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Abstract

The analysis of animal movement reveals important features of habitat preferences and
behaviours, and informs environmental conservation decisions. In this thesis, we present
new statistical methods, to tackle the problem of scale dependence in models of animal
movement. The inferences obtained from most existing approaches are tied to a particular

spatio-temporal scale, which makes the interpretation and comparison of results difficult.

We first focus on models of habitat selection, which combine tracking data and environmental
data, to understand the drivers of animal movement. The two most popular approaches
describe habitat selection on two different scales, and their parameters have different inter-
pretations. We propose a time series approach to integrate local and global habitat selection.
We explain how stochastic processes with known stationary distributions can be used, to
describe both the short-term transition density and the long-term equilibrium distribution of
the movement. The proposed approach captures both the short-term and long-term habitat
selection. We suggest using Markov chain Monte Carlo (MCMC) algorithms to model
animal movement. A MCMC algorithm describes transition rules, which lead to a limit-
ing distribution: its target distribution. We also suggest the Langevin diffusion process as
a continuous-time model of movement with known stationary distribution. We describe
methods of estimation, to obtain habitat selection and movement parameters from tracking
data.

We then turn to the problem of the time formulation in models of animal movement and
behaviour. Most widely-used models describe movement in discrete time, and their results
are tied to the time scale of the observed data. We extend a popular continuous-time
model of movement, to include behavioural heterogeneity. The approach can be used to
identify behavioural phases from movement data collected at irregular intervals, and with
measurement error. We describe a framework of Bayesian inference, to estimate movement

parameters and behavioural phases from tracking data.






‘Les hommes ? Il en existe, je crois, six ou
sept. Je les ai apercus il y a des années. Mais
on ne sait jamais ou les trouver. Le vent les
promene. IIs manquent de racines, ¢a les

géne beaucoup.’

Antoine de Saint-Exupéry, Le Petit Prince
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Chapter 1
Biological motivation

In this thesis, we explore several methods of statistical modelling and inference, to analyse
ecological data. In this chapter, we present the ecological data, and we introduce some of the
statistical problems arising from their analysis. In Section 1.4, we present the aim of this

thesis, and we outline its structure.

1.1 Animal movement data

A common theme in all chapters of this thesis is the use of statistics to study the movements
of wild animals. Understanding how and why animals move is crucial to learn about their
behaviour, their habitat preferences, and their patterns of space use. Here, we describe the

type of data that we will consider throughout.

Electronic tags have been used for several decades to monitor the location of wild animals
through time (Cagnacci et al., 2010; Block et al., 2011; Kays et al., 2015). An animal is
equipped with a tag (e.g. a collar), and its locations are recorded at subsequent time points,
until the battery runs out or the tag falls off the animal. Most telemetry devices now use
satellite positioning systems, such as the Global Positioning System (GPS) or the Argos
system. The accuracy of their measurements may vary greatly. The location error of GPS
tags is usually of the order of 50m or less and, for many studies, it is small compared with
the scale of the movement (Frair et al., 2010). However, Argos devices are less accurate, and
their error ranges between several hundred metres and several kilometres (Patterson et al.,
2010).



2 Biological motivation

Improvements in battery duration have made it possible to collect data at ever-increasing
temporal resolutions, and over longer periods of time. Modern data sets may for example
include locations observed at the time scale of every minute, over several weeks or several
months (e.g. Grecian et al., 2018). Recording each position reduces the battery life, and there
still exists a trade-off between the sampling frequency and the duration of the study (Brown
et al., 2012). The choice of this trade-off should be informed by the aim of the study. For
example, it may be useful to have high-frequency data to learn about small-scale behaviour,
but it may be more useful to cover a long period of time to learn about the spatial extent of

an animal’s territory.

Telemetry devices most often record the locations of an animal in two dimensions: longitude
and latitude. The data then consist of a bivariate time series of locations, indexed by the times
of observation. In studies of animal movement, it is sometimes useful to think of the atomic
unit of data as the displacement between two successive locations, that we will call “step”.
Note that planar geometry cannot be applied in longitude-latitude space, because it describes
a sphere. Instead, spherical geometry must be used to describe movement, €.g. using great
circle distances and bearings. Alternatively, the raw locations can be projected onto a plane,
to make such calculations simpler. In animal tracking studies, the most common method of
projection is the Universal Transverse Mercator (UTM) coordinate system, which divides the
globe into 60 rectangles (White and Garrott, 2012). Unless stated otherwise, we will always
consider locations projected onto a plane in this thesis, for mathematical convenience.

In the case of marine animals and birds, the coordinate along the third dimension (depth or
altitude) can sometimes be measured, e.g. using pressure sensors. Other types of data can also
be collected on wild animals using telemetry tags, such as accelerometer data (Brown et al.,
2013; Leos-Barajas et al., 2017), information about the diving activity of marine mammals
(DeRuiter et al., 2017; McClintock et al., 2017), or physiological variables (Hooten et al.,
2018). Animal locations can also be recorded in mark-recapture studies, as described e.g.
by Ovaskainen (2004). In that setting, an animal is captured at the start of the study, it is
individually marked (so that it can be recognized), and then released. In subsequent capture
occasions, the study region is surveyed and, if the marked animal is observed, its location
is recorded. That procedure often results in sparse movement data sets, because an animal
may only be observed directly by the scientists, during a survey. However, it is convenient
for animals on which telemetry devices cannot be attached, e.g. insects (Ovaskainen, 2004).
Throughout this thesis, we focus on two-dimensional locations, as measured by GPS and
Argos systems. We may refer to “telemetry data”, “tracking data”, “location data”, and

“movement data” interchangeably.
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Modern telemetry data present a challenge for movement ecologists. They contain a wealth of
information about animal behaviour and space use, that could be used to improve conservation.
They are often large and complex data sets, with strong patterns of autocorrelation, sometimes
measurement error, and many different factors affecting the movement decisions of animals.
This motivates the development of adequate statistical methodology to tackle these problems,

and deepen our understanding of animal ecology.

1.2 Statistical models of animal movement

The study of animal movement is important to tackle many ecological problems. For the
simplest question, “Where did the animal go?”, descriptive statistics or visualisation tools
may be sufficient. Statistical methods have been developed to extract more information from
tracking data (Hooten et al., 2017). In particular, time series models, based on stochastic
processes, offer a natural framework to describe the dynamics of animal movement, and to

capture the strong serial correlation that is often present in such data (Patterson et al., 2017).

Movement metrics The observed data are two-dimensional locations. In a time series
model, the location of the animal can be represented by a stochastic process (X;):>0, Where
t denotes the time. Tracking data may be obtained with measurement error, and state-space
models have been proposed to separate the observation process from the dynamics of the
movement (Anderson-Sprecher and Ledolter, 1991; Jonsen et al., 2003, 2005; Patterson et al.,
2008, 2010). In that framework, the locations are assumed to be observed with noise, i.e. we
consider the observation process
X, =X, + E¢,

where €, captures the measurement error, and is typically assumed to be Gaussian. The goal
is to “filter” the noise, and infer the true locations of the animal. The Kalman filter can be
implemented as a computationally efficient method to estimate the true trajectory from noisy
observations (Jonsen et al., 2003; Johnson et al., 2008a; Fleming et al., 2017). This procedure
is often used as the first stage of an analysis: the track is first processed to estimate the true
locations, and the filtered trajectory is then used to learn about some characteristics of the

animal’s movement.

Modern telemetry data are often collected at a high temporal resolution, and contain higher-
order autocorrelation. In particular, autocorrelation is often found in the speed and in the
direction of movement, and not only in the location. Various metrics of movement can be

derived from the locations, to capture this persistence. In particular, the first-order difference
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D, = X, — X, is a vector of the step taken by the animal at time ¢, and it measures the
length and direction of a displacement (Jonsen et al., 2005). Alternatively, the step length
L; = || Xi+1 — Xi|| and the turning angle o, = arctan(Dy{, DY) — arctan(D;_,, DY ) can
be used, where D, = (D?, D), and where ‘arctan’ is the arctangent function with two
arguments. The step length L, > 0 is the distance between two successive locations, and it is
often used as a measure of the speed of movement. The turning angle ¢, € (—, 7] is the
angle between three successive locations, and it measures a change of direction. Figure 1.1
illustrates the definition of the step length and turning angle. Time series models have been
developed to describe the dynamics of the processes (D;), (L), or (), rather than those of
the location process (X,) itself (Bovet and Benhamou, 1988; Morales et al., 2004; Jonsen
et al., 2005). They are often called “correlated random walks”, because they can capture the
serial correlation in the speed and in the direction of the animal’s movement. Analogous
continuous-time models of persistent movement can be formulated in terms of the velocity
(Johnson et al., 2008a; Gurarie et al., 2009, 2017), or in terms of the continuous-time speed
and bearing (Parton and Blackwell, 2017).

Xito
X
+2

Fig. 1.1 Ilustration of step lengths and turning angles.

Scales of movement Several characteristics of the process (X;) may be of interest, de-
pending on the aim of the study. In most of this work, we will focus on two of them: the step

distribution (or step density), and the utilisation distribution.

The step density is the probability density of an animal’s location at time ¢ + 1, given its
location at time ¢, and we will denote it by p(X,,1|X;). This notation omits the possible
conditioning on previous locations (X;_1,...), or on external influences, that may also
be included. The step density describes the short-term dynamics of the movement model.
Different specifications of the step density may be used to capture the speed of movement,
or the persistence in the direction of movement. The (isotropic) Gaussian random walk is

perhaps the simplest movement model; its transition density is a normal distribution centred
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on the current location,
Xt+1|{Xt = :Bt} ~ N(:Et, 0'21—2).

In the Gaussian random walk, the transition density only has one parameter: the variance
o2. In the context of animal movement, the variance parameter is a measure of the speed of
movement of the animal. More complex models can be formulated to describe more detailed

features of animal movement.

The utilisation distribution 7 is the long-term (equilibrium) distribution of the location
process (X ). It is the probability density function of the animal’s location in geographical
space in the long run, and it can be defined by

Pr(X, e A) = /Aw(w)dw,

where A is a spatial region.

The utilisation distribution may for example be uniform, if the animal is equally likely to
occupy any location in space. More realistically, it could be an irregular surface, reflecting the
tendency of the animal to spend more time in certain areas than others. It can be expressed
as a measure of habitat suitability and habitat preference, which we describe in Section 1.3.1.

The step density and the utilisation distribution describe animal movement on two different
scales. This exemplifies the observation of Turchin (1998), that animal movement can be
viewed from two perspectives, termed the “Lagrangian” and the “Eulerian” points of view.
The Lagrangian approach describes the movement from the point of view of the individual
animal. The step density fits into the Lagrangian framework, in that it captures the movement
as a process, and can be viewed as a model for the movement decisions made by the animal.
On the other hand, the Eulerian approach describes the movement from the point of view of
a point in space. The utilisation distribution fits into the Eulerian framework: for each point

in space, it gives the probability density of the animal’s presence.

The step density and the utilisation distribution are closely related, because the long-term
distribution of space use arises from the accumulation of short-term displacements. However,
most statistical models that have been developed to analyse animal movement have only
focused on one scale. Models of individual animal movement often do not capture overall
space use, and models of space use often overlook the dependence inherent to movement
trajectories. Bridging the gap between these two scales is one of the challenges tackled in
this thesis (Chapters 3-5).
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Movement and behaviour Recent telemetry studies often cover long durations, of several
months or more (e.g. Michelot et al., 2017). Over such long periods of time, most animals
display behavioural heterogeneity, which is reflected in their movement patterns. Various
statistical models of movement have been used to infer animal behaviour from tracking data.
In particular, a large body of literature is dedicated to the classification of location data into
several discrete behavioural states, e.g. “foraging”, “resting”, “exploring” (Blackwell, 1997;
Morales et al., 2004; Jonsen et al., 2005; Patterson et al., 2017). In those multistate models,
the behavioural states are assumed to differ in terms of some metrics of movement, usually
linked to the speed or tortuosity of the movement, such as step lengths and turning angles.
Multistate models were developed to capture behavioural heterogeneity, and also to model

the serial correlation in the behaviours.

The most common formulations are based on the use of an unobserved (discrete-time or
continuous-time) Markov process (.S;);>0, which models the behavioural component of
movement. In those models, S; can take a finite number of values {1, ..., N}, and each is
associated with specific movement characteristics. Models of movement and behaviour can
often be written in the form of a hidden Markov model (Patterson et al., 2009; Langrock
et al., 2012). This has greatly contributed to their growing popularity in the past few years,
because efficient computational methods are available to apply hidden Markov models to
large data sets (Zucchini et al., 2016; Michelot et al., 2016).

Time formulation In a time series movement model, the time can be formulated as a
discrete or continuous variable. For the analysis of animal movement, the choice between
discrete-time and continuous-time models is often difficult, and the relative merits of the two
approaches have been debated (McClintock et al., 2014; Patterson et al., 2017). Although
animals move in continuous time, their location may only be observed at discrete intervals
(e.g. every minute or every hour). Discrete-time approaches are based on the assumption
that the underlying movement process can be appropriately modelled at the time scale of the
observations. However, most metrics derived from movement data strongly depend on the
sampling rate, such that the inference of discrete-time models is tied to the temporal scale of
the observations (Codling and Hill, 2005; Schligel and Lewis, 2016).

One of the consequences of the scale dependence of discrete-time methods is that they require
locations to be collected at regular time intervals through the period of the study. This is often
inconvenient, because many telemetry data sets are collected at irregular time intervals. The
irregularity may be fortuitous; for example, some marine mammals may only be observed

when they surface. In other cases, the data may be collected at irregular intervals deliberately.
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For example, the sampling frequency of some telemetry tags varies through time based on the
level of activity of the animal, to save battery time when it is not moving (Brown et al., 2012).
To use a discrete-time model with irregular locations, it would be necessary to interpolate the

data points on a regular time grid, introducing approximation uncertainty.

On the other hand, continuous-time models consider that telemetry observations arise from a
continuous movement process. As such, they can naturally accommodate different temporal
scales, and irregular sampling rates (Patterson et al., 2017). Various approaches have been
used to model animal movement in continuous time, most of them based on diffusion
processes. These include Ornstein-Uhlenbeck processes (Dunn and Gipson, 1977; Blackwell,
1997, 2003; Blackwell et al., 2016), Brownian bridges (Horne et al., 2007), and more complex
processes based on potential functions (Brillinger et al., 2001; Preisler et al., 2013).

Discrete-time models may seem like a less natural representation of animal movement, but
they have been widely used because they are often simpler to formulate and to implement
than their continuous-time counterparts. The time formulation can have important theoretical
and practical implications, that we will discuss at several points in this thesis. In particular,
in Chapters 5 and 6, we will focus on continuous-time models of animal movement, and

present some of their advantages.

1.3 Habitat selection models

The study of animal movement often involves combining tracking data with other types of
data. In particular, the integration of environmental data and telemetry data is promising
to understand how movement decisions by animals are affected by characteristics of their
habitat.

1.3.1 Resource selection functions

An important topic in animal ecology is the relationship between the distribution of space
use by an animal (or population) and the distribution of some resources of interest (Manly
et al., 2002). This motivates the study of resource selection, that is the lack of proportionality
between resource availability and resource use by the animal. Resource availability is
quantified as the distribution of resources that are available to the animal, i.e. that can be
accessed and used by the animal. The distributions of resources are usually measured at
regular points in space, either in a census, or using geographic information systems (GIS).

Resource use is observed from location data collected on animals, e.g. using telemetry
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devices such as GPS tags, or in surveys. This framework is used to measure preference
or avoidance of particular resources by animals, and therefore to link the distribution of
the animals’ space use to habitat characteristics. Although we refer to the environmental
variables as the densities of “resources”, they can be any types of spatial covariates. In
particular, we could investigate the relative preference of an animal for discrete habitat types,

or the effect of continuous habitat features such as elevation and distance to water.

In initial habitat selection analyses, the aim was usually to compare preferences for discrete
(categorical) habitat types (Neu et al., 1974). For such a categorical variable, the availability
of a habitat type may be measured as the proportion of the study region that it covers, and its
use is the proportion of time that the animal spends in that habitat type. Neu et al. (1974)
suggested using a chi-square test to compare the availability and use in this context, and detect
a potential lack of proportionality. If a lack of proportionality is detected, then confidence
intervals can be defined for the expected proportion of use of each habitat. Observed values
that lie outside the confidence intervals reveal preference or avoidance of the corresponding
habitat type. However, many recent studies are based on continuous-valued environmental

variables, for which the comparison of availability and use is more problematic.

In the context of resource selection analyses, a “spatial unit” refers to a point in geographical
space, and a “resource unit” refers to a point in environmental space. This terminology implies
that both spaces are discrete, which can usually be assumed because habitat covariates are
measured on a discrete spatial grid. A spatial unit is a grid cell, and a resource unit is the
habitat composition of a grid cell. We say that a (spatial or resource) unit is used if an animal

is present in that unit, and we say that it is unused otherwise.

In cases where all used and unused resource units are known over the study region, it is
possible to estimate the parameters of the resource selection probability function, which
gives the probability of use of a resource unit ¢ = (¢y, ..., c;) (Where J is the number of
spatial covariates). It is usually modelled with a logistic model, where the response variable
y is 1 if a resource unit is used, and 0 otherwise (Manly et al., 2002). The resource selection

probability function is of the form

/
by — 1]e) - Db 180
1+ exp(fo + B'c)
where 3’ = (1, ..., 8s) is a vector of unknown resource selection parameters to estimate.

In most studies, we do not know which resource units were not used (Pearce and Boyce,
2006). In such cases, the intercept parameter /3, of the resource selection probability function
is not identifiable (Manly et al., 2002, Chapter 5). It is however still possible to estimate the
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relative probability of use of a resource unit, called the resource selection function (RSF).
The resource selection function w(c¢) gives the relative probability of use of a resource unit ¢,

and it is usually formulated as a log-linear model,
w(e) = exp(Be). (1.1)

Each coefficient 3; measures the strength of selection of the animal for the covariate c;.
A positive value indicates preference, whereas a negative value indicates avoidance. The
resource selection parameters {51, . .., 5} are most commonly estimated by logistic regres-
sion, from use-availability data (Boyce and McDonald, 1999; Johnson et al., 2006). The
used sample consists of the locations {1, ..., x,,} at which the animal was observed. The
available sample {z1, ..., 2z,} is generated at random from a distribution of availability,
and can contain used and unused units. The sample of availability is sometimes called a
sample of “pseudo-absences”, because it is not known whether they were actual absences
(Pearce and Boyce, 2006). In most cases, the distribution of availability is assumed to be
uniform over the study region, but it does not need to be (Lele and Keim, 2006; Johnson
et al., 2008b). The challenge of specifying resource availability has been recognised for a
long time (Johnson, 1980; Porter and Church, 1987), and different inferences can be obtained
for different definitions of the available region (Beyer et al., 2010). Northrup et al. (2013)
gave practical guidance for the choice of the number of pseudo-absences, and showed that
estimates can be biased if the availability sample is too small.

Other approaches of inference have been proposed to estimate the RSF coefficients. In
particular, Aarts et al. (2012) suggested treating the observed locations as the output of a
spatial point process. They binned the telemetry observations on a discrete spatial grid, to
obtain a count for each grid cell. They fitted a Poisson generalized linear model to the counts,
with the resources as explanatory variables, and obtained estimates of the (3; parameters. For
large sample sizes, this is equivalent to the logistic regression approach. Marzluff et al. (2004)
and Millspaugh et al. (2006) proposed an alternative two-stage approach, where the utilisation
distribution of the animal is first estimated using non-parametric density estimation (e.g.
kernel density estimation). The non-parametric utilisation distribution, termed the “resource
utilisation function” in this context, is then evaluated in each cell of the resource rasters, and
a regression is used to link the utilisation to the densities of resources. Hooten et al. (2013)
demonstrated that the approach is equivalent to the standard RSF under some assumptions,
but that resource utilisation functions are preferable to standard RSFs when locations are

observed with measurement error.
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Resource selection functions are used to model the utilisation distribution of an animal or
population (Johnson et al., 2006). The utilisation distribution is the long-term distribution
of space use, as defined in Section 1.2. It can be modelled over the study region €2 by the

normalized resource selection function,

wle(x))  exp(Be(x))

Jecaw(e(2))dz ~ [ qexp(Bre(z))dz’ (1.2)

m(x) =

where c(x) associates a spatial location « to its habitat composition. The denominator is a
normalizing constant, to ensure that 7 is a probability density over (2. Based on Equation
1.2, resource selection functions rely on the assumption that the long-term distribution of
space use by the animal can be written as a function of environmental covariates. In most
applications, the covariates are treated as constant in time, such that data may need to be split
into several periods over which the environmental (e.g. seasonal) variations can be assumed

to be small (see e.g. Nielsen et al., 2003).

Resource selection functions constitute a valuable framework to describe space use as the
result of habitat selection. They are most often used to identify habitats that are important for
a population, to inform management and conservation efforts (Johnson et al., 2004). They
have also been used to measure the effects of anthropogenic disturbances on space use by
animals (Hebblewhite and Merrill, 2008), and to study animal interactions, in particular

predator-prey dynamics (Hebblewhite et al., 2005).

1.3.2 Step selection functions

Step selection functions (SSFs) provide another method to estimate habitat selection from
telemetry and environmental data. They were developed to tackle the difficulty of defining
availability in resource selection models (Arthur et al., 1996). In resource selection analyses,
availability is typically assumed to cover the whole study region. However, in reality, the
choice by the animal of a location is also strongly constrained by its movement. Over a short
time interval, only a small neighbourhood of its current location is available, and it must
select from this restricted area. Ignoring the effect of movement can lead to misinterpretations.
For example, if an animal never uses a particular habitat type, it could either mean that it is
avoiding it (the typical inference from a RSF analysis), or that the animal was too far from
that habitat type to perceive it. The definition of the region of availability can therefore have
a strong impact on the estimated selection parameters (Beyer et al., 2010). In SSF models,

the region of availability is defined by a movement model, and it varies in time.
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Following Rhodes et al. (2005) and Forester et al. (2009), we define a SSF model by the

likelihood of a displacement from « to y, given by

(1.3)

C wley)élyle)
PYIT) = T elz) () iz

where x and y are any two points in the study region (2. The function w is called the step
selection function, and it takes the same log-linear form as the RSF, i.e. w(c) = exp(8'c).
However, unlike the RSF, it is not used as a model for long-term habitat selection and
space use, and it does not capture the utilisation distribution of the animal. The SSF is a
model of the short-term habitat selection, at the scale of the time step of observation. The
function ¢(y|x) defines the movement component of the model, and characterises the scale
of availability. It gives the probability density of a step from x to y in the absence of habitat
selection, and it is called the resource-independent movement kernel (Rhodes et al., 2005;
Forester et al., 2009). Examples of resource-independent movement kernels that have been
used in SSF analyses include a uniform distribution on a disc (Arthur et al., 1996; Rhodes
et al., 2005), or a distribution of step lengths and turning angles to include persistence in
direction (Fortin et al., 2005).

Fortin et al. (2005) and Potts et al. (2014a) suggest a more general formulation, in which
the SSF is a function of both the origin and the endpoint of the step (rather than only the
endpoint, as written in Equation 1.3). In their model, the SSF can be written w(c(x,y)).
That is, the values of the covariates depend on both @ and y. This is a useful extension to
account for the habitat composition over the whole step, rather than only at the endpoint. For
example, Fortin et al. (2005) considered the proportion of the step covered by conifers, and
the minimum distance to a road over the step, as covariates in their analysis of elk movement.
In the following, we will mostly focus on the simpler case where the SSF is only a function
of the endpoint of the step, as described in Equation 1.3.

Conditional logistic regression is used to estimate the parameters of a SSF (Forester et al.,
2009). For each observed step from x; to x;;1, /X random steps starting from x, are simulated
from the resource-independent movement kernel. The habitat characteristics of the observed
endpoint x;; can then be contrasted to those of the potential endpoints {zt(i)l, ce zt(fl) }.
This procedure estimates habitat selection at the scale of the step, by comparing habitat
features within a neighbourhood of the animal’s location (defined by the movement kernel
@). If ¢ is chosen as a uniform distribution over the study region, the locations are assumed

to be temporally independent, and this becomes equivalent to the RSF framework.
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Increasingly complex models of animal movement have been integrated into the SSF ap-
proach. Duchesne et al. (2015) showed that a step selection model defines a movement
model equivalent to a biased correlated random walk. Biased correlated random walks are
routinely used in ecology as a flexible basis for models of individual movement (Turchin,
1998; Codling et al., 2008). Avgar et al. (2016) extended the step selection approach to
allow simultaneous inference on habitat selection and on the movement process, making
it a very attractive framework to estimate habitat preference from movement data. Nicosia
et al. (2017) further extended the framework to the case where movement arises from several
behavioural states, with different movement characteristics. Step selection models have been
used to analyse the impact of landscape features and human presence on animal space use
(e.g. Coulon et al., 2008; Roever et al., 2010; Prokopenko et al., 2017; Scrafford et al., 2018),
as well as animal interactions (Potts et al., 2014b). Thurfjell et al. (2014) presented a review
of SSF analyses in the ecological literature.

1.3.3 Spatially-structured diffusion models

Spatially-structured diffusion models provide another related framework to describe animal
movement and habitat selection (Ovaskainen and Cornell, 2003; Ovaskainen, 2004, 2008).
Those models describe animal movement as a continuous-time diffusion process, among
discrete habitat types. The movement characteristics of the animal can depend on the habitat
type; e.g. the animal may move faster in certain types of habitats than in others. In that
formulation, the time-varying density of the animal’s location in space can be discontinuous
at the edges of habitat patches. This captures habitat selection at the level of the short-term
movement, because the discontinuity allows for preference for one habitat over another when
the animal is near the edge of a habitat patch. Ovaskainen (2008) explains how various
biologically-relevant quantities can be estimated from spatially-structured diffusion models.
In particular, they derive the quasi-stationary distribution of the model, which is analogous to
the utilisation distribution of the animal.

Spatially-structured diffusion models and SSF models both describe animal movement in
a heterogeneous environment, and they can both capture the effect of the habitat on the
animal’s movement decisions. One difference is that SSF models typically try to describe the
fine-scale movement patterns, whereas diffusion models usually involve simpler movement
assumptions. Besides, diffusion models require discrete habitat types, whereas SSFs can also

be used with continuous environmental covariates.
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1.4 Aim of this thesis

In this work, we develop several new statistical methods to analyse animal movement data.
In particular, we focus on the problem of scale dependence in models of animal movement
and habitat selection. The main contents of this thesis, presented in Chapters 3-6, can roughly
be divided into three parts. First, Chapters 3 and 4 develop a new class of models of animal
movement and habitat selection. These models work across spatio-temporal scales, and
describe both short-term and long-term properties of animal movement. Second, Chapter
5 also tackles the problem of reconciling the local and global of habitat selection, but it is
based on a different modelling approach. Third, Chapter 6 develops a new model of animal
movement and behaviour, for which inference does not depend on the temporal scale of the

observed data.

Chapter 3 introduces a new family of habitat selection models, that combines advantages from
the two main existing frameworks: resource selection functions (RSFs) and step selection
functions (SSFs). RSFs and SSFs can be useful to infer habitat preferences from location
data, but the two methods are fundamentally incompatible because they describe selection at
different scales. As a solution, we propose an analogy between the movement of animals and
the transitions of a Markov chain Monte Carlo (MCMC) algorithm in its parameter space.
This formulation defines a movement model with a known long-term distribution: the target
distribution of the MCMC sampler. It captures the movement at the scale of the individual
displacement, but also at the scale of the long-term use of space. We model the target
distribution with a RSF, such that short-term movement and long-term space use are both
described in response to environmental features. We introduce a particular MCMC algorithm,
that we call the local Gibbs sampler, to describe realistic patterns of animal movement. We

demonstrate the scaling properties of the proposed model in simulation studies.

In Chapter 4, we describe a method of inference for the MCMC movement model introduced
in Chapter 3. The model is expressed in terms of habitat selection parameters and move-
ment parameters. We derive the likelihood function in several special cases of the MCMC
movement model, including a model with Gaussian transition density. We explain how the
likelihood can be used to estimate all model parameters, from telemetry and environmental
data. We use simulations to investigate the performance of the estimation method in different
scenarios. We illustrate its use with the analysis of the movement track of a plains zebra.

In Chapter 5, we propose another modelling framework for the analysis of animal movement
and habitat selection. Like in Chapters 3 and 4, we use a stochastic process with a known

stationary distribution, to capture both the short-term movement and the long-term space
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use. However, in Chapter 5, we consider a continuous-time process: the Langevin diffusion
process. We describe a method of (approximate) inference for the Langevin diffusion
movement model, to estimate habitat selection and movement parameters. Because it is
formulated in continuous time, inferences obtained from this model do not depend on the
time scale of observation. In a simulation study, we determine the conditions under which
the method can recover the model parameters. We showcase the approach in the analysis of
three tracks of Steller sea lions.

Chapter 6 covers a different research question, and presents a continuous-time model of
animal movement and behaviour. Its formulation is based on an autocorrelated velocity
process, to model movement persistence. The behaviour component is modelled with a
continuous-time Markov chain, switching between a finite number of states, treated as
proxies for behaviours of the animal. We describe a method of inference, to estimate
movement parameters in each behavioural state, and to estimate the underlying state process
from observed tracking data. This method can be applied to telemetry data collected at
irregular time intervals and/or observed with measurement error. This flexible and widely
applicable framework is a step forward to make the underutilised continuous-time movement
models more accessible to ecologists. We present several simulation studies, to verify that
parameter estimation works under different sampling scenarios, and to compare the proposed
method to its discrete-time analogue. As an illustration, we analyse a movement track of
grey seal. Chapter 6 is independent of Chapters 3-5.



Chapter 2
Statistical background

In this chapter, we introduce some of the statistical methods that will frequently be used, to
avoid redundancy in the rest of the thesis. Methodological results that are only used in one

part of this thesis are described in the relevant chapters.

2.1 Markov chains

A stochastic process is an ordered collection of random variables (X;);c7 defined on a set S,
where 7 is a set of indices (Guttorp, 1995). In most applications, including all those covered
in this thesis, the index is time, and we have 7 = N (discrete time) or 7 = R (continuous

time). Different stochastic processes are characterised by different dependence structures.

In discrete time, a stochastic process (X;):cn is called a Markov chain, or Markov process, if
it satisfies
P( X1 X, Xy, .o, X1) = p( X | Xy).

This property is called the Markov property. It states that the distribution of the process at
time ¢ + 1, conditional on its value at time ¢, does not depend on the past (i.e. on its value at
times 1,...,¢ — 1). A Markov chain is sometimes called a “memoryless” process, because

the future of the process does not depend on its past, given the present.

The set S over which the process is defined is called the state space, and its elements are
called “states”. When the state space is finite, this conditional distribution p(X;1|X;) can
be written as the collection of transition probabilities Pr(X,,; = j|X; = i), for any two
states 7, j € S. Here, we focus on homogeneous Markov chains, for which the transition
probabilities do not depend on ¢. If we denote by S = {1,2,..., N} the finite state space,
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the Markov process is fully specified by its initial distribution,
) = (Pr(X; =1),...,Pr(X; = N)),

and by its transition probability matrix,

Y11 Y12 0 V1IN
r— 7.21 7.22 T 72.1\1 ’
IN1 YN2 " TINN

where
Yij = Pr( X1 = jl Xy =1), 4,5=1,...,N.

The initial distribution describes the state of the chain at time ¢ = 1, and the transition
probability matrix gives its dynamics from ¢ to ¢t + 1. For a Markov chain with transition
probability matrix I', we call stationary distribution a probability distribution 7 which
satisfies wI" = 7r. Under some mild conditions, a unique stationary distribution exists, and
it is the limiting distribution of the Markov chain (Guttorp, 1995). This means that, for
any initial distribution 7v"), a Markov chain will converge to its stationary distribution as ¢
increases. This property is central to the development of Markov chain Monte Carlo methods,
that we will describe in Section 2.3.

In the general case of a continuous state space S, p(X;41|X;) is called the transition density,
or transition kernel, of the process. It is a continuous probability density function over S,
and it cannot be written in matrix form like in the case of a discrete state space. In this case,
the distribution 7 is a stationary distribution of the Markov chain (X;) if and only if, for any
yEeS,

/ m(2)p( X1 = y| Xy = x)dx = 7(y). (2.1)
z€S

Because 7 is a probability density over S, it is also subject to the constraint |, sT(z)dr = 1.

The Gaussian random walk described in Section 1.2 is an example of a Markov chain on a
continuous state space. In that special case, the transition density is a normal distribution
with mean X;.
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2.2 Monte Carlo integration

Monte Carlo integration is a general method, based on random sampling, to approximate
intractable multidimensional integrals (see for example Robert and Casella, 2013). In general,
Monte Carlo integration can be summarised as follows. Consider that we want to evaluate

the following integral,

I= /%g f(x)g(x)dx, (2.2)

where f is a probability density function over £. The integral can be approximated by

where
Vi € {1,...,71}, Xsz

We can verify that [ is an unbiased estimator of / ,

Bl = B | g(X0| = 5 37 Blo(X0)] = Elg(X),

where X ~ f. So, we find
E[ll=1

and, from the strong law of large numbers, I converges to [ with probability 1 as n goes to
infinity.

2.3 Markov chain Monte Carlo

Markov chain Monte Carlo methods are commonplace in statistics, and they are used in
several different contexts in this thesis. Here, we provide an overview of some of their
important properties. Markov chain Monte Carlo (MCMC) is a general method to sample
from any probability distribution 7 (Gilks et al., 1996). In this context, the distribution of
interest 7 is called the target distribution. The core idea of MCMC is to define a Markov
chain (X;);cy with stationary distribution the target distribution, and to simulate from the
chain until the samples give a good approximation of 7. This simulation procedure is called
an MCMC algorithm, or MCMC sampler.
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The Markov chain of an MCMC algorithm is specified by its transition kernel p(X;,1|X}),
as defined in Section 2.1. In this section, and in later chapters, we will sometimes write
the transition kernel as p(y|z) = p(Xy11 = y|X: = x), for convenience. A sufficient
condition on the transition kernel for the process to have the target distribution 7 as stationary

distribution, is the detailed balance condition, given by
Vr,y € S, m(x)p(y|r) = 7 (y)p(z|y).

This directly follows from the definition of the stationary distribution, given in Equation 2.1.

Indeed, if the transition kernel satisfies the detailed balance condition, for all ¥ € S, we have

/x RCIUEEE / _rlwplaly)is
— (y) / _plaly)ds

=7(y),

because p(z|y) is a probability density for = over S, i.e. it integrates to 1. This proves that 7
is a stationary distribution for a Markov chain if it satisfies detailed balance.

The detailed balance condition has been used to construct Markov chains with a known
stationary distribution, to use as the basis for an MCMC algorithm. As an example, we
consider the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). In
the Metropolis-Hastings algorithm, each transition of the Markov chain is composed of two
parts: a proposal step, and an acceptance-rejection step. The algorithm starts from an initial
state Xo = x(. Then, at each iterationt = 1,2, ..., a new sample X* is generated from a
proposal distribution ¢(X*| X;_1). The proposed sample is accepted with a probability given
by the acceptance ratio,

r(Xo1, X7) = min{l, m(X*)q( X1 | X) }

m(Xi1)q(X*[Xi-1)
If the update is accepted, we take X; = X*, else X; = X, ;.

We can verify that the Metropolis-Hastings algorithm satisfies the detailed balance condition.
Forall z,y € S,

m(x)p(ylz) = m(x)q(y|z)r(z,y)
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= rlayie)min {1, ZOLE 0

" w(x)q(ylx)
= min {W(:z:)q(y|x), m(y)q(z|y)

——

By symmetry, we find

m(2)p(y|x) = min {7 (y)q(z|y), m(x)q(y|z)}
= 7(y)p(zly),

as required. The distribution 7 is therefore a stationary distribution for the Metropolis-

Hastings sampler.

Note that the Metropolis-Hastings algorithm does not directly require any evaluations of
the target distribution, but only ratios of evaluations of the target distribution. This is a
great advantage because, in most applications, the target distribution is only known up to a
multiplicative constant. The constant cancels out in the acceptance ratio of the Metropolis-

Hastings sampler, so it does not need to be determined to run the algorithm.

If the proposal distribution ¢ is symmetric, i.e. if Vz,y € S, q(y|z) = q(z]y), the acceptance
ratio of the Metropolis-Hastings algorithm simplifies to

(X, ) =min {1,

In the special case of a symmetric proposal, the algorithm is often called the Metropolis

sampler.

Markov chain Monte Carlo algorithms have mostly been employed to solve problems of
Bayesian inference (Gelman et al., 2013). In a Bayesian analysis, the objective is often
to obtain the posterior distribution of the parameters of the model, given the observed
data and the model assumptions. In many applications, the posterior distribution is not
analytically tractable, and MCMC samplers can be used to approximate it numerically,

through simulations.



20 Statistical background

2.4 Stochastic differential equations

2.4.1 Definition

A diffusion process is a continuous-time stochastic process, defined as the solution to a
stochastic differential equation (Jksendal, 2003). A stochastic differential equation is an
equation of the form

dX; = b( Xy, t)dt + o( Xy, t)dW,, (2.3)

where (X;) is the unknown process, and where (W;) is a Wiener process. The Wiener
process is an almost-surely continuous stochastic process, with stationary and independent
increments, which satisfy

Wis — Wy~ N(0,0),

for any time interval 6 > 0.

In Equation 2.3, the function b is called the drift term, and o is called the diffusion term. They
are usually chosen as parametric functions, and their formulation determines the dynamics of
the diffusion process. Under some boundedness conditions on b and o, and given an initial
condition Xy = z, Equation 2.3 has a unique solution (X;) (@ksendal, 2003, Chapter 5).

The diffusion process (X;) is a continuous-time Markov process, i.e. it satisfies

p(thH |th7 thfw cee th) = p(th+1 |th)7

where the times are ordered, i.e. 0 <t < ... <t¢, 1 <, <t,41. This is the continuous-

time analogue of the Markov property presented in Section 2.1.

The transition density of a diffusion process is the distribution p(X;,s|X;), for a time interval
0 > 0, and it is analogous to the transition density of the discrete-time Markov chains
described in Section 2.1. Because it is Markovian, the diffusion process is fully specified by

its initial value x (or initial distribution p(x)) and its transition density.

2.4.2 A few relevant examples

The simplest diffusion process is the Brownian motion, defined by b(X;,t) = 0 and
o(X;,t) = o. The Brownian motion is the continuous-time analogue of the Gaussian
random walk, and it was first formulated to describe the movements of interacting particles

(Brown, 1828; Einstein, 1905). The process has independent normal increments,

Xt+5|{Xt = :Et} ~ N(.rt, 0'25),
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for § > 0. The Brownian motion has only one parameter, the variance o2 of the transition

density. This parameter is a measure of the speed of the process.

The Brownian motion with drift is a slightly more general process, for which the drift function
is set to a non-zero constant, i.e. b(X;,t) = b. Increments of the Brownian motion with drift
are described by

Xy {X; = 2} ~ N(x; + b6, 0%9). (2.4)

As the name suggests, this introduces a tendency for the process to drift towards a particular

direction, specified by the parameter b.

Uhlenbeck and Ornstein (1930) introduced a stochastic process to model the velocity of a
particle under friction. In one dimension, the Ornstein-Uhlenbeck process (X;):> is defined

as the solution to the stochastic differential equation
dXt = B(ILL — Xt)dt + O'th7

where W, is a standard Wiener process, and with initial condition X, = z(. Here, the drift
term is a linear function of the current value X; of the process, and the diffusion term is
a constant. The process has three parameters: p € R is the long-term mean, § > 0 is
the strength of the reversion to the mean, and ¢ > 0 is the spread around the mean. The
Ornstein-Uhlenbeck process is called mean-reverting, as it will tend to be attracted towards its
long-term mean (i, at a rate measured by 3. Indeed, it has a closed-form Gaussian transition
density with mean
E(Xiys| X = 20) = e P+ (1 — e )

That is, the mean moves from z; (at time t) to 4 (as 6 — o0). The Brownian motion is a
limiting case of the Ornstein-Uhlenbeck process, when 3 — 0, i.e. when the reversion to the
mean tends to zero.

2.4.3 Simulation and inference

A consequence of the Markovian property of diffusion processes is that the transition density

can directly be used for simulation or for likelihood-based inference.

Simulation We denote by {#1,...,t,} the times at which the process should be simulated,
and x; the simulated value at time ¢;. We initialise X; = z; and, forz =1,...,n — 1, we

sample z;; from the transition density p(X, T
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Inference Say that we observed the diffusion process at discrete times {¢1,...,t,}, and
we denote by {x, ..., z,} the observations. The transition density of the process, p(X,,, =
zi+1| Xy, = x;), defines the likelihood of the transition from z; to x;;. The process is

Markovian, and so the transitions are independent. Therefore, the likelihood of all steps is
given by the product of the likelihoods of the individual transitions. The first observation
is typically assumed to be deterministic but, more generally, we may denote by p(z;) the
likelihood of the first observation x;. Then, the likelihood of the n observations is

n—1

p(x1, ..., xn) = p(z1) Hp(XtiH = zin| Xy, = 1)

i=1

The transition density is often a parametric function, and likelihood-based methods of
inference can then be used to learn about the parameters. For example, this approach could

be used to estimate the variance o2 and the drift b of the Brownian motion with drift.

In many cases, the drift and diffusion functions are complex expressions, and the transition
density may not be analytically tractable. In such cases, it is generally not possible to imple-
ment exact simulation and inference. Numerical methods can be employed to approximate
the diffusion process by a simpler process, for which the transition density is known (Iacus,
2009). We present one such method in the context of the Langevin diffusion process, in
Chapter 5.



Chapter 3

Markov chain Monte Carlo step selection
models

In this chapter, we describe a new family of models of animal movement and habitat selection,
based on the properties of Markov chain Monte Carlo (MCMC) algorithms. Section 3.1
presents the existing habitat selection models, and motivates the development of a new
approach. In Sections 3.2 and 3.3, we discuss the use of MCMC as a basis for models of step
selection. We describe a new MCMC sampler to be used as a model of animal movement
in Section 3.4, and we present several special cases relevant to step selection in Section 3.5.
We investigate the properties of those models with simulations in Section 3.7. Some of the
material covered in this chapter was introduced in Michelot et al. (2019), and in the preprint
Michelot et al. (2018a).

3.1 The discrepancy between resource selection and step

selection

Habitat selection models, described in Section 1.3, combine telemetry data and environmental
data to estimate habitat preferences, and to predict long-term patterns of space use by animals.
They can roughly be classified into resource selection models, which treat telemetry data as
a collection of independent points, and step selection models, which account for the serial

correlation due to the movement of the animal.

Note that, unlike the resource selection function (RSF), the step selection function (SSF)

is not used as a model for the utilisation distribution of the animal. Indeed, although they
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usually take the same functional (exponential) form, they capture habitat selection at two
different scales: the global scale of the study region for the RSF, and the local scale of
the step for the SSF. In the two approaches, the habitat selection parameters 3 therefore
measure a different type of selection. In particular, a fitted SSF cannot readily be used to
predict long-term space use. Indeed, Barnett and Moorcroft (2008) showed that the stationary

distribution of a SSF model can be written

m(x) =

w(c(x)) [w(c(y))o(y|x)dy
(c(w)) [w(c(2)) G-

(
Jwl(ely (c(2))d(zly)dzdy’

using the notation introduced in Section 1.3. This shows that, in general, the stationary
distribution 7 of a SSF model is not proportional to the SSF w. The relationship crucially
depends on the choice of the movement model, i.e. the choice of the movement kernel ¢.
The function given in Equation 3.1 does not reduce to the simple parametric expression used

for the utilisation distribution in RSF models.

Equation 3.1 is valid when the SSF only depends on the habitat at the endpoint of the step, and
not over the whole step (Equation 1.3). If the SSF depends on the whole step, the stationary
distribution of a SSF model, i.e. the underlying utilisation distribution, can be approximated
using numerical methods. Potts et al. (2014a) described an iterative procedure to approximate
the long-term utilisation distribution of a SSF model on a discrete spatial grid. They wrote a
“master equation” to describe the distribution of the animal’s location in space at time ¢ + 1,
in terms of its distribution at time ¢. Starting from some initial distribution, and iterating over
t, the equation eventually converges to a stationary distribution (analogous to the utilisation
distribution). Similarly, Avgar et al. (2016) and Signer et al. (2017) argued that simulations
from a fitted SSF model can be used to estimate its long-term distribution. A SSF model
is fitted, and many locations are generated from the estimated movement kernel and step
selection function. For long simulation runs, the distribution of sampled points approximates
the stationary distribution of the model. However, the results of simulation-based methods
will vary depending on the choice of the geographical region over which the simulations are

run.

From a biological perspective, the relationship between the SSF and the utilisation distribution
of the animal, given in Equation 3.1, can be seen as the result of local habitat selection. At
the time scale of the observed movement steps, we consider that the animal has access to
a neighbourhood of its current location, defined by the movement kernel ¢ of the model.
Within this available region, it selects a location based on its habitat suitability, determined
by the SSF w. Because the region of availability typically does not cover the whole study
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region, the animal tends to favour habitat units which are both suitable and close. This causes
the disproportion shown in Equation 3.1 between the SSF and the utilisation distribution. A
special case was described by Moorcroft and Barnett (2008), who showed that, under some
assumptions, the utilisation distribution of the animal is proportional to the squared SSF. A
possible interpretation is that, if an animal is in a suitable habitat patch, it will tend to remain
there longer than would be suggested by local habitat selection, merely because it is close
and therefore easily accessible. Step selection models can also incorporate the effect of the
habitat directly on the movement of the animal (e.g. different movement speeds in different
habitat types). Potts et al. (2014a) describe how the long-term distribution of space use of the
animal arises from models of movement and local habitat selection.

There is a strong ecological incentive to bring the RSF and SSF frameworks together, and to
model individual animal movement and long-term habitat selection jointly. In particular, this
would allow for the integration of telemetry data and survey data. Telemetry data are typically
analysed with models of individual movement that do not capture the equilibrium distribution,
such as SSF models. Survey data are independent observations from a population, and they
are analysed with species distribution models that often do not capture the movement of
individuals. This motivates the development of a step selection model with an explicit (and
tractable) stationary distribution. In this chapter, we introduce a new framework to jointly
model animal movement, space use, and habitat selection, to overcome this limitation of

existing approaches.

3.2 The analogy between MCMC and animal movement

It is natural to think of the utilisation distribution of an animal as the long-term consequence
of its short-term movement decisions. However, most movement models do not have an
explicit stationary distribution, and fail to capture space use by the animal (although see
Ovaskainen, 2008). Following the notation introduced in Section 1.2, we define (X );cy the

two-dimensional location process of an animal, which takes values in Q2 C R?.

We propose an analogy between the movements of an animal in geographical space and
the movements of a Markov chain Monte Carlo (MCMC) sampler in a two-dimensional
parameter space. As described in Section 2.3, an MCMC sampler is defined by its transition
kernel, constructed such that the long-term distribution of samples is the target distribution.
This is similar to an animal moving in the short term according to a movement model, such

that the long-term distribution of its location is the utilisation distribution.
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Following this analogy, we can view an MCMC algorithm as a movement model, that we
will call an “MCMC movement model”. The transition kernel p(X;,1|X;) of the algorithm
determines how the next sample X, is generated conditional on X;. It must satisfy
certain properties (e.g. the detailed balanced condition, see Section 2.3) to ensure that the
samples { X, X, ...} converge to the given target distribution. In an MCMC movement
model, the transition kernel models the step density of the location process (X;) of the
animal, i.e. the density of its next location, conditional on its current location. Due to the
properties of the underlying MCMC algorithm, the movement process is stationary, and its
equilibrium distribution is guaranteed to coincide with a given target distribution. This target
distribution is the long-term distribution of the animal’s location in space, i.e. its utilisation
distribution. This approach thus describes a model which links the short-term movement
rules (or movement decisions) of the animal to the long-term distribution in space. We
summarise the correspondence made between the terminology of MCMC algorithms and

that of movement models in Table 3.1.

MCMC Animal movement Notation
Parameter space Geographical space QO CR?
Iteration Time step t=1,2,...
Sampled point Location X, €0
Transition kernel Step density p( Xes1]| Xt)
Target distribution  Utilisation distribution m(x)

Table 3.1 Summary of the analogy between MCMC and animal movement.

Over the past 65 years, many different MCMC algorithms have been developed for the
purpose of sampling from probability distributions (Metropolis-Hastings algorithms, Gibbs
samplers, Hamiltonian Monte Carlo...) In the analogy presented here, each MCMC algorithm
describes a different movement model, with specific transition rules. However, not all
algorithms are good representations of animal movement. This can most clearly be illustrated
by the example of the Gibbs sampler, which moves in the parameter space one component at
a time (Gelfand and Smith, 1990). In the context of animal movement, this corresponds to
the implausible scenario of an animal alternating between displacements along the longitude
and the latitude axes. For example, Figure 3.1(A) shows the first 100 iterations of a Gibbs
sampler on a bivariate normal target distribution 7. The systematic perpendicular turns seen
in the output of the Gibbs simulation do not resemble any feature of real animal movement.
For this reason, the Gibbs sampler would generally be unsuitable to construct a model of

animal movement.
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Fig. 3.1 Example runs of a Gibbs sampler (A) and Metropolis sampler (B). The background
colour shows the (bivariate normal) target distribution 7.

Another widely-used MCMC algorithm is the Metropolis-Hastings sampler, that we described
in Section 2.3 (Metropolis et al., 1953; Hastings, 1970). Figure 3.1(B) shows the first
100 iterations of a Metropolis-Hastings sampler with normal proposal distribution, on the
same target distribution 7. The movement patterns of this algorithm resemble those of
a random walk, and could appear to be a plausible (albeit simplistic) model of animal
movement. However, the generated path includes rejections, when the sampler did not
accept the proposed update, but these cannot be seen in the plot (because identical successive
samples overlap). Because it is based on an acceptance-rejection step, we will argue that
the Metropolis-Hastings algorithm is generally not a good candidate to construct a model
of animal movement. Indeed, although it can happen than an animal stays at the same
location over several time steps, we do not believe that this phenomenon is analogous
to the systematic acceptance-rejection step that underlies Metropolis-Hastings (and other
rejection-based) algorithms. Moreover, many telemetry data sets do not include any steps of
length zero, and would therefore be a very implausible output for a rejection-based MCMC
movement model. We discuss this point in more detail in Section 4.9. In Section 3.4, we
develop a rejection-free MCMC algorithm, as a more realistic basis for a model of animal

movement.

Most MCMC samplers are defined as discrete-time Markov processes. Indeed, the transition
kernel p(X,1]|X;) is defined over a (fixed) discrete interval, corresponding to one iteration
of the algorithm. This framework therefore describes animal movement in discrete time.
Discrete-time models of animal movement are widely used, but they have several conceptual
limitations. In particular, they cannot accommodate irregular time intervals in observed

tracking data, and their inferences cannot be compared across different temporal scales. In
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Section 3.6.3, we propose an approach to relax this constraint for one particular model within
the class described here. We discuss this problem in more detail in Chapter 5, where we
introduce a continuous-time formulation that circumvents the limitations of discrete-time

approaches.

3.3 MCMC as a model of step selection

In the framework introduced in Section 3.2, we consider a movement model based on
the MCMC algorithm with transition kernel p(X;,1|X;) and target distribution 7. It can
be extended to describe habitat selection, in addition to movement. This can be done
by formulating the target distribution of the algorithm as a normalized resource selection
function, i.e.

Ve € Q, 7(x) xexp(Fe(x)),

as described in Equation 1.2, where 3’ denote the transpose of 3. The target distribution
models the utilisation distribution of the animal, and so the coefficients 3 here capture
the global long-term habitat selection (similarly to the coefficients of a standard RSF).
The covariates ¢ can encompass a wide range of spatial variables. They can be categorical
variables, if the study region is divided in patches of different habitats (e.g. different vegetation
types). They can also be continuous variables, such as the distributions of resources of interest
(e.g. food items), or other continuous features of the landscape (e.g. elevation, slope). An
interesting special case of a continuous covariate is the distance to habitat features, such as
roads or rivers, to capture effects of attraction or repulsion. The distance to the centre of the
animal’s territory can also be included as a covariate, to model its tendency to remain within

a home range.

This model relies on the assumption that there exists a long-term distribution of space use
by the animal (the utilisation distribution), and that it can be written as a function of the
distributions of some resources, or other spatial covariates. This assumption is also made
in standard RSF models, and in other approaches such as resource utilisation functions
(described in Section 1.3). Based on this assumption, we consider that the short-term
movement rules of an animal are affected by this long-term distribution. The intuition
behind this modelling choice is that the utilisation distribution represents a measure of habitat
suitability, and that the movement decisions of an animal are determined by the habitat
suitability within its perception range. Unlike standard SSF approaches, the selection is

here independent of the time scale, i.e. independent of the scale of the movement model.
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Regardless of the time scale, the animal’s displacements are always determined by the same

long-term distribution of space use.

Note that this is not a special case of the standard SSF model described e.g. by Forester et al.
(2009), and formulated in Equation 1.3. Indeed, the likelihood of a step under an MCMC
algorithm is given by its transition kernel, which is generally not separable into a product of
a step selection function and a habitat-independent movement kernel (Equation 1.3). We will
call the model presented here an “MCMC step selection model” because, although it is not
formulated as a SSF, it combines movement and habitat selection.

The MCMC step selection model combines advantages from the standard RSF and SSF
frameworks. In RSF analyses, the observed locations are assumed to be independent samples
from a spatial point process, and the aim of the study is to model its steady-state distribution.
On the other hand, SSFs treat the locations as the output of a (possibly second-order) Markov
process, and the focus is on its transition density. We combine the two approaches: in an
MCMC step selection model, the transition kernel describes the short-term movement rules

of the animal, and the target distribution captures long-term habitat selection and space use.

This model is formulated in terms of two sets of parameters: the tuning parameters of the
underlying MCMC algorithm, and the parameters 3 of the target distribution. The tuning
parameters of the algorithm are the parameters of its transition kernel p(X;1|X;) (e.g.
proposal variance of a Metropolis sampler). In an MCMC step selection model, they become
movement parameters, as the transition kernel describes the step density of the animal. The

parameters 3 of the target distribution are habitat selection parameters.

This modelling framework can be used to analyse animal movement and habitat data, in the

following steps.

1. Choose an MCMC algorithm, to be used as a model of animal movement and habitat

selection.

2. Write the likelihood of the model. Under an MCMC step selection model, the likeli-
hood of an observed displacement from a location x; to a location ;. is given by
the transition kernel p( X1 = @;11|X; = @;). It is a function of the habitat selection
parameters (3, and of the other parameters of the sampler (i.e. the movement parameters

of the transition kernel).

3. Use maximum likelihood estimation, or other likelihood-based methods, to estimate

all model parameters.



30 Markov chain Monte Carlo step selection models

With this method, we can jointly estimate movement and habitat selection characteristics. In
this chapter, we focus on step 1, and introduce an MCMC algorithm which can be used as
the basis of a flexible family of step selection models. We investigate steps 2 and 3, i.e. the
possibility to carry out inference in this framework, in Chapter 4.

3.4 The local Gibbs algorithm

As explained in Section 3.2, rejection-based MCMC algorithms are generally not a good
choice to construct a movement model. In this section, we introduce the local Gibbs algorithm,

a new rejection-free MCMC sampler that better resembles animal movement.

3.4.1 Algorithm

We consider the target distribution 7 : {2 — R, where 2 C R?. We focus on the case
d = 2, because animal space use is most often studied in two-dimensional geographical
space, but the algorithm can easily be extended to d # 2. In the following, we consider that
2 is bounded in R?, to ensure that 7 is integrable. This assumption is not strictly necessary,
because m would be integrable over an unbounded region if it decreased to zero rapidly
enough. We describe the case where 2 = R? in the discussion of Chapter 4.

The local Gibbs algorithm for the target distribution 7 is defined as follows. We choose ¢ :
2 — R the density function of a symmetric distribution, i.e. such that Va, y € Q, ¢(y|x) =
o(x|y). We start from X; € Q; then, fort =1,2,...,

1. Sample a point p from ¢(-| X;).

2. For all ¢ € (), define

L a@lalw
) = T oz

3. Sample X, from 7(-|p).

We can show that samples { X1, X5, ...} generated with the local Gibbs algorithm converge
to the target distribution 7. We first demonstrate that 7 is a stationary distribution for this
algorithm, by showing that the local Gibbs sampler satisfies the detailed balance condition

(Section 2.3). Indeed, for any @, y € {2, we have

r(@)ply|z) = () / p(y|)p(pslz)dp,

HEN
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where p(y|x) = p(X;11 = y|X; = x). The intermediate point p is sampled from ¢(-|x),
so p(p|x) = ¢(p|x). The endpoint y is sampled from 7 (-|u), so p(y|p) = 7(y|w). We can

make these substitutions and rewrite

i) = n(e) [T o)

o(y|p)d(p|x)
e oo m(2)0(2mydz

= 7(z)r(y)

By symmetry of ¢, we have ¢(y|p) = ¢(u|y) and ¢(p|z) = ¢(x|p), and so

d(ply)o(z|w)
e [eqm(2)0(2|pn)dz

= n(y)p(zly),

m(x)p(y|z) = 7(y)7 () dp

as required. The local Gibbs algorithm therefore satisfies the detailed balance condition, for

the stationary distribution 7.

To prove convergence to the stationary distribution, we must also verify that the Markov chain
defined by the algorithm is 7-irreducible, and aperiodic (Tierney, 1994). In the following,
we make the additional assumption that the symmetric density ¢(-|x) is positive over a
neighbourhood of x, to avoid pathological cases. A Markov chain (with uncountable state
space) is y-irreducible for a measure v if any subset A C () of the state space over which
1 > 0 can be reached from any state & € () with positive probability. The transition kernel
of the local Gibbs algorithm is m-irreducible over (2, if ¢ is positive over a neighbourhood of
its origin. Indeed, any region where 7 > 0 has a positive probability to be reached from any
x € ). A Markov chain is aperiodic if the number of steps to reach A from x is aperiodic.
A sufficient condition for the chain to be aperiodic is that the transition kernel is positive
over a neighbourhood of «, because it can then remain in that neighbourhood arbitrarily long
before moving to .A. This is clearly true for the local Gibbs sampler, if ¢ is positive over a
neighbourhood of its origin. Finally, this proves that 7 is the only stationary distribution for
the local Gibbs algorithm, and that 7 is also the limiting distribution of the chain (i.e. the

algorithm will converge to 7).

We call this algorithm “local Gibbs™ to draw a parallel with the classic Gibbs sampler. In the
classic Gibbs sampler, each parameter component X () is updated in turn, conditionally on
the other components {X (V) ... XD X6+ X1 which are kept fixed. It is used
when the conditional distribution p(X@| XM x0=D x @+ X ™) i analytically
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tractable. At each step, the Gibbs algorithm then samples from a one-dimensional slice of
the target distribution (Gilks et al., 1996). The local Gibbs algorithm is not a special case
of the classic Gibbs sampler, but it is based on a similar idea. That is, at each iteration, it
samples from a restricted part of the target distribution. That restricted part, 7, is defined by
the choice of the density ¢. An important feature shared by the Gibbs sampler and the local
Gibbs sampler is that they are rejection-free. The process moves at every iteration, and an

acceptance-rejection step is not needed to conserve the stationary distribution.

3.4.2 Local Gibbs movement model

Following the analogy introduced in Section 3.2, the local Gibbs algorithm can be used
as the basis of a model of animal movement and habitat selection. The transition kernel
p(X;41|X) defines the movement component, and the target distribution 7 is modelled with
a RSF (Equation 1.2). We will refer to this model as the “local Gibbs movement model”, or
“local Gibbs step selection model”, or simply “local Gibbs model”.

The intermediate point p, sampled in Step 1 of the local Gibbs algorithm, does not have
a direct biological interpretation. It is a sample from the density ¢ centred on the current
location of the animal, and it is an intermediate point used in the construction of the transition
density of the local Gibbs algorithm. We can integrate over u to obtain the step density of
the local Gibbs model, i.e. the likelihood of a displacement from a point € € to a point
y € () under the model,

p(ylx) = /egp(y\u)p(u\w)du

where p(y|p) = 7(y|p) and p(p|x) = ¢(p|x). The step density becomes

o(ylp)o(p|x)
pe foeq m(2)0(2|pn)dz

p(ylx) = n(y) dps. (3.2)

The local Gibbs model is not a special case of the SSF models presented e.g. by Fortin
et al. (2005) and Forester et al. (2009). In particular, the step density is not separable into
the product of a habitat-independent movement component and a step selection function
(as written in Equation 1.3 in the context of standard SSF models). However, we can still
compute a habitat-independent step density, by fixing the distribution 7 to a constant in
Equation 3.2. In the absence of covariate effects, i.e. if the utilisation distribution is flat,

each step is the sum of two ¢-distributed increments. For this reason, we call ¢ the half-step
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density of the model. The habitat-independent step density is given by the convolution

polylz) = O(ylp)o(ple)dp.
peS)
In the following, we will denote po(y|x) the habitat-independent step density of a model, to
distinguish from the step density p(y|x), which generally depends on the habitat composition

around .

The local Gibbs model is defined in terms of the symmetric distribution ¢, that we call the
half-step density. Note from the first step of the local Gibbs algorithm that we must be able to
generate samples from ¢. This is not a very strong constraint, and there are many candidate
distributions. Each choice of ¢ leads to a different movement model, but it does not affect
the equilibrium properties of the model. Regardless of ¢, the long-term distribution of the
movement process is the utilisation distribution 7. We propose several special cases of ¢ in

Section 3.5, corresponding to different movement models.

The spatial scale of ¢ is linked to the scale of perception of the animal, as we assume that the
animal can perceive habitat features over ¢(-| ). It is also linked to the scale of its mobility,
as it defines the size of the region that is accessible to the animal over one time interval. As
the spatial scale of ¢ increases, the animal perceives a larger region, and may take longer
steps. The animal’s perception and mobility are therefore modelled jointly in this framework.
This is a strong assumption, and it ignores characteristics such as memory. It is nevertheless
a common limitation of almost all SSF models, in which the habitat-independent movement
kernel also determines the area over which the animal can perceive its environment (Fortin
et al., 2005; Forester et al., 2009).

In Section 3.3, we explained that, in the context of the MCMC movement model, the tuning
parameters of the underlying MCMC algorithm can be viewed as movement parameters.
This is in particular the case for the local Gibbs model, in which the “tuning” parameters are
the parameters of the half-step density ¢. In fact, the tuning parameters do not only describe
characteristics of the movement, but also of the animal’s perception, because the two are
so closely linked in this framework. For many choices of ¢, including those considered in
the rest of this chapter and the next, the half-step density is formulated in terms of a “scale”
parameter. Here, we use this term loosely to refer to a parameter that quantifies the spatial
extent (i.e. the spatial scale) of the half-step density ¢. It is convenient to qualify a parameter

that describes both the scale of perception and the scale of movement.
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3.4.3 Simulation from the local Gibbs algorithm

The local Gibbs algorithm given in Section 3.4.1 describes the steps to simulate from the
local Gibbs movement model, provided a half-step density ¢ and a target distribution 7.
However, in step 2 of the algorithm, the integral [, _, 7(z)¢(z|u)dz cannot generally be
derived analytically. Indeed, the function 7 depends on the distribution of spatial covariates,
which cannot be expressed in a simple functional form. In practice, simulation from the local
Gibbs sampler can be achieved by approximating that integral, using numerical methods. We
propose a Monte Carlo method, based on the evaluation of the integrand at a large number of

random points.

The simulation algorithm is described by the following steps. Start from a point &, € €2;

then, at each iterationt =1, 2,. ..,
1. Sample a point p from ¢(-|x;).
2. Sample a large number of points {z1, ..., zx } from ¢(-|p).

3. Fork € {1,..., K}, define

Pr = —W(zk)

e .
2= (=)
4. Sample x;,, from the z;, with probabilities given by the py.

Although this algorithm is not exact, because we sample from a numerical approximation
of the transition kernel, it can be made arbitrarily accurate by increasing the value of K. In
Section 3.7.2, we use simulations to investigate the effect of K on the convergence of the

algorithm to the target distribution.

Note that the local Gibbs sampler would usually not be a good choice for the general purpose
of simulation from a probability distribution (e.g. to carry out Bayesian inference). Indeed,
although it does not require any rejections, the numerical integration requires K evaluation
of the target distribution at each iteration. For this reason, it will almost always be more
computationally expensive than, say, Metropolis-Hastings sampling, for which the optimal
acceptance rate is around 23% (Roberts et al., 1997). In this work, we only consider the local
Gibbs algorithm as the basis for a model of animal movement.

3.5 Special cases of the local Gibbs model

The local Gibbs model is very flexible, because the half-step density ¢ can be chosen from

a wide range of probability distributions. We only made three assumptions on ¢: it is
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symmetric, it is positive over a neighbourhood of its origin, and it is possible to generate
samples from it. In this chapter and the next, we turn our attention to a few special cases of
the local Gibbs model, that are particularly relevant to the study of animal movement and
habitat selection. In particular, we describe the case where ¢ is a normal distribution, and the
case where ¢ is a uniform distribution over a disc. The former is a natural choice to model
animal movement, reminiscent of a standard Gaussian random walk, and the latter is inspired

by existing SSF models.

3.5.1 Normal kernel model

We first consider the case where the half-step density ¢ is chosen to be a bivariate normal
density, centred on the origin, and we call the corresponding local Gibbs model the “normal
kernel model”. Let ¢(-|u, X) be the bivariate normal pdf with mean g and covariance matrix
32. This half-step density always satisfies the assumption of symmetry made in the local
Gibbs algorithm, i.e. we have ¢(y|x, X) = ¢(x|y, X) for any symmetric covariance matrix
3. In the context of animal movement, however, a non-diagonal matrix would suggest a
systematic drift in the movement, along an axis determined by the covariance structure. For
example, a positive correlation would correspond to a tendency to move in either direction
along the “South-West to North-East™ axis. Likewise, if the horizontal and vertical variances
were different, it would indicate different tendencies to move along the Northing axis and the
Easting axis. These particular cases may be useful in some specific applications (perhaps
when the movement of the animal is constrained to follow a natural corridor). However, in
most studies, it is reasonable to assume that the density is radially symmetric, i.e. isotropic.
We focus on this case, and we denote the covariance matrix by ¥ = ¢2I,, where I, is the
2 x 2 identity matrix. The parameter o> determines the spatial scale of the transition kernel
of the algorithm, and thus of the step density of the corresponding movement model. Larger
values of o2 lead to faster exploration of the target distribution, i.e. higher speed of movement
for the animal.

Following from Equation 3.2, the step density from x to y is

o(ylp, o’ L) p(plz, 0 Iy)
HEQ szQ W(Z)SD(Z\N, JQIZ)dz

p(ylz) = 7(y)

In the absence of covariate effects, each displacement from x; to ;, is the sum of two
normally-distributed increments. It can be shown that the sum of two normally-distributed
random variables also follows a normal distribution. Indeed, in this case, the habitat-

independent step density of the normal kernel model is a normal density, centred on the
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current location of the animal, with variance 20%I,. (A proof of this result is given in

Appendix A.) This is the transition density of an isotropic Gaussian random walk.

In two dimensions and in the absence of covariate effects, the length of each displacement
(the “step length”) under the normal kernel model follows a Rayleigh distribution. Indeed, the
Rayleigh distribution arises from the length of a two-dimensional vector with uncorrelated

normal components of equal variances. Its density function is

(o) = Lexp [~
pujc _a2 exp 2&2 s

where o > 0 is its scale parameter, and [ > 0 is the step length. The scale parameter is
linked to the variance of the underlying normal distribution. In the local Gibbs model with
normal half-step density, the scale of the Rayleigh (step length) distribution is @ = /20,
with o as defined above. Figure 3.2 shows the density function of the Rayleigh distribution

for different values of the scale parameter a.

3.
scale
0.2
2.
2 0.5
[%2]
© —1
a
1 — 2
QR 3
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0.0 2.5 5.0 7.5 10.0
Step length

Fig. 3.2 Probability density functions of the Rayleigh distribution, with different scale
parameters.

3.5.2 Availability radius model

We consider the case where the half-step density ¢ is uniform on a disc of radius r, centred
on the origin. At each iteration, the intermediate point p is sampled from a disc of radius r
centred on X;. Then, X, is sampled from the target distribution 7, truncated to the disc

of radius r centred on p. The notation is illustrated in Figure 3.3. In this formulation, the



3.5 Special cases of the local Gibbs model 37

half-step density only has one parameter: the radius r. Similarly to the variance of the normal

kernel model, the radius parameter is a measure of the scale of movement and perception.

Fig. 3.3 Notation for the local Gibbs sampler with uniform half-step density on a disc
(availability radius model). The next point x;,; is sampled from the target distribution 7
truncated to D,.(u).

In this formulation, the density ¢ is

mr2

P(ylx) =

where D,.(x) is the disc of radius > 0 and centre x € €2, and [ 4(x) is the indicator function
of A C Q,ie.

Ly(x) 1 ifeeA,
A\L) =
0 otherwise.

Plugging this expression of ¢ into Equation 3.2, the likelihood of a step from x to y is

p(yla:)zw(y)/ 72 1.0 (Y) D, @) (1) dp

e (mr2)? fzgg 7T(Z)IDT-(M)(Z)dZ
™(y) / 1
mr? KED(x)NDr(y) szDr(p,) W(Z)dz

dp. (3.3)

If the two points & and y are separated by a distance greater than 2r, the intersection of
D,(x) and D, (y) is empty. In that case, the outermost integral in Equation 3.3 is zero, and
p(y|x) = 0. This is because, under this model, it is impossible to take a step longer than 2r-.

In the following, we will refer to r as the “availability radius” parameter, and we will call

this model the “availability radius model”. This is a reference to the eponymous model
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used by Arthur et al. (1996) and Rhodes et al. (2005) in the context of standard SSFs. In
their SSF model, the habitat-independent movement kernel is uniform over a disc centred
on the current location. Note that the model we propose is different: in our formulation, it
is the half-step density ¢ of the local Gibbs algorithm which is uniform on a disc, not the
habitat-independent movement kernel. A key difference is that the model of Arthur et al.
(1996) and Rhodes et al. (2005) does not have an explicit stationary distribution.

We obtain the habitat-independent step density of the availability radius model by fixing the

utilisation distribution 7 () to a constant,

1 1
po(y|z) = 2 —ddu
T J peD,(z)NDy(y) fzeDr(u) ?
1 1

mr? A(D,(p)) /;LEDr(m)ﬂDr(y)
1
= ——A(D,(x) N D,.(y)), 3.4
i AD(@) 0 i) G4
where A(-) denotes the area. In the absence of covariate effects, the likelihood of a step
between two points x and y is therefore proportional to the area of intersection of D,.(x) and
D, (y). In Appendix B.1, we show that the area A(D, (x) N D,(y)) can be written in terms

of the radius r and of d = ||y — x|, the distance between « and y. Indeed, we have

2
2r2 cos™! (i) —rdy/1— @ if d < 2r,
A(D,(z) N D,(y)) = 2r 4r? (3.5)

0 otherwise.

Following from Equation 3.4, the habitat-independent step density of the availability radius
model becomes

1 s . (d d? .
s 21r° cos — | —rd 1——2 if d < 2r,
polylz) = ¢ (77?) 2r dr (3.6)

0 otherwise.

This density is radially symmetric around @, as it only depends on the distance d to the
endpoint y. Figure 3.4 shows a slice through the habitat-independent step density of the

availability radius model, for different values of r.
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Fig. 3.4 Slice through the habitat-independent step density of the availability radius model,
for different values of the radius r. The distribution is radially symmetric around the origin.

We can find the distribution of step lengths in the availability radius model, in the absence
of covariate effects. The habitat-independent density of the step length d = ||y — || is
the integral of the density py(y|x) over an angular parameter ¢ € [0, 27]. Without loss of
generality, we consider that the origin of the step is = (0, 0), and we omit the dependence

on x in the following notation. We can write y in terms of its polar coordinates d and 6,

y(d,0) = (dcosf,dsinb). (3.7)
We calculate the habitat-independent step length density py(d) as

po(d) = /9 Wpo(y(d, 0))do.

=0

We apply a change of variable

2w
po(d) = / po(d, 0)|,(d. 6)]d (3.8)
=0

where J,,(d, ) is the Jacobian matrix of the transformation given in Equation 3.7, and | - | is
the determinant. We have

Jy(d,0) = (

sinf@ dcos0

cosf) —dsin 9)
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and therefore
|J,(d,0)| = dcos*(0) + dsin®(0) = d.

The density po(d, #) is the expression of py(y|x) given in Equation 3.6 as a function of d.
(It does not depend on 6 because it is radially symmetric around 2.) For clarity, we denote

A, (d) = A(D,(x) N D,(y)), as the area of intersection only depends on d (for a given 7).

We make the substitutions in the integral of Equation 3.8,

po(d) = /0_7; (W:Z)QA’"(d) X d x df

d 27
= Gl a0
d
= W‘Ar(d) X 27
= 2 4.

wr

Plugging in the expression of A,.(d), we find

2 2
4—dzcos_1<i>—%\/1—d— if0<d<?2r
po(d) =< 7r 2r 3 4r2 (3.9)

0 otherwise.

This result is actually well known, as the distribution of the distance between two points
generated uniformly from a disc of radius r. It is a special case of Theorem 2.3.18 of Mathai
(1999). In the availability radius model, p is uniformly distributed in D, (x), which is
equivalent to saying that x is uniformly distributed in D,.(p). In the absence of covariate
effects, y is also uniformly distributed in D, (p). Finally, we see that both « and y are
uniformly distributed in a disc of radius r, D,.(w), which is why the formula holds.

Figure 3.5 shows the habitat-independent density of step lengths found in Equation 3.9, for

different values of the radius parameter r.



3.5 Special cases of the local Gibbs model 41

0.8-

0.6- r
2 1
(2]
c 0.4-
a — 15

2
0.2-
0.0-
0 1 2 3 4 5
Step length

Fig. 3.5 Distributions of step lengths in the availability radius model, in the absence of
covariate effects, for different values of the radius parameter 7.

3.5.3 Other interesting formulations
3.5.3.1 Step length distributions

In the context of standard SSF models, Rhodes et al. (2005) explained how to choose
the resource-independent movement kernel to yield a specific distribution of step lengths.
They considered uniform turning angles (i.e. a radially symmetric movement kernel), and
employed a method similar to the one we used in Section 3.5.2 to find the habitat-independent
distribution of step lengths in the availability radius model. They showed that the habitat-
independent movement kernel ¢(y|x) of the SSF model is linked to the habitat-independent
distribution py(d) of step lengths by the relationship

po(d)

P(ylx) = 5

where d is the distance between x and y, i.e. the step length. Rhodes et al. (2005) then
suggested using an exponential distribution for the step lengths, i.e.

_ Aexp(—Ad)

d(ylz) = —org

with rate parameter A > 0. In a similar framework, Forester et al. (2009) suggested a Weibull
distribution of step lengths, i.e.

vA(A)" " exp(—(\d))
2md ’

o(ylz) =
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with scale parameter A > 0 and shape parameter v > 0.

In the context of the local Gibbs model, we could use these functions as half-step densities
(¢ in Equation 3.2). They are radially symmetric, and therefore lead to valid MCMC
algorithms. However, a (habitat-independent) step under the local Gibbs model is the sum of
two ¢-distributed increments, and so the habitat-independent step density and step length

distribution do not generally have closed form expressions in this case.

3.5.3.2 Zero inflation

The half-step density ¢ of the local Gibbs model does not have to be a continuous function.
In particular, a probability mass mq € (0, 1) can be assigned to the origin. When sampling
from this zero-inflated half-step density, there is a probability m, that the sampled point is the
origin, and a probability 1 — m, that the sampled point is drawn from a continuous density
(e.g. a normal density, or a uniform density on a disc, as described in the previous sections).
Each step of the local Gibbs is the combination of two increments, so the probability of
staying at the origin is m? in the zero-inflated model.

This is particularly useful to model the movements of animals that are susceptible to remain
at the same location for more than one time interval. Note that the examples presented in
Sections 3.5.1 and 3.5.2 do not forbid steps of length zero (i.e. immobility), because their
densities at zero are positive, but zero inflation must be used for them to have a positive
probability.

3.6 Mixture of local Gibbs steps

A mixture of MCMC algorithms, all with stationary distribution 7, defines a valid MCMC
algorithm for 7. Tierney (1994) calls these mixtures “hybrid” algorithms. This is an
interesting property for our application: an MCMC movement model can be defined by a
combination of several transition kernels. Here, we introduce three extensions of the local

Gibbs model, based on hybrid algorithms, to which we will return in Chapter 4.

3.6.1 Local Gibbs with random parameters

The local Gibbs algorithm is based on the choice of a symmetric distribution ¢, the half-step
density. Let 8 denote the vector of parameters of the half-step density, and ¢(-|x, 8) the
half-step density around . (We make the dependence on @ explicit in this section for
notational clarity, but we will omit it for the rest of this chapter.)
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An extension of the local Gibbs algorithm can be obtained by considering that the parameters
0 are themselves random, and are drawn at each iteration from a probability distribution
p(0@|w). This results in a hierarchical model, formulated in terms of the hyperparameters w.
In this case, the step density is obtained by integrating over 8, and it becomes

Py, w) = / p(yle. 0)p(6]w)do,

where p(y|x, 0) is the step density, written in terms of the random parameters 6. From
Equation 3.2, we obtain

p(ylz, w) zvr(y)/p(e\w)/ oylp.0)o(nlz.6) | 9 (3.10)

0 uea [oeq™(2)0(2|p, 0)dz

This extension provides additional flexibility in the shape of the step density, to define a more
realistic movement model. For example, the radius parameter r of the availability radius
model could be treated as random (i.e. time-varying), to capture the variations in the scale of
perception and movement of an animal through time. The radius parameter takes positive
values, and could be modelled with a gamma distribution with shape parameter o and rate
parameter p. In this example, @ = r, w = («, p), and p(@|w) is the probability density
function of the gamma distribution. We explore this model formulation in more detail in
Chapter 4.

Although the movement parameters can change randomly from one step to the next, they
cannot depend on the current location of the process. For example, it could be tempting to
make the scale parameter of the transition density a function of the covariate values at the
current location. This could capture the tendency of an animal to move more slowly when the
habitat is suitable, i.e. where the target distribution is high (perhaps because it is foraging).
However, the resulting algorithm would generally not have 7 as its stationary distribution.
In this example, the process would spend a disproportionate amount of time in areas where
the target distribution is high. In the MCMC literature, samplers whose transition rules can
depend on the current location of the process are called “adaptive” algorithms (Gilks et al.,
1998). They have been studied because these “adaptations” can improve the mixing rate of
the sampler, i.e. the speed of convergence to the target distribution. However, it has been
shown that the convergence to the target distribution is not always guaranteed in adaptive
algorithms (e.g. Andrieu and Thoms, 2008; Roberts and Rosenthal, 2009). In this work, we
only consider the case where the transition rules change at random, and do not depend on the
state of the process.
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3.6.2 State-switching local Gibbs model

As mentioned in Section 1.2, patterns of animal movement are liable to vary through time,
if the animal exhibits different behaviours. In particular, the speed of movement and the
extent of the animal’s perception may depend on the animal’s behaviour. In the context of
the local Gibbs model, failing to capture this change can lead to overestimating the scale
of perception when the animal is moving slowly, and underestimating it when the animal
is moving fast. This is because both types of movement would be modelled by the same,
“averaged”, movement model. This is a common problem in analyses of telemetry data
collected over long durations, and state-switching models have been developed to capture the
behavioural heterogeneity (Blackwell, 1997; Morales et al., 2004).

The local Gibbs model has two sets of parameters: the parameters 3 of the utilisation
distribution, and the movement parameters @ of the half-step density. For example, the
movement parameters are the variance o2 in the normal kernel case, and the availability
radius 7 in the availability radius model. This framework can be extended by considering that
the animal can switch between N discrete states through time, each associated with a set of
movement parameters (81, ..., 8®)). We can model the switching behaviour with a latent

process (S;) defined on {1,..., N}, which indicates which state is active at each time step ¢.

Eachstate j € {1,..., N} is defined by a different step density p(X,,1|X,, 3,0V)),i.e.bya
different model of movement and perception. As an illustration, Figure 3.6 shows a trajectory
simulated from a local Gibbs model with two states on an artificial utilisation distribution.
Both states have a normal half-step density, but they have different scale parameters, o1 = 0.2
and o, = 1. The scale parameter is larger in state 2, and so the region that is available to the
animal at each time step is larger (wider perception and faster movement). State 2 may be
used to represent an “exploratory” behavioural state, whereas state 1 is analogous to slower

movement behaviours such as “area-restricted search”.

The target distribution of the local Gibbs sampler does not depend on the movement param-
eters 6. It only depends on the selection parameters 3. In this multistate formulation, the
movement process switches between N local Gibbs models, all with the same utilisation
distribution 7. (The parameters 3 are the same for all states.) The utilisation distribution
of the state-switching model is therefore also 7. The underlying MCMC algorithm can be
seen as a hybrid algorithm, based on N transition kernels which share the same stationary

distribution.

Roever et al. (2014) showed that ignoring animal behaviour in habitat selection studies could
lead to incorrect conclusions. They argued for a two-stage modelling approach, in which
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Fig. 3.6 Simulated trajectory from a 2-state local Gibbs model with normal half-step density,
on an artificial utilisation distribution 7. The two states are defined by two different movement
parameters o; = 0.2 and 0, = 1, leading to different speeds of exploration.

tracks would first be classified into behavioural states using a state-switching correlated
random walk model (Morales et al., 2004), and a separate set of habitat selection parameters
would then be estimated for each behavioural state. The state-switching local Gibbs model
that we suggest here is different, because it estimates only one set of habitat selection
parameters for all states. However, the scale of perception and movement can differ among
the states, if they are characterised by different parameters ). Then, the state-switching
local Gibbs model does account for the behavioural heterogeneity in the scale of habitat

selection.

3.6.3 Local Gibbs over irregular intervals

In Section 3.2, we argued that a movement model based on an MCMC algorithm is generally
formulated in discrete time. Indeed, a time step of the model corresponds to an iteration of the
algorithm. Therefore, although the habitat selection parameters of the model do not depend
on the time scale (because they describe long-term selection), the movement parameters of

an MCMC step selection model are generally scale-dependent.

This is in particular true of the local Gibbs sampler: the scale parameters of the half-step
density are tied to a particular time scale. We can relax this constraint, by making an

assumption on the relationship between the time interval and the scale of the half-step density.



46 Markov chain Monte Carlo step selection models

There is no general scaling property for the parameters of the half-step density, but we can
use the assumptions of Brownian motion to express this time dependence in the special case
of the normal kernel model. The variance of the transition density of the Brownian motion is
proportional to the length of the time interval (Einstein, 1905). Based on this assumption, we
consider the local Gibbs model with half-step density ¢(:|x) = ¢(-|z, Ac?I,), where ¢ is
the normal pdf and A > 0 is the length of the time interval. The step density of this model

over a time interval A can thus be written

WAYed | x, Ao’I.
PP (y|z) = W(y)/ o(y|p 2)p(p| : 2)
wetr  Jreq T(2)0(2|1, Ao Ly)dz

(3.11)

A justification for this formulation can be found in the habitat-independent step density. In

the absence of covariate effects, the step density over a time interval A is

) (ylz) = o(y|z, 280° L),

which is the step density of the Brownian motion with variance 20°2.

This can be viewed as a special case of hybrid algorithm, where the transition kernel can
change between iterations. Here, the transition kernel changes as a function of the time
interval. This formulation is particularly valuable when the local Gibbs model is used to
analyse telemetry data, which we will discuss in Chapter 4. The standard local Gibbs model
could not be applied to estimate movement parameters from data collected at irregular time
intervals, because those parameters are tied to a time scale. On the other hand, the model
proposed in Equation 3.11 can accommodate irregular time intervals, and the scale parameter
o2 is not tied to a particular discrete time step. We explore the potential of the normal kernel

model to analyse irregular data in Section 4.7.3.

3.7 Simulation study

We presented a new type of MCMC algorithm, that we call the local Gibbs sampler, to model
animal movement with a known utilisation distribution. In this section, we simulate from the

local Gibbs sampler to verify that samples converge to the correct target distribution.

3.7.1 Simulation setup

We used two artificial spatial covariates ¢; and ¢y over Q = [—20,20] x [—20,20], with

a resolution of 1 in each dimension. We generated them using the following procedure,
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suggested by Avgar et al. (2016). We first generated a random uniform value in [0, 1] for
each grid cell. Then, we applied a (spatial) moving average with a circular window of radius
p = 10 to each covariate field. That is, the value of each grid cell was updated to the mean
of the values over a disc of radius p centred on that grid cell. A larger value of p leads to
stronger spatial autocorrelation. Finally, we normalized the values of each covariate to be

between O and 1.

We defined an artificial RSF in the exponential form (as described in Equation 1.1),

w(e) = exp(frcr + Baca),
with 5; = 1 and 3, = 3. Plots of the simulated resources, and of the RSF, are shown in
Figure 3.7.

We ran several simulations, described in Sections 3.7.2 and 3.7.3, to verify that the distribution
of samples generated from the local Gibbs algorithm converge to the target distribution. In

all experiments, the target distribution was the normalized RSF,

w(c(z))
Joeqw(c(z))dz’

for any « € (). We considered that the utilisation distribution was zero outside of €.

m(x) =

The empirical distribution of simulated points was defined by the count of sampled points in
each cell of the covariate grid. We compared the normalized count of sampled points to the
value of the target distribution in each grid cell, to assess the convergence of the simulated

process to the correct distribution.

3.7.2 Effect of Monte Carlo sample size

It is generally not possible to simulate exactly from the local Gibbs sampler. Instead, we use
Monte Carlo sampling to approximate the half-step density of the algorithm, as described
in Section 3.4.3. At iteration ¢, we sample p from ¢(-|x;), and we generate K points
{z1,..., 2z} from ¢(:|p). The end point &, is picked from the z;, with probabilities given
by m(2i)/ >_; 7(#;). This is a numerical approximation, and the size K of the Monte Carlo
sample affects its accuracy. Here, we investigate the effect of the Monte Carlo sample size K

on the long-term distribution of the simulated points.

We simulated from the local Gibbs sampler using different Monte Carlo sample sizes, and
compared the distribution of simulated points to the true target distribution.
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Fig. 3.7 Artificial covariates (top and middle), and resource selection function (bottom), used
in the simulations.
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3.7.2.1 Normal kernel model

We simulated 5 x 10° points from the local Gibbs model with normal half-step density
described in Section 3.5.1. The normal kernel model has one scale parameter, which we set
to 0 = 5 in the simulations. (In Section 3.7.3, we investigate the distribution of samples
generated for different values of 0.) We repeated the simulation with six different Monte
Carlo sample sizes, K = 2,5, 20, 50, 200, 500, to compare the distributions of sampled points

to the target distribution 7.

Figure 3.8 compares the value of the target distribution in each grid cell to the normalized

count of simulated points, for each simulation scenario.

The results for the smaller Monte Carlo samples (K = 2, 5) display a lot of variance and a
clear non-linear relationship. This indicates a discrepancy between the shapes of the distribu-
tion of simulated points and the target distribution, due to the very crude approximation made
to evaluate the step density. For larger Monte Carlo samples (/' = 50 or more), the empirical
distribution captures the shape of the target distribution much more closely, as seen by the
alignment with the identity line in Figure 3.8. There seems to be very little improvement
between K = 200 and K = 500, which suggests that the step density of the algorithm is
well approximated by a Monte Carlo sample of size K = 200, in this simulation scenario.
Here, K = 200 thus seems like a good trade-off between the computational cost and the

accuracy of the Monte Carlo approximation.

3.7.2.2 Availability radius model

In a similar experiment, we simulated 5 x 10° points from the local Gibbs model with
uniform half-step density on a disc, described in Section 3.5.2. We set the radius parameter
to r = 5 for the simulations, but we investigate simulations with different values of 7 in
Section 3.7.3. We repeated this experiment for six different Monte Carlo sample sizes:
K =2,5,20, 50,200, 500. The results are shown in Figure 3.9.

The results are very similar to those found for the normal kernel model. The approximation
of the step density is very poor for small Monte Carlo samples (/' = 2,5). It improves for
larger samples up to K = 200, beyond which little improvement seems to be achieved.

3.7.3 Effect of scale parameter

All formulations of the local Gibbs model that we consider in this work have a scale parameter,

e.g. the variance o in the normal kernel model, and the radius 7 in the availability radius
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Normalized counts

K=200 K =500

0.000 0.001 0002  0.000 0.001 0.002
Target distribution

Fig. 3.8 Results of simulations from the normal kernel model, with different Monte Carlo
sample sizes K. Alignment with the identity line indicate convergence of the simulated
samples to the correct target distribution.
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Fig. 3.9 Results of simulations from the availability radius model, with different Monte Carlo
sample sizes K. Alignment with the identity line indicate convergence of the simulated
samples to the correct target distribution.
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model. This parameter determines the spatial extent of the half-step density, and is therefore
related to the speed of exploration of the sampler. In this section, we investigate the effect of

the scale parameter on the convergence of the samples to the target distribution.

3.7.3.1 Normal kernel model

We simulated 5 x 10° points from the normal kernel model, for the target distribution . We
used Monte Carlo samples of size K = 200, because little improvement was obtained for
larger values of K in the simulations of Section 3.7.2. We ran this simulation for six different
scale parameters, 0 = 0.25,0.5,1, 2,4, 8, and compared the distribution of samples to the
target distribution in each case. Figure 3.10 displays the 300 first locations of each simulated
data set, and clearly illustrates the different speeds of spatial exploration.

As in Section 3.7.2, we compared the empirical distribution of simulated points to the target
distribution in each grid cell, to assess convergence of the sampler to the correct distribution.
Plots of the normalized counts against values of the true target distribution are shown in
Figure 3.11.

The plots of Figure 3.11 do not seem to display non-linearity, even for smaller values of the
parameter 0. However, there is a lot of variance around the identity line for c = 0.25 and, to
a lesser extent, for o = 0.5. This is because the sampler takes shorter steps (on average) for
small values of o, and is therefore slower to explore the target distribution. With 0 = 0.25, it
would take more iterations to obtain a good estimate of the target distribution. For values of

o larger than 2, the empirical distribution very accurately estimates the target distribution.

3.7.3.2 Availability radius model

We simulated 5 x 10° points from the availability radius model, with Monte Carlo sample
size¢ K = 200. We repeated the experiment for six different radius parameters: r =
0.25,0.5,1, 2,4, 8. The results are shown in Figure 3.12.

The results are similar to those from the normal kernel model simulations. Figure 3.12 shows
that there is a lot of variability in the estimation of the target distribution for small values
of r, when the speed of spatial exploration of the sampler is low. The empirical distribution

captures the true target distribution very well for larger r, in particular for r > 4.

Note that, for large enough values of r, the disc D,.(u) would always cover the entire domain
of definition € of the target distribution, and the algorithm would sample from the full target

distribution directly.
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Fig. 3.10 Simulations from the local Gibbs movement model with normal half-step density,
for different values of the scale parameter o. Each plot shows 300 simulated locations, and
the background is the target distribution.
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Normalized counts

0.000 0.001 0002  0.000 0.001 0.002
Target distribution

Fig. 3.11 Results of simulations from the normal kernel model, with different variance
parameters, i.e. different speeds of spatial exploration. A small number of points were
excluded from the plot for o = 0.25, so that all results could be visualised on the same scale.
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Fig. 3.12 Results of simulations from the availability radius model, with different availability
radius parameters, i.e. different speeds of spatial exploration. A small number of points were
excluded from the plot for » = 0.25, so that all results could be visualised on the same scale.
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3.7.4 Discussion of simulations

The simulations confirmed empirically that the local Gibbs algorithm defines a valid MCMC
sampler. Indeed, the distribution of samples from the algorithm converge to its target
distribution. We also verified that the approximate sampling procedure proposed in Section
3.4.3 works for large enough Monte Carlo samples, i.e. a large enough K.

Note that the size of the Monte Carlo sample required to accurately approximate the step
density may vary across scenarios. In particular, it may depend on the size of the region
of availability, determined by the parameters of the half-step density (i.e. o for the normal
kernel model, and r for the availability radius model). If the region of availability is larger,
the target distribution must be approximated over a larger domain in the simulations, and

larger Monte Carlo samples may be required to achieve the same accuracy.

The accuracy of the approximation also depends on the spatial autocorrelation of the target
distribution. If the autocorrelation is strong, i.e. if the target distribution is smooth, smaller
Monte Carlo samples may be needed. On the other hand, the step density would be harder to
approximate for a highly irregular target distribution (e.g. corresponding to very fragmented
habitat), and larger Monte Carlo samples should be used.

3.8 Discussion

Linking models of animal movement and models of habitat selection is an important challenge
in animal ecology. We suggested that Markov chain Monte Carlo algorithms can be used
to construct a wide family of movement models, with a known stationary distribution. That
stationary distribution is known in ecology as the utilisation distribution of the animal, i.e. the
long-term probability density of the animal’s location in space. If the utilisation distribution
is modelled by a (normalized) resource selection function, the density of each step can
be written in terms of the long-term habitat selection. The MCMC step selection model
integrates advantages of the standard RSF and SSF approaches. The same parameters of
habitat selection describe the movement at the scale of the local step and at the scale of global

Space use.

We focused on a specific MCMC algorithm, the local Gibbs sampler, to define the flexible
local Gibbs movement model. It is specified by a half-step density ¢, which determines
the model of availability. Many different movement kernels can be achieved by different
choices of ¢. We made three assumptions on ¢ to define the local Gibbs algorithm: (1) it is
symmetric, (2) we can generate samples from it, and (3) it is positive over a neighbourhood
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of its origin. The third assumption is sufficient to ensure convergence of the algorithm to
the stationary distribution 7, but it is not a necessary condition, and it could be relaxed to
obtain a wider family of samplers. For the purpose of our application to animal movement,

however, we consider that it is always a sensible assumption.

The general framework presented here is not limited to the local Gibbs model, and other
MCMC algorithms could be used. One limitation of the local Gibbs model is that it does
not model movement persistence. Indeed, because the half-step density is required to be
symmetric (to satisfy the detailed balance condition), all directions of movement are equally
likely. For this reason, the local Gibbs model may fail to capture the autocorrelation in the
direction of movement, which is often present in high-resolution animal movement data.
Many movement models have been developed to capture this type of persistence, in particular
the discrete- and continuous-time correlated random walks (Jonsen et al., 2005; Johnson et al.,
2008a, respectively). In the context of MCMC movement models, this could be achieved with
non-reversible MCMC samplers such as the one described by Michel and Sénécal (2017).
The detailed balance condition is sufficient, but not necessary, to obtain convergence to a
target distribution. Non-reversible MCMC algorithms do not satisfy detailed balance, but
they nonetheless have a stationary distribution. The non-reversibility makes it possible to
implement persistence in the direction of exploration of the sampler, which would become

valuable in a model of animal movement.

In the local Gibbs model, the habitat selection only depends on the habitat at the endpoint y
of a step, rather than over the whole step between x and y. This is because the utilisation
distribution of the model is formulated as a normalized RSF (Equation 1.1), defined for each
point of the study region. Then, the covariates must be defined at points, rather than over
steps. In this regard, the model presented here is less flexible than the SSF model of Fortin
et al. (2005) and Potts et al. (2014a), which can describe habitat effects over movement steps.
Similarly to RSF models, we assume that the utilisation distribution of the animal’s location
can be written in terms of the spatial distribution of environmental variables. In the definition
of the utilisation distribution, we also consider that the covariates are constant in time, and
so we cannot account for seasonality or other variations in their distributions. Because the
local Gibbs model is formulated through the transition density of the sampler, one could in
principle consider time-varying covariates which are updated at each iteration. However, this
model would not have a stationary distribution, because m would change as the covariate

distributions change.

In Section 3.6.3, we suggested that the properties of hybrid algorithms can be used to model

movement over irregular time intervals. In particular, for the local Gibbs model with normal
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half-step density, it is natural to scale the variance of the density proportionally to the length
of the time interval. We presented this extension as a special case of the discrete-time
hybrid algorithms. It could also be viewed as the basis for a continuous-time formulation of
movement and habitat selection. Additional work is needed to formally describe the normal

kernel model as a continuous-time model.

Others have proposed to use Markov processes to model animal movement and habitat
selection. Hanks et al. (2015) used a continuous-time discrete-space Markov process to
describe animal movement. In their method, the states of the Markov chain are the cells of a
spatial grid, and the animal may transition from cell to cell through time. They allowed for the
possibility to model the rate of transition from one cell to another in terms of their respective
covariate values. This makes it possible to link the movement to habitat preferences, but
they did not explicitly describe the long-term distribution of space use in their model. In a
similar discrete-space approach, Whitehead and Jonsen (2013) suggested that the stationary
distribution of the movement Markov chain can be used as an estimate of the utilisation
distribution of the animal. As suggested by Wilson et al. (2018), it may be possible to
combine the frameworks of Hanks et al. (2015) and Whitehead and Jonsen (2013), to capture
space use and habitat selection within a discrete-space movement model. A disadvantage of
their approaches, compared with the MCMC movement model proposed herein, is that they
are formulated on a discrete spatial grid. As a consequence, the interpretation of their results
is tied to the spatial scale of discretization. It is often chosen as the spatial grid on which the

covariate were measured, which is arbitrary to describe the animal’s movement.

If the spatial covariates used to construct the utilisation distribution take discrete values, the
MCMC movement model presented in this chapter is similar to spatially-structured diffusion
models (see Section 1.3.3 and Ovaskainen, 2004). For discrete-valued covariates, the target
distribution of the MCMC movement model is discontinuous, with a different value for each
habitat type. Then, the movement of the animal near the edge of an habitat patch is affected
by this preferential selection. An advantage of spatially-structured diffusion models is that
the parameters of movement (e.g. speed of diffusion) can depend on the current location
of the process. As mentioned in Section 3.6.1, this is generally not possible in the MCMC
movement model framework, because the stationary distribution would not be conserved.
However, this limitation can be mitigated by a flexible time-varying movement kernel, such
as the random availability radius model of Section 3.6.1, or the state-switching model of
Section 3.6.2. The MCMC movement model is not limited to discrete-valued covariates, and
it can be used for continuous variables. Another appeal of the method that we present here is



3.8 Discussion 59

that the stationary distribution of the animal’s location is formulated as a simple parametric

function of the covariates, which links our framework to standard RSF models.

We presented a class of models, which constitutes the basis of a new framework for the
analysis of animal movement and environmental data. In Chapter 4, we explain how the
movement and habitat selection components of the local Gibbs model can be estimated for

observed telemetry data.






Chapter 4
Inference in the local Gibbs model

In the previous chapter, we introduced a new framework to model animal movement and
habitat selection, using Markov chain Monte Carlo to build a model of step selection. In this
chapter, we show that this class of models can be fitted to animal telemetry data, to estimate
parameters of movement and selection. In Section 4.2, we derive the general expression of
the likelihood function of the local Gibbs model, and we explain how it can be calculated in
practice using Monte Carlo integration. We focus on two special cases, the normal kernel
model (Section 4.3) and the availability radius model (Section 4.4), for which we provide
the analytical form of the likelihood, as well as details for its implementation. In Section
4.5, we describe maximum likelihood estimation for the local Gibbs model. We extend the
framework to allow for switches between discrete behavioural states in Section 4.6. We
use the hidden Markov model methodology to obtain inferences about the movement and
selection parameters, as well as about the unobserved behaviour process. In Sections 4.7
and 4.8, we illustrate the estimation method in simulations and for the analysis of a zebra
movement track, respectively. The research described in this chapter was presented in the
preprint Michelot et al. (2018a).

4.1 Introduction

In Chapter 3, we described a new class of step selection models, based on the transition
rules of MCMC algorithms. MCMC step selection models have two components: the
movement model, and the habitat selection model. The movement component is defined by
the parameters of the transition kernel of the underlying MCMC algorithm. The parameters

of the transition kernel, treated as tuning parameters in the context of MCMC sampling, are
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here viewed as parameters of the animal’s movement and perception. The habitat selection
component of the model is a resource selection function, written as a simple parametric
function of spatial covariates of interest (Equation 1.1). Because it is based on a MCMC
algorithm, the stationary distribution of the MCMC step selection model is guaranteed to
be the (normalized) resource selection function. This stationary distribution is called the
utilisation distribution of the animal, and gives the probability density of the animal’s location

in space.

The formulation of the MCMC step selection model was introduced in Section 3.3. Here, we
modify the notation slightly to make the parametrisation of the model explicit. We denote
by (X):en the location process, and p(X;.1| X4, 3, 0) the step density of the MCMC step
selection model between times ¢ and ¢ + 1. Here, (3 is a vector of habitat selection parameters
and @ is a vector of movement parameters. The utilisation distribution 7 (z|3) of the model
is a function of 3. The aim of this chapter is to establish a method to estimate @ and 3 from

telemetry and environmental data.

Animal location data and environmental data were presented in the general case in Sections
1.1 and 1.3.1 of the Introduction, respectively. In the following, we consider a sequence of
T bivariate locations (1, s, . .., x7) collected at regular time intervals on an animal, as a
realisation of the location process (X;). We consider J spatial covariates {cy, ca,...,cs},
defined over a study region  C R?. We write ¢;(z) for the value of the covariate ¢; at a
spatial point € (2. For notational convenience, we will often write p(x; 1|z, 3,0) =
(X1 = xe1| Xy = xy, G, 0) the step density, when it is used as the likelihood of an

observed step.

We consider the workflow highlighted in Section 3.3 for the analysis of telemetry and habitat
data. This method requires the implementation of the likelihood function of the MCMC
step selection model. The likelihood of a displacement is given by the transition kernel of
the chosen MCMC algorithm, i.e. by the step density of the corresponding MCMC step
selection model. Indeed, the step density p(x;.1|x;, 3, @) is the likelihood that the algorithm
would take a step from x; to x; 1, given the tuning parameters and the target distribution.
Following from the Markov property, steps are independent under the MCMC step selection
model. The likelihood of the whole trajectory is the product of the likelihood of the first

location and the likelihoods of all the individual steps,

T-1

L(B,8|m1,...,xr) = p(ar) [ | p(w111]a1, B, 6). a.1)

t=1
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We will typically consider that the first observation is deterministic, and omit p(x;) in the
likelihood expression. We discuss the possibility to use the first observation to learn about

the parameters at the end of the chapter, in Section 4.9.

In this chapter, we derive the likelihood of the local Gibbs model, introduced in Chapter
3, and we use it to estimate all model parameters. We first describe a general method to
derive the likelihood of the local Gibbs model, for any half-step density ¢ (satisfying the
assumptions described in Section 3.4). We then focus on some of the special cases introduced
in the previous chapter, for illustrative purposes. These special cases are particularly relevant

to the analysis of animal movement, and we apply them to a case study in Section 4.8.

4.2 Local Gibbs likelihood

The local Gibbs model can be used to infer movement and habitat selection parameters from
tracking data. Here, we derive the likelihood of the local Gibbs model with general half-step

density ¢. We describe several special cases in Sections 4.3 and 4.4.

4.2.1 Exact likelihood

Under the local Gibbs movement model with half-step density ¢, the likelihood of a step
from x to y is given by the step density

¢(ylp, 0)o(p|z, 6)
pylz..6) =n(w1) | n “2)
HeQ szQ 7T(Z|,3)gb(z|[,l,, G)dz
as shown in Section 3.4.
Consider T' observed locations (xy,...,xr), obtained at regular time intervals from a

telemetry device. The local Gibbs model satisfies the Markov property, and each displacement

from x; to x;;, is independent. Following from Equations 4.1 and 4.2, the likelihood of the

track is
T—-1
_ O(Te1|p, 0)p(1l|2:, 6)
L(lgu 0|w17 S ,CCT) — g W(thrl'ﬁ) /l;eQ szQ 7T(Z|/8)¢(Z|[,l,, 0>dzdl*l' (43)

Likelihood-based methods can be used to estimate the parameters 3 and 6, from this
expression. In Section 4.5, we describe maximum likelihood estimation for the local Gibbs

model.
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4.2.2 Monte Carlo approximation

The integrals of Equation 4.2 cannot generally be evaluated analytically, and numerical
approximations must be used. We consider Monte Carlo integration, presented in Section

2.2, to obtain the approximate likelihood.

Monte Carlo integration can be applied to approximate the integrals in the local Gibbs
likelihood of Equation 4.2. There are two separate integrals to estimate in this case: one
integral over the intermediate centre p € €2, and one integral over the end point z € ). We

first consider the former, that we write as

_ o(ylp, 6)
L= [ ole0) (fzegﬂzwwzm, e>dz> -

Here, ¢(p|x, 0) is a probability density function for p from which we can sample, corre-

sponding to the function f in Equation 2.2. The expression in the brackets is the function g in
Equation 2.2, that we want to integrate. We sample n,, points {1, ..., i, } from ¢(-|z, 0),
and calculate the Monte Carlo estimate as

on

i o(ylpi, 0)
[ Joca™(210)0(2| i, 0)dz

i, =

We then consider the integral over z in the denominator,
L= [ w1800l 0)iz
zeN

For a given p;, we sample n, points {z;1, ..., 2;,. } from ¢(-|pu;, 8), and derive the Monte

1 &
= n_ ZW zi;|8).
7j=1

Carlo estimate,

Finally, we combine the two approximations to obtain an estimate of the likelihood of a step
from z to y under the local Gibbs model,

. 0 N, y‘ﬂ'w ) ' .
plylz, 8,6) = = (y|B)— Z—ZJ (e 1B) (4.4)
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In the following, we call {u,}; and {z;;}, ; the Monte Carlo samples. The approximation

can be made arbitrarily accurate, by increasing the Monte Carlo sample sizes n, and n..

4.3 Normal kernel model

We first consider the normal kernel model, introduced in Section 3.5.1, wherein the half-step
density ¢ is a normal density. It is a simple and natural formulation, leading to a standard
Gaussian random walk in the absence of habitat selection. It is also a convenient model,
because standard assumptions (from Brownian motion) can be used to apply the normal
kernel model to data sampled at irregular time intervals. We describe that case in Section
4.3.3.

4.3.1 Likelihood

In the normal kernel model, the half-step density ¢ is a bivariate symmetric normal density,
centred on the origin, and with variance parameter . The likelihood of a step from x to y,

given for the general case in Equation 4.2, becomes

p(ylp, o* L) p(p|z, o* L)
et Joco ™(218) (2|1, 02 L)dz

p(ylz, B,0) = n(y|B)

where ¢(-|u, ) is the bivariate normal density with mean g and covariance matrix X, and
I, is the 2 x 2 identity matrix.

The integrals of the likelihood of a step under the normal kernel model cannot generally
be calculated analytically. We use Monte Carlo integration to approximate the likelihood
function, as follows. Fori € {1,...,n,} and j € {1,...,n.}, we sample

i ~ N(m7 0212)
Zij ~ N (i, 02I2)

Then, the approximate likelihood of a step from x to y is

z - 2] 2I
pluke. o) =) 30 KT @)
Boi=1 Jj=1 v

The accuracy of the approximation is determined by the choice of n,, and n., i.e. by the size

of the Monte Carlo samples.
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4.3.2 Implementation

We describe how the likelihood of a step from x; to x;,; can be computed under the
normal kernel model, based on the Monte Carlo approximation given in Equation 4.5. The
distribution of the Monte Carlo samples depends on the movement parameters, i.e. on the
scale parameter o of the half-step density. We propose to first generate standard normal
samples, and then use the properties of the normal distribution to transform them and obtain

the correct mean and variance.

We consider a Latin hypercube design to obtain the standard normal samples, to reduce
the size of Monte Carlo samples needed to achieve a given accuracy and precision. Latin
hypercube sampling is a method of variance reduction, described by McKay et al. (1979),
which can be implemented as follows in two dimensions. We partition the domain [0, 1] x [0, 1]
into n,, X n, squares of equal dimensions. We select n,, of these smaller squares such that
there is exactly one square selected in each column and exactly one square selected in
each row of the partition. There exist algorithms to obtain random squares that satisfy this
condition (Jacobson and Matthews, 1996). Then, we sample one point w; uniformly from
each of the n, selected squares (z = 1, ...,n,). The n, generated points are not independent,
but they are uniformly distributed in [0, 1] x [0, 1], with the guarantee to cover each row and
each column of the partition. Figure 4.1 shows one example of Latin hypercube sample for

n, = 4.

We transform each point u; using the probit function in each dimension, to obtain v; =
®~!(u;), where ® is the cumulative distribution function of the standard normal distribution.
By property of the probability integral transformation, the points v; are samples from
the bivariate standard normal distribution. We obtain the Monte Carlo sample points by
translation and scaling, as p; = x; + ov;. By property of the normal distribution, fz; ~
N(xy,0*I,), as required. A similar method is used to obtain z;; ~ N(u;, 0*I;) from
standard normal samples.

4.3.3 Normal kernel model with irregular intervals

In Section 3.6.3, we explained how the normal kernel model can be extended to describe
movement over irregular time intervals. The idea is to scale the normal half-step density,
and therefore the step density, with the length of the interval. In the normal kernel model,
we suggest that the variance of the half-step density be proportional to the time interval,

following the properties of Brownian motion. The framework of inference developed in this
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Fig. 4.1 Illustration of Latin hypercube design in two dimensions. There is exactly one
sample in each row and in each column.

chapter can be used for the normal kernel model with irregular intervals, to analyse telemetry

data collected irregularly.

The likelihood of a step from « to y over a time interval A is

POy o) = nly) [ EYOT RN S0

L,
peo  JreaT(2)p(2|p, Ac?Dy)dz

as we found in Section 3.6.3.

The Monte Carlo approximation is very similar to the regular case described in Section
4.3.1, but the variance o is scaled by the time interval A. So, for: € {1,...,n,} and
je{l,...,n,}, we sample

pi ~ N(x, AoIy)
Zi5 ~ N([J,Z, AO’2I2)
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Then, the approximate likelihood of a step from « to y over a time interval A is

~(A) _ n: x~ @yl pi, Ao I)
p (y’wa /87 U) - ﬂ-(y)_ 2 . (46)
L Zj:l 7(2i5)

The approximate likelihood of the normal kernel model over irregular time intervals can be

implemented using the method described in Section 4.3.2, substituting Ac? for 2.

4.4 Availability radius model

We introduced the availability radius model in Section 3.5.2. In this section, we derive its
likelihood and describe its implementation. In Section 4.4.3, we consider the case where
the radius parameter r of the model is random, as an illustration of the hybrid algorithms

described in Section 3.6.1.

4.4.1 Likelihood

In the availability radius model, the half-step density ¢(-|x) is uniform over the disc D, (x)
of radius r, centred on the origin . Under this model, the likelihood of a step from x to y

was found in Equation 3.3 to be

m(y|B) 1
p(y|a:,ﬁ,7°) = d,Ll,
7% J e, (2)nD, (v) szDT(“) 7(z|B)dz

The likelihood cannot generally be evaluated analytically, and we consider Monte Carlo

integration as an approximation. Fori € {1,...,n,}and j € {1,...,n.}, we sample

zij ~ U(Dr (i),

where U (&) denotes the multivariate uniform distribution over £. Then, the approximate
likelihood is

om

A _ 7T<y‘/8) . A(Dr‘(w) N Dr(y)) . n, 1
p(ylz,B,1) = 2 n, — A(D,(u;)) 2?21 (2| 3)
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The term A(D, (p;)) in the denominator is the area of a disc of radius r, i.e. 7r2. The term
A(D,(x) N D,(y)) in the numerator is the area of intersection of the discs of radius r and
of centres « and y, respectively. In Section 3.5.2, we found that this area only depends on
the distance d = ||y — x|| between the centres of the two discs (Equation 3.5). If we denote
A, (d) = A(D,(x) N D,(y)), the approximate likelihood can then be written

My

m(y|B)A(d) n

ylx, B,r) = (T2 0, 2 m 4.7)

4.4.2 Implementation

The approximate likelihood formula given in Equation 4.7 relies on the generation of two
Monte Carlo samples, for each observed step: the intermediate centres {u;}, and the end
points {z;;}. We describe one way to obtain these samples, to evaluate the likelihood
p(x 1], B,7) of astep from z; = (14, ;) t0 111 = (441, Y1) We write dy = ||z441 —
.|| the distance between @, and x, 1, i.e. the step length.

The intermediate centres For a radius 7, the intermediate points p; are sampled uniformly
from the intersection of the discs D,.(x;) and D,(x;,1). A naive approach to generate them
would be to sample points uniformly in D,.(x;), and to keep those which are also in D,.(x1).
However, the proportion of accepted points would greatly vary depending on the distance
between x; and x;, . In particular, it would tend to zero when the step length approaches
2r (i.e. when the area of intersection of the two discs is close to zero). Instead, we propose
to generate points uniformly from the smallest rectangle which includes the intersection of
the discs, illustrated in Figure 4.2, and to reject those which do not lie within a distance r of
both x; and x; ;. In Appendix B.2, we show that, with this method, the expected acceptance
rate is bounded above by 7 /4 ~ 0.785 (when d; = 0), and bounded below by 2/3 ~ 0.667
(when d; — 2r).

A point can be sampled uniformly from the intersection of the discs as follows. We sample a

point (u,, u,) uniformly from the square of side 1 and centre (0, 0),

uy ~ U(—0.5,0.5)
uy ~ U(—0.5,0.5)



70 Inference in the local Gibbs model

Fig. 4.2 Simulation of points in the intersection of two discs. The dots are sampled uniformly
from the rectangle, and only the red dots are accepted.

Then, we scale both dimensions onto a rectangle of correct width and height,

We move to polar coordinates, to rotate the rectangle,

L= J+ (w)?

0 = arctan(uy,, u;,)

where ‘arctan’ is the arctangent function of two arguments. We rotate the rectangle, to align

it with the step from x to x;, 1,

9/ =0 + arCtan(yt+1 — Y, L1 — .',Ut)

Finally, we convert the sample back to Cartesian coordinates, and translate the centre of the

rectangle to the mid-point between x; and ;. 1,

uy = lcos(0) + (v + x441)/2
w! =1sin(0) + (yr + yes1)/2
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The point (u, u,

. . o "oon
it—i.e. we take p; = (uj, uy

) is sampled uniformly from the rectangle shown in Figure 4.2. We accept
)—ifitisin D,(x;) N D,(x:1), else we reject it. We repeat
until n,, points have been accepted. A Latin square design, similar to the one described in
Section 4.3.2, can be used to generate the uniform samples (u,, u,) in the first step of the
method.

The end points For each intermediate centre u;, the locations z;; are sampled uniformly

from the disc D,.(u;), as follows. Foreach j = 1,...,n,, we take

lj ~ U(O, 7"2)
0; ~U(—m,m)

Then, the point
cos 0;
-
J
is uniformly sampled from D, (p;).

The samples obtained from this procedure can be used to evaluate the approximate likelihood
of a step under the availability radius model, as shown in Equation 4.7.

4.4.3 Random availability radius

As suggested in Section 3.6.1, additional flexibility can be achieved in the local Gibbs model
by modelling the parameters of the half-step density as random. In the availability radius
model, the half-step density has one parameter: the radius r. We can consider that r arises
from the probability distribution p(r|w), with (hyper-)parameters w. For example, in the
case study of Section 4.8, we investigate the case where r follows a gamma distribution with

shape « and rate p, and we have w = («, p).

For a general distribution p(r|w), following from Equation 3.10, the likelihood of a step
from x to y is

m(y|B) [ plr|w) 1
T Jimap 7 Juen, @) Jaep, g T(218)dz

The integral over the radius r starts at d/2, because a step cannot be longer than 2r, and so
the likelihood of a step is zero if d > 2r.
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As before, we suggest Monte Carlo integration to approximate the likelihood. For ¢ €
{1,...,n,},je{l,...,n,},and k € {1, ... ,n,}, we sample

i ~ p(rjw)
Hij ~ U<Dn(w) N Dn(y»
Zijk ™~ U(D;, (Nij))

Then, the Monte Carlo estimator of the likelihood is

(ym‘«) 1 A(Drx L
p(yle, B,w) = N, 27“_3 Z A(D,, sz )ZZ; 7T(zijk?)'

We have A(D,,(p;;)) = mr for all j, and A(D,,(x) N D,,(y)) = A,,(d). The expression

simplifies to

X _mlB) n: < A)
p(y\ac,ﬁ,w)_ us nr"u; ri ZZk 1 szk). (49

(2

The implementation of the approximate likelihood requires three sets of Monte Carlo samples:
the availability radii {r;}, the intermediate centres {;;}, and the end points {z;;;}. The
intermediate centres and end points can be generated as described in Section 4.4.2, similarly

to the case where the radius parameter r is treated as constant.

The r; are drawn from the probability density p(r|w). Note that sampled radii that are
smaller than d/2 do not contribute to the likelihood. Indeed, A(D,,(x) N D,,(y)) = 0 when
r; < d/2. Tt is then more economical to sample the r; from p(r|w) truncated to [d/2, 00),
and to multiply the likelihood by 1 — F).(d/2|w), where F, is the cumulative distribution
function of the radius.

One way to sample from the truncated distribution is to generate a uniform sample u; ~

U(0,1), and transform it with the quantile function F,. of the truncated distribution:

ri = F7 (w) = F7F(d/2jw) +ui(1 = Fo(d/2|w))].

See Nadarajah et al. (2006) for details on the implementation of truncated distributions. The

uniform samples u; can be generated from a Latin hypercube design over the interval [0, 1].
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4.5 Parameter estimation in the local Gibbs model

In the previous sections, we explained how the likelihood of the local Gibbs model can be
derived, and how it can be calculated in practice using Monte Carlo integration. In particular,
we explained how the likelihood function can be implemented for the normal kernel model,
and for the availability radius model. The likelihood function can then be used to estimate
the parameters of the local Gibbs model, i.e. the parameters 0 of the half-step density, and
the habitat selection parameters 3. We suggest maximum likelihood estimation, based on a
numerical optimisation routine. Alternatively, the likelihood of the local Gibbs model could
be used in a Bayesian context, e.g. to find the maximum a posteriori estimates, or to sample
over the posterior distribution of the model parameters using an MCMC sampler.

The likelihood of 7" observations (xy, . .., ) under the local Gibbs model is a product of
T — 1 terms, corresponding to the 7" — 1 observed steps. (Here, we assume that the first
location is deterministic, and does not contribute to the likelihood.) In recent telemetry data
sets, 7' may be very large, in the thousands or more. The likelihood can therefore become
very large, if most terms are larger than 1, or very small, if most terms are smaller than 1. Due
to limitations in computer precision, this can lead to numerical overflow (if the likelihood is
too large to be encoded) or numerical underflow (if it is too small), respectively. A common
solution is to compute the logarithm of the likelihood function, rather than the likelihood
itself. The log-likelihood is much less susceptible to take extreme values. The logarithm
function is strictly monotonic, so the same parameter values maximise the likelihood and the
log-likelihood: the maximum likelihood estimates. In practice, we consider the approximate
log-likelihood of the track under the local Gibbs model,

Z(Iga0|m17"') Zlog mt+1|mtaﬂ 0))

In the local Gibbs model with half-step density ¢, the approximate likelihood of a step,
p(x1|Te, B, 0), is given in Equation 4.4. The approximate log-likelihood of 7" observed
locations is calculated as

N

-1

[(B,6z1,...., 1) =) |log(n(@i1]8)) + log(n.) —log(n,)

-
Il
—
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where { ,ugt)} and {zz(;)} are the Monte Carlo samples for the time step ¢, as defined in Section
4.2.2. To avoid storing a very large number of Monte Carlo samples, we can generate them
only once, and scale them for each observed step. The procedure to translate and scale the
®)

uniform Monte Carlo samples to obtain p,” and zg) is described in Section 4.3.2 for the

normal kernel model, and in Section 4.4.2 for the availability radius model.

In all analyses presented in this chapter, we used the R function optim to maximise the log-
likelihood with respect to 3 and 6, and obtain maximum likelihood estimates of the model
parameters. The function optim is part of the base stats package, and it implements several
numerical methods of optimisation. We used the default routine, based on the Nelder-Mead
algorithm (Nelder and Mead, 1965). The optimiser takes starting parameter values as input,
and iteratively evaluates the objective function (i.e. the log-likelihood) until the optimum is

found.

The optimisation therefore requires the evaluation of the objective function (here, the log-
likelihood) for many different sets of parameter values. If we randomly generated new Monte
Carlo samples at each evaluation, the objective function would be slightly different at each
iteration of the optimiser. This would cause numerical issues, with the optimum changing at
each iteration. To circumvent this problem, we suggest generating the Monte Carlo samples
only once, at the start, and using them for all the evaluations of the likelihood.

4.6 The state-switching local Gibbs model

In Section 3.6.2, we suggested that a model can be constructed as the mixture of several
MCMC step selection models, corresponding to different behavioural states of an animal.
We denote by S; the behavioural state of the animal at time ¢. If the unobserved state process
(S;) is modelled as a Markov chain, the state-switching local Gibbs model becomes a hidden
Markov model (HMM). HMMs are very popular tools to model behavioural heterogeneity in
animal movement (Patterson et al., 2009; Langrock et al., 2012; Michelot et al., 2016). In
particular, very efficient methods have been developed to evaluate the likelihood of a HMM,

or to estimate the latent state sequence (Zucchini et al., 2016).

A HMM is a time series model composed of two stochastic processes: a state process
(S¢), and an observation process (Z;). The state process is defined as a Markov chain, as
described in Section 2.1. We consider a /NV-state model, i.e. the behavioural state is defined in

{1,..., N}. The state process satisfies the Markov property,

Pr(st—‘rl = j|St7St—1a e '751) = Pr(St—i-l = .]|St)7 ] = 17 s '7N‘
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The future state of the process is independent of the past, conditional on the present state.
The state process is fully specified by its initial distribution 7r(*) and its transition probability
matrix I' = (v;;),_,, with

Yij = Pr(Sepa = j|S: = i)
foranyz,7 =1,..., V.

The second process, (Z;), models the observed variables. In the local Gibbs model, the
observation at time ¢ is the two-dimensional displacement (“step”) from X, ; to X, i.e.
Z; = X; — X;_1. In a HMM, the distribution of the observed variables is assumed to depend
on the underlying state process, with the following property,

P(Zi|Shs -, 51, Zyrs - Zn) = p(Z4]Sy).

Conditionally on the current state, the observation Z; is assumed to be independent of the
past observations and the past states. The observation process is therefore fully specified by
N state-dependent probability distributions, sometimes called emission distributions, defined
as

pj(Zt) = p(Z|S; = j).

In the local Gibbs model, the state-dependent probability distributions are the step densities
of the model in each state. As described in Section 3.6.2, each state j is characterised by a

different set of movement parameters 0, and we have

Pj(Zt = Zt) = p(wt!wtflﬁ, 90))7

where z;, = x;, — ;1.

The general dependence structure of a HMM is shown as a graph in Figure 4.3.

Observations @ a @
State process ~ ----- @ @ @ e

Fig. 4.3 Dependence graph of a hidden Markov model.
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The dependence assumptions of HMMs greatly simplify the computation of the full model
likelihood. However, the naive evaluation of the likelihood would still require 7" nested
sums, where 7' is the length of the time series, to sum over all possible state sequences. The
complexity of this evaluation is exponential in 7", and it becomes computationally intractable
for large numbers of observations. The so-called forward algorithm is a faster method that

was developed to tackle this problem.

In the forward algorithm, the likelihood of 7' observations zi, ..., zy under a HMM is
calculated as the following matrix product,

L(zi,...,z7) =Y P(2)TP(2z,)T - P(27)1,

where 1 is a column vector of N ones, and where P(z;) is the diagonal matrix of state-
dependent densities,

pl(zt) 0 0
0 2\ Z¢ 0
Plz) p (’ ) |
0 0 Ce pN(zt)

It can be shown that the computational cost of the forward algorithm is linear in the number
of observations 7" (Zucchini et al., 2016). Likelihood-based methods can therefore be used in
many applications, even for long time series.

In the local Gibbs model, the state-dependent densities p;(z;) cannot be evaluated analytically,
as explained in Section 4.2. To implement the state-switching local Gibbs model likelihood,
we replace them by the Monte Carlo approximations of the step densities, p(x;|z,_1, 3, 87)).
We then obtain an approximation of the HMM likelihood, and it can be made arbitrarily
accurate by increasing the size of the Monte Carlo samples. Direct maximisation of the
(approximate) likelihood can be used to obtain estimates of all model parameters: the
habitat selection parameters of the utilisation distribution 3, the state-dependent movement
parameters of the step density {6}, and the transition probabilities (v;;)Y,_,. The
Viterbi algorithm is another computationally-efficient technique, used to obtain the most
likely state sequence from a fitted HMM (Zucchini et al., 2016). In the context of animal

movement modelling, the Viterbi algorithm classifies observed steps into behavioural phases.

In Section 4.7.4, we present a simulation study for the state-switching local Gibbs model
with normal half-step density.
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4.7 Simulation study

We consider simulations to investigate the performance of the method highlighted in Section

4.1 to recover the parameters of the local Gibbs model.

4.7.1 Simulation setup

We simulated movement trajectories from the local Gibbs sampler on an artificial target
distribution, and used maximum likelihood estimation to recover all model parameters.
We investigated the effect of the size of Monte Carlo samples in the approximation of the
likelihood, and the effect of the number of locations, on the performance of the estimation.
We considered three formulations: the normal kernel model, the state-switching normal
kernel model, and the availability radius model with random radius. For each model, we
implemented the approximate (log-)likelihood function, based on the Monte Carlo integration
procedure described in Sections 4.2 to 4.4. In R, we used the numerical optimiser optim to

maximise the log-likelihood, and obtain estimates of the parameters.

The artificial utilisation distribution was based on the environmental data from the case
study of Section 4.8, to investigate the performance of the model in a realistic scenario. The
data consist of a categorical raster of vegetation types, with four values: grassland, bushed
grassland, bushland, and woodland. We defined the study region 2 as a square of 30km
by 30km, and the raster was given at a resolution of 30m in each dimension. Because the
covariate is categorical, we introduced three dummy covariates: c; (grassland), ¢, (bushed
grassland), and c3 (bushland). Each covariate ¢; took the value 1 in the areas of the habitat
type ¢, and O elsewhere. The fourth vegetation type (woodland) was the reference category.
The utilisation distribution of the model, used as target distribution in the simulations, was
formulated as

(x|8) = % exp(Bier() + s () + Bycs(@)),

for x € Q, where h(8) = [

z

co €XD(Biei(z) + Paca(z) + B3cz(z))dz is a normalizing
constant to ensure that 7 integrates to 1 over (). Like in the simulations of Chapter 3, we
considered that the utilisation distribution was zero outside of (). For all simulations, we
used the habitat selection parameters 3; = 3, 2 = 2, and 3 = 1. Maps of the vegetation

raster and of the (artificial) utilisation distribution are displayed in Figure 4.4.
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Fig. 4.4 Map of the vegetation raster and of the artificial utilisation distribution used in the
simulations.
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The spatial covariate is categorical, and so the utilisation distribution is constant over each
habitat type. We can calculate the utilisation value 7; of habitat i € {1,2, 3,4} as

T — ﬁ exp(B),

with h(3) as defined above. For each simulation study, we derived the estimated utilisation
value 7; of each habitat, from the estimated habitat selection coefficients B, as
1 R

=0 exp(f3;).

To assess the estimation, we compared the estimated utilisation values of each habitat type to
the true values. This is a more interesting assessment than to compare the estimated habitat
selection parameters B to the true parameters 3. Indeed, a comparison of the utilisation
values reflects how well the shape of the utilisation distribution was captured, and how well

the relative habitat preferences were estimated.

For all simulations, the initial location was sampled from the artificial utilisation distribution
7. The simulated track was accepted if it visited all four habitat types. Otherwise, it was
rejected and another track was simulated, to ensure that all habitat selection parameters could

be estimated.

4.7.2 Normal kernel model

We simulated tracks of length 7" = 1000 from the local Gibbs model with normal half-step
density, with variance parameter 02 = 1, and target distribution 7. We fitted the normal
kernel model through numerical maximisation of the approximate log-likelihood, based on
Equation 4.5. We tried several different sizes n, and n. of the Monte Carlo samples, to
investigate the effect of the approximation on the accuracy and precision of the estimation.

For each scenario, the experiment was repeated 50 times. Results are shown in Figures 4.5.

The estimated utilisation values correctly captured the true utilisation distribution in most
simulations. The precision of the utilisation estimates increased for larger Monte Carlo
samples. The half-step density was very well estimated in almost all experiments. However,
in one of the simulations with smaller Monte Carlo samples (n,, = n, = 20), the variance of

the half-step density was substantially overestimated.

We investigated the effect of the length of the track on the estimation. We simulated tracks of
length 7' = 100, T' = 200, and T" = 500. To each, we fitted the normal kernel model with
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Fig. 4.5 Results of the simulation study for the normal kernel model, with 7" = 1000 and
different sizes of Monte Carlo samples. Left column: Estimated utilisation values of the four
habitat types, on the log scale. The violins show the 50 sets of estimates, and the dots are the
true values. Right column: Estimated half-step densities. The red lines are the 50 estimated
densities, and the black line is the true density used to simulate the tracks.
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Monte Carlo samples of size n, = n, = 40. The experiment was repeated 50 times. The

results are shown in Figures 4.6.
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Fig. 4.6 Results of the simulation study for the normal kernel model, with n,, = n, = 40 and
different track lengths. Left column: Estimated utilisation values of the four habitat types,
on the log scale. The violins show the 50 sets of estimates, and the dots are the true values.
Right column: Estimated half-step densities. The red lines are the 50 estimated densities,
and the black line is the true density used to simulate the tracks.

In all experiments, the utilisation distribution seemed to be captured in the estimation.
The variability in the estimates was large for the shortest tracks, of length 7' = 100, and
the precision increased for longer simulated tracks. The half-step density was adequately
estimated in most simulations, although the variance was clearly underestimated in one of

the experiments with 7" = 100.
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There is a trade-off between the accuracy of the estimates and the computational cost of the

method, determined by the choice of the size of Monte Carlo samples.

4.7.3 Normal kernel model with irregular time intervals

In Section 3.5.1, we suggested that the normal kernel model could be applied to irregular time
intervals. In this formulation, the variance of the normal half-step density is expressed as Ao?,
where A > 0 is the length of the time interval, and o2 is an unknown scale parameter. We
used simulations to investigate the performance of the method to recover model parameters

from irregular location data.

We simulated 10* locations over time intervals of length A = 0.1, with parameter o> = 1.
We then thinned the simulated trajectory by keeping 1000 locations at random, to imitate
real data collected at irregular time interval. We implemented the approximate likelihood
described in Section 4.3.3 to estimate the habitat selection and movement parameters, from
the thinned track. We used Monte Carlo samples of sizes n,, = n, = 50, and we repeated the

experiment 50 times. The results are displayed in Figure 4.7.
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Fig. 4.7 Results of the simulation study with irregular time intervals. Left: Estimated
utilisation values of the four habitat types, on the log scale. The violins show the 50 sets of
estimates, and the dots are the true values. Right: Estimated half-step densities, for a time
interval set to A = 1. The red lines are the 50 estimated densities, and the black line is the
true density used to simulate the tracks.

The habitat selection parameters, and the shape of the utilisation distribution, were well
estimated in all 50 experiments. The true variance parameter of the half-step density was
also captured well in the estimation. This illustrates the applicability of the normal kernel

model to animal tracking data collected at irregular intervals.



4.7 Simulation study 83

4.7.4 State-switching normal kernel model

We considered the 2-state local Gibbs model with normal half-step density, on the target
distribution 7. In state 7 € {1, 2}, the movement process was described by the normal kernel

model with scale parameter o;. We chose the parameters

0.9 0.1
01,02) =(0.5,2), andT = .
(o172~ 05,2 (o)

Large diagonal elements in the transition probability matrix I' create state persistence, i.e.
the process tends to persist in the current behaviour for several time steps. This is a desirable
feature in real animal movement data, because a lack of state persistence would indicate
that the behaviours happen at a finer time scale than that of the observations. The scale
parameter affects the size of the area of perception, and the speed of movement of the
simulated movement process. Here, 0; < 09, and so the process will tend to take longer
steps in state 2. State 2 may represent fast exploratory movement, whereas state 1 may be

analogous to slower area-restricted search behaviour.

We simulated a track of length 7" = 1000, and fitted the state-switching normal kernel model
as a hidden Markov model (using the forward algorithm to implement the likelihood, Section
4.6). There were seven parameters to estimate: three habitat selection parameters (31, (s,
(3), two movement parameters (o;, 02), and two transition probabilities (712, Y21). We
used Monte Carlo samples of different sizes: n, = n, = 20, 30,40, 50. We repeated each
experiment 50 times, and the results are shown in Figure 4.8.

In the simulations with small Monte Carlo samples (n, = n. = 20), the utilisation estimates
appear to be biased. The utilisation value of grasslands was overestimated, and the utilisation
value of bushlands was underestimated, in most of those simulation runs. However, this
bias decreased for larger Monte Carlo samples. The half-step densities seemed to be well
estimated for both states, in almost all experiments. In one of the simulations with small
Monte Carlo sample sizes n, = n, = 20, the variance in state 1 was largely overestimated,
and all steps were classified in state 2. As a result, the estimated half-step density in state 2
was intermediate between the true half-step densities of states 1 and 2.

We used the Viterbi algorithm to estimate the most likely sequence of states, for each fitted
model. Then, we calculated the proportion of states that were correctly estimated, and we

averaged over the 50 replications (Table 4.1).
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Fig. 4.8 Results of the simulation study for the state-switching normal kernel model, for
Monte Carlo samples of different sizes. Left column: Estimated utilisation values of the four
habitat types, on the log scale. The violins show the 50 sets of estimates, and the dots are the
true values. Right column: Estimated normal half-step densities; the coloured lines show the
50 estimated densities, and the black lines are the true densities used in the simulations.
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T 1000 1000 1000 1000 100 200 500
nme 20 30 40 50 40 40 40
Mean proportion 92.6% 94.1% 94.5% 94.4% 949% 94.7% 94.1%

Table 4.1 Mean proportions of states that were correctly estimated by the Viterbi algorithm, in
the state-switching normal kernel model. Several simulations were conducted, with different
sizes of Monte Carlo samples (n, = n, = nyc) and simulated tracks of different lengths (7).
The mean proportions are each calculated from 50 replications.

In all scenarios, a large majority of steps were classified in the correct state. The mean
proportion of correctly classified states in simulations with n,, = n, = 20 is pulled down by

the experiment mentioned above, in which all observations were classified in state 2.

The main issue we encountered in simulations with small Monte Carlo samples (n, = n, =
20) was numerical instability. The optimiser often diverged to extreme parameter values, for
which the likelihood function could not be evaluated, and crashed. In such cases, we started
the optimisation again with different Monte Carlo samples. This problem did not arise in any

of the simulations with n,, = n, = 30 or more.

We investigated the effect of the number of observations (i.e. the length 7' of the track)
on the estimation of the model parameters and of the underlying states. We simulated
tracks of different lengths, 7" = 100, 200, 500, from the state-switching normal kernel model
described above. We then fitted the model to each track with Monte Carlo samples of size
n, = n, = 40. We repeated the procedure 50 times for each value of 7', and the results are
presented in Figure 4.9. We estimated the Viterbi state sequence for each fitted model, and
calculated the average proportion of correctly decoded states for each simulation scenario
(Table 4.1).

As in the single-state case, the precision of the habitat selection estimates increased for longer
tracks. There was a lot of variability in the estimated half-step densities for the shortest tracks
(T'" = 500), but the two states always captured clearly distinct movement speeds (slower
movement in state 1 and faster movement in state 2). The half-step densities were well
estimated for longer tracks. The Viterbi algorithm estimated the state sequences well in all
scenarios (Table 4.1).

4.7.5 Random availability radius model

We ran a simulation study to investigate the performance of the estimation for the availability

radius model with random radius parameter. We sampled the availability radius parameter r
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Fig. 4.9 Results of the simulation study for the state-switching normal kernel model, for
simulated tracks of different lengths. Left column: Estimated utilisation values of the four
habitat types, on the log scale. The violins show the 50 sets of estimates, and the dots are the
true values. Right column: Estimated normal half-step densities; the coloured lines show the
50 estimated densities, and the black lines are the true densities used in the simulations.
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from a gamma distribution with shape v = 0.7 and rate p = 3. We chose these parameters to

obtain speeds similar to those observed in the zebra data set of Section 4.8.

We simulated a track of length 7" = 1000, and fitted the model with Monte Carlo samples of
different sizes. There were five parameters to estimate: three habitat selection parameters

(B1, B2, B3), and the shape « and rate p of the gamma distribution of the availability radius.

In the availability radius model with random radius parameter, the likelihood is written with
three nested integrals (Equation 4.8). The approximate likelihood thus requires three nested
sums, i.e. three Monte Carlo samples (Equation 4.9). We considered four cases, with Monte
Carlo samples of sizes: (1) n,, = 10, n, = n, = 20, (2) n, = 15,n, = n, = 30, 3) n, = 20,
n, =n, = 40, and (4) n, = 25, n, = n, = 50. We used smaller values for n, than for n,
and n,, because the integral over the radius r is one-dimensional, whereas the integrals over

the intermediate point g and over the end point z are two-dimensional.

For each case, we ran 50 simulations. Figure 4.10 shows the estimated utilisation values, and
the gamma distributions estimated for the availability radius. For two of the simulations with
small Monte Carlo samples (n, = 10, n, = n, = 20), the optimiser failed to converge, and
those runs are excluded from the figure.

The utilisation distribution was well captured in all experiments, and the accuracy and
precision of the utilisation estimates increased slightly for larger Monte Carlo samples. The
gamma distribution of the availability radius was well estimated in almost all simulations.
For smaller Monte Carlo samples, the mean availability radius was overestimated in a few

cases.

We repeated the simulation experiments with tracks of different lengths. We simulated tracks
of lengths 7" = 100, 200, 500 from the availability radius model with gamma-distributed
radius parameter. We then estimated all model parameters with Monte Carlo samples of sizes
n, = 20 and n, = n, = 40. The estimated habitat selection parameters, and the estimated

gamma densities of the radius, are shown in Figure 4.11.

The general shape of the utilisation distribution was roughly captured in all simulations,
although the variability in the estimates was large for short tracks. The precision of the
utilisation estimates and of the estimates of the availability radius distribution increased with
the length of the tracks.
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Fig. 4.10 Results of the simulation study for the availability radius model, for Monte Carlo
samples of different sizes. Left column: Estimated utilisation values of the four habitat types,
on the log scale. The violins show the 50 sets of estimates, and the dots are the true values.
Right column: Estimated gamma densities; the red lines show the 50 estimated densities, and
the black lines are the true densities used in the simulations.
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4.7.6 Investigation of bias for correlated movement

In the local Gibbs movement model, the half-step density ¢ is required to be symmetric
(Section 3.4.1). For this reason, the model does not capture persistence in the movement
direction, because all directions are equally likely in the absence of environmental effects. As
mentioned in Section 1.2, modern tracking data can be collected at high temporal resolutions,
and they often display some movement persistence. Here, we investigate the effect of this

persistence on the accuracy of the estimates obtained from the local Gibbs model.

We considered a standard step selection function model, similar to those described by Fortin
et al. (2005) and Forester et al. (2009), as a model that combines movement persistence and
habitat selection. We simulated a track from the SSF model, on the same vegetation map
used in the previous simulations. For the habitat-independent movement kernel of the SSF
model, we used a distribution of step lengths and a distribution of turning angles. The shape
of the distribution of turning angles determines the strength of the directional persistence. We
considered a gamma distribution with shape 0.5 and rate 3 for the step lengths, to mimic the
distribution of step lengths found in the zebra data analysed in Section 4.8. We used a von
Mises distribution with mean zero for the turning angles. We chose several different values for
the concentration parameter of the von Mises distribution, x = 0.5, 2, 5, to induce different
levels of persistence. (The larger the concentration, the more directed the movement.) The
value k = 0.5 was approximately the concentration of the distribution of turning angles in
the zebra track of Section 4.8.

As mentioned in Section 3.1, the parameters of the SSF do not directly describe the utilisation
distribution. To estimate the utilisation distribution of the SSF model, we generated a long
trajectory of 10° locations, as suggested by Avgar et al. (2016) and Signer et al. (2017).
We fitted a RSF to the simulated locations, to estimate the steady-state habitat selection

parameters (to compare with the local Gibbs estimates).

We then divided the simulated data set into 50 tracks of 2000 observations each. For each
subtrack, we fitted the local Gibbs model with normal half-step density, to check whether it
was able to recover the habitat selection parameters. The estimated utilisation values of the

four habitat types are shown for the 50 experiments in Figure 4.12.

In the scenario with concentration x = 0.5, the habitat selection parameters were accurately
estimated in all experiments. This confirms that, for moderate directional persistence, the
estimates of the normal kernel model are not biased. However, when the concentration
was larger (i.e. when the persistence was stronger), the estimates appeared to be biased. In
Figure 4.12, the results for k = 2 and x = 5 indicate that the preference for grasslands
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and bushed grasslands was overestimated, and the preference for bushland and woodland
was underestimated. This suggests that the local Gibbs model may produce biased habitat
selection estimates when the movement is strongly autocorrelated, because this persistence
cannot be accounted for by the formulation.

4.8 Zebra case study

We illustrate the use of the method described in this chapter to fit the local Gibbs model to

animal movement and habitat data.

4.8.1 Data set

We considered a GPS track of a plains zebra (Equus quagga), with locations collected every
30 minutes from January to May 2014 in Hwange National Park (Zimbabwe). The data
consist of 7246 locations observed at regular time intervals. Of the 7246 observations, 125
were missing at random. It is straightforward to deal with missing locations in this framework:

the corresponding missing steps do not contribute to the likelihood.

We used a vegetation map of Hwange National Park, at a resolution of 30m in each dimension,
to define a categorical habitat covariate. The vegetation covariate has four categories:
grassland, bushed grassland, bushland, and woodland. The vegetation is increasingly dense
in these four types of vegetation cover, and the aim of the study was to estimate the preference
of the zebra for the different habitats. We truncated the vegetation raster to the study region,
with a Skm margin around the zebra track. Over the study region, the four vegetation types
were represented in very varying proportions: 1.3% of grassland, 17.4% of bushed grassland,
49.7% of bushland, and 31.6% of woodland.

Figure 4.13 shows two plots of the vegetation map, with and without the zebra movement
track. Although the grassland habitats only cover a small proportion of the area, it is where
the zebra spent most of its time. About 31% of the observed locations are in the grassland
habitat, and 57% in the bushed grassland habitat.

For the analysis, we transformed the vegetation map into three dummy covariates, similarly to
what we did in the simulation study of Section 4.7. The three dummy covariates corresponded
to grassland (cy), bushed grassland (c;), and bushland (c3), respectively. The fourth habitat

type, woodland, was used as reference category.
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4.8.2 Normal kernel model

We fitted the normal kernel model to the zebra track, to estimate four unknown parameters:
the scale parameter o, and the three habitat selection parameters (1, 32, 53). We generated
Monte Carlo samples of size n,, = n, = 40, based on the results of the simulations of Section
4.7.

We used the numerical optimiser optim in R to maximise the approximate log-likelihood
function of the model. Gradient-based optimisation techniques are susceptible to remain
stuck in a local maximum of the objective function, and to fail to converge to its global
maximum. The choice of starting values, which determine where the optimiser starts its
search in parameter space, is important. Poorly-chosen starting values, e.g. very distant from
the maximum likelihood estimates, are more likely to lead to numerical issues. To circumvent
this problem, we ran the optimisation 50 times, starting from different sets of starting values
(always with the same Monte Carlo samples). We selected the values randomly, each from a
uniform distribution over an interval of plausible parameter values. We then selected the best
of the 50 fitted models, i.e. the model with the largest likelihood. Each model fit took about 8
min on a 2GHz 15 CPU.

For the best fitting model, we calculated 95% confidence intervals of the parameter estimates,
as follows. We computed the Hessian matrix of the approximate log-likelihood at the
parameter estimates, using the function hessian of the R package numDeriv (Gilbert and
Varadhan, 2016). Like for the point estimates, the accuracy of the estimated Hessian depends
on the size of the Monte Carlo samples passed to the function. We tried several Monte
Carlo sample sizes, and found that very little change occurred beyond n, = n, = 50. We
then derived an estimate of the covariance matrix of the estimators, as the inverse of the
Hessian matrix. Finally, we calculated standard errors as the square roots of the diagonal
elements of the covariance matrix. We used assumptions of asymptotic normality to obtain

95% confidence intervals for the habitat selection parameters.

Point estimates and 95% confidence intervals of the habitat selection parameters are given in
Table 4.2. We also present the corresponding (non-normalized) utilisation values of the four
habitat types, which give a measure of the preference for each habitat, compared with the
reference woodland habitat. Figure 4.14 shows a map of the estimated utilisation distribution

of the zebra.

The estimates of the habitat selection parameters, and the estimated utilisation values of each
type of vegetation, indicate that the zebra strongly selected the grassland habitat and, to a
lesser extent, the bushed grassland habitat. Indeed, the utilisation value of the grassland
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Habitat type Bi 95% Cl 7
Grassland 272 (2.53,292) 15.2
Bushed grassland 1.41 (1.23,1.59) 4.1
Bushland 0 (-0.18,0.18) 1

Woodland (reference)

0 1

Table 4.2 Habitat selection parameter estimates Bz for the normal kernel model, 95% con-
fidence intervals, and corresponding (non-normalized) utilisation value 7; for each habitat
type. Woodland is the reference category, and the corresponding parameter is not estimated

but fixed to O.
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Fig. 4.14 Estimated utilisation distribution in the zebra case study, with the normal kernel

model.
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is about 15 times larger than the utilisation values of the bushland and woodland. This is
consistent with our knowledge of zebra behaviour: they tend to favour open habitats, where
they forage, and where the risk of predation is lower. It also confirms the results found by
Courbin et al. (2016) in a similar study (although with a different data set).

The standard deviation of the half-step density was estimated to 6 = 0.20. As detailed in
Section 3.5.1, the habitat-independent distribution of step lengths under the normal kernel
model is a Rayleigh distribution with scale parameter A = v/2¢. In this application, we
have A\ = v/26 = 0.28. The estimated mean of the Rayleigh distribution, i.e. the habitat-
independent mean step length, is \/71'_/2;\ = /76 = 0.35km over 30-minute intervals.

To assess this movement model, we simulated 10* locations from the fitted model, on the
same habitat map as the observations. We compared the distribution of step lengths observed
in the zebra data set to the distribution of simulated step lengths (Figure 4.15). There is
a clear discrepancy between the two distributions: the model fails to capture very short
and very long step lengths, and overestimates the density of intermediate step lengths. The
empirical distribution of step lengths has a mode at zero, and a long tail, which cannot be
appropriately modelled by this formulation. We then considered the availability radius model

with random radius parameter, for more flexibility.

4.8.3 Availability radius model

We fitted the local Gibbs model with random availability radius to the same track. We
modelled the availability radius with a gamma distribution, and estimated its shape and rate
parameters. We used Monte Carlo samples of size n, = 20 and n,, = n, = 40, following the
simulation study of Section 4.7.5. Like in Section 4.8.2, we ran the numerical optimisation
50 times with random initial parameter values, and kept the model with the largest likelihood,
to avoid numerical convergence issues. Each model fit took about 1.5 hour on a 2GHz i5
CPU. We used a method similar to the one described in the case of the normal kernel model

to obtain standard errors for the estimated parameters.

The estimates of the habitat selection parameters, and of the utilisation values of all vegetation
types, are given in Table 4.3. The parameter values are similar to those obtained with the
normal kernel model, and the results confirm that the selection is stronger for open habitats
(i.e. grassland and bushed grassland). The estimated shape of the gamma distribution of
the availability radius was & = 0.77, and the rate was p = 3.56. The estimated gamma
distribution of the availability radius therefore had mean E(r) = &/ = 0.22km, and 95th
percentile 150,95 = (0.71km.
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Fig. 4.15 Histogram of the observed step lengths in the zebra data set. The lines show the
densities of simulated step lengths, obtained from two fitted models: the local Gibbs model
with normal half-step density, and the local Gibbs model with gamma-distributed availability
radius. We truncated the z-axis to [0, 1.5] for better visualisation, but the maximum observed
step length is around 3km.

Habitat type B 95%Cl
Grassland 2.38 (2.12,2.64) 10.8
Bushed grassland 1.37 (1.13,1.60) 3.9
Bushland 0.25 (0.02,048) 1.3
Woodland (reference) 0 1

Table 4.3 Habitat selection parameter estimates for the availability radius model, 95%
confidence intervals, and corresponding (non-normalized) utilisation value for each habitat
type. Woodland is the reference category, and the corresponding parameter is not estimated
but fixed to 0.
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To assess the random availability radius model, we cannot directly measure the goodness-
of-fit for the estimated distribution of the availability radius, because its true value is never
observed. Instead, like we did for the normal kernel model in Section 4.8.2, we simulated
a track of length 10* from the fitted model, on the same habitat map. We compared the
distributions of observed and simulated step lengths (Figure 4.15). The distribution of the
simulated steps resembles that of the observed steps much more closely than with the normal
kernel model. This indicates that the model was able to capture the speed of the zebra’s
movement. This is remarkable, as the step lengths or the speeds are never directly modelled:

instead, we estimated the distribution of the unobserved radius of the relocation region.

There is a trade-off between realism of the movement model and computational speed: the
random availability radius model was 15-20 times slower than the normal kernel model in
this analysis, due to the additional nested integral in its likelihood (Equation 4.9). Here,
the habitat selection estimates were very similar using both models. This suggests that the
simpler one (normal kernel model) is sufficient to capture the RSF, even if the movement
component is not flexible enough to capture the zebra’s step lengths. However, we could not
have known this before fitting the random availability radius model and, generally, model
checking methods should be used to verify that features of the movement are appropriately
captured by the model. Although the model does not capture the directional persistence that
is found in the zebra track, the results of the simulations of Section 4.7.6 suggest that the

habitat selection estimates are still accurate if the autocorrelation is moderate.

Standard model selection methods can also be used to choose the model formulation. In
the zebra analysis, the Akaike Information Criterion (AIC) for the normal kernel model
was -715.6, and the AIC for the availability radius model was -23401.2. This criterion thus
strongly favours the latter, more complex, model formulation.

4.9 Discussion

We showed how a new class of step selection models, based on the simulation rules of
MCMC algorithms, can be used to estimate an animal’s habitat selection and movement
characteristics. We provided a natural framework to model animal movement and space use,
in which short-term step selection rules give rise to the long-term utilisation distribution.
This approach connects standard RSF and SSF models, as the equilibrium distribution of
the movement model is guaranteed to be proportional to the underlying resource selection
function. We described maximum likelihood estimation for the local Gibbs sampler, a flexible
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family of MCMC algorithms which can be used to model animal movement. Parameters of

movement and habitat selection can be estimated jointly.

MCMC step selection models describe the animal’s movement and space use within a
consistent formulation. They can therefore be used to combine inference from telemetry and
survey data, and to reconcile individual-based and population-based approaches. Survey data
include direct observations of animals from a population, e.g. from capture-recapture or line
transect surveys. Because they do not display the same spatio-temporal autocorrelation as
telemetry data, survey data are often treated as independent observations from the utilisation
distribution of the population. They can be integrated into a MCMC step selection analysis
to provide additional information about the long-term habitat selection and space use. For
example, consider that we have a sample of (dependent) telemetry observations (1, . .., x,,)
from one or several individuals of a population, and a sample of independent survey locations
{y1,...,y,} from that population. The likelihood of the telemetry sample under the MCMC
movement model, Ly, 1s given in Section 4.1 as the product of the transition kernel of the
model for all observed steps. The likelihood of the survey sample, Lj,, can be obtained
as a function of the habitat selection parameters from the standard RSF methodology. For
example, we can use logistic regression with a use-availability design, or a Poisson GLM on
the location counts (Boyce and McDonald, 1999; Aarts et al., 2012). Then, the combined
likelihood of the two data sets is simply the product of L,y and Li,q. The resulting estimates

of habitat selection are based on both sources of data.

We calculated the likelihood of an observed trajectory (xy, ..., xr) as the product of the
likelihoods of each step from x; to @1, fort = 1,...,7 — 1. In this approach, the first
observation, x1, is treated as deterministic, and does not contribute to the inference. In some
applications, we could however try to learn from the first observation. Blackwell (2003)
suggested that the first observation of a telemetry data set could sometimes be assumed to
arise from the equilibrium distribution of the movement model. This may in particular be
a reasonable assumption if the first few days after tagging were discarded—a procedure
analogous to the idea of burn-in in MCMC sampling. In the local Gibbs model, we could
therefore consider that the first observed location is a sample from the utilisation distribution,
and include it as such in the likelihood calculations. The improvement would be minimal
in the analysis of a single track, but it could be valuable when many tracks are processed

simultaneously, i.e. when many first locations are available.

Although the simulations and the case study were based on categorical habitat data, the
method would also be applicable to continuous environmental covariates, such as elevation or

distance to water. One could for example model territoriality or attraction towards a point in
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space, with the inclusion of the distance to that point as a covariate. This idea also has some
mathematical appeal. In the presentation of the local Gibbs model, we considered that the
utilisation distribution was defined on a bounded set 2 C R?. This is convenient to ensure
that the RSF is integrable, and that the normalized RSF (i.e. the utilisation distribution) is well-
defined. It is a reasonable assumption, because analyses of telemetry and environmental data
are always restricted to a bounded geographical region. This can however be relaxed, and the
utilisation distribution can be defined over Q2 = R?, if the improper integral [, _p, w(c(2))dz
converges. In practice, one way to achieve this result is to include the distance to a point as a
covariate, with a negative selection coefficient. The negative selection coefficient ensures

that the RSF decreases as the distance increases, and that it is integrable over R

An important feature of the local Gibbs model is that the size of the region of availability
does not need to be defined a priori. In habitat selection analyses based on use-availability
designs, the choice of the spatial extent of the availability region is challenging, and can
lead to biased selection estimates (Beyer et al., 2010; Northrup et al., 2013). Instead, we
estimate it from the observed tracking data, with a movement model based on a symmetric
half-step density. The scale of availability is for example measured by the variance parameter
of the normal kernel model, and by the radius parameter in the availability radius model.
One limitation of this method is that the animal’s movement and perception are modelled
jointly. The half-step density of the algorithm describes both the size of the region that the
animal can perceive and the distance that it is susceptible to cover over one time interval.
This is a strong assumption, that is made in most step selection models (Fortin et al., 2005;
Forester et al., 2009), in which habitat selection is considered to take place at the scale of
the movement kernel. Recently, Avgar et al. (2015) and Bastille-Rousseau et al. (2018) have
proposed models to estimate the movement process and the perception on separate scales.
Additional work is required to allow this flexibility within the local Gibbs model.

In Section 3.3, we suggested that rejection-based MCMC algorithms, such as Metropolis-
Hastings, are not suitable to construct realistic MCMC step selection models. Here, we
would like to give this idea more detailed consideration. In rejection-based algorithms, a
proposed step is sampled at each iteration from some distribution, and it is either accepted or
rejected, with some probability. The acceptance-rejection step is required to ensure that such
samplers satisfy the detailed balance condition. In the framework described in Chapter 3, the
proposal distribution of the algorithm could be considered as a model for availability, and the
acceptance-rejection step could describe selection. The step is accepted, i.e. selected, if the
habitat features of the end point are suitable, for example. If the step is not accepted, then it

is assumed that the animal stays in its current location over one time interval. This is not a
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problem in itself, as it can happen that an animal stays immobile over more than one time
interval, resulting in a step of length zero. However, this phenomenon cannot generally be
attributed to habitat selection. The animal may be immobile because it is resting, for example,
and not as a result of “rejecting” a candidate relocation. There are also many telemetry data
sets that do not include any steps of length zero. Such data sets are very improbable outputs
for a step selection model based on a rejection-based MCMC algorithm: they can only arise
if every proposed step was accepted. In preliminary experiments that are not presented in
this thesis, we implemented a MCMC step selection model based on a Metropolis sampler
with normal proposal distribution. We used it to estimate the habitat selection parameters and
the variance parameter of the proposal distribution, from tracking data that did not include
steps of length zero. The estimated selection parameters were all very close to zero, i.e. the
estimated utilisation distribution was flat. This is because the most plausible explanation
for a 100% acceptance rate in a Metropolis algorithm is that the target distribution is flat.
We therefore believe that rejection-free algorithms (such as the local Gibbs sampler) should
generally be preferred in the context of the method developed here, as they are more widely
applicable to the analysis of animal movement data. Moreover, steps of length zero are not
prohibited in rejection-free algorithms. In particular, as mentioned in Section 3.5.3.2, zero
inflation can be used in the local Gibbs model to allow for steps of length zero with positive

probability.

In the case study of Section 4.8, we fitted two different local Gibbs models to a zebra
movement track, and compared them using simulations. We found that simulated step lengths
from the local Gibbs model with random availability radius matched the observed step
lengths more closely than those simulated from the local Gibbs model with normal half-step
density. However, the computational effort was greatly increased in the former, because of
the need to integrate over the random availability radius. It may be possible to find a local
Gibbs formulation that combines the computational speed of the normal kernel model and the
flexibility of the random availability radius model. For example, we could define the half-step
density as the combination of a uniform distribution of angles and a given distribution for
the distance to the origin, as suggested in Section 3.5.3.1. The uniform angles ensure that
the half-step density is symmetric, and the shape of the distance distribution determines the
habitat-independent movement model. It may be possible to achieve a distribution of step
lengths with a mode close to zero, as in the zebra data set, with an exponential or Weibull

distribution of distances.

In Section 1.1, we mentioned that there exist other types of animal movement data, in

particular spatially-referenced mark recapture data (Ovaskainen, 2004). It is not clear that
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the methods described in this chapter could be applied to such data. Indeed, mark-recapture
data are sparse, and irregular in time. We could possibly apply the normal kernel model for
irregular intervals, described in Section 3.6.3. For very sparse locations, however, the model
would not capture the short-term movement of the animal, but rather a longer-term rate of
diffusion. In the limit, if the time intervals between observations are very long, the scale of
the movement kernel will cover the whole study region, and the observations will be treated
as a random sample from the target utilisation distribution. Diffusion models such as those
described by Ovaskainen and Cornell (2003) and Ovaskainen (2004) may be better suited to

mark-recapture movement data.



Chapter 5

The Langevin movement model

In Chapters 3 and 4, we developed a class of models of animal movement and habitat
selection, based on Markov chain Monte Carlo algorithms. That approach was formulated
in discrete time, although we proposed an extension to analyse location data collected at
irregular time intervals. In this chapter, we develop a continuous-time model of animal
movement and habitat selection, to tackle this problem. We present the model in Section
5.2. In Sections 5.3 and 5.4, we develop a method of inference to estimate parameters of
movement and habitat selection, from telemetry and environmental data. We investigate
the performance of the method in a simulation study in Section 5.5, and we apply it to the

analysis of three tracks of Steller sea lions in Section 5.6.

The material presented in this chapter was described in the preprint Michelot et al. (2018b).
It is the result of a collaboration with Pierre Gloaguen and Marie-Pierre Etienne. Pierre
Gloaguen originally suggested the use of the Langevin diffusion to model animal movement,
he contributed to the statistical developments presented in Sections 5.3 and 5.4, and he
contributed to the implementation of the models in R. Marie-Pierre Etienne contributed to

the statistical developments presented in Sections 5.3 and 5.4.

5.1 Introduction

In Chapter 3, we presented a model of animal movement with an explicit stationary distribu-
tion, using the properties of MCMC algorithms. We used it to describe habitat selection as
a scale-independent process, with the same parameters affecting the short-term movement
and the long-term space use. The movement component of the MCMC step selection model,

however, is tied to the scale of observation of the tracking data. Indeed, MCMC samplers are
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defined as discrete-time Markov processes, where one time step corresponds to one iteration
of the algorithm. In the framework described in Chapter 4, the movement parameters of
MCMC step selection models are therefore scale-dependent. In some special cases, it is
possible to make assumptions about the scaling properties of the parameters, as suggested
for the variance of the normal kernel model (Section 3.6.3). However, in general, inferences
made about the extent of the animal’s perceptual range, and about its speed of movement,
will depend on the time interval of the data. This is a general limitation of discrete-time
models of animal movement, which can make their interpretation difficult (because it is
tied to the arbitrary time scale of the observations). It also has practical implications, as
mentioned in Section 1.2. In particular, the parameters of the model are defined over a fixed
time interval, so discrete-time models cannot be used to analyse telemetry data collected
at irregular intervals. Similarly, the movement parameters of the MCMC step selection
model cannot be compared across studies if the data sets do not all have the same sampling

frequency.

Spatially-structured diffusion models, described in Section 1.3.3, model movement and
habitat preference in a continuous-time framework (Ovaskainen, 2004, 2008). Those methods
focus on the analysis of animal movement in an environment composed of discrete habitat
patches. In this chapter, we describe the movement of an animal, and its long-term use of

space, in response to continuous environmental covariates.

Following the basic idea of MCMC movement models, we use a stochastic process for which
both the short-term movement dynamics and the long-term stationary distribution are known.
However, unlike in MCMC movement models, we now consider a continuous-time stochastic

process, called the Langevin diffusion process, to model the animal’s location.

5.2 Model formulation

5.2.1 The Langevin movement model

We consider a continuously differentiable distribution 7 : R? — R, and we denote by
(X)i>0 the continuous-time location process of the animal. We model it with the Langevin
diffusion on 7, defined by Roberts et al. (1996) as the solution to the stochastic differential
equation

dX; = %Vlogﬂ(Xt)dt—i—th, (5.1)

where V = (0/0x,0/0dy) is the spatial gradient operator, and (W;) is a standard Wiener
process. The process is also defined by an initial condition X ~ po(+). The initial location
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is typically assumed to be deterministic, i.e. Xy = x(. In the following, we will make this
assumption, and omit the initial condition. The drift term of Equation 5.1, V log 7(X})/2,
gives the expected displacement. Here, the drift indicates that the process will tend to move
towards the direction of increasing log 7, i.e. towards increasing 7 (because the logarithm is

monotonic). The Wiener process adds stochasticity to the process.

This is conceptually similar to the movement models based on potential functions (Brillinger
et al., 2001). The idea of a potential function is often used in physics to describe the spatial
field of forces applied to an object. In the context of animal movement, the potential function
is defined as a two-dimensional surface. It represents the “forces” of attraction and repulsion
that drive the animal’s movement. The animal will tend to be attracted by areas where the
surface is low, and will tend to avoid areas of high potential. Preisler et al. (2004) suggested
that the potential function could be formulated as the sum of terms of attraction and repulsion
from habitat features, e.g. roads or food resources. In that framework, the animal’s movement
is thus modelled in response to the habitat characteristics of its surroundings. Similarly, the
movement of the Langevin diffusion process is determined by the gradient of the function
7 at its current location. Note that the Langevin diffusion process reduces to an Ornstein-
Uhlenbeck process when 7 is a normal distribution. (We defined the Ornstein-Uhlenbeck
process in Section 2.4, and we will discuss its applications in movement ecology in Chapter
6.)

Under some mild regularity conditions on 7, Roberts et al. (1996) showed that 7 is the
stationary distribution of the process (X;) defined in Equation 5.1. The Langevin diffusion
process can therefore be viewed as a model of movement and space use, similarly to the
MCMC movement model of Chapters 3 and 4. The (continuous-time) dynamics of the
movement process are described in Equation 5.1, and 7 is the long-term utilisation distribution
of the animal. This model satisfies the intuitive notion that long-term space use by animals is

the consequence of their short-term movement decisions.

The process given in Equation 5.1 is not a flexible movement model, because the speed of
the process is only determined by the gradient of the underlying distribution 7. In particular,
it does not allow for the possibility of two animals moving at different speeds on the same
utilisation distribution. Therefore, we introduce a speed parameter, 72, and we consider the
location process defined as the solution of

2

dX, = %v log m(X;)dt + ydW,. (5.2)
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This is inspired by a similar modification proposed by Roberts and Rosenthal (1998). This
process is “speeded up” by a factor 72, compared with the process defined in Equation
5.1. The drift term is multiplied by ~2, but the diffusion term is multiplied by ~ rather
than ~2, because increments of the Brownian motion scale linearly with the square root of
time (Einstein, 1905). The introduction of 72 only changes the speed of the process, but it
does not change its stationary properties. Indeed, Xifara et al. (2014) described a similar
extension of the Langevin diffusion, in the context of the development of gradient-based
MCMC algorithms, and they showed that the process (X) defined in Equation 5.2 also has
7 as its stationary distribution. We use it as the basis for a model of movement and space use,
that we call the Langevin movement model.

5.2.2 Modelling habitat selection

To link the movement of the Langevin process to environmental drivers, we model the
utilisation distribution 7 with a resource selection function, like we did in Chapters 3 and 4.
We consider J spatial covariates c1, . . ., c¢;, and we use the exponential form for the resource
selection function,

1 J
m(x) = o exp Z Bjc;i(x) (5.3)
j=1

where C' is a normalizing constant (as in Equation 1.2). The drift term of the Langevin
diffusion defined by Equation 5.2 can then be written

2

¥ 1
EVIogw(Xt) = —Vlog o P Z,Bjc] X,)

Furthermore, we have V log(C') = 0, and the gradient can be written inside the sum, i.e.

J
f‘)/
—VlogﬂXt :52 Ve (Xy)
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Finally, Equation 5.2 becomes

J
2
X, =~ > BVei(Xy)dt + v dW. (5.4)

Jj=1

Equation 5.4 requires the covariate functions c¢; to be differentiable, to ensure that V¢; is
well-defined. As mentioned before, spatial covariates are most commonly measured on a
grid of points. They are then stored as a raster and, for most applications, they are considered
to be piecewise-constant over each grid cell. The gradient of a piecewise-constant function is
zero, except at the boundaries of each grid cell (where it is undefined). In the context of the
Langevin movement model, it is therefore necessary to interpolate the observed covariates
into differentiable functions. In Sections 5.5 and 5.6, we use bilinear interpolation for this
purpose (e.g. Chang, 2018, Section 6.4.1). The advantage of bilinear interpolation is that the
interpolated function takes a simple form, from which it is possible to derive the gradient
analytically (Appendix C). If an other interpolation technique is used, it may be necessary to

use tools of numerical differentiation to compute the gradient.

Note that, because the Langevin movement model is based on the gradient of the covariate
fields, it cannot directly be used with discrete-valued covariates. Indeed, a discrete covariate
function may be constant over large areas of the study region. Then, the gradient of the
covariate is zero in most grid cells, except in the cells where its value changes. In particular,
the model is not directly applicable to categorical covariates (e.g. habitat type), because it is
unclear how the gradient should be measured within each category. In the following, we only
consider continuous-valued covariates.

Equation 5.4 defines a continuous-time model of movement and habitat selection. In this
approach, the movement of an animal is modelled in response to its local environment. At any
instant, the animal tends to move towards better habitat, i.e. in the direction of the gradient
of the RSF. This is formulated in continuous time, unlike other models of local habitat
selection such as step selection functions (Forester et al., 2009) or the MCMC movement
model of Chapters 3 and 4. Those models describe habitat selection at the scale of the
time step of observations, whereas the Langevin movement model captures continuous-time
habitat selection, independently of the time step of observations. Movement models based on
potential functions also describe the instantaneous displacement of an animal as a response
to local habitat features. Preisler et al. (2013) described a set of assumptions under which
a potential-based model is stationary. In that context, the stationary distribution of the
movement process can be derived directly from the potential function. The approach that
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we present can be seen as an special case of the model of Preisler et al. (2013), with the

formulation of the stationary distribution as a function of spatial covariates.

5.2.3 Relation to diffusion models

We presented the Langevin diffusion process as the solution of a stochastic differential
equation, which describes the evolution of the process in time (Equation 5.2). Another
possible representation of the process is through the Fokker-Planck equation, which describes

the evolution of the probability density function of the process.

For simplicity, we consider the one-dimensional Langevin diffusion process, and we denote
by u(z, t) the probability density of the animal being at the location x at time ¢. The Fokker-
Planck equation is a partial differential equation for the unknown function « and, for this

model, it can be written

I[log w(z
ouwt) 20| T (e )| 2 920 p)
R R (5.5)

a2 o T T o
Similarly to the stochastic differential equation representation, the two terms of the right-
hand side of Equation 5.5 are called the drift (or advection) term, and the diffusion term,
respectively. From Equation 5.5, we can draw a parallel between the Langevin movement
model and spatially-structured diffusion models (Section 1.3.3). Ovaskainen (2008) describes
an animal’s movement as the solution to a Fokker-Planck equation with general (and possibly
habitat-dependent) drift and diffusion terms. In the Langevin movement model, the diffusion
term is constant, and determined by the speed parameter 72. The drift term, however, is
variable in space, because it depends on the spatial gradient of the utilisation distribution.
By property of the Langevin diffusion process, the time limit of u(x,t) is the stationary
distribution 7(z).

5.3 Discretization of the Langevin process

The transition density of a diffusion process (X ) is the probability density p( X, 5| X;), for
any time interval 6 > 0. As we explained in Section 2.4, diffusion processes are Markovian,
and the transition density can therefore be used for simulation and inference. For simple
processes, it may be analytically tractable, e.g. for the Brownian motion, or the Ornstein-
Uhlenbeck process (see Chapter 6). In those cases, we can directly derive the rules of
simulation of the process, and a likelihood function for inference. However, there is in



5.3 Discretization of the Langevin process 109

general no closed-form expression for the transition density of the Langevin diffusion process
(Roberts et al., 1996). As a result, we cannot carry out exact simulation from the Langevin
process, or exact inference for the Langevin movement model. Nevertheless, numerical
methods can be used to obtain an approximation of the process and of the transition density
(see e.g. lacus, 2009).

In this section, we describe one such numerical method, the Euler-Maruyama discretization
scheme, and we derive the transition density of an approximation of the Langevin diffusion
process. In Section 5.4, we explain how the transition density can be used to obtain estimators

of all the parameters of the model.

5.3.1 Euler-Maruyama discretization

If the transition density of a diffusion process is analytically intractable, it can be approxi-
mated by discretizing the process in time. The most common method is the Euler-Maruyama
discretization scheme, which is analogous to the Euler method for ordinary differential
equations. The Euler-Maruyama method can be applied to the general stochastic differential
equation

dX; = b(X,)dt + o(X;)dW,, (5.6)

where b is the drift function, and o is the diffusion function.

Discretization methods are used to approximate the process (X;) by a simpler (tractable)
process, over each interval [t;, ¢;,1) of a discrete time grid (¢1,...,t,). Under the Euler-
Maruyama scheme, for ¢; <t < t;.4, the solution process to Equation 5.6 is approximated
by the solution to

dX; = b(x;)dt + o(x;)dW, (5.7)

where X;, = ;. The drift function 0 is approximated by a piecewise-constant function,
with value b(x;) over [t;,t;41), foralli € {1,...,n — 1}. Similarly, the diffusion term is
fixed to a constant value, o(x;), over each interval. In other words, the diffusion process is
approximated by a Brownian motion with drift between ¢; and ¢, .

Because the drift and diffusion are piecewise-constant, the approximate diffusion process has
a closed-form Gaussian transition density over each interval [t;, ¢;11), given by the transition

density of the Brownian motion with drift,

p(xiv1|x:) = o(Tig1]|Ti + Aib(x;), U(wi)QAib)
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where ¢(+|p, ) is the bivariate normal density with mean p and covariance matrix X, I is
the 2 x 2 identity matrix, and A; = t;,1 — t; is the length of the time interval.

In the case of the Langevin diffusion, the drift and diffusion terms are

2
b(X,) = %Vlog 7(X,), ando(X;) = 1.

Following from Equation 5.7, the Euler-Maruyama discretization of the Langevin diffusion

is therefore defined by
2

dX, = %Vlogw(a:i)dt + Y dW,,
fort; <t < Tiv1-

As in the general case, this equation defines a Brownian motion with drift, and the transition

density of the discretized process between ¢; and ¢4 is

2

A
5 'Viogn(x;), VAl | . (5.8)

p(xip|x;) = ¢ | Ty |25 + 1

5.3.2 Simulation from the Langevin diffusion process
5.3.2.1 Approximate simulation

The Euler-Maruyama approximation of the Langevin diffusion can be used for simulations.
We consider (¢, . .., t,) the (possibly irregular) times at which the process should be simu-
lated, and denote by X; the value of the process at time ¢;. We initialise the simulation with
X = x, and simulate the process forward using the approximate transition density found
in Equation 5.8. For¢ =0,...,n — 1,

VA
Xi+1|{Xz’ = 331} ~ N x; + 9 ZVIOg W(wz‘), ’yzAiIQ .

This procedure does not simulate exactly from the Langevin diffusion process, and the
accuracy of the approximation depends on the time step of discretization (A;). We investigate
the effect of the discretization in the simulations of Section 5.5.1.
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5.3.2.2 Maetropolis-adjusted Langevin algorithm

The simulation method described in Section 5.3.2.1 is not exact, because it is based on the
transition density of the Euler-Maruyama discretization of the Langevin diffusion process.
Roberts et al. (1996) called this simulation algorithm the “unadjusted Langevin algorithm”,
and they showed that it may not converge to the correct stationary distribution 7. In the
context of MCMC sampling, they described a “corrected” version of the discretized Langevin
diffusion, to sample exactly from the target distribution. They considered the transition
density of the discretized Langevin process as the proposal distribution for a Metropolis-
Hastings algorithm. In their Metropolis-adjusted Langevin algorithm, a sample is proposed
at each iteration from the approximate transition density, and it is either accepted or rejected,
with some probability. This is a special case of Metropolis-Hastings, such that the limiting
distribution of samples is the correct target distribution. Although the Metropolis-adjusted
algorithm is guaranteed to sample from the stationary distribution 7, it does not simulate
from the exact transition density of the Langevin diffusion. It is useful to construct a MCMC
algorithm that converges to the correct distribution, but it is not a good basis for a model of
animal movement. Indeed, it requires a Metropolis acceptance-rejection step, to correct for
the approximation of the transition density. For the reasons discussed in Sections 3.2 and
4.9, rejection-based algorithms are generally not good representations of animal movement.
However, we propose to use the Metropolis-adjusted Langevin algorithm indirectly, not to

model animal movement, but to assess the accuracy of the Euler-Maruyama approximation.

We suggest using the acceptance rate of the Metropolis-adjusted simulation algorithm to
measure the discrepancy between the true Langevin diffusion and the discretized process. As
the time step of discretization decreases, the discretized process becomes a better approx-
imation, and the acceptance rate of the algorithm increases. In Section 5.5.2, we simulate
from the Metropolis-adjusted Langevin algorithm at different time steps of discretization, to
compare the rates of rejections. This criterion becomes very valuable to assess a model fitted
to real data. In the case of real data, the time step of discretization is given by the time step
of observation, and it cannot be adjusted to improve the approximation. Then, the problem
is to determine whether the time step of observation leads to a good approximation of the
process, in the context of the analysis. This may depend on the speed of the process (i.e. the
speed of movement of the animal), and on the spatial autocorrelation structure of the target
distribution (i.e. of the covariates when modelled with a RSF). In Section 5.6, we use the
acceptance rate of simulations from the Metropolis-adjusted algorithm to assess a Langevin

movement model fitted to tracking data from three Steller sea lions.
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5.4 Inference

The parameters of the Langevin movement model are the habitat selection parameters
{B4,...,Bs}, and the speed parameter v2. In this section, we develop a method to estimate
those parameters from telemetry and environmental data. We consider n + 1 observed
locations (o, . . ., &, ), as a realisation of the location process (X;) at times (o, ..., %,), and
J covariates cy, . . ., c;. We describe an approach to inference based on the Euler-Maruyama

discretization of the Langevin diffusion process.

5.4.1 Approximate likelihood of the Langevin movement model

The likelihood of the Langevin movement model is not analytically tractable. Instead, we
consider the likelihood of the approximate process obtained from the Euler-Maruyama
discretization scheme, given in Equation 5.8. Under the discretized process, the likelihood of
a step from x; to @; ;1 is given by its transition density over the interval [t;, t;,1]. The steps
are independent, and the likelihood of n + 1 observed locations (xy, . . ., &) is the product
of the likelihood of the individual steps,

n—1 2A‘
L(B, 7|z, - -, &) = H o | @i |2+ 2 5 “Viogn(z:), VAl
i=0

Substituting the exponential RSF expression of Equation 5.3 for the utilisation distribution T,
the right-hand side of the equation becomes a function of the habitat selection parameters 3.
Maximum likelihood estimation, or other likelihood methods, can thus be used to estimate
all model parameters and associated standard errors. However, in Section 5.4.2, we show
that the maximum likelihood estimators of the parameters can be written explicitly in this
context.

5.4.2 Least square estimation

The transition equations of the Langevin movement model can be written under the form
of a linear model. Here, we show the derivation of the linear model equation, and we give

closed-form estimators of the model parameters.
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5.4.2.1 Linear model formulation

From the transition density of the Euler-Maruyama discretization of the Langevin process,

given in Equation 5.8, we can write

2N
Xi+1 = XZ + %VIOg W(Xz) + YV AiEi, g; N(O, IQ)

We rearrange the equation and divide both sides by /A, so that the variance of the noise

term is 72,
Xin—Xi VA
VA, 2

The utilisation distribution 7 is modelled by a RSF, so we substitute its expression (Equation

Vg m(X;) + vei.

5.3), and we have

Xin—Xi VA d
— BiVe;(X;) + vei. (5.9)
/Ai 2 JZ:; J J( )

We denote by y; = (x; — x;_1)/+/A;_1 the observed normalized increments, and we stack
them in a vector Y,

Yina
Y21

Y = yn,l
Y1,2

Yn,2

where y; = (y;.1, i 2). We define the matrices TA and D as follows,
NN 0 0 ... 0

0o .. 0 - :
TA: )
0o .. 0 VA, - 0
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801 (962 acJ
%(wo) %(%) T %(%)

801 802 . aCJ .
o1 e ey
2 %(w) %(w) %(w)
dy 0 dy 0 oy 0

861 862 . 80J .
8—y($n—1) 8—y($n—1) T a—y(wn—l)

In the matrices Y, Tx and D, the first n rows correspond to the x coordinate, and the last n
rows correspond to the y coordinate. We define Z = TA D. Finally, the transition equations

given in Equation 5.9 can be written in matrix notation as
Y=Zv+E, (5.10)

where v = 7?3, and E is a 2n-vector of normal terms with mean 0 and variance 2.
The matrices Y and Z are known, as they can be derived from the data. In this system,
the response variable is the observed displacement from X; to X, and the explanatory
variables are the gradients of the covariate functions at the point X;. Equation 5.10 is in the
form of a linear model, and standard results can be used to derive estimators of the model
parameters.

5.4.2.2 Estimators of 3 and >

From the linear model given in Equation 5.10, ordinary least squares can be used to obtain
the maximum likelihood estimator of v,

v=(Z2'2)'2Y,
where Z’ denotes the transpose of the matrix Z. The distribution of the estimator is

U~ N, ¥(Z'Z)™). (5.11)

The variance of the error vector E (defined in Equation 5.10) is the speed parameter 2. An
estimator of 72 is

1 N
22— 2|y — Y2
y H! I,
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where k£ = 2n — J is the number of degrees of freedom. Here, Y = Zvisthe predicted value
of Y, and ||Y — Y'||2 is therefore the sum of squared residuals. From Cochran’s theorem,

the estimator 42 is independent of , and it satisfies

2
A2 = % x G, where G ~ x}. (5.12)

We found an estimator of v = 7?3 and of 72, that we can use to derive an estimator of 3.
We first define B = v/4?, and we show that ,[; is not an unbiased estimator of 3. Indeed, its

expectation is

p[L] =[5 x 2] - 5 en[l] .
Y

The inverse of G follows an inverse-chi-squared distribution with & degrees of freedom, with

expectation

E{i}:ﬁx Lk (5.14)
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SO B is not an unbiased estimator of 3. However, it is easy to see that

(2)d-»

E

Finally, we define an estimator of 3,

(k — 2)p
[EEEN

Note that the estimators 42 and ,[;’ defined here are unbiased for the linear model given in
Equation 5.10. However, that linear model relies on an approximation of the Langevin
diffusion process. The estimators are therefore biased estimators for the parameters of the
Langevin diffusion, and they are only unbiased in the limit, as the time step of discretization
tends to zero. In the simulation study of Section 5.5.3, we investigate the accuracy of this

method for different time steps of discretization.

5.4.2.3 Uncertainty quantification

Confidence intervals for the parameters (3 and 72 can also be derived, from the distribution
of the estimators. From Equation 5.12, it follows that

2

7* = — x 4%, where G ~ .

Ql =

So, a confidence interval for 72, of order o € (0, 0.5), is given by

k k
CIa(72> = X &27 X &2 ;
q1—a/2,k o2,k

where g, ;. 1s the quantile of order « of the chi-squared distribution with £ degrees of freedom.
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To quantify uncertainty in the habitat selection parameters 3, we first calculate the covariance

structure of 3 = /42,
Cov(Bi, 3;) = E[B:5;] — E|Bi)E[5;]
-r ] -r[g] w3

E[5) E[;). (5.15)

By definition of the variance, we have

1 1 17
Y g Y

We found F(1/4?) in Equation 5.14 and, from Equation 5.12,
v 1 v k " 1
ar | — | = Var | = x —
32 273G

()l

where G ~ x7. We substitute the variance of an inverse-chi-squared distribution with &

degrees of freedom,

So, we have

g {%} = 2)3?:? —ay ((k’ —k2)72>2

_k—2 1+L
—(k—2)244 k—4)

We also have
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and so, from Equation 5.11,
=v*Ay; + 7885,
where A = (Z'Z)~!

From Equation 5.11, we have E[J;] = v; = 7*8; and E[J;] = v; = v*f;. Plugging these
expressions into Equation 5.15, we find

~ o~ k’2 2 2 4 k2 4
Cov(f;, B;) = =221 <1 e 4 4) (VA +778iB5) — (=2t 2)2747 BiB;
k2 i 2 2 4 4
R (1 + m) (V" Aij +7°BiB;) — ﬁzﬂj]

K 2\, 2

w [288 A 2
_(k—2)2[k—jl+72 <1+m)]

From this, we deduce the covariance structure of 3,

COV(BZ-,BJ) Cov (k;2ﬁ k_Q/BJ)
N 2 ~ ~
- (%) Cov(3. )

_ 2Bip; 2
R4t <1+k 4)

From the asymptotic normality of the estimators, we can derive an approximate confidence
interval of order « for f3;,

Cl.(8;) = [Bz — Za/2 Var(5;), B + Za)2 Vaf(Bz’)] ;

where z, 5 is the quantile of level a /2 of the standard normal distribution. In the equation

above, the variance of the estimator is

Var(BZ-) = COV(Bz‘, Bz)
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5.5 Simulation study

5.5.1 Effect of time discretization on the target distribution

The transition density of the Euler-Maruyama discretization of the Langevin diffusion can
be used for simulation. Roberts et al. (1996) explained that there is no guarantee that
the discretized process has the same stationary distribution as the true process. Here, we
investigate the effect of the time step of discretization on the long-term distribution of samples,
and we verify that the target distribution is well approximated when the discretization is fine

enough.

We considered three spatial covariates. We generated two random covariates over [—50, 50] x
[—50, 50] at a resolution of 1, with the function RMmatern from the R package RandomFields
(Schlather et al., 2015). The third covariate was the squared distance to the centre of the
map, and was included to obtain an effect of attraction towards that point. This was used
to ensure that the simulations did not come too close to the boundaries of the study region,
where the gradient of the covariate functions is undefined. We defined the target distribution
7 as a normalized RSF based on these three covariates (Equation 5.3), with the coefficients
B = (1,1,—1). We simulated 10° locations from the Euler-Maruyama discretization of
the Langevin diffusion process, with six different (regular) time steps of discretization:
A € {5,2,1,0.5,0.2,0.1}. The first 200 locations of each track, and the target distribution

m, are shown in Figure 5.1.

For each simulated track of length 10°, we counted the number of points in each cell of the
spatial grid of resolution 1 (over which the covariates, and therefore the target distribution,
are defined). We normalized the counts to obtain the empirical distribution of simulated
points, and compared it to the true target distribution 7. Figure 5.2 shows a comparison
of the true and empirical distributions in the six experiments. Figure 5.3 shows the same
comparison on the log scale, to visualise the smaller values. In all plots, we excluded the
grid cells in which there were less than 20 simulated points, i.e. grid cells that were not (or
very rarely) visited.

The top plots of Figures 5.2 and 5.3 indicate a non-linear relationship between the normalized
counts and the values of the target distribution in the grid cells, in the simulations with

long time intervals (A = 5, A = 2). For time intervals of A = 1 and shorter, both figures
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Fig. 5.1 First 200 locations of tracks simulated with different discretization steps from the
Langevin movement model, on an artificial target distribution 7.
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for different discretization steps.
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show a closer alignment with the identity line, suggesting that the simulated samples give a
good approximation of the target distribution. The bottom plots of Figure 5.3 display more
variability for grid cells where the target distribution takes small values. This is because the
simulations with short time intervals covered a shorter period of time overall (the number of
samples being fixed to 10° in all cases). Therefore, tracks simulated on a finer time grid were

overall less likely to visit grid cells where the target distribution is low.

In this experiment, we simulated from the transition density of the Euler-Maruyama approxi-
mation of the Langevin diffusion process. The results confirm that, when the time step of
discretization is short enough, the distribution of samples is a good estimate of the target
distribution.

5.5.2 Metropolis acceptance probability

Simulations based on a discretization of the Langevin diffusion process are not exact. In
Section 5.3.2.2, we suggested that the acceptance rate of the Metropolis-adjusted Langevin
algorithm could be used to measure the discrepancy between the true and the approximated
processes. In the Metropolis-adjusted algorithm, the transition density of the discretized
Langevin diffusion is used as the proposal distribution of a Metropolis sampler. At each
iteration, a point is drawn from the proposal distribution, and it is accepted or rejected with

some probability.

Like in the previous experiment, we considered two random habitat covariates (c¢; and c2),
and the squared distance to the centre of the study region (c3), to construct a RSFE. This time,
the covariates and the RSF were generated over [—100, 100] x [—100, 100], at a resolution
of 1. The target distribution was defined as the normalized RSF, with the habitat selection
parameters 3 = (4,2, —0.1). The negative effect of the squared distance to the centre ensured
that simulated tracks would remain within the limits of the study region. Plots of the two
random covariates and of the target distribution are shown in Figure 5.4.

We simulated from the Metropolis-adjusted Langevin algorithm, with the target distribution
defined above. For the simulations, we considered nine different (regular) time steps of
discretization,

A € {0.01,0.02,0.05,0.1,0.2,0.5,1,2,5}.

For each, we simulated ten tracks of length 7" = 1000 from the Metropolis-adjusted Langevin
algorithm, with speed parameter 4> = 5. We counted the average proportion of rejected
steps over the ten tracks. Figure 5.5 shows the acceptance rates for the different time
discretizations.
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Fig. 5.4 Covariates and target distribution used in the simulations of Section 5.5.2 and 5.5.3.
The target distribution 7 also includes the effect the squared distance to the centre of the map,
not shown here.
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Fig. 5.5 Acceptance rates in simulations from the Metropolis-adjusted Langevin algorithm.
The x axis is on the log scale.

As expected, the acceptance rate decreased as the time interval of discretization increased.
This is because the Euler-Maruyama discretization is only valid at a fine time resolution, and
the approximation becomes worse on a coarse time scale. The acceptance rate tends to 1
when the step of discretization decreases, i.e. when the transition density becomes a better
approximation of the Langevin diffusion process. In this simulation scenario, the average
acceptance rate was around 99.7% for A = 0.01, and around 69.1% for A = 5.

5.5.3 Estimation from thinned tracks

In Sections 5.5.1 and 5.5.2, we investigated the effect of the Euler-Maruyama discretization
when used to simulate (approximately) from the Langevin diffusion process. Here, we look
into its effect when the discretization scheme is used to carry out inference, as described in
Section 5.4.

We considered the utilisation distribution defined in Section 5.5.2, and shown in Figure 5.4.
We simulated 200 tracks from the Euler-Maruyama discretization of the Langevin diffusion
process, as described in Section 5.3.2.1. The time step of discretization was A=0.01 in the
simulations, which led to an acceptance rate of about 99.7% in Section 5.5.2. We then thinned
the simulated tracks, to emulate real telemetry data, and estimated the model parameters
from the thinned data. In different experiments, we thinned the tracks by 1 (i.e. time step of
simulation), 2, 5, 10, 20, 50, and 100. Each time, we kept the first 2000 (thinned) locations of
each of the 200 tracks, resulting in a total of 40000 locations. Note that, with this procedure,
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the same number of observations was used in all experiments, but they covered different
periods of time, because of the different thinning factors. For example, a track of 2000
locations covers 2000 time units if the time resolution is A = 1, but it only covers 20 time
units if the time resolution is A = 0.01. We then applied the method described in Section
5.4 to fit the Langevin movement model separately to the 200 tracks of each thinned data set.

Estimates from all experiments are shown in Figure 5.6.
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Fig. 5.6 Boxplots of estimates of the habitat selection parameters 3, 82 and (3, and of the
speed parameter 2, for different time intervals of observation. The red dotted lines show the
true values of the parameters used in the simulation. The x axis is on the log scale.

The standard errors of the habitat selection parameters (Bl, Bg and Bg) decreased as the time
interval of observation increased. This is because the same number of (thinned) observations
were used in all experiments, such that the tracks thinned to longer time intervals explored a
larger area. The latter thus covered a larger spatial extent, and also a wider range of covariate
values. Like in a standard linear regression, the uncertainty on the coefficients decreases
when the variance of the covariates increases. To offset this effect, we considered a second

scenario, in which all tracks covered the same period of time. We thinned each of the 100
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tracks as before, but we then kept the locations over the time period from ¢ = 0 to ¢ = 500,
regardless of the time interval of observation. At a resolution of A = (.01, each track
comprised 50000 locations; for A = 1, each track comprised 500 locations. We fitted the
Langevin movement model to each track separately, for each time resolution. The estimates

are shown in Figure 5.7.
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Fig. 5.7 Boxplots of estimates of the habitat selection parameters 31, 32 and 33, and of the
speed parameter 2, for different time intervals of observation. The red dotted lines show the
true values of the parameters used in the simulation. The x axis is on the log scale.

When the tracks were always truncated to the same interval of time, the variability of the
estimates of the habitat selection parameters was the same for all time intervals. This suggests
that the uncertainty on the estimates of the habitat selection parameters depends on the extent
of spatial exploration, rather than on the number of observations. However, in this case, the
variance in the estimates of the speed parameter 72 increased as the number of observations

decreased (i.e. in this case, as the time interval increased).

In both Figures 5.6 and 5.7, the mean estimates of 3, and 35 were close to the true values for

the high-resolution tracks (A = 0.01, A = 0.02). For longer time intervals of observation,
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however, they tended to decrease as the time interval increased. As a consequence, the true
parameter values were not well captured by the estimates, for longer time intervals. This
illustrates the deterioration of the Euler-Maruyama approximation for long time steps of
discretization. There are two sources of bias here, because the estimators are only unbiased
when the number of observations tends to infinity, and when the time step of observation
tends to zero (see e.g. Kessler et al., 2012, Section 1.5.3). Based on these observations, we
would expect the selection parameter of the third covariate (squared distance to the centre) to
be underestimated in absolute value, for long time intervals. That is, we would expect it to
be overestimated, because it is negative. However, it does not appear to be the case here: in
fact, the mean estimates of 3 are very similar for all time intervals. This may be because
this covariate is a very smooth function, and its effect can be detected even over long time
steps. Note that, although the strength of the selection was underestimated for the first two

covariates, its sign (attraction or repulsion) was correctly captured in the estimation.

A possible interpretation of the bias on (3; and (35, in the context of the application to animal
space use, is the following. As the time intervals between observed locations increases, the
short-term effect of habitat features on the movement is less visible in the data. There is
therefore more uncertainty about the selection process, and about the overall space use. As
a consequence, the estimated utilisation distribution is flatter when the time intervals are
longer. In the limit, if the locations were very sparse in time, we would have no information
about the selection, and the estimated distribution of space use would be uniform over the
study region. For this reason, the methods presented in this chapter are not adapted to low-
frequency movement data, such as spatially-referenced mark-recapture data (Ovaskainen,

2004), because the Langevin diffusion process captures short-term local habitat selection.

The speed parameter v was well recovered in most experiments. However, for the longer
time intervals (A = 0.5 and A = 1), it was slightly underestimated. The bias is not as severe
as that observed for the habitat selection parameters, because the speed parameter appears
in the diffusion term of the process, rather than only in the drift (Tang and Chen, 2009).
The speed is underestimated because the location process tends to revert to a point in space,
due to the inclusion of a force of attraction (with the squared distance to the centre). As
a consequence, over long time intervals, the displacements tend to “cancel out”, and the

observed distance is much shorter than the actual distance travelled.
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5.6 Steller sea lion case study

We illustrate the method described in Section 5.4, with a data set previously analysed by
Wilson et al. (2018). Three Steller sea lions (Eumetopias jubatus) were equipped with Argos
tags, off the coast of Alaska, and monitored for periods of 150 days, 46 days, and 153 days,
respectively. The data set comprises a total of 2672 locations, indexed by time and each
associated with an estimate of the measurement uncertainty (the Argos location class; Hays
et al., 2001). The time intervals between observations were highly irregular, with a median
interval of 1.28h, and 2.5% and 97.5% quantiles Fy 25 = 6min and Fy 975 = 17.4h. The
locations were projected to UTM coordinates for the analysis.

The measurement error of Argos tags can be large, and cannot be neglected in this application.
Following Wilson et al. (2018), we considered a two-stage approach to address this issue.
We first fitted a state-space model to obtain estimates of the true locations of the animals, and
we then analysed the filtered tracks with the Langevin movement model. In the first stage,
we used the continuous-time correlated random walk (CTCRW) model, which was described
by Johnson et al. (2008a), and is implemented in the R package crawl (Johnson and London,
2018). It models the movement and the observation process separately in a state-space model
formulation, and the Kalman filter can be used to estimate the true location of the animal
at the times of the observations. We describe the CTCRW in more detail in Chapter 6. The

three filtered tracks are shown in Figure 5.8, on a map of the Northern Pacific Ocean.

Wilson et al. (2018) also provided four environmental variables over the study region, at a
resolution of 1km: bathymetry (i.e. ocean depth), slope, distance to sites of interest, and
distance to continental shelf. The sites of interest were either haul-out sites, where the sea
lions rest, or rookeries (i.e. colonies). The continental shelf mainly consisted of the Aleutian
Islands, on which the Steller sea lions live, and which can be seen on the map of Figure 5.8.

The four covariates are shown in Figure 5.9.

Using the methodology described in Section 5.4, we fitted the Langevin movement model to
the three filtered tracks. Most of the computation time was needed to evaluate the gradient of
each covariate at all observed locations, which took about 1 sec on a 2GHz i5 CPU. Table
5.1 gives estimates and confidence intervals of the parameters, and the estimated utilisation

distribution is displayed in Figure 5.10.

The 95% confidence interval of the estimate of 5 includes zero, suggesting that that there
is no clear effect of the slope covariate on the sea lions’ movements. However, the model
identified an effect for the other three covariates. The coefficient associated with bathymetry

was estimated to be positive, which indicates that the sea lions were attracted by shallow areas.
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Fig. 5.8 Steller sea lion tracks in the Northern Pacific Ocean, after filtering with the R package
crawl. The bottom plot magnifies the region delimited by a rectangle in the top plot.
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Fig. 5.9 Environmental covariates in the Steller sea lion analysis.

Estimate 95% CI1
By 1.39-107* (4.40-1077,2.77-107%)
By 921-1072  (—1.58-1071,3.42-1071)
B3 —247-107° (-=3.55-107°,—1.39-107°)
By 3.57-1076 (3.07-1077,6.83 - 107°)
72 12.4 (11.9,12.8)

Table 5.1 Maximum likelihood estimates and 95% confidence intervals, from the Steller sea
lion analysis.
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and the log scale (bottom, for comparison with Wilson et al. 2018). The black dots are the
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The estimate of the coefficient associated with the distance to sites of interest was negative,
1.e. the sea lions tend to move towards sites of interest. These two observations are consistent,
because sites of interest are haul-out sites and rookeries, present in areas of shallow waters, on
or close to the islands. However, the estimate of the coefficient associated with the distance
to the continental shelf was positive, which suggests the sea lions tend to move away from
the shelf. This seems to contradict the observation that the seal lions spend most of their time
close to the shelf. A possible cause is the strong collinearity between the distance to sites of
interest and the distance to the shelf (and, to a lesser extent, bathymetry). Because the two
covariates are related, it may not be feasible to estimate their effects separately. In practice,
we could for example use forward stepwise selection to determine which environmental

variables to keep in the model.

With the method presented in Sections 5.4.2.2 and 5.4.2.3, we also derived an estimate and
confidence bounds for the speed parameter 2, shown in Table 5.1. The value of the estimate
is not readily interpretable as a measure of the speed of movement of the animals. Rather,
it is a relative measure of speed, compared with the basic Langevin diffusion process (i.e.
with 42 = 1; Equation 5.1). From the estimate, we can also derive a habitat-independent
distribution of step lengths for any chosen time step. Indeed, under the assumption that the
covariates have no effect, the utilisation distribution is flat, and the Langevin movement
model becomes a simple Brownian motion. This Brownian motion has variance 72, so its
transition density is
X al{X: =z} ~ Nz, 1*Al),

for A > 0. In the absence of covariate effects, the distribution of step lengths over a
time interval A is thus a Rayleigh distribution with scale parameter y\/A. (The Rayleigh
distribution, and its relation to the bivariate normal distribution, were presented in Section
3.5.1). Note that this distribution does not scale linearly with the time interval, but with
its square root, due to the properties of the Brownian motion. It is not a distribution of
speeds, but of step lengths, tied to a particular time interval. Figure 5.11 shows the estimated
habitat-independent distribution of step lengths over 1-hour time intervals, from the model

fitted to the sea lion tracks.

As illustrated in the simulations of Section 5.5.3, the estimation method that we presented
for the Langevin movement model might not always perform well. In particular, information
about habitat selection may be lost when the time intervals between observations become
very long, and the selection parameters may be poorly estimated. To assess the model fitted
to the sea lion tracks, we propose to use the Metropolis-adjusted Langevin algorithm outlined

in Section 5.3.2.2. We simulated from the Metropolis-adjusted algorithm on the estimated
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Fig. 5.11 Estimated distribution of step lengths for the sea lions, over 1-hour time intervals,
in the absence of covariate effects.

utilisation distribution of the Steller sea lions, with the estimated speed parameter, and at
the times of the observations. We then considered the acceptance rate of the algorithm as a
measure of the accuracy of the approximation of the Langevin diffusion, in the context of this
analysis. An acceptance rate close to 100% would suggest that the observed process captures
the dynamics of a Langevin diffusion, whereas a low acceptance rate would suggest that the

time scale of observation is too coarse to provide a good approximation of the process.

For each observed track, we simulated 50 trajectories from the Metropolis-adjusted Langevin
algorithm on the time grid of the observations. Each simulation started from the initial
location of the track, and we rejected simulations that left the study region (where the
gradient of the covariate functions is undefined). Overall, the acceptance rate of the algorithm
ranged between 93.2% and 99.1%, with a mean of 97.4%. This high acceptance rate seems
to indicate that the Euler-Maruyama discretization is a good approximation of the Langevin
process, at the time step of the observations. Further work is needed to develop a more formal
framework of model checking, based on the acceptance probability of the Metropolis-adjusted

Langevin algorithm.

5.7 Discussion

We have presented a new application for the Langevin diffusion process, to model animal
movement and habitat selection in continuous time. The Langevin diffusion process is
defined as the solution to a stochastic differential equation, and it has a known stationary

distribution. The Langevin movement model is a continuous-time analogue of the MCMC
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step selection model described in Chapters 3 and 4. Indeed, it is based on a stochastic process
with known stationary distribution, and it can therefore describe long-term space use by

animals as the consequence of short-term movements.

The continuous-time formulation of the Langevin movement model gives it an advantage
over the discrete-time MCMC movement models. Indeed, all its parameters are independent
of the temporal scale of observation. The habitat selection parameters 3 of the Langevin
model describe a continuous-time process, rather than selection from one observed location
to the next. Similarly, the movement parameter v? quantifies instantaneous speed, and it is
independent of the sampling interval. It is unclear whether the habitat selection estimates
obtained from the two methods would be different. Indeed, although the MCMC movement
model describes selection at the scale of the step (which depends on the time step of obser-
vation), the same parameters also model long-term habitat selection (which is independent
of the time scale). The main limitation of the MCMC movement model, compared with its
continuous-time counterpart, is that the movement and perception of the animal is modelled
at the scale of the observed steps. This limitation is circumvented in the normal kernel model
for irregular observations, that we presented in Section 3.6.3. The time-varying normal kernel
model and the Langevin movement model could be compared in simulations, to investigate

whether they lead to similar estimates of habitat selection.

We used the Euler-Maruyama discretization scheme to approximate the Langevin diffusion
process, because the transition density of the process is not analytically tractable. This
scheme is the most widely-used method to carry out inference for intractable diffusion
processes, due to its simplicity (for applications in ecology, see e.g. Preisler et al., 2004;
Russell et al., 2018). However, there exist other discretization schemes, which may better
approximate the true underlying process. In the context of potential-based movement models,
Gloaguen et al. (2018) showed that higher-order schemes could be used to obtain more
reliable results. A particularly interesting alternative is the Ozaki discretization scheme. In
the Ozaki discretization, the drift function of the diffusion process is approximated by a linear
function between observations, rather than a by constant as in the Euler-Maruyama scheme
(Equation 5.7). The Ozaki approximation of the drift term requires the evaluation of its
partial derivatives, to obtain a linear approximation. In the context of the Langevin movement
model, the drift function is proportional to V log 7, such that we need to derive the second
derivatives of log 7. If 7 is formulated as an exponential function, then the second derivatives
of the covariate functions must be computed, following from Equation 5.4. As explained in
Section 5.2, spatial covariates are usually measured on a discrete grid of regularly-spaced

points, and they must be interpolated to obtain continuous functions. The derivatives and
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second derivatives of the interpolated covariate functions must then be computed, possibly
using numerical methods (although analytical formulas exist if bilinear interpolation is used).
The second derivatives of the interpolated functions are susceptible to contain a greater error
than the first derivatives, for simple interpolation methods, because the approximation of the
curvature is worse than the approximation of the slope. This introduces an additional source
of approximation in the Ozaki discretization, that is not present in the Euler-Maruyama
approach, and which may cancel out some of the theoretical advantages of the more complex
method. It is also worth noting that the computational cost would be greatly increased by the
need to compute numerically the second derivatives of the covariate functions, and by the

more complex transition equations (Gloaguen et al., 2018).

A major challenge for the application of the Langevin movement model is to assess the error
of approximation due to the time discretization. Exact inference is not possible because the
transition density of the Langevin diffusion process is not analytically tractable. We described
the Euler-Maruyama discretization scheme, to define a simpler process that approximates
the Langevin diffusion. The accuracy of the approximation degrades as the time intervals
of discretization become longer. However, in practice, it is difficult to know how fine the
time grid of observation must be to obtain accurate estimates. This may depend on the speed
of movement of the animal, and on the shape of the target (utilisation) distribution. For
example, high-frequency observations would be needed to detect environmental effects on
the movements of an animal moving fast in a highly fragmented habitat. This is because
information about local selection deteriorates at longer time scales. We suggested that
the acceptance rate of the Metropolis-adjusted Langevin algorithm could provide a partial
solution, to assess the discretization in the context of a real analysis. Indeed, we can simulate
from the Metropolis-adjusted Langevin algorithm on the time grid of the observations, with
the estimated speed parameter, and with the estimated utilisation distribution. The acceptance
rate of the algorithm is a measure of similarity between the discretized process and the true
Langevin process. It lies between O and 1, and a large value indicates that the discretized
process is a good approximation of the true process. However, we have not determined
the exact relationship between the acceptance rate and the accuracy of the estimates. Is an
acceptance rate of 95% good enough? Or 99%? To answer this question, we must link the
acceptance rate to the discrepancy between the estimated utilisation distribution and the true
utilisation distribution. To achieve this, one possibility would be to combine the first two
simulation studies presented in this chapter (Sections 5.5.1 and 5.5.2). We could simulate
from the Metropolis-adjusted Langevin algorithm and from the “unadjusted” discretized

Langevin diffusion, on various artificial utilisation distributions. Then, we could determine
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whether there is a consistent relationship between the acceptance rate of the former and the

accuracy of the empirical utilisation distribution of the latter.

In the analysis of Section 5.6, we used a two-stage approach to deal with the measurement
error present in the Argos observations, similarly to Wilson et al. (2018). We first prepro-
cessed the sea lion tracks with the continuous-time correlated random walk, to estimate the
true locations of the animals. We then fitted the Langevin movement model to the filtered
locations, i.e. we assumed that they were the true locations. This workflow is very common
in analyses of noisy and irregular telemetry data (Patterson et al., 2010). However, there
are several drawbacks to the two-stage approach. Indeed, it is difficult to propagate the
uncertainty from the measurement error to the final parameter estimates (although multiple
imputation could be used; see e.g. Scharf et al., 2017). Besides, the preprocessing stage does
not account for the environmental effects that are modelled with the Langevin movement
model in the second stage. A better approach would be to integrate the two stages into
a state-space model that models measurement error and habitat selection jointly. We can
combine the model of movement described in this chapter with an observation model. The
state process of the full state-space model is the true location of the animal, and its dynamics
are given by the transition density of the Langevin movement model, or a discretization of
it (Equation 5.8). The observation process captures the measurement error, which is often
assumed to be Gaussian. In this formulation, the observed location X ; and the true location
X are related by the observation equation, X ; = X, +m;, where ; ~ N(O, angI ») models
the measurement error. The Euler-Maruyama discretization of the Langevin diffusion has a
normal transition density, and a Kalman filter can be used to filter the locations and derive

the likelihood of this hierarchical state-space model.

In the context of the MCMC step selection model, we found that misspecifications of the
movement model can cause bias in the estimation of the habitat selection parameters (Section
4.7.6). A similar problem may arise for the Langevin movement model, if the observed
movement does not satisfy the model assumptions. For example, in the Steller sea lion
analysis, the Langevin diffusion process does not directly model the structure of the foraging
trips observed in the data. More generally, the assumption that an animal’s mean direction of
movement (i.e. drift) is determined only by the local gradient of its utilisation distribution
might be overly simplistic. A simulation study similar to that presented in Section 4.7.6
could be considered, to investigate the performance of the Langevin movement model when

its assumptions are violated.






Chapter 6

State-switching continuous-time
correlated random walks

This chapter explores a different modelling problem, related to the analysis of animal
telemetry data. Chapters 3-5 addressed the estimation of habitat selection from correlated
location data, to answer the questions “How does the animal use space?”, and “Does the
animal select particular habitats?”. In this chapter, we describe a flexible continuous-time
model to infer behavioural states from location data, to answer the question “What is the
animal doing?”. The work presented in this chapter is mostly independent from the rest of
this thesis.

In Section 6.2, we introduce the model formulation, and we describe the Kalman filter for
that model in Section 6.3. We describe a Bayesian method of inference in Section 6.4, to
estimate movement characteristics and behavioural states from telemetry data. We assess the
performance of the method in a simulation study in Section 6.5, and we showcase its use
with the analysis of a grey seal movement track in Section 6.6. The material presented in this
chapter is described in Michelot and Blackwell (2019).

6.1 Background

The collection of large high-resolution animal tracking data sets has motivated the devel-
opment of a wide range of statistical methods (Patterson et al., 2017; Hooten et al., 2017).
Many of them are based on the random walk and its extensions (Turchin, 1998; Codling
et al., 2008). In its simplest formulation, the random walk is a discrete-time Markov process

with independent normal increments. This model only has one parameter, the variance of
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the transition density, which determines the speed of movement. Modern telemetry data
are collected at high temporal resolutions, and often display autocorrelation in the speed
and direction of movement. Correlated random walk models were developed to capture this
movement persistence. They are most often described by a distribution of “step lengths”,
the distances between successive locations, and of “turning angles”, the angles between
successive directions (see Section 1.2, and Siniff and Jessen, 1969; Kareiva and Shigesada,
1983; Bovet and Benhamou, 1988; Morales et al., 2004). The distribution of step lengths
captures the speed of movement, and the distribution of turning angles measures the autocor-
relation in the direction of movement. For example, if the distribution of turning angles is
very concentrated around zero, successive directions will be very similar, corresponding to
persistent movement. This model is usually formulated in discrete time, and the distributions
of these metrics of movement strongly depend on the sampling rate (Codling and Hill, 2005;
Schlédgel and Lewis, 2016). As discussed in Section 1.2 and in Chapter 5, results obtained

from discrete-time movement models are tied to the time scale of the data.

Johnson et al. (2008a) introduced the continuous-time correlated random walk (CTCRW), in
which the velocity of the animal is formulated as an Ornstein-Uhlenbeck process. Through
the velocity, this model incorporates autocorrelation into both the speed and the direction
of the movement, similarly to discrete-time correlated random walks based on step lengths
and turning angles. It describes the velocity and the movement in continuous time, and
therefore allows for scale-free inference. Johnson et al. (2008a) formulated the CTCRW as
a state-space model, making fast inference possible through the Kalman filter, and made it
available in the R package crawl (Johnson and London, 2018). Fleming et al. (2017) extended
this implementation to a wider family of diffusion processes, including their “OUF” model

of correlated movement around a centre of attraction.

Random walks have been used as “building blocks” for more complex, multistate, models.
These state-switching models describe animal movements as the outcome of several distinct
behaviours, e.g. “foraging”, “resting”, “exploring”, based on the notion that the behavioural
states of the animal differ noticeably in terms of some metrics of the movement, e.g. speed or
sinuosity (Blackwell, 1997; Morales et al., 2004). The advantage of multistate time series
models over simpler clustering methods is that they account for the temporal autocorrelation
in the movement behaviours, and provide a mechanistic description of the movement process
(Edelhoff et al., 2016). Although multistate models have received a lot of attention in discrete-
time formulations, with the growing popularity of hidden Markov models (Patterson et al.,
2009; Langrock et al., 2012), they have been underutilised in continuous-time approaches.

Blackwell (1997) introduced a continuous-time multistate movement model, where the
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location of the animal is modelled with an Ornstein-Uhlenbeck process. That model does not
directly capture the movement persistence in speed and direction, which makes its application
limited for high-frequency tracking data. More recently, Parton and Blackwell (2017)
described a multistate approach in which the speed and the bearing of the animal are modelled
in continuous time, with diffusion processes, analogously to discrete-time models based
on step lengths and turning angles. However, their method requires computationally-costly
numerical simulations to reconstruct the movement path at a fine time scale, a disadvantage in
dealing with large tracking data sets. McClintock et al. (2014) presented a multistate analysis
based on the CTCRW, but they constrained the state process to be constant over each time
interval between two observations. Therefore, they did not carry out exact inference from the
continuous-time model. Gurarie et al. (2017) recently reviewed the use of the CTCRW model,
and related velocity-based models, for the analysis of animal tracking data. They proposed a
method based on change point analysis to segment movement tracks into behavioural phases.
Although they can be a useful tool of classification, change point approaches do not provide

a mechanistic understanding of the behavioural state process.

Alternatively, McClintock (2017) suggested a two-stage approach based on multiple imputa-
tion methods, to estimate behavioural states from irregular or noisy tracking data. In that
approach, a one-state continuous-time model (such as the CTCRW) is first fitted to the data.
A large number, m, of possible realisations of the movement process are simulated from
the model on a regular time grid. Then, a hidden Markov model is fitted to each realisation,
to estimate the state-switching dynamics. The m sets of estimates are pooled, such that
the resulting model takes into account the uncertainty in the locations. Note that, since the
realisations are generated without taking into account the possible behaviours, this is not
fully equivalent to fitting a multistate CTCRW model. In particular, if the one-state model
fails to capture the behavioural heterogeneity in the movement, the simulated realisations

may not correctly reflect the uncertainty in the continuous trajectory.

Here, we extend the framework of Johnson et al. (2008a) to incorporate behavioural states
directly into the CTCRW framework, with an underlying continuous-time Markov process.
The state-switching CTCRW offers a rigorous approach to model behavioural heterogeneity
and movement persistence, two common features in modern telemetry data collected at high
frequency over long periods of time. It can be used with irregularly-sampled movement data
without the need to interpolate the locations, and can incorporate measurement error. We
present the model formulation and describe a Bayesian estimation method to infer hidden
states and movement parameters in this framework. We investigate the performance of the

method in a simulation study, and demonstrate that it can be used to recover estimates of the
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states and movement parameters, from irregular location data. We analyse a trajectory of grey
seal (Halichoerus grypus) with a 2-state CTCRW model, and obtain posterior samples of the
state-dependent movement parameters and of the unobserved state sequence. We explain
how the movement parameters differ in the two states, and how they can be interpreted as

measures of the animal’s speed and movement persistence.

6.2 Model formulation

In the continuous-time correlated random walk (CTCRW), the velocity of an animal is
modelled with an Ornstein-Uhlenbeck model. We described the Ornstein-Uhlenbeck process
in the general case in Section 2.4. Here, we derive the transition density of the Ornstein-
Uhlenbeck process, and of the CTCRW process. The transition density of the CTCRW was
already described by Johnson et al. (2008a), and we only include its derivation here for clarity

of presentation.

6.2.1 Ornstein-Uhlenbeck process

We consider a one-dimensional Ornstein-Uhlenbeck process (V;);>o, defined as the solution

to
AV, = By — V,)dt + odWV, (6.1)

where WW; is a standard Wiener process.

6.2.1.1 Solution

We can solve for the process (V;) in Equation 6.1. If we define Y; = V, — v, we can write

this equation as
dYy = —pYdt + odWs, (6.2)

and note that we have
d(e”Y}) = pePtY,dt 4 Ptdy;. (6.3)

Then, from Equations 6.2 and 6.3,

d(e’Y}) = ePladW,.
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Integrating both sides between ¢ and ¢ + 9, we find
)
e A / P AW,
s=t
So, the process (Y;) satisfies
t+d

Yies = €Y, + O'/ e B gy

s=t

Finally, substituting V; — ~ for Y;, we obtain the solution of the Ornstein-Uhlenbeck equation,
)
Vips=7+e P (Vi=7) +o / e PUH=)aw, (6.4)

s=t

6.2.1.2 Transition density

We define s
(0 =0 / e A=)y, (6.5)

By properties of the Itd integral, () is a Gaussian random variable with mean 0. The

transition density of the Ornstein-Uhlenbeck process is therefore normal, with mean

E(Vis|Vi=v) =+ €_B§<Ut — 7).

The variance of the transition density is given by the variance of the error term ((¢),

Var(C((S)) - [C((S)z} — o2E (/‘H— 6,8(t+65)dW8>

=t

Using the It6 isometry (@ksendal, 2003), this becomes

t+6
Var(((d)) = 02/ e 2BUH0=9) g

s=t

e 2B(t+5—s) o
2
= 0 _—_—
26
o2

— 2 (1 _ 2B
_25(1 e ).

s=t
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We can write the transition density of the Ornstein-Uhlenbeck process as

2
Viesl{Vi = v} ~ N <7 + e P (v, — ), 20_6<1 — e—255)> . (6.6)

This equation can be used to simulate forward from the Ornstein-Uhlenbeck process. The

long—term distribution of ( [/t) is the limit of Equation 6.6 as the time interval § goes to inﬁnity.
We find
V —2 6.7
(g N . .
¢ i 25 ©.7

6.2.1.3 Multivariate isotropic case

These results can directly be extended to the multivariate isotropic case, which will be of
interest in what follows. The isotropic Ornstein-Uhlenbeck process in & dimensions is the
solution to the equation

dV, = B(y — V,)dt + cdWy, (6.8)

where (V;) and (W;) are k-dimensional processes, and - is the k-dimensional mean of the
process. The process is isotropic because [ and o are still scalar parameters (rather than
matrices). The multivariate process can be regarded as k& univariate Ornstein-Uhlenbeck
processes, and Equations 6.4 and 6.6 hold in each dimension. The univariate and bivariate

(isotropic) Ornstein-Uhlenbeck processes are illustrated in Figure 6.1.

The bivariate Ornstein-Uhlenbeck process has been considered to model the location of a
moving animal in space (Dunn and Gipson, 1977; Blackwell, 1997). In particular, it is useful
to capture home range behaviour, due to its attraction towards a point in space. The process
is stationary, with long-term distribution given in Equation 6.7. In that model, the stationary
distribution of the Ornstein-Uhlenbeck process can be viewed as the utilisation distribution of
the animal. However, a limitation of the Ornstein-Uhlenbeck to model the position process of
an animal is that it does not capture movement persistence. Similarly to Brownian motion, it
does not describe “smooth” trajectories. As a consequence, it is not a good model for modern
high-resolution telemetry data, which often display strong persistence in the speed and the
direction of movement. This motivates the introduction of the continuous-time correlated

random walk, which describes persistent movement.
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Fig. 6.1 Illustration of the Ornstein-Uhlenbeck process in one dimension (left) and two
dimensions (right). The long-term mean is shown by the red dashed line for the one-
dimensional process, and by the red dot for the two-dimensional process.

6.2.2 Continuous-time correlated random walk
6.2.2.1 Definition

The continuous-time correlated random walk (CTCRW) builds on the Ornstein-Uhlenbeck
process, and was introduced by Johnson et al. (2008a) to model persistent animal movement.
We denote by X; = (X;,Y;)" the location of the animal at time ¢, and V; = (V*, V)7 its
velocity, linked by the equation

dX; = Vdt. (6.9)

In the CTCRW, the velocity of the animal is modelled by a bivariate Ornstein-Uhlenbeck
process, defined as the solution of Equation 6.8. The Ornstein-Uhlenbeck process is here used
to model the autocorrelation in the velocity, and the reversion to a mean velocity. We will
sometimes refer to the location process (X;) as an integrated Ornstein-Uhlenbeck process,

to indicate that its derivative (with respect to time) is an Ornstein-Uhlenbeck process.

In practice, the mean velocity parameter = is usually taken to be zero. If « is not zero, it
introduces a systematic drift in the animal’s movement, towards a particular bearing. For
example, Johnson et al. (2008a) modelled drift in the trajectories of migrating northern fur
seals. In the following, we will focus on the case where v = 0. We consider that 5 and o are

scalar parameters, corresponding to the isotropic case, but they could be taken as matrices for
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a more general formulation (Blackwell, 2003; Gurarie et al., 2017). Johnson et al. (2008a)
developed a method to estimate the movement parameters 3 and o of the CTCRW from

observed telemetry data, that we discuss and extend in Section 6.3.

The parameters of the CTCRW can be linked to the speed and sinuosity of the animal’s
movement, and therefore used for the biological interpretation of tracking data. Indeed,
Gurarie et al. (2017) presented an alternative parametrisation of the CTCRW, defined with
7=1/Band v = \/7o/(2y/[). In this formulation, the parameter 7 > 0 is the time interval
over which the autocorrelation function of the velocity process decreases by a factor e, and it
is sometimes called the “relaxation time” of the process (Gillespie, 1996). Larger values of
7 (corresponding to smaller values of ) indicate longer-term persistence in the speed and
direction of the animal’s movement. The autocorrelation function of the velocity process
decreases to 0.05 over a time interval of length 37, because e~3 ~ 0.05. For most practical
purposes, V; and V,_ 3, can therefore be regarded as approximately independent (Johnson
et al., 2008a). The parameter v > 0 is the long-term mean of the speed of movement
of the animal. The derivation of 7 and v is given in Appendix D. With this convenient
formulation, the model offers a very useful framework to quantify movement characteristics
of animals. Gurarie and Ovaskainen (2011) argued that the important biological features of
animal movement could generally be summarised by a “characteristic temporal scale” and
a “characteristic spatial scale” of movement. In our approach, these are given by 7 and v,

respectively.

6.2.2.2 Solution

The CTCRW formulation is very convenient because it is possible to derive the transition
densities of the velocity process (V;) and of the position process (X;) analytically (Johnson
et al., 2008a). We found the transition density of the velocity process in Section 6.2.1, and
we can now solve for the location process (X;). As we will see, the transition density can be

used to jointly simulate from the velocity and location processes, and for inference.

As before, the process is isotropic, and it is sufficient to solve for the one-dimensional process,
that we denote (X;);>o. Integrating both sides of d.X; = V;dt between ¢ and ¢ + ¢, and using

the solution found in Equation 6.4, we have

t+6
Xips — Xy = / Vids

=t

t+6 s
= / (eB(St)Vt + a/ eﬁ(s“)dWU) ds.
s=t u=t
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Thus,
t+5 t+4
X=X, +V, / e P Dds + o / / (=0 dW, ds
s=t
—ﬁ (s—t) t+6
=X, +V +0/ / TWdsdW,
1 o 4+ —Bs—u) 1T
=X+ |——5— | Vito / — dW,.
t s ) e 5o
Finally, we find the solution to the integrated Ornstein-Uhlenbeck equation,
1 —e Bt+5—u)
Xiys = Xi + Vi+ ﬁ )AW,.
6.2.2.3 Transition density
Define £(9) as the Gaussian error term
o [tH0
=3 / (1 + e AT\ a7, (6.10)
=t

with mean zero. The transition density of the integrated Ornstein-Uhlenbeck process is also

Gaussian, with mean

1—e
E(Xis| Xy =2, Vi=v) =2 + T Vg,

and with variance given by Var(£(0)),

i - (5) [ o=

Using the It6 isometry,

Var(£(0

0= (5) [ ameera
(

o 2 pt+6
B) / (1 + e 200H—w) _ 9p=BtHI—u)y gy,
=t
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Finally, we obtain the transition density of the integrated Ornstein-Uhlenbeck process,

Xy sH{Xe = 2, Vi = v} ~
1—e P o\’ 1—e 20 2(1 —e )
N |z + (T) Vg, (B) (5 + 23 - 3 )

6.2.2.4 Covariance of location and velocity

For simulation and inference, we need the joint transition density of (V;) and (X;), and so we
also need the covariance of the location process and the velocity process, i.e. the covariance
of the error terms £(9) and ((6).

Cov(¢(9),£(0)) = E(C(0)£(6))
t+6 t+o
_ o [ B9 g — e Alt+o=9)
- [( /. ‘Ws) (ﬁ |0 WS)

Using the It6 isometry,

2

t46
Cov(((9),&(0)) = /_t e—ﬂ(t+5—s)(1 _ 6—,8(t+5—s))d8

Q

t+0
/ (e—ﬁ(t-‘y—(s—s) . e—2ﬁ(t+5—s))d8
s=t
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We find the covariance,

2

Cov(C(6),£(8)) = ;—52 (1 _9e P 4 6—265) . 6.11)

6.2.2.5 Simulation from the CTCRW

From the equations found above, we can simulate from the integrated Ornstein-Uhlenbeck
process (i.e. from the CTCRW). Here, we describe the one-dimensional case, and the

multivariate isotropic case can be obtained by simulating independently in each dimension.

We jointly simulate the velocity and location processes at n time points {¢y,ts, ..., t,}, and
denote A; = t; — t;_; the time intervals. We denote V; and X the velocity and the location
at time t;, respectively. We initialise V;, = v; and X; = x; and, for¢ = 2, ..., n, we simulate
from the CTCRW as follows

Vi Vi—1

conditionally on V;_; = v;_; and X;_; = z;_1, and where

T =

1 (I—e )/ Q. = Var(€(A;))  Cov(§(A:), ((A))
0 e A LT \Cov(g(An),¢(A))  Var(C(A) )

Figure 6.2 displays trajectories simulated from the univariate and bivariate integrated
Ornstein-Uhlenbeck processes, based on Equation 6.12. Unlike the Ornstein-Uhlenbeck
process, the integrated Ornstein-Uhlenbeck process is not stationary, and it does not have a
centre of attraction. It is smoother, however, as it captures autocorrelation in the velocity (in

addition to autocorrelation in the location).

6.2.3 Multistate model
6.2.3.1 Formulation

In this work, we use the CTCRW as a building block for more complex and realistic
movement models. Multistate models of animal movement have been developed to account
for behavioural heterogeneity. In the most common formulation, a (discrete- or continuous-
time) Markov process models switches between discrete “behavioural” states, on which
depend the parameters of the movement process (Blackwell, 1997; Morales et al., 2004).
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Fig. 6.2 Illustration of the integrated Ornstein-Uhlenbeck process (or continuous-time corre-
lated random walk), in one dimension (left) and two dimensions (right).

Following this idea, we introduce a N-state continuous-time Markov process (S;):>0, defined

by its infinitesimal generator matrix,

_)\1 )\12 e )\lN
A — /\21 _)\2 e /\2N :
/\Nl )\N2 e _/\N

whereVie 1,...,N, \; = z#i Aij. At any time ¢ > 0, the discrete state .5, takes one of

N values {1,..., N}, typically used as proxies for the behavioural states of the animal (e.g.
“foraging”, “exploring”). In the following, we find it convenient to parameterise the generator
matrix as
-\ APz 0 AipiN
A— )\2?921 —.>\2 : >\2].72N 6.13)
ANDN1 ANPN2 0 —AN

where )\; > 0 is the rate of transition out of state 7, and the p;; € [0, 1] are the transition
probabilities out of state i. For each state i, they satisfy > ;b = 1. The generator
matrix is the continuous-time analogue of the transition probability matrix used in hidden

Markov models, and its entries determine the state-switching dynamics. In particular, as
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a consequence of the Markov property, the dwell times in state 7 follow an exponential

distribution with rate \;.

We now consider that the parameters of the CTCRW model (5 and ¢ in Equation 6.8) are
state-dependent, so that each behavioural state can be associated with a different type of
movement. Using the notation introduced in Section 6.2.2, the multistate CTCRW model is
defined by

dX; = Vidt,

dV, = —ﬁgtv;dt + 05, dW;.

This can be viewed as a higher-dimension continuous-time Markov process composed of a
continuous component (the location and velocity processes) and a discrete component (the

discrete state process), as described e.g. by Berman (1994).

The N-state CTCRW model has 2N movement parameters, (f1, ..., Oy,01,...,0x), and
N(N — 1) transition rates. Each state j € {1, ..., N} is characterised by a particular type of
movement, determined by the corresponding parameters 3; and o;. In Section 6.2.2.1, we
linked the parameters of the CTCRW process to measures of the movement persistence, and
of the speed of the animal. Different combinations of movement parameters can therefore

capture different types of movement, and a wide range of movement behaviours.

In Sections 6.3 and 6.4, we develop a method of Bayesian inference for the multistate

CTCRW model, to estimate all the model parameters, as well as the state process (S;).

6.2.3.2 Simulation from the multistate CTCRW

We can simulate from the multistate CTCRW using a method similar to the one outlined in
the single-state case in Section 6.2.2.5. In addition to the velocity and location processes,
we must now also simulate from the state process. The state process is a continuous-time
Markov process, with the generator matrix given in Equation 6.13. To simulate from the state
process, we use the property that waiting times in state j € {1, ..., N} follow an exponential

distribution with rate A;.

Let {t1,...,t,} be the time grid on which we wish the simulate a movement track. We
first simulate the state process over [ty t,,|. We initialise the state process to s; = j at time
11 = t1. Then, we simulate the state process by iterating the following steps, starting from
1 = 2, and until v; > t,,.

1. Generate the waiting time d ~ Exp(\;).
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2. Derive the time of the next transition as v; = 1;_; + d.

3. Pick sy, from {1,..., N} \ {;j}, with probabilities given by the transition probabilities
pji out of state j.

4. Update the current state j = s,,, and increment the iterator ¢ = 7 + 1.

From these steps, we obtain a sequence of transition times, and of states, between the times
t, and t,. For any i, the state process is constant over the time interval [t);,1;.1]. We
can therefore use the simulation procedure described in Section 6.2.2.5 in the single-state
CTCRW, to simulate from ; to ;. 1, starting from ; = t;. In the multistate CTCRW
model, the movement parameters depend on the current state, so we use the substitute 3; for

B and o, for o, where sy, = j.

Figure 6.3 shows a trajectory simulated from a 2-state CTCRW model. The two states
are characterised by different movement parameters § and o, and they display different
movement patterns. In this simulated example, the movement in state 1 is slow and tortuous,

and the movement in state 2 is faster and more directed.

300-
200~ State
> — 1
— 2

100-

O-

~200 -100 0 100
X

Fig. 6.3 Illustration of the multistate continuous-time correlated random walk.
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6.3 The Kalman filter

6.3.1 State-space model formulation

We present a method to evaluate the likelihood of the multistate CTCRW model, given
a reconstruction of the underlying state process. Johnson et al. (2008a) formulated the
single-state CTCRW as a state-space model, and implemented a Kalman filter to obtain the
likelihood of observed movement trajectories. With only minor changes, it can be extended
to evaluate the likelihood of the multistate model, conditionally on the behavioural state
sequence. The behaviours of the animal are typically not known, and will thus need to be

imputed. One method of reconstructing the state sequence is presented in Section 6.4.

State-space models are a very wide class of time series models (Durbin and Koopman, 2012).
They are often used in statistics to estimate the dynamics of a phenomenon that cannot be
observed directly. They formulate the evolution of a system composed of two processes:
an unobserved state process, and an observation process. The state process describes the
hidden phenomenon, and the observation process links the state process to an observable
output. In movement ecology, state-space models have been used for a long time to analyse
telemetry data that include measurement error (Jonsen et al., 2003; Patterson et al., 2008). In
that context, the hidden process models the movement of the animal, and the observation
process models the measurement error. Note that state-space models generally have the same
dependence structure as hidden Markov models, that we described in Section 4.6. Some use
the two terms interchangeably, but hidden Markov models usually refer more specifically
to state-space models with a discrete state space (Rabiner, 1989; Zucchini et al., 2016).
Following Johnson et al. (2008a), the CTCRW can be written as a state-space model, where
the observation process is the animal’s observed location (possibly including measurement
error), and the continuous state process is composed of both the true location and the velocity

of the animal.

We consider a data set of observed locations, augmented with the times of the reconstructed
behavioural transitions. The locations associated with the transitions are generally not ob-
served, and they are thus treated as missing data. We denote by {&1, ..., &,} the augmented
sequence of observed locations, possibly obtained with measurement error, and {¢1,...,%,}
the associated times. We denote by s; the (imputed) behavioural state between ¢; and ¢, .
We denote by w; = (4, v%, y;,vY) " the continuous state vector at time ¢;, where x; = (z;, ;)

is the true location of the animal, and v; = (v7,v}) is its velocity. We define A; = ¢;41 — ¢;

177

the time intervals, and §; = £(4;) and (; = ((A;) the stochastic terms of the transition
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densities for the location and the velocity, respectively (Equations 6.5 and 6.10, substituting
Bs, for 5 and o, for o).

Note that both s; and w; are referred to as “state”, in state-switching models and state-space
models, respectively. Here, we combine both and, to avoid confusion, we will refer to w; as

the “continuous” state of the process (as opposed to the “discrete” behavioural state s;).

The observation equation of the CTCRW is
ii = ZQJi+€7;, Eg; NN(O,HZ),
where H; is the 2 X 2 measurement error covariance matrix, and

1000
0010

That is, the observed location &; is the sum of the true location x; = (x;, y;) and an error

term ;. Using block matrix notation, the continuous state equation is

T, 0 Q: O
Wit = Wi + M, i~ N0,
+1 <0 Ti) n n ( 0 Qi)

T — 1 (1 — efﬁsiAi)/ﬂsi Q _ Var(&) COV(&7 Cz)
’ 0 GiﬁSiAi ’ ! COV(fi, Q) Var((l) ’

with

The variances of &; and (; are given in Equation 6.5 and 6.10, and their covariance is given in
Equation 6.11. Note that the continuous state equation is the same equation that we presented
in Section 6.2.2.5 to simulate from the CTCRW.

6.3.2 Kalman equations

The Kalman filter is a set of recursive equations to carry out inference from linear Gaussian
state-space models (Kalman, 1960). A state-space model is linear if its state and observation
equations are linear; it is Gaussian if the transition density of the state process is normal, and
if the observation noise is normal. The multistate CTCRW model, formulated in Section
6.3.1, satisfies both conditions. The Kalman filter is used to learn about the (continuous)
state process, i.e. the hidden phenomenon of interest, from a set of observations. The

Kalman filter predicts the continuous state of the process, conditional on all past observations.
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The prediction is updated with each new observation, based on the state equation and the
observation equation. Using the assumptions made on the state and observation processes (i.e.
normality), the likelihood of the observations under the state-space model can be calculated
as a by-product of the Kalman filter iterations. The Kalman filter efficiently integrates over
the continuous state to evaluate the likelihood, and it has largely contributed to the popularity
of state-space models. It is conceptually similar to the forward algorithm used in hidden
Markov models (described in Section 4.6). The Kalman filter is here used to integrate over

both measurement error and unobserved velocities simultaneously.

Although it is not needed to fit the model, we can also implement the so-called Kalman
smoother algorithm. The Kalman smoother provides an estimate w; of the continuous state
at each time step, as well as the covariance matrix ﬁ]i of the estimate, conditional on all
observations (rather than conditional on past observations only). It consists of a set of
backwards recursive equations, starting from the last observation and iterating back until the

first observation.

In this section, we give the equations of the Kalman filter and smoother, for the multistate
CTCRW model. These equations can be found for the single-state CTCRW in Appendix
B of Johnson et al. (2008a), and in the case of a general state-space model in Durbin
and Koopman (2012). We use the notation introduced in Section 6.3.1; {&1,...,&,} are
the observed locations augmented with the (missing) locations at which state transitions
occur, and {t1,...,t,} the corresponding times. Note that &; is treated as missing data if
t; corresponds to a behavioural transition (see below for processing of missing data). For
all7 =1,...,n — 1, the behavioural state is constant between ¢; and ¢;, 1, and we denote its

value by s;.

Filtering A standard choice to initialise the state estimate is a; = (%1, 0, 7;,0)’, i.e. the
mean initial location is the first observation &;, and the mean initial velocity is 0. The
initial covariance matrix P is typically taken to be diagonal, and its elements measure the

uncertainty on the initial state estimate a;.

Then, for: =1,2,...,n — 1, the Kalman filter equations are

F,=ZP,Z + H;

T, o),
K; = PZ'F
0 T,
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T, 0) .
CAlz'+1:< )ai+Kiui

0 T

/
. T, 0\ . T, O i 0
P = P -KZ'| + “
0 T 0 T 0 Q;

with the model matrices Z, T}, and Q;, defined in Section 6.3.1, and where Z’ is the transpose
of Z.

The Kalman filter iterations output a state estimate a; and an estimate covariance matrix R at
each time ¢;, fori € {1,...,n}. These estimates are conditional on all previous observations,

i.e. on {131, NN ,ii_l}.

Log-likelihood Due to the assumptions of normality, the log-likelihood can be calculated
as a by-product of the Kalman filter,

n

1
UB|&r, ..., &) = —nlog(2r) — o > (log | Fy| + uiF ') (6.14)

=1

where | F;| denotes the determinant of F}, and 0 is the vector of movement parameters /3; and
oj (7 =1,...,N). In the single-state case (i.e. the CTCRW model of Johnson et al., 2008a),
or if the behavioural process is known, this expression of the log-likelihood can directly be
used to obtain estimates of the movement parameters. For example, Equation 6.14 can be
optimised over 8 to obtain maximum likelihood estimates. Here, we are interested in the
case where there are several behavioural states and, in most applications, the state process is
not known (i.e. the behaviour of the animal is not observed, and it must also be estimated).
In Section 6.4, we describe a method of inference for the state-switching CTCRW, based on
the likelihood given by the Kalman filter.

Smoothing We initialise 7, = 0 and IN,, = 0. Then, fori =n,n — 1,...,1, the Kalman

0 T

ri-1 = Z,E_l’u,i + L;’l"z
N, ,=Z'F7'Z + L'N,L,

wi=a;+ Pri

smoother equations are



6.3 The Kalman filter 157

with the model matrices Z, T; and QQ; defined in Section 6.3.1, and where w;, F;, K;, a;,
and P, are computed in the filtering equations.

Then, w; is the smoothed state vector at time ¢;, and 21 the smoothed state variance matrix.
These estimates are conditional on all observations {&1, . . . , &, }, rather than only on previous
observations. The filter and smoother algorithms are a popular method to estimate the true
location of the animal on any time grid, e.g. to estimate locations that were observed with

measurement error, or to estimate a trajectory at regular time intervals.

Missing data The Kalman filter and smoother are often used to estimate the animal’s
location (and velocity) on an arbitrary time grid, rather than only at the times of observations.
The times that do not coincide with an observation are passed to the algorithm as missing
data, for which an estimate of the continuous state (and an associated state covariance matrix)
are computed. Moreover, in the case of the state-switching CTCRW model, the locations
corresponding to the times of the behavioural transitions are generally not observed, and they
must be treated as missing data. Missing observations only require minor changes to the
equations given above. If the index ¢ corresponds to a missing value, the filtering equations

. T, 0 .
a; = a;
+1 0 T’z

. T 0\ . (T o .0
R+1: -PL + Q )
0 T, 0 T, 0 Q;

become

and the smoothing equations become

T o)
ri1= r;
0 T,

/
T, O ;
Ni—l = ’ NZ 1—; 0 .
0 T 0 T

The other equations are unchanged. Note also that missing observations do not contribute to
the log-likelihood.
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6.4 Bayesian inference

We describe a method to infer the parameters of the multistate CTCRW model introduced in
Section 6.2.3. In Section 6.3, we explained how the Kalman filter can be used to compute
the likelihood of the model, conditionally on the behavioural state sequence. However, in
most applications, the behaviours of the animal are not observed. We propose to estimate the
unobserved states by sampling over all possible sequences in a Markov chain Monte Carlo
(MCMC) algorithm.

6.4.1 MCMC algorithm

We follow the Metropolis-within-Gibbs approach introduced by Blackwell (2003). It relies
on the successive updates of the three components of the model:

1. the reconstructed behavioural state sequence,
2. the movement parameters, i.e. the parameters of the CTCRW for each state,
3. the transition rates of the behavioural state process.

This is a “Gibbs” algorithm because we update each component in turn, conditional on
the other two. However, we cannot sample directly from the posterior distributions of the
behavioural state sequence, or from the posterior distribution of the movement parameters.
In both cases, we use a Metropolis step to update the process.

We denote by S the reconstructed state sequence, composed of the times of the state transi-
tions and the values of the state process between the transitions. We denote by 6 the vector of
parameters of the movement process, i.e. @ = (/31,...,On,01,...,0y) for a N-state model.
We write p(z|0, S) as the likelihood of a sequence of observed locations &, given 6 and S.
This conditional likelihood is obtained from the Kalman filter presented in Section 6.3. We
denote by A the generator matrix of the behavioural state process, composed of the transition

rates and the transition probabilities, as defined in Equation 6.13.

We initialise the state sequence to S(©), the movement parameters to 8(), and the generator
matrix to A%, Then, for K iterations (k = 1, ..., K), we alternate between the three steps
described in Sections 6.4.1.1-6.4.1.3, to sample S*), %) and A,

6.4.1.1 Update of the behavioural state process

The evaluation of the likelihood of the model, described in Section 6.3.2, is conditional on

the sequence of underlying states. In practice, the states are generally not observed, such
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that we need to impute them. In this MCMC algorithm, we sample over the state sequences,

using a Metropolis update.

The sequence of states S is composed of the times of the state transitions, and the values
of the states. At each iteration, an updated state sequence S* is proposed as follows. We
choose an interval [t,, t,], where a and b are two integers such that t; < ¢, < t, < t,. We
simulate the state process (.S;) from ¢, to t;, conditional on s;, and s;,, using the generator
matrix A%~ This can for example be done using the endpoint-conditioned continuous-time
Markov process simulation methods of Hobolth and Stone (2009). The proposed sequence

of states S* remains identical to S~ outside [t,, t;]. The acceptance ratio for S* is

_ p(z|@*V 8
r= p(2]0F-D, SE=1))°

The proposed state process reconstruction is accepted with probability min(1, ). If the

proposed sequence is accepted, then S*®) = S*, else S*) = S*-1),

The length of the interval [¢,, t,] over which the state sequence is updated is a tuning parameter
of the sampler, and updates over longer intervals are generally less likely to be accepted. Note
that the state sequence is generated from a continuous-time Markov process, and transitions
can therefore occur at any point in (continuous) time. In particular, they are not constrained

to happen at the times of the observations.

6.4.1.2 Update of the movement parameters

We use a Metropolis-Hastings step to update the movement parameters. At iteration k,
we propose new movement parameters 8*, from a proposal density ¢(6*|@%*~1)), and the

acceptance ratio is

__ p([6",8)p(67)q(0"V|6")
= p(x|0*=1), S®)p(@E=1))q(0*|gk-1)’

where p(8) denotes the prior distribution on the movement parameters 6.

The parameters are updated to 8* with probability min(1,r). Note that, if the proposal
distribution is symmetric such that V0, 85, ¢(0:|62) = q(62|6,), then r simplifies to

_ p(@ler sV)(e)
~ p(@lot, 5 (e 1)
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In practice, a standard choice is to use a multivariate normal proposal distribution on the
working scale of the parameters (in this case, on the log scale). Its variance can be tuned
to obtain different acceptance rates, and covariance structure can be added to explore the
parameter space more efficiently.

6.4.1.3 Update of the transition rates

Following Blackwell (2003), using conjugate priors, the transition rates can be directly
sampled from their posterior distribution, which is known conditionally on the reconstructed
state sequence S*). We consider the formulation of the generator matrix given in Equation
6.13, in terms of transition rates and transition probabilities. The transition rates and the

transition probabilities can be sampled separately, as follows.

For each i € {1,..., N}, we denote n; the number of time intervals spent in state ¢, and
(dl(l), dZ@), e dl(ni)) their lengths, derived from the state sequence S®). These dwell times
are exponentially distributed with rate \;. The conjugate prior of the exponential distribution
is the gamma distribution such that, with the prior

i ~ gamma(ag, as),

the transition rates are sampled from the posterior distribution

AP|S®  gamma | ay 4 ng, o + Z d;”
j=1

Fori € {1,...,N}and j € {1,..., N} such that i # j, we denote by n;; the number of
transitions from state i to state j, and n; = > ; Mij the number of transitions out of state 7,

derived from the state sequence S*). Then, we have

(nib N2, ... 7niN) ~ mu1tln0m(ni,pi1,pi2, <. 7pZN)

The conjugate prior of the multinomial distribution is the Dirichlet distribution such that,
with the prior

p; ~ Dir(k;1, Ko . . ., Kin ),

the posterior distribution of the transition probabilities is

pﬁk)lé"’“) ~ Dir(ki1 + 1, Kiz + N, - - Kin + Nan)-
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where p; = (pi1, pi2, - - - , Pin) 18 the vector of transition probabilities out of state i.

6.4.2 Implementation

The MCMC algorithm described in Section 6.4.1 can be implemented to obtain samples
from the posterior distributions of the movement parameters, of the transition rates, and of
the hidden state sequence. In practice, the algorithm must be tuned appropriately, to avoid
numerical issues and ensure fast mixing. It is difficult to give general guidance for the choice

of initial and tuning parameters, but we provide some suggestions below.

Initial parameters The sampler requires initial values for all parameters, and for the
reconstructed state sequence, from which to start the exploration of the parameter space.
Initial values for the movement parameters, and for the transition rates of the state process,
must be provided. If the starting values are poorly chosen (i.e. not in a plausible range),
the chain may need many iterations to overcome the initialisation bias. In practice, it may
often be easier to provide initial values for the alternative parameters 7 and v defined in
Section 6.2.2.1 (rather than for $ and o), because they can be interpreted as the time scale of

movement persistence, and the mean speed of movement of the animal.

The state sequence, defined by the times of transitions and the values of the state process
between transitions, must also be initialised. One possibility would be to use another method
of classification of telemetry data, such as hidden Markov models (Michelot et al., 2016), to
obtain a rough partitioning of the track. However, such methods may not be appropriate if the
data are collected at irregular time intervals, for example. Another option is to initialise the
state sequence at random, by assigning the value 1 or 2 to each observation with probability
0.5 each (in a 2-state model). Then, once the observations have been initially classified,
the exact timing of each state transition must be chosen, for example at random in the time

interval where it occurs.

Kalman parameters The Kalman filter needs an initial value for the continuous state
process, i.e. for the true location and the velocity of the animal at the first time point. As
mentioned in Section 6.3, the initial location is the first observation, and a standard choice for
the initial velocity is 0. This is reasonable if the mean velocity is 0, as assumed throughout
this chapter. An initial covariance matrix is also passed to the Kalman filter, and it reflects
the uncertainty on the initial state vector. The uncertainty associated with the initial location
will typically be the measurement error variance. It is more difficult to define the uncertainty
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associated with the initial velocity. It may be chosen as a plausible value for the long-term

variance of the distribution of the velocity, for example.

Here, we assume that the variance of the measurement error is known, and that it is provided
as input for the Kalman filter. This is usually a reasonable assumption, because the error of
standard telemetry devices (e.g. Argos) is known (see e.g. Lopez et al., 2014). Alternatively,
we could estimate the error variance parameters, in addition to the other parameters of the
model. In the framework described here, we would need to sample over them, in a Metropolis
step similar to the one used to sample over the movement parameters (Section 6.4.1.2).

Proposal distributions To propose updates of the state sequence, we consider the endpoint-
conditioned simulation method suggested by Hobolth and Stone (2009). It is implemented
in the R package ECctmc, with the function sample_path (Fintzi, 2018). The length of
the interval over which the state sequence is updated determines its “proposal distribution’:
longer updates are less likely to be accepted. If the length of the update interval is sampled

from a heavy-tailed distribution, it allows for occasional long updates.

Proposal distributions must also be defined for the movement parameters. We consider
normal proposals on the working scale, and the choice of the proposal variance determines
the acceptance rate. It can usually be tuned to obtain an optimal acceptance rate, i.e. around
23% in a standard Metropolis algorithm (Roberts et al., 1996).

Prior distributions Prior distributions must be specified for the movement parameters,
and for the transition rates. Like for the choice of initial parameters, it may be easier to define
prior distributions on the parameters 7 and v than on [ and o, because of their biological
interpretation. Prior distributions on the transition rates define a plausible range for the time
scale over which the behavioural states occur.

6.5 Simulation study

We used simulations to investigate the performance of the MCMC algorithm described in
Section 6.4 to infer the hidden state sequence and the movement parameters from irregular

movement data, and to compare this method to analogous discrete-time approaches.

6.5.1 Estimation from irregular intervals

We simulated 10,000 locations from a 2-state model at a fine time scale (every 0.1 time

unit), and thinned them by keeping 10% of the points at random (i.e. 1000 irregularly-spaced
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locations), to emulate real movement data. The time intervals in the resulting data set ranged

between 0.1 and 8 time units.

The movement parameters and switching rates of the simulated process were chosen as

0.03 —0.03

(Bi.Bo) = (1,0.3), (o, 00) = (1, 3), A:<_0'03 0'03>,

In state 1, the variance was smaller and the reversion to the mean larger, which resulted in
slower and more sinuous movement (perhaps analogous to “area-restricted search” behaviour).
State 2 corresponded to faster and more directed movement (analogous to “transit”). This can
be seen from the time scale of autocorrelation 7 and mean speed v for each state, as defined in
Section 6.2.2.1. In this simulation, we have (71, 72) = (1,3.33) and (v, v5) = (0.89,4.85),
i.e. more persistent and faster movement in state 2. The transition rates were chosen such
that the process would on average stay about 30 time units in a state before switching to the

other state. The simulated track (after thinning) is shown in Figure 6.4.
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Fig. 6.4 Track simulated from a 2-state CTCRW model.
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We initialised the reconstructed state sequence by classifying each observation randomly
as being in state 1 or state 2, with probability 0.5 each. At each iteration, the state process
was updated over a randomly-selected interval of random length (uniform between 3 and 70
time steps). We used independent normal proposal distributions (on the working log scale) to
update the movement parameters. The proposal variances were tuned based on initial test
runs, to obtain near-optimal acceptance rates. We chose normal prior distributions on the
working scale for the movement parameters, centred on the true values of the parameters,

and with large variances.

We ran 10° MCMC iterations, which took around 20 min on a 2GHz i5 CPU, and discarded
the first 5 x 10* as burn-in. Figure 6.5 shows the posterior probabilities of being in state 2 at
the times of the observations, to compare with the “true” simulated state sequence. For each
1 = 1,...,n, we calculated the posterior probability as the proportion of reconstructions
of the state process in which the location x; was classified in state 2. (It would have been
equivalent to consider the posterior probability of being in state 1; the two probabilities sum
to 1.) We considered that an observation was misclassified if the posterior probability of being
in the true state was less than 0.5. The states were correctly estimated at the vast majority of
observation times, with only 2% of missclassified observations. The posterior probability of

being in the true state was less than 0.9 for about 4.5% of the observed locations.
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Fig. 6.5 Posterior probabilities of being in state 2 at the times of the observations. The true
(simulated) states are shown by the colours (red: state 1, blue: state 2).

Figure 6.6 displays posterior samples for the state-dependent movement parameters, i,

B2, 01, and o9, as well as the true parameter values used in the simulation. The posterior
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distributions seem to appropriately estimate all movement parameters. Although there
appears to be some possible bias, replications (not shown here) reveal that it is only due to

randomness, and not consistent across simulations.
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Fig. 6.6 Posterior samples of the movement parameters in state 1 (left) and in state 2 (right),
in the simulation study. The black dots are the true values of the parameters, used in the
simulation. The black lines show contours of a kernel density estimate of the posterior
samples. The samples are thinned to every tenth value, for visualisation purposes.

True value Posterior mean 95% Cl1 ESS

8 1 1.11 (0.97,1.26) 1054
By 0.3 0.33 (0.28,0.39) 801
o1 1 1.06 (0.99,1.14) 1511
oo 3 3.09 (2.94,3.24) 2241

Table 6.1 Results of the simulation study, based on 5 x 10? iterations (excluding burn-in).
Posterior means and 95% credible intervals of the four movement parameters, and effective
sample sizes.

Posterior means, 95% credible intervals, and effective sample sizes for the four movement
parameters are given in Table 6.1. The effective sample sizes were calculated with the R
package coda (Plummer et al., 2006). The credible intervals all included the true values of the
parameters. We were able to recover the values of the state process and of the state-dependent
movement parameters from a simulated track thinned to irregular intervals. This demonstrates

the ability of the method to work across temporal scales, and to cope with irregular sampling.
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6.5.2 Measurement error and path reconstruction

The state-space model formulation of the multistate CTCRW, presented in Section 6.3.1,
makes it possible to account for measurement error in the observed locations. This is
particularly useful for data collected via the Argos system, which is common for marine
mammals. In Section 6.3, we described the Kalman smoother, as a method to obtain estimates
of the continuous state of the process, i.e. estimates of the true location and velocity of the
animal. Here, we investigate the effect of measurement error on the accuracy of the parameter
estimation, and we use the Kalman smoother to reconstruct the location process from thinned

and noisy observations.

We started from the simulated path described in Section 6.5.1, and added isotropic Gaussian

2

noise to the thinned locations, with variance o7

= 4. Mixing was slower than in the absence
of measurement noise, so we ran 4 x 10° iterations of the MCMC algorithm, and discarded
the first 2 x 10° as burn-in, to obtain estimates of the movement parameters and of the state
sequence. The estimates, credible intervals, and effective sample sizes for the four movement

parameters are given in Table 6.2.

True value Posterior mean 95% CI1 ESS

B4 1 1.37 (0.52,4.03) 129
B2 0.3 0.35 (0.26,0.45) 4679
o1 1 0.97 (0.36,2.73) 147
09 3 3.13 (2.73,3.62) 3950

Table 6.2 Results of the simulation study with measurement error, based on 2 x 10° iterations
(excluding burn-in). Posterior means and 95% credible intervals of the four movement
parameters, and effective sample sizes.

The posterior distributions generally captured the true parameter values. However, the
effective sample sizes for (3, and o, were very small, indicating that mixing was very slow
for the movement parameters in state 1. The credible intervals for the parameters in state 1
were also much wider than those in state 2. This is because the simulated movement was
much slower in state 1, such that the introduced noise was large compared with the scale of
movement. Despite this difficulty, the posterior state probabilities gave a good estimate of

the true state sequence. Indeed, about 94% of the locations were correctly classified.

We then ran the Kalman smoother iterations, based on the mean posterior estimates of the
movement parameters and the estimated state sequence, to estimate the true location process

on a fine time grid. Figure 6.7 shows the simulated track, the thinned and noisy observations,
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and the path reconstruction. The estimates obtained from the Kalman smoother successfully

approximated the true underlying location process.

6.5.3 Comparison to discrete-time model

We simulated two tracks from the state-switching CTCRW model, at a time resolution of 0.1,
with the same parameters used in the simulations of Section 6.5.1. We then thinned them to

obtain two data sets:
(a) A track of 1000 locations, at a regular time resolution of A = 0.5;
(b) A track of 1000 locations, at a regular time resolution of A = 5.

Both tracks arise from the same underlying process (the true state-switching CTCRW), and
they emulate data sets observed at different time resolutions. We fitted a discrete-time state-
switching model, and the state-switching CTCRW model, to the two data sets, to illustrate
the differences in their scaling properties. In this experiment, we thinned the tracks at regular
time intervals (rather than irregularly, at random) because discrete-time models cannot be

applied to irregular location data. The two thinned tracks are shown in Figure 6.8.

We fitted a 2-state discrete-time hidden Markov model to each data set, using the R package
moveHMM (Michelot et al., 2016). The standard hidden Markov model, described by
Patterson et al. (2009) and Langrock et al. (2012), is formulated in terms of step lengths
(distances between successive locations) and turning angles (angles between successive
locations). We modelled the step lengths with gamma distributions, and the turning angles
with von Mises distributions. There were six estimated movement parameters: the step
length means (1, i12), the step length standard deviations (s, s2), and the turning angle
concentrations (x4, k2). The mean of the distribution of turning angles was fixed to zero,
which is a standard choice to model movement persistence. See Michelot et al. (2016) for
more detail about the hidden Markov model formulation implemented in moveHMM. The
parameters of the step length distribution are related to the speed of movement, and the
parameters of the turning angle distribution are related to the directional persistence. There
were two estimated parameters of the state process: the transition probabilities 12 and vs1,

where 7;; is the probability of a transition from state ¢ to state j over one time interval.

We also fitted the state-switching CTCRW model to each thinned data set separately. Like
in the simulation study of Section 6.5, we ran 10° MCMC iterations, and discarded the first
5 x 10* as burn-in. We estimated four movement parameters: (31, B2, 01, 02). There were

two estimated parameters of the state process: the transition rates A; and )., as defined
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Fig. 6.7 Reconstruction of a simulated track. The black line is the true simulated process, the
black dots are the thinned and noisy locations used to fit the model, and the green line is the
estimated location process obtained with the Kalman filter and smoother. The bottom plot
magnifies the part of the track delimited by a rectangle in the top plot.
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Fig. 6.8 Two tracks simulated from the same state-switching CTCRW model, and thinned to
different time resolutions (top: A = 0.5; bottom: A = 5).
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in Equation 6.13. The parameter estimates for the hidden Markov models and for the
state-switching CTCRW models are given in Table 6.3.

The parameters of the continuous-time model (state-switching CTCRW) were very similar
in both analyses. Although the two thinned data sets have very different sampling intervals
(A = 0.5 and A = 5), the parameters of the CTCRW are independent of the time intervals
of observations.

However, the parameters of the discrete-time model (hidden Markov model) were very
different in the two analyses. This should be expected, because the model is formulated
in terms of scale-dependent metrics: the step lengths and turning angles. The step lengths
increase with the time interval of observation, and the estimates reflect this. Indeed, the
mean and standard deviation of the distribution of step lengths were smaller in the analysis
with A = 0.5 than when A = 5. It should be noted that there is no clear scaling rule for
those parameters. In particular, the mean step length is generally not 10 times longer over
A = 5 than over A = 0.5. This highlights a problem that often arises in analyses of irregular
tracking data with discrete-time models. A method that has been proposed to deal with
irregular data is to derive a “movement rate” for each time step, by dividing the step length
by the time interval. Then, it is assumed that the movement rates do not depend on the time
interval, and represent a measure of the animal’s speed of movement. However, we can
see from this simulated example that the movement rates do, in fact, depend on the time
intervals of observation. Indeed, the mean movement rate can be obtained as the mean step
length divided by the time interval. In the first data set, the mean movement rates in the two
states are 0.52/0.5 = 1.04 and 2.60/0.5 = 5.2. In the second data set, the mean movement
rates are 2.83/5 = 0.57 and 18.95/5 = 3.79. In general, the sparser the data, the more the
speed of movement is underestimated by this method. A similar problem arises when linear
interpolation is used to obtain locations at regular intervals in time. Linear interpolation
draws straight lines between observed locations, and will therefore tend to underestimate the

speed of movement, and overestimate the persistence in direction.

The turning angles tend to be less concentrated around O as the time interval of observation
increases, because movement persistence is less clearly visible at a coarse time resolution.
This can be seen in the parameter estimates, as «; and ko are much larger in the analysis with
A = 0.5 than in the analysis with A = 5. However, similarly to the mean step length, it is

not clear how the concentration parameter scales with the time interval of observations.

This dependence on the time scale of observations must be taken into account in the inter-
pretation of the parameters of discrete-time movement models. For example, it is difficult

to interpret the mean step length as a measure of the animal’s speed, because its definition
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is tied to the time interval of observation. It will tend to increase with the time interval,
but generally not linearly (because animals do not move in straight lines between observed
locations). Crucially, the results of different discrete-time analyses cannot be compared if the

time interval of observation is different, as illustrated in this simulation experiment.

The same scale dependence arises for the parameters of the state process. The transition
probabilities of the hidden Markov models are defined over a given (fixed) time interval, and
can only be interpreted over that time interval. For example, in the first data set, we estimated
that the probability of a transition from state 1 to state 2 was 77, = 0.06. This means that,
if the animal is in state 1, there is a probability 0.06 of switching to state 2 over each time
step of length A = 0.5. On the other hand, the transition rates of the continuous-time model
are defined independently of any particular time interval. Regardless of the time interval
of observation, the estimated transition rate can be interpreted as the "mean number of

transitions per hour".

The objective of this simulation study is not to compare how well the discrete-time and
continuous-time models captured the true underlying process, or how well they recovered the
true parameter values. This would be unfair, because the true process used to simulate the
tracks is the state-switching CTCRW. Nevertheless, we believe that the results presented here
are useful to illustrate the fundamental difference in the formulations of discrete-time and
continuous-time models. In particular, a considerable practical advantage of continuous-time
approaches is that the estimated parameters, and therefore the interpretation and inference,

do not depend on the time interval of observation.

6.6 Grey seal case study

We illustrate the use of the state-switching CTCRW model for the analysis of a grey seal
(Halichoerus grypus) movement track. We considered a trajectory of 1875 observations, col-
lected in the North Sea between April and August 2008, available on Movebank (McConnell,
2019) and previously described by Russell et al. (2015). The base sampling frequency was of
one location every 30 minutes, but many fixes were missed, and the resulting time grid was
highly irregular (P o25 = 27 min, F 975 = 8 hours). Note that the CTCRW model describes
movement on a plane, and thus requires that the longitude-latitude locations be projected to
UTM coordinates. The animal was equipped with a GPS tag, with low location uncertainty

(less than 50m), so we did not model measurement error in the analysis.

We considered a 2-state CTCRW model, with four movement parameters to estimate: (3;, 3,

01, 09. Similarly to the simulation study, we initialised the state reconstruction to a random
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sequence of 1s and 2s (with probability 0.5 each). We used independent normal proposal
and prior distributions on the working scale of the movement parameters. We selected the
proposal variances based on test runs, and used weakly informative prior distributions. We
ran 2 million MCMC iterations, discarding the first half as burn-in, which took about 14
hours on a 2GHz 15 CPU. We only saved every 100th reconstructed state sequence, because

of memory limitations.

Figure 6.9 shows a map of the track, coloured by posterior state probabilities, and Figure
6.10 shows posterior samples for the four movement parameters (5, 32, 01, 02). Posterior
means, 95% credible intervals, and effective sample sizes for the four movement parameters

are given in Table 6.4.
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Fig. 6.9 Grey seal track, off the East coast of Great Britain, coloured by posterior state
probabilities.

State 2 captured very directed movements, corresponding to periods of transit between areas
of interest, and state 1 captured more tortuous phases of the track. This can be seen in Figure
6.10: the posterior distribution of /3; covers much larger values than that of 3, (posterior
means of 1.74 and 0.06, respectively), indicating stronger reversion to the mean in state 1,
and thus less movement persistence. From Figure 6.10, we can also see that the posterior

distributions of the movement parameters in the two states do not overlap. This is a good
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Fig. 6.10 Posterior samples of the movement parameters in state 1 (left) and in state 2 (right),
in the grey seal case study. The black lines show contours of a kernel density estimate of the
posterior samples. The samples are thinned to every 100th value, for visualisation purposes.

Posterior mean 95% Cl1 ESS

B 1.74 (1.49,2.04) 1493
Ba 0.06 (0.04,0.08) 2413
o1 3.94 (3.65,4.28) 3150
lop 0.78 (0.73,0.82) 1234

Table 6.4 Results of the grey seal case study, based on 10° iterations (excluding burn-in).
Posterior means and 95% credible intervals of the four movement parameters, and effective
sample sizes.
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indication that the two states of the model captured two distinct types of movement, which
can be interpreted as distinct types of behaviour. There were no signs of label switching in
the posterior samples; if there were, a straightforward solution would be to constrain (3, 32)
and (01, 07) to be ordered (McClintock et al., 2014).

We transformed the posterior samples of movement parameters to obtain estimates of 7 and
v in both states (as defined in Section 6.2.2.1). Histograms of the posterior samples for the
transformed parameters are shown in Figure 6.11. The posterior means were 7; = (0.55h and
7o = 17.21h for the time scales of autocorrelation, and 7, = 2.63km/h and 75 = 2.90km/h
for the mean speeds. This indicates that the two states are very similar in terms of the speed
of movement, but that the autocorrelation function of the velocity drops much faster in state
1 than in state 2. As explained in Section 6.2.2.1, the velocity autocorrelation decreases to
0.05 over a time interval of 37. In the fitted model, the velocity is therefore approximately
independent after about 1 hour 40 minutes in state 1, and after about two days in state 2.
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Fig. 6.11 Histograms of posterior samples for alternative movement parameters in the grey
seal case study.
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The posterior samples of the transition rates can be used to derive mean dwell times in
each state, and long-term activity budgets. The dwell times in state ¢ follow an exponential
distribution with rate \; (the rate of transition out of state 7). The mean dwell time can thus
be derived as d; = 1/);. In the grey seal analysis, the posterior means for the mean dwell
time were czl = 7.5h in state 1, and CZQ = 7.8h in state 2, indicating similar dwell times in
both states. Activity budgets refer to the proportion of time spent by an animal in each of its
behavioural states (Russell et al., 2015). In a time-homogeneous state-switching model, an
estimate of the long-term activity budget can be calculated as the stationary distribution of the
underlying Markov process. The stationary distribution of a /V-state continuous-time Markov
process is the vector w = (7q,...,my) which satisfies wA = 0, subject to the constraint
Zf\il m; = 1, where A is the generator matrix defined in Equation 6.13. In the 2-state case,
solving the equation yields m; = Ay/(A\; + A\2) and w3 = A1 /(A1 4+ A2). The posterior mean
estimate for the stationary distribution was (711, 2) = (0.48,0.52), i.e. the seal will tend to
spend roughly the same proportion of time in both states, in the long term. Histograms of

posterior draws for the dwell times and stationary distribution are displayed in Appendix E.

The Kalman filter and smoother recursions given in Section 6.3 can be used to compute
estimated velocities at the times of the observations. The velocities obtained with the mean
posterior movement parameters are displayed in Figure 6.12, and split by posterior state
estimates. The strong movement autocorrelation in state 2 can best be seen in the outer rim
of the plot, where the velocity sometimes persists with little variation over many time steps.
Interestingly, a cluster of very small velocities (close to zero) was also classified in state 2.
This is because, as seen in the estimates of the movement parameters, the main difference
between the two states is not in the speed, but in the velocity persistence. State 2 therefore
captures both fast persistent and slow persistent movements of the seal. On the other hand,
state 1 captures less persistent movement, characterised by a weaker autocorrelation in the
velocity process. This suggests that a 3-state model may be more appropriate to model these
data. Indeed, a 3-state model could be used to differentiate between non-persistent movement,

slow persistent movement, and fast persistent movement.

As illustrated in the simulation of Section 6.5.2, the Kalman algorithm can also provide
estimates of the locations (and possibly velocities) of the animal — and associated standard

errors — on any time grid, e.g. on a finer time grid than that of the observations.

To assess convergence, we ran the MCMC algorithm ten times, from ten different sets of
starting values, and we calculated the potential scale reduction factor from the ten simulated
chains (PSRF, Gelman et al., 2013). The PSRF compares the variance between the chains

and within the chains, to determine whether the algorithm seems to have converged. A
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Fig. 6.12 Predicted velocities from the grey seal example, obtained with the mean posterior
movement parameter estimates, for time steps classified in state 1 (left) and in state 2 (right).
The grey segments link consecutive velocities that were classified in the same state.

score close to 1 indicates convergence. In this analysis, we evaluated the PSRF using the
function ‘gelman.diag’ of the package coda. The scores for the four movement parameters
were PSRF(3,) = 1.11, PSRF(/33) = 1.02, PSRF(04) = 1.07, PSRF(03) = 1.08, and the factors
for the two transition rates were PSRF(A;) = 1.04 and PSRF()\y) = 1.06. There was therefore

no indication of convergence issues in the ten simulated chains.

6.7 Discussion

We presented a Bayesian framework to infer discrete behavioural states and movement param-
eters from a continuous-time model of animal movement. The continuous-time formulation
is consistent across temporal scales. The conditional likelihood of the model, used in the
MCMC algorithm, is implemented using the Kalman filter, making it relatively fast. The
state-switching CTCRW model described in this chapter is widely applicable to many types
of telemetry data. Its flexible formulation can accommodate data with the following features:
(1) movement persistence, (2) behavioural heterogeneity, (3) irregular time intervals, and (4)
measurement error.

Different combinations of these four features can often be found in telemetry data sets, and
failing to deal with them can lead to wrong inferences about the movement and behaviour

of animals. To our knowledge, the only other existing approach which can account for this
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range of features is that developed by Parton and Blackwell (2017). They described a state-
switching continuous-time movement model, in which the movement is described by two
stochastic processes: the bearing (i.e. compass direction), and the speed of movement. Parton
and Blackwell (2017) modelled the bearing with a Brownian motion, and the speed with
a one-dimensional Ornstein-Uhlenbeck process. Three biologically-relevant parameters of
movement can be obtained from that model: the mean and variance of the speed process, and
the variance of the bearing process. Their approach is very appealing due to its similarities
with the widely-used discrete-time models based on step lengths and turning angles (Morales
et al., 2004; Michelot et al., 2016). Indeed, the bearing process is analogous to the turning
angle, and the speed process is analogous to the step length. The ‘step-and-turn’ model
of Parton and Blackwell (2017) is therefore convenient to formulate the characteristics of
movements in terms of familiar metrics. The main limitation of their approach, compared
with the method presented in this chapter, is its computational cost. To help with the
biological interpretation of the CTCRW, it may be possible to link its parameters (5 and o)
to those of the step-and-turn model. In Section 6.2.2.1, we explained how the mean speed of
movement v can be calculated and, following Appendix D, we could also derive the speed
variance of the CTCRW. Similar calculations may be used to obtain distribution of bearings

for the velocity Ornstein-Uhlenbeck process.

The MCMC algorithm of Section 6.4 closely resembles that developed by Blackwell (1997,
2003). However, they modelled the location of an animal (rather than its velocity) with an
Ornstein-Uhlenbeck process, which could not capture strong movement persistence. Here,
we adapted the approach for the CTCRW process, to model autocorrelation in the velocity of
an animal, i.e. persistence in the speed and direction of movement (which is often present
in high-frequency telemetry data). However, the CTCRW may not be adequate to analyse
movement data that do not display this type of persistence. In particular, data collected on
a coarse time grid may not exhibit autocorrelated velocities, and could instead be analysed
with the state-switching Ornstein-Uhlenbeck model of Blackwell (1997, 2003).

The inferential approach introduced in this paper could in principle be used to implement
a state-switching version of the OUF model described by Fleming et al. (2014). The OUF
process is a generalisation of the CTCRW used in this paper, and of the Ornstein-Uhlenbeck
location process used e.g. by Blackwell (1997, 2003). It features both persistence in velocity
and long-term attraction towards a point in space, making it a very flexible model of animal
movement. Like the CTCRW, it can be written as a state-space model, and the Kalman
filter can be used to derive the likelihood of the model (Fleming et al., 2017). The MCMC

algorithm described in Section 6.4 could then be used to fit a multistate OUF model to animal
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movement. However, the OUF process has five parameters (against 2 only for the CTCRW)),
which could make estimation more challenging. More generally, this methodology could be
applied to a model switching between processes with different formulations (e.g. a 2-state
model switching between a CTCRW and OUF process). These complex multistate models
could for example capture the structured trips of central place foragers (similarly to the
discrete-time models of Michelot et al., 2017).

Analyses of animal movement and behaviour often combine telemetry and environmental
data. In state-switching models, the effect of environmental (or other) covariates on the
transition probabilities is of particular interest, and is used to uncover the drivers of animal
behavioural and movement decisions (Patterson et al., 2009; Bestley et al., 2012; Blackwell
et al., 2016). Blackwell et al. (2016) described a method of inference for the state-switching
Ornstein-Uhlenbeck movement model. They allow the transition rates to be functions of
spatial covariates (i.e. that can be evaluated at any point of the study region), or to be functions
of the time of day (to analyse circadian cycles in the behaviour of an animal). The MCMC
algorithm of Section 6.4 could be extended, following Blackwell et al. (2016), to allow for

the inclusion of covariates in the state-switching dynamics.

Although we refer to the states of the Markov process as “behavioural states”, it is important
to note that they really are statistical states, that capture the temporal autocorrelation in the
velocity process. They should be interpreted with caution, and may not exactly correspond to
separate behaviours (Patterson et al., 2017). In particular, there can be greater uncertainty in
the partitioning of a track if the states are not very distinct, i.e. if they do not clearly differ
in terms of the animal’s velocity process (Beyer et al., 2013). In the simulation study and
grey seal case study, we focused on the 2-state model formulation, because the interpretation
becomes more difficult in models with more states. Pohle et al. (2017) discussed this problem
in hidden Markov models, which are the discrete-time analogue of the model presented in
this work. A possible solution is to use auxiliary data, if available, to identify behavioural
states. For example, if the behaviour of the animal is known for some of the observations, the
corresponding states can be fixed throughout the algorithm, in a semi-supervised framework
(Leos-Barajas et al., 2017). We could also include observation variables to the state-space
model, in addition to the locations, to inform the behavioural states. For example, information
about vertical movement has been used to identify behaviours in marine mammals (DeRuiter
et al., 2017; McClintock et al., 2017). In our framework, the additional observation variables
would have to be modelled with a normal transition density, to be integrated into the standard
Kalman filter likelihood computations.
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The computational cost of the method presented in this paper greatly depends on the number
of MCMC iterations needed to obtain reliable estimates. Like for any MCMC algorithm,
convergence should be checked, for example using trace plots of the posterior samples, or
convergence diagnostics such as the potential scale reduction factor (Gelman et al., 2013).
We can improve the mixing speed of the algorithm with the choice of the tuning parameters,
i.e. the variances of the proposal distributions for the movement parameters, and the length
of the time interval over which the state sequence should be updated at each iteration. In the
applications of Sections 6.5 and 6.6, we chose the tuning parameters to obtain acceptance

rates that are close to the optimal value (i.e. around 23%; see Roberts et al., 1997).

In this paper, we focused on the estimation of the hidden state sequence and of movement
parameters, for the state-switching CTCRW model. However, this modelling framework
offers other possibilities. In particular, it can be used to predict the location of the animal
between observations (with associated uncertainty). This has been one of the main appli-
cations of the single-state CTCRW, as implemented in the R package crawl (Johnson and
London, 2018), to obtain smooth estimates of a trajectory from noisy and irregular telemetry
data (e.g. Robinson et al., 2012; Baylis et al., 2015; Rode et al., 2015). Predictions from
the state-switching CTCRW model account for behavioural heterogeneity in the movement
patterns, and are therefore more susceptible to provide realistic location and uncertainty
estimates. More generally, all functionalities of the single-state CTCRW can be implemented
in the state-switching case, based on the Kalman filter and smoother algorithms presented in
Section 6.3.2.



Chapter 7

Discussion and future work

7.1 Implications of scale-free habitat selection models

The MCMC step selection model, introduced in Chapter 3, has important implications for
the future development of habitat selection analyses. Our approach reconciles the two main
existing approaches to estimating habitat preferences in animals: resource selection functions
(RSFs), and step selection functions (SSFs). The two methods have been shown to yield
different results, because they model the selection at two different scales (Moorcroft and
Barnett, 2008). RSFs capture the selection at a global spatio-temporal scale, whereas SSFs
describe the selection at the local scale of the movement step. The MCMC step selection
model bridges the gap between the two scales, and it describes both local movement decisions
and global space use as the response to the same underlying habitat selection mechanism. It
therefore has the potential to improve our understanding of both individual animal movement

and species distributions.

Models of individual movement provide a detailed description of the movement patterns, but
they often fail to properly account for the effects of the environment. In recent years, there
has been some effort to integrate environmental variables into analyses of telemetry data. In
particular, SSFs were developed to model movement in response to habitat features. In state-
switching models, such as hidden Markov models, it is possible to formulate the transition
probabilities as functions of covariates, and this has been used to investigate the environmental
drivers of animal behaviour (Patterson et al., 2009; Michelot et al., 2016; Towner et al., 2016).
The parameters of movement can also be functions of environmental covariates, such that
the speed or directionality of movement may vary based on the conditions (McClintock and

Michelot, 2018). In fact, SSFs can describe increasingly complex movement patterns, and
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hidden Markov models can incorporate more and more environmental information, so we can
conjecture that the two approaches will converge in the future. Although these refinements
are certainly a step forward to understand the environmental drivers of animal behaviour,
existing individual-based movement models may only describe habitat selection at a local
scale. A consequence is that they are typically not stationary models, and they cannot readily
be used to estimate space use by animals (Michelot et al., 2017). The MCMC step selection
model directly links movement and space use, which are both defined by the same habitat

selection parameters.

The MCMC step selection approach introduced in this thesis does not offer the same flexibility
as standard SSF models to capture short-term movement and habitat selection. Indeed, one
advantage for SSF models is the possibility to express the movement process and the selection
process separately. The movement model can then be tailored to capture detailed features
of the observed movement. In the MCMC movement model, however, the flexibility of
the movement model is restricted, because it needs to satisfy certain conditions to ensure
stationarity. For example, in the models described in Chapters 3 and 4, we required that the
transition density satisfies the detailed balance condition. In SSF analyses, habitat selection
can also be defined with more flexibility. In particular, as mentioned in Section 3.8, the
environmental covariates of SSFs can be measured over the whole movement step, rather
than only at points in space. Thus, SSFs provide a more attractive framework for the analysis

of short-term movement and local habitat selection.

Although the parameters of SSFs do not directly describe long-term space use, simulations
or other numerical methods can be used to estimate the stationary distribution of a SSF (Potts
et al., 2014a; Signer et al., 2017). In that context, it can be useful to compare the long-term
predictions of the SSF with the observed long-term distribution of an animal, to illuminate
aspects of habitat selection that are not captured by the SSF. We could imagine a similar
diagnostic for the MCMC step selection model. For each observed step, we could simulate
from the estimated movement model, and compare the one-step-forward simulations with
the observed steps. This would uncover aspects of short-term movement and selection that
are not captured by the MCMC step selection model.

Models of species distributions, and models of space use, focus on the global scale. They
describe a long-term distribution over the whole study region. RSFs model space use as the
consequence of habitat selection on that global scale. They do not provide a mechanistic
description of this selection, however, because they ignore the dependence of the movement
data. Because they do not estimate local habitat selection, RSFs suffer a certain degree of

arbitrariness in the definition of habitat availability. In RSF analyses, the availability usually
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covers the whole study region. The choice of the extent of the study region is arbitrary, and it
can affect the estimated habitat selection parameters (Beyer et al., 2010). On the other hand,
in step selection models (such as SSFs and the MCMC step selection model), availability
is constrained by the movement model, and it can be determined from telemetry data. For
example, in the local Gibbs model, habitat availability is captured by the transition density,

which is estimated jointly with the parameters of selection.

Results from the MCMC step selection model are easier to interpret, and to compare across
studies. They can consistently be interpreted on the small scale of movement and on the large
scale of space use. This scalability means that inferences about habitat preferences do not
depend on the sampling frequency of the data, or on an ad hoc definition of availability. The
Langevin movement model has the same advantage over existing approaches. In addition, it
describes the movement in continuous time, and can therefore be applied to tracking data

with irregular time intervals.

7.2 Alternative MCMC step selection models

We described the local Gibbs sampler as the basis for a wide family of movement models.
Properties of hybrid algorithms further increase the array of movement patterns that can be
captured by the model. In particular, they can be used to model behavioural switching, as
suggested in Section 3.6.2. However, the MCMC algorithms that we have used in Chapters 3
and 4 fail to capture persistence in the direction of movement. In Chapter 6, in a different
context, we argued that movement persistence is ubiquitous in high-resolution telemetry
data, and that it is an important feature for realistic models of movement and behaviour. It is
difficult to introduce this type of autocorrelation in MCMC step selection models, because
most MCMC algorithms are based on reversible Markov chains (Section 2.3). Reversible
Markov chains satisfy the detailed balance condition, which guarantees a form of symmetry
in the transition kernel and precludes movement persistence. As we suggested in Chapter 3,
the possibility to model animal movement using non-reversible MCMC algorithms should be

investigated.

Adaptive MCMC algorithms are another class of samplers that could be used to define more
realistic movement models. The transition kernel of an adaptive algorithm evolves as time
goes by, based on the current state and previous states of the process (Haario et al., 1999,
2001). This is a useful feature in MCMC sampling problems, to explore the target distribution
more efficiently than with fixed transition rules. It may also be useful in the context of animal

movement, because the mechanisms of habitat selection are susceptible to vary in time, as
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the animal becomes familiar with its environment. Effectively, adaptive MCMC algorithms

could be used to account for memory in MCMC step selection models.

The normal kernel model is a special case of the local Gibbs model, with a normal transition
density. Although it is a simplistic model of movement, as illustrated in the case study
of Chapter 4, its formulation makes it a good candidate to analyse irregular tracking data.
Indeed, in Section 3.6.3, we proposed a slightly different parameterisation of the model, to
account for irregular time intervals. We suggested that the variance parameter could be scaled
by the time interval, to mimic the properties of the Brownian motion. In the simulations of
Section 4.7.3, we found that the habitat selection and variance parameters of the model could
be recovered from irregular data, using this formulation. It would be interesting to repeat
a similar experiment, using real telemetry data. One possibility would be to thin the zebra
track of Chapter 4 at random, to obtain an irregular data set. Then, we could fit the “irregular”
normal kernel model to the thinned track, and check whether the estimated parameters are
consistent with those found from the complete data set. From a more theoretical perspective,
it would also be valuable to investigate the relationship between the irregular normal kernel

model and continuous-time models, such as the Langevin movement model of Chapter 5.

7.3 Better inference for the local Gibbs model

We presented a method of inference for the local Gibbs model, based on maximum likelihood
estimation. The likelihood function is generally not analytically tractable, and we used
Monte Carlo approximation methods to evaluate it. The accuracy of the estimates therefore
depends on the accuracy of the approximation, and will tend to increase as the size of
the Monte Carlo samples increases (to the detriment of computational speed). In Chapter
4, we used simulations to find the Monte Carlo sample sizes that were needed to obtain
accurate parameter estimates. The approximation of the likelihood also affects uncertainty
quantification. Indeed, we derived standard errors from the Hessian of the likelihood function,
evaluated at the estimated maximum. In practice, we evaluated the Hessian of the approximate
likelihood, for different sizes of the Monte Carlo samples, to ensure that it converged for
large enough samples. Although it would require very computationally intensive simulations,
it would be interesting to check the coverage of the confidence intervals obtained with this
method.

Other techniques of uncertainty estimation could also be considered, such as the bootstrap
(Efron and Tibshirani, 1993). The bootstrap is a general method based on random resampling

with replacement. It could be used as follows to obtain confidence intervals on the parameters
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of the local Gibbs model. We consider a movement track of 7" locations (xy, ..., 7). We
cannot directly resample the locations, because of the temporal structure of the data. However,
we can consider the set of 7' — 1 steps (dy, ...,dr_1), where d; = x;,1 — x;. Based on the
Markov assumption made in the local Gibbs model, the steps are independent. We generate
a new set of 7' — 1 steps, resampled with replacement from the set of observed steps. We
fit the local Gibbs model to the new sample, and obtain estimates for the habitat selection
and movement parameters. We repeat this a large number of times, and we use the empirical
distribution of estimates to derive confidence intervals. This would be a very computational
approach, because many replications would be needed to obtain reliable error estimates. It

may be feasible for small data sets, and simple local Gibbs formulations.

Additional simulation studies could be implemented, to further investigate the performance
of the local Gibbs model for different scenarios. In Chapter 4, we mentioned that the MCMC
movement model may be used to obtain combined inference from (dependent) telemetry data
and (independent) survey data. This is a great practical advantage, which follows from the
scale-invariant properties of the habitat selection parameters of the model. The estimates of
habitat selection would combine two different scales of selection: the short-term selection
observed in the telemetry data, and the long-term selection observed in the survey data. It
would be easy to set up a simulation experiment, to verify that this method works. We
could simulate two data sets: a movement trajectory from the local Gibbs model, and a set
of independent random samples from the (known) utilisation distribution. Then, we could
compute the likelihood of the first data set using the local Gibbs model, and the likelihood
of the second data set using standard RSF methods. We could then optimise the combined
likelihood with respect to the habitat selection parameters, and obtain maximum likelihood
estimates. This would be a valuable experiment to assess the gain in accuracy obtained from
the combination of the two types of data.

7.4 Langevin movement model

7.4.1 Implementation

The Langevin movement model is a continuous-time model of movement and habitat selec-
tion. As such, it can directly be applied to tracking data collected at irregular time intervals,
and parameter estimates can be compared across studies. However, the transition density
of the underlying process is generally intractable, and methods of approximate inference
must be used. We presented one such method, based on the Euler-Maruyama discretization

scheme. The results of the simulation study of Section 5.5.3 suggest that, for a constant
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number of observed locations, there is a trade-off between the precision and the accuracy of
the estimation. If the time intervals of observation are short, the error due to the discretization
1s small, and the estimates are accurate. However, because the time intervals are short, the
track may only cover a small geographical area, which leads to low precision. In contrast,
observations obtained at long intervals lead to precise but biased estimates. In many cases,
if the telemetry data have already been collected, we cannot choose the time interval of
discretization, because it is the sampling interval. However, the observed trade-off can
provide guidelines for the design of future studies. For practical reasons, it is often the
case that the total number of locations retrieved from a telemetry tag is determined by the
battery time. For a given study duration, the sampling rate is fixed, and the converse is also
true (Brown et al., 2012). The choice of this trade-off could be based on the results of the
simulations. The mean squared error of the estimates could for example be used to determine

which time interval is preferable.

The implementation of the Langevin movement model requires the evaluation of the gradient
of the covariate fields at the observed locations. We suggested that bilinear interpolation
could be used to obtain continuous functions from the piecewise-constant covariates. It is
a very convenient method, because the gradient of the interpolated function can easily be
derived from the grid of values of the function. However, bilinear interpolation is a simple
method, and it may not always be appropriate, e.g. for a very fragmented habitat covariate.
The evaluation of the gradient of a two-dimensional surface, based on a discrete grid of
observations, is a common problem in geostatistics (see e.g. Skidmore, 1989; Meyer et al.,
2001, and references therein). It is possible that other approaches, such as finite differences,
could work better in some situations. Different interpolation and gradient estimation methods

should be compared in simulations to determine which one may be preferred in practice.

7.5 Further work on the state-switching CTCRW

In Chapter 6, we described a method of Bayesian inference for the state-switching CTCRW
model, to estimate the movement parameters and behavioural states from telemetry data. We
focused on the case where the data set only comprises one movement track. The method can
be extended to the case of multiple tracks, e.g. if several individuals were observed. Here,
we consider several independent tracks, and we assume that the movement parameters and
the transition rates are shared by all individuals. The conditional likelihood derived from the
Kalman filter can be computed separately for each track, and the full likelihood is the product
of the individual likelihoods. The MCMC algorithm described in Section 6.4 requires only

minor alterations. The update of the state process (Section 6.4.1.1) must be done separately
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for each track. In practice, we may first choose a track, and then apply the update step
described in the single-track case. To improve mixing, we could also try to update the state
sequences of several tracks at once, although this would generally reduce the acceptance
rate. The update of the movement parameters (Section 6.4.1.2) is unchanged, because the
parameters are assumed to be shared by all individuals. The update of the transition rates
(Section 6.4.1.3) is also almost unchanged. The derivation of the posterior distribution of the
transition rates is based on the number of state transitions and the time spent in each state,
which can be calculated separately for each track, and then summed.

We presented the state-switching CTCRW model as a good alternative to the widely-used
hidden Markov models, because it is formulated in continuous time. In Section 6.5.3, we used
simulations to highlight the difference in the scaling properties of the parameters of discrete-
time and continuous-time models. We found that the parameters of discrete-time models
depend on the time scale of the observations This is not surprising, because they describe
metrics of movement that are only defined for a particular time interval of observation (e.g.
the step lengths and turning angles). On the contrary, estimates of the parameters of the
state-switching CTCRW did not depend on the sampling frequency. These results illustrate
the limitations of discrete-time models, in particular to analyse data collected irregularly
in time. A more extensive simulation study could reveal the practical consequences of this
limitation of discrete-time analyses. In particular, it would be interesting to investigate the
effect of the time scale of observation on the estimated behavioural states. The classification
of the movement tracks into “behavioural phases” may be sensitive to the sampling frequency,

which would suggest that great caution is needed in their interpretation.

Model checking could be used to verify that the state-switching CTCRW appropriately
captures features of the real data. Conn et al. (2018) presented a review of the Bayesian
model checking techniques that have been used in ecological studies. The most common
method is posterior predictive checks (e.g. Morales et al., 2004). In the context of the
state-switching CTCRW model, we could simulate a movement track from each posterior
sample, and compare the simulated movement to the real (observed) movement of the animal.
To assess the movement component of the model, we could for example compare the step
lengths in the observed data with the simulated step lengths. To assess the behavioural
component, we could compare the proportion of time spent in each state, or the mean dwell
times. Following Morales et al. (2004), we could also compare the autocorrelation structure
of the observed step lengths to that of the simulated step lengths. Discrepancies between
features of the real and simulated data point to model misspecifications.
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Appendix A

Convolution of normal densities

Here, we verify that the resource-independent step density of the normal kernel model is a
normal density with mean x; and variance 202, Because we consider the isotropic case, we
only need to prove it in either dimension. For a flat target distribution, the likelihood of a
(one-dimensional) transition from x to y is

poly|r) = / p(ylw)p(plz)du
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202 Convolution of normal densities

We define w = o/ V/2, and substitute v/2w for o in the integral,

1 (y — z)? 1 (1 (z+y)/2)?]
polylz) = oy P [— 102 ] / oo P |~ 57 dp

o e [ w2
V2120 p[ 402 ]/ o P 2w? -

The function in the integral is a normal density with mean (z + y)/2 and variance w?, so its

integral is 1. The expression becomes

1 (y —z)°
po(ylz) = m@}(p [—T] 5

which is the probability density function of the normal distribution with mean x and variance
202,

We have shown that the resource-independent step density of the normal kernel model is a

normal distribution, centred on the current location, and with variance 202.



Appendix B

Intersection of two discs

B.1 Area of intersection

In the following, we show that the area A(D,(x) N D,(y)) can be written in terms of the
radius 7 and of d = ||y — ||, the distance between  and y. We focus on the case where
d < 2r (because the area of intersection is zero otherwise). The graph below shows the
configuration.

a

/ N\

b

The area of intersection of the two discs is shown in grey, and can be calculated as follows.
Consider the two subregions of the disc shown below,
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d/2

b b
The area of intersection of the two discs is twice the difference between the area of the slice
(left) and the area of the triangle (right). The area of the slice is Ag = a2, and we can write

a in terms of r and d, using trigonometry in the rectangle:

o = CoS — |,
2r
d
Ag = r?cos™? (5) )

d
Ar = 3" sin(a)

—T—dsin cos™! i
2 o) ]

Using the property that sin(cos™!(a)) = v/1 — a2, this becomes

such that

The area of the triangle is

_rd . d?
) 4r2’

Ar

Eventually, the area of intersection of D,.(x) and D, (y) is

A(D,(x)N D,(y)) = 2(As — Ar) = 2r*cos™* (%) —rdy/1— %:

if d < 2r, and O otherwise. For a given r, this area only depends on the distance d between
the centres « and y of the two discs.



B.2 Acceptance rate of sampling procedure 205

B.2 Acceptance rate of sampling procedure

In Section 4.4.2, we proposed a method to generate samples from the intersection of two
discs, based on the smallest rectangle that includes the intersection (see Figure 4.2). As
before, we denote by r the radius of the discs, and d the distance between their centres. In
this appendix, we calculate the expected acceptance rate of the proposed sampling procedure
when d = 0, and when it tends to 2r.

When d = 0, the rectangle is a square with sides of length 2r, with area 4r2. In that case, the
expected acceptance rate () is the ratio of the area of a disc of radius r and the area of that
square, i.e. Q = (7r?)/(4r?) = 7 /4.

The expected acceptance rate is undefined for d = 2r, so we derive its limit when d — 2r.

In general, for 0 < d < 2r, the expected acceptance rate is given by the ratio

_ Ar(d)
Arect ’

where A, (d) is the area of intersection of the two discs, and A, is the area of the rectangle.

d d>
— —1 _ -
A,.(d) = 2r cos <2r) rdy/1 ot

Areet = (2r — d)V4r? — d?.

We previously found

and it is easy to see that

To simplify the expression, we define ¢ = d/(2r), and we can write

_ 2r2 cos ™ (c) — 2rfcy/1 — 2
2r(1 —¢)y/2r(1 — ¢)y/2r(1 + ¢)
1 [cosl(c) —c/1— 02] ‘

Q(c)

(1-cvI-e

We are looking for the limit of () when d — 2r, i.e. when ¢ — 1. () is undefined in 1, so we
consider the Taylor expansions of the numerator and denominator to derive the limit. From

the extensions of the functions to the complex plane, we find the following expansions at
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cos ™! (¢) = V2ive =T — gi(c — 12+ o((c — 1)*?),

V1—c2=v2iVe—1+ Z\/ﬁz(c —1)*2 +o((c — 1)%?),
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Substituting these expressions, the numerator of () becomes
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Taking the limit, we find

O]  tim L [£4/3)Vie — 12
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We can calculate the derivative of ) with respect to ¢, over ¢ € (0, 1), to verify that the

function is monotonic decreasing over the interval. This proves that () is bounded above by
7/4 and bounded below by 2/3.



Appendix C

Bilinear interpolation gradient

In this appendix, we derive the analytical expression of the gradient for the bilinear interpo-

lation of a surface. We used the bilinear interpolation to interpolate the piecewise-constant

covariate functions, in the Langevin movement model.

Let f be the two-dimensional function of interest. We want to approximate f and its gradient

at a point (z,y). The point is in a grid cell delimited by x; (lower) and x5 (upper) along the

x axis, and by y; (lower) and y- (upper) along the y axis. The function f is known at the four

corner points of the grid cell, and we write

f(z, 1) = fu
f(x1,92) = fi2
f(za, 1) = fa
f(x2,y2) = faa

The bilinear interpolation of f at the point (z,y) is

To — X

; Y2y
fa) = Y2 — W (

For convenience, we rewrite it as

flz,y) =

To — T

1

To — X

r — I

r — X —
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We can then derive the partial derivatives of the interpolated function,

3_f _ (y2 —y)(far — fu1) + (v — 1) (f22 — fr2)

7Y (v — ) (w2 — 1)
ﬁ(x - (2 — 2)(frz — fu1) + (x — 21)(fo2 — fo1)
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Appendix D

Alternative parametrisation of the
CTCRW

Gurarie et al. (2017) suggest an alternative parametrisation of the CTCRW process, with
parameters

1 _ mo

T=—=, V=—r.
B’ 2VB

In this formulation, 7 is the time interval over which the autocorrelation function of the

velocity process decreases by a factor e. A larger value of 7 indicates stronger movement

persistence. The parameter v is the mean speed, and a larger value of v corresponds to faster

movement. In this appendix, we show how the formulas above can be obtained.

Time scale of autocorrelation

We consider the one-dimensional velocity process (V;);>o, modelled with an Ornstein-
Uhlenbeck process with mean parameter v = 0. The results also apply to the isotropic

two-dimensional case of the CTCRW process. The velocity satisfies

si-s), O
Vi ‘/5 — Us ~ N T Sy o
W Vs } e v 20

(1 — e 28t=9) |
The Orstein-Uhlenbeck process is stationary, with long-term mean v = 0 and long-term

variance w = o2 /(203). Its autocorrelation between times s and ¢ is therefore

~ Cov(V,, V)

w

R(s,t)
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We first find the autocovariance of the velocity process between times s and ¢,

Cov(Vi, Vi) = E(ViVi) — E(V)E(V,).

By property of the Ornstein-Uhlenbeck process, F(V;) = E(V;) = v = 0. So, we have

Cov(Vi, Vi) = E(VsV3)

E(‘/t |V9 = Us)vsp(vs)dvs
v2e P=9)p(v,)dv,

= eﬁ(ts)/vfp(vs)dvs

= IB(VY).

——

We also have
Var(V,) = E(V?) — E(V,)? = E(V?)

and so
Cov(V,, V) = e PIVar(V,) = we 079,
The autocorrelation function of the process between times s and ¢ becomes

—B(t—s
Ris, ) = L ),

w
We can then verify that the autocorrelation between times ¢ and ¢ + 7 (with 7 = 1/) is

R(t,t+71)=e " =¢t

That is, the autocorrelation function of the velocity process decreases by a factor e over a
time interval of length 7.
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Mean speed

The long-term distribution of the velocity Ornstein-Uhlenbeck process with mean v = 0 is

02
V ~N|{O,
The mean speed of the animal is obtained as the mean norm of the two-dimensional vector v.
Denote V' = (V,,V,)', with

Vi~ N( w) v~ N( 25)

the one-dimensional components of the velocity. We can define two standard normal variables
V, an V;J by

Va
o /28’

. ~ |4
V, = V, = y__
a/\/2p3

The mean norm of the velocity is

2 0.2

— B |y =24+ 2
28°% 287

o ~ ~
= —F [/V24+V2|.
NG {V o y}
We know that 4/ f/ﬁ + ‘7;/2 follows a y distribution with two degrees of freedom. Its mean is
- - I'(1.5) N3 s
E(\V24+ V2 =V2——= =V2— =,/ —.
VEERE e

Eventually, we find the mean speed,

vaE V2T aE






Appendix E

Additional figures for the grey seal case
study

In Chapter 6, we described the link between the transition rates of the continuous-time
behaviour process and measures of behaviour persistence. In particular, the transition rates
can be used to derive the mean dwell time in each state, i.e. the mean duration spent before
switching to another state. They can also be linked to the stationary distribution of the
behavioural process, which describes the proportion of time spent in each state, in the long
run. Histograms of the posterior samples of the mean dwell times are shown in Figure E.1,

and histograms of the stationary state probabilities are shown in Figure E.2.
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Fig. E.1 Histogram of posterior samples of dwell times in the grey seal case study.
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Density
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10- 10-

040 045 050 055 0.0 040 045 050 055 0.0
Stationary probability (state 1) Stationary probability (state 2)

Fig. E.2 Histogram of posterior samples of stationary state probabilities in the grey seal case
study.
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