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Only those who will risk going too

far can possibly �nd out how far one can go.

Do I dare disturb the universe?

T. S. Eliot.



Abstract

The presented work contains a new construction of a class of distinguished quasifree states for the

scalar �eld and Proca �eld on globally hyperbolic spacetimes. Our idea is based on the axiomatic

construction of the Sorkin-Johnston (SJ) state [58]; we call these states generalised SJ states. We give

a concrete application of this framework with the construction of the `thermal' SJ state. By slightly

modifying the construction of generalised SJ states, we also introduce a new class of Hadamard states,

which we call generalised SJ states with softened boundaries. We show when these states satisfy the

Hadamard condition and compute the Wick polynomials. Finally we construct the SJ and Brum-

Fredenhagen (BF) states for the Proca �eld on ultrastatic slabs with compact spatial sections. We

show that the SJ state construction fails for the Proca �eld, yet the BF state is well de�ned and,

moreover, satis�es the Hadamard condition.
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Chapter 1

Introduction

The development and progression in modern physics stems from the interplay between theory and

experiment; a theory is developed and an experiment is performed to verify such a theory. Conversely,

new phenomena are discovered from experiments which then generates a driving force to understand

these results in a theoretical framework. This has been extremely fruitful, culminating in the con-

struction of the two pillars of modern physics: Einstein's general relativity and quantum mechanics.

One of the greatest tasks of modern theoretical physics is the reconciliation of these two theories into

a coherent framework, which is largely known as quantum gravity.

Of particular interest to us is the causal set theory approach to quantum gravity and the framework

known as quantum �eld theory in curved spacetime. Causal set theory is a theory of quantum gravity

based on the idea that, fundamentally, spacetime is discrete [59, 18, 57, 56]. The theory incorporates

two central components of modern physics, the spacetime causal ordering from general relativity and

the path-integral from quantum theory. Quantum �eld theory in curved spacetime is a theory in

which the �elds involved are treated fully quantum mechanically, but the gravitational `back-reaction'

is treated classically or semi-classically, in accordance to the principles of general relativity. Since

quantum �eld theory in curved spacetime only treats the gravitational �eld semi-classically at best,

it can only serve as an approximation to a full quantum theory of gravity. However, it has produced

some remarkable insights; notably so is the particle creation by black holes discovered by Hawking [37]

and the Unruh e�ect [61].

Quantum �eld theory in curved spacetime is a natural extension of quantum �eld theory on �at
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spacetime; however, there are profound conceptual and mathematical distinctions between the two.

Quantum �eld theory on �at spacetime allows for the construction of a distinguished maximally sym-

metric, minimal energy state known as the vacuum state, which is unique up to a phase factor. The

vacuum state then forms the basis of the theory; the Poincaré invariance of the vacuum state allows

for the identi�cation of single particle states via Wigner's analysis and the notion of particles has a

clear interpretation.

One may then be tempted to seek out a construction of a distinguished state for a general curved

spacetime. However, such e�orts have been met with failure - and the existence of a distinguished

state with physical properties has been �rmly dismissed and presented as a no-go theorem [27]. These

results have then shifted the e�orts of constructing a distinguished state to the construction of a

class of states that are in some sense `physical'; such a class of states are known as Hadamard states.

Hadamard states have a short distance behaviour that approximates that of states in �at spacetimes

with �nite energy. A precise de�nition of a Hadamard state was �rst given by Kay and Wald in [44]

and an elegant reformation of the Hadamard condition was given by Radzikowski in [52]. Hadamard

states are considered to be the largest class of states that are physically reasonable, they permit

the computation of Wick polynomials such as the stress-energy tensor and give �nite results and

�uctuations. Fredenhagen and Brunetti showed that the Wick polynomials evaluated in a Hadamard

state are �nite [12], and a partial converse to this result is given by Fewster and Verch [29]. On a

general spacetime, Hadamard states for a spin zero �eld are known to exist via a deformation argument

presented by Fulling, Narcowich andWald [32]. However, the argument is indirect and does not give any

information on how to explicitly construct Hadamard states. Therefore, seeking explicit constructions

of Hadamard states is an important question for quantum �eld theory in curved spacetime. It is the

purpose of this thesis to present an explicit construction of a family of quasifree Hadamard states for

both the free spin zero �eld and massive spin one �elds.

A particular construction of a class of Hadamard states stems from the development of propagators

in causal set theory undertaken by Johnston [42]. Johnston uses the causal set analogue of the Pauli-

Jordan function for a free scalar �eld to construct a unique vacuum state. This construction was then

applied to a free scalar �eld over a continuum spacetime by Afshordi, Aslanbeigi and Sorkin, which

culminated in a distinguished pure quasifree state known as the SJ state. The SJ state for quantum

�eld theories on continuum spacetimes is a construction for a pure quasifree state using only the �eld

equations and a bounded region of a globally hyperbolic spacetime. The construction does not rely on
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any symmetries of the spacetime, and is well de�ned provided the bounded region in which the SJ state

is constructed obeys some technical conditions, which was shown by Fewster and Verch in [28]. The

SJ state, however, su�ers from severe pathologies, which we expand upon in Chapter 5. In particular,

Fewster and Verch showed that the SJ state constructed on an ultrastatic slab with compact spatial

sections fails to be Hadamard [28]. There is, however, a modi�cation to the SJ state construction due

to Brum and Fredenhagen that yields a class of Hadamard states, known as BF states [11]. The BF

states have been constructed on static slab spacetimes with compact spatial section and on expanding

slab spacetimes and are shown in both cases to satisfy the Hadamard condition. We review both the SJ

and BF state constructions in Chapter 5. The SJ construction essentially is constructing the `positive

part' of the commutator function (also known as the Pauli-Jordan function) when the commutator

function extends to a bounded self-adjoint operator on a Hilbert space. The positive part is then used

to construct a two-point function, and from the two-point function a quasifree state can be constructed.

We review various aspects of quasifree states and Hadamard states in Chapter 4.

The SJ and BF state constructions have also been applied for the free Dirac �eld on ultrastatic

slab spacetimes with compact spatial sections [23]. The idea is to use the fermionic projector (FP)

construction of Finster and Reintjes [30], and apply a similar construction to the SJ and BF state

constructions. This construction yielded a pure quasifree `FP' state and a softened FP state for the

Dirac �eld. On ultrastatic slabs, the FP state fails to be Hadamard whereas the softened FP state

(based on the BF state construction) satis�es the Hadamard condition.

In this thesis we present a new construction of quasifree states that is based on the axiomatic

construction of the SJ state due to Sorkin [58]. We call these quasifree states generalised SJ states.

The construction is well de�ned whenever the construction of the SJ state is well de�ned. The original

SJ state construction, due to Afshordi, Aslanbeigi and Sorkin, is based on the observation that, for a

suitable spacetime (M, g), the commutator function A = iE, where E is the advanced-minus-retarded

operator for the Klein Gordon operator, extends to a bounded self-adjoint operator on the Hilbert

space L2(M, dvolg). The `positive part' of the commutator function A = iE is given by the operator,

A+ =
1

2
(A+

√
A2), (1.1)

and is used to construct a two-point function by the prescription,

WSJ(f, g) = 〈f | A+g〉 ∀f, g ∈ C∞0 (M). (1.2)

13



Our construction of generalised SJ states uses the spectral theory for bounded self-adjoint operators

over a Hilbert space; a generalised SJ state has the two-point function,

WSJψ (f, g) = 〈f | A+
ψg〉 ∀f, g ∈ C∞0 (M), (1.3)

where A+
ψ is the unique solution to a set of axioms for a suitable continuous function ψ. We give

a complete description of the types of functions ψ so that (1.3) satis�es the �eld equations for the

scalar �eld, is of positive type, and has the correct antisymmetric part. Furthermore, we give a

concrete application of the generalised SJ state construction by constructing the SJ `thermal' state on

an ultrastatic slab spacetime with compact spatial sections. We also present a proof giving su�cient

conditions on when summing smooth sections converges, which is presented in Chapter 4. This result

will be used throughout the entire thesis.

Using the generalised SJ state construction, we develop a new construction of Hadamard states

based on an observation of Sorkin [58]. Sorkin conjectured that one may `soften the boundary' of the SJ

vacuum state to obtain a Hadamard state [58], by modifying the volume form. The volume form dvolg

is modi�ed to 1
ρ dvolg for a suitable smooth compactly supported function ρ. We use the generalised

SJ state construction and the idea of Sorkin to construct a class of Hadamard states which we call

generalised SJ states with softened boundaries. We give su�cient conditions on when a generalised

SJ state with softened boundaries satis�es the Hadamard condition on ultrastatic slabs with compact

spatial sections. We also construct the thermal SJ state with softened boundaries on ultrastatic slab

spacetimes and show that it satis�es the Hadamard condition. We also compute the Wick square of

the �eld evaluated in the thermal SJ state with softened boundaries. Furthermore, on ultrastatic slabs

with a spatial section of a three sphere, we calculate the Wick square of the n−th derivative of the �eld

evaluated in the SJ vacuum with softened boundaries. We present numerical evidence that the Wick

square of the unsoftened SJ state (5.29) diverges in the interior of the ultrastatic slab. Furthermore, we

construct the thermal SJ state with softened boundaries on ultrastatic slabs and show that it satis�es

the Hadamard condition.

Finally, we examine the SJ and BF state construction for a free massive spin one �eld on an

ultrastatic slab spacetime. The massive spin one �eld, or Proca �eld, is most elegantly described in

terms of di�erential forms. However, the inner product on the space of di�erential forms induced by

a Lorentzian metric is actually inde�nite. The commutator function one would use to construct a SJ

or BF state is not an operator on a Hilbert space, but an operator on a Krein space. Krein spaces are
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essentially complete inde�nite inner products that decompose into a direct sum of a positive de�nite

and negative de�nite subspaces. Analysis in Krein spaces is signi�cantly harder than in Hilbert spaces;

it turns out the commutator function extends to a unbounded operator in both the SJ and BF state

constructions. We show that, on ultrastatic slab spacetimes with compact spatial sections, one cannot

construct the SJ state for the Proca �eld. A precise statement of this is beyond the scope of this

thesis, but we refer the reader to the papers [26, 25] for a complete rigorous construction. However,

one can construct a BF state for the Proca �eld on ultrastatic slab spacetimes for a suitable choice

of softening function, and we give an explicit construction to show that this is possible. Furthermore,

whenever a BF state on an ultrastatic slab with compact spatial section is well de�ned, we show that

it satis�es the Hadamard conditon. The non-existence of the SJ state for the Proca �eld and the BF

state construction are both rigorously done in [26, 25].

Thesis Layout

The layout of this thesis is as follows. Chapter 2 will include preliminaries required by the reader

to understand this thesis. Chapter 3 will review the algebraic quantisation of the free scalar �eld on

globally hyperbolic spacetimes, and is largely standard. Chapter 4 will review quasifree states and the

Hadamard condition, which again is largely standard. However, in section 4.3 we present a new result,

which gives su�cient conditions for when the summation of smooth sections converges. This result is

based on the work appearing in [23] and will be the basis for proving if a state satis�es the Hadamard

condition. Chapter 5 will review the SJ vacuum state for the free scalar �eld on continuum spacetimes

and discrete spacetimes. Since our concern is for quantum �eld theories on continuum spacetimes, the

review of the SJ vacuum on discrete spacetimes is pedagogical in nature. Our focus will be on the

construction and properties of the SJ vacuum on continuum spacetimes. Furthermore, we review a

modi�cation of the SJ vacuum due to Brum and Fredenhagen, which we call BF states.

Chapter 6 will present a new construction of states for a free scalar �eld on globally hyperbolic

spacetimes which we call `generalised SJ states'. This construction is based on the axiomatic approach

to the SJ state construction given by Sorkin in [58]. Chapter 7 will give an application of the generalised

SJ state construction, where we construct a SJ `thermal' state on an ultrastatic slab spacetime. Chapter

8 will present a new construction of a class of states that is based on a observation of Sorkin in [58],

which we call generalised SJ states with softened boundaries. We show that the SJ vacuum with
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softened boundaries constructed on ultrastatic slab spacetimes with compact spatial sections satis�es

the Hadmard condition. Furthermore, we give su�cient conditions on when any generalised SJ state

with softened boundaries on an ultrastatic slab is Hadamard. We calculate the Wick square of the

SJ vacuum with softened boundaires using a construction of compactly supported functions given by

[21, 22]. We give indications that the Wick square for the unsoftened SJ vacuum on ultrastatic slabs

with compact spatial sections diverges in the interior. Using the construction of the thermal SJ state in

Chapter 7, we construct the thermal SJ state with softened boundaries on ultrastatic slab spacetimes

and show that it satis�es the Hadamard condition. Finally, in Chapter 9 we extend the SJ state

construction to a massive spin-one �eld on an ultrastatic slab spacetime. We show that one cannot

construct the SJ vacuum for the massive spin one �eld. However, the BF state construction for the

massive spin-one �eld for a suitably chosen softening functions is well de�ned. Moreover, we show that

when the BF states are well de�ned on ultrastatic slabs they also satisfy the Hadamard condition.

This thesis presents contributions to the explicit construction of a large family of quasifree states for

both the free scalar �eld and free Proca �eld which is valid in a large class of spacetimes. We conclude

the thesis with a brief summary, as well as various open problems and directions for future research.
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Chapter 2

Mathematical Preliminaries

2.1 Notation

We now brie�y review the notation that we shall use throughout this thesis. The space of smooth

K−valued functions over a spaceM will be denoted C∞(M,K), and the subspace of smooth functions

with compact support will be denoted C∞0 (M,K). Whenever we write C∞(M) or C∞0 (M) we implic-

itly mean the spaces C∞(M,C) or C∞0 (M,C). We will explicitly write C∞(M,R) and C∞0 (M,R) as

the space of smooth real valued functions and the space of smooth real valued functions with compact

support. We use units such that ~ = c = 1. Let f ∈ C∞(K) be a smooth function. The Fourier

transform of f is de�ned as,

f̂(ω) =

∫ ∞
−∞

eiωtf(t)dt (2.1)

2.2 Functional Analysis

In this section we will review various elements of functional analysis used throughout this thesis. We

will concentrate on the analysis of Hilbert spaces and operators on Hilbert spaces and leave analysis

of Krein spaces until Chapter 9. Whenever we write a Hilbert space H we implicitly mean the pair

(H, 〈· | ·〉) where 〈· | ·〉 is a positive de�nite inner product. The space of bounded operators on a Hilbert

space H will be denoted B(H), where each element T : H → H is a bounded operator. We shall be

interested in the convergence of operators in various topologies on the space of bounded operators
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B(H). Before de�ning these topologies, we �rst de�ne the dual space of H,

De�nition 2.2.1. Let H be a Hilbert space. The dual space of H, denoted H∗ is the space of all

continuous linear functionals over H, where each element l ∈ H∗ is the map,

l : H → C. (2.2)

We are now ready to de�ne the required topologies on the space of bounded operator B(H):

De�nition 2.2.2. Let H be a Hilbert space and B(H) be the normed space of bounded operators on

H. We can now de�ne two operator topologies on the space B(H),

i The norm operator topology on B(H) is the metric topology induced by the norm ‖ · ‖. A sequence

(Tn)n∈N converges to T , written as Tn → T , if and only if ‖Tn− T‖B(H) = 0. This is equivalent to

saying that Tn → T in the norm topology of B(H) if and only if ‖Tnf − Tf‖ → 0 for every f ∈ H.

ii The weak operator topology on B(H) is the weakest topology such that the maps,

Ef,l : B(H)→ C

T 7→ l(Tf),
(2.3)

are continuous for all f ∈ H and all l ∈ H∗. We draw attention to the following theorem:

Theorem 2.1. Let H be a Hilbert space. Let {Tn}n∈N be a sequence of bounded operators and

suppose that, for every f, g ∈ H, 〈Tnf | g〉 converges as n → ∞. Then there exists a T ∈ B(H)

such that {Tn}n∈N converges to T in the weak operator topology.

Proof. See [53, Theorem VI.1]. n

De�nition 2.2.3. Let (H, 〈· | ·〉) be a Hilbert space. An operator U ∈ B(H) is positive if for all

f ∈ H we have 〈f | Tf〉 ≥ 0. If U ∈ B(H) is a positive operator then we shall write U ≥ 0. Due to

the positivity of the norm induced by the inner product 〈· | ·〉, for any T ∈ B(H), we have T ∗T ≥ 0.

A particularly nice class of operators to deal with are called compact operators, which we now

de�ne:

De�nition 2.2.4. The operator A ∈ B(H) is compact if A maps bounded subsets U ⊂ H into

precompact sets AU ∈ H. Equivalently A ∈ B(H) is compact if and only if every bounded sequence

{fn}n∈N ⊂ H is mapped into a sequence {Afn}n∈N with a convergent subsequence.
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Compact operators have many useful features, two of which we shall use during this thesis:

i The Hilbert-Schmidt theorem for self-adjoint compact operators states the following,

Theorem 2.2. Let T ∈ B(H) be a self-adjoint compact operator. Then there is a complete or-

thonormal basis {ψn}n∈N consisting of eigenvectors of T , i.e. Tψn = λnψn where λn are eigenval-

ues that obey λn → 0 as n→∞.

Proof. See [53, Theorem VI.16]. n

ii The norm limit of compact operators is a compact operator:

Theorem 2.3. Let {Tn}n∈N be a sequence of compact operators. If Tn → T in norm topology,

then T is compact.

Proof. See [53, Theorem VI.12]. n

We will also use the fact that �nite rank operators (i.e. operators whose image is �nite dimensional)

are compact. The type of Hilbert space solely considered in this thesis are separable, and we shall use

the following theorem,

Theorem 2.4. A Hilbert space H is separable if and only if there exists a countable orthonormal basis.

Proof. See [53, Theorem II.7]. n

Another class of operators that will be used in Chapter 5 are Hilbert-Schmidt operators, to de�ne

these, we �rst need to de�ne the trace as a linear functional on B(H) where H is a separable Hilbert

space,

De�nition 2.2.5. Let (H, 〈· | ·〉 be a separable Hilbert space and {φn}n∈N be a orthonormal basis.

Let U ∈ B(H) be a positive operator. The trace of U is de�ned as,

tr(U) =
∑
j∈N
〈φn | Uφn〉. (2.4)

De�nition 2.2.6. Let H be a Hilbert space. An operator T ∈ B(H) is called Hilbert Schmidt if and

only if tr(T ∗T ) <∞.
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An important result for operators on Hilbert space is the spectral theorem for bounded self-adjoint

operators. This theorem will form the basis for the construction of generalised SJ states. We now

collect the necessary prerequisites to state the spectral theorem.

De�nition 2.2.7. Let A be a bounded operator over a Hilbert space H. The spectrum of A, denoted

σ(A) is the set of all λ ∈ C such that A−λ1 is not invertible, where 1 ∈ B(H) is the identity operator.

The resolvent is de�ned as ρ(A) = C \ σ(A).

De�nition 2.2.8. The space of continuous real-valued functions over the spectrum of a self-adjoint

bounded A is denoted by C(σ(A)), where the norm is given by the sup-norm de�ned by,

‖f‖∞ = sup
λ∈σ(A)

|f(λ)|, (2.5)

for all f ∈ C(σ(A)).

Theorem 2.5 (Spectral theorem - continuous functional calculus version). Let A be a bounded self-

adjoint operator on a Hilbert space H. Then there is a unique map Θ : C(σ(A)) → B(H) that obeys

the following:

i)

Θ(fg) = Θ(f)Θ(g)

Θ(αf) = αΘ(f) ∀α ∈ C,

Θ(1) = 1B(H)

Θ(f) = Θ(f)∗,

(2.6)

for all f, g ∈ C(σ(A)) where 1/1B(H), denotes the identity on C(σ(A)) and B(H) respectively, f

denotes the complex-conjugate of f ∈ C(σ(A)) and Θ(f)∗ denotes the adjoint of Θ(f) ∈ B(H).

These properties entail that Θ is an algebraic ∗−homomorphism.

ii) ‖Θ(f)‖B(H) = ‖f‖∞.

iii) Let f ∈ C(σ(A)) be de�ned by f(λ) = λ; then Θ(f) = A.

iv) If AΨ = λΨ then Θ(f)Ψ = f(λ)Ψ

v) σ(Θ(f)) = {f(λ) | λ ∈ σ(A)}
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vi) If f ≥ 0 then Θ(f) ≥ 0.

vii) If there exists a B ∈ B(H) such that AB = BA then Θ(f)B = BΘ(f).

viii) If a sequence (fn)n∈N converges point wise to f ∈ C(σ(A)) and ‖fn‖∞ is bounded, then Θ(fn)→

Θ(f) in the strong operator topology.

Proof. See [53, Theorem VII.1] for i− v and [53, Theorem VII.2] for vi− vii. n

Throughout this thesis, we write Θ(f) = f(A) to emphasis the dependence on A.

2.3 Partial Di�erential Operators

We review some elementary facts about partial di�erential operators on smooth manifolds. The re-

sources for this section are [62, 3, 46].

De�nition 2.3.1. A smooth K−vector bundle of order n is a triplet (π, F,M) where F and M are

topologcial spaces and π : F →M is a smooth continuous surjective map. The map π is required to

satisfy the following,

1. For every x ∈ M the space generated by the preimage of x with respect to π, i.e π−1(x), is a

vector space isomorphic to Kn. The preimages π−1(x) are called the �bres of the bundle.

2. For every x ∈M there exists an open neighbourhood Vx of x and smooth map,

ϕ : π−1(Vx)→ Vx × Kn, (2.7)

called a local trivialisation.

In the following we will abbreviate a vector bundle (π, F,M) as simply the map π : F →M.

Vector bundles then look, locally, like a topological space with a vector space attached in a smoothly

varying manner. An important example of a vector bundle is the tangent bundle of a smooth manifold

M, denote TM, whose �bres are the tangent spaces TxM, x ∈ M. The dual bundle to the tangent

bundle TM is the cotangent bundle, denoted T ∗M, whose �bres are the cotangent spaces T ∗xM,

x ∈M.

De�nition 2.3.2. Let π : F → M be a vector bundle. The dual bundle is the vector bundle

π∗ : F ∗ →M whose �bres π∗−1(x) at x ∈M are the dual vector space to the �bre π−1(x).
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De�nition 2.3.3. A smooth section of a vector bundle π : F →M is a smooth map s :M→ F such

that π ◦ s = idM. A section can be thought of as a one-sided inverse of a vector bundle. The space of

smooth sections is denoted by Γ∞(M, F ) and the space of smooth compactly supported sections in F

will be denoted D∞(M, F ).

De�nition 2.3.4. Let V be a vector space and b : V × V → R be a symmetric bilinear form. The

index of b is the dimension of the largest subspace W ⊂ V such that b
∣∣
W

is negative de�nite.

De�nition 2.3.5. Let M be a smooth manifold. A metric tensor, or more simply just a metric, is

smooth section of the second symmetric power of the cotangent bundle T ∗M,

g ∈ Γ
(
S2(T ∗M)

)
, (2.8)

which is everywhere symmetric, non-degenerate and has a constant index. The pair (M, g) is called a

Riemannian manifold if index(g) = 0, i.e. the metric is everywhere positive de�nite. If dim(M) ≥ 2

and index(g) = dim(M) − 1 then (M, g) is called a Lorentzian manifold. The metric de�nes, for

every p ∈ M, a non-degenerate bilinear form gp over the tangent space TpM. In the case of a

Riemannian/Lorentzian manifold, the bilinear form gp is de�nite/inde�nite respectively for each p ∈

M.

De�nition 2.3.6. Let π : F →M be a K−vector bundle over a smooth manifoldM. A connection

on F is a K bilinear map,

∇ : Γ∞(M, TM)× Γ∞(M, F )→ Γ∞(M, F )

(X, s) 7→ ∇Xs,
(2.9)

such that, for all f ∈ C∞(M), X ∈ Γ∞(M, TM) and all s ∈ Γ∞(M, F ) the following holds:

i It satis�es the Leibniz rule,

∇X(fs) = ∂Xf · s+ f · ∇Xs. (2.10)

ii The map ∇ is C∞(M)−linear in the sense that,

∇fXs = f∇Xs. (2.11)

A connection is said to be compatible with a metric g if ∇g = 0.
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De�nition 2.3.7. Let M be a smooth manifold and let ∇ be an arbitrary connection. The torsion

tensor is de�ned as,

T : Γ∞(M, TM)× Γ∞(M, TM)→ Γ∞(M, TM)

(X,Y ) 7→ ∇XY −∇YX − [X,Y ].
(2.12)

The connection ∇ is said to be torsion-free if T = 0. From now on, we assume that all connections are

torsion-free.

De�nition 2.3.8. Let M be a smooth d−dimensional manifold and let H and F be two K−vector

bundles over M of order k and m respectively. A linear partial di�erential operator of order d is a

linear map P : Γ∞(M, H) → Γ∞(M, F ), subject to the following conditions: For each p ∈ M there

exists an open neighbourhood Up with coordinates (x1, ..., xd) on which the bundles H,F are trivialised

and there are smooth maps,

aα : Up → Hom(Kk,Km), (2.13)

such that on Up,

(Pf)(x) =
∑
|α|≤k

aα(x)
∂|α|f

∂xα
. (2.14)

Here, the summation is taken over all multi-indices α = (α1, .....αd) ∈ Nd and | α |= α1 +α2 + ...+αd.

De�nition 2.3.9. [62, 1.3.74] Let π : H → M and π′ : F → N be two vector bundles over smooth

manifolds M and N respectively. The external tensor product of the bundles π : H → M and

π′ : F →M is a vector bundle over the Cartesian productM×N de�ned by,

H � F → pr?M(H)× pr?N (F ), (2.15)

where pr?M(H)→M×N and pr?N (F )→M×N are pullbacks of the projections prM :M×N →M

and prN :M×N → N . The vector bundle H � F has �bres Hx ⊗ Fy for (x, y) ∈M×N .

De�nition 2.3.10. A hermitian metric on a complex �bre bundle π : F →M is a smooth section in

F ∗ ⊗ F ∗ which is a hermitian scalar product on each �bre.

De�nition 2.3.11. Let M be a smooth Riemannian manifold and π : F → M be a vector bundle

with a hermitian �bre metric. The inner product on F is the map,

〈· | ·〉 : F � F → C

f ⊗ g 7→
∫
M

(f, g)
∣∣
p
dvol(p),

(2.16)
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where at each point p ∈M, the pairing (f, g)
∣∣
p
is constructed from the �bre metric h via,

(f, g)
∣∣
p

= f
α

(p)gβ(p)hαβ(p) (2.17)

Let π : F → M, π′ : H → M be two K−vector bundle over a smooth manifold M and let

P : Γ∞(M, H) → Γ∞(M, F ) be a linear partial di�erential operator. Then there is a unique linear

partial di�erential operator P ∗ : Γ∞(M, H∗) → Γ∞(M, F ∗) called the formal adjoint of P that

satis�es, for all f, g ∈ D∞(M, F ),

〈f | Pg〉 = 〈P ∗f | g〉. (2.18)

De�nition 2.3.12. Let H,F be two K−vector bundle of order k and m respectively over a smooth

d−dimensional manifold M and let P : C∞(M, H) → C∞(M, F ) be a linear partial di�erential

operator of order n ∈ N. The principal symbol, denoted σP is de�ned globally as the map,

σP : T ∗M→ Hom(H,F ). (2.19)

Locally, in the coordinate chart of a point x ∈M the operator P takes the form,

P =
∑
|α|=n

aα
∂|α|

∂xα
, (2.20)

and the vector bundle F can be trivialised to identify Hom(H,F ) with Hom(Kk,Km). Then, for every

ξ ∈ T ∗xM we have,

σP (ξ) =
∑
|α|=n

ξαaα(x), (2.21)

where ξ = Σdi=1ξidx
i, ξα := ξα1

1 ξα2
2 ...ξαdd .

We are now able to de�ne a particular class of partial di�erential operators called normally hy-

perbolic operators. Normally hyperbolic operators have many useful properties which we will use

throughout this thesis.

De�nition 2.3.13. LetM be a d-dimensional Lorentzian manifold and F be K−vector bundle over

M. A normally hyperbolic partial di�erential operator is a linear partial di�erential operator P :

Γ∞(M, F )→ Γ∞(M, F ) of order two with the principal symbol,

σP (ξ) = −g(ξ, ξ)idFx (2.22)
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for every x ∈M and every ξ ∈ T ∗xM. Using local coordinates (x1, ..., xd) onM and a trivialisation of

F , a normally hyperbolic partial di�erential operator may be written as,

P = −gij(x)
∂2

∂xi∂xj
+Aj(x)

∂

∂xj
+B(x) (2.23)

where gij is the inverse of the metric gij , Aj and B are smooth functions on M and the summation

over repeated indices is understood.

De�nition 2.3.14. LetM be a smooth Lorentzian manifold and L : Γ∞(M, F ) → Γ∞(M, F ) be a

partial di�erential operator. Then L is said to be elliptic if its principal symbol σL(ξ) is invertible for

all non-zero ξ ∈ T ∗xM and all x ∈M.

Elliptic operators have many important properties which we will use throughout this thesis, for

example elliptic partial di�erential operators have smooth eigenvectors [20, Theorem 3 Section 6.3].

An important space that will be used in Chapter 4 are Sobolev spaces.

De�nition 2.3.15. Let π : F → X be a vector bundle with a connection ∇ on a Riemannian manifold

X. For a given u ∈ Γ∞(X,F ) we have ∇u ∈ Γ∞(X,T ∗ ⊗ F ). Using the tensor product, we can apply

the connection on u arbitrarily many times; ∇ju ∈ Γ(X, (T ∗X ⊗ F )
⊗j

) where,

(T ∗X ⊗ F )
⊗j

= T ∗X ⊗ F ⊗ · · ·⊗︸ ︷︷ ︸
j times

T ∗X ⊗ F (2.24)

The basic Sobolev k-norm on Γ∞(M, F ) is de�ned as,

‖u‖2k =

k∑
j=0

∫
M
| ∇∇ · · ·∇u︸ ︷︷ ︸

j times

|2. (2.25)

The Sobolev basic k-norm is independent of the choice of connection. The Sobolev space of order k is

then de�ned as the completion of Γ∞(M, F ) with respect to the norm topology induced by (2.25) and

is denoted by L2
s(M, F ).

Sobolev spaces will only feature in Chapter 4. W shall also use the following result,

Theorem 2.6. Let D : Γ∞(X,F ) → Γ∞(X,F ) be an elliptic operator of order m where X is a

compact manifold. Then for each s ∈ N0 there exists a Cs > 0 such that,

‖u‖s ≤ Cs(‖u‖s−m + ‖Du‖s−m), (2.26)

for all u ∈ L2
s(X,F ). Hence the norms ‖ · ‖s and ‖ · ‖s−m + ‖D · ‖s−m are equivalent.
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Proof. [46, Theorem 5.2]. n

We shall also require the following results for Chapter 4.

Proposition 2.7. Let π : H →M and π′ : F →M be two vector bundles overM. Then,

Γ∞(M, H)⊗ Γ∞(M, F ) 3 f ⊗ g 7→ f � g ∈ Γ∞(M⊗M, H � F ), (2.27)

de�nes an injective smooth C∞(M)⊗C∞(M)−module morphism with dense image in the C∞−topology.

Proof. See [62, Theorem 1.3.35]. n

2.4 Di�erential Geometry

We review various elements of di�erential geometry which will be required to de�ne a spacetime. Our

primary resources used are [50, 47]. Over a n−dimensional Lorentzian manifold (M, g) we de�ne the

space of smooth complex-valued di�erential k-forms as smooth sections of the k-th exterior power of

the cotangent bundle,

Ωk(M,C) = Γ

(
k∧
T ∗M

)
⊗ C, (2.28)

similarly Ωk0(M,C) will denote k-forms with compact support. For brevity we supress the C in

Ωk(M,C). Each k-form may be regarded as an antisymmetric covariant k-tensor �eld over C, hence

we shall make use of index notation when it is bene�cial. The exterior product between two k-forms

ω, ν ∈ Ωk(M) is the map,

∧ : Ωp(M)× Ωq(M)→ Ωp+q(M)

(ω ∧ ν)a1...ap+q =
(p+ q)!

p!q!
ω[a1...apνap+1...ap+q ],

(2.29)

and the exterior derivative is the map,

d : Ωp(M)→ Ωp+1(M)

(dω)a1...ap+1 = (p+ 1)∇[a1ωa2...ap+1],
(2.30)

where ∇ is any connection onM and the square brackets denote antisymmetrisation over the indices.

By virtue of the antisymmetrisation, the exterior derivative is independent of the choice of connection.
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Next, let {x1, ..., xn} be a local coordinate chart of (M, g). If there exists a nowhere vanishing n−form

de�ned by,

dvolg =
√
|g|dx1 ∧ ... ∧ dxn, (2.31)

where |g| = det(gµν) then there is the unique C∞(M)−module isomorphism called the Hodge star,

?M : Ωp(M)→ Ωn−p(M)

ω ∧ ?Mν 7→
1

p!
ωa1...apν

a1...ap dvolg.
(2.32)

The form dvolg is called a volume form associated to the metric g. The property,

(?)2ω = (−1)p(n−p)+index(g)ω, (2.33)

holds for all p-forms ω ∈ Ωp(M) over an n−dimensional manifold M. Finally, the coderivative on

(M, g) is the map,

δM : Ωk(M)→ Ωk−1(M)

ω 7→ (−1)p(n−p)+s+1 ?M d ?M ω
(2.34)

By convention the coderivative annihilates zero-forms and, since ?2
M = (−1)p(n−p)+s and d2 = 0, we

have δ2
M = 0. For future use, we shall denote ker δ

∣∣
Ω1

0(M)
as the linear space of compactly supported

one forms f ∈ Ω1
0(M) such that δMf = 0. Such forms are referred to as coclosed onM.

Suppose (Σ, h) is a Riemannian manifold. The operations above allow us to endow the space Ωk(Σ)

with a positive de�nite inner product,

〈f | g〉 =

∫
Σ

f ∧ ?Σg. (2.35)

Under the norm topology of this inner product, we can form the Hilbert space of square integrable k-

forms, which we denote Λk(Σ) = Ωk(Σ). We note here that the inner product (2.35) is positive de�nite

if and only if the manifoldM is Riemannian. In the case of a Lorentzian manifoldM, the inner product

(2.35) is inde�nite, and the completion of Ωk(M) yields a Krein space of square integrable k-forms.

This will be expanded upon in Chapter 9.
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Chapter 3

Algebraic Quantisation of Spin Zero

Fields on Globally Hyperbolic

Spacetimes

In this chapter we will develop the CCR algebra for the free massive spin zero �eld on globally hyper-

bolic spacetimes. We begin by detailing some important features of globally hyperbolic spacetimes,

and we also de�ne ultrastatic slab spacetimes. The algebraic quantisation of spin one �elds on globally

hyperbolic spacetimes will be treated separately in Chapter 9.

3.1 Globally Hyperbolic Spacetimes

Suppose (M, g) is a n−dimensional smooth Lorentzian manifold equipped with a smooth metric of

index s = n − 1 (this implies that we are using the mostly minus sign convention, + − · · ·−). Let

x ∈ M. A vector ν ∈ TxM is said to be timelike if g(ν, ν) > 0, spacelike if g(ν, ν) < 0 and null

if g(ν, ν) = 0. The vector ν ∈ TxM is said to be causal if it is either timelike or null. A vector

�eld ξ ∈ Γ∞(M, TM) is said to be timelike/causal/ null if ξ(x) ∈ TxM is timelike/causal/null for

all x ∈ M. A C1 curve in a Lorentzian manifold is a map γ : [a, b] → M with −∞ < a < b < ∞.

The curve γ : [a, b] → M is said to connect points p ∈ M and q ∈ M if γ(a) = p and γ(b) = q.
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A curve is said to be a timelike curve if all tangent vectors to the curve are everywhere timelike. A

causal and spacelike curved is de�ned in a similar way. A closed causal curve is a causal curve whose

end points coincide with each other. A Lorentzian manifold is time-orientable if and only if there

exists a continuous nowhere vanishing global timelike vector �eld t ∈ Γ∞(M, TM) [50, Lemma 32].

A Lorentzian manifold is orientable if and only if there exists a nowhere vanishing form of maximal

degree onM [50, Lemma 20]; such a form is called a volume form. The volume form generated by the

metric g will be denoted dvolg.

De�nition 3.1.1. A spacetime of dimension n ∈ N is a collection (M, g, o, t), where (M, g) is a

n−dimensional smooth Lorentzian manifold which is connected� o is a orientation and t is a time-

orientation. We shall assume a orientation and time-orientation have been chosen, and omit them for

brevity. Similarly, when it is clear, we shall omit the metric and simply refer to the spacetime as the

manifoldM.

The causal future (+)/ past (−) of a point p ∈M, denoted J±(p) respectively, is de�ned to be the

set of all points q ∈ M such that there exists a future(+)/past(-) directed causal curve γ : [a, b] → R

connecting p and q, i.e. γ(a) = p and γ(b) = q. Similarly, the future/past of a subset S ⊂ M of a

spacetime (M, g) is de�ned as,

J±(S) =
⋃
x∈S

J±(x). (3.1)

A spacetime (M, g) is globally hyperbolic if for all p, q ∈M the set J+(p)∩J−(q) is compact and it sat-

is�es the causality condition, i.e. there are no closed causal curves [55, De�nition 2.17].a Equivalently,

a spacetime (M, g) is globally hyperbolic if it admits smooth foliations into smooth co-dimension one

submanifolds Σ ⊂ M intersected exactly once by every inextensible causal curve; the submanifolds

{t} × Σ for all t ∈ R are called Cauchy surfaces. Let (M, g) be a globally hyperbolic spacetime, then

by [4, Theorem 1.1] the spacetime (M, g) is isometric to the spacetime (R × Σ, g = β1 ⊕ −h) where

β : R×Σ→ (0,∞) is a smooth function, {t}×Σ is a Cauchy surface for all t ∈ R and (Σ, h) is a smooth

Riemannian manifold. A particular class of spacetimes used throughout this thesis are ultrastatic slab

spacetimes. A spacetime (M, g) is ultrastatic if,

(M, g) = (R× Σ, π∗1(dt)⊗ π∗1(dt)− π∗2(h)), (3.2)

aThe de�nition 2.17 appearing in [55] de�nes global hyperbolicity as the compactness of J+(p)∩J−(q) for all p, q ∈M

and that (M, g) is strongly causal. However, the work of Bernal and Sánchez in [5] shows that the strong causality

condition is equivalent to the causality condition under the assumption that J+(p) ∩ J−(q) is compact.
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where π∗1 , π
∗
2 are the pull-backs of the projection maps,

π1 : R× Σ→ R

π2 : R× Σ→ Σ,
(3.3)

respectively and (Σ, h) is a smooth Riemannian manifold. If (Σ, h) is a complete metric space (or

if (Σ, h) is compact) then the ultrastatic spacetime (3.2) is globally hyperbolic [43, Proposition 5.2].

Anultrastatic slab spacetime is an ultrastatic spacetime of the form (I×Σ, g = 1⊕−h) where I ⊂ R is

a relatively compact open interval; in the following we choose, without loss of generality, I = (−τ, τ)

where τ > 0.

3.2 Wave Equations on Globally Hyperbolic Spacetimes

Let (M, g) be a globally hyperbolic spacetime and let P : Γ∞(M, F ) → Γ∞(M, F ) be a normally

hyperbolic operator. A wave equation is an equation of the form Pu = f , where f is given and u is

to be determined. In this thesis we are interested in wave equations of the form Pu = 0. There exist

unique maps E± : D(M, F )→ Γ∞(M, F ) called the advanced(-)/retarded(+) Green's operators that

obey [3, Theorem 3.3.1,Corollary 3.4.3],

i) P ◦ E± = 1D(M,F ),

ii) E± ◦ P
∣∣
D(M,F )

= 1Γ∞(M,F )

iii) supp(E±f) ⊂ J±(supp(f)).

Using the retarded and advanced Green's operators E± one can construct the advanced-minus-retarded

operator E = E− − E+, which obeys,

P ◦ E = 0 = E ◦ P
∣∣
D(M,F )

. (3.4)

One can also construct the causal propagator as the map,

E : D(M, F )×D(M, F )→ C

(f, h) 7→ 〈Γf | Eh〉,
(3.5)

where Γ : f 7→ f is the complex conjugation map.
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supp(E+f )

supp(f )

supp(E−f )

J+(suppf)

J−(suppf)

Figure 3.1: Support properties for the advanced/retarded Green's functions E±.

3.3 Quantised Scalar Field and The CCR Algebra

Classical Theory

Let (M, g) be a globally hyperbolic spacetime. The classical free massive scalar �eld is a function

φ ∈ C∞(M) that obeys the Klein-Gordon equation,

(� +m2)φ = 0, (3.6)

where � = ∇α∇α is the d'Alembertian operator on (M, g) and m ≥ 0 is a �xed constant. Since

M is globally hyperbolic and the Klein-Gordon operator � + m2 : C∞(M) → C∞(M) is normally

hyperbolic, there exist unique advanced(-)/retarded(+) Green's functions,

E
± : C∞0 (M)→ C∞(M), (3.7)

with properties given in Section 3.2. The metric g generates a volume form dvolg which can be used

to de�ne a positive de�nite inner product on the space of test functions C∞0 (M) given by,

〈f | h〉 =

∫
M
f(t, x)h(t, x) dvolg, (3.8)
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for all f, h ∈ C∞0 (M).

CCR Algebra of the Free Scalar Field

One starts with a abstract unital ∗−algebra which is generated by the smeared quantum �eld Φ(f),

labelled by some test function f ∈ C∞0 (M),

A = {Φ(f) | f ∈ C∞0 (M)}. (3.9)

The CCR algebra for the free scalar �eld is a closed, two-sided ∗-ideal of A which is generated by

taking the quotient of A with respect to the axioms,

1. Φ(αf + βg) = αΦ(f) + βΦ(g) for all f, g ∈ C∞0 (M) and all α, β ∈ C.

2. Φ(f)∗ = Φ(f)

3. Φ(Pg) = 0 for all g ∈ C∞0 (M) and where P = � +m2.

4. [Φ(f),Φ(g)] = iE(f, g)1 where [·, ·] is the commutator and 1 ∈ A is the unit element.

The CCR algebra for the free scalar �eld is then denoted A(M).
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Chapter 4

Hadamard States for Quantum Field

Theories on Curved Spacetimes

The class of states considered in this thesis are known as `quasifree' states. In Sections 4.1 we give

a brief review of quasifree states over the CCR algebra for the free scalar �eld and give various

characterisation results on proving when a state is quasifree. The work in Section 4.1 largely collects

together results appearing in [44, 45, 2, 49]. The work in Section 4.2 collects results appearing in

[44, 32, 52]. In section 4.3 we present a new result on the convergence of series whose terms are given

by smooth sections; the proof of which is based on Theorem 3.5 in [23].

4.1 Quasifree States

De�nition 4.1.1. Let A be a unital ∗−algebra over the �eld of complex numbers C. A state is a

function ω : A→ C that satis�es,

- ω(A∗A) ≥ 0 Positivity.

- ω(αA+ βA′) = αω(A) + βω(A′) Linearity.

- ω(1) = 1 Normalisation ,

which hold for all A,A′ ∈ A, all α, β ∈ C and where A∗ denotes the ∗−adjoint of A and 1 ∈ A denotes

the identity.
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De�nition 4.1.2. Let ω : A(M)→ C be a state over the CCR algebra A(M). The state ω is quasifree

if all n−point functions can be written as,

W (2n−1)
ω (f1 ⊗ ...⊗ f2n−1) = 0 (4.1)

W (2n)
ω (f1 ⊗ ...⊗ f2n) =

∑
σ

n∏
j=1

W (2)
ω (fσ(j) ⊗ fσ(j+n)), (4.2)

where the sum runs over all σ permutations of {1, 2, 3, ..., 2n} such that σ(1) < σ(2) < ... < σ(n) and

σ(j) < σ(j + n) for all j = 1, ..., n.

Therefore, a quasifree state is completely determined by its two-point function, since all odd

n−point functions vanish and all even n−point functions can be constructed using (4.2). There are

some useful characterizations of quasifree states, to which we refer to the work appearing in [45, 49].

Let P : C∞(M) → C∞(M) be a formally self adjoint normally hyperbolic operator over a globally

hyperbolic spacetime (M, g) and let E : C∞0 (M) × C∞0 (M) → R be the causal propagator. One

observes that if E(f − f ′) = 0 then E(f, g) = E(f ′, g) and if E(g − g′) = 0 then E(f, g) = E(f, g′).

Therefore, one can de�ne the real linear vector space,

S(M) = C∞0 (M,R)/P (C∞0 (M)), (4.3)

of equivalence classes [f ] with respect to the equivalence relation,

f ∼ f ′ ⇐⇒ ∃h ∈ C∞0 (M) such that f − f ′ = Ph (4.4)

for all f, f ′ ∈ C∞0 (M,R). By [3, Theorem 5.2.1], ker(E) = Im(P ) the above equivalence relation is

equivalent to,

f ∼ f ′ ⇐⇒ E(f − f ′) = 0. (4.5)

One may then de�ne,

σ : S(M)× S(M)→ R

([f ], [g]) 7→ E(f, g),
(4.6)

which is a well de�ned symplectic form [45, Proposition 8]. The following result for quasifree states

can be found in [45, Theorem 2],
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Proposition 4.1. Let P = �+m2 be the Klein Gordon operator and A(M) be the algebra of observ-

ables for the free massive scalar �eld. If ω : (M)→ C is a quasifree state then the two point function

Wω satis�es the following,

i) Wω(f, g)−Wω(g, f) = iE(f, g)

ii) Wω(f, Pg) = Wω(Pf, g) = 0,

iii) Wω(f, f) ≥ 0,

iv) Im(Wω(f, g)) =
1

2
E(f, g),

for all f, g ∈ C∞0 (M).

Proof. i) Since the state ω is normalised and linear, and by the canonical commutation relations we

have,

Wω(f, g)−Wω(g, f) = ω(φ(f)φ(g))− ω(φ(g)φ(f))

= ω([φ(f), φ(g)])

= ω(iE(f, g)1)

= iE(f, g)(ω(1)

= iE(f, g).

(4.7)

ii) Wω(f, Pg) = ω(φ(f)φ(Pg)) = 0 and Wω(Pf, g) = ω(φ(Pf)φ(g)) = 0 which holds by de�nition.

iii) Since the state ω is positive, we have, Wω(f, f) = ω(φ(f)∗φ(f)) ≥ 0.

iv) Follows immediately from the fact that E(f, g) is real.

n

A su�cient condition for a state to be quasifree is given in the following proposition,a

Proposition 4.2. Let Wω be the two point function given by,

Wω(f, g) = µω([f ], [g]) +
i

2
σ([f ], [g]), (4.8)

aThe author would like to thank Chris Fewster for providing this statement and outlining its proof.
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where µω : S(M)× S(M)→ R is a well de�ned real scalar product and σ is de�ned in (4.6). If there

exists a non-negative bilinear form given by,

ν : S(M)× S(M)→ C

ν(Ef,Eg) = Wω(f, g),
(4.9)

then there exists a quasifree state ω whose two point function is given by (4.8)

Proof. By writing the two point function in terms of the symplectic form σ and the scalar product µω

as in (4.8), we see that the form de�ned in (4.9) is clearly bilinear. Now, let φ, ψ ∈ S(M) be chosen

such that φ = Ef and ψ = Eg for some f, g ∈ C∞0 (M,R). The non-negativity of the bilinear form

(4.9) then implies,

0 ≤ ν(φ+ iλψ, φ+ iλψ) = Wω(f, f) + iλ(Wω(f, g)−Wω(g, f)) + λ2Wω(g, g)

= µω([f ], [f ])− λσ([f ], [g]) + λ2µω([g], [g])
(4.10)

where we have used Wω(f, f) = µω([f ], [g]) and Wω(f, g) −Wω(g, f) = iσ([f ], [g]). If the inequality

(4.10) is to hold for all λ ∈ R, then the discriminant must be at most zero. Requiring the discriminant

of (4.10) to be less than or equal to zero then yields,

|σ([f ], [g])|2 ≤ 4µω([f ], [f ])µω([g], [g]). (4.11)

Then, there exists a quasifree state ω with the two point function (4.8) [44, 49]. n

A quasifree state ω over an algebra A is pure if it is extremal in the convex set of all states, i.e.

one can not decompose a pure state as the sum of two other states with positive coe�cients. If a state

is not pure, then it is said to be mixed.

Theorem 4.3. Let Wω be the two point function for a quasifree state ω over A(M) given by (4.8)

Wω = µω([f ], [g]) +
i

2
σ([f ], [g]). (4.12)

The the state ω is pure if and only if,

µω([f ], [f ]) = sup
06=[g]∈S(M)

|σ([f ], [g])|2

4µω([g], [g])
, (4.13)

Proof. Follows from Proposition 3.1 and from the discussion on page 77 in [44]. n
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For a given µω that satis�es (4.11) on can form the completion of S(M) given in (4.3) to form real

linear Hilbert space. An equivalent description of pure states is given by the following theorem:

Proposition 4.4. Let ω be a quasifree state with two point function (4.12). The state ω is pure if and

only if there exists a bounded self-adjoint operator Rµ : S(M)→ S(M) such that R2
µ = −1 and,

σ([f ], [g]) = 2µω([f ], Rµ[g]), (4.14)

for all [f ], [g] ∈ S(M).

Proof. See [45, Theorem 2]. n

4.2 Hadamard States

Among all the states over the CCR algebra, the class of Hadamard states are states with physi-

cally permissible properties, such as having �nite expectation values of the stress energy tensor. The

Hadamard condition is a criterion on the singular part of the integral kernel of the two-point function.

The condition stems from the spectral condition in Minkowski spacetime; it is the requirement that all

singularities of the two-point function lie along the future null cone. A rigorous de�nition of a Hadmard

state was �rst given by Kay and Wald in [44]. A state ω with two-point function Wω is Hadamard

if and only if globally, there are no singularities at spacelike separations and for every convex normal

neighbourhood S ⊂M the two-point function is of the form, for all N ∈ N,

Wω(x, y) = lim
ε→0+

1

(2π)2

[
∆

1
2

σε(x, y)
+

(
N∑
n=0

vnσε(x, y)n

)
ln(σε(x, y))

]
+RN,ω(x, y), (4.15)

where RN,ω ∈ CN (M×M) depends on the state ω,

σε(x, y) = σ(x, y) + 2iε(T (x)− T (y)) + ε2, (4.16)

where σ(x, y) is the (signed) squared geodesic distance between x and y given by,

σ(x, y) = ±

(∫ b

a

∣∣∣∣gµν(x(τ))
dxµ(τ)

dτ

dxν(τ)

dτ

∣∣∣∣ 12 dτ
)2

, (4.17)

where x(·) is a parametrisation of the unique geodesic in S from x to y and the +/− is chosen according

to whether x(·) is spacelike or timelike respectively and T is a global time function. Here ∆ is the

Vleck-Morette determinant and vn are determined by the Hadamard recursion relations [15, 36].
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It is remarkable that the term in the parenthesis in (4.15) is entirely geometric. Furthermore, the

term in the parenthesis is independent of the state ω; the state dependence is contained entirely in the

function RN,ω. Therefore, if the state ωH with two-point function WH is a Hadamard state, one can

show that a state ω with two-point function Wω is Hadamard by showing that,

Wω −WH ∈ C∞(M×M). (4.18)

Of course, this method of showing that the state ω is Hadamard requires, at the very least, that the

Hadamard state ωH exists. Fortunately, Hadamard states are known to exist in globally hyperbolic

spacetimes, which is due to a deformation argument by Fulling, Narcowich and Wald [32, Theorem

2.1], which states the following:

Theorem 4.5. In an arbitrary globally hyperbolic spacetime (M, g) there exists a class of states which

form a dense subspace of a Hilbert space, whose two-point function has a kernel with singular structure

(4.15).

In order to prove this result, one needs to be able to deform the geometry of various globally

hyperbolic spacetimes. Let (M1, g1) and (M2, g2) be two globally hyperbolic spacetimes with spacelike

Cauchy surfaces Σ1 and Σ2 respectively. One can smoothly deform the spacetimes (M1, g1,Σ1) into

(M2, g2,Σ2) while preserving global hyperbolicity if there exists a globally hyperbolic spacetime (R ×

Σ, g) which admits the spacelike Cauchy surfaces S1 and S2 such that, for i = 1, 2, Si is isometric to

Σi and a neighbourhood of Si is isometric to a neighbourhood of Σi. Keeping the notation, Fulling et

al are then able to prove the following result,

Proposition 4.6. (M1, g1,Σ1) can be smooth deformed into (M2, g2, S2) while preserving global hy-

perbolicity.

Proof. See [33, Proposition C.1]. n

It was shown in [33] that if a state ωH satis�es the Hadamard condition in a open neighbourhood

of a Cauchy surface Σ in a globally hyperbolic spacetime (M, g), then it does so globally, i.e. Cauchy

evolution preserves the Hadamard singularity structure of the two-point function.

Suppose a globally hyperbolic spacetime (M, g) is ultrastatic to the past of a Cauchy surface Σ.

Since the ultrastatic vacuum has the Hadamard singularity structure (4.15) on a neighbourhood of the

cauchy Surface Σ [33], the ultrastatic vacuum with be Hadamard throughout (M, g).
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Now, let N = (R × Σ, g) be a globally hyperbolic spacetime. One deforms the spacetime N to

the past of some Cauchy surface S to a spacetime so that it becomes ultrastatic in the past whilst

preserving the global hyperbolicity of the deformed spacetime. Let Ñ be the deformed spacetime.

Then, in the Ñ there exist Hadamard states since there is portion which is ultrastatic. One then

deforms the geometry of Ñ back to the spacetime N , and the state is then Hadamard on the whole of

the spacetime N .

Whilst it is certainly reassuring that Hadamard states exist in general, the deformation argument

is somewhat indirect, and does not give any way of explicitly constructing Hadamard states. This

is, in part, the subject of this thesis. This thesis will concern itself with developing new construc-

tions for Hadamard states principally over ultrastatic spacetimes, although much of our results can

be generalised to an arbitrary globally hyperbolic spacetime. Since we are mainly interested in con-

structing Hadamard states on ultrastatic spacetimes, we shall extensively use the ultrastatic vacuum

to show that our states satisfy the Hadamard condition. A common method to verify that a state ω

is Hadamard on an ultrastatic spacetime is to show that the integral kernel of Wω −WH is smooth,

where Wω is the two-point function of the state ω and WH is the two-point function for the ultrastatic

vacuum. In light of this, in Section 4.3 we shall give a somewhat technical result which will be used

extensively throughout the thesis

An equivalent de�nition of a Hadamard state is that the wavefront set of the two-point function

satis�es the wavefront set spectral condition. The equivalence was proved by Radzikowski in [52,

Theorem 5.1]. In the language of microlocal analysis, a state ω is said to be a Hadamard state if the

wavefront set of its two-point function ω2 is given by,

WF (ω2) = {(x1, k1;x2,−k2) | (x1, k1;x2, k2) ∈ T ∗(M×M) \ {0} , (x1, k1) ∼ (x2, k2) , k1 ∈ V+}.

Under the equivalence relation (x1, k1) ∼ (x2, k2) two curves are equivalent if there exists a null

geodesic with endpoints x1 and x2. This geodesic has the cotangent k1 and k2 is the vector k1 parallel

transported along the geodesic at x2. Here, V+ is the closure of the forward light cone of T ∗x1
M.

4.3 Summing Smooth Sections: A Convergence Result

The main result of this section is Theorem 4.7, which we use extensively to prove that a constructed

state satis�es the Hadamard condition or that an operator has a smooth integral kernel. Theorem 4.7
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is a relatively straight forward generalisation of the result appearing in [23, Theorem 3.5].

De�nition 4.3.1. Let P be a partial di�erential operator with eigenvalues {ωj}j∈N such that ωj ≥ 0

for all j ∈ N. Suppose that the eigenvalues have �nite multiplicity and if j ≤ k ∈ N then ωj ≤ ωk.

The counting function for P is given by,

N(ω) := #{ωk ≤ ω | ωk is an eigenvalue of P}. (4.19)

Furthermore, we de�ne the quantity,

M(j) := max{k ∈ N | ωk = ωj}, (4.20)

which exists due to the �nite multiplicity of the eigenvalues {ωj}j∈N.

The following result follows the same strategy as the proof found in [23, Theorem 3.5].

Theorem 4.7. Let Σ be a compact Riemannian manifold, I ⊂ R be a relatively compact interval and

de�ne the projection πΣ by,

πΣ : I × Σ→ Σ

(t, σ) 7→ σ.
(4.21)

Let F be a smooth C−vector bundle over Σ with a hermitian metric and a compatible connection.

Consider a second order positive elliptic partial di�erential operator L over Γ∞(Σ;F ) which induces

a self-adjoint operator on L2(Σ;F ) with a discrete spectrum. Let {un}n∈N be a orthonormal set in

L2(Σ;F ) such that each un ∈ L2(Σ;F )∩Γ∞(Σ;F ) is an eigenvector of L with corresponding eigenvalue

ω2
n > 0.

Suppose, for all n ∈ N, Wn ∈ Γ∞(M×M;π∗ΣF � π∗ΣF ) is of the form,

Wn =
∑

σ,σ′∈{±1}

ασσ
′

n (enσ ⊗ un)⊗ (enσ′ ⊗ un), (4.22)

where enσ(t) = eiσωnt and ασσ
′

n ∈ C for all n ∈ N. Suppose further that,∑
n∈N

ωpn max
σ,σ′∈{±1}

|ασσ
′

n |2 <∞, (4.23)

for all p ∈ N0. Then
∑
n∈NWn converges in Γ∞(M×M;π∗ΣF � π∗ΣF ).
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Proof. Without loss of generality let I = (−τ, τ) for τ > 0. Consider the smooth embedding,

ψ = j × idΣ : I × Σ ↪→ S1 × Σ
•

= X

(t, x) 7→ (eiπ(t−τ)/τ , x),
(4.24)

of the manifold I×Σ into the compact Riemannian manifold S1×Σ with metric 1⊕h. Here, we have

identi�ed S1 as the unit circle in C. We have the canonical projection π̃Σ : S1 × Σ → Σ, (t, σ) 7→ σ.

Fix χ ∈ C∞0 (I) and de�ne Wχ,n ∈ Γ∞(X ×X; π̃∗ΣF � π̃∗ΣF ) by,

Wχ,n
•

= (ψ × ψ)∗((χ⊗ χ)Wn), (4.25)

where ψ∗ denotes the pushforward of ψ. If
∑
nWχ,n converges in Γ∞(X×X; π̃∗ΣF � π̃∗ΣF ) for arbitrary

χ ∈ C∞(I) then
∑
nWn converges in Γ∞(M×M;π∗ΣF � π∗ΣF ). Since L is assumed to be a second

order positive elliptic operator, we may introduce a second order elliptic operator over the space of

smooth sections Γ∞(X, π̃∗ΣF ),

D : Γ∞(X, π̃∗ΣF )→ Γ∞(X, π̃∗ΣF )

f 7→ (−∂2
t ⊗ 1Σ + 1S1 ⊗ L)f

(4.26)

where 1S1 ,1Σ are identities on S1, Σ respectively. We now endow the space of smooth sections over

the bundle π̃∗ΣF → X with the inner product,

〈f | g〉X,s
•

= 〈f | (1+Ds)g〉X,0 (4.27)

for all f, g ∈ Γ∞(X, π̃∗ΣF ) and for all s ∈ N0 and where 〈· | ·〉X,0 is the �bre wise inner product over

the bundles π̃∗Σ → X given in de�nition 2.3.11. For all even numbers 2s ∈ N0 the inner product (4.27)

induces the norm,

‖f‖2X,2s = ‖f‖2X,0 + ‖Dsf‖2X,0 (4.28)

whose topology can be used to complete Γ∞(X, π̃∗ΣF ) which yields the Sobolev spaces denoted by,

L2
2s(X; π̃∗ΣF ) = Γ∞(X; π̃∗ΣF )

‖·‖X,2s (4.29)

for all 2s ∈ N0. We make the identi�cation,

L2
2s(X, π̃

∗
ΣF ) ' L2

2s(S
1)⊗ L2

2s(Σ, F ). (4.30)
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Since the di�erential operator (4.26) is elliptic and second order, the Sobolev space (4.29) are equivalent

to the space formed by completing Γ∞(X; π̃∗ΣF ) with respect to the basic Sobolev s-norm (2.25).

This is a consequence of Theorem 2.6. We shall also de�ne a norm on the space of smooth sections

Γ∞(X ×X, ; π̃∗ΣF � π̃∗ΣF ) de�ned by,

‖f ⊗ g‖X×X,2s = ‖f‖2X,0‖g‖2X,0 + ‖(1X ⊗Ds +Ds ⊗ 1X)f ⊗ g‖2X×X,0, (4.31)

for all even 2s ∈ N0. The following lemma gives us a useful bound;

Lemma 4.8. For each s ∈ N0, we have the estimate,

‖f ⊗ g‖2X×X,2s ≤ 2‖f‖2X,2s‖g‖2X,2s, (4.32)

for all f, g ∈ L2
2s(X; π̃∗ΣF ).

Proof. The proof of Lemma 3.8 in [23] is su�ciently similar to the proof required here. n

Continuation of the proof of Theorem 4.7: Consider now the section ψ∗(χenσ⊗un) ∈ Γ∞(X, π̃∗ΣF ) for

a �xed but arbitrary χ ∈ C∞0 (I). Observe that, for all s ∈ N0,

Ds(ψ∗(χenσ ⊗ un)) =
(
(−∂2

t + ω2
n)s(j∗(χenσ)

)
⊗ un

•

= Lωn,s(j∗(χenσ))⊗ un, (4.33)

where Lωn,s is a di�erential operator on C
∞(S1) of order 2s with coe�cients depending polynomially

on ωn and is given by,

Lωn,s =

s∑
k=0

(
s

k

)
ω2k
n (−1)s−k∂

2(s−k)
t . (4.34)

In the following we implicitly assume that the choices of σ, σ′ ∈ {±1} are independent and arbitrary.

By Lemma 4.8 we have,

‖ψ∗(χenσ ⊗ un)⊗ ψ∗(χenσ′ ⊗ un)‖2X×X,2s ≤ 2‖ψ∗(χenσ ⊗ un)‖2X,2s‖ψ∗(χenσ′ ⊗ un)‖2X,2s. (4.35)

Using (4.33) and the decomposition (4.30) we then obtain,

‖ψ∗(χenσ ⊗ un)‖2X,2s =
(
‖j∗(χenσ)‖2S1,0 + ‖Lωn,s(j∗(χenσ))‖2S1,0

)
‖un‖2Σ,0 (4.36)

Since Lωn,s is a di�erential operator of order 2s whose coe�cients depend polynomially on ωn, it follows

that ‖Lωn,s(j∗(χen,σ))‖2S1,0 de�nes a polynomial of degree 4s. Therefore, there exists a Cσ,2s > 0 to

be su�ciently large such that,(
‖j∗(χenσ)‖2S1,0 + ‖Lωn,s(χenσ)‖2S1,0

)
‖un‖2Σ,0 ≤ Cσ,2s

(
1 + ω4s

n

)
, (4.37)
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whence we immediately obtain,

‖ψ∗(χenσ ⊗ un)⊗ ψ∗(χenσ′ ⊗ un)‖2X×X,2s ≤ 2C2s(1 + ω4s
n )2, (4.38)

where Cs = maxσ,σ′∈{±1} CσsCσ′s. Finally, by the Cauchy criterion and Pythagoras' theorem and

since un are orthonormal, we obtain,

‖
∑
n

Wχ,n‖2X×X,2s =
∑
n

‖Wχ,n‖2X×X,2s

=
∑
n

∑
σ,σ′∈{±1}

|ασσ
′

n |2‖ψ∗(χenσ ⊗ un)⊗ ψ∗(χenσ′ ⊗ un)‖2X×X,2s

≤ 2C2s

∑
n

max
σ,σ′∈{±1}

|ασσ
′

n |2(1 + ω4s
n )2 <∞.

(4.39)

Since χ ∈ C∞0 (I) was arbitrary, we infer that
∑
nWn converges in L2

2s(M×M;π∗ΣF � π∗ΣF ) for all

s ∈ N0, hence, by the Sobolev embedding theorem,
∑
nWn converges in Γ∞(M×M;π∗ΣF � π∗ΣF )

[46, Theorem 2.5]. n
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Chapter 5

The Distinguished Sorkin-Johnston

State

The Sorkin-Johnston state originated from the causal set approach to quantum gravity. Whilst we

give a brief review of the SJ state in the causal set theory framework, our main focus will be on the SJ

state for linear quantum �eld theories on continuum spacetimes. To that end, this chapter will review

various properties of the SJ state and the various equivalent methods for constructing the SJ state.

5.1 Causal Set Theory

Causal set theory is a novel approach to developing a quantum theory of gravity [7, 63, 38]. It is based

on the idea that, at the Planck scale, spacetime is fundamentally discrete. The path-integral from

quantum �eld theory, causal ordering from general relativity and the discrete spacetime structure form

the basis of causal set theory. Quantum �eld theories de�ned over causal sets may present a way to

regulate the divergences in QFT and the singularities present in general relativity. A causal set is a

locally �nite partially ordered set (C,�) where the ordering � is a partial ordering such that, for all

u, v, w ∈ C,

i u � u,

ii if u � v and v � w then u � w,
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iii if u � v and v � u then u = v,

iv `locally �nite' in the sense that if u, v ∈ C are �xed then |{w′ ∈ C | u � w′ � v}| <∞.

The relation � imposes a causal structure on C; by x � y we mean that x is in the causal past of

y, for each x, y ∈ C. The causal past/future of an element u ∈ C is de�ned as,

Past(u) = {v | v ≺ u}

Fut(u) = {v | u ≺ v},
(5.1)

respectively. Additionally, we de�ne the relation x ≺ y as x � y and x 6= y. In order to develop a

quantum �eld theory over a causal set, there are some elementary quantities we need to de�ne. A link

is a description of an elements nearest neighbour in a causal set. An element u ∈ C is linked to v ∈ C

if u ≺ v and there does not exist an element w ∈ C such that u ≺ w ≺ v. We write u ≺∗ v if u ∈ C is

linked to v ∈ C. A chain in a causal set C is a subset S ⊂ C for which each pair of elements is related

by the relation ≺. An antichain is a subset A ⊂ C in which no pair of elements are related by ≺. For

a causal set with p ∈ N elements, we label the elements v1, v2, ..., vp. There are two p × p adjacency

matrices, the causal matrix C de�ned by,

Cmn
•

=

1 if vm ≺ vn

0 otherwise
(5.2)

and the link matrix L de�ned by,

Lmn
•

=

1 if vm ≺∗ vn

0 otherwise.
(5.3)

A linear extension of a causal set (C,�) is a totally ordered set (C,≤) which is consistent with the

partial ordering, i.e. if u � v then u ≤ v. A typical method used to compare results for quantum �eld

theories over causal sets and continuum spacetimes is to generate a causal set by `sprinkling' points

into a continuum spacetime. Let (M, g) be a Lorentzian manifold of dimension n. The causal set

(C,�) is generated by randomly distributing points over (M, g) using a Possion process with density

ρ, which entails that n points are randomly distributed throughout a d-dimensional volume V with

probability P given by,

Prob(n points in V) =
(ρV )n

n!
e−ρV . (5.4)
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The average numbers of points generated by Possion density with density ρ in some region R ⊂ M

with volumes V is then equal to ρV . The causal relation � for the causal set (C,�) is obtained from

the Lorentzian spacetime by restriction. One regains the original Lorentzian manifold in the limit

ρ → ∞. If the Lorentzian spacetime is, for example, globally hyperbolic, then the causal set is a

good approximation of the spactime. One may endow a causal set with a topology by using `thickened

antichains', which can then be used to recover the topology of a globally hyperbolic spacetime from a

causal set that faithfully embeds into it at a su�ciently high sprinkling density [48]. An antichain A is

`thickened' by including elements that are in its neighbourhood. A (future volume) thickend antichain

thickened by a volume v is de�ned as,

Tv(A)
•

= {u | u ∈ Fut(A) ∪A and |Past(x) \ Past(A)| ≤ v}, (5.5)

where A is an antichain. A past volume thickened antichain is de�ned similarly. It is hoped that

causal sets which approximate the Lorentzian manifolds of general relativity are an emergent feature

of causal set theory, that they are selected to be the `physical' causal sets. A step in this direction is

the work done by Gudder [35]. For su�ciently large ρ, one should expect theories de�ned over causal

sets generated by sprinkling to approximate theories over the corresponding continuum spacetime. A

schematic picture of sprinkling is shown in �gure 5.1.

Figure 5.1: Sprinkling over a bounded region of M2 with the sprinkling density ρ increasing from left

to right.

Causal sets generated by sprinkling over Lorentzian spacetimes are good models to use to compare

results in the discrete and continuum cases. Of interest to us is the construction of the causal retarded

propagator for a massive free scalar �eld over a causal set generated by sprinkling over Minkowski
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spacetime [41]. The retarded propagator for a real scalar �eld of mass m over d−dimensional (contin-

uum) Minkowski spacetime (Md, η), denoted K(d)
m , is a Green's function to the Klein-Gordon operator,

(� +m2)K(d)
m (x− y) = δd(x− y), (5.6)

for all x, y ∈ Md and where δd is the d−dimensional Dirac delta function and the d'Alembertian is

given by,

� = ηµν∂µ∂ν =
∂2

∂x2
0

− ∂2

∂x2
1

− ....− ∂2

∂x2
d−1

. (5.7)

The equation (5.6) can be solved via a Fourier transform, which gives,

Kd
m(x− y)

•

= − 1

(2π)d

∫
ddp

e−ip(x−y)

p2
0 − p2 −m2

, (5.8)

where pµ = (p0, p) is the four-momentum. The retarded causal propagator is the Greens function (5.8)

obtained by avoiding the poles p0 =
√
p2 +m2 by two semi-circles in the upper half complex plane.

Johnston constructs the retarded causal propagator for a massive free scalar �eld over causal sets M2 and

M4 which are generated by sprinkling points over a 1+1-dimensional and 1+3-dimensional Minkowski

space respectively. Let (Md, η) be a d−dimensional Minkowski spacetime. The d−dimensional causal

set (Cd,�) is constructed by sprinkling p ∈ N points into d−dimensional Minkowski spacetime (Md, η)

with denstiy ρ. The causal retarded propagators for a free massive scalar �eld for sprinklings into M2

and M4 are given by the p× p matrices,

K
(2)
R

•

= aC(1− abC)
−1

a =
1

2
, b = −m

2

ρ
(5.9)

and,

K
(4)
R

•

= aL(1− abL)
−1

a =

√
ρ

2π
√

6
, b = −m

2

ρ
, (5.10)

respectively [41], where a, b are chosen to give the correct amplitudes. In each case, the advanced

causal propagators are given by the transpose of the retarded propagators, K(d)
A

•

= (K
(d)
R )T . From

this, the real matrix de�ned by,

∆
•

= K
(d)
R −K(d)

A , (5.11)

is the causal set analogue of (minus) the advanced-minus-retarded operator. The matrix i∆ is a

hermitian and skew-symmetric matrix, hence it has an even rank and we assume its rank is non-zero.
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The non-zero eigenvalues of i∆ then come in equal and opposite pairs, and there exists mutually

orthogonal normalised eigenvectors ui, vi obeying,

i∆ui = λiui i∆vi = −λivi, (5.12)

where i = 1, ..., s, where 2s is the rank of i∆. Critically, Johnston de�ned the p× p hermitian matrix,

Q =

s∑
i=1

λiuiu
†
i , (5.13)

and noted that the matrix i∆ obeys,

i∆ = Q−QT . (5.14)

The matrix (5.13) is, essentially, the `positive part' of the matrix i∆. It is the discrete version of the

operator used to construct the SJ state in continuum spacetimes. We shall �rst see how Johnston

de�nes a vacuum state using (5.13).

Johnston de�nes an algebra of �eld operators φ̂x acting on a Hilbert space H to represent a free

real scalar �eld where x = 1, ..., p runs over a causal set (C,�) with p ∈ N elements. For each element

vx ∈ C (x = 1, ..., p) we suppose there is a �eld operator φ̂x obeying,

i φ̂x = φ̂†x

ii [φ̂x, φ̂y] = i∆xy

iii i∆w = 0 =⇒
∑p
x′=1 wx′ φ̂x′ = 0.

The �rst two conditions are direct generalisations of the continuum case, the hermiticity of the �eld

and the canonical commutation relations. The third condition is a causal set version of imposing the

Klein Gordon equations on the �eld operators. From these operators, Jonhston introduced creation

and annihilation operators de�ned as,

âi
•

=

p∑
x=1

(vi)xφ̂x â†i
•

=

p∑
x=1

(ui)xφ̂x, (5.15)

for i = 1, ..., s, which satisfy,

[âi, âj ] = 0 [â†i , â
†
j ] = 0 [âi, â

†
j ] = λju

†
iuj = λjδij . (5.16)
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The �eld operators φ̂x in terms of these creation/annihilation operators is then given by,

φ̂x =

s∑
i=1

(uj)xâi + (vi)xâ
†
i . (5.17)

Using the creation and annihilation operators a vacuum state vector |0〉 ∈ H may be de�ned by the

condition that âi |0〉 = 0 for all i = 1, ..., s and 〈0 | 0〉 = 1. Johnston constructs the two point function

of the vacuum state vector, which is given by,

〈0 | φ̂xφ̂y | 0〉 =

s∑
i=1

s∑
j=1

(ui)x(vj)y〈0 | âj â†j | 0〉

=

s∑
i=1

s∑
j=1

(ui)x(vj)yλjδij = Qxy.

(5.18)

The Feynman propagator is the time ordered product,

(KF )xy
•

= i〈0 | T φ̂xφ̂y | 0〉 = i
(
ĀxyQyx + ĀyxQxy + δxyQxy

)
, (5.19)

where the bar denotes a (non-unique) linear extension of the partial ordering � and δ is the Kronecker-

delta symbol. Here the time ordering is taken so that time is increasing from right to left. The Feynman

propagator over the causal set is then compared to the continuum Feynman propagator, denoted GF

in two ways; by calculating the average value for di�erent sprinklings over A ⊂ Md, d = 2, 4, and by

taking a continuum limit ρ→∞. The expectation value of KF agrees for M2 case and has the correct

continuum limit for M4 case. For a range of sprinklings, the average value of KF agrees with GF

provided that 0� m� √ρ. In M2, there is disagreement between the imaginary parts of KF and GF

as the massless limit is taken, which is argued to be related to the lack of the massless limit of GF .

There are also numerical errors due to the calculations being performed in a �nite region of M2, these

edge e�ects are not present in the bulk of A ⊂ M2.

5.2 The Distinguished SJ State on Curved Spacetimes

The work of Johnston laid the foundations for the development of the SJ state. In [1], Afshordi,

Aslanbeigi and Sorkin generalise the construction of the vacuum state (5.18) on a causal set to a free

scalar �eld over globally hyperbolic regions of a general curved spacetime. The resultant state is known

as the SJ state. The SJ state constructed on the ultrastatic slab (−τ, τ)×Σ is found to converge to the

ultrastatic vacuum state in limit τ →∞ [28], whence the term `vacuum like'. We proceed by outlining
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the SJ state construction given in [1], and deal with the more technical aspects later, in particular the

Hadamard condition for the SJ state. Let (M, g) be a globally hyperbolic spacetime. The classical

free massive scalar �eld is a function φ ∈ C∞(M) that obeys the Klein-Gordon equation,

(� +m2)φ = 0, (5.20)

where � = ∇α∇α is the d'Alembertian operator on (M, g) and m ≥ 0 is a �xed constant. Since

M is globally hyperbolic and the Klein-Gordon operator � + m2 : C∞(M) → C∞(M) is normally

hyperbolic, there exist unique maps,

E
± : C∞0 (M)→ C∞(M), (5.21)

with properties given in Chapter 3 Section 3.2. As stated before, we de�ne the advanced-minus-retarded

function as E = E− − E+ which obeys,

(� +m2)Ef = 0 = E(� +m2)f. (5.22)

A su�cient condition for the SJ state to be well de�ned for a free scalar �eld on a bounded region of

a globally hyperbolic is given in the following proposition by Fewster and Verch [28]:

Proposition 5.1. LetM,N be two globally hyperbolic spacetimes in which we assume an orientation

and time-orientation have both been chosen. If there exists an isometric embedding ι : M → N ,

preserving both orientations, such that ι(M) is a relatively compact, causally convex, subset of N ,

then the commutator function,

Af = iEf ∀f ∈ C∞0 (M) (5.23)

extends to a bounded self-adjoint operator over the Hilbert space L2(M, dvolg).

Proof. See [28, Proposition 3.1]. n

The key to the SJ state construction is to regard the commutator function (5.23) as a self-adjoint

bounded operator over (M, g). One then takes the `positive part' of A, denoted A+, and constructs

the two-point function via the prescription,

WSJ(f, g) = 〈f | A+g〉 ∀f, g ∈ C∞0 (M), (5.24)
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where 〈· | ·〉 is the inner product on L2(M, dvolg). There are various methods for constructing the

operator A+, which we will now explore. In the following we assume the spacetime (M, g) satis�es

the conditions given in proposition 5.1 so that the function (5.23) extends to a bounded self-adjoint

operator A over L2(M, dvolg).

Positive Part via the Spectral Theorem

If the commutator function A = iE extends to a bounded self-adjoint operator on L2(M, dvolg) then

it possesses a spectral valued measure dPA. The operator A+ is then constructed by using the positive

spectral projection of A, given by,

P+ =

∫
[0,‖A‖]

dPA(λ). (5.25)

The projection operator was used in [28] to construct the positive part of A,

A+ = P+A =

∫
[0,‖A‖]

λdPA(λ). (5.26)

An equivalent construction of the operator A+, uses the continuous spectral calculus for self-adjoint

bounded operators. Let f : σ(A)→ R be a continuous function de�ned by,

f : σ(A)→ R

λ 7→ λθ(λ),
(5.27)

where θ is the Heaviside function de�ned by,

θ(λ) =

0 if λ < 0

1 if λ ≥ 0.

(5.28)

The function (5.27) then yields the operator,

A+ = f(A) = Aθ(A) (5.29)

To elucidate these results, we can explicitly construct the operator (5.29) when A is a self-adjoint

compact operator on L2(M, dvolg). In the case when the operator (5.23) is compact there exists

a countable orthonormal basis {Ψ±j }j∈N of L2(M, dvolg) consisting of eigenvectors of A with corre-

sponding eigenvalues ±λj where λj ≥ 0 for all j ∈ N. Expressing the operator (5.23) in this basis
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yields the decomposition into `positive' and `negative' parts,

A =
∑
j∈N

λj
[
|Ψ+
j 〉 〈Ψ

+
j | − |Ψ

−
j 〉 〈Ψ

−
j |
]
, (5.30)

where the `positive part' is simply read o�,

A+ =
∑
j∈N

λj |Ψ+
j 〉 〈Ψ

+
j | . (5.31)

We can directly verify that in the case when A is compact, the function (5.27) yields the correct

positive part,

f(A) = f

∑
j∈N

λj |Ψ+
j 〉 〈Ψ

+
j | − λj |Ψ

−
j 〉 〈Ψ

−
j |


=
∑
j∈N

f(λj) |Ψ+
j 〉 〈Ψ

+
j |+ f(−λj) |Ψ−j 〉 〈Ψ

−
j |

=
∑
j∈N

λj |Ψ+
j 〉 〈Ψ

+
j |

= A+.

(5.32)

An equivalent construction of the positive part (5.31) is given by the function,

g : σ(A)→ R

λ 7→ 1

2
(λ+ |λ|),

(5.33)

where the corresponding operator is given by g(A) = 1
2 (A+ |A|) and where |A| =

√
A2. Moreover, in

the case when the operator (5.30) is de�ned on a Hilbert space, the operator A2 is positive and hence

admits a unique, positive square root. The advantage of using the function (5.33) to construct the

positive part (5.31) is that one only needs to calculate |A|. Since the eigenvectors {Ψ±j }j∈N appearing

in (5.30) are orthonormal, and since 〈Ψ+
j | Ψ

−
k 〉 = 0 for all j, k ∈ N, we �nd,

A2 =
∑
j∈N

λ2
j

[
|Ψ+
j 〉 〈Ψ

+
j |+ |Ψ

−
j 〉 〈Ψ

−
j |
]
, (5.34)

hence,

|A| =
√
A2 =

∑
j∈N

λj
[
|Ψ+
j 〉 〈Ψ

+
j |+ |Ψ

−
j 〉 〈Ψ

−
j |
]
, (5.35)
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which implies the following,

g(A) =
1

2
(A+ |A|) =

1

2

∑
j

λj
[
|Ψ+
j 〉 〈Ψ

+
j | − |Ψ

−
j 〉 〈Ψ

−
j |
]

+ λj
[
|Ψ+
j 〉 〈Ψ

+
j |+ |Ψ

−
j 〉 〈Ψ

−
j |
]

=
∑
j∈N

λj |Ψ+
j 〉 〈Ψ

+
j |

= A+,

(5.36)

which shows that the operator g(A) coincides with the operator (5.31).

The SJ Axioms

Alternatively, and we remark here the signi�cance of the following, Sorkin remarked that the operator

(5.29) may be viewed as being the unique solution to the set of axioms [58],

SJ1) A+ − ΓA+Γ = A CCRs.

SJ2) A+ ≥ 0 Positivity.

SJ3) A+ΓA+Γ = 0 Ground state condition

where Γ : L2(M, dvolg)→ L2(M, dvolg) is the antilinear involutive complex conjugation map de�ned

by Γ(f) = f . The motivation of these axioms is seen in the following,

SJ1− This axiom is essentially a reformulation of the canonical commutation relations; the antisym-

metric part of two point function of the SJ state is seen to coincide with the commutator

function,

〈Γf | Ag〉 = WSJ(f, g)−WSJ(g, f) = 〈Γf | A+g〉 − 〈Γg | A+f〉

= 〈Γf | A+g〉 − 〈A+Γg | f〉

= 〈Γf | A+g〉 − 〈Γf | ΓA+Γg〉

= 〈Γf | (A+ − ΓA+Γ)g〉

(5.37)

for all f, g ∈ C∞0 (M). This implies the operator A+ must obey the decomposition,

A = A+ − ΓA+Γ. (5.38)

Therefore, axiom SJ1 ensures that the SJ two point function has the correct antisymmetric

part.
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SJ2− The second axiom ensures that the SJ state is positive. Since the SJ state is quasifree [28,

Proposition 3.2], all odd n−point functions vanish and all even n−point function can be ex-

pressed in terms of the two point function. The SJ state is positive if the two point function

(5.24) is of positive type, i.e. WSJ(f, f) ≥ 0 for all f ∈ C∞0 (M). We see that the positivity of

the operator A+ directly implies that the two point function is of postive type,

ωSJ(φ(f)∗φ(f)) = WSJ(f, f) = 〈f | A+f〉 ≥ 0. (5.39)

SJ3− The third axiom is what Sorkin dubs as the `ground-state condition'. Furthermore, the axiom

ensures that the SJ state constructed on the ultrastatic slab ((−τ, τ)×Σ, g = 1⊕−h) converges

to the ultrastatic vacuum state in the limit τ →∞ [28, Section 4.3]. The third axiom is veri�ed

by the observation,

A+ΓA+Γ =
−1

4
(A+ |A|)(A− |A|) =

−1

4

(
A2 −A2

)
= 0, (5.40)

In [58], Sorkin demonstrates that the operator (5.29) is in fact the unique solution to the set of axioms

SJ1 − SJ3. We proceed to sketch a proof of the solution to these axioms.a The �rst axiom SJ1, as

we shall prove later, is solved by the operator,

A+ =
A

2
+R, (5.41)

where R is a self-adjoint bounded operator over L2(M, dvolg). By substituting (5.41) into axiom SJ1

and by using A = −ΓAΓ we see,

A = A+ − ΓA+Γ =
A

2
+R− ΓAΓ

2
− ΓRΓ = A+R− ΓRΓ, (5.42)

which implies R = ΓRΓ. Substituting the solution (5.41) into axiom SJ3 yields the following,

0 = A+ΓA+Γ =

(
A

2
+R

)(
−A

2
+R

)
= −A

2

4
+

1

2
[A,R] +R2,

(5.43)

taking the Γ−variant and Γ−invariant parts of (5.43) then gives,

R2 − A2

4
= 0 [A,R] = 0. (5.44)

aA detailed proof of these axioms can be found as the trivial case of the generalised SJ state construction given in

Chapter 6.

54



Since A is a self-adjoint bounded operator over a Hilbert space, it follows that A2 is a non-negative

bounded operator. Therefore, by [53, Theorem VI.9], there exists a unique non-negative R such that

R2 =
A2

4
, which is given by,

R =

√
A2

2
. (5.45)

However, the operator −R also solves (5.44). To solve the �nal ambiguity, the axiom SJ2 requires

the operator A+ to be non-negative, and so −R is excluded. Therefore the unique solution to axioms

SJ1− 3 is the operator,

A+ =
A

2
+
|A|
2
, (5.46)

as desired.

Positive Part via the Polar Decomposition

Finally, we may use the polar decomposition of A; since A is a self-adjoint bounded operator there is

a partial isometry U such that U2 = 1 on Im(|A|) and such that,

A = U |A|. (5.47)

Since A is self-adjoint, U commutes with |A|, which implies,

AU = U |A|U = |A|U2 = |A|. (5.48)

The positive part of A, denoted A+, may be the de�ned as,

A+ =
A

2
(1 + U). (5.49)

One can observe that since E : C∞0 (M)→ C∞(M) maps real functions to real functions, it commutes

with Γ. Therefore A anticommutes with Γ which implies A2 commutes with Γ. Therefore |A| =
√
A2

commutes with Γ, which follows from Theorem 2.5[vii]. This then implies that U anticommutes with
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Γ. We can verify that (5.49) does indeed satisfy SJ1,

A+ − ΓA+Γ =
A

2
(1 + U)− ΓA

2
(Γ + UΓ)

=
A

2
(1 + U) +

AΓ

2
(Γ− ΓU)

=
A

2
(1 + U) +

AΓ2

2
(1− U)

=
A

2
+
AU

2
+
A

2
− AU

2

= A

(5.50)

and the operator A+ in (5.49) is seen to be non-negative since A ≤ |A|. Finally, we see that (5.49)

satis�es SJ3,

A+ΓA+Γ =
A

2
(1+ U)

ΓA

2
(1+ U)Γ

=
A

2
(1+ U)

ΓAΓ

2
(1− U)

= −A
2

4
(1+ U)(1− U)

= −A
2

4
(1− U2)

= 0,

(5.51)

which holds since A2U2 = |A|(|A|U2) = (|A|)2 = A2. As we have shown, there are various ways of

constructing the `positive part' of the commutator function A = iE. In this thesis, particularly in

chapter 6, we shall consider generalisations of the SJ state construction, with a particular focus on

modifying the SJ axioms SJ1− 3. In order to do such a generalisation, we will rely almost exclusively

on the continuous functional calculus for self-adjoint bounded operators. Essentially, the SJ state is

constructed by taking functions of the commutator function A = iE. In chapter 6 we show that there

are in fact other functions of the operator A = iE that can be used to construct a well de�ned quasifree

state.

5.3 Purity of the SJ Vacuum

Fewster and Verch showed that the SJ vacuum on a bounded region of a globally hyperbolic region is

pure [28]. Let (M, g) be a globally hyperbolic spacetime such that the commutator function A = iE

extends to a self-adjoint bounded operator on L2(M). The SJ state on the CCR algebra A(M) is
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constructed by setting its two-point function to be,

WSJ(f, g) = 〈f | 1

2
(A+ |A|)g〉

=
1

2
〈f | Ag〉+

1

2
〈f | |A|g〉.

(5.52)

As before, we de�ne S(M) = C∞0 (M,R)/ ker(E) to be the real-linear vector space of equivalence

classes [f ] with respect to the equivalence relation,

f ∼ f ′ ⇐⇒ E(f − f ′) = 0 ∀f, g ∈ C∞(M,R) (5.53)

Using the space S(M), we de�ne the following maps,

σ : S(M)× S(M)→ R (5.54)

([f ], [g]) 7→ 〈f | Eg〉,

µSJ : S(M)× S(M)→ R (5.55)

([f ], [g]) 7→ 〈f | Rg〉,

where σ(·, ·) is a well de�ned symplectic form on S(M) by [45, Proposition 8] and µSJ(·, ·) is a well

de�ned real-linear scalar product on S(M) [28, Section 3]. We now �nd,

WSJ(f, g) = µSJ([f ], [g]) +
i

2
σ([f ], [g]), (5.56)

for all f, g ∈ C∞0 (M,R). The SJ state with two-point function (5.52) is pure if the symplectic form

σ(·, ·) has the following saturation property with respect to the scalar product µSJ(·, ·),

µSJ([f ], [f ]) = sup
06=[h]∈S(M)

|σ([f ], [h])|2

4µSJ([h], [h])
∀[f ] ∈ S(M). (5.57)

Using these de�nitions, we now detail the proof that the SJ state is pure [28, Proposition 3.2],

Proposition 5.2. Let (M, g) be a globally hyperbolic spacetime such that the commutator function

A = iE extends to a self-adjoint bounded operator on L2(M). Then the SJ state with two-point function

(5.52) is pure.

Proof. Since A is a bounded self-adjoint operator on L2(M), there exists a unique partial isometry
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such that A = U |A| = |A|U∗. We observe,

[|A|, U ] = 0,

[|A|,Γ] = 0,

{A,Γ} = 0,

{U,Γ} = 0,

(5.58)

where [·, ·] is the commutator and {·, ·} is the anti-commutator. Using these relations, we can infer

that the operator iU : L2(M) → L2(M) and Γ commute. Let (hn)n∈N be a sequence in C∞0 (M,R)

that converges to iUf ∈ L2(M,R). We now have, for all [f ] ∈ S(M),

lim
n→∞

|σ([f ], [hn])|2

4µSJ([hn], [hn])
= lim
n→∞

|〈f | Ahn〉|2

2〈hn | |A|hn〉

=
|〈f | iAUf〉|2

2〈iUf | i|A|Uf〉

=
|〈f | |A|U∗Uf〉|2

2〈f | |A|U∗Uf〉

=
|〈f | |A|f〉|2

2〈f | |A|f〉

=
1

2
〈f | |A|f〉

= µSJ([f ], [f ]),

(5.59)

where we have used the fact that U∗U = 1 on range(|A|). This establishes the saturation property

of the scalar product µSJ(·, ·) with respect to the symplectic form σ(·, ·). Hence the SJ vacuum is

pure. n

5.4 Local Covariance of the SJ State

Let (O, g) be a globally hyperbolic spacetime. Consider bounded globally hyperbolic regionsN ⊂M ⊂

O such that there exist isometric embedding ι : N ↪→ M, κ : N ↪→ O which preserve orientations

and so that the images are causally convex relatively compact subsets of O. Then the SJ state is well

de�ned on (N , g) and on (M, g) by proposition 5.1. Let WSJN and WSJM be the SJ states over (N , g)

and (M, g) respectively. Suppose now that an observable with support properties supp(f) ⊂ N ⊂M.

The expectation value of this observable can then be evaluated in both the states WSJN and WSJM .

However, since the SJ state construction depends upon the global properties of the chosen spacetime,
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the expectation values of the observable will be di�erent in both states. It is then unclear as to which

is the `correct' expectation value; the SJ state is certainly distinguished over a spacetime (M, g), but

there is no notion of a `distinguished' choice of spacetime region. Therefore, it is unclear what physical

relevance the SJ state has. To summarise, the SJ state fails to be local covariant because it depends

WMSJ

WNSJ

f

Figure 5.2: Failure of local covariant property for SJ state.

upon an arbitrary choice of underlying spacetime.

5.5 The Hadamard Condition of the SJ State

To elucidate the drawbacks of the SJ state construction, we follow the work of Fewster and Verch by

constructing the SJ state on the ultrastatic slab (−τ, τ)× Σ [28]. Let ((−τ, τ)× Σ, g = 1⊕−h) be a

globally hyperbolic ultrastatic slab spacetime where (Σ, h) is a smooth compact Riemannian manifold

and τ > 0. In such a spacetime, the Klein Gordon operator becomes,

� +m2 = ∂2
t +K, (5.60)

where t ∈ (− τ, τ) is the ultrastatic time parameter and K = −∆ +m2, where ∆ is the Laplacian on

(Σ, h). Then K is essentially self-adjoint on C∞0 (Σ) ⊂ L2(Σ), and so admits a self-adjoint extension

onto L2(Σ) [60, Chapter 8]. There exists a complete orthonormal basis of L2(Σ, h) consisting of

eigenvectors of K, which we denote by ξj (j ∈ N), with corresponding eigenvalues ω2
j [20, Theorem 1

Section 6.3]. We make assumption that for each j ∈ N, ξj is also a basis element of L2(Σ, h), and we may

choose the labelling such that ξj = ξj . Throughout this thesis we assume that ωj ≤ ωj+1 for all j ∈ N.

The norm on L2(−τ, τ) will be denoted ‖·‖τ . The Hilbert space is given by L2(M) = L2(−τ, τ)⊗L2(Σ).
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The commutator function for the Klein Gordon �eld over the ultrastatic slab ((−τ, τ)×Σ, g = 1⊕−h)

extends to the self-adjoint, bounded operator,

A = iE =
∑
j∈N

1

2ωj

(
|Aj〉 〈Aj | − |Aj〉 〈Aj |

)
, (5.61)

on L2(M, dvolg) where Aj(t, x) = e−iωjtξj(x). The eigenvectors of (5.61) are given by,

Ψ±j (t, x) =

(
Cj(t)∓ i

‖Cj‖τ
‖Sj‖τ

Sj(t)

)
ξj(x), (5.62)

where Cj(t) = cos(ωjt) and Sj(t) = sin(ωjt) and the norms ‖ · ‖τ is the norm induced by the inner

product on L2(−τ, τ). The corresponding eigenvalues are given by,

λ±j = ±λj = ±‖Cj‖τ‖Sj‖τ
ωj

(5.63)

where,

‖Sj‖2τ = τ(1− sinc(2ωjτ))

‖Cj‖2τ = τ(1 + sinc(2ωjτ))

〈Sj | Cj〉τ = 0

‖Ψ±j ‖
2 = 2‖Cj‖2τ ,

(5.64)

where ‖ · ‖τ is the norm on L2(−τ, τ). In the eigenvector basis (5.62) the operator (5.61) is,

A =
∑
j∈N

λj
‖Ψ+‖2

[
|Ψ+
j 〉 〈Ψ

+
j | − |Ψ

−
j 〉 〈Ψ

−
j |
]

=
∑
j∈N

‖Sj‖τ
2ωj‖Cj‖τ

[
|Ψ+
j 〉 〈Ψ

+
j | − |Ψ

−
j 〉 〈Ψ

−
j |
] (5.65)

which has the positive part,

A+ =
∑
j∈N

‖Sj‖τ
2ωj‖Cj‖τ

|Ψ+
j 〉 〈Ψ

+
j | . (5.66)

The integral kernel of the SJ two point function is then given by,

WSJ(t, x; t′, x′) =
∑
j∈N

‖Sj‖τ
2ωj‖Cj‖τ

(
e−iωjt + iδj sin(ωjt)

)(
e−iωjt

′
+ iδj sin(ωjt

′)
)
ξj(x)ξj(x′), (5.67)

where,

δj = 1− ‖Cj‖τ
‖Sj‖τ

. (5.68)
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We shall now use the SJ state de�ned by (5.67) and summarise the pathologies shown in [28]. As

discussed in Chapter 4 section 4.2, in order to prove that the SJ state constructed on a spacetimeM

with two point function (5.67) is Hadamard, one uses a reference Hadamard stateWH onM and shows

that the integral kernel of : WSJ :
•

= WSJ −WH is smooth onM×M. For the SJ state constructed on

the ultrastatic slab ((−τ, τ) × Σ, g = 1 ⊕ −h) with the two point function (5.67), Fewster and Verch

gave a necessary condition on when the SJ state satis�es the Hadamard condition. We shall proceed

by sketching the proof of the following theorem, given in [28, Theorem 4.2],

Theorem 5.3. The set of τ for which the SJ state with two point function (5.67) is Hadamard on

(−τ, τ)× Σ is contained in a set of measure zero.

Proof. Let WH be a two-point function for the ultrastatic vacuum state,

WH =
∑
j∈N

1

2ωj
e−iωj(t−t

′)ξj(x)ξj(x
′), (5.69)

where ξj are eigenvectors with corresponding eigenvalues ω2
j of the operator K = −∆ + m2 as be-

fore. The ultrastatic vacuum state is, in particular, Hadamard [33]. Therefore, the SJ state (5.67) is

Hadamard if and only if the normal ordered two point function : WSJ := WSJ −WH has a kernel

which is smooth onM×M. The normal ordered SJ two point function has the integral kernel,

: WSJ : (t, x; t′, x′) = (WSJ −WH)(t, x; t′, x′)

=
∑
j∈N

δj
4ωj(1− δj)

(
δj cos(ωj(t− t′)) + (2− δj) cos(ωj(t+ t′))

)
ξj(x)ξj(x′).

(5.70)

If (5.70) is smooth on M×M then in particular it must be C2. Furthermore, if : WSJ : (·, ·) ∈

C∞(M ×M) then all derivatives may be assumed to be bounded on the subset M′ × M′ where

M′ = (−τ ′, τ ′)× Σ and 0 < τ ′ < τ . Therefore, the function,

F (t, x; t′, x′) =
∂2

∂t∂t′
: WSJ : (t, x; t′, x′), (5.71)

must be square-integrable on M′ ×M′. By [53, Theorem VI.23] the function (5.71) is the kernel of

the Hilbert-Schmidt operator,

(Tg)(t, x) =

∫
M′

F (t, x; t′, x′)g(t′, x′) dvolg(t
′, x′)

=
∑
j∈N

ωjδj
2

(
1

1− δj
Sj(t)〈Sj | g〉 − Cj(t)〈Cj | g〉

)
ξj(x),

(5.72)
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for all (t, x) ∈ (−τ ′, τ ′) × Σ and where the inner products are on L2((−τ ′, τ ′) × Σ). If the operator

(5.72) is Hilbert-Schmidt onM′, the its eigenvalues are square summable. The eigenvalues of (5.72)

are found to be, {−ωjδj‖Cj‖2τ ′
2

∣∣ j ∈ N} ∪ {ωjδj‖Sj‖2τ ′
2(1− δj)

∣∣ j ∈ N} ∪ {0
}
, (5.73)

where the norms are taken in L2(−τ ′, τ ′). Since (5.72) is assumed to be Hilbert-Schmidt, the eigen-

values (5.73) are square-summable, implying,∑
j∈N

ω2
j δ

2
j ‖Cj‖4τ ′ <∞

∑
j∈N

ω2
j δ

2
j ‖Sj‖4τ ′

(1− δj)2
<∞. (5.74)

In the limit j → ∞ we have ωj → ∞ and therefore sinc(2ωjτ) → 0, thus we have ‖Cj‖τ ′ →
√
τ ′ and

‖Sj‖τ ′ →
√
τ ′. Therefore if (5.74) holds then we must have limj→∞ ωjδj = 0. Furthermore, since

ωjδj ∼ (2τ)−1 sin(2ωjτ), the following must hold,

lim
j→∞

sin(2ωjτ) = 0. (5.75)

Let V be the set of all τ ∈ R such that (5.75) holds. Then V is a Borel subset of R, which is assumed

to have a nonzero �nite measure for the sake of contradiction.b Then the characteristic function on

V , denoted χV , is an L1 function such that,

lim
j→∞

χV (τ) sin2(2ωjτ) = 0 ∀τ ∈ V. (5.76)

We observe the following,

χV (τ) sin2(2ωjτ) ≤ χV (τ),∫
χV (τ) <∞,

lim
j→∞

χV (τ) sin2(2ωjτ) = 0,

(5.77)

which then implies, by the dominated convergence theorem,

lim
j→∞

∫
(0,∞)

χV (τ) sin2(2ωjτ)dτ = 0. (5.78)

where dτ is the measure on V . Using standard trigonometric identities we obtain,∫
(0,∞)

χV (τ) sin2(2ωjτ)dτ =
1

2

∫
(0,∞)

χV (τ)(1− cos(4ωjτ))dτ, (5.79)

bThe Borel sets of R is de�ned as the smallest collection of subsets of R such that the family is closed under

complements, closed under countable unions and so that the family contains each open interval.
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and the Riemann-Lebesgue lemma yields,

lim
j→∞

1

2

∫
(0,∞)

χV (τ) cos(4ωjτ)dτ = 0, (5.80)

Therefore, we obtain, ∫
(0,∞)

χV (τ)dτ = 0, (5.81)

thus the Lebesgue measure of V vanishes, which contradicts the assumption that V has a nonzero

�nite measure. Therefore the SJ state with two point function (5.67) is Hadamard on a measure zero

subset of (−τ, τ)× Σ. n

To give concrete examples of how the SJ state fails to be Hadamard, Fewster and Verch constructed

the SJ state on the ultrastatic slab (−τ, τ) × Σ where Σ is either a �at 3-torus of a round 3-sphere.

We now review these results:

SJ State on the Flat 3-Torus

Let ((−τ, τ)×T3, g = 1⊕−h) be a ultrastatic slab where T3 = R3/(LZ)3 is a �at 3-torus with common

periodicity length L > 0. Letting m > 0, the eigenvalues of K = −∆T3 + m2, where −∆T3 is the

Laplacian on T3 are given by,

ωk =

√(
2π‖k‖
L

)2

+m2 (5.82)

where k ∈ Z3. The subsequences ωr,0,0, ωr,r,0 obey ωr,0,0 ∼ 2πr/L and ωr,r,0 ∼ 2πr
√

2/L respectively

as r →∞. Fewster and Verch showed that the SJ state is Hadamard only if both,

sin(4πτr/L)→ 0

sin
(

4
√

2πrτ/L
)
→ 0,

(5.83)

hold as r →∞. However the �rst only holds if 4τ/L ∈ Z while the second only holds if 4
√

2τ/L ∈ Z ,

hence there is no τ > 0 that satis�es these conditions and therefore the SJ state on (−τ, τ)×T3 is not

Hadamard.

SJ State on the Round 3-Sphere

Let ((−τ, τ)×S3, g = 1⊕−h) be an ultrastatic slab where S3 is a round 3-sphere. Letting m > 0, the

eigenvalues of K = −∆S3 + m2, where ∆S3 is the Laplacian on the round 3-sphere of radius R > 0,

are given by,

ωj =

√
j(j + 2)

R2
+m2, (5.84)
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and occur with multiplicity (1 + j)2 for all j ∈ N0. Since sin(2ωjτ)→ 0 only if 2τ/(πR) ∈ N, Fewster

and Verch showed that the SJ state on ((−τ, τ)× S3, g = 1⊕−h) is Hadamard only if 2τ = kπR for

some k ∈ N. Letting 2τ = kπR, they �nd,

sin2(2ωjτ) ∼
(

((mR)2 − 1)πk

2j

)
, (5.85)

whereby the sums (5.73) are seen to diverge owing to the multiplicities of ωj . Therefore, there is no

value of τ > 0 that ensures the series (5.73) converge and therefore the SJ state on ((−τ, τ)× S3, g =

1⊕−h) is not Hadamard.

5.6 Brum-Fredenhagen States on Curved Spacetimes

The construction of a Brum-Fredenhagen state, or BF state, is based on the original SJ state construc-

tion. However, the BF states satisfy the Hadamard condition in all case with no known exceptions

[11]. We shall outline the construction of a BF state over the Weyl algebra for the free scalar �eld on

a static spacetime and show how the BF state satis�es the Hadamard condition.

Let N = (R × Σ, g = 1 ⊕ −h) be a globally hyperbolic spacetime and let M = ((−τ, τ) × Σ, g =

1⊕−h), τ > 0, be a globally hyperbolic slab spacetime. There is the isometric embedding,

ι :M ↪→ N

(t, x) 7→ (t, x)
(5.86)

As before, the Klein-Gordon operator �N +m2 on N admits unique advanced/retarded fundamental

solutions E±N from which we construct the advanced-minus-retarded operator EN = E
−
N − E

+
N . Since

the advanced-minus-retarded operator is unique on N , the embedding ι induces the advanced-minus-

retarded operator onM via,

EM = ι∗EN ι∗, (5.87)

where ι∗, ι∗ are the pull-back, push-forward of ι respectively. Let f ∈ C∞0 (N ) be a real-valued test

function which is identically one when restricted to ι(M) ⊂ N , i.e f
∣∣
ι(M)

≡ 1. From this, Brum and

Fredenhagen de�ne the self-adjoint bounded operator [10, Theorem 4.1.0.1],

Af
•

= f(−iEM)f. (5.88)
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The positive part of Af is given by,

A+
f =

1

2
(Af + |Af |), (5.89)

The BF state is then constructed in an analogous way to the SJ state, whereby the two point function

is de�ned by,

WBFf (h, g) = 〈h | A+
f g〉 ∀h, g ∈ C∞0 (M). (5.90)

Under such a prescription, Brum and Fredenhagen show (5.90) is the two point function for a pure

quasifree state over the Weyl algebra W(SN , σ) where SN = C∞0 (N ,R)/ kerEN f [11, Theorem 3.0.1].

Here, the Weyl algebra W(SN , σ) is a C∗ algebra that is formed from elements of SN by introducing

symbols W (f), labelled by f ∈ SN , that satisfy,c

i) W (0) = 1

ii) W (−f) = W (f)∗

iii) W (f)W (g) = e
−i
2 σ(f,g)W (f + g) for all f, g ∈ SN .

The symbols W (f) then generate the Weyl algebra W(SN , σ). For further details see [16, 31]. We now

turn our attention to the construction of a BF state over a static slab spacetime. Let N = R × Σ be

a static spacetime with metric g = a21⊕−h, where a ∈ C∞(Σ) is everywhere positive. The BF state

constructed over the static spacetime (−τ, τ)× Σ is shown to be,

WBFf (t, x; t′, x′) =
∑
j∈N

1

2ωj

(
1

1− δj
Cj(t)− iSj(t)

)
(Cj(t

′) + i(1− δj)Sj(t′))ξj(x)ξj(x′), (5.91)

where ξj are eigenvectors of K = a(−∆ +m2) and,

Sj(t) = f(t) sin(ωjt− θj)

Cj(t) = f(t) cos(ωjt− θj)

δj = 1− ‖Cj‖τ
‖Sj‖τ

,

‖Cj‖2τ =

∫
(−τ,τ)

Cj(t)
2dt

‖Sj‖2τ =

∫
(−τ,τ)

Sj(t)
2dt,

(5.92)

cA C∗ algebra A is a normed ∗−algebra such that ‖A∗A‖ = ‖A‖2 for all A ∈ A.
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and where the angle θj is chosen such that,∫
f(t)2 cos(ωjt− θj) sin(ωjt− θj)dt = 0, (5.93)

for each j ∈ N. The integral kernel of the two-point function of the static vacuum state onM is given

by,

WH(t, x; t′, x′) =
∑
j∈N

1

2ωj
e−iωj(t−t

′)ξj(x)ξj(x′)

=
∑
j∈N

1

2ωj
f(t)e−iωj(t−t

′)f(t′)ξj(x)ξj(x′),

(5.94)

where the second equality holds since f ≡ 1 onM. The static vacuum state (5.94) de�nes a Hadamard

state [33]. The proof that (5.91) de�nes a Hadamard state amounts to proving that the normal ordered

BF state, : WBFf := WBFf −WH has a smooth integral kernel. A direct computation shows that the

kernel of : WBFf : is,

: WBFf : (t, x; t′, x′) =
∑
j∈N

δj
2ωj

(
1

1− δj
Cj(t

′)Cj(t)− Sj(t′)Sj(t)
)
ξj(x)ξj(x′). (5.95)

The integral kernel (5.95) converges in C∞(N ×N ) if the following holds,∑
j∈N

ωpj δj <∞, (5.96)

for all p ∈ N. For each p ∈ N, the convergence of (5.96) implies that the kernel of the normal ordered

BF state (5.95) converges in a Sobolev space of order p ∈ N and, by the Sobolev embedding theorem

[46, Theorem 2.5], converges in Cp(M×M). Hence if (5.96) holds for all p ∈ N, then the integral

kernel of (5.95) is smooth. The convergence of (5.96) for each p ∈ N is guaranteed since δj decays

faster than any polynomial, which, roughly speaking, means that each summand in (5.96) can be made

arbitrarily small. This stems from the fact that one may bound δj by the Fourier transform of f2.

Therefore, the BF state satis�es the Hadamard condition precisely because f is smooth and compactly

supported. Since the BF state depends on the choice of function f ∈ C∞0 (N ) it is no longer uniquely

speci�ed from the �eld equations and spacetime geometry. Whilst we have somewhat loosely remarked

on the Hadamard condition for the BF state, we shall return to the convergence of series similar to

(5.95) later.
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Chapter 6

Generalised SJ States for a Quantum

Field on Globally Hyperbolic

Spacetimes

The axiomatic formulation of the SJ state detailed in Chapter 5 allows the `positive part' of the

commutator function to be viewed as being the unique solution to a set of axioms. The CCR and

positivity axioms (SJ1 and SJ2 respectively) incorporate features that are generic to all quasifree

states; namely that the state is positive and that it satis�es the canonical commutation relations.

Changing either one of these axioms will then violate these properties, so clearly any generalisation

of the SJ vacuum must leave these axioms alone. However the `ground state condition' (SJ3) is not

a requirement for a general quasifree state, but a property that is unique to the SJ vacuum. Clearly

then, by changing this axiom one can still construct the two-point function that is of positive type with

the right antisymmetric part, but has di�ering properties to the SJ vacuum. Our goal in this chapter

is precisely this, to construct a set of axioms with a unique solution which can be used to construct a

quasifree state. Such a generalisation will yield a family of quasifree states, which we call generalised

SJ states. We shall begin with an outline of this construction, state and motivate the axioms used and

show the unique solution to these axioms and how to construct the two-point function for a quasifree

generalised SJ state.
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Suppose the commutator function A = iE extends to a self-adjoint bounded operator on L2(M).

Let ψ : σ(A)→ R be a continuous function on the spectrum of A that obeys,

ψ(−λ) = ψ(λ) CCRs

ψ(λ) ≥ 0 Positivity

ψ(0) = 0 Field equations.

(6.1)

Our aim is to construct a quasifree state ωSJψ by setting its two-point function to be,

WSJψ (f, g) = 〈f | A+
ψg〉 ∀f, g ∈ C∞0 (M), (6.2)

where A+
ψ is a self-adjoint bounded operator that is a solution to,

SJψ1) A+
ψ − ΓA+

ψΓ = A CCRs.

SJψ2) A+
ψ ≥ 0 Positivity.

SJψ3) A+
ψΓA+

ψΓ = ψ(A).

The axioms SJψ1− 3 are a generalisation of the axioms SJ1− 3 appearing in Chapter 5. As we will

show, the solution to the axioms SJψ1− 3 is uniquely given by the self-adjoint bounded operator,

A+
ψ =

A

2
+

√
A2

4
+ ψ(A). (6.3)

We shall show that the axiom SJψ1 ensures the two-point function (6.2) has the correct antisym-

metric part and SJψ2 implies that the state ωSJψ is positive. These axioms are, in a straightforward

way, analogous to SJ1 and SJ2. Furthermore, we shall prove that if ψ is even then (6.3) satis�es SJψ1

and that if ψ is non-negative then (6.3) satis�es SJψ2. Finally we shall show if ψ(0) = 0 then the

two-point function (6.2) satis�es the Klein-Gordon equation. Furthermore, we prove that the quadratic

form de�ned in (6.2) is in fact the two-point function for a quasifree state ωSJψ over the algebra of

observables for the free scalar �eld. Finally, we will address the question as to whether any of the

states with two-point function (6.2) satisfy the Hadamard condition. Whilst we do not give a rigorous

proof that all generalised SJ states will fail to be Hadamard, we note that a generalised SJ state with

two-point function (6.2) will likely fail to be Hadamard because the SJ vacuum generically fails to be

Hadamard. However, we continue to show that there are SJ states with two-point function (6.2) that

have `good' properties relative to the SJ vacuum, which is expanded upon this in section 6.2. We shall

now set out the construction of a generalised SJ state described above for a free scalar �eld on a curved

spacetime.
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6.1 Generalised SJ States for a Free Scalar Field on a Curved

Spacetime

Let M,N be two globally hyperbolic spacetimes. Suppose that there exists an isometric embedding

ι :M→ N , preserving both orientations, so that ι(M) is relatively compact, causally convex subset

of N . Then, by proposition 5.1 the commutator function A = iE extends to a bounded self-adjoint

operator on L2(M). Let Γ : L2(M)→ L2(M) denote the antilinear complex conjugation map de�ned

by Γf = f . The complex conjugation map has the following properties,

[� +m2,Γ] = 0, [E±,Γ] = 0, {A,Γ} = 0. (6.4)

and, since Γ is an involution, this implies ΓE±Γ = E± and ΓAΓ = −A. We shall also use the following

results, which follow from the spectral theorem given in [53, Theorem VII.2]:

Lemma 6.1. Let U be a bounded self-adjoint operator on L2(M). If ψ : σ(U) → C is a continuous

function such that ψ(0) = 0, then kerU ⊂ ker(ψ(U)).

Proof. For all f ∈ ker(U) we have Uf = 0. Therefore f is an eigenvector of U with eigenvalue λ = 0.

The map ψ has the following property [53, Theorem VII.2 (e)],

Uf = λf =⇒ ψ(U)f = ψ(λ)f, (6.5)

and therefore if Uf = 0 we obtain,

ψ(U)f = ψ(λ)f = ψ(0)f = 0. (6.6)

n

Lemma 6.2. Let U ∈ B(L2(M)) be a bounded self-adjoint operator that obeys {U,Γ} = 0 and ψ :

σ(U) → R be a continuous function. If ψ is even, that is, for all λ ∈ σ(U) we have ψ(λ) = ψ(−λ),

then the operator ψ(U) commutes with Γ.

Proof. Since U is a bounded self-adjoint operator, the spectrum of U is a non-empty compact subset of

R. Therefore, by the Weierstraÿ approximation theorem, the algebra of polynomials on σ(U), denoted

P (σ(U)), is dense in the algebra of continuous functions on σ(U), denoted C(σ(U)). Let f ∈ C(σ(U))

be an even function. Then for all ε > 0 there exists a polynomial p ∈ P (σ(U)) such that,

‖p− f‖∞ = sup
λ∈σ(U)

|p(λ)− f(λ)| < ε. (6.7)
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If q ∈ P (σ(U)) is a polynomial de�ned by,

q(λ) =
1

2
(p(λ) + p(−λ)), (6.8)

then the following holds,

‖q − f‖∞ = sup
λ∈σ(A)

|q(λ)− f(λ)|

= sup
λ∈σ(A)

∣∣∣∣12(p(λ) + p(−λ))− 1

2
(f(λ) + f(−λ))

∣∣∣∣
= sup
λ∈σ(A)

∣∣∣∣12(p(λ)− f(λ)) +
1

2
(p(−λ)− f(−λ))

∣∣∣∣
≤ 1

2
sup

λ∈σ(A)

|p(λ)− f(λ)|+ 1

2
sup

λ∈σ(A)

|p(−λ)− f(−λ)|

<
ε

2
+
ε

2

= ε.

(6.9)

Therefore, if p approximates the even function f to arbitrary precision in sup norm, then f can also

be approximated by the polynomial q given in (6.10). Since q and f are both even, it follows that the

algebra of even polynomials is dense in the algebra of even continuous functions.

Now, let ψN be an even polynomial of degree 2N ∈ N, i.e.,

ψN (λ) =

N∑
n=0

αnλ
2n, (6.10)

for all λ ∈ σ(U) and all N ∈ N and where αn ∈ R for all n ∈ {0, ..., N}. From the continuous functional

calculus, there exists a unique continuous ∗−homomorphism,

Θ : C(σ(U))→ B(L2(M))

ψ 7→ ψ(U)
(6.11)

Using (6.11) there is a unique bounded self-adjoint operator corresponding to (6.10) which is given by,

ψN (U) =

N∑
n=0

αnU
2n, (6.12)

and since by the assumption that U = −ΓUΓ, we have U2n = ΓU2nΓ for all n ∈ N. Therefore

ψN (U) = ΓψN (U)Γ. Now, let ψ ∈ C(σ(U)) be an even continuous function. Then there exists a

sequence of even polynomials (ψN )N∈N that converge, in sup norm, to ψ. That is to say,

ψ(λ) = lim
N→∞

ψN (λ), (6.13)
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for all λ ∈ σ(U). Therefore, we obtain,

ψ(U) = Θ(ψ) = Θ( lim
N→∞

ψN ) = lim
N→∞

Θ(ψN ) = lim
N→∞

ψN (U), (6.14)

where the second limit is taken in the norm topology of B(L2(M)) and holds by [53, Theorem VII.1

(g)]. Therefore,

Γψ(U)Γ = Γ( lim
N→∞

ψN (U))Γ = lim
N→∞

ΓψN (U)Γ = lim
N→∞

ψN (U) = ψ(U). (6.15)

Therefore, if ψ : σ(U)→ R is a continuous even function then ψ(U) = Γψ(U)Γ and, since Γ2 = 1, we

have [ψ(U),Γ] = 0. n

Our goal is to now show that the operator (6.3) is the unique solution to axioms SJψ1− 3 where

ψ : σ(A)→ R is a contiuous function that obeys (6.1). To accomplish this, we shall use the continuous

functional calculus for bounded self-adjoint operators.

Theorem 6.3. Let A be a bounded self-adjoint operator on a Hilbert space H that obeys A = −ΓAΓ.

Suppose ψ : σ(A)→ R is an even, non-negative, continuous function. Then the operator,

A+
ψ =

A

2
+

√
A2

4
+ ψ(A). (6.16)

is the unique solution to the axioms SJψ1− 3.

Proof. Assume the solution A+
ψ to the axioms SJψ1− 3 exists and de�ne the operator,

R
•

= A+
ψ −

A

2
. (6.17)

By the assumption that A = −ΓAΓ we �nd,

ΓRΓ = ΓA+
ψΓ +

A

2
, (6.18)

and, by SJψ1, this implies,

R− ΓRΓ = A+
ψ −

A

2
− ΓA+

ψΓ− A

2
= A−A = 0, (6.19)

hence R = ΓRΓ. Furthermore, we have,

R+ ΓRΓ = A+
ψ −

A

2
+ ΓA+

ψΓ +
A

2
= A+

ψ + ΓA+
ψΓ, (6.20)
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and since R = ΓRΓ, this implies,

R =
1

2

(
A+
ψ + ΓA+

ψΓ
)
, (6.21)

and, by SJψ2, this implies that R is a non-negative operator. We also observe that, since ψ is even,

by Lemma 6.2, ψ(A) = Γψ(A)Γ. Therefore SJψ3 implies the following,

0 = ψ(A)− Γψ(A)Γ = A+
ψΓA+

ψΓ− Γ
(
A+
ψΓA+

ψΓ
)

Γ = A+
ψΓA+

ψΓ− ΓA+
ψΓA+

ψ = [A+
ψ ,ΓA

+
ψΓ], (6.22)

which, in conjunction with SJψ1, implies,

[A+
ψ , A] = [A+

ψ , A
+
ψ − ΓA+

ψΓ] = −[A+
ψ ,ΓA

+
ψΓ] = 0. (6.23)

We now obtain,

R2 = RΓRΓ =

(
A+
ψ −

A

2

)(
ΓA+

ψΓ +
A

2

)
= A+

ψΓA+
ψΓ− A2

4
+

1

2

(
A+
ψA−AΓA+

ψΓ
) (6.24)

which, by SJψ1 and SJψ3 reduces to,

R2 = ψ(A)− A2

4
+

1

2

(
A+
ψA−A(A+

ψ −A)
)

= ψ(A)− A2

4
+

1

2

(
[A+
ψ , A] +A2

)
= ψ(A) +

A2

4
.

(6.25)

Since ψ : σ(A) → R is non-negative and continuous, by [53, Theorem VII.1] the operator ψ(A) is

bounded and non-negative. Therefore, the operator (6.25) is a non-negative bounded operator and so,

by Lemma [53, Theorem VI.9], admits a unique non-negative square root given by,

R =

√
A2

4
+ ψ(A). (6.26)

Therefore, if the operator A+
ψ exists, then it is uniquely given by,

A+
ψ =

A

2
+

√
A2

4
+ ψ(A). (6.27)

We �nally show existence. By the continuous functional calculus for bounded self-adjoint operators,

the operator (6.27) is uniquely given by the continuous function,

a+
ψ : σ(A)→ R

λ 7→ λ

2
+

√
λ2

4
+ ψ(λ),

(6.28)
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by setting A+
ψ = a+

ψ (A). We also note that the operator (6.26) is given by the continuous function,

r : σ(A)→ R

λ 7→
√
λ2

4
+ ψ(λ),

(6.29)

where we set R = r(A). Since, by assumption, A = −ΓAΓ, we see that the operator (6.27) is a solution

to SJψ1 if and only if R = r(A) satis�es,

R = ΓRΓ. (6.30)

which, by Lemma 6.2 is equivalent to showing that (6.29) is even. Since, by assumption, ψ(λ) = ψ(−λ)

for all λ ∈ σ(A) it follows that r(λ) = r(−λ) for all λ ∈ σ(A) and therefore, by Lemma 6.2, the

commutation relation (6.30) holds. Therefore (6.27) satis�es SJψ1. Since, by assumption ψ(λ) ≥ 0 for

all λ ∈ σ(A) we have,

ψ(λ) ≥ 0 =⇒ λ2

4
+ ψ(λ) ≥ λ2

4

=⇒
√
λ2

4
+ ψ(λ) ≥ |λ|

2

=⇒ λ

2
+

√
λ2

4
+ ψ(λ) ≥ |λ|

2
+
λ

2
≥ 0,

(6.31)

and therefore a+
ψ (λ) ≥ 0 for all λ ∈ σ(A). Therefore by [53, Theorem VII.2 (f)], since a+

ψ is a non-

negative function it follows that A+
ψ = a+

ψ (A) is non-negative operator. Hence (6.27) satis�es SJψ2.

We �nally we show that (6.27) solves SJψ3,

A+
ψΓA+

ψΓ =

(
A

2
+

√
A2

4
+ ψ(A)

)(
−A
2

+ Γ

√
A2

4
+ ψ(A)Γ

)

=

(
A

2
+

√
A2

4
+ ψ(A)

)(
−A
2

+

√
A2

4
+ ψ(A)

)

= −A
2

4
+

1

2

[
A,

√
A2

4
+ ψ(A)

]
+
A2

4
+ ψ(A)

= ψ(A),

(6.32)

where the commutator appearing in (6.32) holds by [53, Theorem VII.2 (g)]. Therefore, the operator

(6.27) exists and is the unique solution to the axioms SJψ1− 3. n

Starting from the commutator function A = iE on the spacetimeM and a non-negative, continuous,

even function ψ : σ(A)→ R that obeys ψ(0) = 0 we can construct the unique solution A+
ψ to the axioms
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SJψ1 − 3 given by the operator (6.27). Using the operator (6.27) we can then de�ne the two-point

function,

WSJψ (f, g) = 〈f | A+
ψg〉, (6.33)

for all f, g ∈ C∞0 (M). One may recover the original SJ vacuum by setting ψ = 0. We now verify that

the two-point function (6.33) has the correct properties:

Positivity : The SJ state ωSJψ is positive if and only if the two-point function satis�es,

WSJψ (f, f) = 〈f | A+
ψf〉 ≥ 0 ∀f ∈ C∞0 (M), (6.34)

which clearly holds since A+
ψ ≥ 0.

CCRs: The two-point function (6.33) has the following antisymmetric part,

WSJψ (f, g)−WSJψ (g, f) = 〈f | A+
ψg〉 − 〈g | A

+
ψf〉

= 〈f | (A
2

+R− 1

2
ΓAΓ− ΓRΓ)g〉

= 〈f | Ag〉,

(6.35)

which holds since A = −ΓAΓ and since (6.29) obeys r(λ) = r(−λ), by Lemma 6.2 we have r(A) =

R = ΓRΓ. Therefore the two-point function (6.33) coincides with the canonical commutation

relations.

Field Equations: We now verify, for all f, g ∈ C∞0 (M),

WSJψ (Pf, g) = 0 = WSJψ (f, Pg), (6.36)

where P = � + m2 is the Klein-Gordon operator. Since the Klein-Gordon operator is formally

self-adjoint, the condition (6.36) is equivalent to showing,

PA+
ψ = 0 = A+

ψP. (6.37)

Now, since EP = 0 = PE, it follows that [A,P ] = 0. Therefore, by [53, Theorem VII.2 (g)], any

continuous function of A commutes with P . Hence [A+
ψ , P ] = [a+

ψ (A), P ] = 0. Therefore, it is

su�cient to check that for all g ∈ C∞0 (M) we have A+
ψ (Pg) = 0. By de�nition and by (3.4) we

have, for every g ∈ C∞0 (M),

A(Pg) = iE(Pg) = 0, (6.38)
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which shows that Pg ∈ ker(A) for all g ∈ C∞0 (M). Therefore, we obtain,

WSJ(f, Pg) = 〈f | A+
ψPg〉

= 〈f | 1

2
A(Pg) +R(Pg)〉

= 0,

(6.39)

where we have used the fact that since Pg ∈ ker(A) and the function (6.29) obeys r(0) = 0,

Lemma 6.1 implies that Pg ∈ ker(R).

Before proving that (6.2) de�nes the two-point function for the quasifree SJ state ωSJψ , we shall use

the following. One can rewrite the two-point function (6.2) in the following manner,

WSJψ (f, g) = 〈f | A+
ψg〉

= 〈f |
(
A

2
+R

)
g〉

=
i

2
〈f | Eg〉+ 〈f | Rg〉

•

=
i

2
σ([f ], [g]) + µψ([f ], [g]),

(6.40)

where,

σ : S(M)× S(M)→ R (6.41)

([f ], [g]) 7→ 〈f | Eg〉,

µψ : S(M)× S(M)→ R (6.42)

([f ], [g]) 7→ 〈f | Rg〉,

where the operator R = r(A) is given by the function (6.29) and where,

S(M) = C∞0 (M,R)/P (C∞0 (M,R)) (6.43)

is the real linear vector space of equivalence classes [f ] with respect to the equivalence relation,

f ∼ f ′ ⇐⇒ E(f − f ′) = 0. (6.44)

By Proposition [45, Proposition 8] the map (6.41) is a well de�ned real valued symplectic form. We

now show that the map (6.42) is a well de�ned real valued scalar product. Choose g, g′ ∈ C∞0 (M,R)

such that g − g′ ∈ ker(E), i.e. two distinct representatives of the same equivalence class. Then
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g − g′ ∈ ker(A), and, moreover, since (6.29) obeys r(0) = 0 we have g − g′ ∈ ker(R). Therefore, we

obtain,

µψ([f ], [g])− µψ([f ], [g′]) = 〈f | Rg〉 − 〈f | Rg′〉 = 〈f | R(g − g′)〉 = 0, (6.45)

which implies,

µψ([f ], [g]) = µψ([f ], [g′]) (6.46)

Therefore the scalar product (6.42) is independent of the chosen representative in its second argument.

Moreover, since R is self-adjoint, the scalar product (6.42) is symmetric, which implies that, since it

is independent of representation in the second slot, it is also independent of representation in the �rst

slot. Therefore (6.42) is a well de�ned scalar product. Finally, we see that (6.42) is real valued from

the following; for all [f ], [g] ∈ S(M) we have,

µψ([f ], [g]) = 〈f | Rg〉

= 〈Γf | ΓRg〉

= 〈Γf | RΓg〉

= µψ([f ], [g]),

(6.47)

which holds since Γf = f , Γg = g and [R,Γ] = 0 holds by Lemma 6.2. We now show that (6.33) is the

two-point function for the quasifree SJ state ωSJψ .

Proposition 6.4. Let P = � + m2 be the Klein Gordon operator de�ned on a globally hyperbolic

spacetimeM and let A(M) be the algebra of observables for the free massive scalar �eld. Suppose the

commutator function A = iE extends to a self-adjoint bounded operator on L2(M). Let,

A+
ψ =

A

2
+

√
A2

4
+ ψ(A), (6.48)

be the unique solution to SJψ1− 3 where ψ : σ(A)→ R is an even, non-negative continuous function

that obeys ψ(0) = 0. Then a quasifree state ωSJψ : A(M) → C can be constructed by setting its

two-point function to be,

WSJψ (f, g) = 〈f | A+
ψg〉, (6.49)

for all f, g ∈ C∞0 (M).
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Proof. By proposition 4.2 it is su�cient to show that,

ν(Ef,Eg) = WSJψ (f, g), (6.50)

de�nes a non-negative bilinear form. The two-point function (6.49) is clearly bilinear and, as (6.34)

shows, is positive. Therefore (6.50) de�nes a positive bilinear form and by Proposition 4.2 there exists

a quasifree state ωSJψ whose two-point function is given by (6.49). n

We have shown that, starting with the self-adjoint bounded operator A = iE, a globally hyperbolic

spacetime (M, g) and an even, non-negative, continuous function ψ(A) : σ(A)→ R that obeys ψ(0) = 0

one can construct the unique solution A+
ψ from the axioms SJψ1− 3 and de�ne the two-point function

for a quasifree state via (6.2). We shall now consider the Hadamard condition for the family of SJ

states with two-point functions (6.2) and show that there are SJ states that have �nite derivatives of

the Wick square when normal ordered with respect to the SJ vacuum.

6.2 Wick Polynomials and the Hadamard Condition

Let ψ : σ(A)→ R be an even, non-negative continuous function that obeys ψ(0) = 0 and let,

A+
ψ =

A

2
+

√
A2

4
+ ψ(A), (6.51)

be the unique solution to axioms SJψ1− 3. By Proposition 6.4 the two-point function for a quasifree

state can be de�ned by the prescription (6.49). Before addressing what properties such a state has, we

shall make use of the following parametrisation. The operator (6.51) is uniquely given by the function,

a+
ψ : σ(A)→ R

λ 7→ λ

2
+

√
λ2

4
+ ψ(λ).

(6.52)

The function (6.52) then gives the operator A+
ψ given in (6.51) via A+

ψ = a+
ψ (A). We de�ne an even,

non-negative, continuous function ϕ : σ(A)→ R by completing the square in (6.52),

λ2

4
+ ψ(λ) =

(
|λ|
2

+ ϕ(λ)

)2

, (6.53)

rearranging shows that,

ϕ(λ) =
1

2
(−|λ|+

√
λ2 + 4ψ(λ)) (6.54)
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from which we see that ϕ(0) = 0. Rearranging (6.54) gives,

ψ(λ) = ϕ(λ)(|λ|+ ϕ(λ)), (6.55)

for all λ ∈ σ(A) and by substituting (6.55) into (6.52) we �nd,

a+
ψ (λ) =

λ

2
+
|λ|
2

+ ϕ(λ). (6.56)

We shall now use the function (6.56) to de�ne the operator A+
ϕ = a+

ψ (A) and the two-point function,

WSJϕ(f, g) = 〈f | a+
ψ (A)g〉

= 〈f | 1

2
(A+ |A|)g〉+ 〈f | ϕ(A)g〉

= WSJ0(f, g) + 〈f | ϕ(A)g〉,

(6.57)

for all f, g ∈ C∞0 (M) and whereWSJ0 is the two-point function for the vacuum SJ state. We shall now

investigate whether there are any functions ϕ : σ(A) → R that can be used so that (6.57) de�nes the

two-point function for a Hadamard state. LetWH be a two-point function for a Hadamard state, which

exists due to the deformation argument given by Fulling, Narcowich and Wald [32]. Then the two-point

function (6.57) de�nes a Hadamard state if and only if the normal ordered two-point function,

: WSJϕ : (f, g) = WSJ0(f, g) + 〈f | ϕ(A)g〉 −WH(f, g)

•

=: WSJ0 : (f, g) + 〈f | ϕ(A)g〉
(6.58)

has a smooth integral kernel onM×M. The SJ vacuum on the ultrastatic slab (−τ, τ) × Σ fails to

be Hadamard [28, Theorem 4.2], and the authors note that it is likely the SJ vacuum will fail to be

Hadamard on a general spacetime. Therefore, if the SJ vacuum fails to be Hadamard on a general

spacetime, the integral kernel of : WSJ0 : will fail to be smooth. If we assume that the SJ vacuum fails

to be Hadamard, then the generalised SJ state will be Hadamard. Therefore, one must choose ϕ so

that the operator ϕ(A) cancels o� the non-smooth contributions coming from the kernel of : WSJ0 :.

Whilst we do not prove this here, it is unlikely that there exists a continuous, even, non-negative

function ϕ : σ(A)→ R so that the integral kernel of (6.58) is smooth. It is reasonable to assume that

all generalised SJ states fail to be Hadamard. However, we can observe the following. If one normal

orders the SJ state (6.57) with respect to the vacuum SJ state,

: WSJϕ(f, g) : = WSJϕ(f, g)−WSJ0(f, g)

= 〈f | ϕ(A)g〉.
(6.59)
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and if ϕ(A) is smoothing, that is, it is of the form,

(ϕ(A)f)(t, x) =

∫
M
Kϕ(t, x; t′, x′)f(t′, x′) dvolg(t

′, x′), (6.60)

where Kϕ ∈ C∞(M×M) is a smooth integral kernel, then the normal ordered two-point function

(6.59) has well de�ned Wick polynomial. This means that, the derivatives of the Wick square of the

normal ordered two-point function (6.59) are �nite and are given by,

〈: (Lφ)2 : (f)〉 =

∫
M

(L⊗ L(: WSJϕ :))(t, x; t, x)f(t, x) dvolg(t, x)

=

∫
M

(L⊗ L(WSJϕ −WSJ0))(t, x; t, x)f(t, x) dvolg(t, x)

=

∫
M

(L⊗ L(WSJ0 + ϕ(A)−WSJ0))(t, x; t, x)f(t, x) dvolg(t, x)

=

∫
M

(L⊗ L(Kϕ))(t, x; t, x)f(t, x) dvolg(t, x),

(6.61)

for all f ∈ C∞0 (M) and where L is any partial di�erential operator. Since the integral kernel Kϕ is

assumed to be smooth on M×M, all the Wick square of all derivatives of the �eld exist. There-

fore, relative to the SJ vacuum, the two-point function (6.57) well de�ned Wick polynomials. On the

contrary, if ϕ(A) is not smoothing, then there will be derivatives of the Wick square which diverge.

In this framework it then becomes apparent that if one wants well behaved Wick polynomials for the

normal ordered two-point function (6.59) the operator ϕ(A) must be smoothing. This then leads to

the natural question,

What conditions on ϕ : σ(A)→ R ensure that ϕ(A) is smoothing?

Whilst we do not answer the question for a general spacetime here, we do, however, give su�cient

conditions on the function ϕ : σ(A)→ R such that ϕ(A) is smoothing in the case when the commuta-

tor function A = iE is de�ned on the ultrastatic slab (M = (−τ, τ)×Σ, g = 1⊕−h). This will be the

subject of the next section.
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6.3 Smoothing Operators from the Commutator Function on

Ultrastatic Slabs

Let ((−τ, τ) × Σ, g = 1 ⊕ −h), τ > 0, be an ultrastatic slab spacetime where (Σ, h) is a compact,

boundaryless Riemannian manifold. Let A = iE be a self-adjoint bounded operator and let ϕ :

σ(A)→ R be a continuous function.

Lemma 6.5. Let (Σ, h) be a boundaryless, compact Riemannian manifold of dimension s ∈ N. Let

K = −∆ +m2, where m > 0 and ∆ is the Laplacian on (Σ, h), be a second order elliptic operator on

L2(Σ) with corresponding eigenvalues ω2
j , ωj > 0, for all j ∈ N. Then, there exists α > 0 such that,

j ≤ αωsj . (6.62)

Proof. Since (Σ, h) is a boundaryless, compact Riemannian manifold of dimension s, Weyl's law states

that the asymptotic distribution of the eigenvalues ω2
j are given by [40],

N(ωj) ∼ (2π)−nΩnvol(Σ)ωsj , (6.63)

where Ωn is the volume of a n−ball. Therefore, there exists a α > 0 su�ciently large such that

N(ωj) ≤ αωsj . Then, by counting, we have,

j ≤M(j) = N(ωj) ≤ αωsj . (6.64)

n

We now prove the following:

Proposition 6.6. Let (M = (−τ, τ)×Σ, g = 1⊕−h) be an ultrastatic slab spacetime where (Σ, h) is

a three dimensional, smooth, compact Riemannian manifold. Let A = iE be the commutator function

given by

A =
∑
j∈N

λj
‖Ψ+‖2

[
|Ψ+
j 〉 〈Ψ

+
j | − |Ψ

−
j 〉 〈Ψ

−
j |
]
, (6.65)

where,

Ψ±j (t, x) =

(
Cj(t)∓ i

‖Cj‖
‖Sj‖

Sj(t)

)
ξj(x),

λj =
‖Cj‖‖Sj‖

ωj
=

τ

ωj

√
1− sinc2(2ωjτ)

(6.66)
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and where,

‖Sj‖2 = τ(1− sinc(2ωjτ)),

‖Cj‖2 = τ(1 + sinc(2ωjτ)),

‖Ψ+
j ‖

2 = 2‖Cj‖2.

(6.67)

If ϕ : σ(A) → R is a continuous function such that, for all N ∈ N0 there exists a CN ≥ 0 such that

|ϕ(λ)| ≤ CN |λN |, then the operator ϕ(A) is smoothing.

Proof. By the continuous functional calculus for self-adjoint bounded operators, the operator ϕ(A) is

given by,

ϕ(A) =
∑
j∈N

ϕ(λj)

‖Ψ+‖2
[
|Ψ+
j 〉 〈Ψ

+
j | − |Ψ

−
j 〉 〈Ψ

−
j |
]

=
∑
j∈N

ϕ(λj)

‖Ψ+‖2

(
‖Cj‖
‖Sj‖

)[
|Aj〉 〈Aj | − |Aj〉 〈Aj |

]
,

(6.68)

where Aj(t, x) = e−iωjtξj(x), with the integral kernel,

ϕ(A)(t, x; t′, x′) =
∑
j∈N

ϕ(λj)

‖Ψ+‖2

(
‖Cj‖
‖Sj‖

)[
e−iωj(t−t

′) − eiωj(t−t
′)
]
ξj(x)ξj(x

′). (6.69)

By Theorem 4.7, the integral kernel (6.69) converges in C∞(M×M) if the following holds for all

p ∈ N0, ∑
j∈N

ωpj

∣∣∣∣ ϕ(λj)

‖Ψ+‖2

(
‖Cj‖
‖Sj‖

)∣∣∣∣2 <∞. (6.70)

We now �nd the following, for all p,N ∈ N0∑
j∈N

ωpj

∣∣∣∣ ϕ(λj)

‖Ψ+‖2

(
‖Cj‖
‖Sj‖

)∣∣∣∣2 =
∑
j∈N

ωpj

∣∣∣∣ϕ(λj)

2λjωj

∣∣∣∣2

=
∑
j∈N

ωp−2
j

4

∣∣∣∣ϕ(λj)

λj

∣∣∣∣2

≤ C2
N

4

∑
j∈N

ωp−2
j

∣∣∣∣∣λNjλj
∣∣∣∣∣
2

=
τ2(N−1)C2

N

4

∑
j∈N

ωp−2
j

∣∣∣∣∣∣
√

1− sinc2(2ωjτ)

ωj

∣∣∣∣∣∣
2(N−1)

≤ τ2(N−1)C2
N

4

∑
j∈N

1

ω2N−p
j

.

(6.71)
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Now, since (Σ, h) is a three dimensional boundaryless, compact Riemannian manifold, by Lemma 6.5

we have j ≤ αω3
j for a su�ciently large α > 0. Therefore,

∑
j∈N

ωpj

∣∣∣∣ ϕ(λj)

‖Ψ+‖2

(
‖Cj‖
‖Sj‖

)∣∣∣∣2 ≤ α
1
3 (2N−p)τ2(N−1)C2

N

4

∑
j∈N

1

j(2N−p)/3 , (6.72)

which converges for all N > 1
2 (p+ 3). Therefore, by Theorem 4.7, the integral kernel (6.69) converges

in C∞(M×M). Therefore ϕ(A) is smoothing. n

The previous proposition then prompts the following conjecture for a general globally hyperbolic

spacetime (M, g),

Conjecture 6.7. Suppose A = iE extends to a bounded, self-adjoint operator on L2(M) and let ϕ :

σ(A)→ R be a continuous funciton. If, for all N ∈ N0 there exists a CN ≥ 0 such that |ϕ(λ)| ≤ CNλN

then the operator ϕ(A) is smoothing.

•

In this chapter we have shown that, under suitable conditions on the function ψ, there exists

a unique solution to the axioms SJψ1 − 3 that can be used to construct a two-point function for

a quasifree state. This then extends the SJ state construction from a single state to a family of

states parameterised by ψ. Whilst it is unlikely that the family of generalised SJ states contain any

Hadamard states, we do give a new construction of a class of Hadamard states using the generalised

SJ state construction. Before this, we will provide a construction of a generalised SJ state which we

call the `thermal' SJ state in the following chapter.
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Chapter 7

Thermal SJ States for the Spin Zero

Field on Globally Hyperbolic

Spacetimes

The SJ axioms, originally given by Sorkin in [58], can be modi�ed so that they admit a family of

solutions, whereby each solution can be used to construct a two point function for a quasifree state.

This construction was given, in a general manner, in Chapter 6. It is the purpose of this chapter to

give an application of the work in Chapter 6 by constructing a `thermal' SJ state on ultrastatic slabs

with compact spatial sections.

•

7.1 Thermal SJ States

To elucidate our construction of a thermal SJ state, we draw observations from the SJ vacuum and

thermal equilibrium state constructed on the ultrastatic slab spacetimeM = (−τ, τ)×Σ with metric

g = 1⊕−h. The ultrastatic vacuum state, a thermal equilibrium state at inverse temperature β > 0
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and the SJ vacuum state on the ultrastatic slabM are given by the two-point functions,

W∞(f, g) = 〈f | G∞g〉,

Wβ(f, g) = 〈f | Gβg〉,

WSJ0(f, g) = 〈f | A+
0 g〉

(7.1)

for all f, g ∈ C∞0 (M) where the self-adjoint, bounded operators G∞, Gβ and A+
0 are de�ned by,

G∞ =
∑
j∈N

1

2ωj
|Aj〉 〈Aj |

Gβ =
∑
j∈N

1

2ωj

1

1− e−βωj
(
|Aj〉 〈Aj |+ e−βωj |Aj〉 〈Aj |

)
= G∞ +

∑
j∈N

1

2ωj

e−βωj

1− e−βωj
(
|Aj〉 〈Aj |+ |Aj〉 〈Aj |

)
,

A+
0 =

1

2
(A+ |A|)

(7.2)

respectively. As before, we have Aj = e−iωjtξj(x) and {ξj}j∈N are a set of orthonormal eigenvectors

of the operator K = −∆ + m2 that form a basis of L2(Σ) with eigenvalues ω2
j ≥ m2 where m > 0.

We shall demand that the two-point function for a thermal SJ state, denoted WSJβ , should obey the

following limits,

lim
τ→∞

WSJβ (f, g) = Wβ(f, g) (7.3)

lim
β→∞

WSJβ (f, g) = WSJ0(f, g), (7.4)

for all f, g ∈ C∞0 (M) and where the limits are taken in the weak topology on B(L2(M)). These limits

are summarised in Figure 7.1.

In addition to this, the construction of a thermal SJ state should respect the original ideology of the

SJ state construction, namely, the two-point function WSJβ should be constructed from the geometry

of the underlying spacetime and the commutator function A = iE alone. To accomplish this, we want

to construct a continuous function on the spectrum of A so that the corresponding operator can be

used to construct a two-point function that obeys the limits (7.3). Suppose a+
β : σ(A) → R is such a

function and let A+
β = a+

β (A) be the corresponding self-adjoint, bounded operator on L2(M). Then if

the limits,

lim
β→∞

A+
β = A+

0 (7.5)
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WSJβ Wβ

WSJ0 W∞

β

∞

β

∞

τ ∞

τ ∞

Figure 7.1: Properties of thermal SJ state in the limits β →∞ and τ →∞.

lim
τ→∞

A+
β = Gβ , (7.6)

hold in the norm topology on B(L2(M)) then the limits (7.3) will hold in the weak topology on

B(L2(M)).a In order to expand upon this, we shall use the following observations of the eigenvectors

and eigenvalues of the commutator function A = iE on the ultrastatic slab (M = (−τ, τ) × Σ, g =

1⊕−h) given in Chapter 5 Section 5.5. The (unnormalised) eigenvectors for the operator A = iE on

the ultrastatic slab (−τ, τ)× Σ are given by,

Ψ±j (t, x) =

(
Cj(t)∓ i

‖Cj‖
‖Sj‖

Sj(t)

)
ξj(x), (7.7)

with corresponding eigenvalues,

λ+
j =

τ

ωj

√
1− sinc2(2ωjτ), (7.8)

where Sj(t) = sin(ωjt) and Cj(t) = cos(ωjt) for all t ∈ (−τ, τ) with norms,

‖Sj‖ =
√
τ(1− sinc(2ωjτ))

‖Cj‖ =
√
τ(1 + sinc(2ωjτ))

(7.9)

Therefore, point-wise, the eigenvectors (7.7) have the limits,

lim
τ→∞

Ψ+
j (t, x) = (Cj(t)− iSj(t))ξj(x) = e−iωjtξj(x) = Aj(t, x)

lim
τ→∞

Ψ−j (t, x) = (Cj(t) + iSj(t))ξj(x) = eiωjtξj(x) = Aj(t, x),
(7.10)

aThis holds since the weak topology is weaker than the norm topology, and so convergenece in the norm topology

implies convergence in the weak topology
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along with the limit,

lim
τ→∞

λj

‖Ψ+
j ‖2

= lim
τ→∞

1

2ωj

√
1− sinc(2ωjτ)

1 + sinc(2ωjτ)
=

1

2ωj
. (7.11)

Using these observations, we are now ready to de�ne the continuous function a+
β : σ(A)→ R that will

be used to construct the operator A+
β ,

a+
β : σ(A)→ R

λ 7→ 1

2
(λ+ |λ|) + ϕβ(λ),

(7.12)

where,

ϕβ : σ(A)→ R

λ 7→ |λ| e−βT |λ|
−1

1− e−βT |λ|−1 ,

(7.13)

and where T > 0 is a timescale. We must introduce a timescale in (7.13) in order to make the argument

in the exponential dimensionless and to ensure that the limit (7.6) holds. We de�ne the timescale T

by the following condition,

lim
τ→∞

βT

|λj |
= βωj , (7.14)

for all j ∈ N. We note that the eigenvalues (7.8) have the asymptotic behaviour λj ∼
τ

ωj
for all j ∈ N.

Therefore,

βT

|λj |
∼ βTωj

τ
, (7.15)

which implies that, in the ultrastatic slab M = (−τ, τ) × Σ, the timescale is T = τ , since any other

timescale would violate the condition (7.14). Therefore in the ultrastatic slab case the timescale is

half the duration of the longest casual curve. Using T = τ , the operator corresponding to the function

(7.12) is given by,

A+
β = a+

β (A) = A+
0 + |A| e−βτ |A|

−1

1− e−βτ |A|−1 . (7.16)

In the spirit of the original SJ state construction, the timescale τ must be obtained using the geometry

of the spacetime (M, g) and the properties of the commutator function A = iE alone. In the case of

the ultrastatic slab spacetime (M = (−τ, τ)× Σ, g = 1 ⊕−h) we show how to do this generally, and
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give an explicit computation in the case when the spatial manifold Σ is a round three sphere. Since

ϕβ : σ(A)→ R is an even, non-negative continuous function that obeys ϕβ(0) = 0, by Proposition 6.4

and from the discussion in Section 6.2 the two-point function,

WSJβ (f, g) = 〈f | A+
β g〉 ∀f, g ∈ C∞0 (M), (7.17)

can be used to construct a quasifree thermal SJ state ωSJβ . We shall shortly prove that A+
β → A+

0

in norm topology as β → ∞, which then implies that the two-point function (7.17) satis�es the limit

(7.4) in the weak topology. Since A+
0 is independent of β, in order to show that the two-point function

has the limit WSJβ → Wβ in the weak topology as β →∞, it is su�cient to show that ϕβ(A)→ 0 in

norm topology as β →∞. Before showing this, we shall require the following result,

Proposition 7.1. Let A be a bounded self-adjoint operator on L2(M). Then the operator ϕβ(A) is

smoothing.

Proof. Let f : R+ → R+ be de�ned by,

f(x) = x
e−

1
x

1− e− 1
x

, (7.18)

where,

ϕβ(λ) = βτf

(
|λ|
βτ

)
. (7.19)

In the limit x→ 0 we have e−1/x → 0, and so there exists a c > 1 such that,

sup
1

1− e−1/x
≤ c. (7.20)

The numerator in (7.18), xexp(−1/x), decays rapidly in the limit x → 0. Therefore for all N ∈ N0

there exists a CN ≥ 0 such that |f(x)| ≤ CN |x|N it follows that for all N ∈ N0 there exists a CN ≥ 0

such that ϕβ(λ) ≤ CN |λ|N . Therefore by Proposition 6.6 the operator ϕβ(A) is smoothing. n

We now arrive at the following,

Proposition 7.2. Let (M = (−τ, τ)× Σ,1 ⊕−h) be an ultrastatic slab spacetime and let A = iE be

a bounded self-adjoint operator on L2(M). Let ϕβ : σ(A)→ R be de�ned by,

ϕβ(λ) = |λ| e−βτ |λ|
−1

1− e−βτ |λ|−1 , (7.21)

where β > 0. Then the operator ϕβ(A)→ 0 in norm topology as β →∞.
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Proof. From the continuous functional calculus for self-adjoint operators on a Hilbert space, we have

[53, Theorem VII.1 (g)],

‖ϕβ(A)‖B(L2(M)) = ‖ϕβ‖∞, (7.22)

where the sup-norm ‖ · ‖∞ is taken on the spectrum of A. Therefore, if limβ→∞ ‖ϕβ‖∞ = 0 then,

lim
β→∞

‖ϕβ(A)‖B(L2(M)) = 0. (7.23)

We now show that ϕβ → 0 in sup norm as β →∞. Since, for all j ∈ N, ωj ≥ m, we have,

λj =
τ

ωj

√
1− sinc2(2ωjτ) ≤ τ

m
, (7.24)

which implies,

σ(A) ⊂
[
− τ
m
,
τ

m

]
. (7.25)

Since, for all N ∈ N0 there exists a CN ≥ 0 such that the function (7.18) obeys |f(x)| ≤ CN |xN |, we

then obtain,

lim
β→∞

‖ϕβ‖∞ = lim
β→∞

sup
λ∈σ(A)

ϕβ(λ)

= lim
β→∞

βτ sup
λ∈σ(A)

f

(
|λ|
βτ

)
≤ lim
β→∞

βτ sup
λ∈[− τ

m ,
τ
m ]
f

(
|λ|
βτ

)
= lim
β→∞

βτ sup
x∈[− 1

βm ,
1
βm ]

f(x)

≤ CN lim
β→∞

βτ sup
x∈[− 1

βm ,
1
βm ]
|xN |

= CN lim
β→∞

βτ sup
x∈[0, 1

βm ]
xN

=
τCN
mN

lim
β→∞

β1−N

= 0,

(7.26)

where the last equality holds for all N ≥ 2. Since the sup norm is positive semi-de�nite we therefore

obtain ϕβ(A)→ 0 as β →∞ in the norm topology on B(L2(M)). n
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7.2 Thermal SJ States on Ultrastatic Slab Spacetimes

In this section we shall compute the two-point function of the quasifree thermal SJ state on ultrastatic

slabs. LetM = (−τ, τ)×Σ, τ > 0 be an ultrastatic slab spacetime with metric g = 1⊕−h where (Σ, h)

is a smooth compact Riemannian manifold. A thermal SJ state on the ultrastatic slabM = (−τ, τ)×Σ

has the two-point function,

WSJβ (f, g) = 〈f | A+
0 g〉+ 〈f | ϕβ(A)g〉

= WSJ0(f, g) + 〈f | ϕβ(A)g〉
(7.27)

for all f, g ∈ C∞0 (M) where ϕβ is de�ned in (10.2),

WSJ0(f, g) = 〈f | A+
0 g〉, (7.28)

is the two-point function for the vacuum SJ state. On the ultrastatic slab, the Klein Gordon equation

is,

� +m2 = ∂2
t +K, (7.29)

where t ∈ (−τ, τ) is the ultrastatic time parameter and K = −∆ + m2, where ∆ is the Laplacian on

(Σ, h). There exists a complete orthonormal basis of eigenvectors of K, which we denote by ξj for

all j ∈ N [20, Theorem 1 Section 6.5]. The eigenvalues corresponding to the eigenvectors ξj are ω2
j ,

where ωj > 0 for all j ∈ N. We shall also assume that ξj is an element of this basis and label the

eigenvectors {ξj}j∈N such that ξj = ξj for all j ∈ N. As before, we shall also assume that ωj ≤ ωj+1

for all j ∈ N. The Hilbert space is given by L2(M) = L2(−τ, τ) ⊗ L2(Σ). The commutator function

on the ultrastatic slabM = (−τ, τ)× Σ is given by, b

A =
∑
j∈N

λj
‖Ψ+‖2

[
|Ψ+
j 〉 〈Ψ

+
j | − |Ψ

−
j 〉 〈Ψ

−
j |
]

=
∑
j∈N

‖Sj‖
2ωj‖Cj‖

[
|Ψ+
j 〉 〈Ψ

+
j | − |Ψ

−
j 〉 〈Ψ

−
j |
], (7.30)

where {Ψ±j }j∈N are given in (7.7) and obey Ψ+
j = ΓΨ−j . Since the set of eigenvectors {ξj}j∈N are

orthonormal in L2(Σ, dvolh), it follows that 〈Ψ+
j | Ψ−k 〉 = 0 for all j, k ∈ N. A straightforward

calculation yields,

|A| =
∑
j∈N

λj

‖Ψ+
j ‖2

[
|Ψ+
j 〉 〈Ψ

+
j |+ |Ψ

−
j 〉 〈Ψ

−
j |
]
, (7.31)

bSee Chapter 5 Section 5.5 for further details.
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and so the operator A+
0 is given by,

A+
0 =

1

2
(A+ |A|) =

∑
j∈N

λj

‖Ψ+
j ‖2
|Ψ+
j 〉 〈Ψ

+
j | . (7.32)

The eigenvalues corresponding to the eigenvectors Ψ±j are given by,

λ±j = ±λj = ±‖Cj‖‖Sj‖
ωj

. (7.33)

We shall now turn our attention to the construction of the operator ϕβ(A), where ϕβ : σ(A)→ R

is given in (7.13). We now obtain,

ϕβ(A) = |A| e−βT |A|
−1

1− e−βT |A|−1

=
∑
j∈N

‖Sj‖
2ωj‖Cj‖

e−βτ |λj |
−1

1− e−βτ |λj |−1

[
|Ψ+
j 〉 〈Ψ

+
j |+ |Ψ

−
j 〉 〈Ψ

−
j |
] (7.34)

Using the operators A+
0 and |A|, we can construct a thermal SJ state over the ultrastatic slab M =

(−τ, τ)× Σ,

WSJβ (f, g) = 〈f | A+
β g〉

= 〈f | A+
0 g〉+ 〈f | ϕβ(A)g〉

=
∑
j∈N

1

2‖Cj‖2
(

(λj + ϕβ(λj))〈f | Ψ+
j 〉〈Ψ

+
j | g〉+ ϕβ(λj)〈f | Ψ−j 〉〈Ψ

−
j | g〉

) (7.35)

for all f, g ∈ C∞0 (M) and where T = τ and β > 0. We can immediately obtain the following:

Proposition 7.3. The thermal SJ state with two-point function (7.17) is not Hadamard.

Proof. Since the SJ vacuum fails to be Hadamard on the ultrastatic slab [28, Theorem 4.2] and since,

by proposition 7.1, the operator ϕβ(A) is smoothing, it then immediately follows that the thermal SJ

state with two-point function (7.17) is not Hadamard. n

The following section demonstrates how one can construct a timescale for a general globally hyper-

bolic spacetime for the free scalar �eld using only the commutator function and the dimension of the

spatial section.
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7.3 Calculating a Time Scale from the Commutator Function

Let (M = (−τ, τ) × Σ, g) where τ > 0 be a bounded region of a globally hyperbolic spacetime such

that the commutator function A = iE de�nes a bounded self-adjoint operator on L2(M, dvolg).We

assume that dim(Σ) > 1 and that Σ is boundaryless. In this section we propose a general way to �nd a

timescale of the spacetime (M, g), which holds even when (M, g) is not static. The proposed formulae

is given by,

T =

(
2(2π)n

Vol(M)Ωn
lim
λ→0+

λnÑ(λ)

) 1
n−1

, (7.36)

where λ > 0 is an eigenvalue of A = iE, n = dim(Σ), Vol(M) = 2τ × Vol(Σ), Ωn is the volume of a

n−dimensional unit sphere in Rn given by,

Ωn =
πn/2

Γ(n2 + 1)
, (7.37)

and,

Ñ(λ) = #{j ∈ N | λj ≥ λ}, (7.38)

is a counting function for the eigenvalues {λj}j∈N of A. We shall proceed to derive the formulae (7.45)

when (M, g) is an ultrastatic slab spacetime. On the ultrastatic slab M = (−τ, τ) × Σ, the positive

eigenvalues of the operator A = iE given in (7.33) are,

λj =
τ

ωj

√
1− sinc2(2ωjτ), (7.39)

which are asymptotically λj ∼
τ

ωj
. Consider now the eigenvalues {ω2

j }j∈N of the operator K =

−∆ +m2, where we de�ne the counting function,

N(ω) = #{n ∈ N | ωn ≤ ω}. (7.40)

As mentioned before, Weyl's law gives us the asymptotic distribution of eigenvalues for the operator

K [64] (or [60, Theorem 3.1])

N(ω) ∼ (2π)−nΩnVol(Σ)ωn, (7.41)

the counting function for the eigenvalues of the operator (7.30),

Ñ(λ) = #{n ∈ N | λn ≥ λ}. (7.42)
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Since λj ∼
τ

ωj
we infer that Ñ(λ) ∼ N( τλ ) ∼ N(ω). Weyl's law then gives,

N(ω) ∼ Ñ(λ) ∼ (2π)−nΩdVol(Σ)ωn = (2π)−nΩnVol(Σ)
( τ
λ

)n
. (7.43)

Using Vol(M) = 2τVol(Σ) we then obtain,

Ñ(λ) ∼ (2π)−n

2λn
ΩnVol(M)τn−1. (7.44)

Rearranging and taking an appropriate limit we arrive at,

τ =

(
2(2π)n

Vol(M)Ωn
lim
λ→0+

λnÑ(λ)

) 1
n−1

. (7.45)

To further illustrate this, we give a compute the time scale (7.45) when the spatial manifold (Σ, h) is

a three sphere. Let Σ = S3 be endowed with the usual metric. The spacetime volume is given by,

Vol(M) = 2τ ×Vol(S3)

= 2τ
(
2π2R3

)
.

(7.46)

In the case of a round three sphere of radius R, the eigenvalues ωj of the operator K = −∆ + m2

are given in (5.84) and occur with multiplicity (1 + j)2, implying that the eigenvalues λj occur with

the same multiplicity. Since the eigenvalues {λj}j∈N are monotonically decreasing in j, the counting

function takes the form,

N(λj) =

j∑
k=0

(1 + k)2. (7.47)

Using Ω3 =
4

3
π, the timescale (7.45) in the case of the round three sphere is then,

T =

(
2(2π)3

2τ(2π2R3)

(
3

4π

)
lim
λ→0+

λ3Ñ(λ)

) 1
2

=

(
3

τR3
lim
λ→0+

λ3Ñ(λ)

) 1
2

=

 3

τR3
τ3 lim

j→∞


√

1− sinc2(2ωjτ)

ωj

3
j∑

k=0

(1 + k)2


1
2

= τ

(
3

R3

1

3R−3

) 1
2

= τ

(7.48)
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The proposed formulae (7.36) is a general way of constructing a timescale from the commutator function

on a general bounded region of a globally hyperbolic spacetime. In the case of an ultrastatic spacetime

((−τ, τ)×Σ, g = 1⊕−h), the formulae (7.36) coincides with the value of τ , which is the correct time

scale needed for (7.14) to hold.
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Chapter 8

Softened SJ States: The Hadamard

Condition and Wick Polynomials

The SJ vacuum state, originally constructed in [1] and reviewed in Chapter 5, admits pathologies that

cast doubt on its relevance as a physically viable state. In particular, the SJ vacuum constructed on

ultrastatic slabs, generically fails to be Hadamard [28]; essentially ruling out the physical relevance of

the SJ vacuum if one accepts the theory of renormalising the stress-energy tensor and point-splitting

methods used in constructing Wick polynomials. There are many reasons why Hadamard states

are considered to be the correct states to consider for linear quantum �elds de�ned over continuum

spacetimes. Fredenhagen and Brunetti proved in [12] that all Wick polynomials have �nite �uctuations

if the Wick normal ordering is de�ned with respect to a Hadamard state. A partial converse to this

result was proved by Fewster and Verch in [29]. Therefore, Hadamard states allow one to construct

Wick polynomials with �nite �uctuations, and so quantities such as the stress-energy tensor can be

constructed and meaningful results about the physical properties of the state can be obtained. We

emphasise that this analysis only applies to quantum �elds over continuum spacetimes. Quantum �elds

on discrete spacetimes, such causal sets, may not view the Hadamard condition in such a signi�cant

way. It may be the case that there is a `discrete' version of the Hadamard condition for quantum �elds

on causal sets, which could furnish causal set theory with a notion of the `correct' states to consider.

We shall, unfortunately, not explore this avenue here and return �rmly to linear quantum �eld de�ned

over continuum spacetimes.
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Hadamard states are considered to be the largest class of physically viable states, and, therefore

constructing generalised SJ states that satisifes the Hadamard is an important question. There is a

construction, due to Brum and Fredenhagen, that suitably regularises the SJ vacuum as to restore the

Hadamard condition [11]. This construction yields the so called BF states which are Hadamard in all

cases considered with no known exceptions. Our goal in this chapter is to propose a new construction

that yields a family of Hadamard states, which is inspired by an observation of Sorkin. Let (M, g)

be a globally hyperbolic spacetime. Using a suitable function ρ ∈ C∞0 (M), we construct a modi�ed

Hilbert space (H, 〈· | ·〉ρ) and a modi�ed commutator function Aρ, which is de�ned by,

〈f | Aρg〉ρ = iE(f, g) ∀f, g ∈ C∞0 (M), (8.1)

where E(f, g) is the causal propagator on M. The original idea of Sorkin, appearing in [58], is to

modify the volume form dvolg appearing in the L2(M) inner product to ρ dvolg. However, we choose

to modify the volume form dvolg to 1
ρ dvolg since this ensures that the modi�ed commutator function

Aρ has the correct properties to construct a Hadamard state, at least in the case of the ultrastatic

slab. If one were to modify the volume measure to ρ dvolg instead of 1
ρ dvolg, then the corresponding

modi�ed commutator function A 1
ρ
would not de�ne a bounded self-adjoint operator, which stems from

the fact that 1
ρ is not smooth on the real line. Now, if the modi�ed commutator function Aρ de�nes a

bounded, self-adjoint operator over Hρ, then the operator,

A+
ψ,ρ =

Aρ
2

+

√
|Aρ|2

4
+ ψ(Aρ), (8.2)

, where ψ : σ(Aρ) → R is a continuous, even, non-negative function obeying ψ(0) = 0, is the unique

solution to the set of modi�ed SJ axioms,

SJψ,ρ1) A+
ψ,ρ − ΓA+

ψ,ρΓ = Aρ

SJψ,ρ2) A+
ψ,ρ ≥ 0

SJψ,ρ3) A+
ψ,ρΓA

+
ψ,ρΓ = ψ(Aρ),

by Theorem 6.3. The generalised SJ state with softened boundaries then has the two point function,

WSJψ,ρ(f, g) = 〈f | A+
ψ,ρg〉 ∀f, g ∈ C∞0 (M). (8.3)

As we will show, in the case of the ultrastatic slab (−τ, τ) × Σ the de�nition (8.1) yields a unique

self-adjoint compact operator Aρ over the Hilbert space (Hρ, 〈· | ·〉ρ). In the �rst instance, we use the
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operator Aρ ∈ B(Hρ) to construct the softened SJ vacuum over (−τ, τ)× Σ by using the operator,

A+
0,ρ =

1

2
(Aρ + |Aρ|), (8.4)

which is recovered from (8.38) by choosing ψ = 0. Remarkably so, the SJ vacuum with softened

boundaries constructed from the operator (8.4) turns out to be Hadamard. Moreover, for suitably

chosen functions ψ : σ(Aρ) → R, the generalised SJ state with softened boundaries constructed from

the operator (8.38) will also turn out to be Hadamard. The choices of function ψ : σ(Aρ) → R that

ensure the SJ state constructed from (8.38) are all even, non-negative, continuous functions such that

ϕ(Aρ) is smoothing. Therefore, by modifying the Hilbert space in a suitable manner, this then modi�es

the properties of the commutator function which then changes the properties of a generalised SJ state,

such as the Hadamard condition.

8.1 A Rank Two Hilbert Space Operator Toy Model

Let H be a Hilbert space and w,w ∈ H, where the bar denotes the antilinear complex conjugate. It

will be useful to derive the eigenvectors of the rank two operator,

A = |w〉 〈w| − |w〉 〈w| . (8.5)

By Cauchy-Schwarz we have |〈w | w〉| ≤ |〈w | w〉|. Let α = 〈w | w〉. We assume that α is real and

non-negative since if one multiples w by e−iθ for some arbitrary phase θ ∈ R, we have α 7→ e2iθ〈w | w〉.

Therefore, one can always choose a phase θ such that α is real an positive. We de�ne the following,

e−2u =

√
1− |〈w | w〉|

2

|〈w | w〉|2
. (8.6)

Since the operator (8.5) is rank-two, a straightforward calculation shows that the unnormalised eigen-

vectors are,

Ψ± = αw + β±w, (8.7)

where,

β± = −〈w | w〉 ±
√
|〈w | w〉|2 − |〈w | w〉|2

= ‖w‖2
(
−1±

√
1− |〈w | w〉|

2

|〈w | w〉|2

)
= ‖w‖2

(
−1± e−2u

)
(8.8)
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with the corresponding eigenvalues,

λ± = ±
√
|〈w | w〉|2 − |〈w | w〉|2 = ±‖w‖2

√
1− |〈w | w〉|

2

|〈w | w〉|2
= ±‖w‖2e−2u. (8.9)

We note the expressions,

α = 〈w | w〉 = ‖w‖2
√

1− e−4u = ‖w‖2
√

(−1± e−2u)(−1∓ e−2u). (8.10)

The norm of the eigenvectors Ψ± is shown to be,

〈Ψ± | Ψ±〉 = 2‖w‖6e−4u
(
1∓ e−2u

)
(8.11)

The normalised eigenvectors are then,

Ψ± =
α√

〈Ψ± | Ψ±〉
w +

β±√
〈Ψ± | Ψ±〉

w, (8.12)

We now obtain,

α√
〈Ψ± | Ψ±〉

=
1√
〈w | w〉

√
1− e−4u√

2e−4u(1∓ e−2u)

=
1√
〈w | w〉

√
(1∓ e−2u)(1± e−2u)

2e−4u(1∓ e−2u)

=
1√
〈w | w〉

√
1± e−2u

2e−4u

=
e3u/2√
〈w | w〉

√
1

2
(eu ± e−u)

=


e3u/2√
〈w | w〉

√
cosh(u) +

e3u/2√
〈w | w〉

√
sinh(u) −,

(8.13)
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and,

β√
〈Ψ± | Ψ±〉

=
−(1∓ e−2u)√

〈w | w〉
√

2e−4u(1∓ e−2u)

=
−1√
〈w | w〉

√
1∓ e−2u

2e−4u

= − e3u/2√
〈w | w〉

√
1

2
(eu ∓ e−u)

=


− e3u/2√
〈w | w〉

√
sinh(u) +

− e3u/2√
〈w | w〉

√
cosh(u) − .

(8.14)

We note here that the normalised eigenvectors are well de�ned in the limit α → 0. Therefore, the

normalised eigenvectors of (8.5) are given by,

Ψ+ = i
e3u/2√
〈w | w〉

(
√

cosh(u)w −
√

sinh(u)w)

Ψ− = i
e3u/2√
〈w | w〉

(
√

sinh(u)w −
√

cosh(u)w),

(8.15)

where we have multiplied through by i so that the eigenvectors obey ΓΨ+ = Ψ−. We can now express

the operator (8.5) in terms of the eigenvectors (8.7). A simple rearrangement yields,

w = ie−u/2
√
〈w | w〉

(√
sinh(u)Ψ− −

√
cosh(u)Ψ+

)
, (8.16)

hence,

w = −ie−u/2
√
〈w | w〉

(√
sinh(u)Ψ+ −

√
cosh(u)Ψ−

)
. (8.17)

We then �nd,

|w〉 〈w| = e−u〈w | w〉
[
sinh(u) |Ψ−〉 〈Ψ−|+ cosh(u) |Ψ+〉 〈Ψ+| −

√
cosh(u) sinh(u)(|Ψ−〉 〈Ψ+|+ |Ψ+〉 〈Ψ−|)

]
|w〉 〈w| = e−u〈w | w〉

[
sinh(u) |Ψ+〉 〈Ψ+|+ cosh(u) |Ψ−〉 〈Ψ−| −

√
cosh(u) sinh(u)(|Ψ−〉 〈Ψ+|+ |Ψ+〉 〈Ψ−|)

]
.

(8.18)

Upon which we arrive at,

A = |w〉 〈w| − |w〉 〈w|

= e−2u〈w | w〉
[
|Ψ+〉 〈Ψ+| − |Ψ−〉 〈Ψ−|

]
= λ

[
|Ψ+〉 〈Ψ+| − |Ψ−〉 〈Ψ−|

]
,

(8.19)

where λ = e−2u〈w | w〉 is related to the eigenvalues of (8.5) by λ± = ±λ.
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8.2 The SJ Vacuum State with Softened Boundaries on Ultra-

static Slabs

Let (M = (−τ, τ) × Σ, g = 1 ⊕ −h) be an ultrastatic slab spacetime where τ > 0 and (Σ, h) is a

smooth compact Riemannian manifold. Let E± be the advanced(−)/retarded(+) Green's function for

the massive Klein-Gordon operator P = � + m2. They exist uniquely by [3, Theorem 3.3.1]. From

the Green's functions E±, de�ne the advanced-minus-retarded function E = E− − E+. By Proposition

5.1 the commutator function A = iE de�ned over the ultrastatic slab M extends to a self-adjoint,

bounded operator over L2(M, dvolg). Let ρ ∈ C∞0 (R) be a real-valued function that obeys ρ(t) > 0

for all t ∈ (−τ, τ) and ρ(t)→ 0 as t→ ±τ .

8.3 The Softened Commutator Function on Ultrastatic Slabs

The modi�ed Hilbert space, denoted Hρ, will be de�ned as the completion of C∞0 (M) with respect to

the volume form 1
ρ dvolg, where the inner product is,

〈f | g〉ρ =

∫
M
f(t, x)g(t, x)

dvolg(t, x)

ρ(t)
. (8.20)

The Hilbert space Hρ may be decomposed,

Hρ = L2(M,
1

ρ
dvolg) = L((−τ, τ),

1

ρ
dt)⊗ L2(Σ, dvolh). (8.21)

In the case of the ultrastatic slab, the advanced-minus-retarded operator E has the integral kernel [28],

E(t, x; t′, x′) =
∑
j∈N

sin(ωj(t
′ − t))

ωj
ξj(x)ξj(x′) (8.22)

where {ξj}j∈N form an orthonormal basis of L2(Σ) such that Kξj = ω2
j where ωj > 0 for all j ∈ N

and K = −∆ +m2 [20, Theorem 1 Section 6.5]. The operator used to construct the SJ vacuum with

softened boundaries is then given by,

Aρf =
∑
j∈N

1

2ωj

(
ρAj〈ρAj | g〉ρ − ρAj〈ρAj | g〉ρ

)
•

=
∑
j∈N

Aρ,jf,
(8.23)
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where,

Aρ,jf
•

=
1

2ωj

(
ρAj〈ρAj | f〉ρ − ρAj〈ρAj | f〉ρ

)
. (8.24)

We calculate some inner products,

〈ρAj | ρAk〉ρ = ρ̂(0)δjk

〈ρAj | ρAk〉ρ = ρ̂(2ωj)δjk,
(8.25)

where the function ρ is extended to zero before the Fourier transform is taken. We now proceed by

assuming the operator (8.23) is well de�ned and start our analysis of the operators Aρ,j . We shall prove

in Proposition 8.1 that the operator (8.23) does converges, in norm topology, to a compact operator.

Setting aside the convergence of (8.23), we now calculate the eigenvectors of the operators Aρ,j . First,

we make the identi�cation,

w ≡ ρAj√
ρ̂(0)

w ≡
ρAj√
ρ̂(0)

(8.26)

and apply the toy model detailed in Section 8.1 to �nd the normalised eigenvectors and eigenvalues of

the operators (8.24). The normalised eigenvectors of the operator (8.24) are then, for each j ∈ N,

Ψ+
ρ,j = iρ

√
e3uj

ρ̂(0)

(√
cosh(uj)Aj −

√
sinh(uj)Aj

)

Ψ−ρ,j = iρ

√
e3uj

ρ̂(0)

(√
sinh(uj)Aj −

√
cosh(uj)Aj

), (8.27)

which obey,

〈Ψ±ρ,j | Ψ
±
ρ,k〉ρ = δjk

〈Ψ∓ρ,j | Ψ
±
ρ,k〉ρ = 0,

(8.28)

for all j, k ∈ N and where,

e−2uj =

√
1−

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣2. (8.29)

We also note that,

lim
j→∞

e−2uj = lim
j→∞

√
1−

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣2 = 1, (8.30)
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which implies limj→∞ uj = 0. The eigenvalues corresponding to the eigenvectors Ψ±ρ,j are given by,

λ±j =
±ρ̂(0)e−2uj

2ωj
(8.31)

The operator Aρ,j de�ned in (8.23) is, in the eigenvector basis (8.27),

Aρ,jf =
ρ̂(0)e−2uj

2ωj

(
Ψ+
ρ,j〈Ψ

+
ρ,j | f〉ρ −Ψ−ρ,j〈Ψ

−
ρ,j | f〉ρ

)
, (8.32)

whence we obtain the expression,

Aρf =
∑
j∈N

ρ̂(0)e−2uj

2ωj

(
Ψ+
ρ,j〈Ψ

+
ρ,j | f〉ρ −Ψ−ρ,j〈Ψ

−
ρ,j | f〉ρ

)
. (8.33)

We now show that the operator (8.33) is compact and self-adjoint.

Proposition 8.1. The operator (8.33) is a compact self-adjoint operator on L2(M, 1
ρ dvolg).

Proof. First, we de�ne the operators,

A±ρ =
∑
j∈N
±λj |Ψ±ρ,j〉 〈Ψ

±
ρ,j | , (8.34)

where Aρ = A+
ρ +A−ρ . Now, de�ne the partial sum operators A±ρ,N by setting,

A±ρ,N =

N∑
j=1

±λj |Ψ+
ρ,j〉 〈Ψ

+
ρ,j | . (8.35)

Since λj ∈ R for all j ∈ N, the operator A±ρ,N de�nes a self-adjoint, �nite rank operator for all N ∈ N

and is therefore compact. Without loss of generality let M ≤ N . We now �nd,

‖A+
ρ,N −A

+
ρ,M‖

2
ρ = ‖

N∑
j=M+1

λj |Ψ+
ρ,j〉 〈Ψ

+
ρ,j | ‖

2
ρ ≤

N∑
j=M+1

λ2
j , (8.36)

Since limj→∞ λj = 0, it follows that the sum
∑N
j=M+1 λ

2
j can be made arbitrarily small by taking

N,M ∈ N to be su�ciently large. Therefore, for all ε > 0 there exists a su�ciently large N,M ∈ N

such that the following holds,

‖A+
ρ,N −A

+
ρ,M‖

2
ρ ≤

∞∑
j=N+1

λ2
j < ε. (8.37)

Therefore the sequence of operators {Aρ,N}N∈N is Cauchy, which converges since B(Hρ) is complete.

Therefore the operator A+
ρ is the norm limit of the self-adjoint compact operators A±ρ,N . Hence, by

[53, Theorem VI.12 (a)], A+
ρ is a self-adjoint compact operator. A similar analysis shows that A−ρ is a

self-adjoint compact operator. Hence Aρ is self-adjoint and compact. n
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Since the operator (8.1) is a self-adjoint compact operator, one can use Theorem 6.3 and show that

the operator,

A+
ψ,ρ =

Aρ
2

+

√
|Aρ|2

4
+ ψ(Aρ), (8.38)

where ψ : σ(Aρ) → R is an even, non-negative, continuous function obeying ψ(0) = 0, is the unique

solution to the modi�ed SJ axioms SJψ,ρ1−3. The generalised SJ state with softened boundaries then

has the two point function,

WSJψ,ρ(f, g) = 〈f | A+
ψ,ρg〉, (8.39)

for all f, g ∈ C∞0 (M). By virtue of SJψ,ρ1 and by (8.1), the antisymmetric part of (8.39) coincides

with the commutator function (8.22). Our goal now is to construct the softened SJ vacuum over the

ultrastatic slab (−τ, τ)×Σ. The softened SJ vacuum is constructed from the operator (8.38) by setting

ψ = 0, which yields,

A+
ρ =

1

2
(Aρ + |Aρ|), (8.40)

where Aρ is given in (8.33). Since the eigenvectors {Ψ±j }j∈N obey (8.28) a straightforward calculation

gives,

|Aρ|f =
∑
j∈N

ρ̂(0)e−2uj

2ωj

(
Ψ+
ρ,j〈Ψ

+
ρ,j | f〉ρ + Ψ−ρ,j〈Ψ

−
ρ,j | f〉ρ

)
, (8.41)

Therefore, the operator (8.40) is given by,

A+
ρ f =

1

2
(Aρ + |Aρ|)f =

∑
j∈N

ρ̂(0)e−2uj

2ωj
Ψ+
ρ,j〈Ψ

+
ρ,j | f〉ρ, (8.42)

for all f ∈ Hρ. The vacuum SJ state with softened boundaries on the ultrastatic slab (−τ, τ × Σ) is

then given by the two-point function,

WSJ0,ρ(f, g) = 〈f | A+
ρ g〉ρ =

∑
j∈N

ρ̂(0)e−2uj

2ωj
〈f | Ψ+

ρ,j〉ρ〈Ψ
+
ρ,j | g〉ρ. (8.43)
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We note the following expressions,

e−4uj = 1−
∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣2√
cosh(uj) sinh(uj) =

√
1

2
sinh(2uj) =

√
1− e−4uj

4e−2uj

=
1

2
euj
√

1− e−4uj

=
1

2
euj
∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣
cosh(uj) = e−uj + sinh(uj)

(8.44)

and,

Ψ+
ρ,j(t, x) = iρ(t)

√
e3uj

ρ̂(0)

(√
cosh(uj)e

−iωjt −
√

sinh(uj)e
iωjt

)
ξj(x) (8.45)

Using these expressions we then �nd the following,

Ψ+
j (t, x)Ψ+

j (t′, x′) =
ρ(t)ρ(t′)e3uj

|ρ̂(0)|

(
e−uje−iωj(t−t

′) + 2 sinh(uj) cos(ωj(t− t′))

− 2
√

cosh(uj) sinh(uj) cos(ωj(t+ t′))
)
ξj(x)ξj(x′)

=
ρ(t)ρ(t′)e2uj

|ρ̂(0)|

(
e−iωj(t−t

′) + 2euj sinh(uj) cos(ωj(t− t′))

− e2uj

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣ cos(ωj(t+ t′))
)
ξj(x)ξj(x′),

(8.46)

for all j ∈ N. The integral kernel of (8.43) is (relative to the volume form dvolg) can be shown to be,

WSJρ,0(t, x; t′, x′) =
∑
j∈N

1

2ωj

(
2euj sinh(uj) cos(ωj(t− t′))− e2uj

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣ cos(ωj(t+ t′))

)
ξj(x)ξj(x′)

+WH(t′, x′; t, x),

(8.47)

where,

WH(t′, x′; t′, x′) =
∑
j∈N

1

2ωj
e−iωj(t−t

′)ξj(x)ξj(x′), (8.48)

is the integral kernel of the ultrastatic vacuum state. One can verify that the SJ vacuum (8.43) is a

weak bisolution to the Klein-Gordon operator P = � +m2,

WSJ0,ρ(f, Pg) =
∑
j∈N

e−2uj

2ωj
〈f | Ψ+

ρ,j〉ρ〈Ψ
+
ρ,j | Pg〉ρ = 0, (8.49)
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for all f, g ∈ C∞0 (M) where the last equality holds since,

〈Ψ+
ρ,j | Pg〉ρ = −i

√
e3uj

ρ̂(0)
〈ρ
(√

cosh(uj)Aj −
√

sinh(uj)Aj
)
| Pg〉ρ

= −i

√
e3uj

ρ̂(0)
〈(
√

cosh(uj)Aj −
√

sinh(uj)Aj | Pg〉

= −i

√
e3uj

ρ̂(0)
〈(
√

cosh(uj)PAj −
√

sinh(uj)PAj | g〉

= 0,

(8.50)

where we have used PAj(t, x) = (∂2
t + K)eiωjtξj(x) = (ω2

j − ω2
j )eiωjtξj(x) = 0 for all (t, x) ∈ M and

that P is formally self-adjoint with respect to the 〈· | ·〉−inner product. A similar argument shows

that WSJρ(Pf, g) = 0 for all f, g ∈ C∞0 (M).

Purity of the SJ Vacuum with Softened Boundaries

Before proving that the SJ vacuum with softened boundaries is pure, we shall make use of the following

de�nitions. First, we de�ne,

σρ : S(M)× S(M)→ R (8.51)

([f ], [g]) 7→ 〈f | −iAρg〉ρ,

µ0,ρ : S(M)× S(M)→ R (8.52)

([f ], [g]) 7→ 1

2
〈f | |Aρ|g〉ρ,

where S(M) = C∞0 (M,R)/ kerE is the real-linear vector space of equivalence classes [f ] with respect

to the equivalence relation f ∼ g if and only if E(f − g) = 0. The two-point function (8.43) is then

given by,

WSJ0,ρ(f, g) = µ0,ρ([f ], [g]) +
i

2
σρ([f ], [g]) (8.53)

We observe,

σρ([f ], [g]) = 〈f | −iAρg〉ρ = −i〈f | Ag〉 = 〈f | Eg〉 = σ([f ], [g]), (8.54)

for all [f ], [g] ∈ S(M). Therefore, since σ(·, ·) is a well de�ned symplectic form by [45, Proposition 8],

it follows that (8.51) is a well de�ned symplectic form on S(M). Since Aρ is a self-adjoint compact
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operator on Hρ, there is the unique partial isometry U ∈ B(Hρ) such that Aρ = U |Aρ| = |Aρ|U∗.

We also have AρU = |Aρ| since U∗U = 1 on range(|Aρ|). If h, h′ ∈ C∞0 (M,R) are chosen such that

E(h − h′) = 0 then we obtain 〈f | |Aρ|(h − h′)〉ρ = 〈U∗f | Aρ(h − h′)〉ρ = 〈U∗f | A(h − h′)〉 = 0.

Therefore the right-hand slot in (8.52) is independent of the choice of representative. Since |Aρ| is

self-adjoint, it follows that (8.52) is independent of chosen representative in the left-hand argument,

and (8.52) is hence well de�ned. To show that µ0,ρ([f ], [g]) ∈ R for all [f ], [g] ∈ S(M) it is su�cient

to note that Γ|Aρ| = |Aρ|Γ and that Γf = f , Γg = g. Using the proof that the unsoftened SJ vacuum

is pure (originally given in [28, Proposition 3.2] and detailed in Proposition 5.2, we now obitan,

Proposition 8.2. The SJ vacuum with softened boundaries given by the two-point function (8.43) is

a pure state on A(M).

Proof. It is su�cient to show that, for all [f ] ∈ S(M),

µρ([f ], [f ]) = sup
0 6=[h]∈S(M)

|σρ([f ], [h])|2

4µρ([h],[h])
. (8.55)

We �rst observe that the proof given in Proposition 5.2 is independent of the underlying Hilbert space.

The saturation property give in (8.55) then follows, verbatim, from the original purity proof of the SJ

vacuum given in Proposition 5.2. n

Comparison to the Brum-Fredenhagen Vacuum State

As shown in Chapter 5, Brum and Fredenhagen introduce a method to regularise the SJ vacuum as to

obtain a family of Hadamard states, which are known as BF states. LetM = ((−τ, τ)×Σ), g = 1⊕−h),

τ > 0, and N = ((R×Σ), g = 1⊕−h) and let ι :M ↪→ N , (t, x) 7→ (t, x) be an isometric embedding.

The BF state is constructed by taking the positive part of the operator,

Af = f(−iEM)f, (8.56)

where f ∈ C∞0 (N ) and setting the two-point function to be,

WBFf (h, g) = 〈h | A+
f g〉, (8.57)

for all h, g ∈ C∞0 (M) and where A+
f = 1

2 (Af+|Af |). The SJ vacuum with softened boundaries involves

constructing a modi�ed commutator function Aρ onM de�ned by,

〈h | Aρg〉ρ = iE(f, g) ∀h, g ∈ C∞0 (M), (8.58)
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where the 〈· | ·〉ρ inner product is de�ned in (8.20) and ρ ∈ C∞0 (R) obeys ρ(t) > 0 for all t ∈ (−τ, τ)

and ρ(t)→ 0 as t→ ±τ . The two-point function for the SJ vacuum with softened boundaries is,

WSJρ(h, g) = 〈h | A+
ρ g〉ρ. (8.59)

We shall compare the BF states to the SJ vacuum with softened boundaries on the ultrastatic slab

M = ((−τ, τ)×Σ, g = 1⊕−h). The �rst observation is that the inner product (8.20) coincides with the

standard inner product on L2(M, dvolg) whenever ρ(t) = 1. By letting ρ(t) = f2(t) on some interval

(τ ′, τ ′) where 0 < τ ′ < τ , the two-point function (8.59) coincides with the two-point function (8.57)

whenever on the smaller spacetime (−τ ′, τ ′) × Σ. Therefore, the class of softened SJ states contain

the class of BF states. However the class of SJ states with softened boundaries is strictly larger than

the class of BF states since the function ρ does have to be identically one on some relatively compact

subset of R, the CCRs are inbuilt by virtue of (8.1).

8.4 The Hadamard condition for the SJ Vacuum with Softened

Boundaries

Our goal of this section is to prove the following:

Proposition 8.3. Let M = ((−τ, τ) × Σ,dt ⊕ −h) be an ultrastatic slab spacetime where (Σ, h) is a

compact Riemannian manifold. Let ρ ∈ C∞0 (R) obey ρ(t)→ 0 as t→ ±τ and have support properties

supp(ρ) = (−τ, τ). The vacuum SJ state ωSJρ with two-point function (8.43) as constructed above is

a Hadamard state.

Proof. Since the ultrastatic vacuum state is Hadamard [33], the SJ state with two-point function (8.47)

is Hadamard if and only if the integral kernel,

: WSJ0,ρ : (t, x; t′, x′) = WSJ0,ρ(t, x; t′, x′)−WH(t, x; t′, x′)

=
∑
j∈N

1

2ωj

[
euj sinh(uj)(e

iωj(t−t′) + eiωj(t−t
′))

− 1

2
e2uj

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣(eiωj(t+t′) + e−iωj(t+t
′))
]
ξj(x)ξj(x′)

(8.60)

converges as a series in j in C∞(M×M). Since K = −∆Σ + m2 is an elliptic operator, elliptic

regularity ensures that the eigenvectors ξj are smooth for all j ∈ N [20, Theorem 3 Section 6.3]. Hence
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each term appearing in (8.60) is smooth, so one only needs to check that the limit is smooth. We �rst

observe the following,

euj sinh(uj) = euj
(

1− e−2uj

2e−uj

)
=

1

2
e2uj (1− e−2uj )

<
1

2
e2uj (1− e−2uj )(1 + e−2uj )

=
1

2
e2uj (1− e−4uj )

=
1

2
e2uj

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣2,

(8.61)

where we have used e−4uj = 1 − |ρ̂(2ωj)|2. We now observe that, since limj→∞ ρ̂(ωj) = 0 and since

|ρ̂(ωj)| < |ρ̂(0)|, we have,

sup
j
e2uj = sup

j

1√
1− |ρ̂(2ωj)|2

|ρ̂(0)|

<∞. (8.62)

Therefore the coe�cients of the functions Aj(t, x) = e−iωjtξj(x) and their complex conjugates appear-

ing in the kernel (8.60) may be bounded by,

γj =
1

2
sup
j

(e2uj )

(∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣2 +

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣
)
. (8.63)

By Theorem 4.7, if, ∑
j∈N

ωpj |γj |
2 <∞, (8.64)

holds for all p ∈ N0, then the integral kernel (8.60) converges in C∞(M×M), and therefore the

vacuum SJ state with softened boundaries given by two-point function (8.43) is Hadamard. Since

ρ ∈ C∞0 (M), for all N ∈ N0 there exists CN > 0 such that,∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣2 +

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣ ≤ CNω−Nj , (8.65)

for all j ∈ N. Furthermore, since (Σ, h) is a boundaryless, compact Riemannian manifold of dimension

n = 3, by Lemma 6.5 there exists a α > 0 such that j ≤ αω3
j for all j ∈ N. This then implies,∑

j∈N
ωpj |γj |

2 ≤
C2
N (supj e

2uj )2

4

∑
j∈N

1

ω2N−p
j

≤
(supj e

2uj )2C2
N

4
α
∑
j∈N

1

j
2N−p

3

, (8.66)

which converges for all N > 1
2 (p+ 3). n
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8.5 Wick Square for the Softened SJ Vacuum

In this section we calculate the Wick square of the n−th derivative of the �eld normal ordered with

respect to the ultrastatic vacuum and evaluated in the SJ vacuum with softened boundraies on the

ultrastatic slab ((−τ, τ)× Σ, g = 1⊕−h). We also give explicit numerical computations in Maple for

the Wick square when the spatial manifold (Σ, h) is a round three sphere. The Wick square of the

n−th time derivative of the �eld normed ordered with respect to the ultrastatic vacuum and evaluated

in the softened SJ vacuum (8.60) is,

〈: (∂nt φ)2 : (f)〉 =

∫
M
〈: (∂nt φ)2 :〉(t, x)f(t, x) dvolg (8.67)

where,

〈: (∂nt φ)2 :〉(t, x) = lim
(t′,x′)→(t,x)

∂nt ∂
n
t′ : WSJ0,ρ : (t′, x′; t, x)

=
∑
j∈N

1

2
ω2n−1
j euj

[
2 sinh(uj)− (−1)neuj

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣(cos(2ωjt))

]
|ξj(x)|2

(8.68)

In the following we construct a class of smooth, compactly supported functions ρ ∈ C∞0 (R) that decay

smoothly to zero at the points ±τ (we call them `plateau functions') and we use them to Wick square

(8.68) when the spatial manifold (Σ, h) is a round three sphere. First, we use the work appearing in

[21, 22] to construct a smooth compactly supported function with unit integral. Let f : R → R be a

function de�ned by,

φ(x) =


e−

1
4x

2
√
πx3/2

x > 0

0 x ≤ 0.

(8.69)

From this, we can de�ne a compactly supported smooth function

H : R→ R

x 7→ 1

c
φ(x+ 0.5)φ(0.5− x).

(8.70)

where c > 0 is a constant such that (8.70) has unit integral. From this, we de�ne another smooth

compactly supported function with unit integral, which is a function of t with dimensions of inverse

time,

Hτs(t)
•

=
1

τs
H

(
t

τs

)
, (8.71)
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where τs > 0 is a timescale called the `switch on' time. Since (8.70) is a function of a dimensionless

variable, to construct a plateau function we express everything in the units of the switch on time.

Using the compactly supported function (8.71), a plateau function can now be de�ned,

ρ(t)
•

=

∫ t

−∞
Hτs(t

′ + τp)−Hτs(t
′ − τp) dt′,

=
1

τs

∫ t

−∞
H

(
t′ + τp
τs

)
−H

(
t′ − τp
τs

)
dt′,

(8.72)

where τp > 0 is a timescale called the plateau time and c > 0 is a constant chosen so that (8.72) has

unit integral. The plateau function has support supp(ρ) = [− τs2 − τp, τp + τs
2 ] and obeys ρ(t) = 1 for

all t ∈ [−τp + τs
2 , τp −

τs
2 ].

/2/2 /2 /2

Figure 8.1: Plot of a plateau function will labels showing the switch on time τs and plateau time τp

where τ = τp +
τs
2
.
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The Fourier transform of (8.72) is,

ρ̂(ω) =
1

iω

[
eiωτpĤτs(ω)− e−iωτpĤτs(ω)

]
= 2τp

sin(ωτp)

ωτp
Ĥτs(ω)

= 2τpsinc(ωτp)Ĥτs(ω)

(8.73)

where,

Ĥτs(ω) = F
(

1

τs
H

(
t

τs

))
(ω)

=
1

τs

(
τsĤ(τsω)

)
= Ĥ(τsω),

(8.74)

where F(·) is the Fourier transform. We then obtain,

ρ̂(ω) = 2τpsinc(τpω)Ĥ(τsω). (8.75)

Our motivation for studying compactly supported plateau functions is that, in the limit τs → 0,

the plateau function (8.72) tends to a characteristic function on the interval [−τp, τp]. In the limit

τs → 0, the Fourier transform of the plateau function (8.72) has the limit,

lim
τs→0

ρ̂(ω) = lim
τs→0

2τpsinc(τpω)Ĥ(τsω) = 2τpsinc(τpω)Ĥ(0) = 2τpsinc(τpω). (8.76)

Therefore, the softened commutator function (8.1) on the slab (−τp − 1
2τs, τp + 1

2τs) will give the

commutator function (8.22) on the ultrastatic slab (−τp, τp)×Σ in the limit τs → 0. This implies that

the SJ vacuum with softened boundaries tends to the SJ vacuum on the ultrastatic slab (−τp, τp)×Σ

in the limit τs → 0. Since the Wick square of the time derivatives of the SJ vacuum diverges [29], we

can expect that the Wick square of the time derivatives of the SJ vacuum with softened boundaries

will diverge in the limit τs →∞. We now use the plateau functions (8.72) to calculate the Wick square

of the softened SJ vacuum given in (8.68) and investigate the limit as τs → 0 in the case when the

spatial manifold (Σ, h) is a round three-sphere.

Wick Square for the SJ Vacuum with Softened Boundaries on a Three-

Sphere

Let ρ ∈ C∞0 (R) be a plateau function given in (8.72) and let (S3, h) be a round three sphere of radius

R. The eigenvalues of the operator K = −∆S3 + m2 are given in (5.84) and occur with multiplicity
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(1 + j)2. Using the Fourier transform (8.77) we obtain,

ρ̂(ωj)

ρ̂(0)
= sinc(τpωj)Ĥ(τsωj)

= sinc(κ
√
j(j + 2) + (mR)2)Ĥ(ακ

√
j(j + 2) + (mR)2)

(8.77)

where,

α =
τs
τp

κ =
τp
R
.

(8.78)

A plot of the normalised Fourier transform (8.77) for parameters α = 0.5, 1 and κ = 2 is found in

Figure 8.2.

Figure 8.2: Plot of the Fourier transform
ρ̂(ω)

ρ̂(0)
for the parameters α =

τs
τp

= 0.5, 1.

Since the three-sphere is spherically symmetric, the Wick square evaluated at a point (t, x0) is

equal to the Wick square averaged over the three sphere evaluated at time t. In this section, we
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plot the �rst N terms of the Wick square of the n − th time derivative of the �eld given by, for all

(t, x0) ∈ (−τ, τ)× S3,

〈: (∂nt φ)2 :〉(t, x0) =
1

Vol(S3)

∫
Σ

lim
(t′,x′)→(t,x)

∂nt ∂
n
t′ : WSJ0,ρ : (t, x; t′, x′) dvolh

=
1

2Vol(S3)

N∑
j=1

(j + 1)2ω2n−1
j euj

[
2 sinh(uj)− (−1)neuj

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣(cos(2ωjt))

] ∫
Σ

|ξj(x)|2 dvolh

=
1

2Vol(S3)

N∑
j=1

(j + 1)2ω2n−1
j euj

[
2 sinh(uj)− (−1)neuj

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣(cos(2ωjt))

]

=
1

2Vol(S3)

N∑
j=1

(j + 1)2ω2n−1
j euj

[
2 sinh(uj)− (−1)neuj

∣∣∣sinc(2ωjτp)Ĥ(2ωjτpα)
∣∣∣(cos(2ωjt))

]
,

(8.79)

where α = τs
τp

is a dimensionless constant. In Figures 8.3, 8.4 and 8.5 we set N = 100, keep τp �xed

and vary the switch-on time τs. Since the softened SJ state is constructed on the ultrastatic slab

(−τp+ τs
2 , τp+ τs

2 )×Σ, by varying the value of the switch-on time we are comparing di�erent SJ states

on di�erent ultrastatic slabs. However, we are interested in studying the softened SJ states within

the interior of the ultrastatic slab, far away from the boundary. Furthermore, in the limit α → 0 the

plateau function (8.72) tends to a characteristic function on [−τp, τp] and the SJ vacuum with softened

boundaries converges to the unsoftened SJ vacuum in the limit α → 0. The values ωj are measured

with units R−1 and the time is measured in units of R, where R is the radius of the three sphere. In

Figures 8.3 and 8.4 we plot the �rst N = 100 terms of Wick square (8.79) for plateau times τp = 0.5R

and τp = 2R respectively with values α = 0.1, 0.3, 0.5. In Figure 8.5 we plot the �rst N = 100 terms

Wick square of the �rst derivative (the n = 1 case of (8.79)) for a plateau time τp = 2R and parameters

α = 0.3, 0.5. Finally in Figures 8.6 and 8.7 we plot the �rst N = 25 and N = 100 terms of the Wick

square (8.79) for a plateau time τp = 2R and parameters α = 0.3 and α = 0 respectively.
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Figure 8.3: Plot of the Wick Square for the SJ vacuum with softened boundaries and with parameters

mR = 1, N = 100, κ = 0.5 and α = 0.1, 0.3, 0.5.
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Figure 8.4: Plot of the Wick Square for the SJ vacuum softened boundaries with parameters mR = 1,

N = 100, κ = 2 and α = 0.1, 0.3, 0.5.
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Figure 8.5: Plot of the Wick Square of the �rst derivative of the �eld normal ordered in the ultrastatic

vacuum and evaluated in the softened SJ vacuum for parameters mR = 1, N = 100, κ = 2 and

α = 0.3, 0.5.
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Figure 8.6: Plot of the Wick Square for the SJ vacuum with softened boundaries for parameters

mR = 1, N = 25, 100, κ =
τp
R

= 1 and α = 0.3.
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Figure 8.7: Plot of the Wick Square for the unsoftened SJ vacuum with parameters mR = 1, N =

25, 100, κ =
τp
R

= 2 and α = 0.

We draw the following conclusions: For the plots of the Wick square for the SJ vacuum with

softened boundaries given in (8.79) and shown in Figure 8.3 and Figure 8.4 we see that at t = 0, the

value of the Wick square is negative and increases in magnitude as the ratio of the switch-on times to

the plateau times decreases. This is an indicator that in the limit α→ 0, the Wick square for the �eld

normal ordered with respect to the ultrastatic vacuum on (−τ, τ)×S3 and evaluated in the unsoftened

SJ diverges at t = 0, i.e. in the middle of the interval (−τ, τ) far from the boundary. This would

indicate that the unsoftened SJ vacuum fails to be Hadamard within the interior of the spacetime as

well as the boundary. This is supported by Figure 8.7, which shows the �rst N = 25, 100 terms of

the Wick square of the �eld evaluated in the unsoftened SJ vacuum. As the value of N increases from

N = 25 to N = 100, the values of the Wick square at t = 0 increases in magnitude. This indicates

that the Wick square for the unsoftened SJ state will diverge in the limit N →∞ at t = 0.
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Furthermore, one can also observe in Figure 8.5 that the Wick square of the �rst derivative of the

�eld increases in magnitude as the value of N increases, indicating that the Wick square of the �rst

derivative diverges in the interior in the limit N → ∞. Therefore, it appears that the Wick square

of the �rst derivatives evaluated in the unsoftend SJ vacuum state diverges in the interior. However,

the Wick square for the softened SJ vaccum state does not exhibit this behaviour. In Figure 8.6 we

plot the Wick square of the softened SJ vacuum state for a plateau time κ = 2 and set the parameter

α = 0.3. In Figure 8.6 there is a clear convergence as the value of N increases, indicating that the

Wick square for the softened SJ vacuum is �nite in the limit N → ∞. Choosing a cuto� of N = 100

for the Wick square of the softened SJ vacuum is justi�ed because for terms N > 100, the magnitude

of the Wick square for the softened SJ vacuum is of order 10−6, and presents a negligible contribution

to the Wick square. Therefore we choose a cuto� of N = 100, since higher order terms will contribute

a insigni�cant amount. Finally, in Figure 8.5 we see the Wick square of the �rst derivative of the �eld

normal ordered with respect to the ultrastatic vacuum on (−τ, τ)×S3 and evaluated in the SJ vacuum

with softened boundaries. In Figure 8.5, there are rapid oscillations in the Wick square of the �rst

derivative as the value of α decreases. It is then reasonable to infer that as α→ 0, the Wick square of

the �rst derivative will not be smooth.

8.6 Generalised SJ States with Softened Boundaries

Having constructed the softened vacuum SJ state, we may now take functions of the operator (8.33) to

construct the class of generalised SJ states with softened boundaries. LetM = ((−τ, τ)×Σ, g = 1⊕h)

be an ultrastatic slab spacetime and let Aρ be the softened commutator function given in (8.33). Let,

ψ : σ(Aρ)→ R

λ 7→ ϕ(λ)(|λ|+ ϕ(λ)),
(8.80)

be an even, non-negative continuous function where ϕ : σ(Aρ)→ R is an even, non-negative, continuous

function. The class of softened SJ states is then constructed by using the softened vacuum SJ state

and the function (8.80). The softened SJ state ωϕ,ρ has the two-point function,

WSJρ,ϕ(f, g) = WSJρ,0(f, g) + 〈f | ϕ(Aρ)g〉ρ ∀f, g ∈ C∞0 (M) (8.81)

We have the following result,
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Proposition 8.4. There exists a generalised SJ state with softened boundaries whose two-point func-

tion is given by (8.81).

Proof. First, we show that (8.81) is a weak bisolution to the Klein Gordon operator P = � +m2,

WSJρ,ϕ(f, Pg) = WSJ0,ρ(f, Pg) + 〈f | ϕ(Aρ)Pg〉

= 〈f | ϕ(Aρ)Pg〉

=
∑
j∈N

ϕ(λj)
[
〈f | Ψ+

ρ,j〉ρ〈Ψ
+
ρ,j | Pg〉ρ − 〈f | Ψ

−
ρ,j〉ρ〈Ψ

−
ρ,j | Pg〉ρ

]
= 0

(8.82)

for all f, g ∈ C∞0 (M), which holds since WSJ0,ρ(·, ·) is a weak bisolution to the Klein Gordon operator

and,

〈Ψ+
ρ,j | Pg〉ρ = 0, (8.83)

which is shown in (8.50). Similarly,

〈Ψ−ρ,j | Pg〉ρ = 〈ΓPg | ΓΨ−ρ,j〉ρ

= 〈PΓg | Ψ+
ρ,j〉ρ

= 〈PΓg | Ψ+
ρ,j〉ρ

= 0.

(8.84)

A similar argument shows that WSJρ,ϕ(Pf, g) = 0 for all f, g ∈ C∞0 (M). Next, we show that,

w([Ef ], [Eg]) = WSJϕ(f, g), (8.85)

is a well de�ned positive semi-de�nite sesquilinear form on S(M)× S(M). Since kerE = Ran(P ) and

since (8.81) is a weak bisolution to the Klein-Gordon operator P = � + m2, it follows that (8.85) is

independent of chosen representative. Positivity is seen from the following,

w([Ef ], [Ef ]) = WSJψ (f, f) = 〈f | A+
ψf〉 ≥ 0, (8.86)

which holds since A+
ψ ≥ 0 and sesquilinearity follows from the 〈· | ·〉−inner product. Therefore, by

Proposition 4.2, there exists a state with the two-point function (8.81). n
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8.7 Hadamard Condition for the Generalised SJ states with

Softened Boundaries

Since the vacuum SJ state with softened boundaries is Hadamard, a generalised SJ state with softened

boundaries is Hadamard if and only if the integral kernel of the normal ordered two-point function,

: WSJρ,ϕ : (f, g) = 〈f | A+
0,ρg〉ρ + 〈f | ϕ(Aρ)g〉ρ − 〈f | A+

0,ρg〉ρ

= 〈f | ϕ(Aρ)g〉ρ,
(8.87)

is smooth, i.e. that ϕ(Aρ) is smoothing. Therefore all generalised softened SJ states will be Hadamard

if and only if both the operator ϕ(Aρ) has a smooth integral kernel and if the SJ vacuum with softened

boundaries is Hadamard.

Proposition 8.5. Let (M = (−τ, τ)×Σ, g = 1⊕−h) be an ultrastatic slab spacetime where (Σ, h) is

a smooth compact Riemannian manifold. Let ρ ∈ C∞0 (M) obey ρ(t) > 0 for all t ∈ (−τ, τ) and decay

smoothly to zero as t → ±τ . Let Aρ be the softened commutator function given in (8.33). Suppose

ϕ : σ(Aρ) → R is a continuous function such that, for all N ∈ N0 there exists a CN ≥ 0 such that

|ϕ(λ)| ≤ CN |λN | for all λ ∈ σ(Aρ) and ϕ(0) = 0. Then the operator ϕ(Aρ) is smoothing.

Proof. The softened commutator function (8.33) is given by the operator,

Aρf =
∑
j∈N

λj
(
Ψ+
ρ,j〈Ψ

+
ρ,j | f〉ρ −Ψ−ρ,j〈Ψ

−
ρ,j | f〉ρ

)
, (8.88)

where the normalised eigenvectors Ψ±ρ,j are given in (8.27) with corresponding eigenvalues ±λj given

in (8.31). By the continuous functional calculus for bounded self-adjoint operators, the operator ϕ(Aρ)

is given by,

ϕ(Aρ)f =
∑
j∈N

ϕ(λj)
(
Ψ+
ρ,j〈Ψ

+
ρ,j | f〉ρ −Ψ−ρ,j〈Ψ

−
ρ,j | f〉ρ

)
, (8.89)

which has the integral kernel,

ϕ(Aρ)(t, x; t′, x′) =
∑
j∈N

ϕ(λj)e
2uj

2ωj
(e−iω(t−t′) − eiω(t−t′))ξj(x)ξj(x′). (8.90)

Theorem 4.7 states that if the following holds,∑
j∈N

ωpj |e
2ujϕ(λj)|2 <∞, (8.91)
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for all p ∈ N0 then the integral kernel (8.90) converges in C∞(M×M), hence ϕ(Aρ) is smoothing.

We now obtain, for all p,N ∈ N0,∑
j∈N

ωpj e
4uj |ϕ(λj)|2 ≤

(
sup
j

(e2uj )

)2∑
j∈N

ωpj |ϕ(λj)|2

≤
(

sup
j

(e2uj )

)2

C2
N

∑
j∈N

ωpj |λj |
2N

= γ
∑
j∈N

ωp−2N
j

(
1−

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣2
)N

≤ γ
∑
j∈N

ωp−2N
j ,

(8.92)

where,

γ =

(
sup
j

(e2uj )

)2

C2
N

(
ρ̂(0)

2

)2N

(8.93)

and where we have used,

λj =
ρ̂(0)

2ωj

√
1−

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣2 (8.94)

for all j ∈ N. Since (Σ, h) is a boundaryless, compact Riemannian manifold of dimension n = 3,

Lemma 6.5 states that j ≤ αω3
j for a su�ciently large α > 0. Therefore, we have,∑

j∈N
ωpj |e

2ujϕ(λj)|2 ≤ γ
∑
j∈N

ωp−2N
j ≤ γα 1

3 (2N−p)
∑
j∈N

1

j
1
3 (2N−p)

, (8.95)

which converges for all N > 1
2 (p+ 3). Therefore, by Theorem 4.7, the integral kernel (8.90) converges

in C∞(M×M). Therefore ϕ(A) is smoothing. n

Using the fact that, for suitable chosen ϕ : σ(Aρ) → R, the operator ϕ(Aρ) is smoothing and the

fact that the SJ vacuum with softened boundaries with two-point function (8.43) is Hadamard, we

arrive at the following result:

Proposition 8.6. LetM = (−τ, τ)×Σ be an ultrastatic slab spacetime with metric g = 1⊕−h, where

(Σ, h) is a compact Riemannian manifold. Let ρ ∈ C∞0 (R) be a smooth function obeying supp(ρ) =

[−τ, τ ], ρ(t) > 0 for all ρ ∈ (−τ, τ) such that ρ(t)→ 0 as t→ ±τ . Let Aρ be the softened commutator

function for the free scalar �eld given by (8.23). Let ϕ : σ(Aρ) → R be an even, non-negative,
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continuous function such that ϕ(0) = 0. If, for all N ∈ N0 there exists a CN ≥ 0 such that |ϕ(λ)| ≤

CNλ
N , then the SJ state with two-point function,

WSJϕ,ρ(f, g) = 〈f | A+
0,ρg〉ρ + 〈f | ϕ(Aρ)g〉ρ ∀f, g ∈ C∞0 (M) (8.96)

de�nes a Hadamard state.

Proof. The SJ vacuum state with softened boundaries given by the two-point function,

WSJ0,ρ(f, g) = 〈f | A+
0,ρg〉ρ ∀f, g ∈ C∞0 (M) (8.97)

is, by Proposition 8.3, Hadamard. Therefore, the generalised SJ state with softened boundaries given

by the two-point function (8.96) is Hadamard if and only if the normal ordered two-point function,

: WSJϕ,ρ : (f, g) = WSJϕ,ρ(f, g)−WSJ0,ρ(f, g), (8.98)

has a smooth integral kernel. A straightforward calculation shows,

: WSJϕ,ρ : (t, x; t′, x′) = A+
0,ρ(t, x; t′, x′) + ϕ(Aρ)(t, x; t′, x′)−A+

0,ρ(t, x; t′, x′)

= ϕ(Aρ)(t, x; t′, x′),
(8.99)

where A+
0,ρ(·, ·) is the integral kernel of (8.97) and ϕ(Aρ)(·, ·) is the integral kernel of ϕ(Aρ). Now, by

Proposition 8.5, ϕ(Aρ) is smoothing. Therefore (8.99) is smooth on M×M. Therefore (8.96) is a

two-point function for a Hadamard state. n

8.8 Softened SJ Thermal States on the Ultrastatic Slab

In this section we construct the thermal SJ state with softened boundaries using the construction

of the thermal SJ state appearing in Chapter 7 and the construction of a generalised SJ state with

softened boundaries in Section 8.6. LetM = (−τ, τ)×Σ be an ultrastatic slab spacetime with metric

g = 1 ⊕ −h where (Σ, h) is a smooth compact Riemannian manifold. As before, let ρ ∈ C∞0 (R) obey

ρ(t) > 0 for all t ∈ (−τ, τ) and ρ(t)→ 0 as t→ ±τ . Let L2(M, 1
ρ dvolg) be the Hilbert space formed

by the completion of C∞0 (M) with respect to the norm topology induced by the inner product 〈· | ·〉ρ
given in (8.20). Let Aρ be the softened commutator function (8.23) given by,

Aρf =
∑
j∈N

λj
(
Ψ+
ρ,j〈Ψ

+
ρ,j | f〉ρ −Ψ−ρ,j〈Ψ

−
ρ,j | f〉ρ

)
, (8.100)
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where,

λj =
ρ̂(0)e−2uj

2ωj
=
ρ̂(0)

2ωj

√
1−

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣2. (8.101)

Since 〈Ψσ
j | Ψσ′

j 〉ρ = δσσ′ where σ, σ′ ∈ {±} for all j ∈ N, the operator |Aρ| is,

|Aρ|f =
∑
j∈N

ρ̂(0)e−2uj

2ωj

(
Ψ+
ρ,j〈Ψ

+
ρ,j | f〉ρ + Ψ−ρ,j〈Ψ

−
ρ,j | f〉ρ

)
. (8.102)

The thermal SJ state with softened boundaries is then constructed using the operator,

A+
ρ,β =

1

2
(Aρ + |Aρ|) + ϕβ(Aρ), (8.103)

where,

ϕβ : σ(Aρ)→ R

λ 7→ |λ| e−βτ |λ|
−1

1− e−βτ |λ|−1 ,

(8.104)

The thermal SJ states with softened boundaries on the ultrastatic slab (−τ, τ)× Σ is given by,

WSJρ,β (f, g) = 〈f | A+
ρ,0g〉ρ + 〈f | ϕβ(Aρ)g〉ρ

=
∑
j∈N

ρ̂(0)e−2uj

2ωj
〈f | Ψ+

ρ,j〉〈Ψ
+
ρ,j | g〉+ ϕβ

(
ρ̂(0)e−2uj

2ωj

)(
〈f | Ψ−ρ,j〉〈Ψ

−
ρ,j | g〉+ 〈f | Ψ+

ρ,j〉〈Ψ
+
ρ,j | g〉

)
(8.105)

We now obtain the following,

Proposition 8.7. The thermal SJ state with softened boundaries given by the two-point function

(8.105) is Hadamard.

Proof. In similar manner to the unsoftened thermal state, we observe that (8.104) may be written as,

ϕβ(λ) = βτf

(
|λ|
βτ

)
, (8.106)

where,

f(x) =
xe−1/x

1− e−1/x
. (8.107)

Since, for all N ∈ N0 there exists a CN ≥ 0 such that |f(x)| ≤ CN |x|N , by Proposition 8.5, the

operator ϕβ(Aρ) is smoothing. Furthermore, by Proposition 8.3, the SJ vacuum with softened bound-

aries is Hadamard. Therefore, by Proposition 8.96 the thermal SJ with two-point function (8.105) is

Hadamard. n
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8.9 Wick Square for the Softened Thermal SJ State

In this section we calculate the Wick square of the n − th derivative of �eld normal ordered with

respect to the SJ vacuum with softened boundaries and evaluated in the softened thermal SJ state.

The normal ordered two-point function is given by,

: WSJρ,β : (f, g) = WSJρ,β (f, g)−WSJρ,0(f, g) = 〈f | ϕβ(Aρ)g〉, (8.108)

for all f, g ∈ C∞0 (M). The expectation value of the Wick square for the n− th derivative of the �eld

is then (relative to the volume measure dvolg),

〈: (∂nt φ)2 : (f)〉 =

∫
M
〈: (∂nt φ)2 :〉(t, x)f(t, x) dvolg, (8.109)

where,

〈: (∂nt φ)2 :〉β(t, x) = lim
(t,x)→(t′,x′)

∂nt ∂
n
t′ : WSJρ,β : (t, x; t′, x′)

=
∑
j∈N

e−βτ |λj |
−1

1− e−βτ |λj |−1 ω
2n−1
j e2uj

[
1− (−1)n

∣∣∣∣ ρ̂(2ωj)

ρ̂(0)

∣∣∣∣ cos(2ωjt)

]
|ξj(x)|2

(8.110)

Using the plateau functions constructed in Section 8.5 we now calculate the Wick square (8.110) when

the spatial manifold (Σ, h) is a round three sphere. In the case when (Σ, h) is a there sphere the

eigenvalues ωj are given in (5.84) and occur with multiplicity (1 + j)2. Using the fact that the sphere

is spherically symmetric the Wick square (8.110) evaluated at (t, x) ∈ (−τ, τ) × S3 is equal to the

Wick square averaged over the three sphere evaluated at time t. The �rst N terms of the Wick square

(8.110) evaluated at a point (t, x0) ∈ (−τ, τ)× S3 is then,

〈: (∂nt φ)2 :〉β(t, x0) =
1

Vol(S3)

N∑
j=1

(j + 1)2 e−βτ |λj |
−1

1− e−βτ |λj |−1 ω
2n−1
j e2uj

[
1− (−1)n

∣∣∣sinc(2ωjτp)Ĥ(2ωjτpα)
∣∣∣ cos(2ωjt)

] (8.111)

In the following plots we measure the temperature in units of R−1, the plateau time τp and ultrastatic

time t in units of R and set α =
τs
τp
, as before.
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Figure 8.8: Plot of the Wick Square of the �eld normal ordered with respect to the softened SJ

vacuum and evaluated in the softened thermal SJ state for parameters mR = 1, β = R, κ =
τp
R

= 2

and α = 0, 0.1, 0.3, 0.5.

We draw the following conclusion: Following the work of [54, 13] whenever the Wick square is

positive, a local temperature can be de�ned by,

Tω(t, x) =
√

12(: φ2 : (t, x)), (8.112)

where the Wick square appearing in (8.112) is normal ordered with respect to a Hadamard state and

evaluated in the state ω. We clearly see in Figure 8.8 that the Wick square is positive for all t ∈ (0, π2 ).

This indicates that the softened thermal SJ state (8.105) can be used to de�ne a local temperature,

although these results are only preliminary. Secondly, we notice that in the limit α → 0, the Wick

square of the softened thermal SJ state does not diverge, which can be traced back to the smoothing
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properties of ϕβ .
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Chapter 9

Physical States for the Massive Spin

One Field

A natural question to ask is whether the SJ state construction can be applied to higher spin �elds.

Previous constructions for the SJ and BF states have only been applied to the free spin zero scalar �eld.

In this chapter we consider the SJ and BF state constructions for a massive spin one �eld, namely the

Proca �eld. The Proca �eld on a globally hyperbolic spacetime is most elegantly described using the

language of di�erential forms. However, since the metric for a spacetime is inde�nite, the natural inner

product on the space of di�erential forms is also inde�nite. Therefore, the space that the commutator

function acts on is not a Hilbert space but a complete inde�nite inner product space, also known as

a Krein space. The analysis of operators on Krein spaces is drastically di�erent than the analysis of

operators on Hilbert spaces. Self-adjoint bounded operators over Hilbert spaces enjoy properties that

are essential to the SJ construction; real eigenvalues and the spectral theorem which guarantees the

existence and uniqueness of the positive part. The story for operators over a Krein space, however, is

very di�erent. The problems when faced considering the SJ and BF state construction are:

- The commutator function for the Proca �eld extends to a unbounded non-de�nitisable operator on

a Krein space.

- The spectral theory for self-adjoint operators on Krein spaces is only developed for de�nitisable

operators and is signi�cantly harder than in Hilbert spaces.
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- The spectrum of the commutator function for the Proca �eld on an ultrastatic slab with compact

spatial section is complex.

We consider the construction of both the SJ and BF states on the ultrastatic slab (−τ, τ) × Σ. We

show that the SJ state construction is ill-de�ned when applied to the Proca �eld on an ultrastatic slab

with compact spatial section since the commutator has a complex spectrum. However, the BF state

construction is well de�ned but there are still complications that are not present in the scalar �eld

case. We show that, under a suitable choice of softening function, the BF state is well de�ned. We

also show that whenever the BF state is well de�ned, it also satis�es the Hadamard condition.

9.1 Krein Spaces

To begin with, we recall some standard notions about Krein spaces. For a complete exposition on

the subject the reader is referred to [6]. Let (K, 〈. | .〉) be a vector space equipped with an inde�nite

sesquilinear form 〈· | ·〉. Then, (K, 〈· | ·〉) is Krein space if there exists a fundamental decomposition,

K = K+ ⊕K−, (9.1)

which is the direct (orthogonal with respect to 〈· | ·〉) sum of two Hilbert spaces (K+, 〈. | .〉) and

(K−,−〈· | ·〉). Let P± denote projection operators onto K± corresponding to the fundamental decom-

position (9.1) and introduce the self-adjoint operator J = P+−P− called the fundamental symmetry.

Since the decomposition (9.1) is orthogonal, we have J2 = 1. The fundamental symmetry induces a

positive de�nite inner product by setting 〈· | J ·〉, and the inner product space (K, 〈· | J ·〉) then forms

a Hilbert space. All topological notions in a Krein space arise from the norm topology induced by

the inner-product 〈· | J ·〉, and, although there are many decompositions of the form (9.1), all norms

induced by the inner-product 〈· | J ·〉 are equivalent [19, Corollary 2]. Therefore the norm topology

of a Krein space does not depend on the choice of fundamental symmetry. We introduce the space of

continuous operators over K,

L(K) := {U : K → K | U is continuous and linear with respect to 〈· | J ·〉}. (9.2)

We call a vector f ∈ K timelike if 〈f | f〉 > 0, null if 〈f | f〉 = 0 and spacelike if 〈f | f〉 < 0. A

subspace S ⊂ K is timelike/null/spacelike if all elements f ∈ S are timelike/null/spacelike. We call an
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operator B ∈ L(K) positive if 〈f | Bg〉 = 〈Bf | g〉 for all f, g ∈ K and,

〈f | Bf〉 ≥ 0, (9.3)

for all f ∈ K. A set of elements {ξj}j∈N in a Krein space is called pseudo-orthonormal if 〈ξj | ξk〉 =

±δjk. The spectrum and resolvent set for an operator B are the same de�nitions in Krein spaces as

they are in Hilbert spaces. An operator B ∈ L(K) is called de�nitisable if the resolvent set of A is

non-empty, ρ(A) 6= ∅ and there exists a real polynomial p such that p(A) ≥ 0. The operator p(A) is

understood to be the operator,

p(A) =

N∑
j=1

ajA
N , (9.4)

corresponding to the polynomial p(λ) =
∑N
j=1 ajλ

N .

A Rank Two Krein Space Operator Toy Model

Let K be a Krein space and suppose 〈w | w〉 = 〈v | v〉 6= 0 and that w and v are linearly independent.

We allow for both possibilities that either 〈w | w〉 < 0 or 〈w | w〉 > 0. Consider the rank two operator,

A = |w〉 〈w| − |v〉 〈v| . (9.5)

The eigenvalues are easily found to be,

λ± = ±
√
〈w | w〉2 − |〈w | v〉|2. (9.6)

One may not infer that the eigenvalues λ± are real since the Cauchy-Schwarz inequality does not

hold in a Krein space. Using a similar analysis to the analysis done in section 8.1 Chapter 8 a pair

pseudo-orthonormal eigenvectors of the operator (9.5) is given by,

φ1 =
e3uj/2

|〈w | w〉|1/2

(√
cosh(uj)w −

√
sinh(uj)v

)
φ2 =

e3uj/2

|〈w | w〉|1/2

(√
sinh(uj)w −

√
cosh(uj)v

)
.

(9.7)

The eigenvectors Ψ± corresponding to the eigenvalues λ± are given by,

Ψ+ = φ1

Ψ− = φ2

 if 〈w | w〉 > 0 (9.8)
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Ψ+ = φ2

Ψ− = φ1

 if 〈w | w〉 < 0. (9.9)

In either of these cases the eigenvectors Ψ± obey,

〈Ψ± | Ψ±〉 = sgn(〈w | w〉)

〈Ψ± | Ψ∓〉 = 0,
(9.10)

where sgn is the sign function. The operator (9.5) in terms of the eigenvectors (9.8) is then,

A =
λ+

〈Ψ+ | Ψ+〉
|Ψ+〉 〈Ψ+|+ λ−

〈Ψ− | Ψ−〉
|Ψ−〉 〈Ψ−| . (9.11)

Suppose further that v = Γw where Γ is a anti-unitary involution. Then one has A = −ΓAΓ, therefore

ΓΨ+ is an eigenvector of A with the negative eigenvalue λ− = −λ+ and is some scalar multiple of Ψ−.

In this case we have the decomposition,

A = λ+P + λ−ΓPΓ, (9.12)

where P is a rank one projection onto the eigenspace with positive eigenvalue given by,

P =
|Ψ+〉 〈Ψ+|
〈Ψ+ | Ψ+〉

. (9.13)

If we assume that |〈w | v〉| ≤ |〈w | w〉| then the eigenvalues (9.6) are real and one can construct the

positive part of the operator (9.12). If 〈w | w〉 > 0 then one recovers the same formulae as in the

Hilbert space case and the positive part (9.17) is then,

A+ = λ+P. (9.14)

In the case when 〈w | w〉 < 0, the positive part of the operator (9.5) is then given by,

A+ = λ−ΓPΓ, (9.15)

which we can see is positive by the following,

〈f | A+f〉 = λ−
|〈ΓΨ+ | f〉|2

〈Ψ+ | Ψ+〉
≥ 0, (9.16)

which holds since λ− ≤ 0 and 〈Ψ+ | Ψ+〉 = sgn(〈w | w〉) = −1. Hence in general the positive part is,

A+ = θ(〈w | w〉)λ+P + θ(−〈w | w〉)λ−ΓPΓ, (9.17)
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where θ is the Heaviside function. Therefore, in this simple toy model of a rank two operator on a

Krein space, we can see that extracting the positive part is not a straightforward generalisation of the

Hilbert space case. Moreover, if |〈w | v〉| > |〈w | w〉| then the eigenvalues (9.6) are pure imaginary. In

this case it is not clear how one would construct the positive part of the operator (9.5).

The Krein Space of Di�erential Forms on Ultrastatic Slab

Let (M = (−τ, τ)×Σ, g = 1⊕−h) be an ultrastatic slab spacetime where (Σ, h) is a compact smooth

three dimensional Riemannian manifold. Let Ω1(M) be the space of square integrable one forms

over M and let Ω1
0(M) ⊂ Ω1(M) be the subspace of compactly supported one forms. The exterior

derivative will be denoted d, the coderivative on the manifold (M, g) will be denoted δM = ?gd?g

where ?g is the Hodge star relative to the metric g. Using the auxiliary Euclidean metric g̃ = 1 ⊕ h,

one may equip the space Ω1
0(M) with a positive de�nite inner product (· | ·) de�ned by,

(ψ | φ)g̃ =

∫
M
ψ ∧ ∗g̃φ =

∫
M
ψµ(t, x)φν(t, x)g̃µνdvolg̃, (9.18)

for all ψ, φ ∈ Ω1
0(M) and where µ, ν = 0, 1, 2, 3. Completing the space Ω1

0(M) with respect to the norm

topology induced by the inner product (9.18) yields the Hilbert space of square integrable one-forms

overM denoted by Λ1(M, g̃). Making a 1+3 decomposition, we may make the following identi�cation,

Λ1(M, g̃) = L2(−τ, τ)⊗ (Λ0(Σ)⊕ Λ1(Σ)), (9.19)

where Λp(Σ) is the Hilbert space of square integrable p−forms over (Σ, h) for each p ∈ N0 and the

tensor product ⊗ is the completed Hilbert space tensor product [53, Section II.4]. The Hilbert spaces

Λp(Σ) are constructed by completing Ωp0(Σ) with respect to the inner product,

(σ | ξ)h =

∫
Σ

σ ∧ ∗hξ =

∫
Σ

σ(x)
r
ξ(x)shrs dvolh. (9.20)

The Krein space of one forms on the ultrastatic slab (M = (−τ, τ) × Σ, g = 1 ⊕ −h) is then de�ned

to be the Hilbert space Λ1(M, g̃) equipped with the fundamental symmetry,

J = 1⊗ (1⊕−1), (9.21)

where we have used the decomposition (9.19) and the identities are understood to be on their respective

spaces. We then denote K = (Λ1(M, g̃), 〈· | ·〉, J), where the inde�nite inner product is given by,

〈ψ | φ〉 =

∫
M
ψ ∧ ∗gφ =

∫
M
ψ
µ
φνgµν dvolg, (9.22)
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for all ψ, φ ∈ K where µ, ν = 0, 1, 2, 3 . Finally, we introduce one further Krein space; the Krein

space of static one-forms which is de�ned to be the space of one forms which are independent of the

ultrastatic time parameter t. Using the decomposition (9.19) the space of static one forms is given by

Kstatic = Λ0(Σ)⊕ Λ1(Σ). We equip the space of static one forms with the inde�nite inner product,

〈〈ξ | η〉〉 =

∫
Σ

ξµ(x)ηµ(x) dvolh = (ξ0 | η0)Λ0(Σ) − (ξΣ | ηΣ)Λ0(Σ) (9.23)

for all ξ, η ∈ Λ0(Σ) ⊕ Λ1(Σ) and where we have made the identi�cation ξ = ξ0dt + ξΣ for all ξ ∈

Λ0(Σ)⊕ Λ1(Σ).

9.2 Quantisation of the Proca Field

We review the classical theory of the massive spin one �eld over globally hyperbolic spacetimes, which

is based on the work appearing in [24].

Classical Theory

Let (M = R×Σ, g) be a globally hyperbolic spacetime where (Σ, h) is a compact smooth Riemannian

manifold. The classical uncharged spin-one �eld is a one form A ∈ Ω1(M) that obeys the Proca

equation,

(−δMd+M2)A = 0, (9.24)

where M > 0 is the mass of the �eld. Applying the coderivative to (9.24) we see that any solution A

to the Proca equation is necessarily coclosed,

δMA = 0 (9.25)

Hence, any solution to (9.24) is also a solution of the massive Klein Gordon equation,

(� +M2)A = 0, (9.26)

where � = −(dδM + δMd). The advantage of working with the system (9.25, 9.26) is that the

operator � + M2 is normally hyperbolic [3, Example 1.5.3], therefore there exist unique advanced(-

)/retarded(+) Greens operators denoted by E±. One uses Greens operator E± for the massive Klein

Gordon equation to solve the inhomogeneous Proca equation,

(−δMd+M2)A = J , (9.27)
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with advanced and retarded boundary conditions and where J ∈ Ω1
0(M). Assuming there exists a

solution to (9.27), we apply the coderivative to both sides obtaining δMA = M−2δMJ . We now

rewrite (9.27) as,

(� +M2)A = (−δMd+M2)A− dδMA = (1−M−2dδM)J , (9.28)

whereby A± = E±(1−M−2dδM)J are unique solutions supported in J±(supp(J )). By [51, Proposi-

tion II.1] the operators δM and E± commute, and the one forms A± = E±(1−M−2dδM)J are seen

to be the solutions to (9.27). We now de�ne,

∆±M = E
±(1−M−2dδM), (9.29)

which are Green operators for (9.27), along with,

∆M = ∆−M −∆+
M = E(1−M−2dδM), (9.30)

which will appear in the CCR algebra for the Proca �eld, as we shall now see.

Algebraic Quantisation of the Proca Field

The algebraic quantisation of the Proca �eld in globally hyperbolic spacetimes was accomplished by

Dimock [17] and Furlani [34]. Here, we use the algebra isomorphic to those constructions given in [24].

The algebra of observables for the Proca �eld starts by de�ning a set of abstract objects labelled by

compactly supported one forms,

A = {A(f) | f ∈ Ω1
0(M)}, (9.31)

whereby each object is interpreted as a smeared one form �eld: A(f) = 〈A | f〉. This generates a free

unital ∗−algebra over C. The CCR algebra for the free massive spin one �eld over (M, g), denoted

AM (M, g), is formed by taking the quotient of A by the following relations,

P1. Linearity - A(αf + βg) = αA(f) + βA(g) for all α, β ∈ C and all f, g ∈ Ω1
0(M);

P2. Hermiticity - A(f)∗ = A(f) for all f ∈ Ω1
0(M);

P3. Field equations - A((−δMd+M2)f) = 0 for all f ∈ Ω1
0(M);

P4. CCRs - [A(f),A(g)] = 〈f | −i∆Mg〉1 for all f, g ∈ Ω1
0(M) and where 1 is the unit and ∆M is

given in (9.30).
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9.3 The Commutator Function for the Proca Field on Ultra-

static Slabs

The following section is based on the work undertaken in [24] and we give a detailed review for the

bene�t of the reader. LetM = (−τ, τ)× Σ be an ultrastatic slab spacetime with metric g = 1 ⊕−h

where τ > 0 and (Σ, h) is a boundaryless, compact Riemannian manifold. We assume that the

homology group H1(Σ) is trivial, which implies that the space of harmonic one forms over Σ is trivial.a

This is equivalent to assuming that the compact support de Rahm cohomology groupH3
c (M) is trivial.b

Our construction of the SJ state begins by constructing the advanced-minus-retarded operator E for

the Klein Gordon operator � + M2 : Ω1(M) → Ω1(M). Using the operator E we can construct the

operator,

A
•

= −i∆M = −iE(1−M−2dδM) (9.32)

which appears in the CCRs for the Proca �eld. In ultrastatic spacetimes the wave equation � + M2

reduces to ∂2
t +K where K is the elliptic operator,

K : Λ0(Σ)⊕ Λ1(Σ)→ Λ0(Σ)⊕ Λ1(Σ)

ξ0dt+ ξΣ 7→ ((−∆s
Σ +M2)ξ0)dt+ (−∆Σ +M2)ξΣ,

(9.33)

and where ∆s
Σ and ∆Σ denote the scalar and one-form Laplace-Beltrami operators on (Σ, h) respec-

tively. The ansatz A(t, x) = e−iωtξ(x) is therefore a solution to the Klein Gordon operator P = ∂2
t +K

if and only if,

Kξ = ω2ξ, (9.34)

where ξ ∈ Λ0(Σ) ⊕ Λ1(Σ) is a static one form (i.e. independent of the ultrastatic time parameter

t). Since the operator K is positive, the eigenvalues can be expressed as the squares of nonnegative

quantities. Furthermore, since the Krein space of static one forms decomposes into the direct sum

Λ0(Σ)⊕ Λ1(Σ), the eigenvalue problem (9.34) splits into two eigenvalue problems,

(−∆s
Σ +M2)ξ0 = ω2ξ0 ξ0 ∈ Λ0(Σ)

(−∆Σ +M2)ξΣ = ω2ξΣ ξΣ ∈ Λ1(Σ).
(9.35)

aThe a one-form ω ∈ Ω1(Σ) is called harmonic if (dδΣ + δΣd)ω = 0.
bSee [71] in [24] for further details.
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To proceed, we choose ϕj to label a complete basis of (−∆s
Σ + M2)−eigenfunctions for Λ0(Σ) with

the corresponding eigenvalues ω2(S, j), and with the countable labelling set j ∈ J(S), where S stands

for scalar. By elliptic regularity, each ϕj is smooth [20, Theorem 3 Section 6.3]. The scalar K-

eigenfunctions ξ(S, j) are then given by ξ(S, j) = ϕjdt, which are clearly pseudo-orthonormal and

timelike in Kstatic. The corresponding one form `scalar modes' with positive frequency, denoted by

A(S, j), are, for every j ∈ J(S),

A(S, j) = Φjdt, (9.36)

where Φj(t, x) = e−iω(S,j)tϕj(x). The scalar modes are solutions to the Klein Gordon equation (9.26).

The remaining eigenvectors ξΣ form a complete basis for the spacelike subspace Λ1(Σ). To study the

second eigenvalue problem in (9.35) we shall make use of the Hodge decomposition theorem. Since

H1(Σ) is trivial, this gives decomposition Λ1(Σ) = dΣΩ0(Σ) ⊕ δΣΩ2(Σ) [46, Corollary 5.6]. The

decomposition is orthogonal with respect to the inner product (., .)Λ1(Σ) (and hence with respect to

the inde�nite inner product 〈〈. | .〉〉) and the bar denotes closure in the norm topology of Λ1(Σ). We

observe that the `longitudinal' subspace dΣΩ0(Σ) is spanned by a set of non-zero vectors of the form

dΣξ(S, j). This is the case since the eigenvectors ξ(S, j) span the subspace Ω0(Σ) and the longitudinal

subspace is the image of Ω0(Σ) under the exterior derivative. Owing to the relation ∆ΣdΣ = dΣ∆s
Σ

the vectors dΣξ(S, j) are eigenvectors of the operator −∆Σ + M2 with eigenvalues ω(L, j) = ω(S, j).

Since the only vanishing vector of this form is the spatially constant mode we choose the labelling set

J(L) = {j ∈ J(S) | ω(S, j) > M}. Furthermore, by the calculation,

〈〈dΣϕj | dΣϕk〉〉 = −(dΣϕj ,dΣϕk)Λ1(Σ) = −(ϕj , δΣdΣϕk)Λ1(Σ) = −(ω2(S, j)−M2)δjk, (9.37)

we see that the correctly normalised eigenvectors are given by,

ξ(L, j) = (ω2(S, j)−M2)−1/2dΣϕj , (9.38)

which are spacelike and pseudo-orthonormal in Kstatic. The corresponding modes A(L, j) may be

expressed as,

A(L, j) =
dΣΦj + iω(L, j)A(S, j)√

ω(L, j)2 −M2
. (9.39)

The `transverse' modes ξ(T, j) lie in the subspace δΣΩ2(Σ) with labelling set j ∈ J(T ). The cor-

responding eigenvalues ω(T, j) are typically distinct from the eigenvalues ω(S, j) [24, Section VIC].
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Since the transverse modes are coexact on Σ, they are necessarily coclosed on Σ. The transverse

modes ξ(T, j) form a pseudo-orthonormal basis for the subspace δΣΩ2(Σ) with the countable labelling

set j ∈ J(T ). The corresponding transverse Proca modes are given by,

A(T, j) = e−iω(T,j)tξ(T, j), (9.40)

for all j ∈ J(T ). Since the operator K commutes with complex conjugation we infer that for any

eigenvector ξ(m, j), we also have ξ(m, j) as an eigenvector of K, where m ∈ {S,L, T}. Accordingly,

we can choose a basis for the labelling set J(m) that respects this property, namely that for every

j ∈ J(m) there exists a j ∈ J(m) such that ξ(m, j) = ξ(m, j) for each m ∈ {S,L, T}. For the scalar,

longitudinal and transverse modes, we have the following inner products,

〈A(m, j) | A(m, k)〉 = 2τσ(m)δjk

〈A(m, j) | A(m, k)〉 = 2τσ(m)sinc(2ω(m, j)τ)δjk,

 ∀m ∈ {S,L, T} ∀j, k ∈ J(m) (9.41)

where,

σ(m) := 〈〈ξ(m, j) | ξ(m, j)〉〉 =

+1 m = S

−1 m ∈ {L, T}.
(9.42)

By [24, Theorem IV.1] the modes A(m, j) (m ∈ {S,L, T}, j ∈ J(m)) are used to construct a Hadamard

(� +M2)−bisolution WM on (M, g),

WM (f, g) = −
∑

m∈{S,L,T}

∑
j∈J(m)

1

2ω(m, j)
σ(m)〈f | A(m, j)〉〈A(m, j) | g〉 f, g ∈ Ω1

0(M), (9.43)

which is invariant under a change of basis in Kstatic. Furthermore, the antisymmetric part of WM is

given by,

WM (f, g)−WM (g, f) = −iE(f, g) f, g ∈ Ω1
0(M), (9.44)

where −iE(f, g) = 〈f | −iEg〉. Taking the anti-symmetric part of the bidistribution (9.43) and rela-

belling j → j in the second term, we obtain,

−iE(f, g) =
∑

m∈{S,L,T}

∑
j∈J(m)

−σ(m)

2ω(m, j)

[
〈f | A(m, j)〉A(m, j) | g〉 − 〈f | A(m, j)〉A(m, j) | g〉

]
(9.45)
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where f, g ∈ Ω1
0(M). Since Ω1

0(M) is dense in Ω1(M) we can uniquely extract the operator corre-

sponding to the bidistribution (9.45),

−iE =
∑

m∈{S,L,T}

∑
j∈J(m)

−σ(m)

2ω(m, j)

[
|A(m, j)〉〈A(m, j)| − |A(m, j)〉 〈A(m, j)|

]
. (9.46)

Before constructing the operator A = −iE(1−M−2dδM) we observe that the scalar and longitudinal

modes are not coclosed,

δMA(S, j) = iω(S, j)Φj , (9.47)

for all j ∈ J(S) and,

δMA(L, j) = −
√
ω(S, j)2 −M2Φj , (9.48)

for all j ∈ J(L). On the other hand the transverse modes A(T, j) are coclosed for all j ∈ J(T ), which

we see from the following (we suppress the (T, j) label for convenience). Let f ∈ C∞(−τ, τ) be a

function of time and consider the following,

δM(fξ) = ∗Md ∗M (fξ)

= ∗Md(f ∗M ξ)

= ∗M
(
∂f

∂t
dt ∧ ∗Mξ + fd ∗M ξ

)
= f ∗M d ∗M ξ

= f ∗M d(ξi ∗M dxi)

= f ∗M
(
∂ξi
∂xj

dxj ∧ ∗Mdxi
)

= f
∂ξi
∂xi
∗M (dxj ∧ ∗Mdxj)

= 0,

(9.49)

where the last equality holds since,

∂ξi
∂xi

= δΣξ = 0, (9.50)

and where ξi is the i−th component of ξ. Since the transverse modes are of the form,

A(T, j)(t, x) = e−iω(T,j)tξ(T, j)(x), (9.51)
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we see that δMA(T, j) = 0 by setting f(t) = e−iω(T,j)t in (9.49). Since the scalar and longituidinal

modes are not coclosed, we choose to perform a change of basis of the operator −iE by using the

`Proca' and `gradient' modes introduced in [24] respectively,

A(P, j)(t, x) =
e−iω(S,j)t

M

[
ω(S, j)ξ(L, j)(x)− i

√
ω2(S, j)−M2ξ(S, j)(x)

]
(9.52)

A(G, j)(t, x) =
e−iω(S,j)t

M

[√
ω2(S, j)−M2ξ(L, j)(x)− iω(S, j)ξ(S, j)(x)

]
, (9.53)

with labelling sets J(P ) = J(G) = J(L). Since the Proca and gradient modes are linear combinations

of the scalar and longitudinal modes, and since the longitudinal and scalar modes are solutions to

�+M2, it follows that the Proca and gradient modes are solutions to �+M2. By [24, Theorem IV.1],

the operator (9.46) is invariant under a change of basis. Therefore, in terms of the {T, P,G} basis, the

operator (9.46) is,

−iE =
∑

m∈{T,P,G}

∑
j∈J(m)

−σ(m)

2ω(S, j)

[
|A(m, j)〉 〈A(m, j)| − |A(m, j))〉 〈A(m, j)|

]
, (9.54)

where σ(G) = 1 and σ(T ) = σ(P ) = −1. We shall use the following expressions for the gradient and

Proca modes,

A(G, j) = M−1dΦj ,

A(P, j) =
iM√

ω2(S, j)−M2

[
A(S, j)− iω(S, j)

M2
dΦj

]
,

(9.55)

which have the following coderivatives,

δMA(P, j) = 0,

δMA(G, j) = MΦj ,
(9.56)

for all j ∈ J(L). Since the transverse and Proca modes are coclosed onM and are solutions � +M2,

it follows that they are solutions to the Proca equation (9.24),(
−δMd+M2

)
A(m, j) =

(
� +M2 + dδM

)
A(m, j) = 0, (9.57)

for each m ∈ {T, P} and all j ∈ J(m). Conversely, since the gradient modes (9.53) are not coclosed,

it follows that they are not solutions to the Proca equation (9.24). However, we note the following

expressions for the transverse, gradient and Proca modes,

(1−M−2dδM)A(G, j) = M−1dΦj −M−2d(MΦj) = 0 ∀j ∈ J(L)

(1−M−2dδM)A(P, j) = A(P, j) ∀j ∈ J(L)

(1−M−2dδM)A(T, j) = A(T, j) ∀j ∈ J(T ).

(9.58)
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Therefore, since the gradient modes are annihilated under the action of the operator 1 −M−2dδM,

and since the transverse and Proca modes are left invariant, the operator(9.32) is then given by,

A = −iE(1−M−2dδM)

=
∑

m∈{T,P}

∑
j∈J(m)

1

2ω(m, j)

[
|A(m, j)〉〈A(m, j)| − |A(m, j)〉 〈A(m, j)|

]
,

•

=
∑

m∈{T,P}

∑
j∈J(m)

A(m, j)

(9.59)

where we have used σ(T ) = σ(P ) = −1 and where,

A(m, j) =
1

2ω(m, j)

[
|A(m, j)〉〈A(m, j)| − |A(m, j)〉 〈A(m, j)|

]
, (9.60)

A close examination of the Proca and gradient modes reveals the inner products,

〈A(m, j) | A(m, k)〉 = 2τσ(m)δjk

〈A(m, j) | A(m, k)〉 = −2τ

(
2

(
ω(S, j)

M

)2

− 1

)
sinc(2ω(S, j)τ)δjk

(9.61)

for all m ∈ {P,G} and all j ∈ J(m). We now turn our attention to the non-existence of the SJ state

for the Proca �eld over the ultrastatic slab (M = (−τ, τ)× Σ, g = 1⊕−h).

9.4 The Non-Existence of the SJ State for the Proca Field

A rigorous de�nition of the operator (9.59) requires a careful analysis, since it turns out the operator

−i∆ is an unbounded, non-de�nitisable operator on the Krein space K of square integrable one-forms.

For a complete rigorous construction of the operator (9.59) the reader is referred to [25, 26]. Due

to these technical di�culties, the original SJ axioms presented in Chapter 5 section 5.2 need to be

modi�ed to deal with unbounded operators on a Krein space. The construction can be summarised

as the following: Let K be a Krein space and A be a closed symmetric operator with a dense domain

D(A) ⊂ K and let Γ be an anti-unitary involution so that A = −ΓAΓ. The aim is to axiomatically

construct the positive part of the operator A, denoted A+, where A+ obeys the axioms,

SJ1) A+ − ΓA+Γ = A on D(A).

SJ2) Im(A+) and ΓIm(A+) are orthogonal and non-tangentialc

cNon-tangential subspaces is a generalisation of orthogonality in Krein spaces, more details are given in [25].
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SJ3) A+ ≥ 0.

The set of closed operators A+ such that D(A) ⊂ D(A+) and such that A+ obeys SJ1 − 3 will be

denoted SJ(A) whereby each operator A+ ∈ SJ(A) will be called an SJ operator. If SJ(A) is empty

then A does not admit SJ operators. One can solve the axioms SJ1 − 3 in the same spirit as the

original SJ axioms due to Sorkin; SJ1 implies,

A+ = R+
A

2
, (9.62)

where R = ΓRΓ. SJ2 implies,

R2 =
A2

4

[A,R] = 0,

(9.63)

and SJ1, SJ3 imply that R = 1
2 (A+ + ΓA+Γ) ≥ 0. A complete description and motivation for these

axioms can be found in [25]. A necessary condition for the operator (9.59) to admit SJ operators is

given by the following Lemma [25, Lemma 4.5],

Lemma 9.1. Let A be a self-adjoint operator on K. Then A admits an SJ operator only if the spectrum

of A is real.

Proof. Suppose A+ = R + 1
2A ∈ SJ(A) is solution to SJ1− 3. Therefore R ≥ 0, and by [6, Theorem

VII.1.3], the spectrum of R is real. Therefore, the spectrum of R2 =
A2

4
is contained in [0,∞) which

implies the spectrum of A is real. n

Therefore, for the purpose of showing the non-existence of the SJ state for the Proca �eld it is

su�cient to show that the spectrum of the operator (9.59) is complex. Barring convergence issues, this

amounts to checking whether or not the spectrum of the operators A(m, j) is real for each m ∈ {T, P}

and all j ∈ J(m). Using the toy model presented in section 9.1 The eigenvalues of the operator (9.60)

are,

λ±(m, j) =
±τ

2ω(m, j)

√
1− |β(m, j)|2, (9.64)

where,

β(m, j) =


(

2

(
ω(S, j)

M

)2

− 1

)
sinc(2ω(S, j)τ) m = P,∀j ∈ J(L)

sinc(2ω(T, j)τ) m = T, ∀j ∈ J(T ).

(9.65)
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However, we now show that there exists an operator A(m, j) with a purely imaginary eigenvalues.

Consider the operator A(P, j), with eigenvalues,

λ±(P, j) =
±τ

2ω(P, j)

√
1− |β(P, j)|2

=
±τ

2ω(P, j)

√
1−

∣∣∣∣(2

(
ω(S, j)

M

)
− 1

)
sinc(2ω(S, j)τ)

∣∣∣∣2. (9.66)

Since ω(P, j) → ∞ in the limit j → ∞, it follows that β(P, j) → ∞ as j → ∞, and therefore there

exists a j ∈ J(P ) such that |β(P, j)| > 1 and hence for this j we have λ(P, j) ∈ C. Therefore, there

exists an operator A(m, j) with a complex spectrum, hence the operator (9.59) has a complex spectrum

and by Lemma 9.1, the operator (9.59) does not admit SJ operators.

Discussion

As previously mentioned, there are eigenvalues ω(P, j) > M such that |β(P, j)| > 1. If j ∈ J(P )

satis�es |β(P, j)| > 1 then the operator A(P, j) will have a pure imaginary spectrum. One can examine

precisely which modes ω(P, j) have the property |β(P, j)| > 1. Let ω̃ denote a `cuto�' frequency which

is de�ned by the property such that |β(P, j)| ≤ 1 for all ω(P, j) < ω̃ and if |β(P, j)| > 1 then

ω(P, j) > ω̃. We now given an estimate for ω̃ in terms of the parameters M and τ . Since sinc(x) ≤ 1
x

we obtain,

β(P, j) =

(
2

(
ω(P, j)

M

)2

− 1

)
sinc

(
ω(P, j)

M
2Mτ

)
≤ ω(P, j)

M

(
1

Mτ

)
, (9.67)

hence if |β(P, j)| ≤ 1 we obtain,

ω(P, j)

M
≤Mτ. (9.68)

We therefore obtain a cuto� frequency ω̃ = M2τ . Typically the cuto� frequency ω̃ is very large;

W-bosons have mass of order 100 GeV and setting τ ≈ 1040 GeV−1 to be the lifetime of the Universe

gives ω̃ ≈ 1044GeV, well above energy levels of any terrestrial experiment such as the Large Hadron

Collider. A plot of the function β(P, j) with Mτ = 3 is shown in Figure 9.1.

We have shown that a straightforward generalisation of the SJ vacuum state for the massive spin

one �eld over ultrastatic slab fails because the commutator function has a complex spectrum. Whilst

a complete rigorous statement of this result is beyond the scope of this thesis, we refer the reader to

[25, 26] for further details. However, interestingly enough, the BF state construction, when applied to
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the massive spin one �eld on an ultrastatic slab, not only gives a state, but this state also satis�es the

Hadamard condition. This will be the subject of the following section.

Figure 9.1: Plot of the function β(m, j) in units
ω(m, j)

M
for a cutto� frequency

ω̃

M
= Mτ = 3 shown

as the dashed green line. One observes that for ω(P, j) ≤ ω̃ we have |β(P, j)| < 1, and so the eigenvalue

λ(P, j) real. The transverse modes obey |β(T, j)| ≤ 1 for all j ∈ J(T ), and therefore the eigenvalues

λ(T, j) are real for all j ∈ J(T ).
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9.5 BF States for the Massive Spin One Field on Ultrastatic

Slab Spacetimes

Clearly, the SJ state construction is ill de�ned for the massive spin one �eld due to the lack of

positivity. However, one may consider a modi�cation to the SJ construction originally due to Brum

and Fredenhagen [11]. Such a modi�cation yields the so called BF states. The BF states for the free

scalar �eld satisfy the Hadamard property in both static and expanding spacetimes. We adapt this

prescription to the massive spin one �eld and show that, not only does this prescription yield a family

of states, but these states also satisfy the Hadamard property.

LetN = R×Σ be a globally hyperbolic ultrastatic spacetime with metric g = 1⊕−h such that (Σ, h)

is a complete, compact Riemannian manifold and letM = (−τ, τ)×Σ be an ultrastatic slab spacetime.

There is the canonical embedding ofM into N via the isometry ι :M ↪→ N , (t, x) 7→ (t, x). By the

uniqueness of the fundamental solutions the advanced-minus-retarded operator onM is obtained from

the corresponding operator on N ,

EM = ι∗EN ι∗, (9.69)

where ι∗, ι∗ are the pull-back and push-forward of ι respectively. Let f ∈ C∞0 (R) be real valued. Using

the operator A de�ned in (9.59) and the decomposition (9.19) one can de�ne the operator on K as,

Af
•

= f(−i∆M )f, (9.70)

where ∆M is de�ned in (7). Whenever f ∈ C∞0 (R) and f
∣∣
(−τ,τ)

= 1, we shall refer to the operator

(9.70) as the softened commutator function and the function f as softening function. The signi�cance

of the condition that f
∣∣
(−τ,τ)

= 1 will become clear once we construct the two-point function for the

BF state. When f is the characteristic function on (−τ, τ) one recovers the commutator function

(9.59). Using the mode decomposition of the operator (9.59), we formally arrive at,

Af =
∑

m∈{T,P}

∑
j∈J(m)

1

2ω(m, j)

[
|fA(m, j)〉〈fA(m, j)| − |fA(m, j)〉 〈fA(m, j)|

]
, (9.71)

which (formally) reduces to an orthogonal sum of rank-two operators,

Af (m, j) =
1

2ω(m, j)

[
|fA(m, j)〉〈fA(m, j)| − |fA(m, j)〉 〈fA(m, j)|

]
. (9.72)
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Whilst a rigorous de�nition of the operator Af requires substantially more analysis, since it turns out

to be an unbounded non-de�nitisable operator over a Krein space, we shall only work with the formal

expressions as results obtained will be the same as results obtained by more rigorous methods. Our

construction for the BF state for the Proca �eld requires constructing the SJ operator A+
f (m, j) for

each m ∈ {T, P} and all j ∈ J(m) which is the a solution to the SJ axioms (9.4). One then formally

constructs the positive part of the operator (9.71) by summing (modulo convergence issues),

A+
f

•

=
∑

m∈{T,P}

∑
j∈J(m)

A+
f (m, j). (9.73)

The two-point function for the BF state is constructed in an analogous way to the SJ state,

WBFf (h, g) = 〈h | A+
f g〉, (9.74)

for all h, g ∈ Ω1
0(M). We show that, for a suitably chosen test function f ∈ C∞0 (R) the point spectrum

of the operators Af (m, j) is real for each m ∈ {T, P} and all j ∈ J(m). We show this with an explicit

example by constructing plateau functions, much in the same spirit as in Chapter 8 Section 8.5. We

now turn our attention to the operators Af (m, j) and the construction of the positive part A+
f (m, j).

Calculating some inner products, we �nd,

〈fA(m, j) | fA(m, j)〉 = 〈fA(m, j) | fA(m, j)〉 = −f̂2(0)

〈fA(m, j) | fA(m, j)〉 = −βf (ω(m, j))f̂2(0)
(9.75)

where,

βf (ω(m, j))
•

=


f̂2(2ω(T, j))

f̂2(0)
m = T(

2

(
ω(S, j)

M

)2

− 1

)
f̂2(2ω(P, j))

f̂2(0)
m = P.

(9.76)

The eigenvectors of the rank two operators Af (m, j) are for each m ∈ {T, P} and all j ∈ J(m),

Ψ−f (m, j) =
fe3u(m,j)/2√

f̂2(0)

(√
cosh(u(m, j))A(m, j)−

√
sinh(u(m, j))A(m, j)

)

Ψ+
f (m, j) =

fe3u(m,j)/2√
f̂2(0)

(√
sinh(u(m, j))A(m, j)−

√
cosh(u(m, j))A(m, j)

)
,

(9.77)

where,

e−2u(m,j) =
√

1− |βf (ω(m, j))|2 (9.78)
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and are pseudo-orthonormal in the sense that,

〈Ψ±(m, j) | Ψ±(m, j)〉 = −1

〈Ψ+(m, j) | Ψ−(m, j)〉 = 0.
(9.79)

The corresponding eigenvalues are given by,

λ±(m, j) = ± f̂
2(0)e−2u(m,j)

2ω(m, j)

•

= ±λ(m, j) (9.80)

The positive part of the (9.72) is formally given by the expression [25, Theorem 6.6],

A+
f =

∑
m∈{T,P}

∑
j∈J(m)

−λ(m, j)
|Ψ−(m, j)〉 〈Ψ−(m, j)|
〈Ψ−(m, j) | Ψ−(m, j)〉

. (9.81)

The two-point function for the BF state on the ultrastatic slab (−τ, τ) × Σ then has the two-point

function,

WBFf (h, g) = 〈h | A+
f g〉

=
∑

m∈{T,P}

∑
j∈J(m)

λ(m, j)〈h | Ψ−(m, j)〉〈Ψ−(m, j) | g〉. (9.82)

We see that the the two-point function (9.82) is a weak bisolution of the Proca operator −δMd+M2

by the following observations: Since both the transverse and Proca modes are coclosed on M, since

f
∣∣
M = 1 and since (� + M2)A(m, j) = 0 for each m ∈ {T, P} and all j ∈ J(m) it can be shown

that the eigenvectors Ψ± are coclosed onM and are solutions to the Klein Gordon operator � +M2.

Therefore we obtain,

WBFf ((−δMd+M2)h, g) =
∑

m∈{T,P}

∑
j∈J(m)

λ(m, j)〈(−δMd+M2)h | Ψ−(m, j)〉〈Ψ−(m, j) | g〉

=
∑

m∈{T,P}

∑
j∈J(m)

λ(m, j)〈h | (−δMd+M2)Ψ−(m, j)〉〈Ψ−(m, j) | g〉

=
∑

m∈{T,P}

∑
j∈J(m)

λ(m, j)〈h | (� +M2)Ψ−(m, j)〉〈Ψ−(m, j) | g〉

= 0.

(9.83)

The antisymmetric part of the two-point function (9.82) coincides with the operator Af given in (9.70)

which coincides with the commutator function −i∆M given in (9.32) on (M, g) precisely because
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f
∣∣
M ≡ 1. The two-point function (9.82) is of positive type if and only if the operator A+

f is non-

negative in the sense that 〈g | A+
f g〉 ≥ 0 for all g ∈ K. One observes that the operator (9.81)

is non-negative if and only if the eigenvalues λ(m, j) are non-negative for all m ∈ {T, P} and all

j ∈ J(m),

〈h | A+
f h〉 =

∑
m∈{T,P}

∑
j∈J(m)

λ(m, j)|〈Ψ−(m, j) | h〉|2, (9.84)

for all h ∈ K. We now show that there are functions f ∈ C∞0 (R) such that λ(m, j) ∈ R for all j ∈ J(m).

The explicit construction of such functions will be the subject of the next section.

9.6 Existence of BF states: A scaling argument

A necessary condition for the existence of a BF state is that the eigenvalues of the operator Af are all

real. The eigenvalues of each operator Af (m, j) are, for m ∈ {T, P} and j ∈ J(m),

λ(m, j) =
f̂2(0)

2ωj

√
1− |βf (ω(m, j))|2. (9.85)

All these eigenvalues must be real. Hence the function f ∈ C∞0 (R) must be chosen such that,

|βf (ω(m, j))| < 1. (9.86)

Dealing with the transverse modes �rst, we see that λ(T, j) is manifestly real for all j ∈ J(T ) from the

following proposition:

Lemma 9.2. Let f ∈ L2(R) be positive almost everywhere, then,

|f̂(ω)| < f̂(0), (9.87)

for all ω ∈ R.

Proof. [26, Lemma 3.1]. n

However, the above Lemma is not su�cient to show that λ(P, j) ∈ R for all j ∈ J(P ). We will

now show by explicit construction that there exist functions f ∈ C∞0 (R) such that λ(P, j) ∈ R for all

j ∈ J(P ). Let,

F (t) =

∫ t

−∞
dt′Hτ (t′ + τp)−Hτ (t′ − τp), (9.88)
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be a plateau function with a plateau time τp > 0 and switch on time τs > 0 as constructed in

Chapter 8 section 8.5. The function (9.88) obeys F ≡ 1 on [−τp + 1
2τs, τp −

1
2τs] and has support

supp(F ) = [− 1
2τs − τp, τp + 1

2τs]. The function (9.88) admits a smooth square root, which we denote

f =
√
F . This is expanded upon in [26]. The square root f =

√
F is a smooth compactly supported

function and obeys f
∣∣
(−τp+τs,τp−τs)

≡ 1, hence it is a softening function. The Fourier transform of the

function (9.88) is,

F̂ (ω) = f̂2(ω) = 2τpsinc(ωτp)Ĥ(ωτpα), (9.89)

where α =
τs
τp

is a dimensionless parameter. Using the Fourier transform (9.89) we now give an

analytic bound on the parameter α such that |βf (ω(P, j))| < 1 for all j ∈ J(L). Since Ĥ(0) = 1, we

have F̂ (0) = 2τp, we then obtain, using (9.89),

βf (ω) =

(
2
( ω
M

)2

− 1

)
sinc(2ωτp)Ĥ(2ωτpα). (9.90)

By varying the dimensionless parameter α, we now show that there exists an α > 0 such that βf (ω) < 1

for all ω ∈ R. The leading order asymptotic approximation of the Fourier transform Ĥ(·) can be shown

to be [21],

Ĥ(ω) ∼ e−1/4π−1/2e−
√
|ω|/2 cos

(
|ω|
2
−
√
|ω|
2

)
|ω| → ∞, (9.91)

Therefore, there exists a k > 0 such that,

|Ĥ(ωτpα)| ≤ ke
−

√
ωτpα

2 , (9.92)

where,

k = sup
x
|Ĥ(x)|e

√
x

2 ≈ 2.55, (9.93)

which is seen in Figure 9.2.
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Figure 9.2: Plot of the function Ĥ(x)e

√
x

2 .

Using the bound (9.92) and the bound |sinc(x)| ≤ 1
x we then obtain,

|βf (ω)| ≤ 2
( ω
M

)2
(

1

2ωτp

)
|Ĥ(2ωτpα)|

≤ ω

M2τp
ke
−

√
ωτpα

2

=
k

α(Mτp)2

[
ωτpαe

−
√
ωτpα/2

]
≤ k

α(Mτp)2
sup
x
xe−
√
x/2

=
4k

e2α(Mτp)2
.

(9.94)
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Therefore if,

4k

e2α(Mτp)2
≤ 1, (9.95)

holds then the condition (9.86) holds and the eigenvalues (9.80) are real. Hence the condition,

4k

e2α(Mτp)2
≤ 1 =⇒ α =

τs
τp
≥ 4k

e2(Mτp)2
≈ 1.4

(Mτp)2
. (9.96)

To illustrate how small the switch-on time could be, consider the example of a massive W−boson with

mass of order 100Gev and τp ≈ 1040Gev−1 to be the lifetime of the Universe. The smallest switch-on

time allowed is given by,

τs =
2τp

(Mτp)2
=

2

M(Mτp)
≈ 10−42

M
≈ 10−20s. (9.97)

A plot for the functions βf (m, j) is shown in Figure 9.3 for su�cient and insu�cient scaling.
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Figure 9.3: In�uence of changing the parameter α in (9.90) for Mτp = 1. The �rst plot has su�cient

scaling whereas the second plot has insu�cient scaling.

We have shown with an explicit construction of a compactly supported function F that the eigen-

values of the operators Af (m, j), where f =
√
F , are real for a su�ciently large switch-on times.

Therefore, we have explicitly constructed a smooth compactly supported function such that A+
f is an

SJ operator of Af .

9.7 Hadamard Condition for BF States for the Massive Spin

One Field on Ultrastatic Slabs

Our goal of this section is to prove the the BF state with two-point function,

WBFf (h, g) = 〈h | A+
f g〉 =

∑
m∈{T,P}

∑
j∈J(m)

λ(m, j)〈h | Ψ−(m, j)〉〈Ψ−(m, j) | g〉, (9.98)
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where,

A+
f =

∑
m∈{T,P}

∑
j∈J(m)

−λ(m, j)
|Ψ−(m, j)〉 〈Ψ−(m, j)|
〈Ψ−(m, j) | Ψ−(m, j)〉

, (9.99)

is a Hadamard state on the algebra of observables AM (M, g).

Theorem 9.3. Let N = R × Σ be an ultrastatic spacetime equipped with a metric g = 1 ⊕ −h

where (Σ, h) is a compact Riemannian manifold. Suppose the spacetime (M = (−τ, τ) × Σ,1 ⊕ −h)

is isometrically embedded into N and let f ∈ C∞0 (R) be identically 1 when restricted to the interval

(−τ, τ). If the operator (9.99) has a real spectrum, then the BF state ωBFf with two-point function

(9.98) is a Hadamard state.

Proof. In ordered to show that the BF state ωBFf is Hadamard, it is su�cient to show that the normal

ordered two-point function : WBFf := WBFf −WH is smooth onM×M, where WH is the two-point

function for the ultrastatic vacuum state, which is in particular Hadamard. For a discussion and

precise de�nition of Hadamard states for the Proca �eld, the reader is refered to [24]. To accomplish

this, we de�ne,

WBFf (t, x; t′, x′) =
∑

m∈{T,P}

∑
j∈J(m)

WBFf (m, j)(t, x; t′, x′), (9.100)

and express the Proca modes in terms of the scalar and longitudinal modes. The components of the

two-point function (9.98) are,

WBFf (P, j)(t, x; t′, x′)00 =
eu(S,j)

2ω(S, j)
ν2
j

(
2 sinh(u(S, j)) cos(ω(S, j)(t− t′))

+ 2

√
sinh(2u(S, j))

2
cos(ω(S, j)(t+ t′)) + e−u(S,j)e−iω(S,j)(t−t′)

)
ξ0(S, j)(x)ξ0(S, j)(x′)

WBFf (P, j)(t, x; t′, x′)rk =
eu(S,j)

2ω(S, j)

(
ω(S, j)

M

)2
(

2 sinh(u(S, j)) cos(ω(S, j)(t− t′))

− 2

√
sinh(2u(S, j))

2
cos(ω(S, j)(t+ t′)) + e−u(S,j)e−iω(S,j)(t−t′)

)
ξr(L, j)(x)ξk(L, j)(x′)

WBFf (P, j)(t, x; t′, x′)0k =
−iνjeu(S,j)

2M

(
− 2i sinh(u(S, j)) sin(ω(S, j)(t− t′))
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+ 2i

√
sinh(2u(S, j))

2
sin(ω(S, j)(t+ t′)) + e−u(S,j)e−iω(S,j)(t−t′)

)
ξ0(S, j)(x)ξk(L, j)(x′)

WBFf (P, j)k0(t, x; t′, x′) =
iνje

u(S,j)

2M

(
− 2i sinh(u(S, j)) sin(ω(S, j)(t− t′))

− 2i

√
sinh(2u(S, j))

2
sin(ω(S, j)(t+ t′)) + e−u(S,j)e−iω(S,j)(t−t′)

)
ξk(L, j)(x)ξ0(S, j)(x′)

for all j ∈ J(P ) where r, k = 1, 2, 3 and where,

νj =

√(
ω(S, j)

M

)2

− 1. (9.101)

The contributions from the transverse modes is,

WBFf (T, j)(t, x; t′, x′)µν =
eu(T,j)

2 sinh(u(T, j))ω(T, j)

(
2 sinh(u(T, j)) cos(ω(T, j)(t− t′))

− 2

√
sinh(u(T, j))

2
cos(ω(T, j)(t+ t′))

+ e−u(T,j)e−iω(T,j)(t−t′)

)
,

where µ, ν = 0, 1, 2, 3. The ultrastatic vacuum state for the Proca �eld on the ultrastatic slab (−τ, τ)×Σ

is given by,

WH(h, g) =
∑

m∈{T,P}

∑
j∈J(m)

〈h | A(m, j)〉〈A(m, j) | g〉, (9.102)

with the integral kernel,

WH(t, x; t′, x′) =
∑

m∈{T,P}

∑
j∈J(m)

WH(m, j)(t, x; t′, x′). (9.103)

which has components,

WH(P, j)00(t, x; t′, x′) =
ν2
j

2ω(S, j)
e−iω(S,j)(t−t′)ξ0(S, j)(x)ξ0(S, j)(x′)

WH(P, j)0k(t, x; t′, x′) =
−iνj
M

e−iω(S,j)(t−t′)ξ0(S, j)(x)ξk(L, j)(x′)

WH(P, j)k0(t, x; t′, x′) =
iνj
M
e−iω(S,j)(t−t′)ξk(L, j)(x)ξ0(S, j)(x′)

WH(P, j)rk(t, x; t′, x′) =
1

2ω(S, j)

(
ω(S, j)

M

)2

e−iω(S,j)(t−t′)ξr(L, j)(x)ξk(L, j)(x′)

WH(T, j)µν(t, x; t′, x′) =
1

2ω(T, j)
e−iω(T,j)(t−t′)ξµ(T, j)ξν(T, j)(x′)

(9.104)
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The ultrastatic vacuum state (9.102) satis�es the Hadamard condition [24]. Therefore, if the normal

ordered two-point function : WBFf := WBFf −WH has a smooth integral kernel then the BF state

(9.98) satis�es the Hadamard condition. We observe that all terms in the kernel of the normal ordered

two-point function : WBFf : may be written as,

: WBFf : (m, j) =
∑

m∈{S,L,T}

∑
j∈J(m)

∑
σσ′∈{±1}

ασσ
′
(ω(m, j))(ejσ(m, j)⊗ ξ(m, j))⊗ (ejσ′(m, j)⊗ ξ(m, j)).

(9.105)

where eσj(m, j)(t) = eiσω(m,j)t) for σ ∈ {±1} for each m ∈ {S,L, T} and all j ∈ J(m) and where ασσ
′

obeys,

|ασσ
′
(ω(m, j))| ≤ ω(m, j)

M2

(
eu(m,j) sinh(u(m, j)) +

√
sinh(2u(m, j))

2

)

<
ω(m, j)e2u(m,j)

2M2

(
|βf (m, j)|2 + |βf (m, j)|

)
,

(9.106)

where βf (m, j) is given in (9.76) and where we have used,

eu(m,j) sinh(u(m, j)) <
e2u(m,j)

2
|βf (m, j)|2√

sinh(2u(m, j))

2
=
eu(m,j)

2
|βf (m, j)|.

(9.107)

Since ω(m, j) → ∞ as j → ∞ we have f̂2(ω(m, j)) → 0 as j → ∞ with rapid decay for each

m ∈ {T, P}. Furthermore by Lemma 9.2 we have |βf (m, j)| < 1 for each m ∈ {S,L, T} and all

j ∈ J(m). We therefore obtain,

lim
j→∞

e2u(m,j) = lim
j→∞

1√
1− |βf (m, j)|2

<∞, (9.108)

and hence,

e2u(m,j) ≤ sup
j
e2u(m,j) = sup

j

1√
1− |βf (m, j)|2

<∞. (9.109)

Since f ∈ C∞0 (R), it follows that f2 ∈ C∞0 (R) and therefore the Fourier transform f̂2(·) decays rapidly.

Hence, for all N ∈ N0 there exists a CN ≥ 0 such that |βf (m, j)| ≤ cNω−N for all ω ≥M . Hence, for

all N ∈ N0 there exists a CN ≥ 0 such that,

|ασσ
′
(ω(m, j))| < CN

supj(e
2u(m,j)))

2M2

1

ω(m, j)N−1
(9.110)
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By Theorem 4.7, if the following holds,∑
j∈J(m)

ωp(m, j) max
σ,σ′∈{±1}

|ασσ
′
(ω(m, j))|2 <∞, (9.111)

for all p ∈ N0 and each m ∈ {S,L, T} then the normal ordered two-point function : WBFf : has a

smooth integral kernel and the BF state is therefore Hadamard. Using the bound (9.110) we now

obtain,∑
j∈J(m)

ωp(m, j) max
σ,σ′∈{±1}

|ασσ
′
(ω(m, j))|2 < C2

N

(
supj(e

2u(m,j))
)
)2

4M4

∑
j∈J(m)

1

ω(m, j)2N−2−p , (9.112)

for each m ∈ {S,L, T}. To conclude the proof, we use Weyl asymptotics to provide a bound on

N(ω(m, j)), where N is the counting function de�ned by,

N(ω(m, j)) =
∣∣{ω(m, k) ≤ ω(m, j) | ω(m, k) is an eigenvalue of Pm +M2}

∣∣, (9.113)

and where Pm is −∆s
Σ for the Proca modes and −∆Σ for the transverse modes. Since (Σ, h) is

a compact Riemannian manifold of dimension n = 3, the asymptotic behaviour of the eigenvalues

ω2(m, j) is given by Weyl's law,

N(ω(m, j)) ∼ αω3(m, j), (9.114)

for some constant α > 0 [14]. Now let Mm(j)
•

= max{k ∈ J(m) | ω(m, k) = ω(m, j)}|, which is well

de�ned [20, Theorem 1 Section 6.5]. By counting, we obtain, for each m ∈ {S,L, T} and all j ∈ J(m),

j ≤Mm(j) = N(ω(m, j)) ≤ α′ω3(m, j), (9.115)

where we choose α′ > α to be su�ciently large so that the inequality holds. This then implies,∑
j∈J(m)

ωp(m, j) max
σ,σ′∈{±1}

|ασσ
′
(ω(m, j))|2 < C2

N

(
supj(e

2u(m,j))
)
)2

4M4

∑
j∈J(m)

1

j1/3(2N−p−2)
(9.116)

which converges for all N > 1
2 (p + 5). Therefore, by Theorem 4.7, the integral kernel of the normal

ordered two-point function : WBFf := WBFf − WH converges in Ω1(M ×M). Since WH is the

two-point function of a Hadamard state, we can conclude the the BF state ωBFf is Hadamard. n

•

In this chapter we have shown that there are signi�cant di�culties when one applies the SJ and

BF state construction to the spin-one �eld. In the case when the commutator function for the Proca
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�eld is de�ned on an ultrastatic slab spacetime with compact spatial section, the SJ state construction

fails since the commutator function has a complex spectrum. It is reasonable to assume that one

would face similar problems in other spacetimes. Furthermore, due to the complex spectrum of the

commutator function, it is unlikely that one could use the generalised SJ state construction presented

in Chapter 6 to construct a quasifree state for the Proca �eld. However, we have also shown that,

for suitable functions, the BF state is well de�ned for the Proca �eld on ultrastatic spacetimes with

compact spatial sections. It is reasonable to assume that one may extend the BF state construction

for the Proca �eld to other spacetimes, but this would require a substantial amount of work. It is

also reasonable to assume that the SJ vacuum with softened boundaries presented in Chapter 8 would

yield a quasifree Hadamard state for the Proca �eld, for reasons similar to the BF case. Finally, the

generalised SJ state with softened boundaries construction in Chapter 8 could be applied to the Proca

�eld, but since the spectral theory is signi�cantly harder for Krein space operators, this would present

a serious obstacle.
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Chapter 10

Outlook and Summary

What we call the beginning is often the end.

And to make an end is to make a beginning.

The end is where we start from.

T. S. Eliot.

In this thesis we have presented a novel construction of quasifree states for the scalar �eld based

on the SJ vacuum axioms. We call these states generalised SJ states and are valid in bounded regions

of globally hyperbolic spacetimes. In Chapter 7 we gave an explicit construction of an SJ thermal

state on ultrastatic slab spacetimes. We have presented a new construction of Hadamard states for the

scalar �eld based on the generalised SJ state construction and an observation of Sorkin. Finally, we

applied the BF and SJ state construction to the Proca �eld on ultrastatic spacetimes. We showed that,

whilst the SJ state is ill-de�ned, the BF state for the Proca �eld exists and satis�es the Hadamard

condition. We now present various potential avenues of research regarding the various constructions

presented in this thesis.

Generalised SJ States for the Free Scalar Field

In Chapter 6 we presented a new construction of quasifree states for the free scalar �eld valid in

bounded regions of globally hyperbolic spacetimes. The construction of a quasifree state ωSJϕ on the
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CCR algebra A(M) is achieved by setting its two point function to be,

WSJϕ(f, g) = 〈f | A+
ϕg〉 ∀f, g ∈ C∞0 (M), (10.1)

where A+
ϕ is the unique solution to a set of generalised SJ axioms for a suitable continuous function

ϕ. One could investigate whether there are any continuous, even, non-negative functions ϕ such that

the two point function (10.1) de�nes a Hadamard state. The choice ϕ = 0 yields the unsoftened SJ

vacuum and the choice,

ϕβ(λ) = |λ| e−βτ |λ|
−λ

1− e−βτ |λ|−1 , (10.2)

de�nes the thermal SJ state. The SJ vacuum state is not Hadamard on the ultrastatic slab spacetimes

and we have shown that the thermal SJ state also fails to be Hadamard on ultrastatic slabs. It would

be interesting to see if the function (10.2) holds in more general spacetimes. Furthermore, it would

be interesting to compute the timescale constructed in Chapter 7 Section 7.3 in other spacetimes, for

example a causal diamond or an expanding spacetime.

Now, if ψ(A) is smoothing and the SJ vacuum fails to be Hadamard, then the generalised SJ state

with two point function (10.1) will also fail to be Hadamard. However if ψ(A) is not smoothing it

could be possible that one could construct a function so that the two point function (10.1) de�nes a

Hadamard state. We remark here, however, that this is unlikely - it seems reasonable to assume that

all generalised SJ states will fail to be Hadamard. To prove this, one could follow a similar argument

to the proof that the SJ vacuum fails to be Hadamard on ultrastatic slab spacetimes [28]. Finally, it

would be interesting to see how the generalised SJ state construction presented in Chapter 6 �ts into

causal set theory. One could follow a suitably modi�ed construction of the SJ vacuum state presented

in [42] to construct a generalised SJ state for a free scalar �eld of a causal set.

Generalised SJ States with Softened Boundaries for the Free Scalar Field

In Chapter 8 we presented a new construction for a class of Hadamard states, which is based on an

observation of Sorkin [58] and on the new construction given in Chapter 6. We show that, on ultrastatic

slabs, the two point function

WSJρ,ϕ(f, g) = 〈f | A+
ρ,ϕg〉 ∀f, g ∈ C∞0 (M), (10.3)
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where,

A+
ρ,ϕ =

Aρ
2

+
|Aρ|

2
+ ϕ(Aρ), (10.4)

de�nes a Hadamard state whenever ϕ(Aρ) is smoothing. It would be interesting to see what role

the functions ϕ and ρ play on the properties of the SJ state with two point function (10.3). In [58],

Sorkin remarks that the axiom SJ2 can be thought of as a `ground state condition'. In our generalised

framework, the axiom is modi�ed to A+
ϕΓA+

ϕΓ = ψ(A) for a suitable function ψ, with ψ = 0 being the

minimum. The normal ordered two point function (10.3) with respect to the SJ vacuum with softened

boundaries (constructed from the operator A+
ρ,0) gives,

: WSJρ,ϕ := ϕ(Aρ). (10.5)

Therefore, for the normal ordered two point function above, the energy momentum tensor would depend

upon the choices of functions ϕ and ρ. It would be interesting to see this relationship. Furthermore, it

would be interesting to apply the generalised SJ state construction to other �elds. The Maxwell �eld

is one possibility, although the reader is warned that the SJ state based on the �eld strength tensor

of the Maxwell �eld does not exist; one faces similar problems that the SJ vacuum state construction

faces for the Proca �eld. It does however, remain unclear if one can construct the SJ state for the

Maxwell �eld based on the vector potential. One does not encounter imaginary eigenvalues, but a

general construction for the vector potential still remains elusive. If one can solve this problem, an

ambitious project could be the construction of a generalised SJ state for linearised gravity.

Let M = (R × R, g) be a globally hyperbolic spacetime and let ωH be a quasifree Hadamard

state constructed on M. It would be interesting to investigate whether there exist functions ϕ, ρ

such that the generalised SJ state with softened boundaries ωSJρ,ϕ constructed on the slab spacetime

((−τ, τ)×Σ, g) converges to the Hadamard state ωH as τ →∞. In other words, whether any quasifree

Hadamard state can be `approximated' by a generalised SJ state with softened boundaries. In Chapter

9 we constructed the BF states for the Proca �eld on ultrastatic slab spacetime. One could consider

constructing the SJ vacuum with softened boundaries for the Proca �eld; it would likely face the same

complications as the BF state construction but it seems reasonable to assume it would yield a quasifree

state that satis�es the Hadamard condition. One could also consider constructing a generalised SJ

state with softened boundaries for the Proca �eld on bounded regions of globally hyperbolic spacetimes,

but this would require a substantial amount of work.
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•

For want of a nail the shoe was lost.

For want of a shoe the horse was lost.

For want of a horse the rider was lost.

For want of a rider the message was lost.

For want of a message the battle was lost.

For want of a battle the kingdom was lost.

And all for the want of a horseshoe nail.
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Appendix A

Functional Analysis

We brie�y give various de�nitions for the functional analysis used in this thesis. For a more complete

exposition on the subject, the reader is referred to [53].

De�nition A.0.1. An inner product space is a vector space V endowed with an inner product,

〈· | ·〉 : V × V → C, (A.1)

that satis�es, for all α, β ∈ C and all f, g, h ∈ V ,

i) 〈f | f〉 ≥ 0,

ii) 〈f | f〉 = 0 if and only if f = 0.

iii) 〈f | αg + βh〉 = α〈f | g〉+ β〈f | h〉

iv) 〈f | g〉 = 〈g | f〉.

The inner product 〈· | ·〉 then induces a norm, denoted by ‖ · ‖ by the prescription ‖f‖ =
√
〈f | f〉

for all f ∈ V [53, Theorem II.2]. The norm induces a metric d(·, ·) by setting d(f, g) = ‖f − g‖ for all

f, g ∈ V .

De�nition A.0.2. An orthonormal basis of a Hilbert space H is a set {ej}j∈N ⊂ H such that the

linear space of {ej}j∈N is dense in H and so that,

〈ej | ek〉 = δjk, (A.2)

where δjk is the Kronecker delta symbol.
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De�nition A.0.3. A metric space in which all Cauchy sequences converge is called a complete metric

space.

De�nition A.0.4. A completed normed space (V, ‖ · ‖) is called a Banach space.

De�nition A.0.5. A complete inner product space (H, 〈· | ·〉) is called a Hilbert space.

De�nition A.0.6. A bounded operator is a map A : H → H over a Hilbert space H such that there

exists a c ≥ 0 such that, for each f ∈ H, ‖Af‖ ≤ c‖f‖.

De�nition A.0.7. Let A ∈ B(H) be a bounded operator over a Hilbert space H. The adjoint of A

is the operator A∗ ∈ B(H) such that 〈f | Ag〉 = 〈A∗ | g〉 for all f, g ∈ H. The operator A ∈ B(H) is

called self-adjoint if and only if A = A∗.

De�nition A.0.8. Let A ∈ B(H) be a bounded operator over a Hilbert space H. The adjoint of A

is the operator A∗ ∈ B(H) such that 〈f | Ag〉 = 〈A∗ | g〉 for all f, g ∈ H. The operator A ∈ B(H) is

called self-adjoint if and only if A = A∗.

Proposition A.1. The set of all bounded operators over H, denoted by B(H), is a Banach space with

norm,

‖A‖ = sup
06=f∈H

‖Af‖
‖f‖

. (A.3)

Proof. See [53, Theorem III.2]. n
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