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[Abstract]  

Key Content 

 The prevalence of preterm birth is increasing and, owing to advances 

in neonatal care, more infants are surviving. However, in parallel with 

this the incidence of cerebral palsy (CP) is also rising.  

 Magnesium sulfate (MgSO4) is currently recommended for use in 

women who are at risk of giving birth at less than 30–32 weeks of 

gestation for neuroprotection of their infants. The exact mechanism of 

action remains unclear.  

 Meta-analyses report encouraging results that are consistent with a 

modest but tangible benefit for the use of MgSO4 and suggest a 

number needed to treat (NNT) to prevent one case of CP in infants 

born preterm of 46 before 30 weeks of gestation and 63 before 34 

weeks of gestation. 

Learning Objectives 
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 To gain an understanding of the risk of neurodisability in infants 

delivered preterm. 

 To become familiar with the main studies assessing the use of 

magnesium sulfate (MgSO4) for neuroprotection in preterm deliveries. 

 To become aware of the relevant international guidelines. 

Ethical issues 

 Concerns have been raised regarding the higher number of perinatal 

deaths reported with the use of MgSO4 in the MagNET study. This was 

not substantiated in the Cochrane review. 

 Given that MgSO4 is a safe, readily available and inexpensive drug, 

even if there were only to be modest benefits from its use, the risk: 

benefit ratio would almost be in favour of its use. 

  

Keywords: cerebral palsy / intrapartum / magnesium sulfate (MgSO4) / 

neurodevelopment outcome / neuroprotection / preterm deliveries  

 

[Main Body of Text] 

[Heading1]Cerebral palsy in babies born preterm: causes and impact 

The prevalence of preterm birth is increasing.1 Every year, one in ten babies, 

equivalent to 15 million babies worldwide, will be born preterm. Of these, 

approximately one million will die and many more will suffer from lifelong 

disability, including neurodevelopmental impairment.2 

Advances in neonatal care have improved the survival of infants born preterm, 

particularly those born at a very low birth weight or gestational age;3 however, 

despite this improved survival rate, the prevalence of neurodisability, even in 

high income countries, remains static.4 EPICure 25 highlighted the need for 

improved care, with particular consideration given to survival and long-term 

sequelae in these infants.  

Cerebral palsy (CP) is a general term describing a range of non-progressive 

syndromes of posture and motor impairment that result from an insult to the 

developing central nervous system. It is the most common cause of severe 
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physical disability in childhood. The characteristic signs are spasticity, 

movement disorders, muscle weakness, ataxia and rigidity. Clinical patterns 

of involvement described in CP include: diplegia (significant leg involvement 

with little effect on the upper limbs); hemiplegia (involvement of ipsilateral arm 

and leg); and quadriplegia (involvement of all four limbs). Movement disorders 

can coexist with the clinical patterns of involvement, and there can be 

spasticity, rigidity, hypotonia, dystonia or a mixture of these. Diplegia is the 

commonest pattern seen in CP that has arisen secondary to prematurity. 

The risk of CP increases the lower the gestational age at birth.6 The 

prevalence of CP is highest in children born at less than 28 weeks of 

gestation (111.8/1000 neonatal survivors; 82.25/1000 live births) and declines 

with increasing gestational age, to 43.15/1000 live births between 28 and 31 

weeks, 6.75/1000 between 32 and 36 weeks, and 1.35/1000 for those born 

later than 36 weeks of gestation.7 CP results from a permanent static lesion of 

the cerebral motor cortex that occurs before, at, or within 2 years of birth. 

Although the lesion is non-progressive, the clinical manifestations of CP 

change as the child grows and develops. While there are several causes or 

associations for CP, including genetic mutations,8 preterm delivery is a major 

risk factor and accounts for approximately 35% of all cases;7 in 49% of these 

cases, CP is thought to be due to a perinatal insult.9 For the purpose of this 

review, we briefly highlight perinatal neurological insults that can occur in 

association with preterm delivery and their neurodevelopmental sequelae. 

This review will also summarise current evidence for the use of MgSO4 for 

neuroprotection in the antenatal period. 

 

[Heading1]The link between preterm birth and perinatal fetal brain injury 

Two identified patterns of central nervous system injury underlie the 

development of CP in the preterm infant: intraventricular/germinal matrix 

haemorrhage, typically initiating in the germinal matrix; and white matter 

injury, also known as periventricular leucomalacia (PVL). Severe 

intraventricular haemorrhage (grades III and IV) is reliably detected by 
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ultrasound, while PVL is best detected with MRI. Often the final diagnosis of 

CP takes a few years.  

PVL is the predominant form of brain white matter lesion that affects preterm 

(23–32 gestational weeks) infants and is particularly associated with the 

subsequent development of CP in childhood.10 PVL has been estimated to 

occur in 2–3% of infants born weighing less than 1500 g.11 Approximately 

10% of infants with PVL later exhibit CP and 50% show cognitive and 

behavioural deficits.12 Pathology observed in PVL includes the development 

of lesions within the white matter as well as cerebral necrosis. These lesions 

can be diffuse or cystic. The areas of white matter peripheral to the lateral 

ventricles are predominantly affected and, less commonly, necrotic foci can 

also be detected within the corpus callosum, internal capsule and thalamus.13 

It is now believed that PVL is primarily caused by inflammatory cytokine 

production mediated by maternal and/or fetal infection (Figure 1).14 It is 

characterised by a raised level of plasma interleukin 6 (IL-6) in the fetus; and 

an increase in IL-6 has been observed in the umbilical cord in association with 

PVL.15  

Other neurodevelopmental consequences of prematurity may also be seen: 

 Motor dysfunction can range from mild to gross dysfunction and may 

be asymmetrical. Impairment in fine motor skills is found in 40–60% 

and developmental coordination disorder, a milder motor disorder than 

CP, occurs in 18.3% of children who were born at less than 32 weeks 

of gestation.16  

 Sensorineural impairment can also occur, with some evidence to 

suggest an inverse relationship between such impairment and both 

gestational age at birth and birthweight. An estimated 3% of infants 

born before 32 weeks of gestation have visual impairment,17 with an 

incidence of 53% in those with known PVL.18 Bilateral isolated hearing 

loss is reported at 2–3 years of age in 2.2% of children born before 28 

weeks of gestation.19 A study of 1384 children assessed at age 4–6 

years and who had weighed less than 1250 g at birth found that those 

with PVL had the highest risk of visual impairment.20  
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 Epilepsy is more prevalent in babies born prematurely. This risk is 

increased with lower gestational age at birth, with an odds ratio (OR) of 

4.98 for hospitalisation for epilepsy for those born between 23 and 31 

weeks of gestation.21  

 Cognitive impairment is most prevalent in children born prematurely. 

One study assessed developmental outcome at 2 years of age in 

children born earlier than 27 weeks of gestation and found that 40% 

had a developmental quotient (DQ) less than one standard deviation 

(SD), 6% had a DQ between 1 SD and 2 SD (mild delay), 35% had a 

DQ between 2 SD and 3 SD (moderate delay) and 19% had a DQ less 

than 3 SD (severe delay).22 

 

[Heading1]Proposed mechanism of action of magnesium sulfate 

(MgSO4) for neuroprotection 

There remains a lack of understanding of how MgSO4 may act as a 

neuroprotective agent. MgSO4 freely crosses the placenta and takes part in 

many intracellular processes, resulting in effects including cerebral 

vasodilation, reduction in inflammatory cytokines and inhibition of calcium 

influx into cells.23,24 

One widely cited theory for the possible neuroprotective effect of MgSO4 is 

that, by blocking calcium processes and thus acting as a vasodilator, it may 

inhibit or delay ischaemic cell death during and after cerebral ischaemic 

events.25 There is also evidence that MgSO4 decreases the production of 

proinflammatory cytokines and free radicals during hypoxic-ischaemic 

reperfusion.26,27 This theory is supported by several recent papers that 

demonstrate a suppression of cord blood cytokine production with MgSO4 

use.28–30 In 2014, a randomised controlled trial in 72 women showed 

increased levels of brain-derived neurotrophic factor (BDNF) in cord blood of 

preterm babies (born before 34 weeks of gestation) where MgSO4 (4 g 

loading dose and 1 g/h until delivery) had been given antenatally, compared 

with placebo.31 BDNF is a neurotrophin shown to be protective against 

neonatal hypoxic-ischaemic brain injury in vivo.32 In a recent study in which 
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MgSO4 was given prior to preterm delivery at less than 32 weeks of gestation, 

there was an associated reduction in risk of developing echodensities and 

echolucencies associated with cystic PVL, as detected by cranial ultrasound 

performed in neonatal infants.33  

[Heading1]Key studies on MgSO4 use for neuroprotection in preterm 

deliveries 

[Heading 2] Observational studies 

The first observational study in 1988 by Leviton et al.34 discovered that infants 

born preterm to women with pre-eclampsia toxaemia had a lower incidence of 

adverse central nervous system outcomes. Very low birthweight babies 

(weighing less than 1751 g) who had been exposed to MgSO4 in utero were 

found to have fewer germinal matrix haemorrhages as a secondary benefit. 

Six years later, in a case–control study derived from the California Cerebral 

Palsy project, Nelson and Grether35 reported an association between 

antenatal MgSO4 administration and reduction of cerebral palsy in infants born 

weighing less than 1500 g.  

[Heading 2]Randomised controlled trials 

From 1997 to 2008, results from five randomised controlled trials (RCTs) were 

published that included data from 6145 babies.  

In 1997, the MagNET trial, the first RCT, published interim safety data 

because an unexpectedly high number of adverse outcomes were found in 

fetuses exposed to MgSO4.36 This was a four-arm study of 149 women in 

preterm labour between 24 and 34 weeks of gestation. In the two unblinded 

tocolytic arms, women in preterm labour were randomised to receive MgSO4 

or an alternative tocolytic. In the other two double-blinded arms MgSO4 was 

given to mothers in one group purely as a neuroprotective agent (and 

compared with normal saline). The study found ten intrauterine deaths in 

those receiving MgSO4, compared with one death in those given saline, a 

significant difference. On further analysis, other causes of death such as 

congenital abnormality in one case and twin-to-twin transfusion in two cases 

were found in fetuses exposed to MgSO4, leaving seven unexplained. 
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The Magpie trial, originally designed to assess maternal eclamptic outcomes 

in 33 countries,37 reported a non-significantly lower risk of death or CP in 

children whose mothers had received MgSO4 at 18 months of age (RR 0.83, 

95% CI 0.66–1.03) as a secondary measure.38 The main criticism of this study 

was the inconsistency of the paediatric follow-up.  

Three large RCTs specific for neuroprotection in the preterm infant followed 

the Magpie trial (see Table 1 for comparison of the trials) between 2003 and 

2008. No major maternal adverse effects were observed in the MgSO4 group 

in any of these studies.  

In ACTOMgSO4, Crowther et al.39 recruited 1062 women from Australia and 

New Zealand. The study reported a non-significant reduction in CP and death; 

however, a significant reduction in gross motor dysfunction was noted.  

BEAM, a study involving 2241 women in the USA and using a different 

prescribing regimen (6 g loading dose and then 2 g/h for up to a further 12 h), 

found a significant difference in outcome between placebo and MgSO4 for the 

occurrence of severe CP only.40  

PREMAG, a French study of 688 infants whose mothers had been given a 

bolus 4 g dose of MgSO4 perinatally, reported on data from 200641 with further 

2-year follow-up data published in 2008.42 Initially, the primary outcome of 

neonatal mortality before discharge was assessed and it was reported that 

total mortality, severe white matter injury, and the combination of these 

outcomes, were less frequent in babies exposed to MgSO4, but these 

differences were not statistically significant. The complete 2-year follow-up 

data published in 2008 did not show a significant difference in rates of CP, 

gross motor dysfunction or combined death and CP between the control and 

treatment groups. However, a significant reduction was noted in the combined 

outcomes of death and gross motor dysfunction, as well as the composite 

outcomes of death, CP and cognitive dysfunction.  

[Heading 2]Meta-analyses and Cochrane review 

Meta-analyses of the RCTs are summarised in Table 2. These meta-analyses 

differed slightly in their methodology and inclusion criteria (gestation of 

inclusion and degree of CP) but primarily showed that, by combining the 
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numbers in the three RCTs and the Magpie and MagNET studies, a 

statistically significant difference could be demonstrated for reduction in CP 

when MgSO4 had been administered. Doyle et al.43 found a reduction in CP 

and motor dysfunction. No reduction was noted in the risk of intraventricular 

haemorrhage causing CP. This was also published as a Cochrane review,44 

which stated that there were insufficient data to recommend the optimal 

loading and maintenance doses of MgSO4 for the best neuroprotective effect.  

Costantine et al.45 assessed the benefit of administering at different 

gestational ages, and found the benefit to be greater before 30 weeks, with an 

NNT of 46, versus an NNT of 56 between 32 and 34 weeks of gestation. 

Conde-Agudelo demonstrated similar results, with a reduction in CP and 

gross motor dysfunction in the infant when MgSO4 had been administered.46  

[Heading 2]International guidelines/scientific impact papers 

The advice given in guidelines in various countries is summarised Table 3. In 

the UK, the RCOG47 published a scientific paper in 2011 recommending a 

gestational age cut-off of less than 30 weeks for administering MgSO4 for 

neuroprotection, which is similar to the Australian guidelines.48 NICE 

recommends offering MgSO4 to women at risk of giving birth before 30 weeks 

of gestation in their preterm labour and birth guidelines published in 2015.49  

[Heading 2]Inconsistencies in recommendations for MgSO4 treatment and 

dosage  

MgSO4 is currently recommended worldwide for women at risk of preterm birth 

before 30 to 32 weeks of gestation for neuroprotection of their infants, based 

on high quality evidence of benefit. Local trust guidelines on exact cut-off are 

currently being used. However, there remains uncertainty as to whether these 

benefits also apply at higher gestational ages. The MAGENTA trial50 will 

assess the benefit of giving MgSO4 between 30 and 34 weeks of gestation in 

a randomised controlled trial (MgSO4 versus placebo), with a primary outcome 

examining the rate of death and CP at 2 years of age. Once reported, this will 

enable further evidence-based recommendations for the use of MgSO4 in 

preterm deliveries occurring between 30 and 34 weeks.  

[Heading 2]Long-term data 
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Recently the long-term school age data became available from two of the 

original RCT cohorts; ACTOMgSO4 and PREMAG. The long-term data from 

PREMAG were published in 2014, reporting on 431 children with a mean age 

at follow-up of 11 years: no detrimental effects of prenatal MgSO4 were 

reported. There was a trend for better long-term neurological and behavioural 

outcomes but these were not statistically significant.51,52 Doyle et al.53 

followed up 867 children from the original ACTOMgSO4 study, with a mean 

age of 8 years.39 The paediatric mortality rate to school age was 14.0% in the 

MgSO4 group, compared with 17.6% in the placebo group; this was not 

significantly different. The two groups were not different in the proportions with 

CP, nor its severity (8% vs 7%; OR 1.26, 95% confidence interval [CI], 0.84–

1.91). No long-term difference in benefit or harm was found for the perinatal 

use of MgSO4. The numbers in these two studies individually might be 

underpowered for CP, as was the case in the original RCTs. It wasn’t until the 

original RCT data were pooled in meta-analyses that the size of the true effect 

became apparent.  

 

[Heading 1]Concerns for fetal safety with perinatal MgSO4 

administration 

Concerns were originally raised in 1997 in the MagNET trial following an 

interim safety report that described an increased rate of paediatric mortality in 

association with MgSO4 use.36 Composite findings of the MagNET trial 

published in 200254 suggested that greater antenatal use of MgSO4 and 

higher umbilical cord MgSO4 levels were associated with worse perinatal 

outcome.  

Subsequent meta-analyses found no increase in the risk of adverse neonatal 

outcome or mortality46 (Table 4).  

 

[Heading 1]Limiting side effects in women receiving MgSO4 

MgSO4 is widely regarded as a safe drug in pregnancy and is commonly used 

in obstetrics for the prevention and treatment of eclampsia. However, because 

of its narrow therapeutic range, caution is necessary when deciding on the 
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dose of administration. Conde-Agedulo’s meta-analysis46 published in 2009 

did not show any evidence of an effect of MgSO4 on serious maternal 

complications such as death (RR 0.32, 95% CI 0.01–7.92) or severe 

postpartum haemorrhage (RR 1.06, 95% CI 0.63–1.79). Women were more 

likely to experience minor side effects with MgSO4, including flushing (RR 

7.56, 95% CI 3.39–16.88) and nausea or vomiting (RR 4.60, 95% CI 1.54–

13.75).  

Serious, but rarer, side effects (usually associated with an overdose) include 

respiratory depression, pulmonary oedema and cardiac arrest. Women 

receiving MgSO4 should therefore be closely monitored, with regular 

recordings of blood pressure and other maternal observations. Calcium 

gluconate should be available to give as an antidote if MgSO4 toxicity is 

suspected. There is a risk of maternal hypotension, especially if MgSO4 is 

used concurrently with nifidepine as a tocolytic drug.55 There has also been a 

suggested risk of neuromuscular blockade with concomitant use of MgSO4
55 

and calcium channel blockers; however, a review did not support an 

increased risk.56 A slower rate of administering the loading dose of MgSO4 

(over 60 minutes versus 20 minutes) significantly reduced the feeling of 

flushing and warmth at 20 minutes into the infusion. However, 71% of women 

experienced mild adverse effects (arm discomfort, flushing, warmth) from the 

infusion and administering a slower loading dose made no statistical 

difference to this incidence overall.57  

[Heading 2]Optimal loading and maintenance dose 

Most trials have used the existing pre-eclampsia regimen for MgSO4 use; this 

is usually a 4 g bolus over 30 minutes given to women in whom delivery is felt 

to be imminent. After this and if delivery has not yet occurred, a 1 g/hour 

maintenance infusion is administered until birth, or up to a maximum of 24 

hours. A single bolus of 4 g intravenously has been shown to improve 

outcome43,58 and we recommend that it should be given even if delivery is 

imminent. In planned preterm deliveries, MgSO4 should ideally be 

administered within 4 hours before the birth. The infusion should be 

discontinued once the baby is delivered. Where delivery is urgently mandated, 

it is important not to delay delivery in order to administer MgSO4. In women 
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with renal impairment, the dose of MgSO4 should be adjusted appropriately to 

avoid an overdose, with close monitoring of serum MgSO4 levels.38 

 

[Heading 1]Conclusion 

MgSO4 probably has a modest neuroprotective effect which is greater the 

earlier the gestational age of the infant at delivery. When administered at an 

appropriate dose and with proper monitoring, there is no evidence of harm to 

the fetus, neonate or mother. The optimum timing, dose and duration of its 

administration remains undefined by large studies; however, most guidelines 

recommend its use for 24 hours and within 4 hours of delivery using the 

standard pre-eclampsia toxaemia regimen. A study is underway in Australia to 

assess gestation-specific benefit between 30 and 34 weeks of gestation.  
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Figure 1. Pathogenesis of periventricular leucomalacia. 

 

  

 


