

Title Page

Dimorphite-DL and Biotite-tools, Two Open Source Programs for the Acceleration

of Structure-based Drug Design

by

Jesse Cianan Kaminsky

Submitted to the Graduate Faculty of

University Honors College in partial fulfillment

of the requirements for the degree of

Bachelor of Philosophy

University of Pittsburgh

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/196516541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

Committee Membership Page

UNIVERSITY OF PITTSBURGH

UNIVERSITY HONORS COLLEGE

This thesis/dissertation was presented

by

Jesse Cianan Kaminsky

It was defended on

March 28, 2019

and approved by

Alemayehu Gorfe, Associate Professor, UTHealth McGovern Medical School

Andrea Berman, Assistant Professor, Department of Biological Sciences

Lillian Chong, Associate Professor, Department of Chemistry

Thesis Advisor/Dissertation Director: Jacob Durrant, Assistant Professor, Department of

Biological Sciences

 iii

Copyright © by Jesse Cianan Kaminsky

2019

 iv

Abstract

Dimorphite-DL and Biotite-tools, Two Open Source Programs for the Acceleration

of Structure-based Drug Design

Jesse Cianan Kaminsky, BPhil

University of Pittsburgh, 2019

Computer-aided drug design has seen a proliferation of tools that allow the manipulation

of small molecule and macromolecular structures in increasingly high-throughput settings.

Molecular dynamics simulations, small molecule docking software, and visualization tools allow

researchers to rapidly identify drug candidates and narrow the list of compounds that

experimentalists must consider for further testing. Any gap in automating computer-aided drug

design thus delays potentially life-saving discoveries. Here we present two open-source programs

we developed to address challenges facing both protein and ligand preparation. Dimorphite-DL

is a lightweight python program that predicts protonation states of small molecules using an

empirical approach to ensure accurate docking and modelling calculations. The presence or

absence of a hydrogen atom often determines whether a given ligand will bind a protein of interest.

Biotite-tools is a python package that provides several popular statistical functions for analyzing

molecular dynamics simulations in an easy-to-use way. Conformational fluctuation is complex,

and it can be challenging to extract insight from what is essentially a “protein movie.” As such,

simulation analysis has largely been restricted to those with backgrounds in computation, limiting

the scope of such a powerful tool. Biotite-tools aims to accelerate the efforts of those already

working with molecular dynamics and make analysis more accessible to experimentalists.

 v

Table of Contents

1.0 Introduction ... 1

1.1 Narrowing chemical space in drug discovery .. 1

1.2 The importance of ionization states in virtual screens .. 2

1.3 Sampling ensembles of conformations with molecular dynamics simulations 3

1.4 Sustainable and efficient biomedical tool development .. 4

2.0 Materials and Methods ... 6

2.1 Dimorphite-DL Implementation ... 6

2.2 Evaluating Dimorphite-DL Accuracy ... 9

2.3 Biotite-tools Implementation ... 10

2.3.1 Aligning Trajectories .. 12

2.3.2 Pruning and Trimming Trajectories ... 12

2.3.3 Root Mean Square Deviation (RMSD) .. 13

2.3.4 Root Mean Square Fluctuation (RMSF) ... 13

2.3.5 Clustering ... 14

2.3.6 Principal Component Analysis (PCA) ... 14

2.3.7 Hydrogen Bonding .. 15

2.4 Evaluating Biotite-tools Accuracy ... 15

3.0 Results and Discussion .. 16

3.1 Dimorphite-DL’s Empirical Approach .. 16

3.2 Dimorphite-DL Accuracy .. 17

3.3 Biotite-tools ... 18

 vi

3.3.1 Aligning Trajectories .. 18

3.3.2 Pruning and Trimming Trajectories ... 19

3.3.3 Root Mean Square Deviation (RMSD) .. 19

3.3.4 Root Mean Square Fluctuation .. 20

3.3.5 Clustering ... 22

3.3.6 Principal Component Analysis (PCA) ... 23

3.3.7 Hydrogen Bonding .. 24

3.3.8 Comparative Analysis ... 24

3.3.9 LARP1 demonstrates the need for a server implementation 25

4.0 Conclusion ... 27

Appendix A Dimorphite-DL Prediction Accuracy .. 28

Bibliography .. 30

 vii

List of Tables

Table 1 Summary of the more significant universal biotite-tools user parameters 12

Table 2 Percent correct, excess, and incorrect predictions calculated as a weighted average across

all moieties at increments of 0.5 from 0.0-3.0 precisions factor... 17

 viii

List of Figures

Figure 1 Dimorphite-DL’s 38 supported moiety structures .. 7

Figure 2 Dimorphite-DL algorithm schematic ... 8

Figure 3 Root Mean Square Deviation comparative analysis of two LARP1 DM15 region MD

simulations .. 20

Figure 4 Root mean square fluctuation comparative analysis of two LARP1 DM15 region MD

simulations .. 21

Figure 5 Root mean square fluctuation values projected directly onto the LARP1 DM15 region

structure... 22

Figure 6 Principal Component Analysis of the LARP1 DM15 region B chain MD simulation .. 23

 ix

Preface

I would like to thank the members of Dr. Jacob Durrant’s lab for all their valuable insight

and contributions to dimorphite-DL and biotite-tools. I would like to thank Patrick Ropp for his

extensive guidance and mentorship regarding software development and Python, as well as his

leadership and initial development of the dimorphite-DL project. Thank you to Jacob Spiegel for

additional insight into implementation details and helpful code discussions. Thank you to James

Haddad for your assistance in the development process. Thank you to Kevin Cassidy and Dr.

Andrea Berman’s lab for their adoption of the biotite-tools package in researching the LARP1

DM15 region. Thank you to the Center for Research Computing and the American Cancer Society

for the use of their resources and funding to complete the LARP1 DM15 MD simulations. Thank

you to the Department of Biological Sciences for the opportunity to present my research at the

Science 2018 Undergraduate Poster Session. Finally, thank you Dr. Durrant for the mentorship,

support, and great advice you have provided me in pursuing my first major research experience.

 1

1.0 Introduction

1.1 Narrowing chemical space in drug discovery

Structure-based drug design is the pursuit of pharmaceutically relevant compounds that

directly act on specific proteins. There are many challenges to this approach. Identifying the

protein target for treatment involves years of experimental investigation. Resolving the structure

of such a protein, a critical first step in structure-based drug design, is a complicated process in

itself. Once a structure is known, we are interested in identifying ligands that might inhibit or

enhance functionality. How do we select which molecules to investigate as potential ligands? Even

after reducing chemical space by common drug requirements (membrane permeability, stability,

ease of synthesis, free of off-target effects, etc…), considering every possible compound is still an

intractable task (1).

Virtual screening (VS) allows us to select from a smaller pool of molecules in seeking

novel disease treatments (2). Given a static structure derived from the crystallized protein or family

nuclear magnetic resonance (NMR) structures, VS identifies ligand candidates from extensive lists

of input molecules. The ability to handle large quantities of such data in an efficient and iterative

manner is termed “high-throughput.” A high-throughput approach to VS quickly generates pools

of drug candidates for further experimental study. VS uses docking software to accept only those

molecules with potentially significant binding capability.

 2

Docking software assigns scores that reflect the binding affinity of a given compound to a

protein of interest (3). It is vital to consider only biologically relevant states in such a process (4,

5). Molecules move between many conformations and states. Docking accounts for ligand motion

by generating different scores depending on how the compound is fit into the binding site, but it

does not account for every possible ionization state of the ligand. VS uses molecules precisely as

specified by the input.

1.2 The importance of ionization states in virtual screens

The protonation state of a ligand can make a major difference in binding affinity (6).

Consider an active site containing a prominent aspartic acid residue at physiological pH. Its

negative charge will bind a protonated ligand presenting a positive charge with far more stability

than the deprotonated form. There is thus a need to ensure only the properly protonated state at a

given pH is docked onto the protein. While many programs serve this need, most are too slow for

high-throughput VS, too expensive, or too inaccurate (7). Dimorphite-DL seeks to fill this

functional gap and has been published in the Journal of Cheminformatics. Without such a program,

VS must consider excessive or incomplete datasets of protonation states. Pre-existing tools that

rely on quantum-mechanical calculations force the throughput of VS to be rate dependent on pKa

prediction.

 3

1.3 Sampling ensembles of conformations with molecular dynamics simulations

While computational resources limit the exhaustive screening of ligand states, protein

states are instead limited by physiological relevance. Proteins exist in complex environments

surrounded by water, ions, and other macromolecules. Proteins in such environments possess

kinetic and chemical potential energies that are not accurately captured by the necessary

experimental conditions involved in structure elucidation. Protein structures determined by x-ray

crystallography or NMR do not fully account for conformational diversity in vivo (8).

Conformations and dynamic states should only be prioritized by their relative energetics. Docking

a ligand onto a crystal structure is comparable to fitting a glove onto a fist.

Molecular dynamics (MD) simulations are a prominent solution to sampling more

physiologically relevant conformations (8). These simulations rely on mathematical descriptions

of potential energies to calculate the forces between atoms in space, given specific atom types,

distances, and bonding (9). Applying such forces to sets of atomic coordinates models a starting

structure in a highly customizable context, such as physiological conditions. By recording the

change in the atomic coordinates over time, an entire trajectory of conformational states emerges

(10). Each moment of time is represented as an individual “frame” of the trajectory. Docking then

calculates binding affinities for all prominent conformations, ensuring a pool of more

physiologically relevant ligands.

Many problems arise in performing MD simulations. The algorithms rely on

simplifications to minimize the computational cost of such intensive calculations (11). We often

record the positions of every single atom being simulated (protein and solvent) on picosecond

timescales, and microsecond length simulations have become routine. Thus not only do

 4

simulations take a very long time to run, even on state-of-the-art parallel processor systems (8),

but interpreting the data becomes a challenge. How do we begin to analyze a protein in motion?

There are numerous open-source libraries, mostly written in Python or R, that provide

statistical analysis functions and frameworks for understanding MD simulations (12). These

libraries, while effective and widely used among the MD community, generally do not directly

integrate with other plotting and visualization libraries like Matplotlib (13) or Pandas (14). Some,

like MDAnalysis (15), provide tutorials to assist researchers in understanding the outputs of their

functions. Biotite-tools provides pre-constructed scripts that link analysis with visualization, with

built-in customizability that requires no prior knowledge of Python or coding. Such scripts could

be wrapped in an easy-to-use graphical interface and executed on servers, enabling those with little

computational expertise to perform complex statistical analyses on their MD data. The eventual

goal is for anyone studying structural biology to perform a MD simulation, easily understand its

implications, identify ligands, and share the results, even with limited access to computational

resources.

1.4 Sustainable and efficient biomedical tool development

Excepting the open-source biomedical community, much of today’s state of the art

software is only accessible behind paywalls. Restrictive licensing also prevents open source use of

pre-existing codebases in developing further applications. It is important to prioritize modularity

of biomedical research tools to allow incorporation into future projects (such as a comprehensive

server for structure-based drug design). Even within open-source development, code often suffers

from unclear documentation or a failure to generalize to new contexts. Consequentially, software

 5

that performs admirably well at its individual purpose is often excluded from further development.

The only solution is ensuring all published code is well documented, reasonably maintained, and

constructed with an eye towards modularity. We developed dimorphite-DL and biotite-tools to be

as accessible as possible, in hopes of encouraging others to use our code and incorporate it into

their own research and tool development.

 6

2.0 Materials and Methods

2.1 Dimorphite-DL Implementation

Dimorphite-DL (16) works by identifying known ionizable structures within input small

molecules and predicting their states at a given pH range based on a collection of pre-existing pKa

values associated with each of 38 different moieties. We calculated these values from 1,938

molecules containing individual sites with experimentally determined pKas. We also used 78

instances of phosphates and phosphonates that we treated differently as they can be doubly

protonated. We compiled these molecules from a publication by Lee et al. and from public, online

databases (17, 18). We found the mean pKa and standard deviation across all compounds

containing each moiety. The structure of these moieties and the pKa dimorphite-DL associates with

each can be found in Figure 1.

To more accurately account for the diversity of pKa values of moieties, we chose to use a

pKa range instead of a single value. We construct this range using the mean pKa value (µ) and

standard deviation (σ) of an identified moiety, scaled by a user parameter we call the pKa precision

factor (n). The range is defined as [µ - nσ, µ + nσ]. Dimorphite-DL compares this range to the

provided pH range. For a pKa range entirely below the pH range, the moiety is deprotonated. For

a pKa range entirely above the pH range, the moiety is protonated. For ranges with any overlap,

both forms are generated. Figure 2 visually depicts this process.

 7

Figure 1 Dimorphite-DL’s 38 supported moiety structures

The mean pKa and standard deviation calculated from each respective set of experimentally determined pKa

values are shown. Nitro groups are assigned an arbitrary pKa of -1000 to ensure the moiety is always

deprotonated (16).

 8

Figure 2 Dimorphite-DL algorithm schematic

Dimorphite-DL deprotonates any structure that presents a moiety with a pKa range entirely below the user-

provided pH range and protonates any entirely above (16). For any pKa range that overlaps with the pH range,

both structures are generated. pKa ranges are calculated from a trained mean pKa, scaled by the standard

deviation times the precision factor.

Dimorphite-DL uses the SMILES syntax for receiving input molecules from the user. The

SMILES language provides a way of representing molecular structures as 1-dimensional text (19).

Given a set of SMILES or a file containing SMILES, dimorphite-DL uses the open-source Python

library RDKit (20) to search through each molecule for any structures that match one of the

supported 38 moieties, and outputs the correctly protonated SMILES. For each ionizable site

found, protonation is assigned independently, producing as many output structures as necessary

for the given pH range.

Dimorphite-DL functions on macOS High Sierra, Ubuntu 18.04, and Windows 10 and

requires the user to have installed Python 2.7 or 3.6 or higher, as well as RDKit 2016.09.2 or

higher. Source code, installation instructions, and a brief guide can be found at

http://durrantlab.com/dimorphite-dl/. A basic testing suite is also provided to demonstrate the

functionality of individual components of dimorphite-DL.

http://durrantlab.com/dimorphite-dl/

 9

2.2 Evaluating Dimorphite-DL Accuracy

Because dimorphite-DL relies on experimentally determined pKa values, the limited data

that might be used to evaluate its accuracy had already been used to calculate each moiety’s pKa

value. Although the set of training data was only used to compute a linear model for each moiety,

it would be problematic to test the accuracy of such models on the same data that produced them.

For this reason, we chose to use 3-fold cross validation to evaluate the accuracy of our method.

The training set was broken into thirds. We trained Dimorphite-DL on each combination (fold) of

two of these thirds, before testing it on the final third. The resulting values were averaged to obtain

final accuracies for each moiety independently. Note that any displayed standard deviations reflect

the standard deviation across folds, not across moieties.

In evaluating the accuracy of our algorithm, we broke up its output into three distinct

categories. A correct prediction indicates that only the correct state of a moiety in a given pH

range was generated, be it protonated, deprotonated, or both. An excess prediction indicates that

at least one incorrect structure was generated in addition to the correct one. An incorrect

prediction indicates that at least one correct state was not generated. While an excess prediction

would simply add unnecessary molecules to VS, an incorrect prediction would render further

analysis fundamentally irrelevant. For all outcomes, we used the experimentally derived pKa value

of the SMILE to determine the accuracy of the resulting structure at the given pH range. We

measured the outcomes as the percentage of the dataset they comprised. These outcomes are

defined as follows (16):

1. Dimorphite-DL predicts the correct state

a. pKa < pHmin, and dimorphite-DL deprotonates the compound

b. pKa > pHmax, and dimorphite-DL protonates the compound

c. pHmin ≤ pKa ≤ pHmax, and dimorphite-DL generates both deprotonated and

protonated forms

 10

2. Dimorphite-DL predicts an excess state (i.e., two states when only one is appropriate)

a. pKa < pHmin or pKa > pHmax, but dimorphite-DL generates both deprotonated and

protonated forms

3. Dimorphite-DL predicts the incorrect (or incomplete) state

a. pKa < pHmin, but dimorphite-DL protonates the compound

b. pKa > pHmax, but dimorphite-DL deprotonates the compound

c. pHmin ≤ pKa ≤ pHmax, and dimorphite-DL either deprotonates or protonates the

compound (not both)

Because phosphates and phosphonates can be protonated twice, they were evaluated

according to a more complicated set of rules that nevertheless follow the same line of reasoning.

We did not evaluate the accuracy of nitro groups due to their minimal presence within the training

data. The moiety accuracies were evaluated at default pH and pKa precision factor values

(physiological pH 6.4-8.4 and precision factor 1.0). Dimorphite-DL considers sites independently

even on molecules containing more than one, so this evaluation on single-site structures

extrapolates to multi-site structures as well.

To evaluate the effect of the precision factor, we considered accuracy across the entire

training set (not using 3-fold cross validation). An average was calculated across all moieties

weighted by the respective proportion of each within the dataset.

2.3 Biotite-tools Implementation

Much of the biotite-tools original codebase lies in the infrastructure through which it

handles user input. Because biotite-tools is a collection of scripts, it inherently lacks much of the

adaptability that Python libraries provide. In exchange for this limitation, users are not required to

understand the details of the computations being performed. Users must only know the

implications of each analysis and what can be accomplished with the results of each. That said, a

 11

complete loss of versatility in these functions would render biotite-tools obsolete. Many of our

implementation choices reflect a need to find a balance between effectiveness and ease-of-use.

Biotite-tools uses the open-source Python library MDAnalysis (15) to perform the bulk of

its statistical analyses. Binary MD trajectory files are also interpreted in memory using

MDAnalysis’ parsing modules. After applying MDAnalysis, biotite-tools uses the common data

manipulation and plotting packages NumPy (21) and matplotlib (13) to perform further analysis

and provide output to the user. Matplotlib enables biotite-tools to create publication quality figures

as scalable vector graphics files, allowing further modification in the user’s plotting software of

choice.

Biotite-tools uses Python’s argparse module to handle user input. While a complete

description of every parameter is beyond the scope of this thesis, it can be found in biotite-tools’

documentation, together with helpful examples and descriptions. Using biotite-tools is as simple

as running any of the scripts with Python and providing any parameter desired. All parameters can

also be provided as a json file to enhance accessibility by a server environment. Because each

script performs different computations, each possesses its own selection of parameters that fine

tune their functionality. However, some parameters generalize to every script. Table 1 provides a

brief overview of the more important parameters users can pass to any script.

Biotite-tools functions on macOS High Sierra, Ubuntu 18.04, and Windows 10 and requires

the user to have installed Python 2.7 or 3.6 or higher, as well as MDAnalysis, NumPy, matplotlib,

and optionally scipy (22) or scikit-learn (23). Source code, installation instructions, and extensive

documentation can be found at https://git.durrantlab.pitt.edu/jdurrant/biotite-mdanalysis.

https://git.durrantlab.pitt.edu/jdurrant/biotite-mdanalysis

 12

Table 1 Summary of the more significant universal biotite-tools user parameters

User Parameter Function

--top_file & --coor_file These parameters specify the input data files
for biotite-tools to analyze.

--dir Tells biotite-tools to search the current
directory for all compatible files. Multiple
trajectories can be handled.

--compare When multiple trajectories are provided, they
can either be analyzed in batch, or if --
compare is present, directly compared to one
another.

--output_dir What directory to save any output files.

--selection What portion of the simulated system to
consider. Users can choose to only consider
certain groups of atoms (for example only
alpha carbons).

--on_server Allows biotite-tools to be run over an SSH
client without throwing matplotlib errors.

2.3.1 Aligning Trajectories

Biotite-tools uses MDAnalysis’ (15) aligning module to read in a trajectory, align it

according to a specified atom selection, and write it in the same file format as provided. Most of

the other scripts also perform alignment prior to analysis and as such this atom selection can be

provided to any script in use.

2.3.2 Pruning and Trimming Trajectories

Pruning and trimming is performed in memory using MDAnalysis (15). Users provide the

percentage of a simulation they wish to keep from the end of a given simulation. Users also provide

the maximum number of frames they wish the output trajectory to contain. Input trajectories are

 13

then cut and every N frames are selected to meet these specifications. Trajectories are saved in the

same file format provided. To allow a server to easily access a trajectory for visualization in-

browser, frames can also each be saved as a PDB file.

2.3.3 Root Mean Square Deviation (RMSD)

RMSD values are calculated by MDAnalysis (15) as the square root of the sum of the

square distances between atoms at a given frame and the first frame of the trajectory (24). These

values are then plotted against the timestep (users must specify the amount of time between frames

used by their respective MD engine), along with a running average calculated with NumPy (21).

Users can specify the lengths of the x (time) and y (RMSD value) axis to enable multi-trajectory

comparison. Users can also choose to directly overlay up to three trajectories on one plot.

Trajectories are aligned prior to analysis.

2.3.4 Root Mean Square Fluctuation (RMSF)

RMSF values are calculated for atom selections by MDAnalysis as the square root of the

sum of the square distances for a given atom across the whole trajectory. Using an original

implementation of the same algorithm (25) MDAnalysis uses, biotite-tools offers the same analysis

on the centers of geometry for whole residues. These values are plotted against their respective

atom/residue number. They can also be converted to their beta-factor equivalents for direct

comparison to crystallographic data. Users can choose to directly overlay up to three trajectories

on one plot. Trajectories are aligned prior to analysis.

 14

2.3.5 Clustering

Clustering is implemented using MDAnalysis (15) and allows users to choose from the

AffinityPropagationNative or DBSCAN algorithms. Centroids are representative frames of a given

conformational state and are saved as PDB files for the user’s further consideration. Trajectories

are aligned prior to analysis.

2.3.6 Principal Component Analysis (PCA)

PCA identifies arbitrary and orthogonal vectors that explain portions of the variation in a

given dataset. The dot product of a frame onto these vectors projects the cartesian coordinates of

every atom into principal component space, with as many dimensions as components used (26).

Biotite-tools uses MDAnalysis (15) to perform this computation and always projects each frame

of a trajectory onto the first two components (which explain the most variation). These projections

are then displayed as a heatmap using gaussian interpolation implemented by matplotlib (13). The

ranges of this heatmap can be adjusted by the user. Additionally, the kmeans2 clustering algorithm

implemented by the scientific computing package scipy (22) or the MeanShift clustering algorithm

implemented by the machine learning package scikit-learn (23) can be applied to these projections.

Biotite-tools then highlights the frames closest to the identified centroids and saves them as PDB

files for further analysis. The user can also specify specific frames to highlight on the heatmap.

Multiple trajectories can be compared by projecting each onto the two components calculated from

the first simulation. Trajectories are aligned prior to analysis.

 15

2.3.7 Hydrogen Bonding

Hydrogen bonds are identified using MDAnalysis (15), which specifies potential acceptors

and donors within 3 angstroms of one another and with a sufficiently large bonding angle. Biotite-

tools allows users to specify which selection of atoms to check against which other selection of

atoms. The generated data is saved as a table using NumPy. Multiple trajectories can be compared

to identify which hydrogen bonds were relatively conserved across simulations and which were

unique. Trajectories are not aligned to reduce computing time.

2.4 Evaluating Biotite-tools Accuracy

Because biotite-tools is a software that links pre-existing codebases to one another to

enhance overall usability, it is challenging to quantify its “accuracy.” While most of biotite-tools’

generated figures and analyses were checked against alternative tools, such as Visual Molecular

Dynamics (27), not all of them lend themselves to direct evaluation. We chose to demonstrate its

effectiveness instead through a trial application to novel data. We used an unpublished simulation

of the LARP1 protein’s DM15 region to evaluate the efficiency and helpfulness of biotite-tools

(28). Biotite-tools greatly accelerated the analysis of two simulations of alternative LARP1 DM15

crystal structures. The RMSF script in particular eased the identification of a number of vital

residue motions that drive forward a mechanistic shift in the region’s binding pocket. An example

of how biotite-tools was applied to the LARP1 data can be seen in Figures 3-6.

 16

3.0 Results and Discussion

3.1 Dimorphite-DL’s Empirical Approach

Predicting the protonation state of a given compound is vital to VS and can mean the

difference between identifying high and low binding affinity. Because most molecules contain

ionizable sites (29), it is vital to account for the protonation state of each for a given pH range.

Handling a single molecule containing N singly ionizable sites presents 2N different possible

structures. To enumerate every possible structure for a library of thousands of molecules would

greatly delay the computer-aided drug design process. Dimorphite-DL addresses this challenge by

assigning each site its own protonation state, ensuring only relevant structures remain to be

screened.

Dimorphite-DL thus demonstrates the effectiveness of applying pre-existing experimental

data to guide computational inquiry. Its simplicity ensures speedy execution, allowing it to scale

to large libraries of compounds. Most other protonation prediction software operate by calculating

quantum-mechanical interactions and predicting precise pKa values. While this approach accounts

for the structure of whole molecules in assigning protonation states, these programs are too slow

for large datasets. Most are commercial and cannot be accessed for free nor actively improved

upon by the open-source community (7).

 17

3.2 Dimorphite-DL Accuracy

Dimorphite-DL’s accuracy was independently evaluated for each moiety using 3-fold cross

validation to prevent training bias. Potential outcomes were broken down into correct, excess, and

incorrect predictions. As seen in Appendix A, the five most prominent moieties (boxed for

convenience) within the training set depict high correct and excess percentages, demonstrating the

effectiveness of our empirical algorithm. An excess prediction does not reduce the accuracy of the

output; it only increases the number of generated structures and thus reduces efficiency. Users can

offset this loss of efficiency for more precise predictions.

Because dimorphite-DL associates a pKa range with each moiety, a user-provided

parameter that scales this range directly affects the likelihood of two states being produced. Table

2 presents the impact of this parameter on the precision of our algorithm as shown by accuracy

over all 38 structures (16). Notably, these percentages are over the entirety of the training set and

are not a product of 3-fold cross validation. They serve to guide users in selecting an optimal

precision. Adjusting this parameter fine-tunes dimorphite-DL to generate fewer or more

protonation states. A high parameter increases the number of output structures, while a low

parameter increases risk of producing incorrect states.

Table 2 Percent correct, excess, and incorrect predictions calculated as a weighted average across all moieties

at increments of 0.5 from 0.0-3.0 precisions factor.

pKa Precision Factor, n
(Standard Deviations)

Correct (%) Excess (%) Incorrect (%)

0.0 70.9 23.9 5.2

0.5 69.1 26.5 4.4

1.0 58.8 40.2 0.9

1.5 51.2 48.8 0.0

2.0 50.7 49.3 0.0

2.5 23.9 76.1 0.0

3.0 22.1 77.9 0.0

 18

3.3 Biotite-tools

Developing an empirical way to predict the protonation states of potential ligands is

meaningless if they are docked into a protein structure that does not equally account for

physiological relevance. MD simulations ensure this physiological relevance and it is just as

important to process them in a simple but quick manner (8).

Biotite-tools aims to link the analytical functions of the MDAnalysis (15) library to

publication quality visualizations through a customizable and easy-to-use command-line interface.

The toolkit is provided as a collection of Python scripts that each provide their own specific

analytical function and visualization. A user parameter system ensures that the scripts retain the

bulk of the customizability of the functions that drive them.

3.3.1 Aligning Trajectories

MD simulation generally maintain physiological conditions, and as such proteins are often

placed in a virtual box containing water molecules and in vivo ionic concentrations. As the MD

engine calculates classical interatomic forces and applies them to the system, the protein naturally

moves around this box, in addition to undergoing conformational fluctuation. Both conformational

and translational motion occur. In order to only consider residue motion relative to the protein, we

reassign protein coordinates at each frame by minimizing the distances between some set of atoms.

Most frequently, we calculate this minimization by the alpha carbons of each residue. While

biotite-tools provides this as a standalone script, it is vital to align a protein for most other analyses.

 19

3.3.2 Pruning and Trimming Trajectories

MD simulations begin by assigning velocities to each atom to bring the static structure to

a specified temperature. Due to the stochastic nature of this process, it is not uncommon for

unstable interactions to result. We diminish these interactions by bringing a system to an

equilibrium of distributed atomic energies. This prevents unwieldy forces from disturbing the

protein. We use an iterative process through which a protein and its environment are gradually

equilibrated. Upon viewing a completed simulation, it sometimes becomes apparent the system

did not fully equilibrate. In this situation some portion of the simulation is still unrealistic and must

be removed from the trajectory.

To speed up further analysis we also stride a trajectory by only considering a selection of

evenly spaced frames. Taking every hundredth frame still provides ample biological insight while

greatly reducing the runtime of performing statistical analysis.

3.3.3 Root Mean Square Deviation (RMSD)

RMSD reflects the overall motion that a group of atoms has undergone relative to a

reference structure at each frame of a trajectory. Biotite-tools takes the first frame of a simulation

as the reference in order to plot how much the protein has moved at each frame since beginning

its trajectory (see Figure 3 for an example). The RMSD value only indicates how different a frame

is from the reference structure; two frames with the same RMSD are not necessarily the same

conformation, nor does the plot provide any atomic-resolution detail.

 20

Figure 3 Root Mean Square Deviation comparative analysis of two LARP1 DM15 region MD simulations

The two plots are overlaid and running averages are displayed as opaque lines. This plot demonstrates how

biotite-tools revealed that the B chain (blue) simulation presented two distinct conformational states (28).

3.3.4 Root Mean Square Fluctuation

While RMSD reflects the motion of a whole group of atoms relative to time, RMSF reflects

the motion of a specific atom or residue over the course of the entire simulation. RMSF provides

a way to quickly visualize which atoms or residues experience more motion than others and

enables a more informed viewing of a simulation. RMSF enables speedy identification of the atoms

 21

responsible for an observed conformational shift. Plots (see figure 4) and PDB files (see figure 5)

direct the user’s analysis.

Figure 4 Root mean square fluctuation comparative analysis of two LARP1 DM15 region MD simulations

The two plots are overlaid and visualize which residues experienced more motion throughout each simulation.

This plot demonstrates how biotite-tools assisted in identifying which residues were responsible for the

formation of a conformation only seen in the B chain simulation (28).

 22

Figure 5 Root mean square fluctuation values projected directly onto the LARP1 DM15 region structure

The PDB generated by biotite-tools was further visualized and rendered using BlendMol (33). The inter-helical

loop reflects the highest non-terminal RMSF value. Analysis of this region has yielded novel insight into

LARP1’s mRNA binding mechanism (28). This was generated from the B chain simulation.

3.3.5 Clustering

The primary goal of MD is to identify the major energetic states that a protein occupies.

While simulations provide visualizations of proteins transitioning between these conformations, it

can be challenging to identify which frame of a simulation is representative of an energetic state.

This is comparable to trying to identify which specific frame of a movie is most “representative”

of a scene. Clustering algorithms provide a way to differentiate between these states and resolve

them for further analysis and docking.

 23

3.3.6 Principal Component Analysis (PCA)

A trajectory consists of the coordinates of each atom in cartesian space over time. The high

dimensionality of these systems makes it a challenge to directly observe the path they take. PCA

has established itself as a leading form of dimensionality-reduction that minimizes loss of

variation. By transforming whole frames of a trajectory onto two principal components, biotite-

tools can approximate a simulation in two dimensions as a heatmap (see Figure 6 for an example).

Figure 6 Principal Component Analysis of the LARP1 DM15 region B chain MD simulation

PCA is displayed as a heatmap using gaussian interpolation. Two distinct states are represented by the C1 and

C2 centroids. Frames 0, 500, and 1000 are all localized in one conformational state, indicating that the protein

did not shift into an alternative energy well until the latter half of the trajectory, matching observations in

Figure 3.

Such a heatmap provides a categorization of the overall energetics of a simulated protein.

Because the heatmap is colored by the density of frames with unique coordinates on the two

components, hotspots indicate distinct energetic states and exchange temporal resolution for the

 24

conformational specificity lacking in RMSD analysis. The ability to highlight representative

(determined by clustering) and pre-specified frames helps compensate for the intrinsic loss of

temporal information in PCA.

3.3.7 Hydrogen Bonding

Hydrogen bonds play a major role in mediating macromolecular tertiary structure (30).

Identifying where and how these hydrogen bonds form is important to understanding the

stabilization and driving forces behind conformational shifts (see LARP1 analysis below).

3.3.8 Comparative Analysis

MD simulations calculate forces deterministically, however they are highly parameterized

and multiple simulations of the same protein can take very different routes depending on the

chosen environment and initial assignment of atomic velocities (8). In simulating proteins of

interest, we often perform one lengthy simulation, as well as two smaller ones generated from the

point of equilibration. The hope is to sample as many energetic paths as possible, while allowing

for any motion that may only occur on microsecond timescales. This approach necessitates directly

comparing multiple simulations of the same structure. Simulating the same protein in two different

environments, for example in the presence of higher ionic concentrations or small organic

molecules, also requires comparative analysis.

Every biotite-tools script takes in batch as many trajectories as provided and can optionally

perform a comparative analysis. For some, like RMSD and RMSF, this may simply mean

overlaying the two plots to visualize the differences between them. For the more complex process

 25

of PCA, it is vital that each trajectory be projected onto the same components. Calculating

components from each trajectory independently would render any comparison meaningless. It is

difficult to predict all the different ways a user might want to compare hydrogen bonding. Biotite-

tools takes a general approach, informing the user which bonds were unique to specific simulations

and which were shared across trajectories.

3.3.9 LARP1 demonstrates the need for a server implementation

An analysis of the LARP1 protein’s DM15 domain using biotite-tools found a novel

mechanism behind its binding TOP-mRNA transcripts (28). By comparing RMSD and RMSF

values, an inter-helical loop was identified that transiently enters a helix structure to enlarge the

binding pocket for transcripts. Several hydrogen-bonding interactions between proximal residues

mediate this process. Clustering in conjunction with binding pocket analysis using the FTMap

server (31) identified novel conformations. LARP1’s regulation of translational machinery mRNA

transcripts is implicated in various cancers (32), so selective targeting of this protein has important

implications for future treatment. This analysis demonstrates how biotite-tools and other accessible

bioinformatic tools can drive forward the drug discovery process.

This proof of concept with LARP1 provides an example of how biotite-tools as a

standalone entity can accelerate the process of those already familiar with programming. However,

much of the original code in biotite-tools exists to bring together the three worlds of MDAnalysis’

analytical functions, matplotlib’s plotting capability, and user interaction. The challenge is how to

present these analyses in a manner intuitive to users without loss of customizability, while also

targeting the scripts at implementation on a server-hosted GUI. A well-defined user parameter

system provides the customizability that, in conjunction with extensive documentation,

 26

simultaneously guides the user in analysis. Several implementation details allow biotite-tools to

be adapted to a browser-based system. The primary future direction for these scripts is

incorporation into a work-in-progress server that will also guide the running of MD simulations

and further analyses such as druggability and docking, for which excellent codebases already exist

(3).

 27

4.0 Conclusion

Here we presented two open-source programs, dimorphite-DL and biotite-tools, targeted

at accelerating structure-based drug design. Dimorphite-DL uses empirically determined pKa

values to predict the protonation states of novel molecules. This ensures more accurate and

efficient VS to identify potential pharmaceuticals. Biotite-tools provides a suite of easy-to-use

scripts for analyzing MD simulations and generating publication-ready figures. Dimorphite-DL

and biotite-tools are built for both independent use and future incorporation into larger projects.

Dimorphite-DL demonstrates the advantages of a close collaboration between the worlds of

experimental and theoretical biology, while biotite-tools directly draws on pre-existing code to

enhance usability in a way that prioritizes future development.

The open-source movement has already established itself strongly in academia. Because

the consequences of novel biomedical findings are life and death matters for those who need them,

any obstacle to their discovery must be avoided. Developing code readily accessible and openly

contributing to a communal knowledge-base is the most effective way to accelerate research.

Biomedical tools are not a product of commercial interest nor career advancing motivations, but

of the recognition of a physiological or methodological problem. Because these challenges

necessarily arise in the course of research, those who identify these problems have a responsibility

to ensure their resolution, be it through their own development or through the open-source

community and collaborative outreach. Placing a restriction on a biomedical tool, be it through

licensing, vague documentation, or lack of accessibility, impedes solutions to medical challenges.

 28

Appendix A Dimorphite-DL Prediction Accuracy

Dimorpite-DL protonation prediction accuracy for 37 of 38 supported moieties at precision

factor 0, 1.0, 1.5, and 2.0 (16). The five moieties most present within our training data are boxed.

 stdev: 0.0 stdev: 1.0 stdev: 1.5 stdev: 2.0

Alcohol Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Amide Correct (%)
Excess (%)
Incorrect (%)

 83.3 ± 13.6
 0.0 ± 0.0
 16.7 ± 13.6

 22.2 ± 31.4
 66.7 ± 47.1
 11.1 ± 15.7

 5.6 ± 7.9
 94.4 ± 7.9
 0.0 ± 0.0

 5.6 ± 7.9
 94.4 ± 7.9
 0.0 ± 0.0

Amide_electronegative Correct (%)
Excess (%)
Incorrect (%)

 84.3 ± 4.6
 0.0 ± 0.0
 15.7 ± 4.6

 59.3 ± 33.3
 29.2 ± 41.2
 11.6 ± 9.1

 7.9 ± 5.6
 92.1 ± 5.6
 0.0 ± 0.0

 7.9 ± 5.6
 92.1 ± 5.6
 0.0 ± 0.0

AmidineGuanidine1 Correct (%)
Excess (%)
Incorrect (%)

 93.3 ± 9.4
 0.0 ± 0.0
 6.7 ± 9.4

 93.3 ± 9.4
 0.0 ± 0.0
 6.7 ± 9.4

 93.3 ± 9.4
 0.0 ± 0.0
 6.7 ± 9.4

 60.0 ± 43.2
 33.3 ± 47.1
 6.7 ± 9.4

AmidineGuanidine2 Correct (%)
Excess (%)
Incorrect (%)

 75.5 ± 3.9
 0.0 ± 0.0
 24.5 ± 3.9

 21.5 ± 4.1
 78.5 ± 4.1
 0.0 ± 0.0

 21.5 ± 4.1
 78.5 ± 4.1
 0.0 ± 0.0

 21.5 ± 4.1
 78.5 ± 4.1
 0.0 ± 0.0

Amines_primary_secondary_tertiary Correct (%)
Excess (%)
Incorrect (%)

 26.9 ± 3.0
 73.1 ± 3.0
 0.0 ± 0.0

 26.9 ± 3.0
 73.1 ± 3.0
 0.0 ± 0.0

 26.9 ± 3.0
 73.1 ± 3.0
 0.0 ± 0.0

 26.9 ± 3.0
 73.1 ± 3.0
 0.0 ± 0.0

Anilines_primary Correct (%)
Excess (%)
Incorrect (%)

 94.8 ± 3.7
 0.0 ± 0.0
 5.2 ± 3.7

 61.4 ± 43.4
 33.3 ± 47.1
 5.2 ± 3.7

 30.7 ± 43.4
 66.7 ± 47.1
 2.7 ± 3.8

 0.0 ± 0.0
 100.0 ± 0.0
 0.0 ± 0.0

Anilines_secondary Correct (%)
Excess (%)
Incorrect (%)

 83.7 ± 2.7
 0.0 ± 0.0
 16.3 ± 2.7

 14.2 ± 2.4
 85.8 ± 2.4
 0.0 ± 0.0

 14.2 ± 2.4
 85.8 ± 2.4
 0.0 ± 0.0

 14.2 ± 2.4
 85.8 ± 2.4
 0.0 ± 0.0

Anilines_tertiary Correct (%)
Excess (%)
Incorrect (%)

 84.2 ± 8.6
 0.0 ± 0.0
 15.8 ± 8.6

 84.2 ± 8.6
 0.0 ± 0.0
 15.8 ± 8.6

 14.0 ± 6.6
 86.0 ± 6.6
 0.0 ± 0.0

 14.0 ± 6.6
 86.0 ± 6.6
 0.0 ± 0.0

Aromatic_nitrogen_protonated Correct (%)
Excess (%)
Incorrect (%)

 75.0 ± 10.2
 0.0 ± 0.0
 25.0 ± 10.2

 8.3 ± 5.9
 91.7 ± 5.9
 0.0 ± 0.0

 8.3 ± 5.9
 91.7 ± 5.9
 0.0 ± 0.0

 8.3 ± 5.9
 91.7 ± 5.9
 0.0 ± 0.0

Aromatic_nitrogen_unprotonated Correct (%)
Excess (%)
Incorrect (%)

 88.0 ± 2.7
 0.0 ± 0.0
 12.0 ± 2.7

 35.1 ± 36.2
 60.2 ± 42.7
 4.6 ± 6.5

 9.2 ± 3.5
 90.8 ± 3.5
 0.0 ± 0.0

 9.2 ± 3.5
 90.8 ± 3.5
 0.0 ± 0.0

Carboxyl Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Imide Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 66.7 ± 47.1
 33.3 ± 47.1
 0.0 ± 0.0

Imide2 Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 66.7 ± 47.1
 33.3 ± 47.1
 0.0 ± 0.0

 33.3 ± 47.1
 66.7 ± 47.1
 0.0 ± 0.0

N-hydroxyamide Correct (%)
Excess (%)
Incorrect (%)

 61.9 ± 33.7
 0.0 ± 0.0
 38.1 ± 33.7

 14.3 ± 0.0
 57.1 ± 40.4
 28.6 ± 40.4

 38.1 ± 33.7
 61.9 ± 33.7
 0.0 ± 0.0

 38.1 ± 33.7
 61.9 ± 33.7
 0.0 ± 0.0

O=C-C=C-OH Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Peroxide1 Correct (%)
Excess (%)

 72.2 ± 20.8
 0.0 ± 0.0

 27.8 ± 20.8
 72.2 ± 20.8

 27.8 ± 20.8
 72.2 ± 20.8

 27.8 ± 20.8
 72.2 ± 20.8

 29

Incorrect (%) 27.8 ± 20.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Peroxide2 Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Phenol Correct (%)
Excess (%)
Incorrect (%)

 33.7 ± 3.8
 66.3 ± 3.8
 0.0 ± 0.0

 33.7 ± 3.8
 66.3 ± 3.8
 0.0 ± 0.0

 33.7 ± 3.8
 66.3 ± 3.8
 0.0 ± 0.0

 33.7 ± 3.8
 66.3 ± 3.8
 0.0 ± 0.0

Phenyl_carboxyl Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Phenyl_thiol Correct (%)
Excess (%)
Incorrect (%)

 77.8 ± 15.7
 0.0 ± 0.0
 22.2 ± 15.7

 16.7 ± 13.6
 83.3 ± 13.6
 0.0 ± 0.0

 16.7 ± 13.6
 83.3 ± 13.6
 0.0 ± 0.0

 16.7 ± 13.6
 83.3 ± 13.6
 0.0 ± 0.0

Phosphate Correct (%)
Excess (%)
Incorrect (%)

 70.4 ± 5.2
 18.5 ± 13.9
 11.1 ± 15.7

 63.0 ± 13.9
 37.0 ± 13.9
 0.0 ± 0.0

 63.0 ± 13.9
 37.0 ± 13.9
 0.0 ± 0.0

 63.0 ± 13.9
 37.0 ± 13.9
 0.0 ± 0.0

Phosphate_diester Correct (%)
Excess (%)
Incorrect (%)

 95.2 ± 6.7
 0.0 ± 0.0
 4.8 ± 6.7

 95.2 ± 6.7
 0.0 ± 0.0
 4.8 ± 6.7

 28.6 ± 40.4
 66.7 ± 47.1
 4.8 ± 6.7

 28.6 ± 40.4
 66.7 ± 47.1
 4.8 ± 6.7

Phosphinic_acid Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Phosphonate Correct (%)
Excess (%)
Incorrect (%)

 76.5 ± 14.4
 23.5 ± 14.4
 0.0 ± 0.0

 76.5 ± 14.4
 23.5 ± 14.4
 0.0 ± 0.0

 76.5 ± 14.4
 23.5 ± 14.4
 0.0 ± 0.0

 76.5 ± 14.4
 23.5 ± 14.4
 0.0 ± 0.0

Phosphonate_ester Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Primary_hydroxyl_amine Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Ringed_imide1 Correct (%)
Excess (%)
Incorrect (%)

 11.1 ± 15.7
 33.3 ± 47.1
 55.6 ± 41.6

 55.6 ± 41.6
 44.4 ± 41.6
 0.0 ± 0.0

 55.6 ± 41.6
 44.4 ± 41.6
 0.0 ± 0.0

 55.6 ± 41.6
 44.4 ± 41.6
 0.0 ± 0.0

Ringed_imide2 Correct (%)
Excess (%)
Incorrect (%)

 58.3 ± 21.2
 20.8 ± 29.5
 20.8 ± 21.2

 12.5 ± 17.7
 87.5 ± 17.7
 0.0 ± 0.0

 12.5 ± 17.7
 87.5 ± 17.7
 0.0 ± 0.0

 12.5 ± 17.7
 87.5 ± 17.7
 0.0 ± 0.0

Sulfate Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Sulfinic_acid Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Sulfonamide Correct (%)
Excess (%)
Incorrect (%)

 37.1 ± 11.6
 62.9 ± 11.6
 0.0 ± 0.0

 37.1 ± 11.6
 62.9 ± 11.6
 0.0 ± 0.0

 37.1 ± 11.6
 62.9 ± 11.6
 0.0 ± 0.0

 37.1 ± 11.6
 62.9 ± 11.6
 0.0 ± 0.0

Sulfonate Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Thioic_acid Correct (%)
Excess (%)
Incorrect (%)

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

 100.0 ± 0.0
 0.0 ± 0.0
 0.0 ± 0.0

Thiol Correct (%)
Excess (%)
Incorrect (%)

 61.9 ± 6.0
 0.0 ± 0.0
 38.1 ± 6.0

 38.1 ± 6.0
 61.9 ± 6.0
 0.0 ± 0.0

 38.1 ± 6.0
 61.9 ± 6.0
 0.0 ± 0.0

 38.1 ± 6.0
 61.9 ± 6.0
 0.0 ± 0.0

Vinyl_alcohol Correct (%)
Excess (%)
Incorrect (%)

 81.0 ± 6.7
 0.0 ± 0.0
 19.0 ± 6.7

 9.5 ± 6.7
 90.5 ± 6.7
 0.0 ± 0.0

 9.5 ± 6.7
 90.5 ± 6.7
 0.0 ± 0.0

 9.5 ± 6.7
 90.5 ± 6.7
 0.0 ± 0.0

Average Correct (%)
Excess (%)
Incorrect (%)

 81.3
 8.3
 10.4

 64.1
 33.5
 2.5

 56.5
 43.1
 0.4

 52.9
 46.8
 0.3

 30

Bibliography

1. Bohacek, R.S., C. McMartin, and W.C. Guida, The art and practice of structure-based drug

design: a molecular modeling perspective. Med Res Rev, 1996. 16(1): p. 3-50.

2. Kitchen, D.B., et al., Docking and scoring in virtual screening for drug discovery: methods

and applications. Nat Rev Drug Discov, 2004. 3(11): p. 935-49.

3. Trott, O. and A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking

with a new scoring function, efficient optimization, and multithreading. J Comput Chem,

2010. 31(2): p. 455-61.

4. Knox, A.J., et al., Considerations in compound database preparation--"hidden" impact on

virtual screening results. J Chem Inf Model, 2005. 45(6): p. 1908-19.

5. Rapp, C.S., et al., Automated site preparation in physics-based rescoring of receptor ligand

complexes. Proteins, 2009. 77(1): p. 52-61.

6. Petukh, M., S. Stefl, and E. Alexov, The role of protonation states in ligand-receptor

recognition and binding. Curr Pharm Des, 2013. 19(23): p. 4182-90.

7. Liao, C. and M.C. Nicklaus, Comparison of nine programs predicting pK(a) values of

pharmaceutical substances. J Chem Inf Model, 2009. 49(12): p. 2801-12.

8. Durrant, J.D. and J.A. McCammon, Molecular dynamics simulations and drug discovery.

BMC Biol, 2011. 9: p. 71.

9. Wang, J., et al., Development and testing of a general amber force field. J Comput Chem,

2004. 25(9): p. 1157-74.

10. McCammon, J.A., B.R. Gelin, and M. Karplus, Dynamics of folded proteins. Nature, 1977.

267(5612): p. 585-90.

11. Chodera, J.D., et al., Alchemical free energy methods for drug discovery: progress and

challenges. Curr Opin Struct Biol, 2011. 21(2): p. 150-60.

12. McGibbon, R.T., et al., MDTraj: A Modern Open Library for the Analysis of Molecular

Dynamics Trajectories. Biophys J, 2015. 109(8): p. 1528-32.

13. John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in Science &

Engineering, 9, 90-95 (2007),DOI:10.1109/MCSE.2007.55

14. Wes McKinney. Data Structures for Statistical Computing in Python, Proceedings of the

9th Python in Science Conference, 51-56 (2010)

 31

15. Michaud-Agrawal, N., et al., MDAnalysis: a toolkit for the analysis of molecular dynamics

simulations. J Comput Chem, 2011. 32(10): p. 2319-27.

16. Ropp, P.J., et al., Dimorphite-DL: an open-source program for enumerating the ionization

states of drug-like small molecules. J Cheminform, 2019. 11(1): p. 14.

17. Lee, A.C., J.Y. Yu, and G.M. Crippen, pKa prediction of monoprotic small molecules the

SMARTS way. J Chem Inf Model, 2008. 48(10): p. 2042-53.

18. Internet Bond-Energy Databank, T.a.N. Universities. http://ibond.nankai.edu.cn/.

Accessed November 13, 2018.

19. Weininger, D., SMILES, a chemical language and information system. 1. Introduction to

methodology and encoding rules. J Chem Inf Comp Sci, 1988. 28: p. 31-36.

20. Landrum, G., RDKit: open-source cheminformatics. http://www.rdkit.org/. Accessed

November 13, 2018.

21. Travis E, Oliphant. A Guide to NumPy, USA: Trelgol Publishing, (2006).

22. Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python,

2001, http://www.scipy.org/ [Online; accessed 2019-03-04].

23. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, et al. Scikit-learn: Machine

Learning in Python, Journal of Machine Learning Research, 12, 2825-2830 (2011)

24. Theobald, D.L., Rapid calculation of RMSD using a quaternion-based characteristic

polynomial. Acta Crystallographica A, 2005. 61(4): p. 478-480.

25. Welford, B.P., Note on a Method for Calculating Corrected Sums of Squares and Products.

Technometrics, 1962. 4(3): p. 419-420.

26. Joliffe, I.T. and B.J. Morgan, Principal component analysis and exploratory factor analysis.

Stat Methods Med Res, 1992. 1(1): p. 69-95.

27. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. J Mol

Graph, 1996. 14(1): p. 33-8, 27-8.

28. Cassidy, K.C., et al., Capturing the Mechanism Underlying TOP-mRNA binding to the

LARP1-specific DM15 Region. Unpublished data.

29. Greenwood, J.R., et al., Towards the comprehensive, rapid, and accurate prediction of the

favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided

Mol Des, 2010. 24(6-7): p. 591-604.

30. Dill, K.A., Dominant forces in protein folding. Biochemistry, 1990. 29(31): p. 7133-55.

31. Kozakov, D., et al., The FTMap family of web servers for determining and characterizing

ligand-binding hot spots of proteins. Nat Protoc, 2015. 10(5): p. 733-55.

 32

32. Mura, M., et al., LARP1 post-transcriptionally regulates mTOR and contributes to cancer

progression. Oncogene, 2015. 34(39): p. 5025-36.

33. Durrant, J.D., BlendMol: Advanced Macromolecular Visualization in Blender.

Bioinformatics, 2018.

	Title Page
	Committee Membership Page

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Preface
	1.0 Introduction
	1.1 Narrowing chemical space in drug discovery
	1.2 The importance of ionization states in virtual screens
	1.3 Sampling ensembles of conformations with molecular dynamics simulations
	1.4 Sustainable and efficient biomedical tool development

	2.0 Materials and Methods
	2.1 Dimorphite-DL Implementation
	Figure 1 Dimorphite-DL’s 38 supported moiety structures
	Figure 2 Dimorphite-DL algorithm schematic

	2.2 Evaluating Dimorphite-DL Accuracy
	2.3 Biotite-tools Implementation
	Table 1 Summary of the more significant universal biotite-tools user parameters
	2.3.1 Aligning Trajectories
	2.3.2 Pruning and Trimming Trajectories
	2.3.3 Root Mean Square Deviation (RMSD)
	2.3.4 Root Mean Square Fluctuation (RMSF)
	2.3.5 Clustering
	2.3.6 Principal Component Analysis (PCA)
	2.3.7 Hydrogen Bonding

	2.4 Evaluating Biotite-tools Accuracy

	3.0 Results and Discussion
	3.1 Dimorphite-DL’s Empirical Approach
	3.2 Dimorphite-DL Accuracy
	Table 2 Percent correct, excess, and incorrect predictions calculated as a weighted average across all moieties at increments of 0.5 from 0.0-3.0 precisions factor.

	3.3 Biotite-tools
	3.3.1 Aligning Trajectories
	3.3.2 Pruning and Trimming Trajectories
	3.3.3 Root Mean Square Deviation (RMSD)
	Figure 3 Root Mean Square Deviation comparative analysis of two LARP1 DM15 region MD simulations

	3.3.4 Root Mean Square Fluctuation
	Figure 4 Root mean square fluctuation comparative analysis of two LARP1 DM15 region MD simulations
	Figure 5 Root mean square fluctuation values projected directly onto the LARP1 DM15 region structure

	3.3.5 Clustering
	3.3.6 Principal Component Analysis (PCA)
	Figure 6 Principal Component Analysis of the LARP1 DM15 region B chain MD simulation

	3.3.7 Hydrogen Bonding
	Committee Members
	3.3.8 Comparative Analysis
	3.3.9 LARP1 demonstrates the need for a server implementation

	4.0 Conclusion
	Appendix A Dimorphite-DL Prediction Accuracy
	Bibliography

