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Abstract

In a well-known paper, Timothy Williamson (Analysis 67:173–180, 2007) claimed 

to prove with a coin-flipping example that infinitesimal-valued probabilities can-

not save the principle of Regularity, because on pain of inconsistency the event ‘all 

tosses land heads’ must be assigned probability 0, whether the probability function 

is hyperreal-valued or not. A premise of Williamson’s argument is that two infini-

tary events in that example must be assigned the same probability because they are 

isomorphic. It was argued by Howson (Eur J Philos Sci 7:97–100, 2017) that the 

claim of isomorphism fails, but a more radical objection to Williamson’s argument 

is that it had been, in effect, refuted long before it was published.

1 Introduction

Since its emergence in Abraham Robinson’s epoch-making work halfway through 

the twentieth century, nonstandard analysis has enriched many branches of math-

ematics and science: measure theory (including probability theory), analysis, phys-

ics and economics among them.1 It is also a remarkable tribute to the power and 

conceptual fertility of modern mathematical logic: Robinson used the Compactness 

Theorem of first-order logic to prove the existence a suitable enlargement of the 

universe of sets to a so-called superstructure based on the hyperreal numbers (i.e. 

the members of a suitable elementary extension of the real number field contain-

ing infinitesimal and reciprocally infinite numbers), while Łos’s Theorem proves the 

I am grateful to two anonymous reviewers for their very helpful comments on this paper.
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Transfer Principle2 for extensions using an ultrapower on a non-principal ultrafilter 

on N. Concerns about the apparent lack of a single canonical extension have been 

allayed by Kanovei and Shelah’s proof that a suitable non-standard model of the 

hyperreals is explicitly definable in ZFC (2004), a result extended by Herzberg to 

the definability of a nonstandard superstructure enlargement (2008), while Herzberg 

et al. have also shown that for Kanovei and Shelah’s proof only Countable Choice 

for sets of real numbers need be assumed. Moreover, assuming the existence of an 

inaccessible cardinal (an assumption arguably underwriting the existence of a stand-

ard model of set theory) there is a superstructure enlargement of cardinality κ, where 

κ is the least inaccessible cardinal, which is κ-saturated, satisfies the Transfer Princi-

ple and is unique up to isomorphism (Keisler 2007, 197).3 This is all model theory, 

but Edward Nelson (1977) showed that adding a new unary predicate st (interpreted 

as ‘standard’) and three new axioms added to those of Zermelo–Fraenkel set theory 

plus the Axiom of Choice (usually abbreviated to ZFC) gives a conservative exten-

sion of the latter.

Besides its fruitfulness in applied mathematics research, nonstandard models 

have also been enlisted in the search for solutions to problems of a more philosophi-

cal nature. One of these concerns the doctrine of Regularity, the view that only nec-

essary truths and falsehoods merit the probabilities 1 and 0 respectively, at any rate 

where the probability in question is regarded as a measure of chance.4 Yet standard 

probability functions are forced to assign 0 to some contingent events: for example, 

to all but a countable number of cells of an uncountable partition, and, if the distri-

bution is uniform, to all the cells in a countably infinite partition. If probability func-

tions are allowed to take values in the nonstandard unit interval, however, Regularity 

seems achievable by the strategy of assigning such events infinitesimal probabilities. 

Indeed, in an early paper (1996), Bernstein and Wattenberg showed that there is a 

finitely additive probability measure that assigns equal infinitesimal values to the 

points of the standard unit interval and differs by an infinitesimal from Lebesgue 

measure on the Lebesgue-measurable sets,5 and more recently Wenmackers and 

Horsten (2013) have shown that it is possible to define a uniform infinitesimal prob-

ability distribution over the partition of N into singletons, which sums hyperfinitely 

to 1.

Nevertheless, Timothy Williamson has claimed to show that appealing to hyper-

real probabilities cannot save Regularity (2007), arguing that some events must be 

assigned probability 0 on pain of contradiction even if the probability function takes 

values in the nonstandard unit interval. In what follows I will present Williamson’s 

argument and show that it fails, and what is more that its failure is implicit not only 

3 A nonstandard extension is κ-saturated if every family of fewer than κ internal sets with the finite inter-

section property has a nonempty intersection.
4 Thus David Lewis: ‘Zero chance is no chance, and nothing with zero chance ever happens’ (1976, 

176). Probability functions with this property are also called strictly positive.
5 The actual infinitesimal is however rather arbitrary: it depends on the choice of a hyperfinite subset of 

the nonstandard unit interval which the authors call a ‘sample’.

2 For the meaning of this and other key terms of nonstandard analysis, like internal vs. external, Transfer 

Principle, hyperfinite etc., which will crop up in this paper see Albeverio et al. (2009, Chapter 1).
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in Bernstein and Wattenberg’s results but also in more recent work that still however 

long antedates Williamson’s paper.

2  Williamson’s Argument

Williamson sets the stage thus:

A fair coin will be tossed infinitely many times at one second intervals. The 

tosses are independent. … Let H(1) be the event that the first toss comes up 

heads and H(2…) the event that every toss after the first comes up heads 

(2007, 4).

Then, according to Williamson,

H(1…) and H(2…) are isomorphic events. More precisely, we can map the 

constituent single-toss events of H(1…) one–one onto the constituent single-

toss events of H(2…) in a natural way that preserves the physical structure of 

the set-up just by mapping each toss to its successor. H(1…) and H(2…) are 

events of exactly the same qualitative type; they differ only in the inconsequen-

tial respect that H(2…) starts one second after H(1…). That H(2…) is pre-

ceded by another toss is irrelevant, given the independence of the tosses. Thus 

H(1…) and H(2…) should have the same probability. (2007, 5)

The argument now proceeds thus: by the probability calculus,  

P(H(1…)) = P(H(2…)|H(1))P(H(1)), where H(1) is the event ‘the first 

toss lands heads’. So by independence P(H(1…)) = P(H(2…))P(H(1)), i.e. 

P(H(1…)) = P(H(2…))/2. But P(H(1…)) = P(H(2…)) by the isomorphism assump-

tion, whence 2P(H(1…)) = P(H(1…)). Hence P(H(1 …)) = 0, contradicting 

Regularity.

One problem with this argument is that it had, in effect, already been refuted. To 

see why we need a little more detail. Formally we can represent the outcome-space 

of Williamson’s coin-tossing ‘experiment’ by the uncountable set X = {0,1}N (usu-

ally written 2 N), N = {1, 2, 3, …},6 of all infinite sequences of 1 s and 0 s (1 for 

a head, 0 for a tail), and the class F of events in that space is the σ-algebra gener-

ated by the cylinder sets (these are the subsets of X defined by fixing finitely many 

coordinates). The unit interval [0, 1], under the dyadic expansions of its members, 

Σn>0 an2
−n where an = 0 or 1, is the set of all infinite sequences of zeros and ones 

(two such sequences, e.g. .0111 … and .1000 …, may determine the same real, in 

this case ½). Williamson assumes that the coin-flips are independent with constant 

probability of 1 (iid in probabilists’ jargon, standing for ‘independent, identically 

distributed’), where in his example that probability is ½. It is well known that this 

probability function, were it assumed to take standard values only, can be extended 

to a countably additive measure on the Borel subsets of [0, 1] and hence to Lebesgue 

measure on the Lebesgue-measurable sets of [0, 1]. Bernstein and Wattenberg’s 

6 Some authorities take N to be the set {0,1 2, …}.
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discussion therefore implies that all the singleton sequences in the coin-flipping 

experiment can be consistently assigned the same positive infinitesimal probability 

value, subject to exactly the same iid + probability ½ of heads assumption William-

son himself makes.

That the fair-coin sequences in X, like H(1 …), can consistently receive equal 

infinitesimal probabilities is also implicit in a simple example of the use of Loeb 

spaces in Loeb (1975). The example models in a hyperfinite probability space (Ω, 

A, μ) the tossing of a fair coin infinitely many times, where Ω = {0,1}η, the set of all 

internal sequences of 0 s and 1 s of length η for η some arbitrary hyperfinite num-

ber in *N\N, A is the set of all internal subsets of Ω, and μ is the counting measure 

which assigns internal probability |A|/|Ω| to each A in A, where the bars signify 

internal cardinality.7 Thus each singleton sequence in Ω has internal probability 

 2−η. Where L(A), the Loeb algebra, is the completion of the external σ-algebra gen-

erated by A, there are events in L(A) corresponding to the standard events defined 

in {0,1}N, with the fair-coin product measure on the latter differing from the meas-

ure μ on their counterparts in L(A) by an infinitesimal (1975, 119). Standard events 

having standard probabilities can thus be recovered from such a nonstandard model 

by taking standard parts. In a paper published coincidentally in the same year as 

Williamson’s, Frederik Herzberg used the same type of hyperfinite space to model 

a coin tossed η times but with an arbitrary probability p in *[0,1] of landing tails, 

and showed using the Transfer Principle how an infinitesimal ‘Bernoulli’ probabil-

ity is assigned to each sequence *a in  2*N and then by restriction to its counterpart 

a in  2N.8

3  Where Does It Go Wrong?

In the light of the foregoing discussion it would seem that something is wrong with 

Williamson’s argument. Apart from the claim that H(1 …) and H(2 …) are isomor-

phic events, only elementary probabilistic reasoning was involved, so any fault must 

presumably lie with that claim. Indeed, however plausible it might initially seem, a 

little reflection shows it to be false. As Howson (2017) pointed out, the extension of 

H(1 …) is a singleton sequence, and that of H(2 …) is two such sequences,9 and it 

therefore makes no sense to say that these are isomorphic events. It seems that Wil-

liamson simply overlooked his own description of H(2 …) as ‘all tosses after the 

first land heads’, and hence as a disjunctive event defined in the same sample space 

as H(1 …), and took it to be a (singleton) sequence in its own right containing only 

1 s. That certainly seems to be implicit in his claim that

8 Herzberg (2007), Appendix B.
9 Thus the extension of H(1 …) in the outcome space X represents the singleton real {1} under the 

dyadic expansions of the reals, while the extension of H(2 …) represents the pair {1, ½}.

7 * Is the embedding of the standard into the nonstandard universe.
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we can map the constituent single-toss events of H(1…) one–one onto the con-

stituent single-toss events of H(2…) in a natural way that preserves the physi-

cal structure of the set-up just by mapping each toss to its successor. (2007, 5)

Possibly sensing that the isomorphism claim might be unconvincing, Williamson 

presented a different version omitting it, at any rate explicitly:

To make the point vivid, suppose that another fair coin, qualitatively identical 

with the first, will also be tossed infinitely many times at one second intervals, 

starting at the same time as the second toss of the first coin, all tosses being inde-

pendent. Let H*(1…) be the event that every toss of the second coin comes up 

heads, and H*(2…) the event that every toss after the first of the second coin 

comes up heads. Then H(1…) and H*(1…) should be equiprobable, because the 

probability that a coin comes up heads on every toss does not depend on when 

one starts tossing, and there is no qualitative difference between the coins. But for 

the same reason H*(1…) and H(2…) should also be equiprobable. These two infi-

nite sequences of tosses proceed in parallel, synchronically, and there is no quali-

tative difference between the coins; in particular, that the first coin will be tossed 

once before the H(2…) sequence begins is irrelevant. By transitivity, H(1…) and 

H(2…) should be equiprobable: [hence] Prob(H(1…)) = Prob(H(2…)) (2007, 6).

But this is no improvement on Williamson’s first argument. H(2 …) is not simply a 

copy of H*(1 …): it is, to repeat, the disjunctive event “all the tosses land heads or 

the first is a tail followed by all heads”.10

My dismissal of Williamson’s argument as based, in effect, on an elementary 

mistake might be objected to on the ground that formal probability itself endorses 

his claim that H(2..) is just as much a sequence of events as H(1 …) itself, and is 

indeed isomorphic to it. Where  Xi is a two-valued random variable defined on X, 

with  Xi(x) = xi, i = 1, 2, …, H(2 …) is the sequence < X2 = 1,  X3 = 1, …,  Xn+1 = 1, 

… > , which is clearly a subsequence of < X1 = 1,  X2 = 1, …,  Xn = 1, … > , i.e. of 

H(1 …). Thus the mapping which sends ‘Xi+1 = 1’ to ‘Xi = 1’, does appear to be 

an isomorphic embedding of H(2 …) into H(1 …). So is Williamson right after all 

in his isomorphism claim? No. In the usual formalism of mathematical probabil-

ity < X1 = 1,  X2 = 1, …,  Xn = 1, … > is just a set,11 the countable intersection of all 

10 Benci et al. (2018) see Williamson’s error as conflating two models, which they call A and B, where 

A is one infinitely repeated coin-toss and B another starting at the second toss of A, and they claim that 

in equating P(H(1 …)) and P(H(2 …)) Williamson is illegitimately equating  PA(H(1 …)) and  PB(H(2 

…)) referred to model B, H(2 …) is ‘all tosses [in that model] land heads’(2018, 29)). But Williamson’s 

second version does in effect distinguish A and B, with his P(H*(1 …)) their  PB(H(2 …)); his error 

arises simply from his belief that H*(1 …) and H(2 …) are qualitatively identical events.
11 ‘X1 = 1,  X2 = 1, …,  Xn = 1, …’ is actually an infinite conjunction ‘/\i∈ω  Xi = 1’, not a sequence. Scott 

and Krauss (1966) argue that it is more natural to view probabilities as defined directly on the sentences 

of an infinitary language than on the sets in the orthodox Kolmogorov formalism, whose excess struc-

ture, according to them, is redundant. Accordingly they define a countably additive probability on the 

sentences of a language of type L(ω1,ω), which is to first-order logic what a σ-field is to a field, allowing 

countably infinite conjunctions and disjunctions (hence ω1) but only finite strings of quantifiers (hence 

ω). It has a proof-theory complete for countable sets of sentences but it is not compact.
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sets {x∈X:  Xi(x) = 1} and hence the singleton sequence consisting of 1 s only, and 

H(2 …) is the union of two sets, the singleton just mentioned and the singleton 

whose first member is 0 and all the rest 1 s. In terms of the elementary outcomes of 

Williamson’s experiment, two of them will win a bet on H(2 …) and only one a bet 

on H(1 …) (that said, I am not implying that betting at infinitesimal odds on infinite 

sequences of trials is a practical policy).

4  Intimations of Invariance

It might be claimed that there is nevertheless a valid intuition underwriting Wil-

liamson’s argument, namely that any subsequence, finite or infinite, wherever it 

occurs in the original sequence of coin tosses, should have exactly the same prob-

ability. The French mathematician Joseph Bertrand quipped that a roulette wheel 

has neither conscience nor memory (‘elle n’a ni conscience ni mémoire’ (1880, 

XXII)), but he could have said the same about a coin: your expectation of a bet 

on the event ‘0110001011’ occurring immediately after the nth toss is the same 

for all n. Moreover, the intuition seems vindicated by a fundamental theorem of 

elementary ergodic theory for Bernoulli processes (iid processes; the coin-tossing 

experiment is a one-sided Bernoulli process), going under the name of measure-

invariance. Under the left-shift mapping T of X into X where (Tx)i = xi+1, meas-

ure-invariance is the condition that P(T−1A) = P(A) for all A in F, and it is easy 

to see that  T−!H(1 …) = H(2 …) and so P(H(2 …)) = P(H(1 …)). But those prob-

abilities are the same only because they are standard probabilities both equal to 

0, while as Williamson himself in effect showed, a hyperreal-valued probability 

function assigning positive infinitesimal values to the singleton sequences in  2N 

will necessarily assign different infinitesimal probabilities to H(1 …) and H(2 …), 

since P(H(2 …)) = 2P(H(1 …)).12

What this discussion does point to, however, is that the invariance theorems of 

applied probability and physics depend on the choice of standard-valued probabil-

ities. We have seen this to be true with the measure-invariance of Bernoulli pro-

cesses, and the translation and rotation-invariance properties of Lebesgue measure 

on the Borel sets of  Rn seem similarly dependent.13 In Bernstein and Wattenberg’s 

example assigning nonzero infinitesimal probabilities to certain sets of Lebesgue 

measure zero causes translation-invariance to be violated, and correspondingly 

rotational invariance when the half-open unit interval [1, 0) is wrapped around 

the circumference of a circle though the violations are only infinitesimal.14 Seeing 

14 This example is taken from Barrett (2009, 77). With addition and multiplication mod 1, let S be the 

set {a, 2a, 3a, …}, where a is an irrational in [0, 1) (ensuring that all the members of S are distinct), and 

12 If instead of H(2 …) we consider H(n …) for arbitrary n we will of course find increasingly ‘large’ 

infinitesimal differences between their probabilities. But a ‘large’ infinitesimal, even a ‘very large’ infini-

tesimal, is still an infinitesimal.
13 Lebesgue measure uniquely among standard measures has these properties, and for that reason 

is taken as the model of situations where such invariance seems implicit in the physical structure and 

dynamics of the relevant systems, for example a person throwing a dart ‘at random’ at a dartboard, fric-

tionless spinners stopping ‘at random’, and so forth.
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infinitesimals as measuring real differences in fine-structure might therefore seem to 

conflict with the lesson contemporary physics appears to teach, that the symmetries 

expressed in the classic invariance results are a fundamental feature of nature. Bar-

rett (2010) blames the practice of using external models for the conflict:

In substantive applications of the theory of chance, there will typically be 

found constraints on a model arising from physical properties or symmetries 

in the physical situation. Because we cannot apply the Transfer Principle to an 

external nonstandard model, the task of showing that an external nonstandard 

model conforms to these constraints may become difficult or impossible. The 

lack of true translation invariance in Bernstein’s and Wattenberg’s model is an 

example of this. (2010, 73; for an internal model the Transfer Principle shows 

that Lebesgue measure is indeed translation-invariant).

But I fail to see this argument as warranting the rejection of external models (to 

be fair Barrett says that he himself does not regard it as conclusive (ibid.)). In fact 

the practice he condemns15 is the basis of a highly successful field of research in 

applied probability: external Loeb spaces have found manifold applications in statis-

tics, physics, classical and quantum (see for example the list in Albeverio 2009), and 

even economics, where hyperfinite populations have proved a very useful analyti-

cal tool (Anderson 1991; infinite hyperfinite sets, though formally finite, are actu-

ally uncountable). And what if the ‘true’ translation invariance of Lebesgue measure 

does fail in an external model? It does so only infinitesimally, which might seem in 

empirical terms a more-than-acceptable margin of error.16 That being so, the pos-

tulates on which the standard invariance results rest would arguably seem little the 

worse for being judged as what physicists call ‘effective’ theories.

It might of course be that some suitable internal model is ‘really’ fundamental. 

According to two advocates of Nelson’s Internal Set Theory (IST) in which the 

entire mathematical universe is nonstandard since it is a universe just of internal 

sets,17 IST is the mathematical theory actually better suited to describe reality:

15 It is also condemned by Bascelli et al. (2014), claiming that ‘once one decides to use hyperreal infini-

tesimals, one should also replace the original algebra“of propositions in which the agent has credences” 

with an internal algebra of the hyperreal setting.’ (2016, 11). But why ‘should’ one? The authors claim 

that the internal hyperfinite setting described in Sect. 3 ‘allows one to avoid … the problems raised by 

Williamson’s argument’ (ibid.), but it is not clear what the alleged problems are; the authors merely point 

out that in that setting H(1 …) and H(2 …) are shown to be non-isomorphic by the Transfer Principle. 

But if I am correct one doesn’t need to appeal to an internal probability space to refute the isomorphism 

claim.
16 A no higher standard of accuracy justifies the use of the real-number continuum itself. Gisin argues 

that the infinite amount of information contained in irrational numbers (a set of measure 1 in the reals) is 

not only redundant for the purposes of physical description but in effect renders them essentially random 

(2018).
17 In this theory the real line corresponds to the internal set *R in the orthodox approach, rather than the 

standard real line R (which is now not a set).

let  Sa be S shifted by a. S differs from  Sa by {a}, and so differs in probability by an infinitesimal. The 

Lebesgue measure of all three sets is the same, 0.

Footnote 14 (continued)
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Mathematics is intended to model reality as well as possible. The nonstandard 

universe gives a richer model of the reals than the standard universe, so it is 

natural to identify the real line with R from IST. From this point of view the 

standard objects are merely ‘shadows’ of the real objects: taking standard parts 

loses information. (Diener and Stroyan 2009, 260–261).

The loss is not all on one side though. Internal models do not contain the familiar 

number systems, the natural numbers, rationals and reals, as sets, nor are they closed 

under countable Boolean operations,18 which is why external Loeb spaces are so 

useful. On balance, there seem to be good reasons for adopting a liberal, ‘ecumeni-

cal’ approach in which both external and internal nonstandard models are acknowl-

edged to have important roles to play in extending scientific understanding.

5  Conclusion

Barrett’s interesting discussion cited in the preceding section concludes that ‘we can 

have a [nonstandard] model which is regular, but which is non-translation invariant 

or external or both, or we can have an internal, translation invariant model which is 

not regular’ (2010, 74). In either case, internal or external, there are as we have seen 

nonstandard models of infinite flips of a fair coin satisfying the iid conditions, with 

Williamson’s own argument contesting that possibility refuted avant la lettre both 

by Bernstein and Wattenberg’s results and by Loeb’s.

In general, good arguments for Regularity seem thin on the ground, and Lewis’s 

‘Zero chance is no chance, and nothing with zero chance ever happens’ is simply 

bluster: few if any probabilists appear to balk at assigning probability 0 to the logi-

cal, if not practical, possibility of a fair coin by chance yielding an infinite sequence 

of heads, as the strong law of large numbers dictates (hence the jargon ‘almost eve-

rywhere’, ‘almost surely’ and ‘almost certainly’). For Lewis in effect to claim that 

such a practice is conducted in ignorance of a simple truth seems to be an example 

of philosopher’s hubris of a high order.
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