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Abstract

This thesis investigates high-level Instruction Set Architectures (ISAs) and supporting processor

architectures. A Syntax Directed Imperative Language Processor (SDLP) and associated ISA have

been defined with the ultimate aim of reducing power consumption and improving performance.

The findings of this thesis suggest that there may be a number of benefits of the SDLP over

traditional ISAs and architectures. Initial results suggest that the SDLP ISA places less burden on

the memory system by reducing the number of instructions executed for a given program. It also

appears that the SDLP could reduce the number of interactions with the memory system for data.

These results are significant since a large portion of the total power for a system is consumed by

the memory system. It is illustrated how the SDLP requires fewer cycle counts for the equivalent

throughput of traditional microprocessor architectures. The implication is that further perfor-

mance improvements could be obtained with uniprocessors, before considering multiprocessors.

The main contributions of this thesis include:

• The design of a hybrid control flow and data flow architecture with a supporting Instruction

Set Architecture;

• Implementation of an assembler and software-based cycle accurate simulator for the SDLP

processor;

• Comparisons of the SDLP architecture with traditional CISC and RISC processors;

• It has been shown that high-level ISAs and supporting processor architectures can reduce

the burden on the memory system for both instructions and data; and can reduce the cycle

count of programs.
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Chapter 1

Introduction

1.1 Microprocessor Trends

Microprocessors are ubiquitous and used in almost every aspect of modern life. Significant portions

of the population use multiple computers on a regular daily basis, in the form of smart-phones,

desktop computers, tablet computers, gaming consoles and television and video broadcasting sys-

tems. The rapid increase in the performance of microprocessors has led to a huge increase in

demand over the years. This demand motivates processor vendors to increase performance further,

in what appears to be a cyclical feedback loop.

Microprocessor speeds have been increasing exponentially since their invention circa 1971, fol-

lowing Moore’s Law [16]. Moore’s Law states that the number of transistors laid out on a silicon

chip doubles approximately every two years. This trend began in the early 1970s and is continuing

to the present day. It follows that transistors have effectively been shrinking in size approximately

every two years. The clock speeds of microprocessors have also been increasing exponentially

during this time; clock frequencies have increased by three orders of magnitude since the early

1970s.

However these trends cannot carry on indefinitely and are coming to an end; clock speeds have

remained largely unchanged since circa 2005. There are two reasons why this level of performance

improvement cannot continue for practical computer systems.

Firstly, there is a practical limit on the Instruction Level Parallelism (ILP) that can be achieved

on a uniprocessor system and is reaching its limits for single-core processors. Designers have

exhausted most avenues for any further meaningful performance improvements. For the past 50

13



years, processor designers have mainly focused on optimising existing designs; fundamentally, there

have been very few revolutions.

Secondly, as processor clock speeds increase, so does power consumption. Condensing the

number of transistors on a silicon chip works to a certain extent. As the transistors are scaled

down, the switching speed increases making the processor faster. However, as transistors get

smaller, power density increases because power consumption does not decrease linearly with size.

This means that heat dissipation becomes so problematic that it can damage the silicon, National

Research Council [14]. Processor power consumption is exceeding the few hundred watts that can

be dissipated in a practical computer system [14]. Figure 1.1 illustrates a typical heat sink for

managing heat dissipation for a modern microprocessor.

Figure 1.1: Example Heat Sink for a Modern Microprocessor, taken from [7]

1.2 Microprocessor Limits

Even though huge performance gains have been made during the past 50 years, there was always

an inevitable limit on how long such gains could be made. An alternative to increasing the speed of

a single processor to achieve higher performance is to employ multiprocessors which offer hardware

parallelism coordinated by a single operating system. Instead of relying on a single processor,

multiple microprocessors and the necessary associated communication busses are laid out on the

silicon. Performance can be improved since there are more processors, and heat dissipation can be
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managed by distributing the power consumption over a larger area of silicon. It appears processor

vendors have been cornered into a situation where they have no option but to employ multipro-

cessors in an attempt to continue delivering improvements. Unfortunately, this strategy is severely

limited and any performance gains will appear insignificant compared with those achieved over the

past 50 years. This is because of the inherent limitations of multiprocessors and the difficulty in

programming them.

Most RISC ISAs are based on the work described by Katavenis [17]. His thesis describes the

benchmarking of C programs to understand the instructions executed most frequently in general

computing domains. Whilst noting that such exercises are compiler dependent (since the com-

piler will have been designed to select a constrained set of instruction combinations), this allowed

processor designers to focus on the core set of instructions that are selected the most often by

the compiler. This enabled the fundamental data paths to be optimised by removing unnecessary

circuitry and reducing the critical path. Much of this work was done in the early 1980s when the

dominant issue was performance. At that time the use of microprocessors was more limited and

analogue computers were certainly more prevalent than they are now.

The fundamental ISA and architecture of a processor and surrounding subsystems dictate to

some extent the basic performance ultimately achievable. In order to optimise performance further,

designers employ techniques to improve the common case. These approaches are aimed at reducing

the average execution time. This inadvertently means that temporal non-determinism is introduced

into the fundamental processor design.

There have been many alternative approaches to processor design over the past decades, al-

though many have failed in the commercial world. Examples include Stack and Dataflow archi-

tectures. The reasons for this may be technical, commercial or a combination of the two. Some

have been unfairly referred to as anti-patterns or dead-ends. An example cited by Nurmi [18] is

the Inmos Transputer. It is claimed that a significant reason for its demise was Occam. Occam is a

niche language used by the Transputer, which failed to compete with mainstream languages. How-

ever, it does not necessarily follow that because an approach fails to become popular, that it was a

bad idea. There are many environmental factors that contribute to the success of a given system:

technical, academic, commercial and momentum. There are many examples of where technical

ideas fail to become adopted by the mainstream to begin with, but later become widespread. An

example of this is the Java Virtual Machine (JVM) and Java Bytecode (JBC) which were greatly

influenced by earlier work on Forth [19].
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1.3 Research Questions

Having a narrow view towards research may result in limiting processor design and evolution since

it discourages revolutionary thinking. Previous old processor designs may now be more viable

faced with the modern day issues of power consumption and the associated limitation of perfor-

mance improvement. In order for processor technology to progress, it is necessary to reconsider

alternatives with a view to solving new and emerging challenges. This may include reconsidering

the design of the ISA and aspects of the architecture. Revolution over evolution should not be

discounted, at least from a research perspective, since there is a limit to how far a mature design

approach can be optimised. Commercial trends should not limit technical research.

There appears to be an implicit assumption that ISA design has reached a sweet spot and

Reduced Instruction Set Computers (RISC) and Complex Instruction Set Computers (CISC) are

already at an optimum in terms of performance and power consumption. A prevalent industry

opinion also appears to accept that RISC processors are best for reduced power consumption.

It has been suggested by Hennessy and Patterson that the only way that performance can be

increased and power consumption reduced further is via domain specific architectures [2, ch.7].

The general idea is that processors implementing domain specific algorithms and tasks can be

used in conjunction with general purpose processors. However, there may still be opportunities for

improving performance and reducing power consumption by considering the general purpose ISA.

This thesis proposes that high-level ISAs and supporting processor architectures can reduce the

burden on the memory system for both instructions and data; and can reduce the cycle count of

programs.

By reducing the burden on the memory system it may be possible to reduce cache sizes. This

may have the effect of reducing power consumption. Reducing the cycle count for programs

whilst at the same time limiting the power consumption per clock cycle, may reduce overall power

consumption further.

Whilst reducing the overall power consumption is a central motivation for the thesis, the results

can only be determined after a full ASIC implementation of a processor and compiler have been

developed. This is out of scope for this thesis and is noted for future work. Programmability of

the processor is not a focal point for the thesis, again this is left as future work when developing

an appropriate compiler.
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1.4 Thesis Structure

The thesis will begin with a Literature Review (Chapter 2) describing the different types of proces-

sor architectures with a discussion of the advantages and disadvantages of each approach. Multi-

processors are discussed as a way to improve processor performance. Next the Memory Hierarchy

is discussed since this has a significant impact on power consumption and performance.

The Problem Analysis (Chapter 3) discusses the motivation and challenges for multiprocessors.

To gain an independent opinion, benchmark results are presented to determine what processors

spend most of their time doing. Two potential ideas for both increasing performance and reducing

power consumption are then introduced. These ideas are explored further in Chapter 4 (Expression

Engine) and 5 (Abstract Instructions). Chapter 6 describes an SDLP Architecture and Simulator

supporting an Expression Engine and Abstract Instructions. The results are then explored, drawing

conclusions and suggesting future work for the continued development of the SDLP.
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Chapter 2

Literature Review

The following is a literature review and is intended to provide a foundation for the material

in later chapters. The software interface to a processor is via the Instruction Set Architecture

(ISA) and processor design approaches including different ISAs are discussed (Section 2.1). This

includes the most common processor architectures and other less common varieties which may

have been more popular in earlier decades. A discussion is then given illustrating how processor

designers have increased performance and throughput for uniprocessors. Dataflow architectures

aimed at increasing the granularity of parallelism are introduced (Section 2.1.5). This is followed by

Language Specific Processors (LSPs) and High-Level Language Computer Architectures (HLLCAs)

(Section 2.1.6) which provide explicit support for a particular language. A relatively new type of

processor architecture called Syntax Directed LSP (SDLSP) is finally introduced (Section 2.1.7).

This is a type of LSP which has an architecture defined by the language that it executes. The

motives for the shift towards multiprocessors are then explored (Section 2.2). Since accessing

external memory is orders of magnitude slower to access than on-chip memory, a discussion of how

memory systems can be organised and managed is covered (Section 2.3).

2.1 Processor Architectures

This section discusses the most common microprocessor architectures. These are Complex In-

struction Set Computer (CISC), Reduced Instruction Set Computer (RISC), Reduced Operand

Set Computer (ROSC) and Very Large Instruction Word (VLIW) computer. Less common archi-

tectures including Dataflow, LSPs and HLLCAs are also discussed.
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2.1.1 Complex Instruction Set Computers (CISC)

CISC architecture was the conventional design for microprocessors in the 1960s and 1970s and was

typified by a complex Instruction Set Architecture (ISA). An example of an early CISC micropro-

cessor is the VAX-11/780 minicomputer which provided over 300 instructions, 16 addressing modes

and more than 10 different instruction lengths. An example of a modern CISC microprocessor is

the 80x6-based Intel Pentium. One of its complex instructions is the MOVSB which copies a

memory byte pointed to by DS:SI to ES:DI. Then, depending on the direction flag, increments

or decrements SI and DI. If MOVSB is qualified with REP, then the operation is repeated until

the value of CX register is equal to zero. After setting up the required registers, REP MOVSB

can be used to copy blocks of data including strings. The instruction REP MOVSB is input data

dependent and terminates only when the value of CX reaches zero. Many CISC instructions are

multi-cycle, in that they execute over more than one clock cycle. This may be because an in-

struction has input data dependencies (as with REP MOVSB) or simply because the instruction

is sufficiently complex to require multiple instruction cycles.

2.1.1.1 Encoding

CISC computers are characterised by densely encoded instructions. There are three primary ad-

vantages with this. Firstly, the program image is compact making good utilisation of a limited,

potentially slow and expensive main memory. Secondly, since most early CISC-based computers

were programmed using assembly language, this made the programmers task much easier since the

programmer’s model of the processor is much closer to the ISA. Thirdly, the complexity of the

instruction set reduces the semantic gap between the ISA and a high-level language. Since the

assembly language instructions are designed to closely match the constructs of high-level languages

it means that a compiler can be simplified; transferring complexity from software to hardware is a

fundamental design philosophy of CISC. Figure 2.1 illustrates the typical encoding of a CISC ISA.

Figure 2.1: Typical CISC Instruction Encoding, adapted from Hennessy and Patterson [8, p.A-22]

The complexity of the instruction format has a direct impact on the complexity of the func-

tional units, for example, the decoder, pipeline, execution unit and memory architecture. How-
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ever, greater semantic meaning is packed into individual instructions making assembly language

programming or compiler code generation simpler.

2.1.1.2 Addressing Modes

CISC instructions generally provide complex addressing modes for source and destination operands.

Operands can specify register-to-register, register-to-memory and memory-to-register locations.

Furthermore CISC ISAs provide helpful ways of accessing memory which satisfies the needs of the

programmer and compiler. Table 2.1 is based on Silc et al.[1] and illustrates the addressing modes

found on most CISC-based microprocessors. Register Transfer Language (RTL) is used to show

the dataflow.

Addressing Mode RTL Description

Register reg1 ← reg2 Simple register transfer

Immediate/literal reg1 ← const
Literal is encoded in the
instruction

Direct/absolute reg1 ← mem[const]
Address of operand is stored
in the instruction

Register indirect reg1 ← mem[reg2]
Address of operand stored
in reg2

Auto-increment reg1 ← mem[reg2 + +]
Like register indirect, but
reg2 is post-incremented

Auto-decrement reg1 ← mem[−−reg2]
Like register indirect, but
reg2 is pre-decremented

Displacement reg1 ← mem[d + reg2]

Typically used for arrays.
d is encoded in the instruction,
and would typically be the
address of an array (lvalue).
reg2 would contain the offset
for the array element

Indexed and
scaled index

reg1 ← mem[reg2 ∗ scale] Can be used for arrays and
pointer dereferencing

Indirect and
scaled index

reg1 ← mem[reg2 + reg3 ∗ scale] Can be used for arrays and
pointer dereferencing

PC-relative pc ← pc + displ
The address is an offset from
the current pc.
displ is encoded in the instruction

Table 2.1: Common Addressing Modes, adapted from Silc et al. [1, p.7]
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2.1.1.3 Superscalar

Since a philosophy of CISC is to improve performance by adding more sophisticated hardware,

many machines are superscalar (super: beyond; scalar: one dimensional). A superscalar processor

executes more than one instruction during a clock cycle by simultaneously dispatching multiple

instructions to multiple functional units on the processor. Hence the term instruction-level par-

allelism (ILP) is often used to describe this feature. This form of physical parallelism increases

throughput for a given clock rate. Figure 2.2 illustrates how a simplified pipeline might process

instructions on a super-scalar architecture; the processor has two fetch units, two decoders and

two execution units. It is therefore able to achieve physical parallelism at each pipeline stage.

Figure 2.2: Superscalar Pipeline

2.1.2 Reduced Instruction Set Computers (RISC)

RISC can be considered a minimal design philosophy for processors. Advocates of RISC architec-

tures claim that adding more sophisticated logic to a processor to improve non- critical instructions

negatively affects other aspects of the design. This degradation in overall performance may in-

clude longer critical paths, increased propagation delays and increased power consumption. The

increase in physical complexity may only be required for satisfying instructions that rarely execute

in real-world programs.

RISC architecture has become the conventional microprocessor design for modern day mobile

devices and embedded systems. For example, the ARM series of microprocessor is used in the
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majority of mobile phones and portable computing devices. ARM, the PowerPC and MIPS are

commonly used in embedded real-time systems.

2.1.2.1 Encoding

RISC instructions are typified by a simple unified encoding scheme; as such they are considered

primitive when compared with CISC instructions. The motivation for simple instructions is de-

scribed by Katevenis [17]. Profiling was conducted during design exploration of the Berkley RISC

project. Several C and Pascal benchmark programs were used to profile the types of instructions

executed and addressing modes. The studies indicated that for the benchmark programs executed,

complex instructions are used much less often than simple instructions. The premise was that

removing the infrequently used and unnecessary instructions meant that the processor could be

made simpler and more efficient.

The unfortunate consequence is that RISC-based programs suffer from code bloat. This is the

reason that the ARM ISA includes an additional 16-bit ISA called the ARM Thumb instruction

set [12]. The differences between example CISC and RISC code can be seen in Table 2.2.

C CISC (8086) RISC (ARM)

a = b + c ;
movl −24(%bp) ,% ed i
addl −28(%bp) ,% ed i
movl %edi ,−20(%bp)

l d r [ r0 ] , r5
l d r [ r1 ] , r6
add r7 , r5 , r6
s t r [ r2 ] , r7

Table 2.2: Example C code with corresponding CISC and RISC based assembly code

2.1.2.2 Addressing Modes

RISC architectures provide primitive load/store addressing modes. For example, to increment an

operand held in memory, the operand must first be loaded into a register. Then the value in the

register can be incremented. Finally, the value of the register can be stored back to memory.

A restricted load/store addressing allows constant instruction cycle times. Constant instruc-

tion cycles simplify pipeline stages, instruction decoding and execution. The CISC philosophy of

providing multiple addressing modes leads to a number of design complications. For example, if

an opcode allows one or more operands to be addressed in memory (as opposed to only registers),

this requires variable length instructions because the memory address must be specified along with

the opcode itself. Figure 2.3 illustrates the typical format of a RISC instruction.

22



Figure 2.3: RISC Instruction Encoding, adapted from Hennessy and Patterson [8, p.A-22]

RISC computers have a large number of registers which complement the load/store addressing

mode. Most of the registers can be used in any context; they are not tied to particular instructions.

This reduces the number of memory accesses and so reduces the probability of cache misses and

memory access delays. RISC computers are also likely to implement a Harvard memory model,

where the instructions and data are held in separate caches. This is in contrast to CISC architec-

tures which usually implement a Von-Neumann memory model where instructions and data share

a unified cache, Hennessy and Patterson [8].

2.1.3 Reduced Operand Set Computers (ROSC)

ROSC processors are more commonly referred to as stack-based processors. A stack data structure

is used instead of a register set. An example of a stack based computer is a reverse polish interpreter.

Operands are held on top of the stack. These are popped off the stack, an operation is performed,

and the result is pushed back. Stack architectures were more prevalent in the 1960s and 1970s.

LaForest describes three generations of stack-based computers [20].

Modern day stack architectures are more commonly used for abstract machines, in other words,

interpreters and runtime systems for intermediate code. Notable examples include the Pascal P-

Code, Forth and the Java Virtual Machine. Koopman [21] describes many stack-based computers

ranging from 8-bit to 32-bit machines. Notable examples of hardware stack machines include the

Transputer, Pascal Micro Engine, and various Forth implementations.

2.1.3.1 General Architecture

Stack computers use one or more last-in-first-out (LIFO) stacks instead of random access registers

to organise operands. The top elements of the stack are used implicitly by the ISA. Whilst this may

appear restrictive, Koopman [21] argues that many register-based processors spend a significant

amount of time emulating stack-based processors. This observation is probably based on how

modern languages implement function calls and how compilers evaluate expressions. Koopman

categorises stack architectures in three dimensions; stack size (small or large), number of operands
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(0, 1 or 2) and number of stacks (single or multiple). Small on-chip stacks limit cost but may require

operands to be spilled to and restored from main memory. Most practical stack machines allow

2 operands to be specified as part of the opcode. Single stack architectures are more common,

though some use multiple stacks for example, separate data and return stacks, as with Coates

[22]. Multiple stacks are usually employed to separate out related data which can be difficult to

manipulate using a single stack. Whilst there are a number of benefits of stack-based architectures

there are also a number of disadvantages; the most common and significant being the restrictive

access of operands held within the stack. Stack machines been developed further in recent years,

as described by Crispin-Bailey [23] and Coates [22].

2.1.3.2 Encoding

ROSC architectures are typified by a complex ISA but with extremely simple encoding. For exam-

ple, the Java Virtual Machine (JVM) [24] includes type information with the opcode (otherwise

known as bytecode) to aid verification during dynamic loading. For example iadd is used to add

two integers whereas fadd is is used to add two floating point types.

There are a number of complex bytecodes which provide direct support for the Java language.

These include support for language features including array management, exception handling and

synchronisation. An example JVM instruction is multinewarray, Venners [25]. This instruction

has three operands. Two bytes are combined to provide an index into a class constant pool which

contains further information for creating the array. A third operand byte is used to specify the

number of dimensions for the array. This is used so that the correct number of sizes for each

dimension (assuming row major ordering) can be popped off the expression stack. Whilst this

instruction is considered very complicated it can be represented in the same memory space as a

primitive 32-bit RISC instruction (the type information is contained in the associated class files

constant pool). Practical Java processors, however, follow a RISC philosophy of implementing

complex instructions in the software runtime system, an approach first used with Forth.

2.1.3.3 Addressing Modes

The restrictive nature of a LIFO stack means that opcodes must have their associated operands

on top of the expression stack. This is what is meant by Reduced Operand Set Computer. The

location of the operands, the source and the destination are implied; they do not need to be

explicitly stated. For example iadd pops two integers from the expression stack, adds them, then

pushes the result.
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2.1.4 Very Long Instruction Word Computers (VLIW)

An approach to improving performance in CISC designs includes superscalar execution; this re-

quires considerably complex hardware. The objective of VLIW is to replace the superscalar ap-

proach to parallel processing by moving complexity away from the hardware and into the compiler.

This is analogous to the RISC design philosophy of moving complexity from the processor and into

the compiler. Hence, VLIW processors do not perform any dynamic scheduling or reordering of

operations. All operations specified within a VLIW instruction must be independent of each other,

in order that they can execute in parallel [1]. VLIW can be considered a static, compile-time

approach to superscalar architecture.

2.1.4.1 Encoding and Addressing Modes

The ISA is normally based on RISC ISA and hence the encoding and addressing modes are very

similar, Hennessy and Patterson [8].

Instructions that can be executed in parallel without interfering with one another are combined

to form a long instruction. This super instruction, consisting of several instructions, can be executed

in parallel by the VLIW processor. For example, if a super instruction consists of four instructions,

the VLIW processor will have four execution units capable of executing all four instructions at the

same time. Hence, the compiler groups independent instructions capable of being executed in

parallel so as to keep multiple execution units busy. In cases where this is not possible, the

compiler must insert noops in the large instruction word. However, this can increase code bloat

found with RISC ISAs. This static, ahead-of-time encoding of parallel operations results in much

simpler hardware compared to CISC and RISC designs.

VLIW can be regarded as a specialist architecture. It has become relatively popular in the

area of signal and image processing where parallelism is reasonably easy to detect at compile

time, Hennessy and Patterson [8]. In contrast, parallelism in general purpose applications is more

difficult to detect at compile time.

2.1.5 Dataflow Computers

Dataflow Computers adopt a architecture very different from the classic Von-Neumann model of

computing. To understand Dataflow Computers, it is helpful to first recap on the traditional Von-

Neumann model of computing. The Von-Neumann model is based on control flow. “The control

flow ordering is based on the idea of a temporal sequence of operations”, Sharpe [9, p.18]. The
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classic Von-Neumann architecture executes the program using a variation of the fetch, decode,

execute cycle. An instruction is fetched from the memory system and loaded into the control unit.

The instruction then drives the control unit which loads operands into an internal register bank,

invokes the ALU and writes register results back to the memory system. This is the fundamen-

tal model for software-based computers since The University of Manchester’s Baby (circa 1948),

recognised as the world’s first digital computer which executed a stored program [26].

Dataflow computers directly contrast the traditional von Neumann architecture or control flow

architecture. “A dataflow program is one in which the ordering of operations is not specified by

the programmer, but that is implied by the data dependencies” Burger et al. [9, p.8]. Dataflow

computers were a prominent topic of research the 1970s and early 1980s. Jack Dennis of MIT pio-

neered the field of static dataflow architectures, Dennis [27], Rumbaugh [28] while the Manchester

Dataflow Machine, Gurd et al. [10] and MIT Tagged Token architecture were major projects in

dynamic dataflow.

Conceptually, the processor does not have a program counter, register bank and single ALU.

The CPU executes the computations in the order of the data interdependencies and the availability

of hardware resources; it effectively executes a dataflow representation of the program. A dataflow

CPU employs direct instruction communication. The processor delivers a producer computation

output directly as an input to a consumer computation input, instead of using a register set to

store the intermediate result.

Since program execution is determined by the data interdependencies of instructions and the

availability of resources, dataflow processors employ a form of out-of-order execution. Out-of-

order execution has become the dominant feature of superscalar processors since the 1990s in

order to increase Instructions Per Cycle. “Modern out-of-order issue RISC and CISC designs

require many inefficient and power-hungry structures, such as per-instruction register renaming,

associative issue window searches, complex dynamic schedulers, high-bandwidth branch predictors,

large multi-ported register files, and complex bypass networks” Burger et al. [29, p.46].

To understand conceptually how a dataflow computation executes, an example is helpful. Fig-

ure 2.4 illustrates the dataflow graph for a program taken from Sharp [9, p.55] that calculates

the difference between the sum and product of two numbers. The variable a is copied using de-

multiplexers to the + and * nodes. Similarly, the variable b is copied to nodes + and *. The

respective nodes then take the inputs, perform the appropriate calculation and output the results.

These outputs become the inputs to the - node. Once the final calculation is executed, the result

is output from the - node.
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Figure 2.4: Dataflow Computation from Sharp [9, p.55]
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Figures 2.5, 2.6, 2.7 and 2.8 illustrate the execution steps. The small circles over the arcs

illustrate the intermediate results during program execution. Data flowing along arcs between

nodes is represented by a token. Tokens can be constants, variables or control data. A node is

enabled when all of its input tokens are available1.

First the variables a and b are presented as tokens for the copy nodes as shown in Figure 2.5.

The processor detects that the required input tokens to the copy nodes are available, which causes

them to be enabled. This means that the nodes can be fired. In other words, the copy nodes

execute and output the results as input tokens to the + and * nodes, shown in Figure 2.6.

The + and * nodes are enabled when their input tokens are available and therefore fire to

produce their tokens to the - node (Figure 2.7). The - node detects this and becomes enabled,

which causes it to fire. Its output token is the final result and shown in Figure 2.8.

Figure 2.5: Dataflow Computation Snapshot (a) from Sharp [9, p.56]

1There are exceptions to this rule, for example the merge node. These cases are discussed by Sharp [9].
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Figure 2.6: Dataflow Computation Snapshot (b) from Sharp [9, p.56]

Figure 2.7: Dataflow Computation Snapshot (c) from Sharp [9, p.56]
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Figure 2.8: Dataflow Computation Snapshot (d) from Sharp [9, p.56]
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Conditional statements can also be represented using a dataflow graph. Figure 2.9 illustrates

how a while loop can be implemented using a switch and a merge node. The switch node places

the input token on the appropriate output arc depending on the control input. The merge node

places whichever input token is available on the output arc.

Figure 2.9: While loop Dataflow Graph based on Sharpe [9, p.32]

Early dataflow computers were programmed using graphical notation. However, there are

various problems with this approach. Cyclic graphs such as the one in Figure 2.9 can suffer from

deadly embraces and race conditions. These problems can be addressed by constructing acyclic

graphs instead. Although more restrictive, a simple tree structure can be used to represent program

structures whilst avoiding some of these problems.

The dataflow program illustrated in Figure 2.4 is capable of calculating the difference between

the sum and product of two numbers, but not much more than this. Hard-coding the links between

the node and the arcs like this is referred to as a static architecture and may not be very useful for

executing arbitrary programs. To be flexible and practical, dataflow architectures can be designed

for different types of configuration:

• Static

• Reconfigurable Static

• Runtime Dynamic

A static architecture, as shown, means that the graph structure is hardwired by the processor

and cannot be changed. Whilst such an architecture may appear very restrictive, it may be possible

to add flexibility by allowing each node to support multiple operations. Whilst the connections
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of the arcs cannot be modified, the node operations can selected via the software instructions. A

reconfigurable static architecture is one that allows the node operators and arc connections to be

set during program loading. In other words, the graph can be configured on a per-program basis.

The information to perform such configuration is provided by the compiler or other parts of the

software tool-chain. A runtime dynamic configuration is the most flexible and allows the nodes

and the arc connections to be configured by the instructions, as the program executes.

Figure 2.10 illustrates the processor block diagram for the Manchester Dataflow Computer

taken from Gurd et al. [10, p.40]. This is referred to as a ring architecture where each of the

hardware components sit in a ring configuration connected to the host computer system via an

I/O Switch. The modules operate independently of one another. The modules are independently

clocked and communicate asynchronously via the ring.

Tokens flow around the ring in a clockwise fashion. Tokens destined for the same instruction are

paired together by the Matching Unit. The Overflow Unit is used when the limited storage of the

Matching Unit is exhausted, for example if the program has a large data set. Tokens then obtain

their associated instruction from the Instruction Store. The instruction and the input tokens are

then forwarded onto the Processing Unit for execution. The output tokens circulate back to the

Matching Unit via the Token Queue. This is used to support uneven token flows. The I/O Switch

module allows programs and data to be loaded and results to be uploaded via the host computer.
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Figure 2.10: Manchester Dataflow Block Diagram, taken from Gurd et al. [10, p.40]
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An example of more recent work on dataflow computing is by the University of Texas at

Austin, developing the TRIPS processor which executes an EDGE ISA as described by Burger et

al. [29]. EDGE is defined as Explicit Data Graph Execution. It is essentially an ISA specifically

designed for dataflow processors, supporting direct instruction communication. The ISA directly

expresses the dataflow graph generated by the compiler instead of relying on the processor to

discover this information during execution. This means the hardware does not need to re-discover

this information at runtime, resulting in significant savings in complexity and power.

The TRIPS processor [29] contains two cores. Each core consists of 16 Execution Units organ-

ised as a 4 * 4 matrix using a lightweight network. Each Execution Unit is capable of executing 8

instructions, therefore a total of 128 instructions can be supported. These are referred to as hyper-

blocks. Instructions with an Execution Unit are EDGE instructions and hence, they are executed

as dataflow graphs. “The TRIPS microarchitecture behaves like a conventional processor with

sequential semantics at the block level, with each block behaving as a mega-instruction. Inside the

executing blocks, however, the hardware uses a fine-grained dataflow model with direct instruction

communication. The processor can achieve power-efficient, out-of-order execution across an ex-

tremely large instruction window because it eliminates many of the power-hungry structures found

in traditional RISC implementations”, Burger et al. [29, p.47].

An evaluation of the TRIPS Computer System by Gebhart et al. [30] concludes that the

performance of the TRIPS processor executing SPEC CPU200 benchmarks is outperformed by the

Intel Core 2 processor. However, TRIPS did match the Pentium 4. On simple benchmarks TRIPS

did outperform the Intel Core 2 by 10% and hand-optimised code outperforms it by a factor of 3.

These comparisons were for cycle counts, not power consumption.

Pure dataflow programs appear to be better expressed using functional programming languages

rather than imperative, control flow-based languages. These issues are discussed further by Sharp

[9]. It is interesting that the TRIPS architecture uses a hybrid approach where a dataflow model

is used at the intra-block level and a control-flow model is used at the inter-block level. This

should make the approach more realistic for executing the vast majority of software programmed

using imperative languages. However, it still employs a dataflow execution approach at the coarse-

grained block level, comprising of upto 128 instructions. Having a large instruction window will

undoubtedly introduce pressure on the compiler and toolchain when attempting to calculate an

optimal dataflow solution. Some of the issues for compiler development are introduced by Smith

et al. [31].
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2.1.6 Language Specific Processors (LSPs) and High-Level Language

Computer Architectures (HLLCAs)

Language Specific Processors (LSPs) and High-Level Language Computer Architectures (HLLCAs)

are architectures with the goal of directly supporting the execution of a software programming

language. The term LSP encompasses HLLCA and is the most general form of language processor.

LSP can be used to describe any software-based interpreter or hardware processor which offers

support for a particular programming language. Many LSPs are interpreters or virtual machines,

Smith and Nair [32]. They are often implemented as stack machines executing a ROSC-based

ISA as discussed in Chapter 2.1.3. Some LSPs are implemented in hardware, for example, Coates

[22] defines a hardware Java Virtual Machine (JVM) for use in hard real-time systems. The Java

Virtual Machine is a classic example of an LSP. Another well known LSP is the Transputer [33]

designed to execute Occam.

An HLLCA may be regarded as a more specialised form of LSP. A definition is given by Chu,

“a high-level language computer system is one that can accept and execute a high-level language

program”[34]. In other words, a HLLCA supports the execution of a programming language at the

source level or a direct representation of the language constructs.

HLLCAs were popular for the Lisp programming language in the 1970s and 1980s. They were

given particular consideration for functional and logic languages (e.g. Lisp and Prolog) which had

to be executed on processors designed primarily for executing imperative language-based programs.

The motives for HLLCAs include the following:

• Reduce the semantic gap between programming and machine languages;

• Simplify the compiler by reducing the semantic gap between the processor and compiler;

• Increase code density, thus reducing memory costs;

• Eliminate or drastically reduce system software;

• Increase throughput and efficiency;

• Ease debugging.

However, HLLCAs have been heavily criticised in the past, for example by Ditzel and Patterson

[35].

2.1.7 Syntax Directed LSPs (SDLSPs)

A Syntax Directed Language Specific Processor (SDLSP) is an LSP which has an architecture

defined by the grammar rules of the language itself, Audsley and Ward[11]. SDLSPs are generally
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smaller than traditional general purpose CPUs and programs can be expressed in less space than

a program compiled for a traditional CPU. An important aspect is the parallel evaluation of

expressions, Audsley and Ward [11].

An SDLSP has the following characteristics according to Audsley and Ward [11]:

• The architecture follows the grammar rules of the language that it executes or interprets;

• Instructions are simple encodings of the source language;

• Executes instructions in a non-atomic nested manner;

• Permits independent parts of statements, constructs and expressions to be executed in par-

allel.

An example SDLSP is also presented by Audsley and Ward [11] which executes a language

called TINY. TINY is a small language comprising of basic imperative language constructs, for

example, read, write, assign, if and repeat. The type system is limited to supporting only integers

and there is no support for functions or procedures. Figure 2.11 illustrates the architecture of the

SDLSP. It can be seen that the architecture comprises of modules resembling the programming

constructs read, write, assign, if and repeat.

Figure 2.11: TINY Architecture, from Audsley and Ward [11]

It can be argued that the only part of an imperative language which can easily be executed

using a dataflow paradigm are the individual expressions and this is the approach that the SDLSP

takes. Individual TINY expressions are evaluated using an expression tree like the one illustrated

in Figure 2.12. Constants (C1, C2, C3, C4) or variables (V1, V2, V3, V4) enter the leaves of the

tree and flow to the root at the top of the tree. Nodes within the tree can be programmed to
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use various operators. It can be seen that the structural properties of trees naturally facilitate

parallelism. For example, it can be seen how all the nodes at a particular level could be executed

together in a single step or clock cycle. By including multiple copies of operator nodes, higher

levels of parallelism can be achieved.

Figure 2.12: TINY Expression Tree, based on Audsley and Ward [11]

2.2 Multiprocessors

Until recently, the aim of processor designers has been to increase performance by focusing on the

optimisation of the single processor. There are two fundamental ways in which this is done:

• Increasing the number of instructions that complete execution on each clock cycle; in other

words by increasing throughput;

• Decreasing the clock period; in other words, increasing the clock frequency.

However, designers of multiprocessors increase processing power by increasing the number of

processor cores on a silicon chip. This allows the execution of a program to be distributed over

the processors, achieving physical multiprocessing.

2.2.1 Theoretical and practical Speedup

The potential performance increases offered by multiprocessors can be described using Amdahl’s

Law [36]. Amdahl’s Law illustrates the potential speed up by considering the portions of a program
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that can be made to run in parallel:

speedup =
1

(1− p) + p
n

Where p is the portion of a program that can be executed in parallel, and n is the number of

additional processors. (1− p) is the portion of the program that must be executed sequentially.

2.3 Memory Hierarchy

The memory hierarchy includes all the components that the CPU interacts with when reading and

writing to main memory. This includes memory controller, caches and stack memory managers.

These will be discussed next.

2.3.1 Caches

Caches are used to increase the throughput of a processor by reducing the gap between the access

time of data held in the processor and the main memory. As illustrated in Table 2.3, the time taken

to access data within the CPU can be quantified in pico seconds whereas accessing data in main

memory can be quantified in nano seconds. This difference of more than two orders of magnitude

means that most processors have become reliant upon high-speed on-chip cache memory. This

high-speed memory is managed by a hardware cache controller.

CPU L1 Cache L2 Cache Main Memory
300 pico seconds 1 nano second 5 - 10 nano seconds 50 - 100 nano seconds

Table 2.3: Comparative access times, adapted from Hennessy and Patterson [2, p.79, Fig. A]

Caches are commonly organised within a memory hierarchy where the fastest cache is the closest

to the CPU. However, since the fastest memory is the most expensive it is also the most limited

in size. It is common for systems to have two caches, known as a L1 (level 1) and L2 cache. If

data is not found in the small high-speed L1 cache, the relatively slower L2 cache is checked. If

the data is not located in either, then the data is obtained from the much slower main memory.

Caches are integrated with a processor such that the software is largely unaware of the presence

of a cache. For some cache designs, even the operating system may be unaware of a cache.
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2.3.1.1 Unified versus Split Caches

A cache can be used to store both instructions (opcodes) and data (operands). This is called a

unified cache and follows the Von-Numan memory architecture. Alternatively, a memory system

can be organised so that one cache stores instructions and a separate cache stores data. These are

commonly called I-Cache (instruction cache) and D-Cache (data cache) respectively and follow

the Harvard memory architecture.

The advantage of a unified cache is reduced gate count. Separate instruction and data caches

increase the gate count since two distinct cache controllers are required. In some scenarios they

can introduce memory inconsistencies. However, the use of separate caches doubles the cache

bandwidth since it allows the processor to fetch instructions from the instruction cache while

simultaneously reading or writing data to the data cache.

2.3.1.2 Data Structures

Figure 2.13 illustrates the data structures which form a commonly used cache known as a four-way

set associative cache. This design can be used for instruction, data or unified caches. The cache is

4KB in total (210 from bits 0-9, multiplied by 4 ways). Each way has 64 lines (26 from bits 4-9).

Each cache line contains four words (24 from bits 0-3 divided by 4 bytes per word)2, Sloss et al.

[12].

Part of the address (bits 4 to 9) is the set index. This is used to map the memory address space

to the cache address space. The tag is the remaining bits of the address and is used as a unique

key for the data stored in the cache. Hence, the tag is used to decide whether a hit or miss is the

result of a lookup. The data index is used to select a specific word in the cache line.

2Memory for holding cache-tags and status bits are not included in the size.
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Figure 2.13: Four way set associative cache, taken from Sloss et al. [12, p.413]
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A hardware cache can be viewed abstractly, similar to a software hash table data structure:

• array indexed by the hash key is synonymous with the set

• way is synonymous with the list of entries for an array element for a given hash key

A phenomenon known as thrashing can occur where data share a set index. For example, where

bits 4 to 9 of the address are xxxxxxxxxxxxxxxxxxxxx111111xxxx. Thrashing occurs when data

in a cache location is repeatedly replaced with data for different physical memory locations. An

example is in a unified one way set associative cache, with two functions called in a loop and the

start address of both functions have the same set index. To prevent thrashing, a set can increase

the number of ways. For example, a cache with a single way is referred to as direct. A cache with

2-ways is a two way cache, and a cache with 4-ways is a four way cache etc. A cache that can map

any memory address to any cache line is a fully associative cache. Each subsequent way can be

used to store additional data with the same set index. As associativity increases, the probability of

thrashing decreases. However, as the associativity increases, correspondingly, so does the hardware

logic of the cache controller.

2.3.1.3 Cache Tagging

Cache tagging can be performed using a number of schemes, each with various advantages and

disadvantages. Popular cache organisations include the following:

• Virtual

• Virtual with Physical Tags

• Virtual with Virtual Tags and Process Identifier

• Physical

In systems incorporating a memory management unit (MMU) a virtual cache can be used.

A virtual cache is tagged and indexed with the virtual address of the data being cached. The

advantage of this design is that the virtual address of the accessed data does not need to be

translated first by the MMU for every read or write operation. A virtual cache can therefore be

seen as closer to the processor. The virtual address only needs converting to a physical address

when a cache miss occurs. However, the translation can be done in parallel alongside cache lookup.

Whilst virtual caches are efficient by saving the address translation step, they are the most

difficult type of cache to manage for an operating system. Since processes share virtual address

space, problems known as ambiguities and aliases can occur. The operating system must manage
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and prevent these problems. An ambiguity occurs when different data have the same tag and

index in the cache. Data cached by one process could be mistaken for data belonging to another

process. The consequence of an ambiguity is that the program will get the wrong data. An alias

occurs when more than one virtual address is used to refer to the same physical address. This can

occur if a process has the same shared memory region attached at two different virtual addresses or

when two different processes use the same shared memory at different addresses in their respective

address spaces.

To prevent ambiguity and alias errors in virtual caches, the operating system must ensure that

data in the virtual cache is written back to main memory before another process uses it. This

essentially means that a virtual cache must be flushed and invalidated on a context switch. This

can be time consuming and the time taken is proportional to the size of the cache and number of

modified lines. The new process will then miss on all its memory accesses since the cache has been

completely invalidated. This means that spatial and temporal locality are under utilised.

There are alternative approaches to using a purely virtual cache which retains the spatial and

temporal locality. One approach is to augment a process identifier with the virtual address tag.

This effectively makes the virtual address unique. Whilst a virtual address tag can be common to

multiple processes, the process identifier is unique. An alternative way of making the tag unique is

to use a virtual cache, but use the physical address for the tag. The set index is still derived from

the virtual address. The drawback of a virtual cache with a physical tag is that cache lookup is

dependent on virtual-to-physical address translation by the MMU. Typically, the virtual address is

sent to the cache and the MMU. This way the address translation and cache access are overlapped.

While the MMU is translating the address, the cache begins its look-up by hashing the virtual

address to obtain the index.

A physical cache uses the physical address for both the set index and the cache tag. With a

physical cache the virtual address must first be translated to the physical address by the MMU.

This improves the spatial and temporal locality of the cache since the cache does not need to be

flushed when a context switch occurs. Physical caches are also able to provide better distribution

of data throughout the cache since unique physical addresses are used for each process, rather than

the same virtual addresses being used by multiple processes. The cache tag also contains state

information for the cache line. This includes a valid bit and a modified bit.
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2.3.1.4 Cache Read

When a program reads a variable, and assuming that the variable is held in main memory, the

processor will execute a move or load instruction for the variable. The memory system will intervene

and, rather than read the variable from main memory, it will first check to see if it is present in the

cache. The index is obtained from the variable address, which is then used to index the set. The

tag is obtained from the variable address and compared with the ways for the set. This comparison

is performed in parallel rather than sequentially.

The cache tag also contains state information for the cache line. This includes a valid bit. When

the system is booted the valid bit for all cache lines is set to 0 (which denotes false). This is so

that invalid and uninitialised values are not returned from the cache. When a valid cache line is

stored in the cache the valid bit is set to 1 (denoting true) meaning that the cache line contains

usable data. This is termed a hit.

The cache controller checks the valid bit in parallel with the tag of each way. If a tag matches

and the valid bit is set, then the variable has been successfully located in the cache. The line index

is then used to extract the specific word in the line for the variable. If a tag match with a valid

status bit cannot be found then a miss is the result. A cache miss will result in the memory system

using the value from main memory instead. In this scenario the processor has to wait a number

of processor cycles for the variable to be returned from main memory. The processor cycles are

known as wait states. When the variable is returned from main memory, it is written to the cache

by the cache controller and the valid bit is set to 1. This is done in parallel whist being used by

the processor.

2.3.1.5 Cache Write Policy

At some point the program will write a variable by executing a move or store instruction. The

cache is first searched in the same manner for a cache read. If the search results in a hit, then the

data in the cache line is replaced. The way in which the data is written to the cache is known as

the write policy. The write policy can either be write back or write through.

With write back policy the data is only initially written to the cache. This has the advantage of

speed and simplicity in the sense that once the memory system has written the data to the cache,

then the write is complete. However, the data must be written back to main memory when the

cache line is evicted (see replacement policy below), or when the operating system explicitly flushes

the line back to main memory. With write back, a memory system is susceptible to inconsistencies
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and the task of ensuring memory coherence becomes complicated and subtle. With write through,

data is written back to the cache and through to main memory. These two operations are done in

parallel and the processor is able to resume execution whilst the write through is being performed.

However, writing through to main memory consumes memory cycles. The advantage of write

through is that the memory system is more coherent in that there are fewer memory visibility

inconsistencies.

2.3.1.6 Replacement Policy

After some time the cache will fill to capacity and subsequent reads of a new variable will result

in a miss. Such a cache miss is termed a capacity miss, because it is caused by the caches limited

capacity. This will require a cache line to be evicted to make room for the new data.

The choice of which line to replace can be based on various replacement algorithms including

least recently used (LRU). As the name suggests the least active cache line is replaced. The LRU

is expensive to implement in terms of gate count. Therefore, pseudo-LRU is commonly used in

caches with greater than four ways. Pseudo-LRU employs a binary tree to reduce the amount of

state information that requires storing. An even simpler and more hardware efficient replacement

policy is random. A replacement called Most Recently Used (MRU) does the opposite to LRU.

MRU is advantageous when the oldest data in the cache is likely to be accessed more often.

2.3.2 Hardware Stack

Stack architectures use one or more last-in-first-out (LIFO) stacks instead of random-access regis-

ters to organise operands. If the stack overflows, elements must be spilled to main memory. If the

stack underflows, stack elements must be restored from main memory. This is analogous to pushing

and popping registers to and from memory during function calls on CISC-based architectures.

Koopman [21] monitored data stack spilling and restoring for benchmarks Life, Hanoi, Frac,

Math and Queens. The spilling algorithm spilled one stack element each time an instruction

attempted to push to a full stack and restored an element each time a pop operation was performed

on an empty stack. The results showed that stack spilling and restoration tapered off at an

exponential rate for these programs. As a practical matter, a stack size of 32 will eliminate stack

spilling for almost all programs, Koopman [21]. According to Waldron and Harrison[37], programs

including atom, fire, jas, jjt and jcc rarely have a data stack size of more than ten words.
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2.3.2.1 Overflow and Underflow

There are a number of strategies for managing stack overflows and underflows. The following

discusses some of these.

2.3.2.2 Size Stack for Worst Case Depth

An on-chip stack large enough for the worst case stack depth requirements of the program can be

used. This approach completely removes the possibility of overflows and underflows. As control

logic is not required for managing these scenarios, this is the simplest approach that can be taken.

Sizing the stack for the worst case scenario also has a significant advantage for real time systems.

Since stack spilling and restoration is input data dependent, it can be very challenging to predict

at exactly which points during program execution this needs to be done. Since static analysis is

not required this simplifies Worst Case Execution Time (WCET) analysis. Because spilling and

restoration are not required, this greatly simplifies the processor design. However, static analysis

is still required to determine the maximum stack depth for the program. Stack depth analysis is

considered easier than spilling and restoration analysis, Koopman [21]. Given that a stack size of

32 will eliminate stack spilling for almost all programs, this may be the simplest and most cost

effective strategy.

The major disadvantage to this approach is that it may not be possible to modify the size of

the stack; this is only practical for FPGA-based processors (soft cores). A compromising strategy

could be taken where offline analysis could be used to confirm where in a program stack spilling is

likely to occur. At these points a software-based runtime library could be used to perform spilling

and restoration at the appropriate boundaries. Where spilling and restoration are required, the

programmer would modify the program to call the runtime library functions. Alternatively, the

compiler could be modified so that the stack depth analysis and runtime support library functions

are called automatically at the required program points.

2.3.2.3 Demand Fed

This approach spills and restores single elements at a time when required. A stack element is only

transferred if necessary, hence minimising transfers between the on-chip stack and main memory.

Very good use is made of the on-chip stack, making this approach suitable for use where chip

space is at a premium. The disadvantages include the fact that complex control logic is required.

The control logic is likely to be the most complex part of a stack-based processor. The points at
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which spilling and restoration occur introduce temporal non-determinism and this is problematic

for real- time systems. However, if the points in a program at which spilling and restoration will

occur can be determined by static analysis then this can be accounted for during WCET analysis.

Demand-fed single element spilling is a very common approach. A number of processors employing

this approach are described in Koopman [21].

2.3.2.4 Paging

Instead of spilling and restoring single elements one at a time as and when required, a paging

approach spills and restores fixed sized pages. The premise is that as soon as a single element

is spilled or restored then more elements are likely to require spilling and restoring too. The

work required to perform the spilling and restoration is typically done by the software runtime

system. For example, the processor generates an interrupt when a stack overflows or underflows.

A corresponding interrupt service routine (ISR) then performs the necessary data transfers for

example, using direct memory access (DMA). This was the approach taken for Moon2 by Vulcan

Machines (company now dissolved). The transfer of stack pages is done by the software runtime

system, allowing the processor hardware to remain simple. Paging requires a larger on-chip stack

than the demand-fed approach, to reduce the execution frequency of the relatively slow ISR and

runtime software. The cost of paging is about twice that of the demand-fed approach for memory

cycles spent copying stack elements, Koopman [21]. If a program can execute within the constraints

of the stack size most of the time, then paging provides an inexpensive method for graceful program

degradation.

2.3.2.5 Cache

A data cache can be used by mapping it to the memory space used for the data stack. This is the

usual approach used by register-based architectures. It involves complex hardware control but does

not provide any advantage over alternative approaches. Caches are used by mainstream processor

designers since they improve average case execution times. They are advantageous when variable

length data structures such as strings and C structures are accessed.

2.3.3 Scratch Pad Memory

Scratch pad memory is a more predictable alternative to using instruction, data and unified caches

in register-based architectures. Scratch pad memory is high-speed, on-chip RAM just like cache
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memory. However, instead of the memory being speculatively managed by a cache controller, it is

managed explicitly by software. Programs have to be modified in source or binary form to explicitly

load and restore the scratch pad memory. This modification process is called partitioning. The

process of partitioning splits the program into regions. Each region is small enough to be loaded in

its entirety into the scratch pad memory. Scratch pad memory is temporally deterministic since the

access time is independent of the preceding sequence of memory accesses, Whitham and Audsley

[38]. This is not true for associative caches. Scratch pad memory can be managed and used within

a scheduling system such as Carousel, Whitham and Audsley [39], to reduce context switching

inter-task interference to zero. The cost of pre-emption is incurred by the pre-empting task rather

than the pre-empted task, which removes interference from WCET calculations.

2.3.4 Multiprocessor Memory Hierarchy

The memory hierarchy of a multiprocessor system can be organised in a variety of ways, each

with its own advantages and disadvantages. The most common type of multiprocessor architec-

ture is shared memory architecture. A type of shared memory architecture is Uniform Memory

Access (UMA), otherwise referred to as Symmetric Multiprocessors (SMP). Figure 2.14 illustrates

a UMA/SMP system. It can be seen that each processor (P) typically has its own private level

1 cache (C). However, all the processors access a shared main memory (M). Access to the shared

memory is symmetric. The terminology appears ambiguous, but simply means that all processors

have equal access times to the memory, so all suffer the same latencies. Whilst the private caches

may delay or prevent non-shared data traffic from competing for bus access, it can be noted that

the shared bus and main memory are obvious bottlenecks. As a result, UMA/SMP-based systems

are considered unscalable.

An alternative architecture for a UMA/SMP system uses a single shared cache instead of

multiple private caches. Whilst this architecture may reduce the bus and memory bottleneck, a

bottleneck is created at the shared cache.

Figure 2.15 illustrates a Non-uniform Memory Architecture (NUMA). This could also be termed

Asymmetric Multiprocessor (AMP). A NUMA system is split into a set of segments or nodes where

a node consists of a block of memory (M), caches (C) and processors (P) which share a common

bus. The nodes communicate by a distributed interconnect. An interconnect can be a crossbar

or a mesh. Non-uniform memory access means that it will take longer to access some regions of

memory than others. This is because a memory location may be on a physically different node.

Communication between processors at different nodes is typically performed by message passing.
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Figure 2.14: UMA/SMP Memory Hierarchy with Private Caches, adapted from Baer [13, 264]

As previously discussed, a disadvantage of UMP/SMP systems is that they are inherently

unscalable. The NUMA architecture was designed to surpass the scalability limits of the SMP

architecture by distributing memory. Distributing the memory among the nodes increases band-

width and reduces the latency to local memory, Hennessy and Patterson [8]. Since the bottlenecks

can be distributed throughout the node structure, scalability is improved. The main disadvantage

of a NUMA system is that inter-node communication can be complex and place additional burden

on the software engineering effort.

Figure 2.15: NUMA, Distributed Memory Hierarchy, adapted from Baer [13, 264]
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2.3.4.1 Cache Coherency

A multiprocessor system may hold multiple copies of the same data in the caches and memory and

this is the case for both UMA and NUMA systems. The shared data values must all match each

other so that the processors have a coherent view of memory. This is known as cache coherency.

The definition of cache coherency is subtle and complex, Hennessy and Patterson[8], and includes

visibility and ordering. Informally, a memory system is coherent if any read of a data item returns

the most recently written value of that data item. The two common approaches to maintaining

cache coherency are cache snooping and directory-based coherency.

2.3.4.2 Snooping Based Cache Coherency

A snooping-based cache coherency protocol is used in UMA/SMP-based systems. The caches

connected to the shared bus listen to messages placed on the bus by all the other caches. The

cache controllers then respond in the appropriate manner to implement the coherence protocol.

There are a number of common cache coherency protocols, of which a common one is the Modified,

Exclusive, Shared, Invalid (MESI) protocol. Figures 2.16 and 2.17 illustrate the basic finite state

machine for the MESI protocol, for both the local and remote cache controllers. Each cache line

is tagged with the states M, E, S, I and the states are updated by the cache controller. It should

be noted that, in practical applications, the state machine would be much more complicated due

to additional architectural features such as split transaction busses. Figure 2.16 illustrates the

behaviour of a write back cache controller in master mode, i.e. when being driven by the local

processor. Figure 2.17 illustrates the behaviour of the same cache controller when acting in slave

mode, i.e. when snooping and responding to remote cache requests.

At some point during execution, the processor will attempt to read a variable. Since the cache

line containing the variable is not currently in the cache it is Invalid and a read miss occurs. The

read miss causes the cache controller to issue a read request on the bus; the data may either come

from memory or from another cache if one holds it. When the local cache controller places a read

request on the bus, a remote cache controller snooping on the bus may recognise that it holds the

data Exclusively. If so, the remote cache controller writes the data on the bus and sets the status

of its cache line to Shared. The local cache controller then receives the cache line, stores it in its

cache and also sets the status of the copy to Shared. At this point there are two caches holding

the data for the same cache line and the status of both is Shared. In the case where the remote

cache does not hold the cache line, no remote response is given. In this case the data is read from
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Figure 2.16: Basic MESI Cache Coherence Finite State machine - local cache controller, taken
from [13, 274]

memory and the state for the local cache line is set to Exclusive.

If the processor writes to a variable which is stored in its local cache and a remote cache (hence

both cache lines are set to Shared), the write results in a write hit. The local processor performing

the write will change the state of the cache line to Modified. The local cache line is now the only

valid cached version of the data. The remote cache controllers snooping on the bus see the write

for the cache line on the bus and set the state of its version to Invalid. This means that the remote

cache line will effectively be discarded. If the local processor writes to a cache line which is in the

Exclusive state, the state of the locally held cache line transitions to Modified. However, the write

is not broadcast on the bus, since there is no remote copy of it.

2.3.4.3 Directory Based Cache Coherency

Snooping-based cache coherency protocols are used for UMA/SMP-based systems. However,

snooping is inappropriate for NUMA systems since the act of broadcasting on all nodes causes

coupling of the busses which would reduce the improved scalability of the NUMA architecture.

Effectively, the separate physical busses become a single logical bus causing a bottleneck. Since a

NUMA system is inherently distributed, the cache coherency protocol also needs to be distributed.

Just as main memory is physically distributed throughout the machine to improve aggregate mem-

ory bandwidth, so too is the directory. This eliminates the bottleneck that would be caused by

using a single monolithic directory.
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Figure 2.17: Basic MESI Cache Coherence Finite State machine - remote cache controller, adapted
from [13, 274]

In a simple NUMA architecture, a node may consist of a single processor, a single cache, a

single main memory and a directory. The main memory for a node is divided into cache-line sized

blocks. The directory then consists of state information for each main memory block including the

MESI state and the home node of the memory line.

The following describes what may happen when a read miss occurs. When a remote processor

attempts to read a variable not in the cache or local memory, the cache controller must send a

request to the appropriate home node (the home node is the node whose memory contains the

initial value of a memory line). The home node receives the request, and may respond in a number

of ways.

If the home directory indicates that that the memory line is uncached or is cached but unmod-

ified, the memory line will be sent to the remote node. The home directory changes the state of

the memory line to Shared and notes that a copy of the memory line is held by the remote node.

If the home directory indicates that the memory line has been modified by the home cache, the

data is written back from the home node cache to the home node memory. The data is then sent

to the remote node.

If the home directory indicates that the memory line has been modified by a second remote

cache, then the home node requests the data. When the data is received at the home node, it is

written to the home node memory and forwarded to the remote node.

Other state transitions are described by Baer [13] and Hennessy and Patterson [8]. However,

the above simplification demonstrates the complexity inherent in a distributed cache directory.
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2.4 Summary

CISC architectures have evolved since the 1970s. They have a compact ISA; there is a high

semantic mapping between CISC instructions and C programming constructs. For this reason

executables tend to be very compact. A driver for CISC is to encapsulate complexity at the

processor level. CISC architectures often support advanced features to improve ILP for example

superscalar execution units.

The philosophy of RISC is to have simpler processors; this can be observed by the primitive

load-store ISA. The premise is that removing the complex and infrequently used instructions means

that the processor can be made more efficient. However, a portion of this complexity is transferred

to the compiler and software runtime system.

ROSC architectures, otherwise known as stack-based architectures employ one or more on chip

LIFO stacks instead of a random access register set. Stack machines tend to have simpler hardware

and attributes advantageous for embedded real-time systems, Koopman [21]. Stack machines have

been implemented in silicon and as abstract machines, for example p-code [40], Forth [19] and the

Java Virtual Machine (JVM) [24]. Table 2.4 illustrates the main differences between CISC, RISC

and ROSC architectures.

CISC RISC ROSC
Sophisticated
instructions

Primitive
instructions

Sophisticated
instructions

Deep pipelines Deep pipelines Shallow pipelines
Compact code Verbose code Compact code
ISA close to
programmer’s model

ISA far from
programmer’s model

ISA far from
programmer’s model

Easy to program
using ASM

More difficult to
program using ASM

Even more difficult to
program using ASM

Multi-cycle
instructions

Mostly single-cycle
instructions

Multi-cycle
instructions

Specialised resisters
Many registers general
purpose

Restrictive on-chip
stack

Table 2.4: Summary of differences between CISC, RISC and ROSC

Increasing ILP and clock frequency is becoming very challenging for processor designers. This is

mainly due to maturing designs, unacceptable power consumption and heat dissipation. It has been

suggested that improving performance can be achieved by employing multiprocessors for explicit

parallelism. Amdahl’s Law illustrates the speedup potential of a given program [36]. However, the

practicalities of parallel computation mean that Amdahl’s Law is optimistic.
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Dataflow architectures are used to increase the granularity of parallelism to the instruction

level. A dataflow program is one in which the ordering of operations is implied by the data

dependencies rather than explicit control flow. A dataflow architecture employs direct instruction

communication. Programs can be expressed using a graphical notation or more simply using trees.

The Manchester Dataflow Computer and the more recent TRIPS processor have been introduced.

HLLCAs directly support the execution of a high level software programming languages. HLL-

CAs can be regarded a subset of LSPs, since they are usually designed to execute a specific high-level

language. However, HLLCAs have been heavily criticised by Ditzel and Patterson [35].

LSPs may be regarded as a more general form of HLLCA. LSPs usually refer to a software

interpreter and runtime system or JIT compiler targeted at a specific language. Many LSPss

are interpreters or virtual machines, Smith and Nair [32]. They are often implemented as stack

machines.

A SDLSP is an LSP and has an architecture which follows the grammar rules of the language.

The instructions are simple encodings of the source language.

The memory hierarchy includes main memory, caches and stack management components.

Caches are used to reduce the adverse effects of disparity in speed between CPU and main memory

by taking advantage of spatial and temporal locality, Hennessy and Patterson [8]. If the ways of

a set are full for a given address, then an appropriate cache line must be evicted to make space;

the cache line to evict depends on the replacement policy. Cache modelling can be used to predict

cache behaviour, though it is generally regarded as NP-hard. An alternative to speculative caches

is scratch pad memory and this may also help reduce non-determinism. The memory architecture

of a multiprocessor system can be organised in a variety of ways including UMA/SMP and NUMA

(distributed memory). Multiple copies of the same data may be held in multiple caches. So that

all processors see the same value, cache coherency protocols must be implemented by the caches.

Cache coherency for UMA/SMP systems uses snooping whereas cache coherency for NUMA uses

distributed directory-based approaches, Hennessy and Patterson [8]. Practical implementations

tend to be very complicated. Stack spilling and restoration is an aspect of memory hierarchy for

stack-based processors. A number of approaches can be used for managing this, including sizing

the stack for the worst case depth, demand-fed, paging, caching, function stack, block stack and

scratch pad memory, Koopman [21].

The fundamental ISA and architecture of a processor and surrounding subsystems dictate

to some extent the basic performance ultimately achievable. In order to optimise performance,

designers employ techniques to improve the common case, for example, pipelining, super-scaler
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and caching.

Microprocessor vendors are naturally reluctant to change a processor ISA for commercial rea-

sons; doing so could undermine the entire product base. Overhauling or even simply modifying it

would have massive repercussions for the processor’s eco-system. Modifying the ISA would impact

the compiler back-end, including machine specific optimisers and code generators. Other toolchain

components such as linkers, loaders, romisers, assemblers, debugger back-ends, profilers, memory

checking tools would all be significantly impacted. As a result, vendors may have been hesitant in

addressing the problems and improving ISAs.
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Chapter 3

Problem Analysis

This chapter outlines the problems that the thesis aims to address. Firstly, the motives for multi-

processor systems are discussed. The motives are driven by the current problems faced by unipro-

cessor systems. The challenges faced by multiprocessor systems are then presented. In order to

address the challenges it is necessary to understand where improvements can be made in CPU

design. These improvements are focused on considering fundamental changes rather than optimis-

ing the status quo. In order to understand where fundamental improvements can be made, it is

first necessary to understand what CPUs spend most of their time and energy doing. This under-

standing can be gained by reviewing previous literature and using benchmarks to project energy

estimates on the results. After reviewing the initial findings, this chapter finishes by suggesting a

possible alternative CPU ISA to address help the challenges.

3.1 The Motivation for Multiprocessor Systems

In 1965, Gordon Moore observed that the number of transistors that could be integrated on silicon

chips was doubling about every two years. This trend has become known as Moore’s Law [16].

Figure 3.1 illustrates the transistor counts and other design variables for microprocessors from 1970

to 2020 (projected).
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Figure 3.1: 40 Years of Microprocessor Trend Data, taken from National Research Council [14,
p.55]. Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun,
L. Hammond, and C. Batten Dotted line extrapolations by C. Moore.

Coinciding with Moore’s Law is the exponential increase in the performance of microprocessors.

Until 2004 there was a rise in the switching speed of transistors. Clock frequencies have increased

by three orders of magnitude since 1971, McCool et al. [41]. The improvement of instruction

level parallelism (ILP) and the increase in transistor switching capability supported the increase

in clock speeds. It can be seen from Figure 3.1 that clock frequencies and, correspondingly, power

consumption have flat-lined around 2005. Transistor counts have increased by about six orders of

magnitude since the early 1970s and the trend is continuing to do so. This is because designers

are increasing the number of cores on a silicon chip in order to compensate with the flat-lining of

clock frequencies. Performance can no longer be improved by increasing clock speeds. It can only

be improved by adding more processor cores to a silicon chip. This approach is taken as there are

seemingly no alternatives.

There are three converging factors limiting the growth in performance of single-core processors.

These are known as the 3 Walls, McCool et al. [41]:

• Power Wall

• ILP Wall

56



• Memory Wall

Power consumption and dissipation has become a limiting constraint for increasing clock speeds.

The power consumption of a processor is proportional to clockspeed ∗ supplyvoltage2. Processor

power consumption is exceeding the few hundred watts that can be dissipated in a practical com-

puter system, National Research Council [14]. This is why modern desktop microprocessors require

such large heat-sinks. The power wall exists because power consumption and dissipation increases

non-linearly with clock frequency. Dennard [42] originally observed that voltage and current should

be proportional to the linear dimensions of a transistor. Therefore, as transistors shrink, so should

the necessary voltage and current. The supposition was that power is proportional to the area of

the transistor. However, Dennard did not consider the leakage current and threshold voltage, which

establish a baseline of power per transistor. As transistors get smaller, power density increases

because these do not scale with size. This has resulted in the power wall that has limited practical

processor frequency to around 4-5 GHz since about 2005.

Instruction Level Parallelism is reaching limits for single-core processors, for example pipelining

has hit a practical limit at around 20 stages. The number of instructions which can be executed

in parallel via superscalar approaches has peaked at four instructions per clock cycle, Olukotun et

al. [43]. This is because the logic required to identify the opportunity for parallel instructions is

proportional to the square of the number of instructions that can be issued simultaneously; it is

quadratic.

There is still a disparity between processor speed and memory access times. There are several

reasons for this, but a significant issue is power consumption and heat dissipation, McCool et al.

[41]. It is because of this disparity that microprocessors are so heavily reliant upon large caches.

In order for computing power to increase it appears that an alternative approach to increasing

clock frequencies and ILP of single core processors is required. An obvious alternative is to increase

computing power by increasing explicit parallelism via multiprocessors. Multiprocessors consist of

two or more fully functioning processors on a single piece of silicon. This organisation has the effect

of distributing computation and, therefore, power and heat dissipation across a much larger area of

silicon rather than concentrating these to the area of a single processor. Typically, the processors

are coordinated and synchronised by a single operating system to permit hardware concurrency.
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3.2 The Challenges for Multiprocessor Systems

Although processor designers are relying on multiprocessors to continue the performance improve-

ment trends of previous decades, there are many challenges to overcome. Some of these problems

are fundamental computational problems and are unsolvable. Many of the issues are also pertinent

to uniprocessor design. The most significant challenge for multiprocessor systems is the inherent

computational complexity of parallel programs.

3.2.1 Computational Complexity

As discussed in Chapter 2, the potential performance improvements offered by multiprocessors can

be described using Amdahl’s Law [36] which considers the portions of a program that can be made

to run in parallel, as:

speedup =
1

(1− p) + p
n

The graph in Figure 3.2 shows potential speedup according to Amdahl Law given the number of

processors and the percentage of a program that can be made to run in parallel.
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Figure 3.2: Speed Up Possibilities for 50%, 75%, 90% and 95% parallelism, taken from [15]
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As an example, Amdahl’s Law states that, if 75% of a program can be executed in parallel

with 128 processors, the program will execute only four times faster than it would with a single

microprocessor. Increasing the number of processors beyond this point yields no benefit, in fact,

performance may degrade. Whilst Amdahl’s Law may appear sobering, it must be stressed that

it gives optimistic speedup factors. Amdahl’s Law does not account for implementation overheads

and complexities, for example communication overhead. The maximum number of full duplex

paths of communication between a set of n microprocessors is n ∗ (n − 1)/2 which is obviously

n ∗ (n − 1) half duplex paths. If a system has 100 processors, this means there are potentially

10,000 half duplex paths of communication. This is O(N2), which is quadratic. The ways in which

the processor cores can communicate and share data is unbounded. The challenge is structuring

the communication without causing bottlenecks. Multiprocessor communication is inherently a

computational problem rather than a technical one. The challenges that they bring may outweigh

the advantages in some cases.

3.2.2 Multiprocessor Scaling

A study into dark silicon by Esmaeilzadeh et al. [44] suggests that, regardless of chip organisa-

tions and topology, multicore scaling is power limited to a degree not widely appreciated by the

computing community. “Even at 22 nm, 21% of a fixed-size chip must be powered off, and at

8nm, this number grows to more than 50%. Through 2024, only a 7.9x average speedup is possible

across commonly used parallel workloads, leaving a nearly 24-fold gap from a target of doubled

performance per generation”[44, p.1].

3.3 Understanding what CPUs Spend Most Time Doing

In 1980, the RISC project was started at Berkley, with the goal of investigating an alternative

to the trend of increasing architecture complexity. Katevenis [17] received the ACM Doctoral

Dissertation Award in 1983 for his thesis documenting the rationale for the RISC approach. The

choice of the instruction set was a key to this philosophy. Firstly, the most necessary and frequent

operations in programs were identified. Then, the data path and timing required for their execution

were found. Finally, the other frequent operations which could also fit into that data path and

timing were also included in the instruction set. During the definition of the RISC architecture,

its implementation was kept in mind at all times. Katevenis goes on to say “It is very difficult for

such a study to be made abstractly - not in connection with a particular model of computers and
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computations, because real programs and programming languages are written and defined with a

particular model in mind”[17, p.10]. The properties of benchmark programs are then discussed, in

particular and of specific interest, operations (instructions) are described which are to be counted.

These include test, compare, add, subtract, multiply, divide and so on. Execution sequencing is

considered to determine the control and pipeline organisation. It appears that the general ISA and

CPU design may have been already decided prior to the benchmarking analysis. By prematurely

assuming a CPU model based on traditional techniques at the outset, the opportunities for new

and different architectures may have been somewhat restricted.

Koopmans [21] viewpoint is that stack machines are much simpler than CISC and RISC ma-

chines. “They do this without requiring complicated compilers or cache control hardware for good

performance”[21, p.15]. Koopman goes on to argue that RISC processors require huge caches

and deep pipelines because of their verbose instruction encoding. Stack-based computers require

smaller caches or can better utilise caches because of the density of the ROSC ISA. Stack-based

processors require shallower pipelines than RISC machines and are better suited to interrupt pro-

cessing, Koopman [21]. It is argued that RISC computers spend much of their processing effort

emulating stack machines.

Verma et al. demonstrated that 50-70% of the total power for a system is consumed by the

memory system [3]. Further studies show that the memory subsystem consumes 65.2% and 45.9%

of the total energy budget for uni-processor ARM and multi-processor ARM systems respectively

[3]. Thumb instructions resulting in high code density leads to around 30% reduction in energy

by instruction fetches, Verma et al. [3]. This indicates that the choice of ISA is important when

considering instruction memory usage.

Before becoming completely reliant on multiprocessors for improving performance of micropro-

cessors, it would be prudent to ensure that the performance in uni-processors cannot be significantly

improved upon. Many of the approaches to processor design are decades old and the general con-

sensus from the literature is that these approaches have reached an optimum design or sweet spot

and cannot be improved. However, previously discounted or overlooked approaches could yield

benefits to the current problems faced by processor designers.
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3.3.1 Benchmarks

The premise from previous research is that CPUs spend significant time accessing the memory

system and that this is a significant problem. In order to reduce the number of memory accesses, it

is necessary to understand the interaction between the microprocessor core, the cache and external

memory. To do this, a set of benchmarks called mibench (Guthaus et al. [45]) were compiled with

GCC and executed under the gem5 simulator (Binkert et al. [46]). Optimisation options were

omitted from the GCC command line. The simulation is of an ARMv7 Cortex A15 uniprocessor,

with an clock frequency of 1GHz. The following statistics were obtained for the simulations:

• Total number of instructions simulated

• Frequency of load and store instructions

• Number of hits for instruction and data caches

• Number of misses for instruction and data caches

• Number of write-backs for the data cache

From Figure 3.3 it can be observed that the number of load and stores are significant. For

example, the proportion of combined load and store instructions for crc32 large is 50% of the total

instructions simulated. Drilling down further, the raw data in Table 3.1 shows bitcnt large has

high hit rates. adpcm large has a relatively high miss rate for both data and instruction caches

resulting in a higher number of memory accesses. Some benchmarks show that the data cache

misses are more prominent than instruction cache misses, for example crc32 large. Others show

that the instruction cache misses are more prominent, for example, patricia large.
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Figure 3.3: Simulation Results showing number of Loads, Stores and Simulated Instructions
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3.3.2 Energy and Power Measurements

Energy is defined as the capacity for doing work and in electronics is measured in units of joules.

One joule is the energy needed to move one ampere through one ohm of resistance for one second.

Power is measured in watts and is the amount of energy, or joules for a given period of time, one

second. Therefore, one joule is the the equivalent of one watt of power dissipated for one second.

The energy consumed for the execution of an instruction is the integral of the power dissipated

over the time interval T, Verma et al. [3]. This can be described more formally by:

E =

∫ T

0

P (t) dt =

∫ T

0

V ∗I (t) dt

Each instruction requires a specific interval of time to complete and the the energy required

to perform an operation decreases if the time T decreases and/or the power dissipation P(T)

decreases. Energy for a given operation can be obtained by measuring the average current drawn

by a processor and memory system providing that the measured current does not show a high

variance over the the time interval T, Verma et al. [3].

The Micron DDR2 technical paper [47] provides a model for estimating the power consumption

(note, not energy consumption) for a DDR2 memory system under various system usage conditions.

However, this is a complex process involving a number of variables. The following summarises

the main variables used when estimating power consumption. Background power includes pre-

charge and activate states. Pre-charge includes power down PRE PDN and pre-charge standby

PRE STBY. Pre-charge power down is the lowest power state in which the device can operate.

Activate power includes active power down ACT PDN and activate standby ACT STBY. These

power states are used to select a bank and row for accessing the DDR2. The above variables

can be expressed for clock-high and clock-low states; hence there are a total of eight variables for

calculating background power. Power for each of these is the product of the average device current

and the input voltage. However, the DDR2 does not spend all of its operating time in all of the

above states. Ratios need to be applied to each of the variables; hence it is necessary to estimate the

proportion of time that the DDR2 spends in each of the above states. This is also dependent upon

the clock period (hence DDR2 clock frequency). Write power WR is obtained by subtracting the

activation background current (calculated above) from the write current. This is then multiplied

by the input voltage. This power consumption value must then be multiplied by the ratio of the

write bandwidth. The read RD power is calculated in a similar manner. The I/O and termination

power must be calculated and includes the following: output driver power when driving the bus
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(DQ); power when terminating a write to the DRAM termW ; power when terminating a read from

another DRAM termR; power when terminating a write to another DRAM. The final variable is

the refresh REF power. DDR memory cells store data in small capacitors that require refreshing.

Calculating the power consumption for DDR2 reads and writes is a complex and tedious statistical

calculation and is dependent upon the device, input voltage and bandwidth estimates. Accurately

determining the energy for a single read or write is almost impossible because these operations

cannot be expressed in terms of a single isolated activity. Many variables must be considered

including various background quantities. Furthermore, attempting to isolate the dynamic energy

for a single operation is counter productive, since operations are often performed in bursts. From an

architectural aspect, isolating the energy consumption for a single instruction is desired. However,

from an electronics aspect, average power for a given bandwidth is required. These are opposing

and conflicting requirements.

There has been limited research investigating energy consumption at the ISA level. However,

Verma et al. [3] employ a model originally used by Tiwari et al. [48] to measure instruction-level

energy (static and dynamic) for an ARM7TDMI Atmel evaluation board AT91EB01. Physical

measurements of the average current drawn by the processor and memory system on the ARM

evaluation board were obtained. The base energy cost is the energy consumed by an instruction

when it is executed in isolation. To obtain this, a given instruction is executed multiple times

and the average current drawn is calculated. The inter-instruction cost is the energy consumed

when the processor switches from one instruction to another. The research provides values for load

and store instructions where the opcode and operands are in combinations of on-chip scratch pad

memory and external main. The equation E ≈ V ∗ Iavg ∗ T is used to calculate the energy E for

the ARM uniprocessor model. This approach is valid provided that the measured current does not

show a high degree of variance over the time T and that the voltage is kept constant, Verma et

al. [3]. Table 3.2 summarises the pertinent results for reading and writing four bytes to external

main memory and on-chip scratchpad memory.

The benchmark simulations provide frequencies for interactions between the microprocessor,

the cache and external memory. However, in their current form they do not provide any indication

for energy consumption. The frequencies for hit, miss and write-backs can be scaled in order to

indicate energy based on the work from Verma et al. [3].

It can be assumed that a hit consumes the least energy and so is simply multiplied by 1.2nJ

observed by [3] when accessing four bytes of scratchpad memory. Cache misses are multiplied by

49.3nJ observed by [3] when reading four bytes from main memory. Write-backs are multiplied by
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41.1 nJ observed by [3] when writing four bytes to main memory. Figures 3.4 to 3.13 labelled A

illustrate the results using the energy results from [3].

Memory Energy per access (nJ)
Main Memory Read 49.3
Main Memory Write 41.1

Scratchpad Read 1.2
Scratchpad Memory Write 1.2

Table 3.2: Verma et. al. Energy Access Results, taken from [3, p.22]

In order to provide worst case values for energy costs, approximations of the time differences

between accessing L1 cache and main memory is applied to the data using the comparative access

times for registers, L1 cache, L2 cache and main memory in Figure 2.3. 1ns is used for a hit and

100ns is used for misses and write-backs. This is using the upper bound for the main memory

access time rule of thumb. Figures 3.4 to 3.13 labelled B illustrate the results. Even though these

results are scaled using time rather than energy, there is a relationship between the two. Figures

3.4 to 3.13 labelled C show very pessimistic projections for energy costs. These use a factor of

1,000 for cache misses and writebacks.

Figure 3.4: basicmath large Power Projections showing number of Writebacks, Misses and Hits
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Figure 3.5: bitcnt large Power Projections showing number of Writebacks, Misses and Hits

Figure 3.6: qsort large Power Projections showing number of Writebacks, Misses and Hits
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Figure 3.7: susan large Power Projections showing number of Writebacks, Misses and Hits

Figure 3.8: dijkstra large Power Projections showing number of Writebacks, Misses and Hits
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Figure 3.9: patricia large Power Projections showing number of Writebacks, Misses and Hits

Figure 3.10: blowfish large Power Projections showing number of Writebacks, Misses and Hits
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Figure 3.11: adpcm large Power Projections showing number of Writebacks, Misses and Hits

Figure 3.12: crc32 large Power Projections showing number of Writebacks, Misses and Hits
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Figure 3.13: fft large Power Projections showing number of Writebacks, Misses and Hits

The results indicate that for the energy estimates from [3] A, the impact of accessing external

memory (due to cache misses and write-backs) is not very significant provided that an appropriate

sized cache is used. Even assuming worst case values B, the additional energy values do not

appear too troublesome. The pessimistic values C are very significant. However, this is expected

since the overhead is a order of magnitude greater than even the worst case assumption and two

orders of magnitude away from the more realistic values obtained by Verma et al. [3]. It can

be assumed therefore, that time wasted due to accessing external memory is not a huge concern

provided that appropriate caches are used. The benchmark energy projections illustrate that there

is an underlying trend that most applications are completely reliant on complex caching hardware

in order to reduce the number of memory accesses. Even then, 50-70% of the total power for a

system is still consumed by the memory system, Verma et al. [3]. Further studies by Verma et al.

[3] show that the memory subsystem consumes 65.2% and 45.9% of the total energy budget for

uni-processor ARM and multi-processor ARM systems respectively.

3.4 Where Can Improvements be Made?

Since multiprocessors alone cannot solve the 3 Walls, it is necessary to reconsider where improve-

ments can be made by reducing overall main memory accesses. Table 3.3 illustrates the layers in
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the system stack which can be used as a discussion point.

Application
Programming Paradigm/Language

Compiler
ISA and Processor Architecture

Table 3.3: System Stack

The application layer can employ design techniques which reduce memory accesses. Software

pre-fetching can be used to take advantage of algorithmic locality, Jacob [49]. Additionally, cache

memory can be explicitly managed by locking down frequently accessed code blocks and data.

Alternatively, the cache can be statically managed by the compiler in the form of scratch pad

memory.

The programming paradigm1 is the way in which the structure and elements of a program

are defined. Particular programming paradigms may exhibit favourable memory access patterns

which reduce memory accesses. However, it may not be possible or practical to switch paradigms

to reduce memory transactions.

The compiler may employ algorithms which reduce memory accesses. For example, specific

code generation and register allocation algorithms may result in reduced memory accesses. The

compiler can also be used to manage scratch pad memory, as discussed previously.

Microprocessor architecture and ISA trends follow commercial interests and it is inevitable

that the industry resists evolving to changing needs. For example, the influence of Hennessy and

Patterson [8] on modern processor design is significant, LaForest [20]. ISAs have changed very

little since the invention of the microprocessor, although the ISA may have a significant impact on

memory accesses. For example, it seems intuitive that a program executing on a RISC architecture

will require more memory accesses than a CISC-based architecture due to the load/store design

philosophy. Instruction memory accesses for a given program could potentially be reduced by:

• Changing the encoding of the instructions

• Employing more abstract instructions

Changing the encoding of the instructions would involve keeping the same ISA, but compacting

the instructions in some way, for example using Huffman Encoding. Alternatively, the instructions

could be made context sensitive. Whilst, in theory, this approach could be used to reduce the

1The four main programming paradigms are: procedural (imperative), object oriented (imperative), functional
(declarative) and logic (declarative).
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instruction stream, there are likely to be practical problems. The microprocessor would need to

decompress the instructions prior to execution. This would complicate the decoding and pipeline

units which may inadvertently increase power consumption. The power consumption problem may

be simply shifted from one part of the microprocessor to another.

3.5 Opportunities for Abstract Instructions

In order to further investigate the opportunities for an abstract ISA, a program implementing the

bubble sort algorithm was compiled for the ARM Coretx M3 processor and then disassembled.

Listing 3.1 illustrates the swap function used in many bubble sort implementations. Note that

the Cortex M3 processor uses the Thumb2 instruction set. The assembly language code is non-

optimised and has been commented to aid understanding. The code in bold highlights a sample

sequence of instructions generated for an array element load and store. For the array load, the

index is loaded first, then scaled to the size of an integer for the platform (4 bytes). The address

of the array is then loaded and added to the scaled index to form the address of the array element

in memory. This location can then be loaded as required.

In order to reduce the number of instructions required for the array load and store, more abstract

instructions could be employed. For example, the Java Virtual Machine Specification (inspired by

Forth) uses a set of instructions for an array load and array store. Specific instructions are used

depending on the size of the array element. In other words, the instruction is used to specify the

index scaling. For example an iaload is used for arrays of int, whereas caload is used for arrays

of char. Listing 3.2 illustrates how the array load and store operations could be performed using

a more abstract ISA similar to that used by the Java Virtual Machine (JVM). In this case, the

abstract instructions map onto the language semantics as opposed to the language keywords.

The ratio of instruction counts for the array load operation is 5:3. This is a 40% reduction

in instruction stream length with potential for reducing instruction memory accesses. The ratio

of instruction counts for the array store operation is 6:4. This is a 33% reduction in instruction

stream length. To summarise, the reduction in the instruction stream length is achieved by the

following:

• The scaling of the array index is implied and specified by the instructions

• The addition of the scaled index and the array address is implied by the instruction
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stat ic void swap ( int array [ ] , int ndx1 , int ndx2 ) {
; must save r4 and above .
; No need to save l r as t h i s i s a l e a f f unc t i on .
00 : b480 push { r7 }
; Reserve space for t r a n s f e r r i n g args in r eg s
; to params in stack .
02 : b087 sub sp , #28
; make r7 s tack frame po in t e r
04 : a f00 add r7 , sp , #0
06 : 60 f8 s t r r0 , [ r7 , #12] ; array
08 : 60b9 s t r r1 , [ r7 , #8] ; ndx1
0a : 607a s t r r2 , [ r7 , #4] ; ndx2
int temp = array [ ndx1 ] ;
0c : 68bb ldr r3, [r7, #8] ; ndx1
0e : 009b lsls r3, r3, #2 ; ndx1 ∗ 4
10 : 68 fa ldr r2, [r7, #12] ; array
12 : 18d3 adds r3, r2, r3 ; array + (ndx1 ∗ 4)
14 : 681b ldr r3, [r3, #0] ; array + (ndx1 ∗ 4)
; temp = [ array + (ndx1 ∗ 4 ) ]
16 : 617b lstr r3, [r7, 20]
array [ ndx1 ] = array [ ndx2 ] ;
18 : 68bb ldr r3, [r7, 8] ; ndx1
1a : 009b lsls r3, r3, 2 ; ndx ∗ 4
1c : 68 fa ldr r2, [r7, 12] ; array
1e : 18d3 adds r3, r2, r3 ; array + (ndx1 ∗ 4)
20 : 687a ldr r2, [r7, #4] ; ndx2
22 : 0092 lsls r2, r2, #2 ; ndx2 ∗ 4
24 : 68 f9 ldr r1, [r7, #12] ; array
26 : 188a adds r2, r1, r2 ; array + (ndx2 ∗ 4)
28 : 6812 ldr r2, [r2, #0] ; array + (ndx2 ∗ 4)
; [ array + (ndx1 ∗ 4 ) ] = [ array + (ndx2 ∗ 4 ) ]
2a : 601a str r2, [r3, 0]
array [ ndx2 ] = temp ;
2c : 687b ldr r3, [r7, #4] ; ndx2
2e : 009b lsls r3, r3, #2 ; ndx2 ∗ 4
30 : 68 fa ldr r2, [r7, #12] ; array
32 : 18d3 adds r3, r2, r3 ; array + (ndx2 ∗ 4)
34 : 697a ldr r2, [r7, #20] ; temp
; temp = [ array + (ndx2 ∗ 4 ) ]
36 : 601a str r2, [r3, #0]
38 : f107 071 c add .w r7 , r7 , #28 ;
3c : 46bd mov sp , r7 ; r e s t o r e sp
3e : bc80 pop { r7 } ; r e s t o r e r7
40 : 4770 bx l r ; r e t
42 : bf00 nop ; delayed branch p i p e l i n e

Listing 3.1: Swap ARM Assembly
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int temp = array [ ndx1 ] ;
l d r r2 , [ r7 , #8] ; ndx1
l d r r3 , [ r7 , #12] ; array
i a l o ad r2 , r3 , r3

array [ ndx2 ] = temp ;
l d r r1 , [ r7 , #20] ; temp
ld r r2 , [ r7 , #4] ; ndx2
l d r r3 , [ r7 , #12] ; array
i a s t o r e r1 , r2 , r3

Listing 3.2: Load and Store using a hypothetical abstract ISA

The Java Byte Code (JBC) carries more semantic meaning with a closer mapping to the source

language. This approach is possible because all Java objects (including arrays) are constructed on

a JVM heap. Java arrays do not contain objects as such. Instead they hold references; essentially

immutable pointers. In C, arrays can contain true aggregate data for example structures, or arrays.

This means that instructions specifying all possible array element sizes could not be used all of the

time. If an array of a non-primitive type is used, an alternative load instruction would be required

which reads the element size in addition to the array address and the index. Depending on the

length of the array and the alignment rules of the processor, it may even be possible to encode the

scaling parameter in the instruction or index.

Changing the encoding of an instruction by reducing the instruction width results in fewer

bits required for storing it in memory, shortening the overall instruction stream. However, if

insufficient bits are available for encoding, then fewer instructions will be available for describing

a given program, resulting in a longer instruction stream. There is clearly a tradeoff to be made

when reducing the encoding scheme for an instruction set. If the encoding is too verbose or overly

concise, this will result in larger programs and increased memory accesses.

Employing a more abstract ISA or augmenting an existing ISA with a set of abstract instructions

could be used to shorten the instruction stream. If an instruction has a closer semantic meaning

with the source program, then fewer instructions will be required to represent it. For example, RISC

executable images are two to three times larger than reduced operand set computers (ROSC). One

of the reasons for this lies with the motives of RISC; to simplify the hardware (and not necessarily

reduce memory interaction). To address this problem, ARM have designed a 16-bit Thumb ISA

as an alternative to the regular 32-bit ISA. Koopman argues that RISC computers spend much of

their processing effort emulating stack machines [21]. Whether this is true or not, there is no doubt

that processors do spend their time emulating programming language constructs and semantics.
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Using abstract instructions is by no means a novel idea. Application Specific Instruction Pro-

cessors (ASIPs) use abstract instructions to represent algorithm constructs. However, these are so

application specific that they cannot be widely used in a general purpose manner. It appears that

ISA design has been either too general, resulting in a many-to-one mapping between processor

instructions and programming constructs, or too specific, which drastically limits the reusability of

a particular instruction. The middle ground is to compose a set of abstract instructions represent-

ing language constructs. In order to map and use an abstract ISA with a high-level programming

language, a number of decisions must be made regarding the language. For example:

• Should the ISA support a particular programming paradigm or language?

• Should the ISA have a direct mapping to the language keywords?

The approach taken by Audsley and Ward [11] is to provide direct support for keywords of a

simplified imperative language called Tiny. This is known as a Syntax Directed Language Specific

Processor (SDLP). It is different from Java Byte Code (JBC) which is also defined as a Language

Specific Processor. The ISA for Tiny is a top-down design to provide a one-to-one mapping between

language keyword/construct and instruction. JBC on the other hand is a bottom-up design where

instructions map onto the requirements of a stack-based virtual machine.

An alternative approach based on Tiny would be to base the ISA on a subset of the C pro-

gramming language. The benefit of this approach is that C is the most prevalent language in use

and is considered a subset or a basis of other popular languages, for example C++ and Java. An

additional benefit is that many compilers are available, and the translations from the language

constructs to existing ISAs can be easily studied. Furthermore, C compiler front ends can be

reused, requiring only the back ends to be written for a new ISA.

3.6 Opportunities for Abstract Expressions

A traditional microprocessor evaluates expressions on a step-by-step basis. Each (potentially large)

expression, is decomposed into a set of simple sub expressions each consisting of a single operator

and the necessary operands. Each simple sub expression is then processed in turn by the ALU. This

decomposition is performed by the compiler, whilst adhering to the precedence and associativity

rules of the language. An example of a complex expression being decomposed ready for the ALU

is:

x = a ∗ b + 100− 1/c;
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Next, the brackets indicate the evaluation order of the sub expressions, again following the

precedence and associativity rules of the C programming language:

x = ((a ∗ b) + 100)− (1/c);

A C language compiler might evaluate the expression as follows:

x = a∗b
x += 100 ;
temp = 1 / c ;
x −= temp ;

Listing 3.3: C Compiler Evaluation

It can be seen that the complex expression has been decomposed into a set of four subexpres-

sions. This decomposition is necessary since a traditional ALU is only capable of evaluating a

single operator at a time. There is a one-to-many mapping between the expression described by

the high-level language and the ISA. For example, for the ARM RISC processor, the following

instruction stream could be generated by the compiler:

l d r r3 , [ r7 , #12]
l d r r2 , [ r7 , 8 ]
mul r3 , r2 , r3
add r2 , r3 , #100
movs r1 , #1
ld r r3 , [ r7 , #4]
sd iv r3 , r1 , r3
subs r3 , r2 , r3
s t r r3 , [ r7 , #20]

Listing 3.4: ARM assembly for the expression

The processor must store the set of instructions in non-volatile memory, cache and instruction

stream memory. It must also interpret each of the individual instructions which make up the ex-

pression. An alternative method is to employ a syntax-directed approach to expression evaluation.

At the language level, this means processing expressions as opposed to individual arithmetic and

logic operations. This requires a more complex expression unit capable of evaluating an expres-

sion tree. Ausdley [11] describes an Expression Engine which is used instead of an ALU. Such an

approach could be used in order to reduce the encoding of expressions and therefore reduce the

load on the memory system and core processor. Fewer bits are required for storing it in memory,

shortening the overall instruction stream.

78



3.7 Summary

Microprocessor performance increased exponentially up to around 2004 and this coincided with

Moore’s law. However, performance has flat-lined due to the 3 Walls: power, ILP and memory,

McCool et al. [41].

The clock frequency of microprocessors has effectively flat-lined since around 2005. This is

because, as transistors get smaller, power density increases since these do not scale with size.

Processor power consumption is exceeding the few hundred watts that can feasibly be dissipated

in a practical computer system. ILP has hit a practical limit and there is still a disparity between

processor speed and external memory access speed. Therefore, processor designers have been

forced to adopt multiprocessor designs in order to improve throughput. However, parallelising

software is challenging and Amdahl’s law states that if 75% of a program can be executed in

parallel with 128 processors, the program will execute only four times faster than it would with

a single processor. This is an optimistic view, since such a system would have an upper-bound

of quadratic communication paths between the cores. Organising these into a hierarchy creates

bottlenecks: this is inevitable. There is also a risk of dark silicon which means areas of silicon may

need to be powered down to control power consumption and silicon damage.

Verma et. al [3], demonstrated that 50-70% of the total power for a system is consumed by the

memory system. As a result, processors are completely dependent on large and complex caches.

Benchmark simulations indicate that, provided appropriate caches are used, the effects of external

memory access can be tolerated.

Designers have overlooked the possibility of modifying the ISA in order to address the 3 walls.

For example, if the length of the instruction stream for a program could be reduced this would

reduce the pressure on the external memory. This may mean that smaller, less complex caches could

be used. It may also be possible to lower the processor clock frequency whilst maintaining the same

throughput. Since power is related to time and switching, this may reduce power consumption.

The instruction stream length for a program could be reduced by employing abstract instructions

and abstract expressions.

An approach based on Audsley and Ward [11] could be used to provide direct support for

keywords of modern imperative languages based on C. This is known as a Syntax Directed Language

Specific Processor (SDLP).

In order to design an alternative ISA and processor to address the problems discussed, the

following instruction types must be considered:
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• Instructions for ALU operations

• Instructions for Control flow

This thesis considers the equivalent of the above instruction types. Chapter 4 discusses the

Expression Engine, which is the equivalent of the traditional processor ALU. Chapter 5 covers

Abstract Instructions, which are the equivalent of Control Flow instructions. Finally, the thesis

presents an Architecture in Chapter 6 illustrating how the expression engine and abstract instruc-

tions can be combined into a working software simulator.
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Chapter 4

Expression Engine

This chapter proposes an expression engine that can be used in the architecture presented in

Chapter 6.

4.1 Background

As discussed in Chapter 3, an alternative to a traditional ALU is an Expression Engine described

by Audsley and Ward [11]. This approach to expression evaluation is by no means novel; it is

based on Dataflow Computing which is described by Sharp [9]. Most programming languages are

designed for execution or interpretation on processors employing the Von Neumann model. This

is the classic architecture with a control unit, instruction register, program counter and a unified

memory system which stores both instructions and data. Program execution is based on the control

flow model where a sequence of operations is specified by the programmer. In dataflow computing,

operations are executed in an order determined by the data interdependencies and the availability

of the required hardware resources. The motivation for dataflow computers is to achieve higher

throughput. Sharp [9] describes various dataflow topologies. The simplest is structured as a tree,

where each node is used for a specific operation.

An ideal expression engine is capable of evaluating the majority of expressions in a single pass

through the tree; this is the advantage over an ALU. To achieve this, an adequate number of levels

are required with the appropriate operators. However, there is a trade-off to be made; increasing

the number of levels and operators results in an increased number of bits required to encode the

expression. The maximum possible number of bits required to encode an arbitrary expression is
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exponential (due to the mathematical properties of a binary tree structure). Assuming that an

expression engine is structured as a binary tree, with each input node taking 2 operands and a

single output node emitting 1 operand, the number of bits required for configuration is1:

(nodes ∗ operator bits) + (leaf nodes ∗ input operands bits ∗ 2) + output operand bits

which is:

(2levels−1) ∗ log2(number of operators) + (2levels/2) ∗ log2(address space) ∗ 2 + log2(address space)

For example, if the expression unit has a height of 2 and each node has 8 operators, and an

address space of 256 bytes, the number of bits required for encoding an expression is:

7 ∗ 3 + 4 ∗ 8 ∗ 2 + 8 = 93

in the above example, 93 bits are required to support the evaluation of 7 sub-expressions; since

there are 2levels − 1 nodes in a binary tree. In terms of parallelism, the 7 sub-expressions can be

evaluated (or executed) in levels or height + 1 steps.

It appears that the encoding length of an expression is dominated by the bits used to address

the operand. The encoding length could be reduced if a register set was used instead of memory.

For example, to address 16 registers, log2(16) bits would be required. This would reduce the

number of bits for an expression to:

7 ∗ 3 + 4 ∗ 4 ∗ 2 + 4 = 57

Whilst it may be tempting to discount the approach of addressing memory directly in an expres-

sion encoding scheme for space saving reasons, it should be considered that using register-based

addressing would still incur additional instruction stream length overhead. This overhead would

be all of the additional load and store instructions required to manage the register file as with a

RISC-based processor.

An ALU-based system provides opcodes for constructing an arbitrary expression from simple

sub-expressions which means that all of the instructions contribute in a meaningful way to the

final outcome. However, using an expression engine may mean that not all processing nodes are

1Note that the number of levels in a binary tree is height + 1, and the number of leaf nodes = (n+1)/2 =
((2levels − 1) + 1) / 2.
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used effectively for the final outcome. For example, an expression such as a = b ∗ c consists of

a multiplication and an assignment and therefore only utilises one or two nodes of a multi-node

expression engine. However, all of the nodes still need to be configured, so the expression encoding

would be the same length regardless. Even if nodes could be made pass-through to indicate they are

not utilised, this would still need encoding in the expression. This would also maintain a uniform

expression size, which would control complexity during decoding.

When considering the use of an expression engine instead of a traditional ALU, it appears that

there are a number of trade-offs to consider. These include opportunity for parallelism, encoding

length and programmability. Figure 4.1 illustrates how each of these attributes for application-

specific ASIC, Uni-core, Multicore and the SDLP can be quantified.

Figure 4.1: Quantifying the Opportunity for Parallelism, Encoding Length and Programmability
for Application-Specific ASIC, Uni-core, Multicore and the SDLP, in terms of High, Medium and
Low
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It can be seen that an application-specific ASIC can be highly parallel with a minimum encoding

length; this is due to the fact that ASICs are highly specialised circuits for solving specific problems.

Consequently, they are the least flexible and hence the least programmable. Uni-core processors are

very flexible computing devices and as such are highly programmable. However, this is at the cost

of having a bigger encoding length and not being as parallelisable as ASICs. Multicore processors

are similar to uni-core processors but offer limited improvement in parallelisation due to Amdahl’s

Law and an upper bound of quadratic communication paths between the cores. Programmability

decreases due to the challenges of developing parallel software, McCool et al. [41]. The SDLP

processor using an expression engine would be more difficult to program and would require a more

complex code generator for the compiler back-end. However, the tradeoff is that many expressions

can be encoded in less space than a traditional ALU. Expressions would be specified only once for

a compilation unit2 and then invoked via references to them. Multiple expression engines could be

employed to increase parallelism further.

Note that computation and optimisation issues are not discussed within this thesis until future

work is discussed in Chapter 8

4.2 Expression Engine Design

When considering the design of an expression unit, a number of design decisions must be considered

as discussed in Section 2.1.5. The choice of a static or dynamic configuration can be considered

first. A static configuration is defined at compilation time of the processor. A number of static

configurations could be defined for expression shapes. A dynamic configuration is defined at soft-

ware compilation time. For example, the compiler would emit instructions for a basic expression

unit configuration for a set of common/basic expressions. However, it may then change the con-

figuration of the expression unit to benefit the execution of more tailored expressions. These are

likely to be domain or application specific. A dynamic configuration would naturally incur a higher

hardware cost. This thesis limits considerations to a statically configured tree. More advanced

approaches should be considered as additional work.

Another important design decision is the choice of operators to include and how they should be

grouped together. Any arbitrary source base contains many expressions consisting of many shapes.

However, when designing a static expression engine the aim is to find a configuration that is able

to process as many expressions as possible in a single pass through the tree. Another conflicting

2A compilation unit is defined as separate unit of linkage, for example an object file in Linux
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aim is to find a configuration that minimises node wastage in order to fully utilise the expression

encoding and instruction stream. The choice of expression engine design is unlimited and finding

an optimal configuration is NP-hard. The design could be done ad-hoc or it could be influenced

empirically after collecting expression information for representative software that is likely to be

executed on the processor. The middle ground is to analyse a source base to assist with an initial

design.

To understand the operators needed in an expression tree, a compiler such as GCC could be

instrumented. The output from the GCC parser is a tree-based intermediate representation called

GENERIC. The purpose of GENERIC is to provide a language-independent way of representing

an entire function [50]. This includes declarations, types, statements and expressions. If the out-

put is appropriately instrumented, it will realise information about how expressions are composed;

in particular, how operators are grouped. However, it is likely that for real-world applications

the results obtained would contain many operator combinations, with a large range of frequen-

cies. Analysis of expression usage therefore requires more structured future research. This should

consider developing an appropriate analysis tool to extrapolate the operator usage at the source

language level. In this thesis, an ad-hoc approach was taken for the expression tree design.

From a simplistic viewpoint, an expression tree can be constructed using logical grouping of

arithmetic and logical operators. For example, addition and subtraction, multiplication and divi-

sion. The nodes of the expression unit can be organised to support the precedence and associativity

of C-based languages. For example, in C-based languages, the multiplication operator has higher

precedence than the addition operator. It would therefore be sensible to have the multiplica-

tion operator nearer the leaf nodes and the addition operator closer to the root node so that the

multiplication is completed before the addition.

If the expression engine is designed as a binary tree, it certainly makes it easy to calculate

various properties of the tree. With this scheme, a tree with a height of 2 would have 7 processing

nodes. However, each leaf node is required to take 2 inputs rvalues and produce a single output

result; this cannot be classified as a complete or full binary tree. The design of the Expression

Engine is illustrated in Figure 4.2. It can be observed in Figure 4.2 that it can be more accurately

described as an n-array tree and it requires fewer bits than the binary tree. This is because

each input node has 2 input rvalues and some nodes only require a single configuration bit. The

expression tree is influenced by Audsley and Ward’s expression tree illustrated in Figure 2.12,

which is based on a dataflow model.

Two rvalues enter the leaf nodes at the bottom of the tree and propagate to the root node.
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Since each node is capable of multiple operations, control bits are used to configure each node. The

expression engine uses 8 bits for addressing an rvalue/lvalue in the memory subsystem. Therefore

the expression engine imposes a memory-memory architecture as described by Hennessey and

Paterson [8]. There are no explicit registers available, all operations are performed directly on

storage elements.

It should be noted that an 8-bit address width for operands (rvalues and lvalues) places severe

limitations on the addressing capabilities of the expression engine. This limitation means that

currently, only 256 bytes can be accessed. Future work will need to focus on reducing this limitation

whilst keeping the encoding length of an expression to a minimum.
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Figure 4.2: Expression Engine

In order to evaluate an expression, the following information is required to configure each node

in layers 1 - 2 (see Figure 4.2):

• The operators (C0 , C1, C6, C7)

• The input operands (R0 - R5). These refer to rvalues.

• How the rvalues should be addressed (Rp0 - Rp5)

For the level 3 output node:

• The operator (C2 - C5)

• The output operand (lval)

• How the lvalue should be addressed (D)
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4.3 Expression Encoding

Listing 4.1 illustrates the Backus-Naur form for an expression and how it is described for the

Assembler.

<expres s i on> := <exp r e s s i on name> :
<C0> <C1> <C2−C5> <C6> <C7>
<RP0> <RP1> <RP2> <RP3> <RP4> <RP5>
<R0> <R0> <R2> <R3> <R4> <R5>
<D>
<l v a l>

Listing 4.1: BNF for an Expression

R0 - R5 are rvalues and are the equivalent of variables or constants on the right hand side of

a C expression. The output operand is referred to as an lvalue (left of assignment). The size of

each lvaue and the rvalue is 8 bits and can therefore address 256 memory locations. For each node

the operator must be selected, for example multiplication or division. Nodes in layers 1-2 (the

bottom two layers) contain basic arithmetic operators, whereas the node in layer 3 (the top layer)

contains logical and bitwise operators. The reason for this arrangement is simplicity in configuring

the expression tree for general expressions.

Listing 4.2 illustrates the possible operators.

<C2−C5> := ’< ’ | ’> ’ | ’= ’ | ’ != ’ | L AND
| L OR | ˆ | B NOT | B AND | B OR | B LSH | B RSH

<C0> := ’ ∗ ’ | ’ / ’
<C7> := ’ ∗ ’ | ’ / ’
<C1> := ’+’ | ’− ’
<C6> := ’+’ | ’− ’

Listing 4.2: BNF for Operators
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Table 4.1 illustrates the values for each of the operators.

Node Operator Value

C0 and C7
* (arithmetic multiply) 0
/ (arithmetic divide) 1

C1 and C6
+ (arithmetic add) 0
- (arithmetic subtract) 1

C2 - C5

< (relational less than) 0
> (relational greater than) 1
= (relational equals) 2
! = (relational not equals) 3
L AND (logical and) 4
L OR (logical or) 5
ˆ(bitwise xor) 6
B NOT (bitwise not) 7
B AND (bitwise and) 8
B OR (bitwise and) 9
B LSH (bitwise left shift) 10
B RSH (bitwise right shift) 11

Table 4.1: SDLP Operators

RP0 - RP5 are used to specify how each of the corresponding rvalues should be interpreted.

The possible values for RP0 - RP5 in layers 1-2 are illustrated in Table 4.2:

Description Value
rvalue (offset from .data) 0
Address of the rvalue (& in C) (offset from .data) 1
Value of the location pointed to by the rvalue (* in C) (offset from .data) 2
Not used 3
rvalue (offset from stack base) 4
Address of the rvalue (& in C) (offset from stack base) 5
Value of the location pointed to by the rvalue (* in C) (offset from stack base) 6
Literal (value is treated as a literal) 7

Table 4.2: RP0 - RP5 Meanings

It can be observed that rvalues can refer to variables in a chosen segment, pointers to variables

in a segment and the offset addresses of variables in a segment. An rvalue can also be an 8-bit

literal value. Whilst this may seem restrictive, it would be possible to have variable length literals

(for example, 8, 16, and 32 bit). However, this in turn would require expressions to be variable

lengths. The possible values for D in layer 3 are illustrated in Table 4.3:

Similar to rvalues, lvalues can simply be variables, pointers and address of variables. It is also

possible to skip writing the lvalue. This may be done when the result of the expression is used as
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Description Value
lvalue (offset from from .data) 0
Location pointed to by the lvalue (* in C) (offset from .data) 1
lvalue (offset from stack base) 2
Location pointed to by the lvalue (* in C) (offset from stack base) 3
Not used 4
Not used 5
Not used 6
Ignore (do not write lvalue, however internal flag still set to indicate result of expression result) 7

Table 4.3: D Meanings

a condition used by an instruction such as an if or a while. In this case an internal condition flag

is set if the lvalue is non-zero and unset otherwise, i.e. flag = lvalue.

Listing 4.3 illustrates how the Assembler formats an expression for execution; this is the C

structure used by the Assembler. It can be noted that the size of this structure is 85 bits which is

rounded up to 11 bytes.
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typedef union {
struct {

u i n t 8 t c0 : 1 ;
u i n t 8 t c1 : 1 ;
u i n t 8 t c2c5 : 4 ;
u i n t 8 t c6 : 1 ;
u i n t 8 t c7 : 1 ;

u i n t 8 t r0p : 3 ;
u i n t 8 t r1p : 3 ;
u i n t 8 t r2p : 3 ;
u i n t 8 t r3p : 3 ;
u i n t 8 t r4p : 3 ;
u i n t 8 t r5p : 3 ;
u i n t 8 t r0r5 [ 6 ] ;

u i n t 8 t d : 3 ;
u i n t 8 t l v a l ;

} a t t r i b u t e ( ( packed ) ) expr ;

u i n t 8 t bytes [ s izeof ( expr ) ] ;
} a t t r i b u t e ( ( packed ) ) e xp r e s s i o n t ;

Listing 4.3: C Structure used by the Assembler Representing an Expression
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4.4 Example Encodings

It is useful to illustrate how an expression is programmed for the assembler, how the expression

is represented as a tree and how it is represented as a byte stream for execution by the processor.

To achieve this, a set of expressions are taken from a linear search program which searches for the

biggest value in an integer array. This can be seen in Listing 6.3.

Table 4.4 illustrates how each of the C expressions are specified for the SDLP assembler. For each

SDLP expression, a reference to the corresponding tree diagram and disassembly is given, which

are also illustrated.

C Expression SDLP Assembly Tree (Figure) Disassembly (Table)

int *ptr = &a0[0];

expr assign ptr addr of a0:
*, +, B AND, +, *,
1, 7, 7, 7, 7, 7,
a0, 1, 0, 255, 1, 0,
0, ptr;

4.3 4.5

if(count < numElement)

expr count less than numElement:
*, +, <, +, *,
0, 7, 7, 0, 7, 7,
count, 1, 0, numElements, 1, 0,
7, ignore

4.4 4.6

count++;

expr inc count:
*, +, B AND, +, *,
0, 7, 7, 7, 7, 7,
count, 1, 1, 255, 1, 0,
0, count;

4.5 4.7

if(*ptr > biggest)

expr element greater than biggest:
*, +, >, +, *,
2, 7, 7, 0, 7, 7,
ptr, 1, 0, biggest, 1, 0,
7, ignore;

4.6 4.8

biggest = *ptr;

expr assign element to biggest:
*, +, B AND, +, *,
2, 7, 7, 7, 7, 7,
ptr, 1, 0, 255, 1, 0,
0, biggest;

4.7 4.9

ptr++;

expr inc ptr:
*, +, B AND, +, *,
0, 7, 7, 7, 7, 7,
ptr, 1, 4, 255, 1, 0,
0, ptr;

4.8 4.10

Table 4.4: C Expressions and Equivalent SDLP Assembly
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Figure 4.3: expr assign ptr addr of a0

Figure 4.4: expr count less than numElement
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Hex: 20 F9 FF 3F 00 01 00 FF 01 00 40 30
expression t
element

Size in bits Value

c0 1 0x0
c1 1 0x0
c2c5 4 0x8
c6 1 0x0
c7 1 0x0
r0p 3 0x1
rlp 3 0x7
r2p 3 0x7
r3p 3 0x7
r4p 3 0x7
r5p 3 0x7
r0 8 0x0
r1 8 0x1
r2 8 0x0
r3 8 0xFF
r4 8 0x1
r5 8 0x0
d 3 0x0
ival 8 0x30

Table 4.5: Disassembly of expr assign ptr addr of a0
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Hex: 00 F8 C7 3F 28 01 00 2C 01 00 47 38
expression t
element

Size in bits Value

c0 1 0x0
c1 1 0x0
c2c5 4 0x0
c6 1 0x0
c7 1 0x0
r0p 3 0x0
rlp 3 0x7
r2p 3 0x7
r3p 3 0x0
r4p 3 0x7
r5p 3 0x7
r0 8 0x28
r1 8 0x1
r2 8 0x0
r3 8 0x2C
r4 8 0x1
r5 8 0x0
d 3 0x7
ival 8 0x38

Table 4.6: Disassembly of expr count less than numElement
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Figure 4.5: expr inc count
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Hex: 20 F8 FF 3F 28 01 01 FF 01 00 40 28
expression t
element

Size in bits Value

c0 1 0x0
c1 1 0x0
c2c5 4 0x8
c6 1 0x0
c7 1 0x0
r0p 3 0x0
r1p 3 0x7
r2p 3 0x7
r3p 3 0x7
r4p 3 0x7
r5p 3 0x7
r0 8 0x28
r1 8 0x1
r2 8 0x1
r3 8 0xFF
r4 8 0x1
r5 8 0x0
d 3 0x0
ival 8 0x28

Table 4.7: Disassembly of expr inc count
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Figure 4.6: expr element greater than biggest

Figure 4.7: expr assign element to biggest
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Hex: 04 FA C7 3F 30 01 00 34 01 00 47 38
expression t
element

Size in bits Value

c0 1 0x0
c1 1 0x0
c2c5 4 0x1
c6 1 0x0
c7 1 0x0
r0p 3 0x2
r1p 3 0x7
r2p 3 0x7
r3p 3 0x0
r4p 3 0x7
r5p 3 0x7
r0 8 0x30
r1 8 0x1
r2 8 0x0
r3 8 0x34
r4 8 0x1
r5 8 0x0
d 3 0x7
ival 8 0x38

Table 4.8: Disassembly of expr element greater than biggest
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Hex: 20 FA FF 3F 30 01 00 FF 01 00 40 34
expression t
element

Size in bits Value

c0 1 0x0
c1 1 0x0
c2c5 4 0x8
c6 1 0x0
c7 1 0x0
r0p 3 0x2
r1p 3 0x7
r2p 3 0x7
r3p 3 0x7
r4p 3 0x7
r5p 3 0x7
r0 8 0x30
r1 8 0x1
r2 8 0x0
r3 8 0xFF
r4 8 0x1
r5 8 0x0
d 3 0x0
ival 8 0x34

Table 4.9: Disassembly of expr assign element to biggest
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Figure 4.8: expr inc ptr
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Hex: 20 F8 FF 3F 30 01 04 FF 01 00 40 30
expression t
element

Size in bits Value

c0 1 0x0
c1 1 0x0
c2c5 4 0x8
c6 1 0x0
c7 1 0x0
r0p 3 0x0
r1p 3 0x7
r2p 3 0x7
r3p 3 0x7
r4p 3 0x7
r5p 3 0x7
r0 8 0x30
r1 8 0x1
r2 8 0x4
r3 8 0xFF
r4 8 0x1
r5 8 0x0
d 3 0x0
ival 8 0x30

Table 4.10: Disassembly of expr inc ptr
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4.5 Comparison of Expression Encoding

The primary motives for the expression engine instead of a traditional ALU are to:

• Reduce the length of the instruction stream, thus reduce the dependency on the memory

system;

• Increase the level of parallelism executing an expression.

To determine the potential improvements, the encoding scheme for the expression engine can

be compared with an instruction stream of another architecture, e.g. ARM Thumb. Since ARM

Thumb is used to reduce the overall instruction stream length, and hence reduce the dependency of

the memory system of a RISC-based architecture, this comparison should be of significant interest.

To achieve this, the ARM Thumb assembly generated by the GCC compiler (unoptimised) was

obtained for the expressions taken from the linear search program. The C expressions are illustrated

in Listing 4.4. Note, these are the same C expressions shown in Table 4.4.

int ∗ptr = &a0 [ 0 ] ;
i f ( count < numElement )
count++;
i f (∗ ptr > b i gg e s t )
b i g g e s t = ∗ptr ;
ptr++;

Listing 4.4: Linear Search Expressions and Corresponding C Expressions

103



Listing 4.5 illustrates the ARM Thumb disassembly for the expressions. Since this is Thumb

code, it is half the size of normal code. A Thumb instruction size is 16 bits as opposed to a normal

ARM instruction of 32 bits.

// i n t ∗ p t r = &a0 [ 0 ] ;
8428 : 1c3b adds r3 , r7 , #0
842a : 3310 adds r3 , #16
842 c : 607b s t r r3 , [ r7 , #4] // p t r

// i f ( count < numElement )
8436 : 683a l d r r2 , [ r7 , #0] // count
8438 : 68bb ld r r3 , [ r7 , #8] // numElement
843a : 429a cmp r2 , r3

// count++;
8442 : 683b l d r r3 , [ r7 , #0] // count
8444 : 3301 adds r3 , #1
8446 : 603b s t r r3 , [ r7 , #0]

// i f (∗ p t r > b i g g e s t )
844 c : 687b l d r r3 , [ r7 , #4] // p t r
844 e : 681a l d r r2 , [ r3 , #0] // dere f e r ence p t r
8450 : 68 fb l d r r3 , [ r7 , #12] // b i g g e s t
8452 : 429a cmp r2 , r3

// b i g g e s t = ∗ p t r ;
845a : 687b l d r r3 , [ r7 , #4] // p t r
845 c : 681b l d r r3 , [ r3 , #0] // dere f e r ence p t r
845 e : 60 fb s t r r3 , [ r7 , #12] // b i g g e s t

// p t r++;
8460 : 687b l d r r3 , [ r7 , #4] // p t r
8462 : 3304 adds r3 , #4
8464 : 607b s t r r3 , [ r7 , #4]

Listing 4.5: ARM Thumb Disassembly for the expressions

The instruction stream length for the above is 38 bytes.

The C code was written using local variables; hence it can be observed that the code is accessing

variables from the stack. An alternative implementation was written using global variables. Listing

4.6 illustrates the alternative ARM Thumb disassembly for the expressions.
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// i n t ∗ p t r = &a0 [ 0 ] ;
8410 : 4b18 l d r r3 , [ pc , #96] // p t r
8412 : 4a19 l d r r2 , [ pc , #100] // address o f a0
// s t o r e address o f a0 in to p t r
8414 : 601a s t r r2 , [ r3 , #0]

// i f ( count < numElement )
8422 : 4b16 l d r r3 , [ pc , #88]
8424 : 681a l d r r2 , [ r3 , #0]
8426 : 4b16 l d r r3 , [ pc , #88]
8428 : 681b l d r r3 , [ r3 , #0]
842a : 429a cmp r2 , r3

// count++;
8434 : 4b11 l d r r3 , [ pc , #68]
8436 : 681b l d r r3 , [ r3 , #0]
8438 : 1 c5a adds r2 , r3 , #1
843a : 4b10 l d r r3 , [ pc , #64]
843 c : 601a s t r r2 , [ r3 , #0]

// i f (∗ p t r > b i g g e s t )
8444 : 4b0b l d r r3 , [ pc , #44]
8446 : 681b l d r r3 , [ r3 , #0]
8448 : 681a l d r r2 , [ r3 , #0]
844a : 4b0e l d r r3 , [ pc , #56]
844 c : 681b l d r r3 , [ r3 , #0]
844 e : 429a cmp r2 , r3

// b i g g e s t = ∗ p t r ;
8458 : 4b06 l d r r3 , [ pc , #24]
845a : 681b l d r r3 , [ r3 , #0]
845 c : 681a l d r r2 , [ r3 , #0]
845 e : 4b09 l d r r3 , [ pc , #36]
8460 : 601a s t r r2 , [ r3 , #0]

// p t r++;
8462 : 4b04 l d r r3 , [ pc , #16]
8464 : 681b l d r r3 , [ r3 , #0]
8466 : 1d1a adds r2 , r3 , #4
8468 : 4b02 l d r r3 , [ pc , #8]
846a : 601a s t r r2 , [ r3 , #0]

Listing 4.6: Alternative ARM Thumb Disassembly for the expressions

The instruction stream length for the above is 58 bytes.

It can be seen that pc-relative addressing is used to obtain the variables. In the case of the

expression if(count < numElement) the number of loads required is almost double. This is because

the compiler has generated instructions to first load the address of a literal pool into a register.

The literal pool is essentially an array of values. It then uses register indirect addressing to load the

105



contents of the memory pointed to by the register into a second register. This happens regardless

of optimisation flags used during compilation. The reason that ARM ISA requires this is because

of the uniform size of instructions. They must be either 16 bits for Thumb or 32 bits for normal

ARM mode; literals cannot be interjected in the byte stream.

Figure 4.7 illustrates the expressions encoded using the expression engine.

e xp r a s s i g n p t r a dd r o f a 0 :
∗ , +, B AND, +, ∗ ,
1 , 7 , 7 , 7 , 7 , 7 ,
a0 , 1 , 0 , 255 , 1 , 0 ,
0 , ptr ;

expr count less than numElement :
∗ , +, <, +, ∗ ,
0 , 7 , 7 , 0 , 7 , 7 ,
count , 1 , 0 , numElements , 1 , 0 ,
7 , i gno r e

expr inc count :
∗ , +, B AND, +, ∗ ,
0 , 7 , 7 , 7 , 7 , 7 ,
count , 1 , 1 , 255 , 1 , 0 ,
0 , count ;

e xp r e l emen t g r e a t e r t han b i g g e s t :
∗ , +, >, +, ∗ ,
2 , 7 , 7 , 0 , 7 , 7 ,
ptr , 1 , 0 , b igges t , 1 , 0 ,
7 , i gno r e ;

e xp r a s s i g n e l emen t t o b i g g e s t :
∗ , +, B AND, +, ∗ ,
2 , 7 , 7 , 7 , 7 , 7 ,
ptr , 1 , 0 , 255 , 1 , 0 ,
0 , b i g g e s t ;

e xp r i n c p t r :
∗ , +, B AND, +, ∗ ,
0 , 7 , 7 , 7 , 7 , 7 ,
ptr , 1 , 4 , 255 , 1 , 0 ,
0 , ptr ;

Listing 4.7: Equivalent expressions using expression engine

Each expression for the Expression Engine is 11 bytes, therefore a total of 66 bytes are required

for all of the expression definitions. However, in order to execute an expression, a reference is

required in the instruction stream. The size of each expression reference is 1 byte. Therefore in

order to define and invoke an expression reference, 12 bytes are required. Therefore, a total of 72
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bytes are required for all of the expression definitions and invocations. This is 14 bytes more than

the PC-relative ARM Thumb assembly and 34 bytes more than the ARM Thumb code which uses

local variables.

However, this is not a fair comparison. If the size of an expression is adjusted to assume 16

registers rather than 256 bytes of memory, 8 fewer bytes are needed per expression definition. This

is 11 bytes = 88 bits, then 88 bits − (7 ∗ 4) bits = 60 bits, or ≈ 8 bytes. This would be a total

of 48 bytes for all of the expression definitions and a total of 48 + 6 = 54 bytes for the definitions

and invocation references.

This is 16 bytes more than the ARM Thumb code but 4 bytes fewer than the ARM Thumb

code using global variables (i.e. literal pool). It is clear that opcode addressing dominates the

expression definition space requirements. It should be noted at this point that a maximum of 256

expressions can be invoked using a 1-byte reference.

To estimate the clock cycles or throughput for both the expression engine and ARM, it is

simpler to remove the effect of pipelining and hence intrinsic and extrinsic stalls. This is reasonable,

as pipelining is implementation specific and is an optimisation that the expression engine could

potentially utilise. With this in mind, instead of counting the number of clock cycles, the number

of instruction steps can be counted; this is simply the instruction count for the ARM assembly.

Whilst this approach does not account for the loading and storing of operands and the addressing

modes required for this, it does provide a rough estimate. For the expression engine, the number of

steps would equate to the number of levels in the tree, i.e. 3. The total number of clock cycles for

the expression engine is 18. The total number of steps required for ARM Thumb using pc-relative

addressing is is 29. The total number of steps for ARM Thumb using local variables is 19. Whilst

the expression engine appears only marginally better than ARM Thumb, the approach taken here

gives optimistic counts for ARM and pessimistic counts for the SDLP. The ARM Thumb is likely to

suffer from pipelining stalls, whereas the SDLP is able to use other implementation optimisations.

For example, it may be possible for the expression engine to be implemented using asynchronous

logic in order to reduce the number of clock cycles.

When considering a one size fits all expression engine there appears to be wastage, where nodes

may not contributing to an expression outcome. For example, expr inc count does not make use

of the level-one nodes which perform multiplication and division. This can be seen where the left

level-one node multiples count by one in order to pass-through count to the level-two node. The

right level-one node simply multiplies 1 by 0 and the right level-two node adds 0 to 255. This is so

that the value from the left hand side of the expression tree can be bitwise anded with the large
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number (255) so that it can be outputted as the lval. It can be observed that 4 out of 6 of the

expressions under utilise the expression engine in this way; half of the nodes are effectively wasted.

It is clear that the the design of the expression engine requires more consideration. Various

techniques for saving dynamic power should be considered for future research. For example, operand

forwarding, similar to that used for minimising data hazards in pipelining, Hennessy and Patterson

[2, C-14] could be used to bypass unnecessary nodes. Clock gating described by Shinde and Salankar

[51], would allow bypassed or unused nodes to be disabled during a clock cycle. The expression

engine could be designed to be dynamic. For example nodes such as (*/ and +-) could swap

positions or levels. The number of node operations could be increased and nodes could even

be dynamically linked. However, dynamic configuration would require more bits for expression

encoding, which ultimately may increase the dependency on the memory system.

4.6 Summary

An Expression Engine influenced by dataflow computing is suggested as a means to to achieve

higher throughput and reduced instruction stream length. The expression engine is structured as

an n-array tree. Programming the SDLP using assembly language is significantly more difficult

than traditional microprocessors. A compiler back end for the expression engine code generator is

likely to be significantly more complex.

To aid progress in determining the potential advantages of an expression engine, an ad-hoc

approach was taken. A static n-array tree structure with 3 levels has been suggested. Each

expression can be encoded in 11 bytes. Example expressions were used to compare the SDLP

with ARM and X86-based processors. ARM Thumb disassembly using local variables requires

an instruction stream length of 38 bytes. The expression engine instruction stream requires 66

bytes and 1 byte per invocation; this is clearly more than ARM. However, the expressions are only

defined once in the instruction stream3. To invoke them requires 1 byte only. Further usage of an

expression requires a single byte rather than having to be repeated at each use in the instruction

stream. If the size of an expression is adjusted to assume 16 registers rather than 256 bytes of

memory, 8 fewer bytes are needed per expression definition. This would be a total of 48 bytes for all

of the expression definitions and a total of 48 + 6 = 54 bytes including invocation references. This

is still 16 bytes more than the ARM Thumb code but 4 bytes fewer than the ARM Thumb code

using global variables (i.e. literal pool). However, up to half of the expression engine nodes are

3It is likely that expression would be defined at the unit of linkage, e.g. at the object file level in Linux
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not utilised in many cases. All of the nodes must be configured, regardless of the simplicity of the

expression. In addition to this, the expression engine does not support displacement addressing.

This means arrays must be emulated using pointers. This is discussed in further detail in Chapter

6.1. More research is required on designing an expression tree structure that reduces wastage.

Various optimisations can be considered as well as utilising a dynamic expression tree design.

The total number of steps for the expressions using the expression engine is 18. The corre-

sponding number of steps for ARM Thumb using PC-relative addressing is is 29. The total number

of steps for ARM Thumb using local variables is 19. However, if an expression tree can be designed

for higher node utilisation, this is likely to improve the results. Currently, it is assumed that each

level in the expression tree requires a step to execute.
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Chapter 5

Abstract Instructions

This chapter proposes abstract instructions that can be used in the architecture presented in

Chapter 6, where the results will be evaluated.

5.1 Background

The C programming language by Kernighan and Ritchie [52] is used for systems and application

programming and can be considered the most widely deployed programming language in existence.

It is used to implement most modern operating systems such as Linux. It was originally designed

for and implemented on the UNIX operating system on the DEC PDP-11 by Denis Ritchie [52]. It

is used as the implementation language for most compilers and embedded systems. It has also been

the influence of many other programming languages. Wikipedia [53] lists over 60 languages which

have been influenced by it. C has also been used as an intermediate language by implementations of

other languages [54] for example, C– and the early versions of C++. Other notable characteristics

of C include:

• Facilitates modular and functional decomposition;

• Highly portable suitable for low level programming;

• Incorporates the C standard library which provides various application programming inter-

faces for common programming tasks including string manipulation, mathematics, input and

output processing, memory management and operating system calls;

• Supports small and fast executables;

• Used as a subset or heavily influences many other languages.
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The C language supports the imperative programming paradigm. Imperative programs specify

a sequence of of statements which each change the state of the program. This is in contrast to the

declarative programming paradigm which describes the desired results without explicitly specifying

the sequence of statements that need to be performed. Procedural languages are built on top of

imperative languages and add support for module and functional decomposition. Object-oriented

languages build on top of procedural languages and provide support to object orientation, for

example, functional inheritance, generics, objects and exception handling. It is common for these

features to be provided in the form of a software runtime system. As such, compilers for object-

oriented languages are bootstrapped using procedural languages. Table 5.1 illustrates this.

Object Oriented
Procedural
Imperative

Table 5.1: Programming Paradigms

It seems sensible that a processor design would in some capacity support the C programming

language. One of the most important decisions in any processor design is to decide where the

boundary between the software and hardware lies, Silc et al. [1]. In other words, the software

instructions that the hardware decodes and interprets need to be considered. A high-level interface

would place the boundary closer to the source language, in terms of its syntax and semantics. A

low-level interface would place the boundary closer to a general purpose processor architecture,

e.g. RISC or CISC. There are advantages and disadvantages to both extremes. The placement of

this hardware/software boundary dictates the Instruction Set Architecture of the processor.

5.2 Instruction Set Architectures

The term Instruction Set Architecture includes various constraints and information about the

processor. The compiler and the assembler must generate machine code that is compatible with

the ISA in order for the program to execute as intended. ISA is an umbrella term and usually

includes information about the following:

• Instruction format

• Register set

• Memory model
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• Addressing modes

ISAs can be classified in a number of ways. For example, Hennessy and Patterson [8] con-

sider characteristics such as the type of internal storage of the processor (e.g. registers or stack).

There are two classes of register architectures which are register-memory and load-store. Hennessy

and Patterson also describe a third class which keeps all operands in memory; this is called a

memory-memory architecture. An example of a register-memory architecture is the 8086 CISC

and an example of the load-store architecture is the ARM RISC. An example of a memory-memory

architecture is Tiny, Audsley and Ward [11].

Another common way of classifying the ISA is the level of abstraction of the instructions. Table

5.2 illustrates the common types of ISAs organised as an abstraction hierarchy.

ISA Example
Application Specific
High Level Language Specific Tiny
Language Specific Virtual Machine JBC, Forth, p-code
CPU Architecture 8086, ARM

Table 5.2: ISAs

At the highest level of abstraction the ISA supports specific applications or algorithms. The

benefit of this ISA is that the instruction stream can be very compact for a given application.

The processor is not burdened with the overhead of interpreting general purpose instructions

which implement application or algorithmic behaviour. However, a severe disadvantage is that the

processor is not general enough for widespread use. A common compromise is to allow a general

purpose processor to be augmented with abstract, application specific instructions. This type of

processor is called an Application Specific Instruction Processor (ASIP). The new instructions can

be implemented by way of FPGA or microcode. An example is Xtensa [55]

The next type of ISA is High Level Language Specific. This type of ISA means that the

processor can interpret a direct representation of the source language. In other words, there is a

one-to-one mapping between the source language constructs and the processor instructions. This

means it is not necessary to interpret low-level or fine-grained instructions which implement high-

level programming abstractions and notations. If an instruction has a closer semantic meaning

with the source program, then fewer instructions will be required to represent it. It is also likely to

shorten the instruction stream for a given program which should reduce the burden on the memory

system when executing a program. However, the disadvantage is that the processor is coupled to

a single source language. This is likely to limit its commercial adoption and applicability.
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It is even possible for the processor to interpret the source language directly rather than an

equivalent representation of it. Machines that provide direct support for high-level languages in

this way were proposed in the 1960s and are by no means novel. Chu and Cannot [4] illustrate

a taxonomy of High Level Language Systems for directly executing high-level languages. This is

summarised in Table 5.3 and will be briefly discussed.

High Level Language
System Type

Subtype Description

Interactive Compilation
systems

1(a)
Editing, compiling, executing the entire source
code

1(b)
Editing, syntax checking, compiling, executing the
entire source code

1(c)
Editing, syntax checking each line, compiling and
executing the entire source code

Interactive Interpretation
Systems

2(a)
Editing, syntax checking and interpreting the
entire source code

2(b)
Editing, syntax checking and interpreting each line
of source code

Interactive direct execution
Systems

3
Editing, syntax checking and executing each
symbol of source code

Table 5.3: Types of High Level Language Systems, taken from [4]

Type 1(a) systems are similar to traditional compiler tool chains and processors. For example, a

set of C files is compiled and linked to produce a single binary which is executed on the processor. A

type 1(b) system would differ in that the source code could be syntax checked during development,

then only fully compiled when an executable is required. This may appear an outdated approach

to development, but a modern equivalent would be the use of syntax checking in an Integrated

Development Environment (IDE)) such as eclipse. A Type 1(c) system would interactively syntax

check each line (e.g. as with BASH shell), however, once programming is complete, the program

is then compiled and executed on the processor. Type 2 systems are both unconventional and

uncommon. In Type 2(a) the program is created and syntax checked as normal. However, the

source text is then directly interpreted by the processor. Type 2(b) differs in that the processor

allows the program source to be inputted interactively line by line. An analogy of this would be a

BASH shell implemented in hardware. Type 3 systems process symbols. For example, these can

be strings of reverse polish notation or Forth dictionaries [19].

It can be argued that Type 1(b) systems are outdated due to the availability of processor

time during the development life cycle. Type 1(c) systems are not of interest, since these imply

an interactive shell development environment. Type 2, whilst interesting, have had little or no
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adoption in the commercial world. Type 3 systems may be of interest since their use may yield

some benefits for general processor design.

Continuing on from High Level Language Specific ISAs, the next level of ISA abstraction is

the Language Specific Virtual Machine ISA. This type of ISA provides an abstraction layer for

a virtual machine for a specific language. The virtual machine is usually software based and

interprets bytecode. Bytecode is higher level than a CPU-based ISA (discussed below), but lower

level than a language ISA. It may interpret or compile the bytecode in a manner of ways discussed

by Smith and Nair [32]. The motivation for this additional layer in the system stack is portability.

Examples of a bytecode ISAs include Forth [19], p-code [40], and Java bytecode [24]. Ironically,

there have been many attempts at implementing parts of a virtual machine in hardware in order to

improve performance. The bytecode-based ISAs were developed to support the porting onto CPU-

based ISAs (discussed below). This is why these ISAs resemble either a stack- or register-based

design. This type of ISA is a bottom-up design where instructions map onto the requirements of

an abstract processor model intended for implementation in software.

The most common type of ISA is the CPU Architecture ISA. These are general purpose ISAs.

The processor interprets a number of instructions that implement the source level constructs. In

other words, there is a one-to-many mapping between the source language constructs and the

processor instructions. This has the advantage that the processor is applicable to a wide range

of source languages making it more commercially viable. Example ISAs include RISC and CISC.

The design philosophy of these ISAs has remained largely unchanged for the past 40 years or so.

It appears that ISA design has been either too general (e.g. RISC- and CISC-based ISAs),

resulting in a many-to-one mapping between processor instructions and programming constructs,

or too specific (e.g. ASIPs), which may limit the reusability of a particular instruction. A possi-

ble compromise is to support a set of abstract instructions representing fundamental imperative

language constructs. In turn this would provide support for the C programming language and the

many languages based on it and influenced by it. The ISA could be supported by an SDLP as

suggested by Audsley and Ward [11]. This would be an SDLP supporting fundamental imperative

programming constructs; in other words, an SDLP for imperative languages.

The reduction in the semantic gap between the source language and the ISA for such a processor

may yield a number of benefits whilst not limiting its support for most practical languages. The

possible benefits may include:

• Reduce the dependency on the memory system. If the instruction stream is more compact,

the processor will require fewer instruction memory interactions for a given program.
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• Reduce the frequency of external memory accesses. If there is less dependency on the memory

system, there should be fewer accesses to external memory.

• Reduce power consumption. Since according to Verma et al., the memory system consumes

the most power [3], reducing the dependency should reduce overall power consumption.

5.3 Instruction Set Design

The C programming language and other languages based on it specify the rules of the syntax in the

form of a grammar. The grammar describes the set of legal tokens or keywords of the language and

how these can be legally structured. The actual meaning of the tokens and they way in which they

are structured is referred to as semantics. The syntax of the language is processed by the compiler

front end, the main parts being the lexical analyser and parser. The semantics of the language

are derived by the compiler back end including the optimiser and the code generator. As with

any practical programming language, the semantics of C are complex. For example, C expressions

specify a number of complicated concepts such as lvalue and rvalue semantics, sequence points,

operator precedence, associativity and integral type promotions. Expressions also control how

operands are accessed, for example as simple variables, array elements or pointers. Such semantics

must be implemented by the compiler back end when generating target assembly language or

machine code for the particular target processor. It is normal for the ISA to offer support for

the semantics of common programming language features. However, this support is low level.

For example, a traditional ISA may provide indirect addressing which supports pointer semantics

and displacement addressing which supports array semantics. The Expression Engine discussed

in Chapter 4 provides support for indirect addressing and for obtaining the address of a variable,

which supports pointer semantics.

The Expression Engine provides semantic support for expressions, however there is an oppor-

tunity for the SDLP to provide better support for programming control constructs such as loops

and conditional statements. Any support provided for C, should also be applicable for all lan-

guages derived from and based on C. SDLP instructions can be used to directly support C control

constructs and are illustrated in Table 5.4.

It can be seen in Table 5.4, that some SDLP instructions are marked as Not currently supported.

These are considered out of scope for this thesis. The supported SDLP instructions are while, if

and if-else. The remaining SDLP instructions should be considered for future work.

Some common C constructs, for example do and for, have been omitted from Table 5.4. This is
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C Control Construct SDLP
if if
if else ifelse
while while
function call and return Not currently supported
switch, case, default Not currently supported
break, continue Not currently supported
goto, label Not currently supported
sizeof Not currently supported

Table 5.4: C keywords mapping onto SDLP Instructions

because some C constructs can be simply re-written or transformed using the supported keywords.

Table 5.5 shows how a for loop can be rewritten as a while loop, obviating the need for an SDLP

for instruction.

For loop Equivalent while loop

for ( int i =0; i < 10 ; i++)
{

<statements>
}

int i = 0 ;
while ( i++ < 10)
{

<statements>
}

Table 5.5: Rewriting a for loop using while
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Table 5.6 illustrates various other C programming constructs and whether or not support is

provided by the SDLP.

C Language Construct SDLP Support

Scalar types, e.g. char, int
Expression engine (control bits RP0-RP5, D)
provides direct addressing which supports scalar
type access

Aggregate types, e.g. struct,
union, enum

Expression engine (control bits RP0-RP5, D)
provides indirect addressing which supports
accessing aggregate types

Function calls and return Not currently supported

Arrays
Not currently supported. Would require assembler
modification so that expression engine supports
displacement addressing.

Pointers
Expression engine (control bits RP0-RP5, D)
provides indirect addressing and address of operator
which supports pointer semantics

static, volatile, register,
const, extern, typedef

Compiler constructs, not supported directly by SDLP

Table 5.6: C Language Constructs and SDLP Support

Listings 5.1, 5.2, and 5.3 illustrate the Backus-Naur form for the supported SDLP instructions

and how they are described for the Assembler. For all of these, expression id refers to an ex-

pression as defined in the previous chapter. A statement is defined as either an instruction or an

expression id.

while <l abe l> <exp r e s s i on i d> { , <exp r e s s i on i d >}
<statement> {<statement>}

<l abe l >:

Listing 5.1: BNF for while instruction

In Listing 5.1, the label defines the point in the program following the while. In C, this would

be the next statement after the closing brace of a while block. expression id refers to an expression

defined elsewhere in the binary. Multiple expression ids can be specified for complex expressions.

Expressions can be chained by specifying the lvalue output of a preceding expression as an rvalue

input to the next expression. If the result of the last expression evaluation is zero, then the program

control branches to label. Otherwise, control passes to the first statement in the while block.
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Listing 5.2 specifies an if statement that works in a similar way to the while.

i f <l abe l> <exp r e s s i on i d> { , <exp r e s s i on i d >}
<statement> {<statement>}

<l abe l >:

Listing 5.2: BNF for if instruction

Listing 5.3 specifies an if-else statement. The label 0 defines the start of the else block. In C,

this would be the statement after the opening brace of the else block. label 1 defines the point in

the program after the else block. In C, this would be the statement after the closing brace of the

else block. If the result of the last expression evaluation is zero, then the program control branches

to label 0, which is the else block. Otherwise, control passes to the first statement in the if block.

The if block and the else block must both contain at least one statement each. When the last

statement of the if block has been executed, program control jumps to label 1.

i f e l s e < l a b e l 0> <l a b e l 1> <exp r e s s i on i d> { , <exp r e s s i on i d >}
<statement> {<statement>}

< l a b e l 0 >:
<statement> {<statement>}

< l a b e l 1 >:

Listing 5.3: BNF for ifelse instruction

5.4 Instruction Encoding

Figures 5.1, 5.2 and 5.3 illustrate the encoding for the SDLP abstract instructions. The field of

each instruction and the range of legal values is shown1.

Figure 5.1: SDLP Encoding - while

1Currently the assembler supports 4 expression Ids for each instruction. However, this could be increased for
while and if.
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Figure 5.2: SDLP Encoding - if

Figure 5.3: SDLP Encoding - if else

5.5 Example Instruction Encoding

Where an ISA may provide low-level support for programming language semantics as discussed,

they typically offer very primitive support for control flow. Listing 5.4 illustrates a portion of

an 8086 hand-written assembly language program implementing a simple linear search. Only the

constructs implementing the while loop are shown. It can be noted that the 8086 ISA support for

implementing a C while loop is basic. It is constructed using a conditional an unconditional jump

with an explicitly managed loop counter. Listing 5.5 illustrates the corresponding disassembly2.

It can be seen that the 8086 disassembly is a faithful representation of the 8086 source code. A

total of 21 bytes are required to represent the while loop; this can be otherwise referred to as the

instruction stream length.

2The disassembly was generated using objdump -D -S. The version of GCC was 4.8.4. The version of Binutils
was 2.24.
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whileLoop :
// Check i f we have compared a l l e lements .
mov count , \%eax
cmp \%eax , numElements
j e l a b e l 1

// Body o f loop goes here .

i n c l count
jmp whileLoop

l ab e l 1 :

Listing 5.4: 8086-32 While Loop

0804816 f < s t a r t >:
804816 f : a1 28 a0 04 08 mov 0x804a028 , \%eax
8048174: 39 05 2c a0 04 08 cmp \%eax , 0x804a02c
804817a : 74 21 j e 804819d <l abe l 1>

// Body o f loop goes here .

08048195 <l abe l 2 >:
8048195: f f 05 28 a0 04 08 i n c l 0x804a028
804819b : eb d2 jmp 804816 f < s t a r t>
0804819d <l abe l 1 >:

Listing 5.5: 8086-32 While Loop Disassembly

Listing 5.6 illustrates the equivalent of Listing 5.4 but hand written for ARM. This has been

assembled for ARM Thumb and ARM-32 respectively. As with the 8086 assembly, it is constructed

using a conditional and an unconditional branch with an explicitly managed loop counter. How-

ever, there is additional overhead due to the load/store architecture and PC-relative addressing

for managing the global variables count and numElements. Listings 5.7 and 5.8 illustrate the cor-

responding disassemblies. For ARM Thumb the instruction stream length is 20 bytes. Note that

the instruction stream is only 1 less than the 8086 disassembly, even though the ARM instructions

are 16 bits as opposed to 32 bits for 8086. For ARM-32, the instruction stream length is 40 bytes.

This is 19 bytes more than the equivalent 8086-32 byte stream. This means that the ARM 32-bit

ISA requires

(40− 21)/21 ∗ 100 = 90%

more instructions to represent the same program written in 32-bit 8086 code.
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s t a r t :
l d r r0 , =numElements
l d r r0 , [ r0 ]
l d r r1 , =count
l d r r4 , [ r1 ]
cmp r0 , r4
b l e l a b e l 1

// Body o f loop goes here .

l a b e l 2 :
l d r r0 , =count
add r4 , r4 , #1
s t r r4 , [ r0 ]
b s t a r t

l a b e l 1 :

Listing 5.6: ARM Thumb while loop

8178 < s t a r t >:
8178 : 480a l d r r0 , [ pc , #40] ; (81 a4 < l a b e l 1+0x8>)
817a : 6800 l d r r0 , [ r0 , #0]
817 c : 490a l d r r1 , [ pc , #40] ; (81 a8 < l a b e l 1+0xc>)
817 e : 680 c l d r r4 , [ r1 , #0]
8180 : 42a0 cmp r0 , r4
8182 : dd0b b l e . n 819 c <l abe l 1>

// Body o f loop goes here .

8194 : 4804 l d r r0 , [ pc , #16] ; (81 a8 < l a b e l 1+0xc>)
8196 : 3401 adds r4 , #1
8198 : 6004 s t r r4 , [ r0 , #0]
819a : e7ed b . n 8178 < s t a r t>
819 c <l abe l 1 >:

Listing 5.7: ARM Thumb While Loop Disassembly
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8178 < s t a r t >:
8178 : e59 f004c l d r r0 , [ pc , #76] ; 81 cc < l a b e l 1+0xc>
817 c : e5900000 l d r r0 , [ r0 ]
8180 : e59f1048 l d r r1 , [ pc , #72] ; 81d0 < l a b e l 1+0x10>
8184 : e5914000 l d r r4 , [ r1 ]
8188 : e1500004 cmp r0 , r4
818 c : da00000b b l e 81 c0 <l abe l 1>

// Body o f loop goes here .

81b0 <l abe l 2 >:
81b0 : e59f0018 l d r r0 , [ pc , #24] ; 81d0 < l a b e l 1+0x10>
81b4 : e2844001 add r4 , r4 , #1
81b8 : e5804000 s t r r4 , [ r0 ]
81bc : e a f f f f e d b 8178 < s t a r t>
81 c0 <l abe l 1 >:

Listing 5.8: ARM-32 While Loop Disassembly

The above code is for hand-written assembly language. To satisfy curiosity, a small C program

was written to implement the equivalent while loop and compiled (unoptimised) for ARM Thumb.

Listing 5.9 illustrates the interesting portions of the disassembly. The GCC compiler has trans-

formed the code in a way that no longer resembles the original C program. Therefore, the original

C statements have been removed from the output for the purposes of clarity. The instruction

stream length is 48 bytes as opposed to 20 bytes for the hand-written equivalent.

81a2 : e00a b . n 81ba <main+0x22>
81a4 : f241 0310 movw r3 , #4112 ; 0x1010 // count
81a8 : f 2 c0 0301 movt r3 , #1
81 ac : 681b l d r r3 , [ r3 , #0]
81 ae : 1 c5a adds r2 , r3 , #1
81b0 : f241 0310 movw r3 , #4112 ; 0x1010 // count
81b4 : f 2c0 0301 movt r3 , #1
81b8 : 601a s t r r2 , [ r3 , #0]
81ba : f241 0310 movw r3 , #4112 ; 0x1010 // count
81be : f 2c0 0301 movt r3 , #1
81 c2 : 681a l d r r2 , [ r3 , #0]
81 c4 : f241 030 c movw r3 , #4108 ; 0x100c // numElements
81 c8 : f 2 c0 0301 movt r3 , #1
81 cc : 681b l d r r3 , [ r3 , #0]
81 ce : 429a cmp r2 , r3
81d0 : dbe8 b l t . n 81a4 <main+0xc>

Listing 5.9: C to ARM Thumb While Loop Disassembly

Listing 5.10 illustrates the disassembly for the same program, but compiled with -Os for space

saving optimisation. The result is not dissimilar to the hand-written assembly; the instruction

stream length is 20 bytes. This confirms that the hand-written assembly language program is a
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reasonable implementation for comparison.

while ( count < numElements )
8198 : 4b05 l d r r3 , [ pc , #20] ; (81b0 <main+0x18>) // count
819a : 4806 l d r r0 , [ pc , #24] ; (81b4 <main+0x1c>) //

numElements
819 c : 6819 l d r r1 , [ r3 , #0]
819 e : 6802 l d r r2 , [ r0 , #0]
81a0 : 4291 cmp r1 , r2
81a2 : da03 bge . n 81 ac <main+0x14>
{
count++;
81a4 : 681a l d r r2 , [ r3 , #0] // count
81a6 : 3201 adds r2 , #1
81a8 : 601a s t r r2 , [ r3 , #0]
81aa : e7 f7 b . n 819 c <main+0x4>
}
81 ac :

Listing 5.10: C to ARM Thumb While Loop Disassembly (optimised for size -Os)

Listing 5.11 illustrates the equivalent SDLP while loop program. This was disassembled and

the results are shown in Tables 5.7, 5.8 and 5.9.
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. data
struct data
{

u in t 32 t count = 0 ;
u i n t 32 t numElements = 10 ;

} ;

. bss
struct bss
{

u in t 32 t i gnor e ;
} ;

. t r e e
expr UNUSED : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 1 , 1 , 0 , 255 , 1 , 0 , 7 ,

i gno re

expr count less than numElement : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 0 , 7 , 7 , count , 1 ,
0 , numElements , 1 , 0 , 7 , i gno r e

expr inc count : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , count , 1 , 1 , 255 , 1 , 0 ,
0 , count

. t ex t
while l a b e l 1 expr count less than numElement

expr inc count
l a b e l 1 :

Listing 5.11: SDLP While Loop
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Offset Value (hex)
0x0000 20 00 00 00 28 00 00 00 2C 00 00 00 50 00 00 00
0x0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0020 00 00 00 00 0A 00 00 00 00 00 00 00 20 FF FF C3
0x0030 01 01 00 FF 01 00 47 08 00 F8 F1 C3 00 01 00 04
0x0040 01 00 47 08 20 F8 FF C3 00 01 01 FF 01 00 40 00
0x0050 FF 05 01 00 02 00

Table 5.7: SDLP While Loop Disassembly - Memory Dump

Segment Offset Table Offset Value
Data Segment Offset 0x0 0x20
BSS Segment Offset 0x4 0x28
Tree Segment Offset 0x8 0x2C
Text Segment Offset 0xC 0x50

Table 5.8: SDLP While Loop Disassembly - Segment Offset Table

Text Segment Offset Value
while instruction 0x50 0xFF
while label 0x51 0x5
expr ref 1 0x52 0x1
while expression terminator 0x53 0x0
expr ref 2 0x54 0x2
while instruction terminator 0x55 0x0

Table 5.9: SDLP While Loop Disassembly - Text Segment
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It can be seen that the instruction stream length for the while loop is 6 bytes. However,

the expressions for expr count less than num element and expr inc count are not counted in these

results. In ARM and 8086 assembly language, these expressions are inlined with instruction stream.

In the SDLP, they are defined outside of the instruction stream, in a dedicated segment. They are

then invoked when necessary. The size of an expression is 11 bytes. Therefore, if the calculations

are modified to assume that the expressions are inlined with the instruction stream, the instruction

stream length becomes 28 bytes. This is 8 bytes more than the ARM Thumb code. The reason for

this is that the SDLP needs to configure 5 nodes simply to compare 2 variables and another 5 nodes

to increment a variable; the expression engine is being significantly under utilised in its current

configuration. In addition, the the SDLP Expression Tree uses 8 bits for operand addressing,

whereas ARM uses 4 bits.

5.6 Summary

An ISA specifies the interface between a processor and the instructions it interprets. It includes

details of the instruction format, internal registers, memory model and how memory is addressed.

This chapter has focused mainly on the instruction format of the ISA. The ISA can be placed at

various levels of abstraction, for example at the application level, domain level, language level or

lower. Some early ISAs have even been placed at the source language level, however, these are

regarded as research ISAs.

A High Level Language Specific ISA are uncommon and provide direct support for source level

constructs. Language Specific Virtual Machine ISAs provide support for constructs of a specific

language but are regarded bottom-up. As such there is still a one-to-many mapping between source

language constructs and machine instructions. Whilst the instructions may be different from the

source language constructs, they are still designed to support the general constructs and semantics

of the language. CPU Architecture ISAs can be considered low-level and are the most common. The

benefit of having a low-level ISA in the traditional sense is that the processor can be used for many

domains. Typically, there is a one-to-many mapping between the source language constructs and

the processor instructions. Syntax Directed Language Specific Processors may be considered both

Language Specific Processors (LSP) and High-Level Language Computer Architectures (HLLCA),

however, the architecture is defined based on the keywords of the language. Processors and ISAs

at this level appear to have been overlooked.

It has been suggested that the only way that performance can be increased and power consump-
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tion reduced is via domain specific architectures, Hennessy and Patterson [2, ch.7]. The general

idea is that processors implementing domain specific algorithms and tasks would be used in con-

junction with general purpose processors. However, there may still be opportunities for improving

performance and reducing power consumption by considering the general purpose ISA. Current

CISC and RISC ISAs have remained relatively unchanged for the past 40 years and there is a

general misconception that they are already optimum and cannot be improved further.

C is the most widely deployed programming language in existence and is used as a basis for many

other languages. It is therefore reasonable to support the most common C language constructs.

By supporting the fundamental C programming constructs, the instructions should be applicable

to most, if not all imperative languages. Constructs that are not currently supported can be re-

written and therefore expressed in alternative ways. The various addressing modes are supported

by the expression engine and more abstract constructs are supported directly by the compiler.

This chapter presented an ISA for the SDLP that supports C-based imperative languages.

Whilst not all C constructs are directly supported by the ISA, they can be added as further

work is carried out developing the processor. Although the ISA can support various programming

constructs, some constructs are covered by the expression engine, compiler and runtime system.
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Chapter 6

An SDLP Architecture and

Simulator

Chapters 4 and 5 described an Expression Engine and a set of Abstract Instructions which are

fundamental features of the SDLP. Before describing an overarching SDLP architecture, some

initial comparisons will be considered focusing on the memory system counts, e.g the number of

loads and stores.

Hennessy and Patterson [8] classify ISAs using a number of characteristics, e.g. the type of

internal storage such as registers or stack. There are two classes of register architectures which are

register-memory and load-store. Examples of these architectures include 8086 and ARM respec-

tively. Hennessy and Patterson also describe a third class which keeps all operands in memory;

this is called a memory-memory architecture. This chapter describes such a memory-memory

architecture and software simulator for the SDLP.

Finally, the results of various benchmarks are presented and compared against equivalent ARM

code.

6.1 Initial Comparisons

After adding support to the SDLP for expressions and abstract instructions, it is possible to com-

pare various attributes with RISC and CISC architectures. A benchmark suite is typically used for

this purpose, but since benchmarks are usually written in C to enable cross platform comparisons,

this would require a C compiler for the SDLP. At such an early stage in the development of the
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SDLP, a simple assembly language benchmark can be used to assess the initial potential of the

processor. Assembly language programs were written (unoptimised) for ARM, 8086 and the SDLP

which implement a linear search for the largest integer in an array. Listing 6.1, 6.2 and 6.3 are the

listings for each of the programs.

. data
a0 :

. long 6 , 5 , 2 , 7 , 8 , 1 , 9 , 0 , 4 , 3
count :

. long 0
numElements :

. long 10
b i gg e s t :

. long 0

. g l o b l s t a r t

. t ex t
s t a r t :

whileLoop :
// Check i f we have compared a l l e lements .
mov count , %eax
cmp %eax , numElements
j e l a b e l 1

// Mu l t i p l y the ’ count ’ by 4 to ob ta in the o f f s e t i n t o the
// array .
imu l l $4 , %eax

mov b igges t , %ebx
mov a0(%eax ) , %ecx
cmp %ebx , %ecx
j l l a b e l 2
mov %ecx , b i g g e s t

l a b e l 2 :
i n c l count
jmp whileLoop

l ab e l 1 :
// Since we have compi led wi thout the C runtime , we can ’ t j u s t
// re turn from main , as t h e r e i s no runtime f o r us to re turn back
// to . We have to c a l l the Linux k e rne l ’ s e x i t ( ) s y s c a l l wi th
// our e x i t code s t o r ed on the s t a c k .
push $0
mov $1 , %eax
int $0x80

Listing 6.1: 8086 Linear Search
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. data
a0 :

. long 6 , 5 , 2 , 7 , 8 , 1 , 9 , 0 , 4 , 3
count :

. long 0
numElements :

. long 10
b i g g e s t :

. long 0

. g l o b l s t a r t

. t ex t
s t a r t :

// Check i f we have compared a l l e lements .
l d r r0 , =numElements
l d r r0 , [ r0 ]
l d r r1 , =count
l d r r4 , [ r1 ]
cmp r0 , r4
b l e l a b e l 1

// Mu l t i p l y the ’ count ’ by 4 to ob ta in the o f f s e t i n t o the
// array .
l s l r3 , r4 , #2

ld r r0 , =b i gg e s t
l d r r1 , [ r0 ]
l d r r2 , =a0
l d r r2 , [ r2 , r3 ]
cmp r2 , r1
b l t l a b e l 2
s t r r2 , [ r0 ]

l a b e l 2 :
l d r r0 , =count
add r4 , r4 , #1
s t r r4 , [ r0 ]
b s t a r t

l a b e l 1 :
// Since we have compi led wi thou t the C runtime , we can ’ t j u s t
// re turn from main , as t h e r e i s no runtime f o r us to re turn back
// to . We have to c a l l the Linux k e rne l ’ s e x i t ( ) s y s c a l l wi th
// our e x i t code s t o r ed on the s t a c k .
mov r0 , #0
mov r7 , #1
svc 0

Listing 6.2: ARM Linear Search
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. data
struct data
{

// Assembler does not c u r r en t l y suppor t arrays , so the f o l l ow i n g i s used
to r ep re s en t u i n t 3 2 t array [ 1 0 ] ;

u in t 32 t a0 = 6 ;
u i n t 32 t a1 = 5 ;
u i n t 32 t a2 = 2 ;
u i n t 32 t a3 = 7 ;
u i n t 32 t a4 = 8 ;
u i n t 32 t a5 = 1 ;
u i n t 32 t a6 = 9 ;
u i n t 32 t a7 = 0 ;
u i n t 32 t a8 = 4 ;
u i n t 32 t a9 = 3 ;

u i n t 32 t count = 0 ;
u i n t 32 t numElements = 10 ;
u i n t 32 t ptr = 0 ;
u i n t 32 t b i g g e s t = 0 ;

} ;

. bss
struct bss
{

u in t 32 t i gnor e ;
} ;

. t r e e
expr UNUSED : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 1 , 1 , 0 , 255 , 1 , 0 , 7 ,

i gno re

e xp r a s s i g n p t r a dd r o f a 0 : ∗ , +, B AND, +, ∗ , 1 , 7 , 7 , 7 , 7 , 7 , a0 , 1 , 0 ,
255 , 1 , 0 , 0 , ptr

expr count less than numElement : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 0 , 7 , 7 , count , 1 ,
0 , numElements , 1 , 0 , 7 , i gno r e

expr inc count : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , count , 1 , 1 , 255 , 1 , 0 ,
0 , count

exp r e l emen t g r e a t e r t han b i g g e s t : ∗ , +, >, +, ∗ , 2 , 7 , 7 , 0 , 7 , 7 , ptr , 1 ,
0 , b igges t , 1 , 0 , 7 , i gno r e

e xp r a s s i g n e l emen t t o b i g g e s t : ∗ , +, B AND, +, ∗ , 2 , 7 , 7 , 7 , 7 , 7 , ptr , 1 ,
0 , 255 , 1 , 0 , 0 , b i g g e s t

e xp r i n c p t r : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , ptr , 1 , 4 , 255 , 1 , 0 , 0 ,
ptr

. t ex t
e xp r a s s i g n p t r a dd r o f a 0
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while l a b e l 1 expr count less than numElement

i f l a b e l 2 exp r e l emen t g r e a t e r t han b i g g e s t

e xp r a s s i g n e l emen t t o b i g g e s t

l a b e l 2 :

e xp r i n c p t r

expr inc count

l a b e l 1 :

Listing 6.3: SDLP Linear Search

Information was obtained via static analysis of the programs. This was simply a case of manu-

ally calculating the frequency of various aspects such as load, stores and the number of instructions

(not bytes required to represent them). Additionally, dynamic analysis was carried out for ARM

and 8086 programs using GDB scripts1. Dynamic analysis was completed for the SDLP using the

simulator. The results of the static and dynamic analysis were compared to ensure that there were

no discrepancies. This was done to provide confidence when simulating more complex benchmarks.

Table 6.1 illustrates the information that was gathered and the results. Some of this information

was specific to the SDLP because of the way in which it differs from traditional processor design.

ARM 8086 SDLP
Loads 94 52 80
Stores 14 14 25
Instructions 180 107 11
Instruction Memory Reads n/a n/a 89
Literals n/a n/a 209
Expression Id’s n/a n/a 46
Expression Terminators n/a n/a 36
Program Bytes 44 33 85

Table 6.1: Comparison Results for Linear Search

It can be observed that ARM incurs the highest dependency on the memory subsystem. The

main culprit is the heavy data load dependency; in order to calculate, compare or modify a variable,

it must first be loaded. 8086 requires the fewest loads. It can be observed that the number of stores

for both ARM and 8086 are equal. This makes sense, as the number of stores can be considered a

function of the algorithm.

1The version of GCC for 8086 was 4.8.4. The version of Binutils for 8086 was 2.24. The version of GCC for
ARM was 4.7.3. The version of Binutils for ARM was 2.24.
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When comparing the architectures, the number of data loads is of interest. The number of

data loads for the SDLP is fewer than ARM but greater than 8086. There are a number of reasons

for this. One of the reasons why ARM requires more data loads is because it uses PC-relative

addressing in order to read global variables. The compiler must generate instructions to first load

the address of a literal pool into a register. This is relative to the current PC which points to

the address of the next instruction but one. It then uses register indirect addressing to load the

contents of the memory pointed to by the register into a second register2. This happens regardless

of optimisation flags used during compilation. The reason that the ARM ISA requires this is

because of the uniform size of instructions. They must be either 16 bits for Thumb or 32 bits for

normal ARM code; literals cannot be contained within the instructions. PC-relative addressing

can have a significant impact on the number of accesses to the memory system. However, it does

not increase the number of instructions executed.

The SDLP requires 3 loads each time expr element greater than biggest is executed, compared

to the equivalent code for 8086 which requires 2 loads each time it is executed.

expr element greater than biggest requires 1 load for biggest, 1 load for the address of element and

1 load to dereference element. The equivalent code for 8086 requires 1 load for biggest and 1 load

to obtain the current array element using displacement addressing via mov a0(%eax), %ecx. 8086

is able to reduce the number of loads by supporting arrays via displacement addressing where the

offset of the array is a literal in the mov instruction. The SDLP currently has no support for array

processing; they must be simulated using pointers.

The SDLP requires 2 loads for expr assign element to biggest. The 8086 does not require these

loads, since the element value is already stored in a register. The SDLP requires an additional

load as part of the expr inc ptr. The 8086 does not require this since it supports displacement

addressing for array processing and hence does not need to simulate arrays using pointers.

Another metric of specific interest is the number of stores across the architectures. The SDLP

has a higher number of stores than both ARM and 8086 respectively; it requires 25 stores whereas

the ARM and 8086 each require 14. The reasons for this are explained below.

The SDLP requires a store for expr assign ptr address a0. It is executed once prior to the while

loop to assign the address of the array to the pointer. This is necessary since the SDLP does not

2An example of PC-relative addressing is:
ldr ro, =0xDEADBEEF
bx lr
which translates into:
0: ldr ro[pc, #4]
4: bx lr
8: .word 0xDEADBEEF
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currently support arrays. The 8086 does not require this since a0 is an immediate/literal offset

within the mov instruction.

The SDLP requires an additional store as part of expr inc ptr each time it is executed. It is

executed 10 times inside the while loop. Both 8086 and ARM support displacement addressing

for array processing. They do not need to maintain a pointer for mimicking arrays, so they do not

incur this overhead.

The number of overall bytes (program bytes) required for representing the programs is of

interest. ARM requires more than 8086, but the SDLP requires double that of ARM. The culprit

of this is the verbosity of the SDLP expressions.

The number of instructions for the three architectures can also be compared. There are large

variances in the number of instructions required to implement the algorithm. ARM requires the

most instructions; 60% more than 8086. The SDLP appears to require a fraction. The main reason

for these differences is the varying levels of abstraction between the ISAs. The ARM ISA has the

greatest semantic gap between the machine code and the algorithm. The 8086 has a smaller gap.

The SDLP being a syntax-directed, empirical language processor has a smaller gap still. However,

the results are not as conclusive as they first appear. The instruction counts for the SDLP are for

the opcodes only; they do not include the additional overhead that the instructions incur. Each

processor may incur architecture specific overheads. For example, on 8086 a mov opcode utilising

displacement addressing can be up to 7 bytes wide if a 32-bit register and a 32-bit displacement

are specified. For the SDLP, a program will incur overheads such as:

1. Labels (immediate values for relative jumps)

2. Expression Ids for control constructs and for other expressions

3. Null terminators for all expression Ids and instructions

Whilst all three architectures are likely to require immediate values for relative jumps, only

the SDLP requires expression Ids and null terminators; since these are a unique feature of the

architecture. The equivalent of these for ARM and 8086 are the instructions that implement

conditional expressions and the instructions to implement expressions within code blocks. The

total overhead for the SDLP for comparing with instruction counts for 8086 and ARM is:

instructions + expressionsIds + nullterminators = 93
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This is less than the instruction count for 8086. If the null terminators can be encoded in the

expression Ids, this would reduce further to:

instructions + expressionIds = 57

Comparing loads, stores and instructions for three differing architectures is challenging because

of the subjective nature of the comparisons. It is always possible to argue exceptions and reasons

why comparisons may be unfair or biased. However, in order that improvements to processor

architecture can be made, it is necessary to make such comparisons whilst taking into account

possible reasons. It is surprising that the 8086 processor has such low demands on the memory

system compared to ARM since many assume that ARM is designed with low power demands in

mind. There may be many reasons for this, however power savings may be due to factors other

than the ISA.

The comparisons made are based on abstract notions such as data loads, stores and instructions

as opposed to the byte counts for each. Nevertheless it is possible to see that the SDLP may have

potential in reducing demands on the memory subsystem. It is important that future generations

of the processor support arrays in the form of immediate offsets and displacement addressing. It is

also necessary to understand the implications of implementing the processor logic at the hardware

level. Currently the analysis has been limited to simulations at the basic block level.

An architecture for the SDLP will now follow which will enable benchmarking comparisons to

be made focusing on the cycle counts for a set of benchmarks.
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6.2 SDLP Architecture and Behavioural Description

Figure 6.1 illustrates the block diagram for the SDLP.

Figure 6.1: SDLP Block Diagram

As with a traditional microprocessor, the Control Unit is responsible for managing and coor-

dinating the rest of the processor. The dashed lines show connections between the Control Unit

and various units that it drives, i.e. the control bus. The solid lines indicate instruction and data

flow between the various units, i.e. the instruction and data busses. The Stack Unit is required

for nesting of while loops and control flow of if-else statements.

The Instruction Memory System represents the interface to the instruction stream, which would

typically be an instruction cache.

The Fetch Unit reads the next instruction sequence or expression sequence. It fetches a byte
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stream for the longest instruction, allowing for the maximum number of supported expression

references for the condition evaluation. This is an if-else instruction since it requires 1 byte for the

opcode, 1 byte for the else block start offset, 1 byte for the else block end offset and a null byte

to terminate the expression references for the condition sequence. A maximum of 4 expression

references are supported. Therefore, the Fetch Unit fetches a total of eight bytes. This is enough

bytes to represent all of the SDLP instructions or a continuous sequence of up to 8 expression

references.

It is assumed that the Instruction Memory System has an Instruction Cache and the Data

Memory System has a Data Cache. The memory system therefore assumes a Harvard architecture.

Each cache is assumed to have an 8-byte line width, which can be supported by standard DDR3.

This means that each SDLP expression will require two memory transfers to fetch (an SDLP

expression is 11 bytes in length). The six rvalues for an expression will require three transfers to

load their values (there are six rvalues, four bytes each in length). An if-else is the longest SDLP

instruction and requires a total of eight bytes, therefore can be fetched in a single memory transfer.

However, the affects of memory transfers are not considered any further in this thesis.

6.2.1 SDLP Execution Model

Most modern processors employ a pipeline execution model in order to improve throughput. Figure

6.2 illustrates how the fetch, decode and execute phases can, in principle, overlap. However, because

the execution phases of instructions and expressions may require different numbers of clock cycles,

this means that the overlapping is not perfectly aligned. In these cases, the pipeline would stall.

These are more accurately referred to as intrinsic stalls since they are due to internal processor

resource conflicts. An example is a single memory unit that is accessed in the fetch stage where

an instruction is retrieved from memory, and the memory stage where data is written and/or read

from memory.

The current execution model assumes no overlapping of instructions. Therefore, the execution

model is sequential. The benefits at this stage of development mean that the simulator is signifi-

cantly easier to develop. It also means that any benchmark comparisons with other architectures

are simpler since the affect and modelling of pipelining on other architectures does not need to

be considered. Pipeline development is an iterative and evolutionary engineering process. Modern

architectures will have had many thousands of man-years of effort dedicated to pipelining alone.

3Double Data Rate, Synchronous Dynamic RAM
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Figure 6.2: Pipeline

Listing 6.4 illustrates the pseudocode for the fetch unit. The par statement from Occam [56]

(and more recently Handel-C [57]) is used to denote parallelism. All statements within a par block

are executed in parallel within the same clock cycle. Any statement outside of a par statement

requires one clock cycle to execute.

u i n t 8 t ∗ statement = readFromMemorySystemInBytes (8 ) ; // 1 c l o c k c y c l e

Listing 6.4: Fetch Unit Pseudocode

Listing 6.5 illustrates the pseudocode for the Decode Unit. The Decode Unit takes the instruc-

tion stream or expression reference sequence from the Fetch Unit and prepares them for execution.

For a While instruction, this consists of preparing the While Unit for execution. The offset of the

first instruction of the while block is calculated. The offset of the instruction following the end

of the while block is extracted as well as up to 4 expression references representing the condition

sequence. A null byte denotes the end of the sequence.

For an if instruction, the If Unit is prepared for execution. The offset of the first instruction

of the if block is calculated. The byte offset of the instruction following the end of the if block is

extracted as well as up to 4 expression references representing the condition sequence.

Decoding an if-else instruction is slightly more complicated. The offset of the first instruction

of the if block is calculated. The byte offset of the start of the else block is extracted. The byte

offset of the instruction following the end of the else block is also extracted. Up to 4 expression

references representing the condition sequence are extracted.

For all instructions, the decoder prepares the expression references ready for the Expression

Dispatcher. Once decoding is complete, the Control Unit passes control to either the While Unit,

If Unit or directly to the Expression Dispatcher.

It should be noted that the decoder cannot yet determine the instruction type. It therefore

prepares for the next statement to be any instruction or expression sequence in parallel (i.e. in
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a single clock cycle). This is simple for the while and if instructions, since they are uniform;

they are the same length and shape. However, an if-else instruction is different since it has an

additional label field. This means that the gathering of expression references starts a byte offset

later. The same applies when finding the offset of the first instruction in the if block of an if-else

instruction. The decoder must also attempt to gather a sequence of expression references in place

of an instruction. These will be interpreted as such by the Control Unit if the instruction variable

is not recognised. The problems associated with a non-uniform instruction shape is evident here,

hence the complication during decoding.

par // 1 c l o c k c y c l e .
{

u i n t 8 t i n s t r = statement [ 0 ] ;

// Needed f o r While i n s t r u c t i o n so we can loop back .
u i n t 8 t i n s t rO f f s e t = pc ;

// Get by t e o f f s e t to next i n s t r u c t i o n a f t e r i f b l o c k ( f o r an I f ) ,
// or s t a r t o f e l s e b l o c k ( f o r an I f−e l s e )
u i n t 8 t l a b e l 0 = statement [ 1 ] ;

// Get by t e o f f s e t o f i n s t r u c t i o n f o l l ow i n g end o f e l s e b l o c k
// ( f o r an I f−e l s e )
u i n t 8 t l a b e l 1 = statement [ 2 ] ;

// Copies expre s s i on r e f s u n t i l NULL i s reached .
// Se t s ’ count ’ to number o f e xp re s s i on r e f s parsed .
u i n t 8 t ∗ exprRefs = parseExpres s ionRe f s ( statements [ 2 ] ) ;
u i n t 8 t ∗ i fE l s eExprRe f s = parseExpres s ionRe f s ( statements [ 3 ] ) ;
u i n t 8 t ∗ sequenceExprRefs = parseExpres s ionRe f s ( statements [ 0 ] ) ;

// Search f o r next by t e a f t e r the NULL termina t ing
// cond i t i on sequence

// S ta r t o f While or I f b l o c k .
u i n t 8 t s t a r tO f f s e t = f i n dS t a r tO f f s e t ( statements [ 3 ] ) ;

// S ta r t o f I f b l o c k f o r an I f−e l s e .
u i n t 8 t i f E l s e S t a r tO f f s e t = f i n dS t a r tO f f s e t ( statements [ 4 ] ) ;

}

Listing 6.5: Decode Unit Pseudocode

The following describes the common execution behaviour common to all instructions. First,

the Expression Dispatcher iterates through the expression references representing the condition

sequence. Each expression reference is an offset from the .tree segment and is used to obtain the

expression for execution. The Expression Dispatcher obtains the expression from the Data Memory
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System. Listings 6.6 and 6.7 illustrate this. The expression is then passed to the Expression Engine

for execution. This sequential process is repeated for each expression in the condition sequence.

The result of the last expression is used to determine the decision.

switch ( i n s t r )
{

case While :
case I f :

d i spatchExpre s s i ons ( exprRefs , count ) ; // 1 c l o c k c y c l e .
break

case I f−else :
d i spatchExpre s s i ons ( i fE l seExprRe f s , count ) ; // 1 c l o c k c y c l e .

break

default :
d i spatchExpre s s i ons ( sequenceExprRefs , count ) ; // 1 c l o c k c y c l e .

break ;
}

Listing 6.6: Expression Dispatcher Psudocode

void d i spatchExpre s s i ons ( u i n t 8 t ∗ expre s s i onRe f s , int count )
{

// 3 ∗ c l o c k c y c l e s per expre s s i on r e f e r ence .
for ( int i=0 i < count ; i++)
{

exprEngine . eva luate ( exprRefs [ i ] ) ; // 3 c l o c k c y c l e s .
}

}

Listing 6.7: Expression Dispatch Loop Pseudocode

The following describes the specific behaviour when executing each instruction. For a while

instruction 4, if the decision is false, the While Unit will pass control to the relative address

specified by the the While label offset. This is the first instruction following the while block. If the

result is true, the offset of the while statement is passed to the Stack Unit for pushing. Execution

continues from the first instruction of the while block and can consist of expression references and

instructions. Listing 6.8 illustrates the pseudocode for the While Unit.

4The BNF for a while loop is while < label > < expr id > {, < expr id >} < statement > {< statement >} <
label >:
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// Check f l a g s r e g i s t e r f o r Zero .
// Zero equa te s to f a l s e , meaning t ha t the While b l o c k i s not entered .
// Non−zero equa te s to true , meaning the While b l o c k i s en tered .
i f ( f l a g s . ze ro == 0) // 1 c l o c k c y c l e .
{

// Branch to jump over While b l o c k .
pc = l ab e l 0 ; 1 c l o ck cy c l e .

}
else
{

par // 1 c l o c k c y c l e .
{

s tack . push ( i n s t rO f f s e t ) ;
pc = s t a r tO f f s e t ;

}
}

Listing 6.8: While Pseudocode

Eventually, a null byte will be hit in the instruction stream instead of an instruction or expres-

sion reference. This null byte signifies the end of the while block. When this happens, the relative

offset is popped off the stack, and execution continues from this point. This is the address of the

beginning of the while loop so that its condition can be reevaluated. Listing 6.9 illustrates the

pseudocode.

pc = stack . pop ( ) ; \\ 1 c l o ck cy c l e .

Listing 6.9: Null Pseudocode

It should be pointed out that the Stack Unit is a processor stack as opposed to a system stack.

This means that its only purpose is to support the execution of processor instructions and not stack

frames during function call, return and interrupt handling. However, since it stores information

for currently executing instructions, it will require saving prior to any context switch due to an

interrupt, process or thread context switch. It would obviously require restoration upon return.

If the SDLP instruction set is extended to support the break or continue instructions, careful

attention will be required. For example, in the case of a break, the stack will need to be popped

without modification to the program counter. The processor will need to keep track of the nested

instruction in order to correctly manage the stack.

For an if instruction 5, if the decision is false, the If Unit will pass control to the to the relative

address specified by the label offset; this is the first instruction following the end of the if block.

5The BNF for an If is if < label >< expr id > {, < expr id >} < statement > {< statement >} < label >:
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If the decision is true, execution continues from the first instruction of the if block. Listing 6.10

illustrates the pseudocode.

// Check f l a g s r e g i s t e r f o r Zero .
// Zero equa te s to f a l s e , meaning t ha t the I f b l o c k i s not entered .
// Non−zero equa te s to true , meaning the I f b l o c k i s en tered .
i f ( f l a g s . ze ro == 0) // 1 c l o c k c y c l e .
{

// Jump over I f b l o c k .
pc = l ab e l 0 ; // 1 c l o c k c y c l e .

}
else
{

pc = s t a r tO f f s e t ; // 1 c l o c k c y c l e .
}

Listing 6.10: If Unit Pseudocode

For an if-else instruction 6, if the decision result is false, program control is passed to the

relative address specified by label 0 ; this is the start offset of the else block. If the decision result

is true, the relative address specified by label 1 is passed to the Stack Unit for pushing; this is the

location of the first instruction following the end of the else block. Program control then resumes

from the start of the if block. Eventually, a null byte will be encountered in the instruction stream

instead of an instruction or expression reference. When this happens, the relative offset is popped

off the stack, and execution continues from this point. This is the offset of the instruction following

the end of the else block. Listing 6.11 illustrates this.

// Check f l a g s r e g i s t e r f o r Zero .
// Zero equa te s to f a l s e , meaning t ha t the Else b l o c k i s en tered .
// Non−zero equa te s to true , meaning the I f b l o c k i s en tered .
i f ( f l a g s . ze ro == 0) // 1 c l o c k c y c l e .
{

// Continue execu t i on from s t a r t o f E lse b l o c k .
pc = l ab e l 0 ; // 1 c l o c k c y c l e .

}
else
{

par // 1 c l o c k c y c l e .
{

s tack . push ( l a b e l 1 ) ;
pc = i f E l s e S t a r tO f f s e t ;

}
}

Listing 6.11: If-else Pseudocode

6The BNF for an if-else is ifelse < label 0 > < label 1 > < expr id > {, < expr id >} < statement > {<
statement >} < label 0 >: < statement > {, < statement >} < label 1 >:
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In order to support the development of the SDLP, support will be required for other processor

features such as function call and return. This will ultimately facilitate more complex benchmarks

for architecture exploration. Whilst function calls and return are outside the scope of this thesis,

support for such features would be very similar to 8086. The only difference between SDLP

and 8086 function calls and return is that the SDLP could provide more abstract instructions,

representing the caller and callee prologues and epilogues. Appendix A describes how such features

could be implemented as future work for the SDLP.

6.3 SDLP Software Simulator

A significant contribution is an assembler and a software simulator for the SDLP. The purpose of

these tools is to:

1. Verify that the concepts described are practical with regards to implementation;

2. Provide a reference model for further architectural exploration and experimentation;

3. Provide a reference model to aid the development of an FPGA implementation;

4. Allow various statistics to be gathered when executing benchmark code.

The assembler is written in simple object-based C++. The simulator is written accordingly in

C++ as opposed to using a simulation framework such as SystemC [58]. This means that most

software and hardware engineers will be able to quickly understand and modify the simulator

without specialist knowledge and experience of frameworks. The execution statistics that can be

gathered include the following:

• Instruction Memory Reads;

• Data Memory Reads;

• Data Memory Writes;

• Number of byte literals (constant values used in an expression);

• Number of null terminators (in instructions and condition sequences);

• Clock cycles.

It is not possible to be be completely accurate regarding clock cycles, as this will ultimately

depend on the RTL (Register Transfer Language) implementation details. This work must be done

in successive refinements and include the skills of a digital electronics engineer working alongside

the processor designer. However, at this stage of development, sensible estimates for clock cycles

are adequate for the purpose of architecture exploration and ascertaining the viability of the SDLP.
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As discussed previously, the simulator does not currently model the pipeline behaviour. Instead

the fetch, decode and execute cycles are considered sequential; there is no overlapping. Modifying

the simulator for dynamic pipeline modelling should be considered for future work.

For the current sequential execution model, the pseudocode listed above is used to determine

the number of clock cycles required for each fetch, decode and instruction execution. In particular,

the execute phases of each instruction can be defined.

A while instruction requires the following number of clock cycles to execute:

• If the condition is false, 2;

• If the condition is true, 2;

• If the condition is true, a further cycle is required for the null processing (see Listing 6.9).

An if instruction requires 2 clock cycles to execute regardless of the condition outcome.

An if-else instruction requires the following number of clock cycles to execute:

• If the condition is false, 2;

• If the condition is true, 2;

• If the condition is true, a further cycle is required for the null processing (for jumping over

the else block when the end of the if block has been reached, see Listing 6.9).

Instructions are just one consideration for clock cycle simulation; another is the execution of

expressions. The clock cycles for expressions must account for the following:

• Cycles for rvalue addressing;

• Cycles for lvalue addressing;

• Cycles for node processing.

rvalue addressing can be:

• Literals - part of the instruction stream and already decoded;

• Address of - part of the instruction stream and already decoded;

• Variable - a read from the Data Memory System is required;

• Pointer Dereference - 2 reads from the Data Memory System are required.

lvalue addressing can be:

• Ignore - no value is written to the Data Memory System, only internal processor flags are

updated;
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• Variable - a write to the Data Memory System is required;

• Pointer Dereference - 1 read and 1 write to the Data Memory System are required.

Arithmetic and logical operations performed by nodes within the Expression Engine are likely

to be implemented using similar techniques that traditional ALUs employ. Therefore, the clock

cycle values for these operations can use the values taken from the data sheet of an existing pro-

cessor. The cycles times for node processing could be taken from the data sheet for the MicroBlaze

Processor Reference Guide [5]. The MicroBlaze is a soft-core processor, intended for use on plat-

forms with an FPGA. Since the next step in the development of the SDLP may be an FPGA rather

than an ASIC (Application Specific Integrated Circuit) implementation, the MicroBlaze appears

appropriate.

Table 6.2 illustrates the cycle values for an appropriate selection of MicroBlaze instructions.

These are the figures for when area optimisation is enabled.

Instruction
Number
of clock
cycles

ALU
and, or, xor 1
add 1
cmp 1
bs (barrel shift) 2
mul 3
Load/Store
imm (load immediate) 2
lw (load word) 2
Branch
br 3
beq 3

Table 6.2: Cycle Times for MicroBlaze Soft-core Processor, adapted from [5]

If the clock cycle values for the MicroBlaze are to be used to derive values for the SDLP

simulator it is important that they are reasonable and within range of what can be considered

typical. To ensure this, clock cycle values for the ARM7TDMI processor were also considered

alongside the MicroBlaze values. The ARM7TDMI core is a popular 32-bit embedded RISC

processor for embedded systems requiring low power consumption, small size and high performance.

The processor is based on the Von Neumann architecture and has a three-stage pipeline comprising

of fetch, decode and execute. The data sheet for the ARM7TDMI [6] details the number of cycles

required for different types of instructions, and these are shown in Table 6.3. However, these must
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Instruction Cycle Count Additional

Data Processing 1S
+ 1l for SHIFT(Rs)
+ 1S+1N if R15 written

MSR, MRS 1S -
LDR 1S+1N+1l + 1S+1N if R15 loaded
STR 2N -
LDM nS+1N+1l + 1S+1N if R15 loaded
STM (n-1)S+2N -
SWP 1S+2N+1l -
B, BL 2S+1N -
SWI 2S+1N -
MUL, MLA 1S+ml -
MUL 1S+ml -
MLA 1S+(m+1)l -
MULL 1S+(m+1)l -
MLAL 1S+(m+2)l -
CDP 1S+bl -
LDC, STC (n-1)S+2N+bl -
MCR 1N+bl+1C -
MRC 1S+(b+1)l+1C -

Table 6.3: Cycle Times for ARM7TDMI, taken from [6, p.8]

be interpreted with some caution. The data sheet states that these are the incremental number of

cycles required by an instruction, rather than the total number of cycles for which the instruction

uses part of the processor [6, p.7]. Therefore, it may be assumed that the table illustrates the

number of execute cycles only.

The following attempts to explain each of the variable in Table 6.3:

• n is the number of machine words transferred;

• m is 1 if bits [32:8] of the multiplier operand are all zero or all one;

• m is 2 if bits [32:16] of the multiplier operand are all zero or all one;

• m id 3 if bits [31:24] of the multiplier operand are all zero or all one;

• b is the number of cycles spent in the coprocessor busy-wait loop;

• S is a sequential memory cycle. During this cycle, the processor requests a transfer to or

from an address that is either one word or one half word greater than the address used in

the preceding cycle;

• N is a non-sequential memory cycle. During this cycle, the processor requests a transfer to

or from an address that is unrelated to the address used in the preceding cycle;

• I is an internal memory cycle. During this cycle, the processor does not require a transfer
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because it is performing an internal function and no useful prefetching can be performed at

the same time;

• C is a coprocessor register transfer memory cycle.

For simplicity, constant values for S, N, I and m can be assumed. A value of 1 is used for S,

N and I. A value of 3 is used for m.

With this in mind, it can be seen that a MicroBlaze takes 2 cycles to execute a load whereas

the ARM7TDMI would require 3. To execute an add for the MicroBlaze requires 1 cycle which

is the same as for the ARM7TDMI. The MicroBlaze requires 3 cycles to execute a multiply. The

ARM7TDMI requires between 2 -5 cycles depending on the value of the multiplier. Even though

the MicroBlaze is a soft-core RISC processor and the ARM7TDMI is an ASIC processor, these

figures are not wildly different.

It was decided not to use either of the clock cycle values in Table 6.2 or Table 6.3 for reasons

discussed in Section 6.4

6.4 Comparison of Simulation Measurements

The simulator is programmed to accumulate the number of clock cycles as it interprets each instruc-

tion and expression. Whilst the clock cycle values for the execution phase for the MicroBlaze and

the ARM7TDMI are available in table form, these can be confusing. For example, the ARM7TDMI

requires detailed knowledge of the memory cycles during execution. Even if it is possible to use a

cycle accurate simulator, the results may show large differences due to factors other than the ISA

for example, pipelining.

Instruction selection between architectures is also likely to introduce differences. For example,

the Linear Search illustrated previously in Listing 6.2, an lsl (left shift) may be performed in order

to multiply by a power of two; this can be executed in a single clock cycle. However, the SDLP

may achieve the same result by using a multiply instruction, requiring 3 clock cycles to execute.

Compiler optimisations can also have a significant impact on clock cycle counts. For example,

GCC has 7 optimisation options (-O0, -O1, -O2, -O3, -Os, -Ofast and -Og) [59]. Each selectively

include a multitude of optimisation flags. An experiment was conducted to count the number

of instructions executed in the GDB debugger for a matrix multiplication program compiled for

ARM Thumb. This was done using a GDB user-defined function which counts the number of

instructions up to a given program counter address. The results showed that the unoptimised

program (-O0 or omitted optimisation option) took 333 instructions to execute, whereas an -O3
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optimised program only required 29. GCC is clearly capable of aggressive optimisation, for example

SIMD (Single Instruction Multiple Data) transformations. In this example, it impressively reduced

the number of instructions executed by an order of magnitude. However, comparing aggressively

optimised ARM programs with unoptimised SDLP programs is clearly unfair since for whatever

optimisations are possible for ARM, there may be the equivalent and additional optimisations

for the SDLP. Assuming this statement is valid, it is necessary at this stage of development to

compare like for like by discounting optimisations. A program running on ARM should be similar

in structure to the equivalent program running on the SDLP.

Such differences are inevitable when comparing implementations using different ISAs. At this

stage of exploration, the interest is not in understanding the number of cycles a processor takes

to perform primitive ALU-based operations. Understanding how the ISA can impact the clock

cycle counts is of the greatest interest. Comparing metrics between architectures is fraught with

potential problems since subtle assumptions or oversights can impact the results significantly. It

is therefore necessary to simplify the method used for measurement, removing as many variables

as possible.

The following assumptions have been made for ARM:

• A sequential execution model;

• Fetch, decode and execute phases are assumed to require 1 clock cycle each - therefore, every

ARM instruction requires 3 clock cycles to complete7;

• No compiler optimisations.

The following assumptions have been made for the SDLP:

• A sequential execution model;

• Fetch and decode phases are assumed to require 1 clock cycle each (based on the above

pseudocode);

• Execute phase for instructions uses the clock cycle values taken from the above pseudocode;

• Execute phase for expression operations require one 1 clock cycle (the same as ARM ALU

operations);

• Data memory reads and writes each require 1 clock cycle8;

• Pointer dereference requires 2 clock cycles (equivalent to two loads in ARM);

• Address of operation requires 0 clock cycles (this information is already available internally);

7It is assumed that the execute phase for all ARM instructions requires a single clock cycle. This is to ensure
that the clock cycle counts for ARM are optimistic. More pessimistic assumptions are used for the SDLP.

8Note that in ARM, memory accesses are done via explicit load/store instructions.
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• Literals require 0 clock cycles (this information is already available internally);

• Up to 4 condition expressions can be fetched and decoded alongside their associated instruc-

tion since they are processed as part of the instruction;

• Stand-alone expressions require separate fetch and decode cycles 9;

• No optimisations.

In general, the total number of clock cycles required for an expression e is r + n + l where r is

the number of clock cycles for rvalue addressing, n is the number of clock cycles for node execution

and l is the number of clock cycles for lvalue addressing.

r can be defined as
∑6

n=1 0 ≤ rn ≤ 2

e is defined as 3 (representing the number of levels in the tree)

l can be defined as 0 ≤ r ≤ 2

Based on the above assumptions, the number of clock cycles for the ARM implementation

of the Linear Search Algorithm in Listing 6.2, can be calculated and augmented with the initial

comparison results in Table 6.1.

The clock cycle count for the ARM code is 180 ∗ 3 = 540, since the ARM7TDMI has a 3-

stage pipeline and so this needs to be factored into the results. The clock cycle count for the

SDLP obtained via the simulator is 413. This includes the clock cycle counts for the stand-alone

instructions. The difference is given in Table 6.4, which summarises the differences in clock cycles,

loads and stores between ARM and the SDLP for the Linear Search Program.

ARM SDLP Difference % Improvement
Cycles 540 413 127 23
Loads 94 81 13 14
Stores 14 25 -11 -78

Instruction Memory Reads n/a 89 n/a n/a
Program Bytes 44 85 -41 -51

Table 6.4: Difference between ARM and SDLP for the Linear Search Program

The SDLP is able to execute its version of the Linear Search Program using 23% fewer clock

cycles than ARM. Given that the SDLP is being compared with an architecture known for low

power, these initial results appear significant.

The SDLP is also able to reduce the number of interactions with the Data Memory System.

Since the instruction stream length of an SDLP program is significantly shorter than the equivalent

9This is a pessimistic view, since groups of 8 stand-alone expressions could be fetched and decoded together.
However, this would be more complicated to model in the simulator.
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RISC instructions, the number of interactions with the Instruction Memory System is significantly

reduced. Both these aspects are beneficial in reducing power consumption. The reasons for the

increase in stores is discussed in Section 6.1.

To further validate the comparison results of the Linear Search Algorithm, a number of ad-

ditional benchmarks were written. For ARM, these were written in C. The benchmarks attempt

to look at the potential benefits between abstract instructions and expressions; in other words,

which of these two features provide the most significant improvement. An additional benchmark

was written to understand the implications of PC-relative addressing for ARM. The benchmark

categories are summarised in Table 6.5.

Benchmark Category
Linear Search Expressions
Loop 1 Instructions
Loop 6 PC-relative addressing (ARM only)
Loop 2 Instructions
Checksum 1 Instructions
Checksum 2 Expressions
Checksum 3 Expressions
Matrix Expressions

Table 6.5: Benchmark Categories
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• Linear Search is the benchmark previously illustrated in Listings 6.2 and 6.3;

• Loop 1 is a while loop which iterates 10 times. The loop counter is a local variable;

• Loop 6 is the same while loop, however the the loop counter is a global variable. For ARM

this means it is accessed using PC-relative addressing. There is no corresponding listing for

the SDLP;

• Loop 2 is a while loop which iterates 100 times. The loop counter is a local variable;

• Checksum 1 is taken from the ARM System Developer’s Guide [12];

• Checksum 2 is a loop unrolled version, with the loop body containing 4 expressions rather

than 1;

• Checksum 3 is also unrolled but with 8 expressions in the loop body;

• Matrix calculates the products of a matrix pair.

The loop-based benchmarks contain minimal expressions. As such any saving would be weighted

more towards abstract instructions. The loop benchmarks vary the number of iterations, to confirm

that savings should not increase with the number of iterations. The affect of PC-relative addressing

is shown with Loop 6. The Checksum benchmarks gradually increases the number of expressions

into a program via loop unrolling. Again, this is to understand whether abstract instructions or

expressions provide the most significant improvement. Matrix further increases the ratio of number

of expressions to abstract instructions.

The following listings are for the ARM Thumb disassemblies and the associated SDLP assembly

language for the benchmarks.
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int loop ( int n)
{

8248 : b480 push { r7 }
824a : b085 sub sp , #20
824 c : a f00 add r7 , sp , #0
824 e : 6078 s t r r0 , [ r7 , #4]

int i ;
while ( i<n)

8250 : e002 b . n 8258 <loop+0x10>
{

i++;
8252 : 68 fb l d r r3 , [ r7 , #12]
8254 : 3301 adds r3 , #1
8256 : 60 fb s t r r3 , [ r7 , #12]

}

int loop ( int n)
{

int i ;
while ( i<n)

8258 : 68 fa l d r r2 , [ r7 , #12]
825a : 687b l d r r3 , [ r7 , #4]
825 c : 429a cmp r2 , r3
825 e : dbf8 b l t . n 8252 <loop+0xa>

{
i++;

}

Listing 6.12: Loop 1 - ARM
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. data
struct data
{

u in t 32 t i = 0 ;
u i n t 32 t n = 10 ;

} ;

. bss

struct bss
{

u in t 32 t i gnor e ;
} ;

. t r e e
expr UNUSED : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 1 , 1 , 0 , 255 , 1 , 0 , 7 ,

i gno re
e x p r i l e s s t h a n n : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 0 , 7 , 7 , i , 1 , 0 , n , 1 , 0 , 7 ,

i gno re
e xp r i n c i b y 1 : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , i , 1 , 1 , 255 , 1 , 0 , 0 ,

i

. t ex t
while l a b e l 1 e x p r i l e s s t h a n n

e xp r i n c i b y 1
l ab e l 1 :

Listing 6.13: Loop 1 - SDLP
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while ( i<n)
81a2 : e00a b . n 81ba <main+0x22>

{
i++;
81a4 : f241 0310 movw r3 , #4112 ; 0x1010
81a8 : f 2c0 0301 movt r3 , #1
81 ac : 681b l d r r3 , [ r3 , #0]
81 ae : 1 c5a adds r2 , r3 , #1
81b0 : f241 0310 movw r3 , #4112 ; 0x1010
81b4 : f 2c0 0301 movt r3 , #1
81b8 : 601a s t r r2 , [ r3 , #0]

stat ic int i = 0 ;
stat ic int n = 10 ;

int main (char ∗argv [ ] , int argc )
{

while ( i<n)
81ba : f241 0310 movw r3 , #4112 ; 0x1010
81be : f 2 c0 0301 movt r3 , #1
81 c2 : 681a l d r r2 , [ r3 , #0]
81 c4 : f241 030 c movw r3 , #4108 ; 0x100c
81 c8 : f 2c0 0301 movt r3 , #1
81 cc : 681b l d r r3 , [ r3 , #0]
81 ce : 429a cmp r2 , r3
81d0 : dbe8 b l t . n 81a4 <main+0xc>

{
i++;

}

Listing 6.14: Loop 6 - ARM
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int i ;
while ( i<n)

8250 : e002 b . n 8258 <loop+0x10>
{

i++;
8252 : 68 fb l d r r3 , [ r7 , #12]
8254 : 3301 adds r3 , #1
8256 : 60 fb s t r r3 , [ r7 , #12]

int loop ( int n)
{

int i ;
while ( i<n)

8258 : 68 fa l d r r2 , [ r7 , #12]
825a : 687b l d r r3 , [ r7 , #4]
825 c : 429a cmp r2 , r3
825 e : dbf8 b l t . n 8252 <loop+0xa>

{
i++;

}

Listing 6.15: Loop 2 - ARM
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. data
struct data
{

u in t 32 t i = 0 ;
u i n t 32 t n = 100 ;

} ;

. bss

struct bss
{

u in t 32 t i gnor e ;
} ;

. t r e e
expr UNUSED : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 1 , 1 , 0 , 255 , 1 , 0 , 7 ,

i gno re
e x p r i l e s s t h a n n : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 0 , 7 , 7 , i , 1 , 0 , n , 1 , 0 , 7 ,

i gno re
e xp r i n c i b y 1 : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , i , 1 , 1 , 255 , 1 , 0 , 0 ,

i

. t ex t
while l a b e l 1 e x p r i l e s s t h a n n

e xp r i n c i b y 1
l ab e l 1 :

Listing 6.16: Loop 2 - SDLP
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int sum = 0 ;
827a : 2300 movs r3 , #0
827 c : 60 fb s t r r3 , [ r7 , #12]

do
{

sum += ∗data++;
827 e : 687b l d r r3 , [ r7 , #4]
8280 : 1d1a adds r2 , r3 , #4
8282 : 607a s t r r2 , [ r7 , #4]
8284 : 681b l d r r3 , [ r3 , #0]
8286 : 68 fa l d r r2 , [ r7 , #12]
8288 : 4413 add r3 , r2
828a : 60 fb s t r r3 , [ r7 , #12]
n−−;
828 c : 683b l d r r3 , [ r7 , #0]
828 e : 3b01 subs r3 , #1
8290 : 603b s t r r3 , [ r7 , #0]

} while (n != 0) ;
8292 : 683b l d r r3 , [ r7 , #0]
8294 : 2b00 cmp r3 , #0
8296 : d1f2 bne . n 827 e <checksum+0xe>

Listing 6.17: Checksum 1 - ARM
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. data
struct data
{

// Assembler does not c u r r en t l y suppor t arrays , so the f o l l ow i n g i s used
to r ep re s en t u i n t 3 2 t array [ 6 4 ] ;

u in t 32 t a0 = 0 ;
u i n t 32 t a1 = 1 ;
u i n t 32 t a2 = 2 ;
u i n t 32 t a3 = 3 ;
u i n t 32 t a4 = 4 ;
u i n t 32 t a5 = 5 ;
u i n t 32 t a6 = 6 ;
u i n t 32 t a7 = 7 ;
u i n t 32 t a8 = 8 ;
u i n t 32 t a9 = 9 ;
u i n t 32 t a10 = 10 ;
u i n t 32 t a11 = 11 ;
u i n t 32 t a12 = 12 ;
u i n t 32 t a13 = 13 ;
u i n t 32 t a14 = 14 ;
u i n t 32 t a15 = 15 ;
u i n t 32 t count = 0 ;
u i n t 32 t numElements = 16 ;
u i n t 32 t ptr = 0 ;
u i n t 32 t sum = 0 ;

} ;

. bss

struct bss
{

u in t 32 t i gnor e ;
} ;

. t r e e
expr UNUSED : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 1 , 1 , 0 , 255 , 1 , 0 , 7 ,

i gno re
e xp r a s s i g n p t r add r o f d a t a : ∗ , +, B AND, +, ∗ , 1 , 7 , 7 , 7 , 7 , 7 , a0 , 1 , 0 ,

255 , 1 , 0 , 0 , ptr
expr count less than numElements : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 0 , 7 , 7 , count , 1 ,

0 , numElements , 1 , 0 , 7 , i gno r e
expr inc count : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , count , 1 , 1 , 255 , 1 , 0 ,

0 , count
e xp r i n c p t r : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , ptr , 1 , 4 , 255 , 1 , 0 , 0 ,

ptr
expr add element to sum : ∗ , +, B AND, +, ∗ , 2 , 7 , 0 , 7 , 7 , 7 , ptr , 1 , sum ,

255 , 1 , 0 , 0 , sum

. text
e xp r a s s i g n p t r add r o f d a t a

while l a b e l 1 expr count less than numElements
expr add e lement to sum
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e xp r i n c p t r
expr inc count

l a b e l 1 :

Listing 6.18: Checksum 1 - SDLP
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int sum = 0 ;
827a : 2300 movs r3 , #0
827 c : 60 fb s t r r3 , [ r7 , #12]

do
{

sum += ∗data++;
827 e : 687b l d r r3 , [ r7 , #4]
8280 : 1d1a adds r2 , r3 , #4
8282 : 607a s t r r2 , [ r7 , #4]
8284 : 681b l d r r3 , [ r3 , #0]
8286 : 68 fa l d r r2 , [ r7 , #12]
8288 : 4413 add r3 , r2
828a : 60 fb s t r r3 , [ r7 , #12]
sum += ∗data++;
828 c : 687b l d r r3 , [ r7 , #4]
828 e : 1d1a adds r2 , r3 , #4
8290 : 607a s t r r2 , [ r7 , #4]
8292 : 681b l d r r3 , [ r3 , #0]
8294 : 68 fa l d r r2 , [ r7 , #12]
8296 : 4413 add r3 , r2
8298 : 60 fb s t r r3 , [ r7 , #12]
sum += ∗data++;
829a : 687b l d r r3 , [ r7 , #4]
829 c : 1d1a adds r2 , r3 , #4
829 e : 607a s t r r2 , [ r7 , #4]
82a0 : 681b l d r r3 , [ r3 , #0]
82a2 : 68 fa l d r r2 , [ r7 , #12]
82a4 : 4413 add r3 , r2
82a6 : 60 fb s t r r3 , [ r7 , #12]
sum += ∗data++;
82a8 : 687b l d r r3 , [ r7 , #4]
82aa : 1d1a adds r2 , r3 , #4
82 ac : 607a s t r r2 , [ r7 , #4]
82 ae : 681b l d r r3 , [ r3 , #0]
82b0 : 68 fa l d r r2 , [ r7 , #12]
82b2 : 4413 add r3 , r2
82b4 : 60 fb s t r r3 , [ r7 , #12]
n −= 4 ;
82b6 : 683b l d r r3 , [ r7 , #0]
82b8 : 3b04 subs r3 , #4
82ba : 603b s t r r3 , [ r7 , #0]

} while (n != 0) ;
82bc : 683b l d r r3 , [ r7 , #0]
82be : 2b00 cmp r3 , #0
82 c0 : d1dd bne . n 827 e <checksum+0xe>

Listing 6.19: Checksum 2 - ARM
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. data
struct data
{

// Assembler does not c u r r en t l y suppor t arrays , so the f o l l ow i n g i s used
to r ep re s en t u i n t 3 2 t array [ 6 4 ] ;

u in t 32 t a0 = 0 ;
u i n t 32 t a1 = 1 ;
u i n t 32 t a2 = 2 ;
u i n t 32 t a3 = 3 ;
u i n t 32 t a4 = 4 ;
u i n t 32 t a5 = 5 ;
u i n t 32 t a6 = 6 ;
u i n t 32 t a7 = 7 ;
u i n t 32 t a8 = 8 ;
u i n t 32 t a9 = 9 ;
u i n t 32 t a10 = 10 ;
u i n t 32 t a11 = 11 ;
u i n t 32 t a12 = 12 ;
u i n t 32 t a13 = 13 ;
u i n t 32 t a14 = 14 ;
u i n t 32 t a15 = 15 ;
u i n t 32 t count = 0 ;
u i n t 32 t numElements = 16 ;
u i n t 32 t ptr = 0 ;
u i n t 32 t sum = 0 ;

} ;

. bss

struct bss
{

u in t 32 t i gnor e ;
} ;

. t r e e
expr UNUSED : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 1 , 1 , 0 , 255 , 1 , 0 , 7 ,

i gno re
e xp r a s s i g n p t r add r o f d a t a : ∗ , +, B AND, +, ∗ , 1 , 7 , 7 , 7 , 7 , 7 , a0 , 1 , 0 ,

255 , 1 , 0 , 0 , ptr
expr count less than numElements : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 0 , 7 , 7 , count , 1 ,

0 , numElements , 1 , 0 , 7 , i gno r e
exp r in c count by 4 : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , count , 1 , 4 , 255 ,

1 , 0 , 0 , count
e xp r i n c p t r : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , ptr , 1 , 4 , 255 , 1 , 0 , 0 ,

ptr
expr add e lement to sum : ∗ , +, B AND, +, ∗ , 2 , 7 , 0 , 7 , 7 , 7 , ptr , 1 , sum ,

255 , 1 , 0 , 0 , sum

. text
e xp r a s s i g n p t r add r o f d a t a

while l a b e l 1 expr count less than numElements
expr add element to sum
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e xp r i n c p t r
expr add e lement to sum
exp r i n c p t r
expr add e lement to sum
exp r i n c p t r
expr add e lement to sum
exp r i n c p t r
exp r in c count by 4

l ab e l 1 :

Listing 6.20: Checksum 2 - SDLP
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int sum = 0 ;
827a : 2300 movs r3 , #0
827 c : 60 fb s t r r3 , [ r7 , #12]

do
{

sum += ∗data++;
827 e : 687b l d r r3 , [ r7 , #4]
8280 : 1d1a adds r2 , r3 , #4
8282 : 607a s t r r2 , [ r7 , #4]
8284 : 681b l d r r3 , [ r3 , #0]
8286 : 68 fa l d r r2 , [ r7 , #12]
8288 : 4413 add r3 , r2
828a : 60 fb s t r r3 , [ r7 , #12]
sum += ∗data++;
828 c : 687b l d r r3 , [ r7 , #4]
828 e : 1d1a adds r2 , r3 , #4
8290 : 607a s t r r2 , [ r7 , #4]
8292 : 681b l d r r3 , [ r3 , #0]
8294 : 68 fa l d r r2 , [ r7 , #12]
8296 : 4413 add r3 , r2
8298 : 60 fb s t r r3 , [ r7 , #12]
sum += ∗data++;
829a : 687b l d r r3 , [ r7 , #4]
829 c : 1d1a adds r2 , r3 , #4
829 e : 607a s t r r2 , [ r7 , #4]
82a0 : 681b l d r r3 , [ r3 , #0]
82a2 : 68 fa l d r r2 , [ r7 , #12]
82a4 : 4413 add r3 , r2
82a6 : 60 fb s t r r3 , [ r7 , #12]
sum += ∗data++;
82a8 : 687b l d r r3 , [ r7 , #4]
82aa : 1d1a adds r2 , r3 , #4
82ac : 607a s t r r2 , [ r7 , #4]
82 ae : 681b l d r r3 , [ r3 , #0]
82b0 : 68 fa l d r r2 , [ r7 , #12]
82b2 : 4413 add r3 , r2
82b4 : 60 fb s t r r3 , [ r7 , #12]
sum += ∗data++;
82b6 : 687b l d r r3 , [ r7 , #4]
82b8 : 1d1a adds r2 , r3 , #4
82ba : 607a s t r r2 , [ r7 , #4]
82bc : 681b l d r r3 , [ r3 , #0]
82be : 68 fa l d r r2 , [ r7 , #12]
82 c0 : 4413 add r3 , r2
82 c2 : 60 fb s t r r3 , [ r7 , #12]
sum += ∗data++;
82 c4 : 687b l d r r3 , [ r7 , #4]
82 c6 : 1d1a adds r2 , r3 , #4
82 c8 : 607a s t r r2 , [ r7 , #4]
82 ca : 681b l d r r3 , [ r3 , #0]
82 cc : 68 fa l d r r2 , [ r7 , #12]
82 ce : 4413 add r3 , r2
82d0 : 60 fb s t r r3 , [ r7 , #12]
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sum += ∗data++;
82d2 : 687b l d r r3 , [ r7 , #4]
82d4 : 1d1a adds r2 , r3 , #4
82d6 : 607a s t r r2 , [ r7 , #4]
82d8 : 681b l d r r3 , [ r3 , #0]
82da : 68 fa l d r r2 , [ r7 , #12]
82dc : 4413 add r3 , r2
82de : 60 fb s t r r3 , [ r7 , #12]
sum += ∗data++;
82 e0 : 687b l d r r3 , [ r7 , #4]
82 e2 : 1d1a adds r2 , r3 , #4
82 e4 : 607a s t r r2 , [ r7 , #4]
82 e6 : 681b l d r r3 , [ r3 , #0]
82 e8 : 68 fa l d r r2 , [ r7 , #12]
82 ea : 4413 add r3 , r2
82 ec : 60 fb s t r r3 , [ r7 , #12]
n −= 8 ;
82 ee : 683b ld r r3 , [ r7 , #0]
82 f0 : 3b08 subs r3 , #8
82 f2 : 603b s t r r3 , [ r7 , #0]

} while (n != 0) ;
82 f4 : 683b l d r r3 , [ r7 , #0]
82 f6 : 2b00 cmp r3 , #0
82 f8 : d1c1 bne . n 827 e <checksum+0xe>

Listing 6.21: Checksum 3 - ARM
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. data
struct data
{

// Assembler does not c u r r en t l y suppor t arrays , so the f o l l ow i n g i s used
to r ep re s en t u i n t 3 2 t array [ 6 4 ] ;

u in t 32 t a0 = 0 ;
u i n t 32 t a1 = 1 ;
u i n t 32 t a2 = 2 ;
u i n t 32 t a3 = 3 ;
u i n t 32 t a4 = 4 ;
u i n t 32 t a5 = 5 ;
u i n t 32 t a6 = 6 ;
u i n t 32 t a7 = 7 ;
u i n t 32 t a8 = 8 ;
u i n t 32 t a9 = 9 ;
u i n t 32 t a10 = 10 ;
u i n t 32 t a11 = 11 ;
u i n t 32 t a12 = 12 ;
u i n t 32 t a13 = 13 ;
u i n t 32 t a14 = 14 ;
u i n t 32 t a15 = 15 ;
u i n t 32 t count = 0 ;
u i n t 32 t numElements = 16 ;
u i n t 32 t ptr = 0 ;
u i n t 32 t sum = 0 ;

} ;

. bss

struct bss
{

u in t 32 t i gnor e ;
} ;

. t r e e
expr UNUSED : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 1 , 1 , 0 , 255 , 1 , 0 , 7 ,

i gno re
e xp r a s s i g n p t r add r o f d a t a : ∗ , +, B AND, +, ∗ , 1 , 7 , 7 , 7 , 7 , 7 , a0 , 1 , 0 ,

255 , 1 , 0 , 0 , ptr
expr count less than numElements : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 0 , 7 , 7 , count , 1 ,

0 , numElements , 1 , 0 , 7 , i gno r e
exp r in c count by 8 : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , count , 1 , 8 , 255 ,

1 , 0 , 0 , count
e xp r i n c p t r : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , ptr , 1 , 4 , 255 , 1 , 0 , 0 ,

ptr
expr add e lement to sum : ∗ , +, B AND, +, ∗ , 2 , 7 , 0 , 7 , 7 , 7 , ptr , 1 , sum ,

255 , 1 , 0 , 0 , sum

. text
e xp r a s s i g n p t r add r o f d a t a

while l a b e l 1 expr count less than numElements
expr add element to sum
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e xp r i n c p t r
expr add e lement to sum
exp r i n c p t r
expr add e lement to sum
exp r i n c p t r
expr add e lement to sum
exp r i n c p t r
expr add e lement to sum
exp r i n c p t r
expr add e lement to sum
exp r i n c p t r
expr add e lement to sum
exp r i n c p t r
expr add e lement to sum
exp r i n c p t r
exp r in c count by 8

l ab e l 1 :

Listing 6.22: Checksum 3 - SDLP

166



82a8 : e034 b . n 8314 <matrix mul+0x7c>
82aa : 2300 movs r3 , #0
82ac : 617b s t r r3 , [ r7 , #20]
82 ae : e02b b . n 8308 <matrix mul+0x70>
82b0 : 2300 movs r3 , #0
82b2 : 61 fb s t r r3 , [ r7 , #28]
82b4 : 2300 movs r3 , #0
82b6 : 61bb s t r r3 , [ r7 , #24]
82b8 : e017 b . n 82 ea <matrix mul+0x52>
82ba : 693b l d r r3 , [ r7 , #16]
82bc : 005a l s l s r2 , r3 , #1
82be : 69bb ld r r3 , [ r7 , #24]
82 c0 : 4413 add r3 , r2
82 c2 : 009b l s l s r3 , r3 , #2
82 c4 : 68ba l d r r2 , [ r7 , #8]
82 c6 : 4413 add r3 , r2
82 c8 : 681b l d r r3 , [ r3 , #0]
82 ca : 69ba l d r r2 , [ r7 , #24]
82 cc : 0051 l s l s r1 , r2 , #1
82 ce : 697a l d r r2 , [ r7 , #20]
82d0 : 440a add r2 , r1
82d2 : 0092 l s l s r2 , r2 , #2
82d4 : 6879 l d r r1 , [ r7 , #4]
82d6 : 440a add r2 , r1
82d8 : 6812 l d r r2 , [ r2 , #0]
82da : fb02 f303 mul .w r3 , r2 , r3
82de : 69 fa l d r r2 , [ r7 , #28]
82 e0 : 4413 add r3 , r2
82 e2 : 61 fb s t r r3 , [ r7 , #28]
82 e4 : 69bb ld r r3 , [ r7 , #24]
82 e6 : 3301 adds r3 , #1
82 e8 : 61bb s t r r3 , [ r7 , #24]
82 ea : 69bb ld r r3 , [ r7 , #24]
82 ec : 2b01 cmp r3 , #1
82 ee : d9e4 b l s . n 82ba <matrix mul+0x22>
82 f0 : 693b l d r r3 , [ r7 , #16]
82 f2 : 005a l s l s r2 , r3 , #1
82 f4 : 697b l d r r3 , [ r7 , #20]
82 f6 : 4413 add r3 , r2
82 f8 : 009b l s l s r3 , r3 , #2
82 fa : 68 fa l d r r2 , [ r7 , #12]
82 f c : 4413 add r3 , r2
82 f e : 69 fa l d r r2 , [ r7 , #28]
8300 : 601a s t r r2 , [ r3 , #0]
8302 : 697b l d r r3 , [ r7 , #20]
8304 : 3301 adds r3 , #1
8306 : 617b s t r r3 , [ r7 , #20]
8308 : 697b l d r r3 , [ r7 , #20]
830a : 2b01 cmp r3 , #1
830 c : d9d0 b l s . n 82b0 <matrix mul+0x18>
830 e : 693b l d r r3 , [ r7 , #16]
8310 : 3301 adds r3 , #1
8312 : 613b s t r r3 , [ r7 , #16]
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8314 : 693b l d r r3 , [ r7 , #16]
8316 : 2b01 cmp r3 , #1
8318 : d9c7 b l s . n 82aa <matrix mul+0x12>

Listing 6.23: Matrix - ARM
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. data
struct data
{

// Assembler does not c u r r en t l y suppor t arrays , so the f o l l ow i n g i s used
to r ep re s en t u i n t 3 2 t array [ 1 0 ] ;

u in t 32 t a0 = 0 ;
u i n t 32 t a1 = 0 ;
u i n t 32 t a2 = 0 ;
u i n t 32 t a3 = 0 ;
u i n t 32 t b0 = 1 ;
u i n t 32 t b1 = 2 ;
u i n t 32 t b2 = 3 ;
u i n t 32 t b3 = 4 ;
u i n t 32 t c0 = 2 ;
u i n t 32 t c1 = 0 ;
u i n t 32 t c2 = 1 ;
u i n t 32 t c3 = 2 ;
u i n t 32 t p t r a = 0 ;
u i n t 32 t ptr b = 0 ;
u i n t 32 t p t r c = 0 ;
u i n t 32 t i = 0 ;
u i n t 32 t j = 0 ;
u i n t 32 t k = 0 ;
u i n t 32 t e lem a addr = 0 ;
u i n t 32 t e lem b addr = 0 ;
u i n t 32 t e lem c addr = 0 ;
u i n t 32 t elem b = 0 ;
u i n t 32 t e lem c = 0 ;
u i n t 32 t sum = 0 ;

} ;

. bss

struct bss
{

u in t 32 t i gnor e ;
} ;

. t r e e
expr UNUSED : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 1 , 1 , 0 , 255 , 1 , 0 , 7 ,

i gno re
e xp r a s s i g n p t r a add r o f a 0 : ∗ , +, B AND, +, ∗ , 1 , 7 , 7 , 7 , 7 , 7 , a0 , 1 , 0 ,

255 , 1 , 0 , 0 , p t r a
e xp r a s s i g n p t r b add r o f b 0 : ∗ , +, B AND, +, ∗ , 1 , 7 , 7 , 7 , 7 , 7 , b0 , 1 , 0 ,

255 , 1 , 0 , 0 , pt r b
e xp r a s s i g n p t r c a dd r o f c 0 : ∗ , +, B AND, +, ∗ , 1 , 7 , 7 , 7 , 7 , 7 , c0 , 1 , 0 ,

255 , 1 , 0 , 0 , p t r c
expr s e t sum to 0 : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 0 , 1 , 0 , 255 , 1 , 0 ,

0 , sum
e x p r i l e s s t h a n 2 : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , i , 1 , 0 , 2 , 1 , 0 , 7 ,

i gno re
e x p r j l e s s t h a n 2 : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , j , 1 , 0 , 2 , 1 , 0 , 7 ,

i gno re
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e xp r k l e s s t h an 2 : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , k , 1 , 0 , 2 , 1 , 0 , 7 ,
i gno re

e x p r i n c i : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , i , 1 , 1 , 255 , 1 , 0 , 0 , i
e x p r i n c j : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , j , 1 , 1 , 255 , 1 , 0 , 0 , j
e xp r i n c k : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , k , 1 , 1 , 255 , 1 , 0 , 0 , k
e x p r s e t i t o 0 : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 0 , 1 , 0 , 255 , 1 , 0 , 0 ,

i
e x p r s e t j t o 0 : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 0 , 1 , 0 , 255 , 1 , 0 , 0 ,

j
e x p r s e t k t o 0 : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 0 , 1 , 0 , 255 , 1 , 0 , 0 ,

k

// Calc ndx f o r b
exp r c a l c add r e l em b s t ep 1 : ∗ , +, B AND, +, ∗ , 0 , 7 , 0 , 7 , 7 , 7 , i , 2 , k ,

255 , 1 , 0 , 0 , e lem b addr

// Mul index f o r s i z e o f u i n t 3 2 t
exp r c a l c add r e l em b s t ep 2 : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 ,

elem b addr , 4 , 0 , 255 , 1 , 0 , 0 , e lem b addr

// Add to p t r b
exp r c a l c add r e l em b s t ep 3 : ∗ , +, B AND, +, ∗ , 0 , 7 , 0 , 7 , 7 , 7 ,

elem b addr , 1 , ptr b , 255 , 1 , 0 , 0 , e lem b addr
expr ge t e l em b : ∗ , +, B AND, +, ∗ , 2 , 7 , 7 , 7 , 7 , 7 , e lem b addr , 1 , 0 ,

255 , 1 , 0 , 0 , elem b

// Calc ndx f o r c
e xp r c a l c add r e l em c s t e p 1 : ∗ , +, B AND, +, ∗ , 0 , 7 , 0 , 7 , 7 , 7 , k , 2 , j ,

255 , 1 , 0 , 0 , e l em c addr

// Mul index f o r s i z e o f u i n t 3 2 t
e xp r c a l c add r e l em c s t e p 2 : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 ,

e lem c addr , 4 , 0 , 255 , 1 , 0 , 0 , e l em c addr

// Add to p t r c
e xp r c a l c add r e l em c s t e p 3 : ∗ , +, B AND, +, ∗ , 0 , 7 , 0 , 7 , 7 , 7 ,

e lem c addr , 1 , pt r c , 255 , 1 , 0 , 0 , e l em c addr
exp r g e t e l em c : ∗ , +, B AND, +, ∗ , 2 , 7 , 7 , 7 , 7 , 7 , e lem c addr , 1 , 0 ,

255 , 1 , 0 , 0 , e lem c

// Mul e lem b and elem c and add to sum
expr ca lc sum : ∗ , +, B AND, +, ∗ , 0 , 0 , 0 , 7 , 7 , 7 , elem b , elem c , sum ,

255 , 1 , 0 , 0 , sum

// Calc ndx f o r a
e xp r c a l c add r e l em a s t ep 1 : ∗ , +, B AND, +, ∗ , 0 , 7 , 0 , 7 , 7 , 7 , i , 2 , j ,

255 , 1 , 0 , 0 , e lem a addr

// Mul index by f o r s i z e o f u i n t 3 2 t
e xp r c a l c add r e l em a s t ep 2 : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 ,

e lem a addr , 4 , 0 , 255 , 1 , 0 , 0 , e lem a addr

// Add to p t r a
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e xp r c a l c add r e l em a s t ep 3 : ∗ , +, B AND, +, ∗ , 0 , 7 , 0 , 7 , 7 , 7 ,
e lem a addr , 1 , ptr a , 255 , 1 , 0 , 0 , e lem a addr

exp r s e t e l em a ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , sum , 1 , 0 , 255 , 1 , 0 ,
1 , e lem a addr

. t ex t
e xp r a s s i g n p t r a add r o f a 0
e xp r a s s i g n p t r b add r o f b 0
e xp r a s s i g n p t r c a dd r o f c 0

while l a b e l 1 e x p r i l e s s t h a n 2
e x p r s e t j t o 0

while l a b e l 2 e x p r j l e s s t h a n 2
expr s e t sum to 0
e xp r s e t k t o 0

while l a b e l 3 e xp r k l e s s t h an 2
exp r c a l c add r e l em b s t ep 1
exp r c a l c add r e l em b s t ep 2
exp r c a l c add r e l em b s t ep 3
expr ge t e l em b
exp r c a l c add r e l em c s t e p 1
exp r c a l c add r e l em c s t e p 2
exp r c a l c add r e l em c s t e p 3
exp r g e t e l em c
expr ca lc sum
exp r i n c k

l a b e l 3 :
e xp r c a l c add r e l em a s t ep 1
exp r c a l c add r e l em a s t ep 2
exp r c a l c add r e l em a s t ep 3
exp r s e t e l em a
e x p r i n c j

l a b e l 2 :
e x p r i n c i

l a b e l 1 :

Listing 6.24: Matrix - SDLP
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Table 6.6 illustrates the benchmark clock cycle counts for ARM and the SDLP.

ARM SDLP Difference % Improvement
Linear Search 540 413 127 23

Loop 1 267 180 87 32
Loop 6 493 180 313 63
Loop 2 2517 1710 807 32

Checksum 1 752 577 175 23
Checksum 2 500 373 127 25
Checksum 3 458 339 119 26

Matrix 990 844 146 14

Table 6.6: Benchmark Clock Cycle Counts for ARM and SDLP

It can be seen that the most significant improvement in clock cycles is by not using PC-

relative addressing for managing global variables. However, PC-relative addressing is necessary in

order to have a uniform instruction size. Since there are only 2 bytes available for ARM Thumb

instructions, there is limited space for encoding literals. There are benefits in having a uniform

instruction size and shape. For example, this helps to keep the decoder as simple as possible. The

side effect of this is that the power required by the decoder circuitry is minimised. However, PC-

relative addressing significantly increases the workload of the processor, therefore increasing power

consumption. The aim would therefore be to minimise such overheads by limiting the usage of

global variables on ARM-based architectures. It is interesting that, whilst certain design decisions

may be motivated by reducing complexity in one domain, they may inadvertently introduce a

negative, more significant impact in another. Design decisions made decades ago may no longer

be valid.

It is clear from comparing Loop 1 and Loop 2 that the ratios of improvement are constant

with respect to the number of iterations. This makes sense because the instructions themselves

are static; they do not change as they are executing.

The differences in improvement for the Checksum benchmarks are interesting. Each Checksum

benchmark increases the number of expressions executed in a loop, whilst reducing the number of

iterations of the loop. It shows that, as the number of loop iterations decreases by a factor 4 whilst

still processing the same number of expressions, the improvement decreases only slightly. This

implies that the execution overhead of the abstract instructions is low. The ratio of clock cycles

between Checksum 1 and Checksum 3 for ARM is 1.6. For the SDLP it is 1.7. The reason why

the improvement between Checksum 1 and Checksum 3 for the SDLP has not changed much, even

though the loop has been unrolled, is likely to be because of the under utilisation of the expression
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engine. The expressions clearly dominate the execution cycles.

The clock cycle counts for Matrix were obtained slightly differently from the other benchmarks

(hence the results are shown in italics). Since the program has 3 nested loops with multiple

expressions, the machine code generated by GCC was structurally more complex. This is because

of the way that the compiler translates while loops. Manually dry running the program in order to

calculate the number of data memory reads and data writes was difficult and error prone. A GDB

user-defined function was written to count the instructions up to a given program counter address.

The simpler benchmarks assumed that each data memory access consumed one clock cycle. Since

the GDB user-defined function is only capable of counting instructions, the memory access counts

were not included in the Matrix results.

The Matrix benchmark shows interesting results. Even though the improvement is only 14%,

this is a pessimistic result, due to the way that the simulator accumulates clock cycles. It can

be observed in Listing 6.24 that the program has various groups of expression references in the

.text section. There are groups of 3, 2, 10 and 5. These groups of expression references are within

up to 3 levels of loop nesting. It is assumed that the SDLP would be capable of fetching and

decoding a contiguous group of (up to) 8 expression references together. However, the simulator is

not capable of identifying such groupings. The simulator accumulates a separate fetch and decode

cycle for each individual expression reference instead of 2 cycles for each group of expressions. As

an example, for the group of 10 expression references (which are executed 8 times), this means that

10 ∗ 2 ∗ 8 = 160 fetch/decode cycles are counted instead of 2∗8 = 16 for the first group of 8, and

then 2 ∗ 8 = 16 for the remaining group of 2. This is a total difference of 128 cycles. Accounting

for this means that the Matrix benchmark would show a 27% improvement. It appears that the

ability to fetch and decode contiguous expression references yields significant improvements.

From writing the SDLP benchmarks it is apparent that the number of expressions could be

reduced by having a better shaped expression engine. The tree may have a reasonable shape for

comparisons of subexpressions on either side of a logical operator, e.g.

a ∗ b + c < d/e− f

However, it can be noted from Listing 6.24 and other benchmarks that the right hand side of the

tree is often ineffective. For the common case the right hand side is not utilised for any constructive

calculation. It simply bitwise ands the value of the left hand side with ∼ 0 in order to allow it to

pass-through.
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6.5 Summary

An architecture for the SDLP has been defined. An assembler10 and simulator have been devel-

oped and are both regarded significant contributions. The purpose of these is to allow further

architectural exploration of the SDLP.

The SDLP requires 14% fewer loads for the Linear Search program than ARM, but more than

8086. The reasons for this have been explained. With appropriate support for arrays in the form

of immediate offsets and displacement addressing, it is possible that the number of loads could be

reduced significantly to match that of 8086.

The instruction count (including instructions, expressions Ids and null terminators) for the

SDLP is significantly less than both 8086 and ARM, provided that expressions are pre-loaded

during start-up. This could be further reduced if null terminators could be encoded within the

expression Ids.

The above provide a positive indication to the thesis claim that high-level ISAs and supporting

processor architectures can reduce the burden on the memory system for both instructions and data.

However, this is for a single benchmark only, so these results must be viewed very cautiously.

The approach used for calculating ARM Thumb clock cycles is processor model agnostic and no

tools other than objdump and GDB were used for this purpose. In most cases calculations were done

manually using the disassemblies. The approach used for the SDLP was to instrument the simulator

with the clock cycle counts derived from pseudocode. Comparing metrics such as the number

of clock cycles from one ISA to another is challenging and comparisons can often be less than

meaningful. However, comparisons must be made if improvements to processor architecture are to

be possible. To this end, a careful balance has been made when calculating the clock cycle counts.

The calculations for ARM Thumb code have been deliberately optimistic, whereas the calculations

for the SDLP have been rather pessimistic. Furthermore, factors such as pipelining, optimisation

and primitive ALU-based operations have purposely been factored out from the figures. This means

that the focus is biased more towards the effects of the ISA rather than feature optimisations.

The results for clock cycle counts also look positive, with a median 25.5% improvement for

the set of eight benchmarks. These results offer cautiously positive answers to the thesis claim of

reducing the cycle count of programs.

The SDLP appears capable of executing programs with fewer loads and cycles than ARM.

This has been made possible with an ISA that is applicable to modern general purpose imperative

10A guide to using the assembler can be found in Appendix B.
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languages. Since the SDLP can execute general-purpose programs in fewer cycles than ARM, this

means:

• It may be clocked at a lower rate whilst achieving the same throughput;

• The reduced clock rate may have the potential of reducing power consumption;

• Alternatively, it may be clocked at the same rate as other processors with the potential of

achieving higher throughput.

Whilst there is potential for the SDLP to either reduce power consumption or increase through-

put compared to other processors, it should be noted that any power savings cannot be determined

until the SDLP is developed in ASIC. This is because power consumption may actually increase if

the SDLP datapaths are more complex. Whilst the clock cycles for a simulated program may be

lower, the processor circuitry of the SDLP in ASIC may increase. It is therefore possible that any

increase in circuitry may negate any power savings due to the SDLP ISA.
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Chapter 7

Conclusions

This chapter offers conclusions and reconsiders the research hypothesis that was proposed in the

Introduction (Chapter 1), that high-level ISAs and supporting processor architectures can reduce

the burden on the memory system for both instructions and data; and can reduce the cycle count

of programs. A summary contributions is presented, followed by closing remarks.

7.1 High-Level ISAs and Supporting Processor Architec-

tures can Reduce the Burden on the Memory System

for Both Instructions and Data

In order to determine whether the burden on the memory system can be reduced for both instruc-

tions and data, a number of benchmarking exercises were conducted. An initial benchmarking

exercise was conducted to better understand the actual burden that a RISC processor places on

the memory system. After the expression engine had been designed and assembler developed,

comparisons of assembled expressions and ARM Thumb programs were made. Finally, after the

ISA and SDLP architecture had been defined and a simulator developed, further benchmarking

experiments were conducted. These compared loads, stores and instructions for assembled SDLP

and ARM Thumb programs.
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7.1.1 The Burden that RISC Processors Place on the Memory System

and the Projected Energy Costs

Verma et al. [3] demonstrated that 50-70% of the total power for a system is consumed by the

memory system. In order to obtain an independent opinion on the frequency of various memory

system interactions, a benchmarking exercise was conducted. The benchmarks employed were

mibench [45] and they were run via the gem5 simulator [46], which simulated an ARMv7 Cortex

A15 uniprocessor. Various results were gathered including:

• Number of instructions executed;

• Number of loads and stores;

• Number of hits and misses for both instructions and data cache;

• Number of write-backs to the data cache.

The findings suggest that the number of loads and stores are significant. For example, the

proportion of load and store instructions for crc32 large is 50% of the total instructions simulated.

The next step was to determine how much energy was spent processing instruction and data

cache misses and data cache write-backs. To achieve this, energy estimates from Verma et al. [3]

were used. The energy estimates for scratchpad memory read and writes were used to represent

cache read and writes, since these are both high-speed on-chip memory and should be similar. The

energy estimates for main memory reads were used to represent cache misses and main memory

writes were used to represent data cache write-backs. These energy estimates were multiplied with

the corresponding metrics for the benchmark results. However, the results were not a source of

concern.

Next, a more pessimistic approach was taken using the comparative access times for register

access, L1 cache, L2 cache and main memory, illustrated in Figure 2.3. Although these approx-

imations are based on time rather than energy, there is still, nonetheless, a relationship between

time and energy. Again the results were of no immediate concern. It can be concluded that time

wasted accessing external memory due to cache misses and write-backs is not a concern.

Cache designers have done a very good job managing the disparity in both energy and time

when interacting with external memory. However, from another perspective, it is clear that most

applications are completely reliant on caching hardware in order to manage these disparities. It

can be argued that, whilst the RISC design philosophy aims to simplify the core data path by

providing very simple instructions, the architecture requires significant circuitry in the form of one

or more caches: problems may have been simply moved from one area of the processor to another.
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7.1.2 Comparing Assembled Expressions and ARM Thumb

After designing the expression engine and developing the assembler, expressions taken from a

Linear Search program were compared with the equivalent assembled ARM Thumb code. The

number of bytes required for the expressions were of interest.

If it is assumed that the expressions are fetched each time they are used, the SDLP requires 10

bytes more than the ARM Thumb code using global variables (hence PC-relative addressing) and

34 bytes more than ARM Thumb using local variables.

It is apparent that if the expressions are fetched each time they are referenced, then the SDLP

increases the dependency on the memory system for instructions. The reason for this is that

ARM Thumb code only requires 4 bits for addressing 16 registers, whereas the SDLP can address

256 bytes of memory and so requires 8 bits for operand encoding. It should be emphasised that

the ARM programs were compiled for Thumb (16-bit instructions) as opposed to regular ARM

instructions which are 32 bits. It is likely that regular ARM instructions would increase the byte

count significantly.

The current overhead of the SDLP expressions can be mitigated by pre-loading the expressions

for a given program during start-up.

7.1.3 Comparing Loads, Stores and Instructions for Assembled SDLP

and ARM Thumb

Once the ISA for the SDLP had been defined and simulator developed, further benchmarking

experiments were conducted using the Linear Search Program. The gathered metrics included the

number of loads, stores and number of instructions required to express the program for the given

architecture.

The results showed that ARM required the greatest number of loads (94) following the SDLP

(81) and then 8086 (52). Both ARM and 8086 required 14 stores and the SDLP required 25. The

reason for the SDLP load and store results being so high is that the SDLP does not currently

support arrays; they must be simulated using pointers.

ARM required 180 instructions, 8086 required 107, and the SDLP 11. Again, it should be

emphasised that the ARM programs were compiled for Thumb (16-bit instructions) as opposed to

regular ARM instructions which are 32 bits. It is clear that ARM incurs the highest dependency

on the memory system for this benchmark. This is because of the load/store architecture and the

verbosity of the ISA. Another reason for ARM loads being so high is that it employs PC-relative
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addressing for global variables, which is necessary because of the uniform instruction size; literals

cannot be encoded within an instruction.

It is surprising to see that ARM requires 60% more instructions than 8086; it appears that

a RISC ISA imposes a significant overhead on the instruction memory system than 8086 for this

benchmark.

The reason that the SDLP requires an order of magnitude fewer is because other necessary

information, such as labels (immediate values for relative jumps), expression Ids used to invoke

expressions and null terminators for terminating the end of a list of expression Ids and instructions,

are not counted. The total overhead for the SDLP, including instructions, expressions Ids and null

terminators is 92. Whist this is still a significant improvement, it should be noted that expressions

are not counted in these results since they are pre-loaded; only their invocation is counted.

However, it does appear that high-level ISAs and supporting processor architectures can reduce

the burden on the memory system for both instructions and data.

7.2 High-Level ISAs and Supporting Processor Architec-

tures can Reduce the Cycle Count of Programs

Revisiting the Linear Search program, and assuming the the expressions are pre-loaded at program

start-up, the SDLP can execute the program with 23% fewer clock cycles than ARM.

A further seven assembly language benchmarks were developed for ARM Thumb and the SDLP.

The SDLP results showed an improvement in clock cycle counts over ARM; the biggest was

63% and the smallest was 14%. The mean improvement was 29.75% with a standard deviation of

14.56. The median improvement was 25.5%.

The SDLP appears to require fewer clock cycles over an equivalent ARM-based processor for

a set of simple benchmarks. However, these results should be considered with caution. The

benchmarks used consist of a small set of simplistic programs as opposed to large real-world

applications; they serve as a potential indicator only. The benchmarks for ARM have all been

compiled without optimisations. This is because SDLP currently lacks the support of an optimising

compiler. It is assumed that whatever optimisations are available for traditional architectures, there

will be competing optimisations for the SDLP.

The real results can only be determined after a full ASIC implementation of the processor and

compiler have been developed. It is important that the critical-path and power per-cycle does not
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increase above other comparative architectures. It is also necessary to resolve the SDLP issues of

expression verbosity, expression engine design, node underutilisation and optimisation.

7.3 Research Contributions

The main contributions of this thesis include:

• The design of a hybrid control flow and data flow architecture with a supporting Instruction

Set Architecture (Chapters 4 and 5);

• Implementation of an assembler and software-based cycle accurate simulator for the processor

(Chapter 6);

• Comparisons of the new architecture with traditional CISC and RISC processors (Chapters

6 and 7);

• It has been shown that high-level ISAs and supporting processor architectures can reduce

the burden on the memory system for both instructions and data; and can reduce the cycle

count of programs.

Other minor contributions include a clearer understanding of the topic:

• Microprocessors vendors are cornered into using multiprocessors to increase performance.

However, this approach is severely limited compared to the performance gains made in past

decades;

• Whilst RISC processors have achieved simpler data-paths, the ISA significantly burdens the

memory system, for both instruction and data;

• The 8086 ISA appears significantly better than a RISC ISA for reducing the burden on the

memory system;

• Amdahl’s Law gives an optimistic view of speed-up via parallelism. The practicalities of

NOCs and management of bottlenecks must also be considered;

• Despite dataflow computing not becoming mainstream to date, most superscalar architectures

adopt this approach in hardware. This is expensive and unscalable;

• Previous dataflow approaches have adopted a coarse-grained or wide instruction window

approach to execution, e.g. the TRIPS processor discussed in Charper 2.1.5. It appears that

dataflow execution for imperative language-based programs is most natural at the expression

boundary ;
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• The biggest improvements of the SDLP are due to the expression engine (and thus dataflow

execution) over abstract instructions.

7.4 Closing Remarks

Current CISC and RISC ISAs have remained relatively unchanged for the past 50 years and

there is a general misconception that they cannot be improved upon. However, these designs are

clearly reaching their limits with current process technology. In order for processor technology to

progress, it is necessary to reconsider alternative (and sometimes old) approaches with a view to

solving current and emerging challenges.
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Chapter 8

Future Work

This thesis documents the development of the SDLP which shows potential for reducing power

consumption or increasing throughput at equivalent clock frequencies of traditional processors.

This is achieved by placing fewer demands on the memory system and reducing the number of

cycles required for program execution. Whilst the work indicates that there is significant potential

for such a processor, many avenues of further research have become apparent along the way.

8.1 Expression Engine

Firstly, there is further work on the research and development of the expression engine. These

suggestions should be considered first, as they impact the immediate issues and viability of the

SDLP approach.

• Support for arrays. This can be achieved by implementing displacement addressing as dis-

cussed in Section 6. An example of this in 8086 assembly language is mov array(%eax), %ebx.

The displacement is the value held in the eax register which gets added to the literal array

which is an address in memory.

• Improve expression tree utilisation. Currently the expression tree is under-utilised by as

much as 50%. It is suggested that static analysis of various domain code bases should be

conducted to statistically determine the most common expression shapes and operands. This

work could motivate the development of domain specific expression engines.

• As suggested in Chapter 4.5, various techniques should be considered for expression engine

optimisation. These include operand forwarding and clock gating techniques. A dynamic
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expression engine design should also be considered.

• Research how to fit arbitrary C expressions onto a given expression engine tree (or other

suitable data structure). This would be required for a C compiler back-end code generator.

• Development of a C compiler back-end to facilitate the execution of existing benchmarking

suites such as mibench. If a GNU Compiler Collection back-end is developed, it should

be compatible with C and C++. Full compatibility with the GNU toolchain should be

considered, for example by re-implementing the assembler using GNU Assembler GAS. This

would encourage the open source development of the SDLP toolchain.

• Research compiler optimisations possible with the SDLP and how these compare with ARM

compiler optimisations.

• Increase the number of operands that can be addressed. Currently 256 bytes can be addressed

since lvalues and rvalues are 8 bits wide. An investigation needs to made to increase the

number of operands that can be addressed whilst acknowledging that operand addressing

dominates the expression definition space requirements as discussed in Section 4.5.

• Decrease the operand address width. This is in opposition to increasing the number of

operands that can be addressed (above). Section 4.5 explained how opcode addressing dom-

inates the expression definition space requirements. One possible approach is to use an

internal register set in order to reduce the size of the operand address width from 8 bits to

4 bits, the same as ARM. Alternatively a register set could be memory mapped. However, if

registers are used, then load and store or mov instructions would needed adding to the ISA.

This would change the SDLP from a memory-memory architecture to a register-memory or

load-store architecture.

• Single expression engine or multiple? Currently, the SDLP needs to configure all of the nodes

of the expression engine simply to compare two variables or to simply increment a variable,

which is wasteful. A number of expression engines could be supported to accommodate

different expressions of varying complexities or shapes. A simple ALU could be used for

supporting dual operand expressions.

• Multiple expression engines or ILP for increasing parallelism? Parallelism could be achieved

using ILP or by increasing the number of expression engines. Each approach will yield various

advantages and disadvantages, which need to be understood.
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8.2 Practicalities

Secondly, a number of other items should be considered to complete the SDLP ISA and

architecture in order to make it a practical processor.

– Decide whether to continue with the use the abstract instructions or use alternative

CISC or RISC-based instructions for flow control.

– Further development of the abstract instructions. The SDLP ISA can be augmented to

provide support for other C control constructs, e.g. for, dowhile, goto, setjump, longjump

and switch. With regards to switch statements, approaches using lookup tables and jump

tables for efficiency should be considered. Support for function call and return also needs

adding. Since this work is outside of the scope of the current thesis, suggestions have

been written up in Appendix A.

– Floating Point support needs to be added to the SDLP. There are various approaches

to this, for example by modifying the expression engine to support floating point calcu-

lations, or by using a seperate floating point expression engine. Floating point support

will enable more complex benchmarks to be executed on the SDLP.

– Support for peripheral devices and interrupts. In order to be capable of controlling

external devices, the SDLP must provide support for external device control and in-

terrupts. For example, this could be done using hardware control registers or memory

mapped registers. The integration or development of an interrupt controller also needs

to be considered. However, this work is not necessary for supporting most benchmarking

suites.

8.3 ASIC Implementation

Finally, the ultimate aim for the SDLP is to move from a research concept into a customised

integrated circuit for use in a commercial environment. This stage requires the expertise of a

multi-functional team including the SDLP architect, runtime software engineers, tool-chain

engineers (including compiler experts) and digital design engineers (in particular FPGA and

ASIC experts). This phase of development is likely to require significant investment.

– Development of a Register Transfer Level (RTL) Field Programmable Gate Array (FPGA)

based implementation of the SDLP. The FPGA is an integrated circuit which can be

configured by the designer after manufacturing. This is usually one of the first steps

184



towards implementing a processor as an Application Specific Integrated Ciruit (ASIC),

which is a fully customised integrated circuit. When implementing designs on FPGAs,

either a behavioural model can be applied or an RTL. An RTL approach is a clocked

synchronous implementation which models the flow of digital signals between the var-

ious hardware components. This approach means that the implementation is easier to

transition to an ASIC implementation later, whereas a behavioural model relies on the

FPGA toolchain to generate a state machine. Hence, this resembles a simulator running

on FPGA. This work will require the expertise of a digital hardware engineer working

closely with the SDLP architect.

– Determine how the non-uniform instruction length impacts decoder circuit, in partic-

ular transistor count and critical path. Currently, the instruction length for an if-else

instruction is 8 bytes compared to 7 bytes for while and if. This does introduce some

complexity to the decoder as described in Section 6.2.1. This information will feed into

the development of the ISA for other C constructs (discussed above).

– Determine potential savings due to the SDLP having fewer dependencies on caches.

This may reduce overall power consumption.

– Finally, an ASIC implementation of the processor will allow a fully integrated circuit to

be benchmarked. Only at this point will the true potential of the SDLP be understood.
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Appendix A

Function Calls and Returns

Functional decomposition refers broadly to the process of resolving a functional relationship

into its constituent parts in such a way that the original function can be reconstructed

(i.e. recomposed) from those parts by function composition. The function is one of the

fundamental abstractions in modern programming languages and it is a feature provided by

all practical imperative languages. The rules for describing the function call, return and

parameter passing are specified in a Procedure Call Standard, for example [60]. Having such

a standard means that modules compiled by different compilers, are compatible and can be

linked into a single binary.

On 8086-based architectures, the cdecl is the default calling convention for C and C++

programs. One of the main advantages of this calling convention is that can support variable

parameters. This is because the stack is cleaned up by the caller.

The context for a function call is stored in an Activation Record. The activation record

contains the following information (not necessarily in this order):

– Parameters

– Return address

– Storage space for local variables

– Platform-specific context information

Activation records are created on a stack, since this data structure naturally mimics the

control sequence of function calls and returns. Figure A.1 illustrates the activation records

for a caller and callee based on the cdecl procedure call standard. It assumes that the stack

grows downwards and, for the sake of simplicity, no platform-specific context information (e.g.
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registers) need to be saved. The top 5 elements are for the caller and bottom 6 elements

represent the callee. BP 1 is the base pointer; this is used to provide a stable reference point

for accessing the function parameters and local variables. SP 1 is the stack pointer; this is

used to track the last element in the stack.

When a function is called, a new activation record is created on the stack. First, caller

arguments are pushed onto the stack; these become callee parameters. This is seen as SP

2. Next, a call instruction pushes the return address onto the stack, prior to jumping to the

start of the callee function. The 8086-based assembly to achieve the pushing of the arguments

and the call is referred to as the caller prologue. The callee then preserves the bp by pushing

it; it then sets the bp to the current sp. This is seen as BP 2. This creates an anchor point

for accessing parameters and local variables. Finally, sp is adjusted to allocate local variable

storage. This is seen as SP 3. The 8086-based assembly to achieve this is referred to as

the callee prologue. To return from the function, the caller bp must be restored, the local

variables deallocated, and a ret instruction executed to return to the point after the function

call in the caller. This is done by the callee epiloue. Finally the caller arguments must be

deallocated from the caller activation record. This is done by the caller epilogue.

Figure A.1: Function Stack Frame

8086 assembly language can be used as pseudocode for describing the semantics that the

SDLP would be required to implement for supporting function calls. Listing A.1 illustrates
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the caller creating the first part of the activation record by pushing the arguments onto the

stack. This is seen as SP 2 in Figure A.1. These arguments will then become the callee’s

parameters. The caller then invokes the call instruction. This pushes the return address

onto the stack (this is the address of the next instruction after the call), before jumping to

the address of the function. At this point the stack pointer (sp) will point to the next stack

element below the return address.

push p3
push p2
c a l l c a l l e e

Listing A.1: Caller prologue

When control is passed to the callee via the jump, the callee prologue is the next code to

execute. Listing A.2 illustrates how the construction of the activation record is completed

by the callee. First the caller’s bp is preserved by pushing it onto the stack. bp is then set

to the stack pointer. This is shown in Figure A.1 as BP 2. The purpose of this is to create

a stable reference point for accessing function parameters and local variables using bp for

relative addressing. Next, space for local variables is allocated in the activation record. This

is done by subtracting the required bytes from the stack pointer. This is shown in Figure

A.1 as SP 3. Once the function is finished, control can be returned back to the caller. This

is done by the callee epilogue.
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push bp
mov bp , sp
sub sp , 8

Listing A.2: Callee prologue

Listing A.3 shows how control is passed back to the caller. First the stack pointer is set to

the base pointer. Since bp points to the stack element after the callers bp, this has the effect

of deallocating the space originally allocated for local variables. This is shown as BP 2 in

Figure A.1. The caller’s base pointer is then restored by popping the stack. The state of bp is

now back to where it was prior to the invocation of the call. This is shown as BP 1. Finally,

the ret is executed. This pops the caller’s return address from the stack and writes it to the

program counter; this is shown as SP 2 in Figure A.1. However, the stack still contains the

arguments that were passed by the caller. The final cleanup is done by the caller epilogue.

mov sp , bp
pop bp
r e t

Listing A.3: Callee epilogue

Listing A.4 shows how the arguments are removed from the stack. This is done by adding

the appropriate number of bytes to the stack pointer. This is shown as SP 1 in Figure A.1.

The reason that the function arguments are deallocated by the caller rather than the callee

is so that variable parameters can be supported during function calls; only the caller knows

the number of arguments passed.

add sp , 8

Listing A.4: Caller epilogue

SDLP instructions can be derived from the above 8086 instruction sequences and these are

illustrated in Table A.1.
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Instruction Sequence 8086 Code Sequence Equivalent SDLP Code

Caller Prologue
push p3
push p2
call callee

push <val> | <literal>
call <function name>

Callee Prologue
push bp
mov bp, sp
sub sp, 8

salloc <num bytes>

Callee Epilogue
mov sp, bp
pop bp
ret

ret

Caller Epilogue add sp, 8 sdealloc <num bytes>

Table A.1: SDLP Function Call and Return Instruction Sequences derived from 8086
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Appendix B

Assembler User Guide

B.1 Introduction

The assembler is used to translate a human readable SDLP program into a binary executable

for interpretation by the simulator.

The input to the assembler is a single text file and the output is a binary executable. The

format of the output file is a proprietary executable, following a simple structure. To invoke

the assembler the following command is entered: asm < filename > < outputfilename >.

There is no separate linker, and information that would be normally provided in a linker

map file is defined internally by the assembler. This includes the memory start address and

lengths of the various memory segments. For the sake of simplicity, the executable binary

is loaded directly into memory by the associated simulator, ready for execution. To this

extent, the assembler is also a romizer. The syntax of an SDLP assembly language program

is loosely based on the GNU Assembler (GAS).

B.2 Memory Model

Figure B.1 illustrates a memory model used for SDLP executables. Memory address 0 is at

the top of the diagram and the highest address is at the bottom. Byte order is little endian

format for ease of debugging. Bit order is least significant-bit first. Memory is split into a

number of sections, inspired by the Executable and Linkable Format (ELF) [61]. The Segment

Offset Table contains the offsets of all the segments in the memory space. Each entry in this
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table is 4 bytes in size. The purpose of the offset table is to allow the processor to locate

all of the segments it requires for execution. For example, during boot-up, the processor

must start executing code in the text segment. This segment consists of control instructions

and expression references. The processor must also know the offset of the data segment

when processing operands. The tree segment contains the expressions which configure the

expression engine; each are 11 bytes in size.

Figure B.1: SDLP Memory Model

An SDLP assembly language program must consist of the following sections in the specified

order:

– .data - this contains initialised global variable definitions. Each global variable in this

section must be initialised.

– .bss - this contains uninitialised global variables.

– .tree - this contains all of the program expressions, each uniquely identified by an ex-

pression Id.

– .text - this contains the program logic, comprising of instructions and expression Ids.
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B.3 Data Segment and BSS Segment Declaration and

Definition

The assembler supports the most basic primitive types including bytes, words and double

words. These are declared and defined using a C-like syntax using types found in stdint.h of

the standard C library. Listing B.1 illustrates how to declare various types in the data and

bss segments1. Note, arrays are currently not supported.

. data
struct data {

u i n t 8 t foo1 = 0x0 ;
u i n t 32 t foo2 = 0 x f f f f f f f f ;

} ;
. bss
struct bss {

u i n t 8 t bar1 ;
u i n t 32 t bar2 ;

} ;

Listing B.1: Data and BSS Segments

1The assembler requires at least one variable in the .data segment and one variable in the .bss segment. If one
is not required, simply insert a dummy one.
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Figure B.2: Expression Engine

B.3.1 Expressions

Instead of a traditional ALU, the SDLP uses an Expression Engine. Figure B.2 illustrates

the n-array tree structure of the expression engine.

Listing B.2 is the Bacus Naur Form (BNF) illustrating the syntax of an expression. The

terminals refer to the node inputs in Figure B.2 above.

<expres s i on> := <exp r e s s i on name> :
<C0> <C1> <C2−C5> <C6> <C7>
<RP0> <RP1> <RP2> <RP3> <RP4> <RP5>
<R0> <R0> <R2> <R3> <R4> <R5>
<D>
<l v a l>

Listing B.2: Expression Encoding

R0-R5 are rvalues and are the equivalent of variables or constants on the right hand side

of a C expression. The output operand is referred to as an lvalue (left of assignment). An

operator must be selected for each node C0-C7 ; Table B.1 illustrates the possible operators

for each of these.
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Node Operator

C0 and C7
* (arithmetic multiply)
/ (arithmetic divide)

C1 and C6
+ (arithmetic add)
- (arithmetic subtract)

C2 - C5

< (relational less than)
> (relational greater than)
= (relational equals)
! = (relational not equals)
L AND (logical and)
L OR (logical or)

(̂bitwise xor)
B NOT (bitwise not)
B AND (bitwise and)
B OR (bitwise or)
B LSH (bitwise left shift)
B RSH (bitwise right shift)

Table B.1: SDLP Operators

195



RP0-RP5 are used to specify how each of the corresponding rvalues should be addressed.

The possible values for RP0-RP5 are illustrated in Table B.2.

Value Description
0 rvalue (offset from.data)
1 Address of the rvalue (& in C) (from .data)
2 Value of the location pointed to by the rvalue (* in C) (offset from .data)
3 Not used
4 rvalue (offset from stack base)
5 Address of the rvalue (& in C) (from stack base)
6 Value of the location pointed to by the rvalue (* in C) (offset from stack base)
7 Literal (value is treated as an 8-bit literal)

Table B.2: RP0-RP5 Meanings

The possible values for D in layer 3 are illustrated in Table B.3.

Value Description
0 lvalue (offset from .data)
1 Location pointed to by the lvalue (* in C) (offset from .data)
2 lvalue (offset from .stack)
3 Location pointed to by the lvalue (* in C) (offset from stack base)
4 Not used
5 Not used
6 Not used
7 Ignore (do not write lvalue, however internal zero flag still set to indicate result of expression)

Table B.3: D Meanings

Similar to rvalues, lvalues can be plain old variables, pointers and address of variables. It is

also possible to skip writing the lvalue. This can be done when the result of an expression

is used as a condition by an instruction, such as an if or a while. In this case an internal

boolean flag is set true if the lvalue is non-zero and false otherwise, i.e. bool flag = lvalue.

This flag is then used by an instruction to determine the result of its associated condition.
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Listing B.3 illustrates an example expression which increments a variable count.

. t r e e
expr inc count :
∗ , +, B AND, +, ∗ ,
0 , 7 , 7 , 7 , 7 , 7 ,
count , 1 , 1 , 255 , 1 , 0 ,
0 , count ;

Listing B.3: Example Expression

B.3.2 While Instructions

Listing B.4 illustrates the syntax for a while and Listing B.5 illustrates a corresponding

example.

label specifies the where program control jumps if the while condition equates to zero. In C,

this would be the next statement after the closing brace of a while block.

expr id refers to an expression defined in the .tree segment of the assembly language program.

Multiple expression Ids can be specified for complex expressions. Expressions can be chained

by specifying the lvalue output of a preceding expression as an rvalue input to the next

expression. If the result of the last expression evaluation is zero, then the program control

branches to label. Otherwise, control passes to the first statement in the while block.

The while must contain at least one statement. This can be another instruction or an ex-

pression.

while <l abe l> <expr id> [ , <expr id > . . . ]
<statement> [< statement > . . . ]

<l abe l >:

Listing B.4: While Encoding

while l a b e l 1 expr count less than numElement
expr inc count

l a b e l 1 :

Listing B.5: Example While

B.3.3 If Instructions

Listing B.6 illustrates the syntax for an if and Listing B.7 illustrates a corresponding example.

The syntax is very similar to the while.
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i f <l abe l> <exp r e s s i on i d> { , <exp r e s s i on i d >}
<statement> {<statement>}

<l abe l >:

Listing B.6: If Encoding

i f l a b e l 1 expr count less than numElement
expr inc count

l a b e l 1 :

Listing B.7: If Encoding

B.3.4 If-else Instructions

Listing B.8 illustrates the syntax for an if-else and Listing B.9 illustrates a corresponding

example.

label 0 defines the start of the else block. In C, this would be the statement after the opening

brace of the else block. label 1 defines the point in the program after the else block. In C,

this would be the statement after the closing brace of the else block. If the result of the last

expression evaluation is zero, then the program control branches to label 0, which is the else

block. Otherwise, control passes to the first statement in the if block. The if block and the

else block must both contain at least one statement each. When the last statement of the if

block has been executed, program control jumps to label 1.

i f e l s e < l a b e l 0> < l a b e l 1> <exp r e s s i on i d> { , <exp r e s s i on i d >}
<statement> {<statement>}

< l a b e l 0 >:
<statement> {<statement>}

< l a b e l 1 >:

Listing B.8: If-else Encoding

i f l a b e l 0 l a b e l 1 e xp r a l e s s t h an b
expr mark l e s s than

l a b e l 0 :
e xp r no t l e s s t h an

l a b e l 1 :

Listing B.9: If-else Encoding

B.3.5 Example SDLP Program

Listing B.10 illustrates a complete SDLP assembly language program. The program simply

iterates while the value of a variable count is less than the value of a variable numElements.
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. data
struct data
{

u in t 32 t count = 0 ;
u i n t 32 t numElements = 10 ;

} ;

. bss
struct bss
{

u in t 32 t i gnor e ;
} ;

. t r e e
expr UNUSED : ∗ , +, B AND, +, ∗ , 7 , 7 , 7 , 7 , 7 , 7 , 1 , 1 , 0 , 255 , 1 , 0 , 7 ,

i gno re

expr count less than numElement : ∗ , +, <, +, ∗ , 0 , 7 , 7 , 0 , 7 , 7 , count ,
1 , 0 , numElements , 1 , 0 , 7 , i gno r e

expr inc count : ∗ , +, B AND, +, ∗ , 0 , 7 , 7 , 7 , 7 , 7 , count , 1 , 1 , 255 ,
1 , 0 , 0 , count

. t ex t
while l a b e l 1 expr count less than numElement

expr inc count
l a b e l 1 :

Listing B.10: Example SDLP Assembly Language Program
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