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Abstract 

Pharmacokinetics Modeling and Molecular Modeling of Drug-Drug Interaction 

Between opioids and benzodiazepines 

 

Beihong Ji, B.S 

 

University of Pittsburgh, 2019 

 

 

 

Abstract 

 

The potential drug-drug interactions (DDIs) of concurrent use of opioids and benzodiazepines have 

aroused high attention in the world for the severe side effects when two types of drugs are co-

administered. However, there is much unknown in the DDI between these two kinds of drugs. The 

objective of this project is to find out the mechanism underlying the DDIs between opioids and 

benzodiazepines. There are two basic factors can contribute to the interactions, pharmacokinetic 

(PK) interaction and pharmacodynamic (PD) interaction. PK interaction is one of the most 

common reasons that lead to DDI. This kind of interaction may occur when two drugs are 

metabolized by the same Cytochrome P450 enzymes. In this work, we quantitatively predicted the 

DDI between oxycodone and diazepam through empirical PK modeling, minimal physiologically-

based PK (PBPK) modeling and full PBPK modeling. Another possibility causing the DDI is PD 

interaction. In PD study, we used molecular modeling techniques including molecular docking, 

molecular dynamics simulations and MM/PBSA calculations to predict the pharmacodynamic 

interaction between opioids and benzodiazepines. The results of PK interaction study indicated 

that benzodiazepines have limited inhibitory effect on opioids and the extent of inhibition slightly 

increased with the overdose of benzodiazepines. Usually PK interactions might only be observed 

when highly increasing the dosage of benzodiazepines. The results of PD interaction study 

indicated that benzodiazepines may act as agonists or antagonists of the µ- and -opioid receptors. 

We concluded that PD interaction is likely to play a more important role in DDIs between opioids 

and benzodiazepines.  
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1.0 INTRODUCTION 

1.1 DRUG ABUSE OF OPIOIDS AND BENZODIAZEPINES 

A key finding in clinical pharmacology and therapeutics is that a majority of overdose 

fatalities involve multiple drug classes, complicating the drug safety of a specific drug. 

Combination drug use itself is likely to be a risk factor. For example, sedatives were estimated to 

be involved in 11,843 deaths in 2014 versus just 1,847 in 1999, whereas sedatives were virtually 

never the only drug implicated in those deaths [1]. Prescription drug abuse and overdose is a 

growing problem in the United States. The number of deaths per year due to drug overdose 

increased 23% in five years, from 38,329 in 2010 to 47,055 in 2014 [2].  

Opioids are drugs that can act on opioid receptors and produce morphine-like effects. They 

have been widely used for pain relief for many years. However, overdose side effects such as 

nausea, vomiting, coma also exist simultaneously with the benefits of opioids [3, 4]. In the past 

two decades, the prescriptions of opioid medications have increased tremendously in the United 

States. There were 16651 deaths related to opioid medications in 2010 [5]. Although overdose 

deaths are largely assumed as the result of excessive opioid administration alone, the percentage 

of overdose deaths involving at least one specific drug ranged from 67% in 2010 to 78% in 2014, 

suggesting opioid abusers are often polydrug abusers [2]. Take heroin as an example, the 

percentage of poisoning deaths caused by heroin itself increased 42.6% from 2007 to 2014, which 

was much lower than the percent of change (97.2%) caused by it in combination with other drugs 

during these 7 years [6].  
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Benzodiazepines are one of the most commonly co-administered drugs and are often 

prescribed for patients with anxiety disorders, muscle spasms and major depression [7]. From 2004 

to 2011, the rate of nonmedical use-related emergency department (ED) visits for benzodiazepines-

opioid co-ingestion increased from 11.0 to 34.2 per 100,000 population, while the prevalence of 

overdose death involving both drugs increased from 0.6 to 1.7 per 100,000 population [8]. A lot 

of researchers and physicians have paid attention to the co-administration of these two kinds of 

drugs since the 1970s [9] Giving that there were approximately 5000 publications related to opioid 

and benzodiazepines between 1970 and 2012 [9]. Previous studies indicated that although the risks 

of taking overdose benzodiazepines in isolation are mild, the combination of opioids and 

benzodiazepines (especially overdose benzodiazepines) posed a potential danger to patients due to 

the risk of synergistic respiratory depression and overdose death [4, 10-13]. It is believed that 

opioids and benzodiazepines have complex drug-drug interactions (DDIs), which serve as an 

important and potentially preventable source of adverse drug effects and overdose death. However, 

there is still much unknown about how these two types of drugs interact with each other [14].  

1.2 OXYCODONE 

Oxycodone (OXY), known as Percocet and Oxycontin, is an opioid drug which acts as an 

agonist of µ- and -opioid receptors[15]. It is often used as the pain reliever for moderate to severe 

pain for its effect similar with morphine as well as its high bioavailability (60%) with different 

formulations, such as oral (most common), intramuscular, intravenous and subcutaneous 

administration [3]. However, adverse effects of OXY such as constipation, nausea and drowsiness 
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can be overserved sometimes [16]. OXY was produced from thebaine in 1916 and used in the 

clinical field in 1917 [17]. The effect of oxycodone is comparable to morphine and it has become 

one of the most common abuse drugs in recent years.  

Oxycodone (6-deoxy-7,8-dehydro-14-hydroxy-3-O-methyl-6-oxymorphine) molecule is a 

semisynthetic opiate. The bioavailability of OXY is about 62%-87% [18] and it is mostly 

metabolized with only 10% unchanged in urine. [19]  It undergoes cytochromes P450 3A4 

(CYP3A4)-mediated N-demethylation to noroxycodone as well as CYP2D6-mediated O-

demethylase to oxymorphone, the active metabolite of it.  Both noroxycodone and oxymorphine 

can be further converted to Noroxymorphone [19]. Only a very small amount of oxycodone will 

undergo conjugation by UDP-glucuronosyltransferases (UGP) [20]. The structure of oxycodone 

molecule as well as the known metabolic scheme of oxycodone are presented in the Figure 1. 

The receptors OXY binds to are opioid receptors which can be found in the central, 

periphery and autonomous nervous system. Oxycodone can bind to µ-, - and δ-opioid receptors, 

but it has lower affinity when binding to - and δ-receptors than µ-receptors [21]. These receptors 

are essentially G protein-coupled receptors (GPCRs), the seven-transmembrane domain receptors, 

which can activate intracellular activities when coupling with G proteins [16]. 

 

 

https://www.sciencedirect.com/topics/neuroscience/oxycodone
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Figure 1 The metabolic path ways of oxycodone. 

1.3 DIAZEPAM 

Diazepam (DZP) is a long-acting benzodiazepine with its brand name Valium. It is one of 

the most frequently prescribed benzodiazepines and is widely accepted and used by people for the 

treatment of anxiety, muscle spasms, seizures, trouble sleeping, etc. [22]. DZP has a calming effect 

and it can be administered by mouth, rectum injection, muscle injection and vein injection. The 

overdose effects of taking DZP alone are drowsiness, mental confusion and coma. Concurrent use 

of diazepam and other drugs like alcohol and opiates may be fatal [23]. 

DZP is a classical long-acting aryl 1, 4-benzodiazepine with no hydrogen bond donors [22]. 

It is mainly metabolized in the liver by cytochrome P450-mediated reactions (Figure 2).  DZP 

undergoes CYP3A4 and CYP2C19-mediated bioactivation to yield nordazepam (NDZ) (N-
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demethylation) and temazepam (TMZ) (3-hydroxylation), respectively. Both metabolites can be 

further converted to oxazepam (OZP) [24]. It can also be metabolized by CYP2C18 and CYP2C9 

though with relatively low Km. Generally, CYP2C19 contributes major to the N-demethylation 

while CYP3A4 makes the main contribution to the 3-hydroxylation. The bioavailability of DZP is 

more than 90% and its plasma protein binding fraction is also very high (approximately 97%), 

which leads to its long half-life (43±13 hours) [25].  

DZP is also the positive allosteric modulator of the GABA type A receptor (GABAA) which 

mediates most of the pharmacological effects of DZP [22]. GABAA is a transmembrane hetero-

oligomeric protein mainly found in the central nervous system (CNS) and peripheral area [26]. It 

belongs to a gene superfamily of ligand-gated ion channels and is activated by ɤ-aminobutyric acid 

(GABA), the primary inhibitory neurotransmitter in the central nervous system [26, 27].  

 

 

Figure 2 The metabolic pathways of diazepam. 
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1.4 DDI MECHANISM 

It is believed that opioids and benzodiazepines have complex drug-drug interactions 

(DDIs), which serve as an important and potentially preventable source of adverse drug effects 

and overdose deaths. However, there is still much unknown about how these two types of drugs 

interact with each other [14].  

Since DDIs can be broadly categorized as pharmacokinetics (PK) or pharmacodynamics 

(PD), one possible mechanism to explain the interaction is that benzodiazepines may alter the 

pharmacokinetic properties of opioids. Pharmacokinetic DDIs may occur when a co-administrated 

drug causes a change in the absorption, distribution, metabolism, and/or excretion (ADME) of 

another drug [28]. Opioids undergo phase I metabolism through CYP3A4 enzyme, and therefore, 

may have significant interactions with other co-administrated drugs that are CYP3A4 substrates, 

inhibitors, or inducers [29]. Some benzodiazepines have been reported as CYP3A4 inhibitors since 

they are also mainly metabolized by the CYP3A4 system [30-35]. Since CYP3A4 is the common 

major player in metabolism pathways of both oxycodone (OXY) and diazepam (DZP), we wonder 

if DZP can affect OXY’s activity of metabolism.   

Some studies suggested that co-administration of benzodiazepines with opioids can 

potentially increase opioid exposure.  Research utilizing human liver microsomes demonstrated 

that midazolam is a moderate mechanism-based inactivator of buprenorphine N-dealkylation, 

which can cause time- and concentration-dependent inhibition of norbuprenorphine formation 

(metabolized in part by CYP3A4) [36]. By quantitatively analyzing the plasma concentration of 

oxycodone and clonazepam, a case report also indicated that concomitant clonazepam intake can 

reduce oxycodone’s metabolism [37].  
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Another mechanism that underlies the interaction between these two drugs is 

pharmacodynamics. Some preclinical evidence shows some effects of benzodiazepines like 

analgesic and anxiolytic are partially mediated by opioidergic mechanisms, but there are also some 

studies reported contrasting data in terms of the evidence [9]. However, it is believed that people 

may concomitantly take opioids and benzodiazepines to increase the µ agonist effects of opioids. 

It is reported that 72 % of patients who use methadone are also diazepam users simultaneously, 

indicating that diazepam can enhance the drug effects of methadone [38]. 

Because the DDI studies of the two types of drugs in human subjects are limited, alternative 

methods for evaluating DDIs at toxic levels in humans are needed. To the best of our knowledge, 

the physiologically based pharmacokinetic (PBPK) modeling of the DDI between oxycodone and 

diazepam has not been reported. In this work, we aimed to first quantitatively simulate the PK 

profiles of oxycodone and diazepam by utilizing both the experimental PK and (PBPK) modeling, 

then use molecular modeling techniques such as molecular docking, molecular dynamics 

simulation and binding free energy calculations using MM/PBSA (Molecular Mechanics/Poisson 

Boltzmann Surface Area) to predict the pharmacodynamic interaction between these two drugs. 

The extent of DDIs between the two drugs due to PK or pharmacological interaction can be 

estimated from those simulations.   
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2.0 METHODS 

2.1 PHARMACOKINETICS 

For pharmacokinetic DDI study, we first used the simplest experimental model to generally 

investigate the possible DDI between oxycodone (OXY) and diazepam (DZP) in their metabolic 

pathways. Secondly, a full physiologically-based pharmacokinetics (PBPK) model was selected 

to predict their interaction in a complicated whole human body by using the software Simcyp. The 

PBPK-based DDI simulations were conducted with a virtual healthy population of 100 subjects 

and using the default systems data for the population implemented in Simcyp.  The interaction 

profiles of other opioids (fentanyl and buprenorphine) and benzodiazepines (midazolam, 

alprazolam and triazolam) were also simulated. Drug data come from literature and were predicted 

by Simcyp if not available. Finally, we selected a less complex minimal PBPK model utilizing the 

Matlab-Simbiology software to predict the pharmacokinetic DDI between OXY and DZP again to 

see if the minimal PBPK model can achieve similar results as the full PBPK model does. 

2.1.1  Empirical PK modeling 

A simple empirical pharmacokinetics (PK) model was constructed to simulate the 

interactions between OXY and DZP. The homogeneous one compartment model concomitantly 

includes both liver and plasma (Figure 3). Although simple, the model allows us to quickly learn 

about the pharmacokinetic DDIs between the two drugs. 
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PySB [39] is a framework for quantitatively building models of biochemical systems in a 

Python environment. PySB was primarily developed by the Sorger Lab at Harvard Medical School 

and the Lopez Lab at Vanderbilt University. It is mainly applied to express processes of 

interactions among multiple proteins and/or other bio-actives through enzymatic reactions with a 

simple and intuitive domain specific programming language based on Python.  For example, PySB 

can be used to simulate a typical enzyme-catalyzed reaction as given below.  

                                                               

 

Where kf is the forward reaction rate constant of E+S, kr is the reverse reaction constant 

describing rate of falling apart to E+S from ES (enzyme-substrate complex) and kcat is the forward 

rate constant of the formation of E+P. Provided kf, kr, kcat in each metabolic pathway of OXY and 

DZP, as well as the amount of drugs and enzymes, we can simulate the complex process of 

reactions when both OXY and DZP are involved. 

It is common that pharmacokinetic parameters are missing and must be estimated in PK 

modeling. We performed molecular modeling studies to calculate binding affinities between a drug 

molecule and its cytochrome P450 targets using docking simulations. We used the docking 

affinities together with the Michaelis-Menten constant, km to calculate forward and reverse reaction 

constants. All the docking simulations were performed using the Glide module [40, 41] 

implemented in Schrodinger’s small-molecule drug discovery suite (www.schrodinger.com). The 

canonical docking protocol was followed to prepare the receptor structure and the grid files [42]. 

Flexible docking simulations using the standard precision docking scoring functions were 

performed for the OXY and DZP binding to CYP3A4, CYP2D6 and CYP2C19, the three major 

E+S 
𝑘𝑓
՞ES

𝑘𝑐𝑎𝑡
ሱۛሮ E+P 

𝑘𝑟 

https://sorger.med.harvard.edu/
https://my.vanderbilt.edu/lopezlab/


10 

 

cytochrome P450 enzymes metabolizing the two drugs. With the calculated binding affinities, kf 

and kr parameters can be calculated using Equations 1-7 [43-45].  

( 1 ) 𝑉 = 𝑉𝑚𝑎𝑥
[𝑆]

[𝑆]+𝐾𝑀
     

( 2 ) 𝑉𝑚𝑎𝑥 = 𝑘𝑐𝑎𝑡[𝐸]0 

( 3 ) 𝑘𝑐𝑎𝑡 =
𝑉𝑚𝑎𝑥

[𝐸]0
 

( 4 ) ∆𝐺0 = −𝑅𝑇𝑙𝑛𝐾𝑒𝑞 = −𝑅𝑇𝑙𝑛
𝑘𝑓

𝑘𝑟
 

( 5 ) 𝐾𝑀 =
𝑘𝑟+𝑘𝑐𝑎𝑡

𝑘𝑓
    

( 6 ) 𝑘𝑟 =
𝑘𝑐𝑎𝑡

𝐾𝑀𝑒
−

∆𝐺0

𝑅𝑇 −1

 

( 7 ) 𝑘𝑓 = 𝑘𝑟𝑒−
∆𝐺0

𝑅𝑇  

Where Equation 1 is the Michaelis-Menten equation and KM is the substrate concentration 

at which the reaction rate V is the half of maximum reaction rate Vmax. [S] is the substrate 

concentration and [E]0 is the total concentration of enzyme ([E] + [ES]). Kcat can be calculated 

with Equation 3. ∆𝐺0 is the binding free energy which can be estimated using the Glide docking 

score (kcal/mol). Keq = Kf/Kr, is the equilibrium constant for a reversible reaction. Kf, kr can be 

calculated by Equations 6 and 7.   

 

Figure 3 Empirical PK model. 
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2.1.2  Full PK modeling 

Physiologically based pharmacokinetic (PBPK) modeling has been increasingly used for 

the prediction of drug-drug interaction (DDI) recently, especially for the prediction of CYP-

mediated DDIs [46]. This modeling utilizes in vitro drug data (e.g. intrinsic clearance and 

bioavailability) through the description of absorption, distribution, metabolism and elimination 

(ADME) and system data which depicts physiological properties of human subjects in a population 

to explore in vivo pharmacokinetics of drugs and DDI scenarios. The PBPK approach has been 

valued by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) 

through the guidelines for DDIs in 2012 and 2013 [47]. PBPK modeling currently receives high 

attention in the drug development and drug discovery process. A PBPK model consists of multiple 

compartments which represent different physiological organs of the human body. Circulating 

blood system links all of the compartments. Similar full PBPK models are built for both oxycodone 

and diazepam, the only difference between the models of these two drugs is the absorption process. 

We assume oxycodone undergoes the first-order absorption while Advanced Dissolution, 

Absorption and Metabolism (ADAM) model is applied for diazepam absorption process. ADAM 

model considers the complicated process of drug absorption and interplays with the underlying 

physiological characteristics of the gastrointestinal (GI) tract [48, 49]. The generic full PBPK 

model and ADAM model are shown in Figure 4. 

The Simcyp Simulator (Version 17 Release 1, Sheffield, UK) was used in the development 

of full PBPK modeling. It is the simulator for population-based PK modeling by linking in vitro 

data to in vivo ADME and PK/PD outcomes, which can help industries design dose strategy and 

inform product labeling We chose the healthy volunteer population in the Simcyp database to 
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predict the PK profiles of drugs. All of the PK parameters for the two types of drugs are 

summarized in the APPENDIX (Table S1). Particularly, because there is no exact experimental 

data for Ki value of oxycodone and diazepam, we did Glide docking and chose the best poses 

which not only have similar binding modes as the co-crystallized ligand of CYP3A4, but also have 

relatively high docking scores. Then we calculated the Ki values for these two drugs (especially 

for diazepam) using the docking score by Equation 8. The Ki values were utilized in competitive 

inhibition. The docking poses for oxycodone and diazepam are shown in Figure 5 and the docking 

scores and calculated Ki are listed in Table 1. To explore how significant of Ki parameters influence 

the PBPK simulation results, the sensitivity analysis was also conducted to investigate the impact 

of Ki values towards the DDI effect, utilizing the Simcyp built-in sensitivity analysis function. 

( 8 ) 𝐾𝑖 =
[𝐸][𝐼]

[𝐸𝐼]
=

𝐾𝑟

𝐾𝑓
 

Besides competitive inhibition, mixed type inhibition which includes both competitive and 

mechanism-based inhibitions are applied to predict the DDIs between two drugs. Mechanism-

based inhibition occurs when a drug’s binding to CYP enzyme is fully or partially irreversible 

(such as forming covalent bonds), which lead to the inactivity of CYP enzyme and changes of PK 

parameters, such as Ki (half-maximal inactivation) and kinact (inactivation rate of enzyme) [50]. 

The kinact and kapp were evaluated by fitting and extrapolation Equation 9 which describe the 

relationship between the observed inactivation rate constants (kobs) and the concentration of the 

test inhibitor ([I]). The schematic diagram of mechanism-based inhibition was exhibited below. 

( 9 ) 𝐾𝑜𝑏𝑠 =
𝐾𝑖𝑛𝑎𝑐𝑡×[𝐼]

𝐾𝑎𝑝𝑝+[𝐼]
 

 

 

 

E+S 
𝑘𝑓
՞ES

𝑘𝑐𝑎𝑡
ሱۛሮ E+P 

𝑘𝑟 
↓ 𝑘𝑖𝑛𝑎𝑐𝑡  

𝐸𝑛𝑧𝑦𝑚𝑒  
𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 
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Figure 4 The PBPK model (left panel) and ADAM model (right panel). 
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Figure 5 The docking poses of oxycodone and diazepam in CYP3A4. 

The orange ligand is oxycodone, the green ligand is diazepam, the white ligand which partially 

overlapped with oxycodone and diazepam is the co-crystalized ligand of CYP3A4. The heme 

group, a coordination complex consisting of an iron ion in cytochrome P450, is shown as sticks. 

Table 1 The docking scores and calculated Ki for oxycodone and diazepam CYP3A4. 

 
Docking Score (kcal/mol) Calculated Ki (µM) 

oxycodone -6.77 10.9 

diazepam -7.89 1.65 

 

2.1.3  Minimal PK modeling 

Physiologically-based pharmacokinetic models were developed respectively for 

oxycodone (OXY) and diazepam (DZP) to predict their pharmacokinetic interaction in vivo using 
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the parameters either from literature or estimated values by fitting in vitro data. Minimal PBPK 

models were chosen because OXY and DZP are both predominately metabolized in liver. Only 

less than 1% of DZP is excreted by kidney, while up to 19% of OXY is excreted after an oral dose 

by kidney [25]. The major difference of minimal PBPK models from a complete PBPK model lies 

in that organs and tissues are modeled separately in the latter, while the former assumes that the 

plasma compartment contains tissues that have similar drug distributions except for the hepatic 

compartment [51, 52]. Applying a minimal PBPK model can minimize the inaccuracy caused by 

lack of parameters for other less important organs and systems. For OXY and DZP, our minimal 

PBPK model only keeps the essential parts of a complete PBPK model, including liver, blood flow 

as well as drug partitioning among the applied compartments. The model for each drug is 

composed of systemic blood, hypothetical portal vein and liver compartments as shown in Figure 

6. 

Simbiology® is a systems biology toolbox implemented in Matlab (R2017b). It is a popular 

platform to model, simulate and analyze the systems biology data with an extra focus on PK/PD 

modeling and simulation. It was selected to create a semi-PBPK model because of its versatile 

model exploration techniques and strength to simulate the time course profiles of drug exposure 

based on various ordinary differential equations (ODEs) or stochastic solvers.  
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Figure 6 The minimal PBPK model. 

Qpv is the blood flow rate from systemic blood to portal vein or from portal vein to liver; QH is the 

blood flow rate from liver to systemic blood; Fa is fraction absorbed from the gastrointestinal tract; 

Fg is gut availability (fraction of drug escaping from the gut availability); Ka is the absorption rate; 

CLin/CLout is the clearance into and out of the single adjusting compartment. 

 

Metabolisms of OXY, DZP as well as their metabolites were considered in the minimal 

PBPK model to study the pharmacokinetic interaction between two drugs. Hepatic intrinsic 

clearance (CLint) is the parameter which describes the intrinsic ability of the liver to remove 

(metabolize) the drug. It is defined by Equation 10. 

( 10 ) 𝐶𝐿𝑖𝑛𝑡 =
𝑉𝑚𝑎𝑥

𝐾𝑀+[𝑆]
 

( 11 ) 
𝐴𝑈𝐶𝑖

𝐴𝑈𝐶
=

𝐶𝐿𝑖𝑛𝑡

𝐶𝐿𝑖𝑛𝑡−𝑖
= 1 +

[𝐼]

𝐾𝑖
 

( 12 ) 𝑓𝑏 =
𝑓𝑢

𝐵:𝑃
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If there is an inhibitor which acts on the same enzyme of substrate via the competitive 

inhibition mechanism, the relationship between AUCi/AUC, CLint-i/CLint and Ki can be described 

by Equation 11. Where [I] is the concentration of an inhibitor with the inhibitory constant of Ki, 

𝑓𝑏,𝑜 and 𝑓𝑏,𝑑, which are defined in Equation 12, represent the unbound fractions of OXY and DZP 

in blood, correspondingly. fu is the unbound fraction of drug in plasma and B:P represents the blood 

and plasma concentration ratio. Kp is the liver-to-blood concentration ratio of a drug (assumed to 

be 1 for all drugs in this study) [44]. 𝐾𝑖 is the inhibitory constants of DZP which is estimated using 

its binding affinity to CYP3A4 with Equation 8. All the PK parameters used are also listed in 

APPENDIX (Table S2). 

2.2 PHARMACOKINETICS 

For pharmacodynamics (PD) DDI study, we decided to investigate the binding situation of 

benzodiazepine with µ- and -opioid receptors by utilizing molecular modeling techniques, since 

oxycodone is an agonist of µ- and -opioid receptors. We plan to find out if benzodiazepines can 

also have positive effects on the two opioid receptors. Agonist-bound and antagonist-bound µ- and 

-opioid receptors were downloaded from Protein Data Bank (http://www.rcsb.org); opioids and 

benzodiazepines were downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/). 

Molecular docking, molecular dynamics simulation and MM/PBSA calculations were performed 

step by step as detailed below. 

http://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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2.2.1  Molecular docking 

Molecular docking was performed using the Glide module of the Schrodinger suite of 

software (Maestro, version 11.2) for the aforementioned receptors: active µ-opioid receptors (PDB 

Code 5C1M, co-crystallized agonist 4VO), inactive µ-opioid receptor (PDB Code 6B73, co-

crystallized antagonist CVV), active -opioid receptor (PDB Code 4DJH, co-crystallized agonist 

JDC), and active -opioid receptor (PDB Code 4DKL, co-crystallized antagonist BF0). For each 

receptor, the “Protein Preparation Wizard” was first applied to prepare the receptor structure for 

the Glide docking including adding hydrogens, creating disulfide bonds, conducting restraint 

minimization, etc.  Glide grid was then generated with default setting For example, the van der 

Waals radius scaling factor is 1.0 and partial charge cutoff is 0.25. The grid site was automatically 

set to the central location of workspace ligand and its size was manually adjusted to match the size 

of co-crystallized ligand without any constraints or rotatable groups. In total, twelve ligands were 

selected for the docking studies: four co-crystallized ligands of µ- and -opioid receptors (4VO, 

CVV, JDC, BF0), four opioids (oxycodone, methadone, buprenorphine, naltrexone) and four 

benzodiazepines (alprazolam, diazepam, midazolam, triazolam). Flexible ligand docking was then 

performed with the default setting (the van der Waals radius scaling factor is 0.80, partial charge 

cutoff is 0.15 for ligands, no constraints, etc.) except that the “reward intramolecular hydrogen 

bonds” was turned on and the maximal poses per ligand was set to 10. In most situations, the best 

docking poses ranked by the Glide “Standard Precision” docking scoring function were selected 

for the subsequent modeling studies. Sometimes, other top docking poses were selected if they can 

much better overlap with the co-crystallized ligands.   
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2.2.2  Molecular dynamics simulations 

The starting conformations of the membrane for the opioid receptor complex were built 

using CHARMM-GUI [53] after making the longest principal of axis along to the Z-axis and the 

coordinate center of 7TM is in origin. 240 POPC lipid molecules were added. The complexes were 

immersed in a rectangle box with TIP3P water molecules [54] in all three dimensions. A set of 

Na+ and Cl- ions were added to make a 0.15 M concentration of NaCl and to neutralize the whole 

systems.  

In molecular mechanics (MM) minimizations and MD simulations, the parameters for 

ligands and atom types were carried out by the General Amber force field (GAFF) in AMBER 16 

[55]. The atomic partial charges were derived by restrained electrostatic potential (RESP) [56] to 

fit the HF/6-31G* electrostatic potentials generated using the Gaussian 16 software package [57]. 

All topologies in MD were generated using the Antechamber module [58]. 

MD simulations were performed using the PMEMD.mpi and PMEMD.cuda modules in 

the AMBER 16 package [59-61]. At first, to remove possible steric crashes in the systems, five 

steps of energy minimization were employed. Water and ions were relaxed first, followed by the 

protein and ligand complex. The harmonic restraint force constants reduced step by step from 20 

to 10, 5, 1 and finally to 0 kcal/mol/Å2. After the minimization, the temperature of each system 

was heated from 0 to 300 K and was kept at 300 K.  The pressure was controlled at 1atm with the 

relaxation time of 2 ps. The temperature was regulated by Langevin dynamics [62, 63]. To 

constrain all hydrogen atoms, the SHAKE algorithm [64] was applied and the time was set to 0.001 

ps. After a 20 ns equilibration, the MD trajectory was collected for 200 ns and each snapshot was 

saved every 100 ps. 
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2.2.3  MM/PBSA calculations 

The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) approach [65] is 

based on MD simulation and has been commonly used in the prediction of binding free energies. 

It can decompose the binding free energy into different interaction terms and each energy 

component is computed from series of conformational snapshots taken from MD simulations [66].  

In MM/PBSA, the binding free energy ( ∆𝐺𝑀𝑀/𝑃𝐵𝑆𝐴) between a ligand and a receptor to 

form a complex is calculated as the equations below. 

∆𝐺𝑀𝑀/𝑃𝐵𝑆𝐴 = ∆𝐻 − 𝑇∆𝑆 = ∆𝐸𝑖𝑛𝑡𝑒𝑟 + ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑤 + ∆𝐺𝑝
𝑠𝑜𝑙 + ∆𝐺𝑛𝑝

𝑠𝑜𝑙 − 𝑇∆𝑆 

∆𝐸𝑖𝑛𝑡𝑒𝑟  is the change of internal bonded MM energy, ∆𝐸𝑒𝑙𝑒  is the change of MM 

electrostatic energy, ∆𝐸𝑣𝑑𝑤  is the change of MM van der Waals energy, ∆𝐺𝑝
𝑠𝑜𝑙  is the polar 

solvation free energy, ∆𝐺𝑛𝑝
𝑠𝑜𝑙 is the nonpolar solvation free energy, T is the absolute temperature 

and  ∆𝑆 is the change of entropy. 

Because in the real application, it is more common to simulate only complex state, causing 

the removal of ∆𝐸𝑒𝑙𝑒. So the equation is changed to: 

∆𝐺𝑀𝑀/𝑃𝐵𝑆𝐴 = ∆𝐻 − 𝑇∆𝑆 = ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑤 + ∆𝐺𝑝
𝑠𝑜𝑙 + ∆𝐺𝑛𝑝

𝑠𝑜𝑙 − 𝑇∆𝑆 

For each MD snapshot, the binding free energy of each ligand was calculated and the 

detailed free energy compositions were performed for all snapshots in the sampling phases of MD 

simulations. The Poisson Boltzmann calculations were performed with the Delphi program [67]. 
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3.0 RESULTS 

3.1 PHARMACOKINETICS 

Empirical PK model, full PBPK model and minimal PBPK model were first created and 

individual PK profiles for opioids and benzodiazepines were then generated. We collected 

experimental data of PK profiles for these two kinds of drugs from literature and used it to verify 

our models. Last the profiles of DDI between the two types of drugs were generated using PySB, 

Simcyp and Simbiology software.  In all the (PB)PK models, opioids served as substrates while 

benzodiazepines as inhibitors. AUC (Area under the curve) were compared between substrate and 

substrate-inhibitor profiles to investigate the DDI between these two kinds of drugs. 

3.1.1  Empirical PK modeling 

The application of molecular modeling techniques, such as docking simulations, to 

facilitate the acquisition of PK parameters is credible and can be explored to expand the 

applications in the future. By applying the PK parameters from docking to PySB, the 

concentration-time (C-T) profiles can be generated. The simulation results showed DZP only has 

a weak inhibitory effect on the CYP3A4 enzyme for OXY, even though DZP is a stronger binder 

to CYP3A4 than OXY. The PySB scripts for the empirical PK model were shown in the 

APPENDIX CODE. 
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We assumed that OXY and DZP are administered orally and the oral dosage of OXY is 

40mg (127 µmol) [15, 17] while the dosage of DZP is 10mg (31.5 µmol) [68, 69]. When the drug 

absorption and elimination follow the first-order reaction, the absorption rate and elimination rate 

constants (Ka) can be estimated with Equations 13-14 [70].   

( 13 ) 𝑇𝑚𝑎𝑥 = (
1

𝐾𝑎−𝐾𝑒𝑙
) 𝑙𝑛

𝐾𝑎

𝐾𝑒𝑙
 

( 14 ) 𝑡1/2 =  
𝑙𝑛2

𝐾𝑒𝑙
 

Where Tmax is peak time, and Kel is the elimination rate constant. The average time to 

achieve peak plasma concentration for DZP is 1.3 hours [25] while the half time t1/2 is 43 hours[25]. 

Combining Equations 6 and 7, the 𝐾𝑎 of DZP (𝐾𝑎,𝑑) was estimated to be 4 hr-1 (0.0011 s-1). The 

𝐾𝑎 of OXY (𝐾𝑎,𝑜) is set to be 0.7 hr-1 according to literature [71]. 

The metabolism of OXY is involved with enzymes CYP3A4 and CYP2D6. CYP3A4 and 

CYP2C19 are the enzymes participated in the metabolic pathways of DZP. The liver is assumed 

to be homogeneous tissue and the total concentration of each enzyme is estimated with Equation 

15. 

( 15 ) 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 [𝐶𝑌𝑃] =
𝐶𝑌𝑃 𝐴𝑏𝑜𝑢𝑛𝑑𝑎𝑛𝑐𝑒(

𝑝𝑚𝑜𝑙

𝑚𝑔 𝑚𝑖𝑐 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
)∙MPPGL(

𝑚𝑔 𝑚𝑖𝑐 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑔 𝐿𝑖𝑣𝑒𝑟
)∙𝐿𝑖𝑣𝑒𝑟 Weight(g) 

𝐿𝑖𝑣𝑒𝑟 𝑉𝑜𝑙𝑢𝑚𝑒(𝐿)
 

[CYP] here is the concentration of cytochrome P450 in liver. MPPGL, the microsomal 

protein per gram of human liver, is set to 45 mg∙g-1 liver. The average liver weight is around 1.5 

kg [72] and liver volume is estimated to be around 1.5 L [73]. The abundance of CYP3A4, 

CYP2D6 and CY2C19 is therefore estimated to be 137 pmol∙mg-1 (of microsomal protein), 8 

pmol∙mg-1 and 14 pmol∙mg-1, respectively. Those values can be transformed to 6.165 µM, 0.36 

µM and 0.63 µM in the liver.  
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The KM and Vmax of each pathway were derived from literature and are shown in Table 2. 

OXY, DZP and their metabolites were docked to the three cytochrome P450 enzymes. The best 

docking scores were listed in Table 2. The best docking scores for OXY and DZP bind to CYP3A4 

were shown in Figure 5. The rest binding poses were shown as the supplementary materials (Figure 

S1 and Figure S2). kf, kr and kcat listed in Table 2 were derived according to Equations 1-7. The 

value of 𝐾𝑀 and 𝑉𝑚𝑎𝑥 for OXY and DZP were obtained from literature [19, 24, 74, 75]. 

The concentrations of drugs have been transformed to describe the corresponding 

concentrations in plasma, though the concentration variation was closer to the real reaction rate in 

liver. Figure 7 depicted the concentration of 40 mg single dose OXY before and after co-

administrated with different sizes of single dose DZP. While the dose of OXY was always 40 mg, 

the dose of DZP increased from 10 mg, 20 mg, 50 mg to 100 mg (Groups A, B, C, D, accordingly). 

When the dosage of DZP was 100 mg, the maximal concentration of diazepam was 2250 ng/mL. 

According to a report, even when plasma concentration of the diazepam was as high as 4792 

ng/mL, patients were minimally sedated and were discharged within 24 h [76].  The concentration 

~ time (C-T) curve for OXY administered by itself is shown as the red dashed line, while the C-T 

curves for OXY administered concomitantly with different doses of DZP are shown in blue-solid 

lines. The concentration of OXY became a little bit higher when the two drugs were given 

simultaneously and increasing the dose of DZP amplified the trend. The AUC (area under the 

concentration-time curve) ratio was calculated with Equation 16 and was listed in Table 3, where 

AUCi is the AUC with an inhibitor present and AUC0 is the AUC without the participation of an 

inhibitor. The AUC ratio is almost the same for Groups A and B, with the difference being only 

0.01. The AUC ratio of Group C is 3.96% higher than that of Group A. When the dose amount of 
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DZP is 10 times larger than the regular dose, the AUCR increases to 9.9% compared to that of 

Group A. 

( 16 ) 𝐴𝑈𝐶 𝑅𝑎𝑡𝑖𝑜 =
𝐴𝑈𝐶𝑖

𝐴𝑈𝐶0
 

 

Table 2 Parameters used in empirical PK modeling. 

 

 

 

 
Docking 

score 

KM(µM) Vmax(μmol∙s-1) kcat(s
−1) kf 

(μM-1*s−1) 

kr(s−1) 

OXY-NOC(3A4) -6.77 377 0.7245 0.0783 0.000218 0.0039 

OXY-OM(2D6) -6.43 39.8 0.1026 0.19 0.00928 0.179 

NOC-NOM(2D6) -7.375 20.5 0.1341 0.248 0.014956 0.0586 

DZP-TMZ(3A4) -7.89 140 4.6245 0.5 0.003619 0.00661 

DZP-NDZ(3A4) -7.89 152 0.4155 0.045 0.0003 0.000547 

DZP-NDZ(2C19) -7.083 21 0.02775 0.0293 0.00201 0.0129 

TMZ-OZP(3A4) -7.794 307 0.204 0.022 0.000072 0.000139 

NDZ-OZP(3A4) -7.364 94 0.573 0.062 0.000689 0.00275 
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Figure 7 The Concentration-Time curves of 40 mg OXY co-administered with 10 mg, 20 

mg, 50 mg, and 100 mg DZP from PySB. 

 

Table 3 AUC ratios when using OXY and different dose of DZP together in PySB. 

 

 

 

 

 

 

 

 

Discussion A one-compartment empirical model highlights the metabolic interaction between 

OXY and DZP and is a convenient way to find whether DZP can alter PK profile of OXY. To 

validate our computational protocol of applying molecular docking to estimate reaction rates, we 

created the same PK model in Simbiology with kf, kr, kcat being replaced with KM and Vmax 

parameters. The C-T profiles for oral administration of 40 mg OXY predicted by the two software 

Group        Dosages       AUC Ratio 

A OXY 40mg+DZP 10mg 1.01 

B OXY 40mg+DZP 20mg 1.02 

C OXY 40mg+DZP 50mg 1.05 

D OXY 40mg+DZP 100mg 1.11 
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are shown in Figure 8. The AUC by using kf, kr, and kcat to express metabolic processes in PySB 

was 0.065 µmol∙hr∙l-1, which was almost identical to 0.0638 µmol∙hr∙l-1, the AUC acquired by 

inputting KM and Vmax to simulate the same metabolism in Simbiology. Therefore, applying 

molecular modeling is a promising way to obtain high quality PK parameters for mechanistic PK 

modeling.  It is also noted that this methodology is not restricted to the metabolic process but can 

also be used for the target binding, which implies a possibility to build a bridge between 

pharmacology and PK mathematical processes. 

Although the simulated C-T profiles are for OXY and DZP in plasma, they reflect the 

kinetics and metabolism of the two drugs in the liver, making it easier to find the metabolic 

influence of DZP on OXY. Since CYP3A4 is a major enzyme involved in the metabolic pathways 

of both OXY and DZP, the change on the C-T profile of OXY upon the co-administration of DZP 

can be applied to measure the pharmacokinetic DDI between the two drugs. If the competitive 

binding of DZP to CYP3A4 causes a reduction of free CYP3A4 enzyme, the catalysis of OXY 

may be slowed, leading to the accumulation of OXY in the human body. However, the simulation 

results suggested that the PK interaction between OXY and DZP was very small and the AUCR 

only grew 0.01 for the normal dosage (Table 2 and Table 4). This finding is consistent with the 

statement that benzodiazepines might be weak competitive inhibitors to CYP3A4 [4, 77]. It is also 

found that increasing doses of DZP (from 10 mg to 20 mg, 50 mg and 100 mg) can increase the 

inhibitory effect of DZP as the AUCR increased proportionally (from 1.01, 1.02, 1.05 to 1.11). This 

suggests that higher doses of DZP can cause the overdose effect of OXY. A study investigating 

the association between benzodiazepine prescribing patterns and the risk of death from opioid 

analgesics overdoses among US veterans [78] found that the unadjusted rates of death from an 

overdose of OXY increased in combination with higher daily benzodiazepine doses.  However, 
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according to our simulation results, even when the dosage of DZP highly rises (rising over 10 

times), pharmacokinetic DDI can be hardly observed between the two drugs, implying there is 

limited PK interaction between these two drugs, side effects caused by combination of two drugs 

are more likely due to PD interaction between them The limitation for this model is the predicted 

concentration for the drug is lower than real situation. For example, the maximal concentration of 

oxycodone predicted by this model is around 0.04 µM/L (12.6 ng/mL), which is lower than the 

usual maximal concentration of the same dosage of oxycodone [79]. This can be explained by this 

particular homogeneous model which only has one single compartment and everything is included 

in it, thus the simulated concentration of the drug would be underestimated because it is assumed 

to be averagely distributed in the body.  

The PK modeling is becoming an essential part of drug discovery, but it is very challenging 

to build predictive models since many PK parameters are not available. Our novel methodology 

of utilizing molecular modeling to assign parameters for PK modeling can be a breakthrough 

because it offers a reliable and practical way to investigate DDIs for drugs that lack experimental 

PK data, which can inspire investigators to study DDIs even when the experimental data is 

unavailable. Furthermore, this technology is not only restricted to the metabolic process but can 

also be used for target binding, expanding the investigation of PD interactions, which implies a 

possibility to build a bridge between pharmacology and PK mathematical process.   

 



28 

 

 

Figure 8 The concentration of OXY in empirical PK model predicted by PySB and 

Simbiology. 

3.1.2  Full PK modeling 

The PK parameters of ADME processes for oxycodone (OXY) and diazepam (DZP) as 

well as their metabolites were listed in APPENDIX (Table S1). Some of the parameters were 

collected and calculated from literature and some were predicted by Simcyp calculators or obtained 

from Simcyp internal databases. We created a PO model for 30 mg OXY, an IV model for 0.1 

mg/kg DZP and a PO model for 10 mg DZP according to the recommended dosages of the two 

drugs. In the PO OXY model, the absorption was described as a first order process, while in the 

PO DZP model, we utilized the ADAM absorption model implemented in the Simcyp software. 

For the IV DZP model, DZP was modeled to enter the systemic circulation by venous blood 

vessels. Experimental PK data extracted from the literature were used to verify our PBPK models, 

which include AUC, maximal concentration (Cmax) and Tmax. Last, we compared different 

formulations of DZP interacts with OXY. 
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The observed and predicted PK data were listed in Table 4 and the Concentration-Time 

(CT) curves for OXY and DZP were depicted in Figure 10. From the Table 4 and Figure 9, we can 

see all the predicted AUC, Cmax and Tmax of OXY and DZP were within the range of their observed 

data (within the standard deviation (SD)), respectively. Because for the oral formulation of DZP 

we only collected data within 12 hours after the administration, our predicted CT PK data of PO 

DZP was correspondingly adjusted to 12 hours, i.e.,  we compared AUC12h (the drug exposure 

from time zero to 12 hours) between predicted PO DZP and observed PO DZP.  

 

 

 

Table 4 The AUC, Cmax and Tmax of 30 mg PO OXY, 10 mg PO DZP and 1 mg/kg DZP. 

Dosing Strategy 
 

AUC (SD) 

(ng∙h/mL) 

Cmax (SD) 

(ng/mL) 

Tmax (SD) 

(h) 

Oxycodone PO 30 mg 

(0-24 h) 

Observed 1a 268.2 (60.7) 39.3 (14.0) 2.6 (3) 

Observed 2a 277.0 (89.6) 48.5 (15.9) 1.5 (NA) 

Predicted 311.83 (150.67) 38.0 (14.69) 1.2 (0.31) 

Diazepam PO 10 mg 

(0-12 h) 

Observedb 1530 (464.33) 317 (89.55) 1.32 (0.56) 

Predicted 1677.12 (434.66) 221.89 (51.5) 1.15 (0.35) 

Diazepam IV 0.1 mg/kg 

(0-24 h) 

Observedc 2198.5 (NA) NA NA 

Predicted 1932.46 (582.83) NA  NA 

SD is standard deviation and all units are shown in parenthesis. a: Observed 1 and Observed 2 are 

the experimental data collected from Drugs.com (https://www.drugs.com). b,c: Observed data for 

PO and IV DZP are respectively obtained from two reports ([80, 81]). 

 

https://www.drugs.com/
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Figure 9 The predicted concentration profiles of 30 mg PO OXY, 10 mg PO DZP and 1 

mg/kg IV DZP and their observed data respectively. 

Red open circle and blue open squares represent the observed data. Black lines represent CT curve 

and Grey dashed lines represent the observed data. Black lines represent CT curve and Grey dashed 

lines represent 95% Confidence Interval of the population-based simulation of concentrations. 

3.1.2.1 Competitive inhibition 

Because usually the interaction between two different substrates with the same enzyme is 

competitive inhibition [82], we firstly hypothesize that diazepam is a competitive inhibitor of 

CYP3A4 and can inhibit the oxycodone which is predominately metabolized by CYP3A4.  The Ki 

parameter of diazepam was calculated by Equation 8 and other input parameters have been listed 

in Table S1. DDI models for OXY and PO/IV DZP were built with the calculated Ki and the PK 

parameters as inputs. To better compare the DDI effect between OXY and DZP, we adjusted the 

dosage of diazepam from normal to overdose. The simulated concentration profiles of 30 mg OXY 

co-administered with different doses of PO/IV DZP are shown in Figure 10 and the predicted AUC 

Ratio and Cmax Ratio of the DDI profiles with and without the presence of DZP were shown in 

Table 5. 
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Table 5 The AUC Ratio and Cmax Ratio of the DDI profiles for PO OXY and 10 mg, 100 mg 

and 500 mg and 1000 mg of PO/IV DZP. 

Dosing Strategy Formulation AUC0-24h 

Ratio 

CI[5%,95%] Cmax 

Ratio 

CI[5%,95%] 

Oxycodone 30 mg 

+ diazepam 10mg 

PO 1.01 [1.00,1.01] 1.01 [1.00,1.01] 

IV 1.00 [1.00,1.01] 1.00 [1.00,1.00] 

Oxycodone 30 mg 

+ diazepam 100mg 

PO 1.05 [1.03,1.07] 1.04 [1.02,1.06] 

IV 1.03 [1.02,1.05] 1.02 [1.01,1.04] 

Oxycodone 30 mg 

+ diazepam 500mg 

PO 1.13 [1.09,1.19] 1.09 [1.06,1.14] 

IV 1.12 [1.07,1.17] 1.07 [1.04,1.12] 

Oxycodone 30 mg 

+ diazepam 1000mg 

PO 1.20 [1.12,1.29] 1.12 [1.07,1.19] 

IV 1.18 [1.18,1.27] 1.10 [1.05,1.17] 

CI is the 95% Confidence Interval. AUC0-24h Ratio is the exposure of AUC Ratio from the time 

zero to 24 hours. 
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Figure 10 The predicted concentration profiles of 30 mg oxycodone co-administered with 

10 mg, 100 mg, 500 mg and 1000 mg DZP. 

The grey line represents the CT curve of OXY without the administration of DZP and the black 

dashed line represents the CT curve of OXY with the administration of DZP. 

 

 

As shown in Figure 10, the accumulation of OXY concentration can only be observed when 

the dosage of PO DZP is 1000 mg. The plasma concentration of OXY increases with the 

administrated dosage of PO DZP increases, but the difference is not obvious for low doses of PO 

DZP. Correspondingly, the AUC24h Ratio is only 1.01 and Cmax Ratio is also 1.01 when treating 

with the normal dose of PO DZP. The AUC Ratio increases by 4.0% when the dose of PO DZP 

increases to 10 times the normal dose. Only when the dose of PO DZP was increased to 1000 mg, 

the simulated interaction between OXY and PO DZP can result in a growth of AUC of OXY by 

1.20-fold and Cmax of OXY by 1.12-fold. Similarly, the predicted DDI between OXY and IV DZP 
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causes only the increase of AUC by 1.18 folds and Cmax by 1.10 folds for the largest DZP dose, 

which is even less obvious than PO OXY. The comparison of AUC Ratio for OXY with different 

administrations of DZP was shown in Figure 11. According to Figure 11, the simulated AUC Ratio 

of OXY with PO DZP is a little bit higher than with the same dosage of IV DZP.    

 

  

 

Figure 11 The AUC0-24h Ratio of 30 mg OXY with the presence of 10 mg, 100 mg, 500 mg 

and 1000 mg of   PO/IV DZP. 

 

 

The additional sensitivity analysis for Ki was also conducted in the DDI model between 

OXY and PO DZP by changing the Ki value from 0.165 µM to 165 µM in order to find out the 

significance Ki value influencing the simulation results and a surface plot which depicts the change 

of AUC Ratio of OXY with the change of Ki value of dosage of DZP was created (Figure 12). The 

corresponding AUC Ratio of DDI when concurrently taking 30 mg OXY and different dosage of 
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DZP changed from 1.000 to 1.375 in terms of Ki in the range 0.165-165. Accordingly, Figure 13 

shows a series of C-T curves of oxycodone with the co-administration of 1000 mg diazepam when 

applying the different value of Ki to the DDI model. 

 

 

 

Figure 12 The AUC Ratio of OXY with different dosage of PO DZP when Ki value is 

ranged in 0.165-165 µM. 
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Figure 13 A series of C-T curves of oxycodone in plasma with the presence of 1000 mg 

diazepam when applying Ki in range 0.165-165 µM. 

3.1.2.2 Mixed type inhibition 

Although it is believed competitive inhibition commonly happens between two substrates 

for the same enzyme, the interaction between CYP3A4 substrates is always complex. Therefore, 

we combined competitive inhibition with mechanism-based inhibition in modeling the DDI of 

OXY and PO DZP. The concentration of mechanism-based inhibitor associated with half-maximal 

inactivation rate (kapp) and the inactivation rate of the enzyme (kinact) were listed in Table S1. The 

mechanisms of competitive and mechanism-based inhibitions have been described in the method 

section. The comparison of AUC Ratio of OXY with different dosage of PO DZP under the 

competitive inhibition and mixed-type inhibition respectively was shown in Figure 14. The 

detailed AUC Ratio of DDI profiles based on mixed-type inhibition was listed in Table 6. From 

the results, it is clear that the AUC and Cmax both increase a little bit higher for the same doses of 
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DZP when applying the mixed-type inhibition than only utilizing competitive inhibition in the DDI 

model.  

 

 

 

Figure 14 The AUC0-24h Ratio of 30 mg OXY with the presence of 10 mg, 100 mg, 500 mg 

and 1000 mg of  PO DZP when applying competitive inhibition and mixed-type inhibition. 

 

Table 6 The AUC Ratio and Cmax Ratio of the DDI profiles for PO OXY and 10 mg, 100 mg 

and 500 mg and 1000 mg of PO DZP when applying mixed-type inhibition to the DDI model. 

Dosing Strategy AUC0-24h Ratio CI[5%,95%] Cmax Ratio CI[5%,95%] 

oxycodone 30 mg + 

diazepam 10mg 

1.01 [1.01,1.02] 1.01 [1.00,1.02] 

oxycodone 30 mg + 

diazepam 100mg 

1.07 [1.04,1.09] 1.04 [1.03,1.06] 

oxycodone 30 mg + 

diazepam 500mg 

1.21 [1.13,1.31] 1.10 [1.06,1.16] 
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oxycodone 30 mg + 

diazepam 1000mg 

1.30 [1.17,1.48] 1.13 [1.07,1.22] 

CI is the 95% Confidence Interval. AUC0-24h Ratio is the exposure of AUC Ratio from the time 

zero to 24 hours. 

3.1.2.3 Other opioids and benzodiazepines 

Besides oxycodone and diazepam, we also create PBPK models for other opioids such as 

buprenorphine and fentanyl and benzodiazepines like alprazolam, midazolam and triazolam to 

explore the pharmacokinetic DDIs between these two kinds of drugs utilizing Simcyp software. 

The formulation of the presumed inhibitors, benzodiazepines are all through the oral 

administration route. Model validation including comparisons of PK parameters between 

observation and prediction as well as the simulation curves for parent drugs were listed in Table 7 

(the results for OXY and DZP were summarized in Table 4) and shown in Figure 14. The input 

parameters are summarized in Table S3. We only considered the binding and inhibitory effect of 

parent drugs and the Ki value of each substrate/inhibitor (shown in Table S3) was also predicted 

by Glide docking. The predicted AUC, Cmax and Tmax of the two types of drugs are all within the 

ranges of overserved values, except for buprenorphine, for which the PK parameters are slightly 

off the observed ranges. The PK profiles of fentanyl are unavailable. Moreover, as shown in Figure 

15, the observed C-T data of these drugs are also within the CI range (the upper and lower grey 

dashed lines) of the simulated Concentration-Time (CT) curves. 
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Table 7 The AUC0-24h, Cmax and Tmax of 4 mg PO buprenorphine, 0.1 mg/kg mg PO 

fentanyl, 2 mg PO alprazolam, 15 mg PO midazolam and 0.25 mg PO triazolam. 

Dosing Strategy 
 

AUC0-24h (SD) 

(ng∙h/mL) 

Cmax (SD) 

(ng/mL) 

Tmax (SD) (h) 

buprenorphine PO 4 

mg 

Observeda 23.89 (10.29) 3.31 (1.98) 0.71 (0.196) 

Predicted 9.89 3.83 0.25 

fentanyl IV 0.1 mg/kg Observedb NA NA NA 

Predicted 180.29 NA NA 

alprazolam PO 2 mg Observedc NA 33 (10) 1.9 (1.4) 

Predicted 405.96 30.53 1.20 

midazolam PO 15 mg Observedd 221.76 (63.78) 95.17 (39.01) 0.69 (0.60) 

Predicted 233.49 75.72 0.64 

triazolam PO 0.25 mg 

 

 

Observed 1e 7.01 (3.47) 2.02 (0.77) 0.96 (0.51) 

Observed 2f NA 3.0 (1.3) 1.25 (0.9) 

Observed 3f      NA       2.3 (1.2) 1.25 (0.6) 

Predicted 7.91 2.00 0.99 

SD is standard deviation and all units are shown in parenthesis. a: The report for buprenorphine 

PK [83]; b: The PK data of 0.1 mg/kg fentanyl was found in literature without PK properties like 

AUC [84]. c: It was found in the report [85]. d: Found in literature [86]. e: The PK profiles for 

young people when given with triazolam [87] f: The PK parameters for single dose of triazolam 

in men (observed 2) and women (observed 3). 



39 

 

 

Figure 15 The predicted concentration profiles of 4mg Sublingual (SL) buprenorphine, 0.1 

mg/kg IV fentanyl, 2 mg PO alprazolam, 15 mg midazolam and 0.25 mg triazolam versus 

their observed data respectively. 

Red open circle, blue open square and yellow open triangle represent the observed data. Black line 

represent CT curve and Grey dashed line represents 95% Confidence Interval of the population-

based simulation of concentrations. 

 

 

We also simulated the DDI simulations between opioids and benzodiazepines by assuming 

benzodiazepines are the competitive inhibitors of CYP3A4. The predicted AUC Ratios and Cmax 

Ratios of DDI profiles were listed in Table 8 and the simulated opioids concentration profiles when 

concurrently taking normal/overdose of benzodiazepines were shown in Figure 16. To better 

compare the DDI effect of benzodiazepines, it is presumed that the normal dose of benzodiazepines 

is 10 mg and the amount of overdose is 1000 mg, while the dosage of opioids keeps normal. As 

shown in Table 8 and Figure 16, the fold change of AUC for oxycodone and fentanyl increased 
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significantly when taking with high dose of benzodiazepines. On the contrary, for buprenorphine, 

there was no obvious change in AUC even when the 1000 mg benzodiazepines is co-administered. 

In conclusion, the change of AUC ratio of fentanyl with normal or overdoses of benzodiazepines 

is significantly larger than that of oxycodone and buprenorphine.   

 

Table 8 The AUC Ratio and Cmax Ratio of the DDI profiles for normal dosage of opioids, 

including oxycodone (30 mg), buprenorphine (4 mg) and fentanyl (0.1 mg/kg) and 

benzodiazepines, including alprazolam, diazepam, midazolam and triazolam with normal 

(10 mg) and overdose (1000 mg), respectively.  

Opioids Benzodiazepines AUC0-24h Ratio  

(normal dose) 

AUC0-24h Ratio  

(overdose) 

oxycodone alprazolam 1.03 [1.02,1.06] 1.37 [1.20,1.68] 

diazepam 1.01 [1.00,1.01] 1.20 [1.12,1.29] 

midazolam 1.00 [1.00,1.01] 1.08 [1.05,1.13] 

triazolam 1.01 [1.01,1.02] 1.23 [1.15,1.31] 

buprenorphine alprazolam 1.00 [1.00,1.00] 1.01 [1.01,1.03] 

diazepam 1.00 [1.00,1.00] 1.01 [1.00,1.01] 

midazolam 1.00 [1.00,1.00] 1.01 [1.00,1.01] 

triazolam 1.00 [1.00,1.00] 1.01 [1.01,1.02] 

fentanyl alprazolam 1.05 [1.03,1.08] 2.32 [1.85,2.76] 

diazepam 1.00 [0.99,1.03] 1.39 [1.22,1.55] 

midazolam 1.00 [1.00,1.01] 1.18 [1.09,1.26] 

triazolam 1.01 [1.01,1.03] 1.59 [1.37,1.81] 
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CI is the 95% Confidence Interval, which is within the brackets. AUC0-24h Ratio is the exposure of 

AUC Ratio from the time zero to 24 hours. 

 

 

 

Figure 16 The AUC0-24h Ratio of oxycodone, buprenorphine and fentanyl with the presence 

of normal dose (ND) and overdose (OD) of four benzodiazepines. 

 

 

Discussion The full PBPK model is probably the most complicated PBPK model existed currently, 

which consists of different organs in the human body linked by blood circulation. Different from 

the empirical PK models, there are multiple compartments in a PBPK model and the DDI modeling 

and simulation based on the PBPK models is closer to the real situation. In this study, we ignored 
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the transports in the DDI models because there is no report on any transport being shared by 

oxycodone and diazepam so far. We also ignored the inhibitory ability of metabolites given the 

fact that the concentration of metabolites of DZP is only approximately one-tenths of the 

concentration of the parent drug. The docking results showed that DZP had better binding affinity 

than OXY when binding with CYP3A4, so we predominantly studied the effect of DZP on OXY.  

The Ki value of DZP is a potential source of error as there is no exact experimental Ki value 

available and we only estimated the Ki value using the Glide docking score. The inaccurate Ki 

value may lead to wrong study conclusion, so to exclude the impact of Ki value for the DDI profiles, 

the sensitivity analysis was conducted by changing the calculated Ki from 1/10-fold to 100-fold to 

explore the impact of Ki value on AUC Ratio. As shown in Figure 12, the AUC Ratio changes only 

from 1.000 to 1.375 by changing the Ki value and dosage of DZP, indicating the error of Ki would 

not have a large influence on the DDI effect between two drugs. This finding can also be further 

illustrated in Figure 13, which implied that the PK interaction between OXY and DZP is very weak 

and does not have any clinical meaning since even though the Ki is very low and the dosage of 

DZP is very high (1000 mg), the exposure of OXY still did not have significant growth with the 

presence of DZP.  

The correction of PBPK model of OXY and PO/IV DZP has been verified by comparing 

the PK properties of observed data and simulated data. Because the AUC, Cmax and Tmax of the 

predicted profiles of two drugs are all within the standard deviation range of the observed ones 

and the curves generally fit the experimental data well as demonstrated in Figure 10, the PBPK 

models are all credible. As for DDI profiles, it was found that there was no DDI between normal 

doses of OXY and DZP, but weak PK interaction between these two drugs when co-administering 

normal dose of OXY and overdose DZP. When the dose of DZP increases, its inhibitory effect on 
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the OXY becomes more obvious. The inhibitory ability of oral administration of DZP is slightly 

stronger than the IV administration DZP. The reason for causing this difference might be related 

to the relatively smoother change of PO DZP concentration since oral drug does not directly go 

into blood circulation while IV formulation dose. The transporter DDI was not considered in this 

model because there is lack of the clinical evidence that transporters, such as those found in blood-

brain-barrier (BBB), causes significant interactions between the two types of drugs. Furthermore, 

the inhibitory effect of DZP is slightly larger when applying mixed-type inhibition to the DDI 

model, especially when the dosage of DZP is much higher than the normal dose. For example, the 

AUC Ratio in the mixed-type inhibition model is 1.30, which is 8.3% higher than the AUC Ratio 

in the pure competitive inhibition model.  

According to the report in 2005 [88], the toxic concentration of OXY is 0.69 mg/L (690 

ng/mL), which is much higher than the Cmax of the 30 mg oxycodone when taking with even 1000 

mg diazepam. This toxic concentration can only be achieved when taking around 500 mg 

oxycodone alone in terms of our PBPK model. The only problem is there is only one case of taking 

the dosage of diazepam over 1000 mg [89] and 1000 mg is too high and is lack of clinical meaning. 

According to the literature, when the plasma concentration of the diazepam was as high as 4792 

ng/mL, patients were minimally sedated and were discharged within 24 h [76]. When the dosage 

of oral DZP is 200 mg, its maximal centration is 4500 ng/mL. Obviously, PK interaction cannot 

be observed with the co-administration of 30 mg OXY and 200 mg DZP in terms of the AUC Ratio 

results in Table 9, indicating that there is almost no PK interaction between these two drugs. 

Similarly, we also exchanged the role of OXY and DZP to see how OXY would affect the 

normal dose of DZP’s metabolism. The opposite DDI simulation results are consistent with the 
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previous situation. The AUC Ratio of 10 mg DZP with the administration of 30 mg OXY is 1.01 

and this value only limitedly changed to 1.07 when the dosage of OXY became 500 mg. 

 

 

Table 9 The AUC0-24h Ratio and Cmax Ratio of 30 mg OXY with the co-administration of 200 

mg PO DZP (toxicity dosage).  

Dosing Strategy AUC0-24h Ratio CI[5%,95%] Cmax Ratio CI[5%,95%] 

oxycodone 30 mg + 

diazepam 200mg 

1.08 [1.05,1.11] 1.06 [1.04,1.09] 

CI is the 95% Confidence Interval. AUC0-24h Ratio is the exposure of AUC Ratio from the time 

zero to 24 hours. 

 

The simulated concentration profiles of three opioids and four benzodiazepines are mostly 

predicted well compared with the observed data as shown in  Figure 15, Table 7 and Table 88, 

except for the AUC0-24h Ratio and Tmax of buprenorphine for which the predicted values were 

slightly out of the SD range of the observed data. As for DDI simulations, all four benzodiazepines 

showed larger inhibitory effects to oxycodone and fentanyl and the corresponding increase of AUC 

was generally larger for fentanyl than for oxycodone. This finding may be ascribed to the predicted 

liver fm3A4 % (the contribution of CYP3A4 in the metabolism of drug) value of fentanyl is much 

higher for fentanyl (92.63%) than oxycodone (34.49%). There is almost no PK interaction between 

buprenorphine and benzodiazepines even the dose was set to 100 times of normal one because the 

fm3A4 % of the drug is only 1.47% in liver.  



45 

 

3.1.3  Minimal PK modeling 

The results of minimal PBPK modeling conducted by Simbiology were consistent with the 

results of empirical PK modeling using PySB and full PBPK modeling using Simcyp. The 

pharmacokinetic interaction between the two drugs is still not significant and it can only be 

observed when the oxycodone (OXY) is simultaneously taken with highly overdose diazepam 

(DZP).  

The detailed structure of the PBPK model describing the ADME process and the interaction 

between OXY and DZP is illustrated in Figure 17. After oral doses and first-order absorption, OXY 

and DZP are separately absorbed into the portal vein compartments. The drugs then go to the liver 

compartments through the blood flow of portal veins (Qpv). In the liver, a part of OXY or DZP is 

metabolized and others enter the systemic blood compartment via the blood flows from the liver 

(QH,o, QH,d). In the systemic blood, these two drugs will be urinary eliminated in urine or go back 

to the portal vein via the blood flow of systemic blood (Qpv,o, Qpv,d). The only difference between 

OXY model and DZP is that we utilized a four-compartment brain model for OXY but a three-

compartment model for DZP. We added an additional brain compartment for OXY because of its 

ability to cross the blood-brain barrier. DZP can easily cross blood-brain barrier because of its high 

lipid solubility and its relatively high fraction of plasma protein binding, so we do not need to add 

an additional compartment when constructing the minimal PBPK model for it. The clearances of 

entering and out of the brain (CLin/CLout) for OXY are obtained from the literature [90].  
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Figure 17 The DDI model between OXY and DZP built using Simbiology. 

The 𝑉𝐺𝐼 , 𝑉𝑝𝑣, 𝑉𝐻, 𝑉𝑏𝑟𝑎𝑖𝑛 represent the volume of gastrointestinal (GI) tract, portal vein, liver and 

brain.  𝐹𝑎,𝑜, 𝐹𝑔,𝑎, 𝐾𝑎,𝑜, 𝐶𝑝𝑣,𝑜, 𝐶𝐻,𝑜, 𝑉𝑠𝑦𝑠,𝑜 ,  𝐶𝑠𝑦𝑠,𝑜, 𝐶𝑏𝑟𝑎𝑖𝑛,𝑜, 𝐶𝐿𝑅,𝑜 are the fraction absorbed from the 

gastrointestinal tract, the gut availability, the absorption rate, the concentration in portal vein, the 

concentration in liver, the concentration in brain, the volume of distribution in systemic blood, the 

concentration in systemic blood, and the renal clearance of OXY, respectively. 𝐹𝑎,𝑑, 𝐹𝑔,𝑑, 𝐾𝑎,𝑑, 

𝐶𝑝𝑣,𝑑 , 𝐶𝐻,𝑑 , 𝑉𝑠𝑦𝑠,𝑑,  𝐶𝑠𝑦𝑠,𝑑 , 𝐶𝐿𝑅,𝑑  are DZP’s respective values.  𝐾𝑖  is the inhibitory constant of 

DZP. 

 

 

The unbound intrinsic clearance mediated by CYP3A4 and CYP2D6 for OXY (CLint,o) is 

described by Equation 17, and comparatively, the intrinsic clearance mediated by CYP3A4 and 

CYP2C19 for DZP (CLint,d) is described by Equation 18. The corresponding metabolic pathways 

are shown in Figure 1-2. 
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( 17 ) 𝐶𝐿𝑖𝑛𝑡,𝑜=
𝐶𝐿𝑖𝑛𝑡,𝑁𝑂𝐶

1+
𝐶𝐻.𝑑

𝐾𝑖

+𝐶𝐿𝑖𝑛𝑡,𝑂𝑀 

( 18 ) 𝐶𝐿𝑖𝑛𝑡,𝑑=𝐶𝐿𝑖𝑛𝑡,𝑇𝑀𝑍 + 𝐶𝐿𝑖𝑛𝑡,𝑁𝐷𝑍 

Where 𝐶𝐿𝑖𝑛𝑡,𝑁𝑂𝐶, 𝐶𝐿𝑖𝑛𝑡,𝑂𝑀, 𝐶𝐿𝑖𝑛𝑡,𝑇𝑀𝑍, 𝐶𝐿𝑖𝑛𝑡,𝑁𝐷𝑍 are the intrinsic clearance of metabolic 

pathways of noroxycodone (NOC) formation, oxymorphone (OM) formation, temazepam (TMZ) 

formation and nordazepam (NDZ) formation.  

In terms of Figure 17, a series of processes in PBPK model previously described for OXY 

and DZP can be quantitatively described by the ordinary differential Equations below. 

 

For OXY: 

𝑉𝑎𝑏𝑠,𝑜 = 𝑘𝑎,𝑜 ∙ 𝐷𝑜𝑠𝑒(𝑂𝑋𝑌) ∙ 𝐹𝑎,𝑜 ∙ 𝐹𝑔,𝑜 ∙ 𝑒−𝑘𝑎𝑡                                         

 

𝑉𝑝𝑣
𝑑𝐶𝑝𝑣,𝑜

𝑑𝑡
= 𝑄𝑠𝑦𝑠 ∙ 𝐶𝑠𝑦𝑠,𝑜 + 𝑉𝑎𝑏𝑠 − 𝑄𝑝𝑣,𝑜 ∙ 𝐶𝑝𝑣,𝑜                                       

 

𝑉𝐻
𝑑𝐶𝐻,𝑜

𝑑𝑡
= 𝑄𝑝𝑣 ∙ 𝐶𝑝𝑣,𝑜 −

𝑄𝐻,𝑜∙𝐶𝐻,𝑜

𝐾𝑝
−

𝑓𝑏,𝑜∙𝐶𝐿𝑖𝑛𝑡,𝑜∙𝐶𝐻,𝑜

𝐾𝑝
                                   

 

                                                𝑉𝑠𝑦𝑠,𝑜 ∙
𝑑𝐶𝑠𝑦𝑠,𝑜

𝑑𝑡
=

𝑄𝐻,𝑜 ∙ 𝐶𝐻,𝑜

𝐾𝑝
− 𝑄𝑠𝑦𝑠,𝑜 ∙ 𝐶𝑠𝑦𝑠,𝑜 

−𝑓𝑏,𝑜 ∙ 𝐶𝐿𝑖𝑛,𝑜 ∙ 𝐶𝑠𝑦𝑠,𝑜 + 𝑓𝑏,𝑜 ∙ 𝐶𝐿𝑜𝑢𝑡,𝑜 ∙ 𝐶𝑏𝑟𝑎𝑖𝑛,𝑜 − 𝐶𝐿𝑅,𝑜 ∙ 𝐶𝑠𝑦𝑠,𝑜           

 

𝑉𝑏𝑟𝑎𝑖𝑛
𝑑𝐶𝑏𝑟𝑎𝑖𝑛,𝑜

𝑑𝑡
=𝑓𝑏,𝑜 ∙ 𝐶𝐿𝑜𝑢𝑡,𝑜 ∙ 𝐶𝑏𝑟𝑎𝑖𝑛,𝑜 − 𝑓𝑏,𝑜 ∙ 𝐶𝐿𝑖𝑛,𝑜 ∙ 𝐶𝑠𝑦𝑠,𝑜               

 

For DZP:  

𝑉𝑎𝑏𝑠,𝑑 = 𝑘𝑎,𝑑 ∙ 𝐷𝑜𝑠𝑒(𝐷𝑍𝑃) ∙ 𝐹𝑎,𝑑 ∙ 𝐹𝑔,𝑑 ∙ 𝑒−𝑘𝑎,𝑑𝑡                              

 

𝑉𝑝𝑣
𝑑𝐶𝑝𝑣,𝑑

𝑑𝑡
= 𝑄𝑠𝑦𝑠 ∙ 𝐶𝑠𝑦𝑠,𝑑 + 𝑉𝑎𝑏𝑠,𝑑 − 𝑄𝑝𝑣,𝑑 ∙ 𝐶𝑝𝑣,𝑑                            
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𝑉𝐻,𝑑
𝑑𝐶𝐻,𝑑

𝑑𝑡
= 𝑄𝑝𝑣 ∙ 𝐶𝑝𝑣,𝑑 −

𝑄𝐻,𝑑∙𝐶𝐻,𝑑

𝐾𝑝
−

𝑓𝑏,𝑑∙𝐶𝐿𝑖𝑛𝑡,𝑑∙𝐶𝐻,𝑑

𝐾𝑝
                        

 

𝑉𝑠𝑦𝑠,𝑑 ∙
𝑑𝐶𝑠𝑦𝑠,𝑑

𝑑𝑡
=

𝑄𝐻,𝑑∙𝐶𝐻,𝑑

𝐾𝑝
− 𝑄𝑠𝑦𝑠,𝑑 ∙ 𝐶𝑠𝑦𝑠,𝑑−𝐶𝐿𝑅,𝑑 ∙ 𝐶𝑠𝑦𝑠,𝑑                

Where 𝑉𝑎𝑏𝑠,𝑜  and 𝑉𝑎𝑏𝑠,𝑑  are the absorption velocities of OXY and DZP, respectively. 

𝐶𝐿𝑖𝑛𝑡,𝑜 and 𝐶𝐿𝑖𝑛𝑡,𝑑 are derived using Equations 17 and 18 as mentioned before. All the parameters 

of PBPK model, which come from literature or are calculated using the relevant equations or are 

estimated using rational assumptions are collected in Table S2. For metabolites, only the 

parameters related to metabolic clearance are considered because according to the simulation 

results from full PBPK modeling, the concentrations of metabolites of OXY and DZP were around 

one-tenth of the concentrations of their own parent drugs and their effects were low.  

The simulated concentration–time profiles for OXY and DZP in 24 hours are depicted in 

Figure 18 and the correspondingly PK parameters were listed in APPENDIX. Digital data was 

extracted from the experiment and was compared to the simulated curves. As shown in Table 10, 

the predicted AUC, Cmax and Tmax in this relatively simpler PBPK model are also within the error 

range of observed data as Simcyp did. 
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Figure 18 The predicted concentration profiles of 30 mg PO OXY and 10 mg PO DZP as 

well as their observed data respectively by Simbiology. 

Red open circle and blue open square represent the observed data. Green line represents simulation 

concentrations. 

 

 

Table 10 The simulated AUC, Cmax and Tmax of 30 mg PO OXY and 10 mg PO DZP. 

Drug AUC (ng∙h/mL) Cmax(ng/mL) Tmax(h) 

oxycodone AUC0-24h: 308.05 43.01 2.5 

diazepam AUC0-12h: 1801.71 247.65 0.8 

 

 

The similar strategy applied in full PBPK modeling by using Simcyp to explore the 

inhibitory effect of DZP on OXY was repeated to study the DDI between the two drugs using the 

minimal PBPK model shown in Figure 17. The OXY concentration became slightly higher when 

co-administered with DZP than OXY is administered alone. With the increased dose of DZP, the 

general concentration of OXY in plasma (systemic blood compartment) slightly increased. AUC 

Ratio in 24 hours was also calculated via the mathematical integration using Matlab and is listed 
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in Table 11. The change in AUC Ratio was very small and similarly, only when the concomitant 

dose of DZP being 100 times of the normal dose can cause the AUC Ratio changes from 1.00 to 

1.27, rising about 27%. The change of OXY was depicted in Figure 19. To better compare the DDI 

simulation using minimal PBPK model in Simbiology and full PBPK model in Simcyp, we also 

calculated the correlation of AUC Ratios in the DDI profiles by the Pearson correlation coefficient 

[91] for these two methods and we found the two models have very high correlation (Figure 20).  

 

 

Figure 19 The predicted concentration profiles of 30 mg oxycodone co-administered before 

and after 10 mg, 100 mg, 500 mg and 1000 mg DZP by Simbiology. 

The green line represents the CT curve of OXY without the administration of DZP and the black 

dashed line represents the CT curve of OXY with the administration of DZP. 
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Table 11 The AUC Ratio and Cmax Ratio of the DDI profiles for PO OXY and 10 mg, 100 

mg and 500 mg and 1000 mg of PO DZP when applying minimal PBPK model using 

Simbiology to construct the DDI model. 
Dosing Strategy AUC0-24h Ratio Cmax Ratio 

oxycodone 30 mg + diazepam 10mg 1.00 1.01 

oxycodone 30 mg + diazepam 100mg 1.04 1.04 

oxycodone 30 mg + diazepam 500mg 1.17 1.14 

oxycodone 30 mg + diazepam 1000mg 1.27 1.2 

 

 

Figure 20 The correlation between AUC Ratio of OXY when simultaneously taking with 

different dose of DZP obtained from Simcyp and Simbiology. 
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Discussion The purpose of PBPK modeling by utilizing Simbiology is to compare the simulated 

results of DDI in the simpler minimal PBPK model with the DDI in a more complex full PBPK 

model using Simcyp. In Simbiology, we can freely build any models through the friendly interface 

or through Matlab coding. In that way, we can discard or simplify some less important components 

or processes which are usually lack of measured parameters and thus facilitate us to explore the 

DDI effect between two drugs. On the other hand, there are a large set of parameters behind even 

a minimal PBPK model in Simcyp. As such, we built the minimal PBPK models for OXY and 

DZP in Simbiology.  

As shown in Figure 18 and Table 10, the PK properties such as AUC, Cmax and Tmax are 

within the error range of observed data and close to the predicted ones using Simcyp. Also, the 

simulated CT curve fits experimental data well, indicating the credibility of the minimal PBPK 

model. In addition, as for the DDI model between OXY and DZP which was created based on the 

minimal PBPK model of these two drugs, It has been shown that the simulated results of DDI with 

a minimal PBPK model using Simbiology were similar with those produced by a full PBPK model 

utilizing Simcyp (Figure 19 and Table 11). There high correlation of AUC Ratios of DDIs between 

the two PBPK models further validated the reliability of the DDI model generated with 

Simbiology.  

The results above indicate that in certain cases building a minimal PBPK model is more 

efficient than a full PBPK model, especially when there is lack of experimental data since a 

minimal PBPK model is much more realistic than a one-compartment PK model and less 

complicated than a full PBPK model. 
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3.2 PHARMACODYNAMICS 

To better investigate the pharmacodynamics DDI between opioids and benzodiazepines, 

we performed molecular docking, molecular dynamics (MD) simulation and MM/PBSA energy 

calculations step by step for set of opioids (oxycodone, buprenorphine, naltrexone, methadone) 

and benzodiazepines (alprazolam, diazepam, midazolam and triazolam) binding to both the µ- and 

-opioid receptors.  

3.2.1  Molecular docking 

To predict the binding affinity between ligands and receptors as well as the features of the 

binding sites of models, docking analysis was performed on several ligands, including opioids and 

benzodiazepines towards µ- and -opioid receptors. In the following, the µ-opioid receptor and -

opioid receptor were abbreviated as MOR and KOR, respectively. Among the opioids, oxycodone 

is the agonist of MOR and KOR [16]. Buprenorphine was reported as partial MOR [92] and also 

may have potent KOR antagonist activity [93]. Methadone acts as a MOR agonist with relatively 

higher intrinsic activity but lower affinity [94] and naltrexone was reported as the competitive 

antagonists at the MOR and the KOR [95]. The docking poses of opioids and benzodiazepines 

were shown in Figure 20 and the best docking score for each ligand was summarized in Table 12.  

In Table 12, we can find that generally, the docking scores of oxycodone, buprenorphine 

and methadone binding to agonist-bound MOR and KOR, 5C1M and 6B73 are better than binding 

to antagonist-bound MOR and KOR, 4DKL and 4DJH. For naltrexone, the binding behavior are 

different for the two opioid receptors: for MOR, the docking score of the active conformation is 
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worse than the inactive conformation, while for KOR, the trend is just the opposite. Also, the 

difference between docking scores of these opioids binding to active and inactive MOR is a little 

smaller than the difference of the docking scores for KORs. As for benzodiazepines, all of four 

ligands have better docking results docking with agonist-bound MOR and KOR than docking with 

antagonist-bound receptors. Among them, diazepam shows best docking results binding with 

5C1M (active MOR) while midazolam is the ligand which has the best docking score binding to 

6B73 (active KOR).  Figure 21 compares the docking poses of benzodiazepines binding to MORs 

and KORs with opioids, indicating that the binding modes of benzodiazepines are closer to opioid 

agonists when docking with agonist-bound receptors. It also shows that binding modes of 

benzodiazepines are obviously different from the docking poses of opioids in 4DJH (inactive 

KOR). 
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Table 12 The docking results (kcal/mol) for opioids and benzodiazepines binding to both 

the active and inactive X-ray structures of MOR and KOR. 

Classification Drug 5C1M  

(MOR) 

(Active) 

4DKL 

(MOR) 

(Inactive) 

6B73 

(KOR) 

(Active) 

4DJH 

(KOR) 

(Inactive) 

Opioid oxycodone -6.377 -5.926 -7.198 -4.278 

buprenorphine -6.463 -6.068 -5.958 -5.362 

methadone -5.104 -4.759 -5.387 -4.329 

naltrexone -6.000 -6.912 -7.419 -6.450 

Benzodiazepine alprazolam -6.055 -6.022 -6.801 -5.024 

diazepam -6.807 -6.382 -6.512 -5.007 

midazolam -6.385 -5.801 -6.848 -4.806 

triazolam -6.086 -5.974 -6.833 -5.194 
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Figure 21 The docking poses of opioids and benzodiazepines with opioid receptors. 

For receptors, orange protein represents 5C1M, green protein represents 4DKL, pink protein 

represents 6B73 and blue protein represents 4DJH. For ligands, benzodiazepines are shown a as 

sticks and opioids are shown as lines. Benzodiazepines: alprazolam is white, diazepam is yellow, 
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midazolam is cyan and triazolam is green. Opioids: buprenorphine is orange, methadone is purple, 

naltrexone is pink and oxycodone is blue.   

 

Discussion. As shown in Table 12, the docking results of opioids are mostly rational because 

opioids agonists (oxycodone, buprenorphine and methadone) showed relatively better docking 

scores when binding to the active opioid receptors than binding to inactive opioid receptors. 

However, some docking results conflict with the known facts. For example, naltrexone, a 

competitive antagonist of MOR and KOR, has illustrated a better binding affinity with 6B73, the 

active KOR compared with 4DJH (inactive KOR) according to docking scores.  Buprenorphine, 

an antagonist of KOR turns out to have a better binding affinity to 6B73 rather than 4DJH, which 

is opposite to the known fact.  

From docking results, we can infer that opioids and benzodiazepines have similar binding 

modes no matter the receptor is an active or inactive conformation. Furthermore, the docking 

scores for both opioids and benzodiazepines binding to the active conformation of KOR are much 

better than binding to the inactive structure, suggesting that these two kinds of drugs have similar 

mechanisms binding to KOR. It is our rational that diazepam can compete with oxycodone binding 

to KOR as an agonist or partial agonist. This finding could be further approved by the in-vitro 

study in 2001, exploring the potential interactions of benzodiazepines with cloned human opioid 

receptor subtypes and implying that three benzodiazepines, midazolam, chlordiazepoxide, and 

diazepam were agonists for KOR [96]. Glide docking also predicts that opioid agonists and 

benzodiazepines bind to the active structure of MOR better than to the inactive structure, although 

the differences of docking scores are smaller compared to KOR. 
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3.2.2  Molecular dynamics simulation 

To investigate the dynamics of ligand binding, MD simulations were performed for four 

systems: active/inactive conformation of MOR and active /inactive conformation of KOR with 

opioids and benzodiazepines. The starting conformations of MOR/KOR in complex with ligands 

are from the best flexible docking poses. RMSD results for four systems are shown in Figure 22, 

respectively. Black curves represent the RMSDs of the backbone atoms of the whole opioid 

receptor protein, red curves represent the RMSDs of the backbone atoms of main chain atoms of 

the seven-transmembrane (7-TM); orange and purple curves respectively represent the RMSDs of 

opioids and benzodiazepines (BZD) fitting at their starting locations without considering their 

transition and rotation. On the other hand, the brown and blue curves represent the RMSDs of non-

fitted opioids and benzodiazepines, considering not only their conformation changes but also their 

translocations and rotations through the MD simulations. The initial and the final average 

structures of each complex are shown in Figure 23. The initial complexes are grey and average 

conformations of opioid complexes and benzodiazepine complexes are orange and purple, 

respectively. The name of each ligand was abbreviated in three letters (OXY: oxycodone, BUP: 

buprenorphine, MET: methadone, NAT: naltrexone, APZ: alprazolam, DZP: diazepam, MDZ: 

midazolam, TRZ: triazolam). 

In MOR (active/inactive) systems, RMSD results of all fitted opioids are low and stable. 

Among them, there is an increase of RMSD of non-fitted methadone in 5C1M (active) opioid 

receptor system after around 70 ns. The RMSD values of non-fitted BUP and NAT are less stable 

in 4DKL (inactive) system compared to 5C1M system though the RMSD of NAT became stable 

after 50 ns. As for benzodiazepines, the RMSD results of fitted APZ, MDZ and TRZ are all low 
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and stable except for fitted DZP, showing the fluctuation of RMSD values. The RMSDs of non-

fitted benzodiazepines are all high (4-6 Å) and unstable in MOR systems except MDZ, which 

indicated relatively stable and lower RMSD values (2 Å) in 4DKL system. The position deviations 

as well as the conformation changes of all ligands in MOR systems (Figure 23) were consistent 

with the RMSD results. 

As for KOR (active/inactive) systems, the RMSDs of opioids and their corresponding 

KORs are all stable the values for fitted ligands are all less than 2 Å. Particularly, the RMSD of 

fitted BUP binding with 6B73 (active) receptor is slightly higher and less stable than it binding to 

4DJH (inactive) receptor. Furthermore, the RMSD curves of non-fitted MET and NAT are much 

more stable binding to 6B73 than binding with 4DJH. As for benzodiazepines, there are obvious 

fluctuations in the RMSD changes of non-fitted ligands as well as their corresponding receptors in 

4DJH system. Generally, the RMSD results are relatively better for them in 6B73 system. The 

position deviations as well as the conformation changes of all ligands in KOR systems (Figure 23) 

were consistent with the RMSD results. 
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Figure 22 The RMSD results in the MD trajectories of MOR and KOR system. 
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Figure 23 The comparison of the crystal structure (in grey) with the MD structure (in 

orange (opioids) and in purple (benzodiazepines)) in the MOR and KOR systems. 

 

Discussion In the MOR system, the binding modes for opioids are generally stable according to 

RMSD results. Although there is position deviation for MET in 5C1M system, indicating there 

might be two binding modes for the ligand. In addition, there are also position changes and 

rotations for BUP and NAT in 4DKL system. The conformations changed little for fitted APZ, 

MDZ and TRZ in MOR systems while they experienced translocations and rotations binding with 

MOR except for MDZ. Particularly, the non-fitted MDZ showed more stable binding mode 

compared with other benzodiazepines. The conformation and position for DZP both changed more 

than other benzodiazepines when binding with 5C1M and 4DKL receptors in the MD simulation. 

As for in the KOR system, the binding modes for opioids are also stable in terms of RMSD results 

in Figure21 and structure comparisons in Figure 23. There were rotations and translocations for 

non-fitted MET and NAT binding with 4DJH receptor, which were consistent with their docking 

results. Benzodiazepines showed high binding selectivity for KOR since their conformations and 

locations changed much less when binding to the agonist-bound opioid receptor (6B73) than 

antagonist-bound opioid receptor (4DJH) according to the RMSD results as well as the 

comparisons between their crystal structures and average structures.  

3.2.3  MM/PBSA calculations 

Binding free energy of each ligand was predicted using data from MD simulations and 

MM-PBSA binding free energy compositions were calculated after the trajectories were stabilized. 

The calculated binding free energies as well as the detailed contribution of different energy 
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compositions for four systems are presented in Table 13. To better compare the calculated binding 

affinities of each ligand, the binding free energies (∆𝐺𝑀𝑀/𝑃𝐵𝑆𝐴) for all ligands in four systems 

were put together in Figure 24.   

 

By comparing the MM/PBSA calculated energies for each ligand, totally, in the MOR 

systems, the comparisons of relative results within opioids and benzodiazepines are consistent with 

the docking results in 5C1M except for DZP. Its binding affinity with 5C1M receptor is much 

lower compared to other ligands. In 4DKL system, all benzodiazepines showed much lower 

measured binding energies compared with the binding modes of opioids. The comparisons of 

relative results between active conformation of MOR and inactive conformation of MOR are 

consistent with the docking scores, excluding OXY and NAT. Furthermore, the binding energies 

for BUP, MET and NAT are all lower in 5C1M system than in 4DKL system except for OXY. 

The calculated binding energy of OXY is -1.13 kcal/mol binding with 5C1M, which is higher than 

the energy, -4.97 kcal/mol when binding to 4DKL. All benzodiazepines showed much lower 

measured binding energies when binding with 5C1M compared to 4DKL.  

As for KOR systems, DZP and TRZ have relatively higher binding energies binding with 

6B73 (4.12 kcal/mol and 5.33kcal/mol) compared with other ligands in the same 6B73 system. In 

4DJH system, all ligands, including opioids and benzodiazepines, have relatively higher binding 

free energies except for OXY and MDZ. If we compared the results between 6B73 and 4DJH 

systems, OXY also showed higher binding affinity in 4DJH system compared with in 6B73 

system, while the measured energies for other opioids are lower in 6B73 system. For 

benzodiazepines, except for DZP, whole calculated energy is 4.12 kcal/mol in 6B73 but 1.82 

kcal/mol in 4DJH, others’ energies are all lower when binding with 6B73. 
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Because it is not clear that which energetic factors determine the total binding free energy, 

we compared correlations between the calculated binding free energies and each component of the 

calculated binding free energies and the correlation coefficient for them in four systems were listed 

in Table 14. It was found that the van der Waals energy (5C1M: ɤ2 =0.8888, 6B73: ɤ2=0.8958) and 

polar solvation free energy (5C1M: ɤ2 =0.4406, 6B73: ɤ2=0.5325) have better correlations for 

opioids in both 5C1M and 6B73 system. Furthermore, the non-polar solvation free energy has the 

best correlation for benzodiazepines in KOR systems (5C1M: ɤ2 =0.6106, 6B73: ɤ2=0.6836).   

To better validate the results of MM/PBSA calculated results, we also found some 

experimental Ki values for opioids to help compare the relative values of binding free energies. Ki 

values can be transferred to binding free energy by Equation (4) and Equation (8) and the values 

of Ki as well as the experimental and predicted free energies were shown in Table 15. The Ki values 

for each ligand are all for active conformation of opioid receptors except MET, whose Ki value is 

for inactive conformation of MOR. All the Ki values were obtained from the experiments in rats. 

Because the experimental data of MET is for the inactive conformation of MOR, we only 

compared the experimental and calculated data within OXY, BUP and NAT. It seems that BUP 

has the lowest binding free energy no matter when binding with MOR or KOR. In addition, in 

bother MOR and KOR systems, the difference of binding free energies between OXY and NAT is 

inconsistent between their own experimental and calculated data Since OXY showed lower 

calculated binding free energy when binding to opioid receptors than NAT but higher experimental 

binding free energy compared with NAT. 
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Table 13 Calculated binding free energies (kcal/mol) for individual terms using the 

MM/PBSA method. 

Ligand ∆𝑬𝒗𝒅𝒘 ∆𝑬𝒆𝒍𝒆 ∆𝑮𝒑
𝒔𝒐𝒍 ∆𝑮𝒏𝒑

𝒔𝒐𝒍 𝑻∆𝑺 ∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨 
 

5C1M (Active MOR) 

OXY -43.70±0.21 -23.72±0.17 46.33±0.01 -2.96±0.01 -21.50±0.09 -2.56±0.16 

BUP -58.24±0.16 -12.04±0.29 46.75±0.40 -4.80±0.01 -23.75±0.08 -4.57±0.21 

MET -41.51±0.17 -4.02±0.18 24.65±0.09 -3.52±0.00 -21.44±0.04 -2.97±0.05 

NAT -42.15±0.18 -14.40±0.16 36.85±0.28 -3.38±0.01 -20.80±0.03 -2.29±0.14 

APZ -36.36±0.05 -15.38±0.38 33.95±0.47 -3.00±0.01 -19.11±0.10 -1.67±0.14 

DZP -30.92±0.14 -4.83±0.10 21.15±0.14 -2.86±0.02 -18.61±0.03 1.15±0.16 

MDZ  -36.85±0.22 -7.95±0.19 27.52±0.33 -3.15±0.01 -19.66±0.05 -0.77±0.19 

TRZ -35.68±0.08 -7.70±0.07 25.27±0.04 -3.10±0.01 -19.21±0.04 -2.00±0.03 
 

4DKL (Inactive MOR) 

OXY -42.64±0.22 -19.12±0.60 38.66±0.51 -2.87±0.01 -21.25±0.05 -4.72±0.18 

BUP -51.14±0.05 -7.96±0.31 38.96±0.15 -4.14±0.01 -22.61±0.04 -1.67±0.12 

MET -38.93±0.21 -1.75±0.32 21.14±0.24 -3.11±0.01 -20.75±0.02 -1.91±0.25 

NAT -42.23±0.27 -17.33±0.24 42.40±0.35 -3.19±0.01 -20.65±0.03 0.29±0.11 

APZ -40.85±0.17 -8.01±0.13 37.57±0.22 -3.01±0.01 -19.78±0.03 5.49±0.36 

DZP -34.94±0.14 -10.12±0.11 32.75±0.14 -2.77±0.00 -19.27±0.07 4.19±0.13 

MDZ  -33.04±0.14 -4.31±0.25 25.85±0.37 -2.91±0.01 -18.54±0.05 4.12±0.04 

TRZ -31.04±0.12 -10.20±0.11 31.27±0.32 -2.82±0.00 -18.10±0.04 5.32±0.25 
 

6B73 (Active KOR) 

OXY -40.47±0.17 -1.37±0.46 23.94±0.51 -3.18±0.01 -19.96±0.01 -1.13±0.29 

BUP -59.24±0.12 -4.11±0.19 38.53±0.40 -4.69±0.01 -24.39±0.01 -5.13±0.44 

MET -40.78±0.16 -0.21±0.16 19.90±0.08 -3.29±0.01 -20.82±0.03 -3.55±0.36 

NAT -43.66±009 -3.39±0.28 30.21±0.09 -3.36±0.01 -20.59±0.04 0.39±0.29 

APZ -38.30±0.21 6.77±0.25 13.58±0.23 -3.11±0.01 -19.29±0.05 -1.77±0.25 

DZP -36.56±0.18 -2.21±0.23 26.08±0.16 -2.97±0.01 -19.79±0.06 4.12±0.18 

MDZ  -40.45±0.07 0.26±0.15 19.57±0.17 -3.10±0.01 -20.25±0.04 -3.47±0.07 

TRZ -41.93±0.15 5.77±0.16 24.11±0.50 -3.21±0.01 -20.58±0.03 5.33±0.48 
 

4DJH (Inactive KOR) 

OXY -42.84±0.18 -5.61±0.23 25.54±0.43 -2.84±0.00 -20.78±0.01 -4.97±0.29 
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BUP -57.44± 0.10 -0.78±0.22 43.94±0.17 -4.50±0.01 -24.82±0.03 6.05±0.04 

MET -33.04±0.04 1.23±0.02 19.07±0.16 -3.19±0.01 -18.93±0.04 3.00±0.15 

NAT -40.26±0.19 -11.22±0.10 40.81±0.35 -3.09±0.00 -20.28±0.06 6.51±0.12 

APZ -42.87±0.10 8.68±0.10 24.50±0.30 -2.96±0.01 -20.34±0.03 7.68±0.21 

DZP -32.47±0.05 -7.29±0.07 25.11±0.18 -2.75±0.01 -19.22±0.01 1.82±0.20 

MDZ  -34.68±0.25 -1.94±0.21 17.51±0.10 -2.79±0.01 -18.96±0.04 -2.93±0.12 

TZ -34.39±0.21 -4.62±0.11 30.25±0.39 -3.12±0.01 -19.04±0.05 7.16±0.26 

 

 

 

Figure 24 Binding free enrgy (∆𝑮𝑴𝑴/𝑷𝑩𝑺𝑨) for each ligand in MOR and KOR systems. 
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Table 14 The correlation coefficients between calculated binding free energies and different 

components of energies. 

System Classification ∆𝑬𝒗𝒅𝒘 ∆𝑬𝒆𝒍𝒆 ∆𝑮𝒑
𝒔𝒐𝒍 ∆𝑮𝒏𝒑

𝒔𝒐𝒍 

5C1M Opioid 0.8888 0.0823 0.1204 0.8958 

Benzodiazepine 0.7310 0.4047 0.4588 0.5062 

4DKL Opioid 0.0023 0.0348 0.0141 0.1162 

Benzodiazepine 0.1317 0.1569 0.2821 0.3096 

6B73 Opioid 0.4406 0.0026 0.0947 0.5325 

Benzodiazepine 0.0002 0.0018 0.6106 0.0012 

4DJH Opioid 0.0493 0.001 0.3923 0.3229 

Benzodiazepine 0.2895 0.1736 0.6836 0.6267 

 

Table 15 The experimental Ki values (µM) as well as the experimental and calculated 

binding free energies (kcal/mol) (Exp energy and Calc energy) for opioids. 

Ligand                   MOR                                 KOR 

Ki Exp energy Calc energy Ki Exp energy Calc energy 

OXY 0.0436 [97] -10.04 -2.56 2.658 [97] -7.61 -1.13 

BUP 0.00013 [98] -13.49 -4.57 0.000089 [98] -13.71 -5.13 

MET 0.110 [99] 

(Inactive) 

-9.49 -1.91 NA NA -2.97 (active)/ 

-1.91 (inactive) 

NAT 0.00046 

[100] 

-12.74 -2.29 0.00107 [100] -12.24 0.39 

 

 

Discussion Because the results of MM/PBSA are different between different systems, generally, 

we only compared the relative binding free energy of each ligand in the same system. In MOR 

systems, especially in 5C1M system, DZP showed lower binding affinity compared with other 

opioids and benzodiazepines while OXY has higher affinity. This result is consistent with the 
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corresponding RMSD result. In addition, benzodiazepines only showed slightly higher binding 

free energies than opioids when binding with 5C1M, the active conformation of MOR, but much 

higher binding free energies than opioids binding to 4DKL, the inactive conformation of MOR, 

indicating benzodiazepines have selectivity to MOR and might be the agonist of MOR. In KOR 

systems, APZ and MDZ showed relatively lower binding free energies in 6B73 system. But in 

4DJH system, the binding affinity of APZ became lower compared to opioids though MDZ still 

have relatively higher binding affinity. DZP and TRZ both illustrated lower binding affinity when 

binding to agonist-bound KOR.  

As shown in Table 14, in active conformations of MOR and KOR systems, van der Waals 

energy as well as the polar solvation energy of opioids are engaged in the determination of 

calculated binding free energy, while non-polar solvation energies of benzodiazepines contribute 

relatively more towards their calculated binding free energies, which indicated that polar factor is 

more important for the binding mode of opioids and non-polar factor is the predominant role for 

benzodiazepines.  

However, generally there are some problems for our molecular modeling results: Currently 

we only considered the top one docking pose for each complex but sometimes there are two or 

more binding poses which are all appropriate for each ligand. Also, we should run multiple MD 

simulations with the consideration of multiple trajectories, but now we only consider one of them. 

In addition, metabolites of two kinds of drugs should be considered in PD interaction study. 

Moreover, the kinetics of receptor-ligand binding may play a more important role than binding 

affinity leading to PD interactions.  

In the future, we will run more MD simulations for more distinct docking poses and study 

how active metabolites bind to the two opioid receptors. Since these metabolites may have better 
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effect on the opioid receptors than parent drugs do. Efficacy is also another important essential 

point which should be considered in the future because for some drugs (methadone), although they 

have low binding affinity for the receptors, their efficacy is very high, and this phenomenon can 

be explained by the binding kinetics which can be studied by nonequlibrium MD simulations.  

Actually, the PD interaction is an ongoing project since besides additive PD interaction, 

other mechanisms can also contribute to the PD interactions between opioids and benzodiazepines. 

For example, synergetic effects on the same signaling pathways caused by both opioids and 

benzodiazepines in terms of their targets, so further research for these two types of drugs is needed 

in the future. 
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4.0 SUMMARY AND CONCLUSIONS 

4.1 PHARMACOKINETICS 

All three models we created for DDI between oxycodone (OXY) and diazepam (DZP), 

including empirical PK model, full PBPK model and minimal PBPK model, have achieved similar 

pharmacokinetic DDI effects. There is no PK interaction between the normal dose of OXY and 

DZP, but DDI can be expected to exist with a highly overdose of diazepam. The inhibitory effect 

of oral administration of DZP for OXY is slightly higher than the IV administration. All models 

predict that the PK contributes little to the DDI between OXY and DZP, even though the inhibitory 

effect of DZP increases with the increase of the dose of DZP co-administered with OXY. Similar 

results also happened between other opioids (buprenorphine and fentanyl) and benzodiazepines 

(alprazolam, midazolam, triazolam). Furthermore, we also verified that the minimal PBPK 

modeling can also be effective for some drugs and can sometimes replace full PBPK modeling 

when there is lack of information on PK parameters.  

4.2 PHARMACODYNAMICS 

It is possible that there are additive PD interactions between opioids and benzodiazepines 

and benzodiazepines may be agonists or partial agonists for MOR and KOR since they show high 

binding affinities to the active conformations of these two receptors but relatively less binding 

affinities when binding to inactive conformations of MOR and KOR.  
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APPENDIX 

Table S1 The input parameters for oxycodone and diazepam as well as their metabolites in 

full PBPK models.  

Parameters 

(Units) 

oxycodone 

(S) 

noroxycodone 

(M) 

oxymorphone 

(M) 

diazepam 

PO 

(I) 

diazepam 

IV 

(I) 

temazepam 

(M) 

nordazepam 

(M) 

Molecular 

weight (g/mol) 

315.36 302.35 301.30 284.74 284.74 300.74 270.72 

Log Po:w 1.40 0.202 0.900 2.82 2.82 2.19 2.79 

pKa 8.28 8.50 8.20 3.40 3.40 3.40 3.40 

B:P 1.3 [101] 0.90 1.01 0.59[102] 0.59 0.60 0.60 

fu 0.60 [103] 0.89 (pred) 0.77 (pred) 0.030 

[25, 104] 

0.030 0.040 

[105] 

0.040 

Ka 0.70 [71] 
  

5.43 

[pred] 

   

fa 0.6 [3] 
  

1 [pred] 
   

Peff,man 

(10-4 cm/s) 

   
12.43 

[pred] 

(ADAM) 

   

Vss (L/kg) 6.17 (pred) 1.10 [106] 1.80  [106] 0.59 

(pred) 

0.59 

(pred) 

1.40 [107] 1.40 

rhCYP3A4 

CLint 

(µL/min/pmol) 

0.055 [106] 
 

0.130  [106] 0.214 

[19, 24, 

74, 75] 

0.214 0.0043 

[19, 24, 

74, 75] 

0.040 

[19, 24, 74, 

75] 

rhCYP2D6 

CLint 

(µL/min/pmol) 

0.23 [106] 2.09 [106] 
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rhCYP2C19 

CLint 

(µL/min/pmol) 

   
0.084 

[19, 24, 

74, 75] 

0.084 
  

Additional CL 

(µL/min/mg 

protein) 

7.37 (pred) 
      

CLR (L/h) 8.1 [106] 21  [106] 21  [106] 0.10 0.10 4.0 4.0 

Ki (µM) 
   

1.65 

(calc) 

1.65 
  

Kapp (µM) 
   

120 [30] 120 
  

Kinact (1/h) 
   

7.8 [30] 7.8 
  

The values of molecular weight, Log Po:w and pKa were all from PubChem database 

(https://pubchem.ncbi.nlm.nih.gov/). S represents substrate, M represents metabolite and I 

represents inhibitor. The PK value with ‘pred’ in parenthesis is the value predicted by Simcyp. The 

Ki value of diazepam with ‘calc’ was calculated by Equation 8. 

 

Table S2 The input parameters for oxycodone and diazepam as well as their metabolites in 

minimal PBPK models.  

Parameters 

(Units) 

Oxycodone noroxycodone oxymorphone diazepam temazepam Nordazepam 

𝐹𝑎,𝑜/𝑑 0.6  [103] 
  

1 
  

𝐹𝑔,𝑜/𝑑 1 
  

1 
  

𝐾𝑎,𝑜/𝑑 (1/h) 0.7 [71] 
  

5.43 

(Simcyp) 

  

𝐵: 𝑃 1.3 
  

0.59 
  

𝑓𝑢,𝑜/𝑑 0.6 [103] 
  

0.03 
  

𝑓𝑏,𝑜/𝑑 0.46 (calc) 
  

0.0508 (calc) 
  

https://pubchem.ncbi.nlm.nih.gov/
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𝑉𝐺𝐼 (L) 1.15 (Simcyp) 
  

1.15 

(Simcyp) 

  

𝑉𝑝𝑣 (L) 0.07 [44] 
  

0.07 [44] 
  

𝑉𝐻 (L) 1.65 (Simcyp) 
  

1.65 

(Simcyp) 

  

𝑉𝑏𝑟𝑎𝑖𝑛 (L) 1.45 [108] 
     

Clin (L/h) 150 [109] 
     

Clout (L/h) 50 [109] 
     

𝑉𝑠𝑦𝑠,𝑜/𝑑 (L) 180 
  

35.8 

(Simcyp) 

  

𝑄𝑝𝑣,𝑜/𝑑 (L/h) 165 
  

96 [110] 
  

𝑄𝐻,𝑜/𝑑 (L/h) 64 (Simcyp) 
  

165 
  

CLint (L/h) CLint,NOC: 

32.06 

CLint,OM: 

7.83 

CLint,NOC-

NOM: 71.13 
 

CLint,OM-

NOM: 75.77 

CLint,TMZ: 

124.7 

CLint,NDZ: 

5 

CLint,TMZ-

OZP: 2.5 

CLint,NDZ-

OZP: 23.3 

CLR (L/h) 8.1 21 21 0.1 4 4 

Ki (µM) 
   

1.65 (calc) 
  

The 𝒇𝒃,𝒐/𝒅 was calculated from Equation 12. All intrinsic clearance was the same as the value of 

input parameters in Simcyp. 

 

Table S3 The input parameters for opioids and benzodiazepines as well as their metabolites 

in full PBPK models.  

Parameters (Units) Buprenorphine (S) Fentanyl (S) Alprazolam (I) Midazolam (I) Triazolam (I) 

Molecular weight (g/mol) 467.65 336.47 308.80 325.80 343.20 

Log Po:w 4.98 4.00 2.12 2.53 2.42 

pKa 9.62/8.31  8.77 2.4 10.95/6.2 10.52/2.91 

B:P 0.55 [111] 1.119 [pred] 0.825 0.603 0.62 
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fu 0.07 0.16 [25] 0.29 0.032 0.179 

Ka (1/h) 2 
 

3.55 3.00 1.75 

fa 0.3 [112] 
 

1 1 1 

Vss (L/kg) 5.18 [pred] 3.857 [pred] 0.76  0.88 0.48 

rhCYP3A4 Clint 

(µL/min/pmol) 

 
0.707 [113] 

 
2.42 (1-OH); 

0.16 (4-OH) 

0.19 (1-OH); 

0.06 (4-OH) 

CYP3A4 Clint  

(µL/min/mg protein) 

  
2.45 

  

rhCYP3A5 Clint 

(µL/min/pmol) 

   
4.74 (1-OH); 

0.12 (4-OH) 

0.23 (1-OH); 

0.067 (4-OH) 

CYP3A5 Clint 

(µL/min/mg protein) 

  
1.23 

  

CYP3A4 Vmax 

(pmol/min/mg protein) 

10.4 [111] 
    

CYP3A4  km (µM) 12.4 [111] 
    

CYP2C8 Vmax 

(pmol/min/mg protein) 

1.4 [111] 
    

CYP2C8 km (µM) 12.4 [111] 
    

rhUGT1A1 CLint 

(µL/min/pmol ) 

0.016 [111] 
    

rhUGT1A3 Clint 

(µL/min/pmol) 

0.012 [111] 
    

rhUGT1A4 Clint 

(µL/min/pmol) 

   
11.04 

 

rhUGT2B7 Clint 

(µL/min/pmol) 

0.116 [111] 
    

CLR (L/h) 
 

2.22 [113] 0.678 0.085 0.274 

Ki (µM) 
  

1.63 (calc) 2.17 (calc) 1.02 (calc) 

The values of molecular weight, Log Po:w and pKa were all from PubChem database 

(https://pubchem.ncbi.nlm.nih.gov/). S represents substrate, M represents metabolite and I 

https://pubchem.ncbi.nlm.nih.gov/
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represents inhibitor. The PK value with ‘pred’ in parenthesis is the value predicted by Simcyp. The 

Ki value of diazepam with ‘calc’ was calculated by Equation 8. The PK parameters of alprazolam, 

midazolam and triazolam come for Simcyp database. 
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