 50,40, 40 EPs/sec
A1, A2, A3 30, 20, 10 jobs/sec
Py for all 4,5 0

w1, w2, W3 100, 80, 50 EPs/sec
ul, u2, u3 0.3,0.2,0.1
M;; for all 7, j fixed

61, 02, 03 10, 15, 20 EPs/sec
di, dz, ds 1,1,1

«a 0.01

to the optimal value D* = (0.822,0.673,0.712), and R is
reduced from 636.9ms to 86.9ms as shown in Figures 5, 6
and 7.

VI. CONCLUSIONS

In this paper, we have considered an EPN model represent-
ing a system where jobs can be moved between work-stations,
while EPs arrive at a WS from the ES directly associated with
the WS. We have considered the case where the number of
jobs serviced by a single EP is represented by a probability
distribution. We also assume that each ES is subject to loss
of energy through leakage. Each WS may consume a different
amount of energy per job that is processed, with respect to
other WSs. We also assume that the WSs will consume energy
even when they are idle.

We have first considered the case where neither jobs nor
EPs can be moved so that each WS executes locally the jobs
that it receives, using energy from its own ES. In this case, we
have considered how a common flow of EPs generated from
a renewable energy source, should be distributed optimally
among the ESs so that the average response time to jobs can

e
3

average response time W/sec
o o o o o
n w - o (2]
:
\ \ \ \ \

e
T
.

10 20 30 40 50 60 70 80 90 100
iterations

(=}

o

Fig. 5: The average response time R decreases and reaches its
minimal value of 86.9ms using the gradient descent algorithm.
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Fig. 6: The changes in the values of the parameters Dy, Do
and D3 during the gradient descent.
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iterations

Fig. 7: The change in the utilizations ¢; 1, g1,2 and ¢; 3 during
the gradient descent. The system remains stable since these
values remain between 0 and 1.

be minimized. This problem has been solved analytically for
a special class of probability distributions for the number of
jobs processed with one EP.

Then, with the same cost function to be minimized, we have
considered the case where jobs can be moved among WSs
according to a given probability transition matrix, but each
station can decide whether to move a job or not based on
a local decision probability D; at WS 4. In this case, again
EPs that are allocated to a given ES are either consumed
by the local WS, or they are lost through leakage. Here the
optimization problem is to select the decision to move a job or
not from a station where it is in queue to another station using
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the vector D = (D,

... ,Dn). In this case, the solution is

provided using a gradient descent algorithm of computational
complexity O(N?). For both problems, we have provided a
numerical example to illustrate the results.

Future work will investigate the minimization of a cost
function that combines the average response time of jobs, and
the energy wastage through leakage or due to idle WSs which
consume energy even when they do not process jobs.
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