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 26 

Abstract 27 

Immune dysregulation and accumulation of leukocytes is a hallmark of adult chronic 28 

liver diseases.  Progressive hepatic inflammation can lead to fibrosis and cirrhosis 29 

with a high risk of liver failure or hepatocellular cancer (HCC).  Recent advances 30 

have been made in the treatment of liver disease including the development of highly 31 

effective antiviral therapy for hepatitis C and the potential of immunotherapy for 32 

HCC. Despite this, the majority of other chronic liver diseases including alcoholic 33 

liver disease, fatty liver disease and cholestatic diseases do not respond to 34 

conventional anti-inflammatory therapies.  Recent studies defining the organ-specific 35 

properties that contribute to resident immune activation and immune cell recruitment  36 

from the circulation in these conditions have identified novel hepatic inflammatory 37 

pathways which are now being targeted in clinical trials.  Further understanding of 38 

how the immune microenvironment is regulated within the liver and how disease 39 

specific mechanisms alter this process will hopefully lead to combination therapies to 40 

prevent aberrant inflammation and also promote fibrosis resolution.  In this review, 41 

we focus on the advances that have been made in identifying key components of the 42 

inflammatory pathway including the recognition of danger signals, the recruitment 43 

and retention of lymphocytes from the circulation and the pathways which promote 44 

resolution.    45 

 46 

Main Concepts and Learning Points 47 

1. The majority of adult chronic liver diseases are driven by inflammatory 48 

processes which are unresponsive to conventional anti-inflammatory 49 

therapies. 50 
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2. Recent work has highlighted the major role of macrophages, tissue resident 51 

Kupffer cells and recruited monocytes, in sensing hepatic damage which 52 

drives downstream immune responses. 53 

3. Lymphocyte recruitment via the hepatic sinusoids contributes to hepatitis and 54 

is mediated by interactions with liver sinusoidal endothelial cells via typical 55 

and atypical adhesion molecules. 56 

4. Clinical trials are targeting macrophage responses to epithelial damage and 57 

immune cell recruitment via adhesion molecules as novel anti-inflammatory 58 

approaches in chronic liver disease.  59 

5. Further approaches to treat hepatic inflammation should take into account 60 

inflammatory pathways which mediate immune cell retention in liver tissue 61 

and promote resolution of fibrogenesis.   62 

 63 

 64 

Adult inflammatory liver diseases lead to a major global burden on human health,  65 

and patients with progressive disease are at risk of developing fibrosis and cirrhosis 66 

which can culminate in end-stage liver failure or hepatocellular cancer (HCC), both of 67 

which are associated with extremely high mortalities1.  Recent advances have been 68 

made in the treatment of liver disease, especially in the field of viral hepatitis.  The 69 

development of direct-acting antivirals for the treatment of hepatitis C has 70 

demonstrated very high rates of viral eradication2.  In the case of hepatitis B, current 71 

therapies are effective at suppressing viral replication and can reduce 72 

necroinflammation with reversal of fibrosis as well as reducing HCC risk3,4. In 73 

contrast, the inflammatory processes that drive other major liver diseases such as 74 

alcoholic liver disease, non-alcoholic steatohepatitis and cholangiopathies have 75 
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continued to be a major therapeutic challenge. For those patients who progress to 76 

advanced  chronic liver disease there are limited options when they develop end-77 

stage liver disease, with transplantation being the only choice in many cases5.  New 78 

therapies are therefore urgently required to reduce the burden on transplantation and 79 

the associated high waiting list mortality.   80 

 81 

Adult chronic liver diseases are driven by inflammation, which promotes epithelial 82 

damage and death leading to the activation of resident immune cells and the 83 

accumulation of circulating immune cells recruited from the circulation6,7.  Each 84 

disease has a specific pattern of injury which is dependent on the site of initial 85 

damage. For example, NASH is triggered by hepatocyte damage characterised by 86 

sublethal injury associated with lipotoxicity,  resulting in parenchymal inflammation  87 

associated with innate and adaptive immune responses8. In contrast, primary 88 

sclerosing cholangitis is driven by cholangiocyte injury leading to the localised 89 

release of chemokines and pro-inflammatory cytokines associated with portal 90 

inflammation and ductal proliferation and ductular loss9.   These inflammatory 91 

processes are associated with the activation of hepatic stellate cells and if left 92 

unchecked lead to excessive deposition of extracellular matrix, fibrosis and 93 

persistent damage culminating in cirrhosis10. The site of injury determines the pattern 94 

of fibrosis with parenchymal diseases such as ALD/NASH presenting centrilobular 95 

and sinusoidal fibrosis and cholangiopathies associated with periportal fibrosis 96 

leading to irregular shaped nodules11.   97 

Targeting the inflammatory pathways that drive these conditions has the potential of 98 

inhibiting fibrogenesis, but the mechanisms involved are poorly understood. 99 

Autoimmune hepatitis for example is often responsive to steroid-based therapy and 100 
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immunomodulators, whereas other immune-mediated liver diseases such as primary 101 

sclerosing cholangitis and primary biliary cholangitis are currently unresponsive to 102 

these medications9,12.  Furthermore, patients suffering from the major inflammatory 103 

liver diseases secondary to alcohol and non-alcoholic fatty liver disease do not 104 

derive benefit from current anti-inflammatory approaches.  We therefore urgently 105 

require better understanding of the underlying core inflammatory pathways that drive 106 

these diseases to identify novel therapies which can prevent the progression to 107 

cirrhosis and end stage liver disease.    108 

 109 

In this review, we focus on three major processes which are implicated in chronic 110 

inflammatory liver diseases, the immune response to danger signals released by 111 

persistent epithelial damage, the recruitment/retention of immune cells from the 112 

circulation and the factors which drive resolution and repair within the liver.   113 

 114 

The immune response to danger signals released from epithelial damage. 115 

Epithelial damage is a key factor in initiating inflammatory liver diseases. This 116 

involves cellular stress secondary to factors such as lipotoxicity in fatty liver disease, 117 

accumulation of breakdown products of alcohol and hepatotrophic viruses.  These 118 

processes are associated with the release of danger signals or danger associated 119 

molecular patterns (DAMPs) into the microenvironment.  How these danger signals 120 

are sensed and processed by the innate immune system is one of the key 121 

determinants of progression of these inflammatory conditions13 (summarised in 122 

Figure 1).  123 

 124 

Kupffer cell recognition of DAMPS 125 
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The major cellular population to sense and respond to these danger signals are the 126 

liver resident macrophages, Kupffer cells.  Kupffer cells are the sentinels of the liver 127 

and are derived from yolk sac precursors which self renew14.   They play a role in 128 

processing gut-derived products and mediating immune responses to microbes.  129 

Additionally, they sense sterile injury and associated DAMPS which are a 130 

characteristic of the major inflammatory liver diseases including alcoholic 131 

steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH).   DAMPs which 132 

have been associated with Kupffer cell activation include high mobility group protein 133 

B1 (HMGB1), ATP, uric acid, DNA fragments and cholesterol crystals14.  Targeting 134 

the pathway of DAMP recognition is already underway in clinical trials.  DAMPs are 135 

recognised by pattern recognition receptors including Toll-like receptors (TLRs) and 136 

scavenger receptors which are both highly expressed by macrophages. TLR4 has 137 

been studied extensively and a TLR4 antagonist, JKB-122, is currently undergoing 138 

assessment in the setting of NASH as an early phase II clinical trial NCT02442687.  139 

Galectin-3 expressed on Kupffer cells which is a member of the scavenger receptor 140 

family which recognise the terminal galactose residues on glycoproteins.  Galectin-3 141 

plays a key role in hepatic uptake of advanced lipoxidation and glycation end 142 

products15.  An agent which binds galectin-3, GR-MD-02, is progressing through 143 

early stage clinical trials in the setting of NASH16.  Other members of the scavenger 144 

receptor family which have been implicated in promoting hepatic inflammation 145 

include CD36 and Scavenger Receptor-A (SR-A).  Targeted deletion of these 146 

receptors on myeloid cells, led to reduced levels of inflammation and fibrosis in 147 

models of fatty liver disease17.  A recent study confirmed that the recognition of 148 

DAMPs, specifically products of lipid peroxidation such as malondialdehyde (MDA)-149 

LDL, by CD36 and SR-A led to the release of pro-inflammatory cytokines18.  Blocking 150 
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the action of these receptors may therefore be beneficial in the setting of NASH.  151 

Interestingly, the authors also targeted the DAMP directly, in this case the MDA 152 

epitope, by in vivo neutralization with antibodies.  This approach was successful in 153 

reducing inflammation in their pre-clinical model of fatty liver disease.  154 

 155 

The role of the inflammasome in chronic liver disease   156 

Whilst the direct recognition of DAMPs is a viable pathway to target, there are also 157 

downstream pathways which play significant roles in the progression of chronic liver 158 

disease.  The recognition of these danger associated ligands by pattern recognition 159 

receptors on Kupffer cells leads to the formation of the inflammasome.   160 

Inflammasomes are multi-protein complexes which are comprised of a nucleotide 161 

oligomerization domain (NOD)-like receptors and effector molecules including pro-162 

caspase-1, and adaptor molecules e.g. apoptosis-associated speck-like CARD- 163 

domain containing protein (ASC)19.  Following the formation of the inflammasome,  164 

Kupffer cells produce inflammatory mediators, such as interleukin 1beta and other 165 

pro-inflammatory cytokines and chemokines. Activation of inflammasome complexes 166 

have been confirmed in pre-clinical models of alcoholic liver injury and fatty liver 167 

disease20. This leads to the recruitment of other innate populations from the 168 

circulation such as neutrophils, monocytes and populations of T cells.   Therefore 169 

targeting the pathway of inflammasome formation is also a rational approach to 170 

prevent progression of inflammatory liver diseases.  Studies in pre-clinical models of 171 

alcoholic liver disease demonstrated that targeting the inflammasome pathway by 172 

pharmacological inhibition of IL-1R1 prevented the development and progression of 173 

alcoholic liver disease21.  Additionally, one the most extensively studied 174 

inflammasomes in macrophages is the NOD-, LRR- and pyrin domain-containing 3 175 
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(NLRP3) inflammasome which has previously been shown to play a critical role in 176 

the progression of murine models of non-alcoholic fatty liver disease 22.  A recent 177 

study confirmed its role in driving liver inflammation and fibrogenesis by studying 178 

liver injury in mice with constitutive activation of NLRP3 in myeloid cells.  Activation 179 

of the NLRP3 inflammasome led to excess production of TNF and IL-17 resulting in 180 

severe inflammation and fibrosis 23.  181 

 182 

Recruitment of peripheral monocyte populations 183 

Another major downstream consequence of Kupffer cell driven inflammation is the 184 

recruitment of other monocyte populations from the circulation via the CCL2-CCR2 185 

axis24,25. The chemokine CCL2 promotes recruitment of CCR2+ monocytes from the 186 

circulation, and this has been confirmed in experimental models of both alcoholic 187 

liver disease and fatty liver disease26.  A recent study confirmed the increased 188 

accumulation of CCR2+ macrophages within liver tissue parallels with fibrosis 189 

progression in fatty liver disease. These populations of cells were seen as 190 

aggregates of monocyte-derived macrophages around portal tracts27. Furthermore, 191 

gene analysis of these recruited (monocyte-derived macrophages) versus resident 192 

(Kupffer cells) confirmed that monocyte-derived macrophages were associated with 193 

multiple growth factors and cytokines leading to fibrosis progression, whereas 194 

Kupffer cells were characterised by factors associated with inflammation initiation.  195 

Therapeutic targeting of the recruitment of these CCR2+ monocytes by 196 

administration of Cenicriviroc a CCR2/CCR5 dual chemokine receptor antagonist led 197 

to amelioration of hepatic inflammation and fibrosis in several models of NASH27.  In 198 

keeping with these findings, there is encouraging clinical experience that Cenicriviroc 199 

could be a potential therapy for chronic liver disease. A phase 2b study of this agent 200 
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in patients with non-alcoholic steatohepatitis and established fibrosis demonstrated a 201 

significant improvement in fibrosis compared to placebo after 1 year of treatment28.  202 

Activated Kupffer cells also secrete several other chemokines including CCL25, 203 

CX3CL1, CXCL2 and CXCL814; thus, targeting these chemokines may also influence 204 

the recruitment of other distinct immune populations from the circulation during 205 

inflammatory liver disease leading to other novel targets for treatment.   An intriguing 206 

recent study has also identified the recruitment of immune populations from the 207 

peritoneal compartment.  In a model of sterile liver injury a population of GATA6-208 

positive macrophages were detected at a very early stage of tissue damage.  These 209 

GATA6+ macrophages migrated directly across the mesothelium and their 210 

recruitment was dependent on the adhesion molecule CD44 and adenosine 211 

triphosphate29. The role of these macrophages in the progression of chronic 212 

inflammatory liver diseases and their therapeutic potential is yet to be confirmed.   213 

 214 

The activation of unconventional lymphocytes 215 

In parallel to the initiation of inflammation by myeloid populations, there is gathering 216 

interest in the role of unconventional lymphocytes which are found highly enriched in 217 

epithelial tissues and have well established roles in anti-microbial immunity30.  Their 218 

roles in early immune responses has led investigators to study if they could be 219 

pivotal in the triggering and regulation of progressive liver disease.  γδ T cells are 220 

predominantly generated in the thymus and characterised by a γδ T cell receptor 221 

(TCR), they only account for 2-3% of all CD3+ T cells in secondary lymphoid organs 222 

but have been found to be enriched in the liver31.  γδ T cells recognise conserved 223 

structures including non-peptide metabolites and heat shock proteins.  They can 224 

rapidly release cytokines which are known to regulate adaptive immune populations 225 
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including conventional αβ T cells and therefore have been postulated as an 226 

additional link between innate and adaptive immune responses32.  Experimental 227 

models of liver disease have demonstrated the accumulation of these cells during 228 

liver injury and their contribution to disease progression.  In a murine model of 229 

autoimmune hepatitis, γδ T cells played a protective role associated with reduced 230 

liver damage and inflammatory cytokine levels.  In this setting the protective 231 

mechanism was found to be regulated by IL-17 produced by  γδ T cells 232 

downregulated the function of another family of unconventional T cells, natural killer 233 

T (NKT) cells33.  Further support for the protective role of these cells in liver disease 234 

has been demonstrated in models of chronic  liver injury.  Murine models of fibrosis 235 

and steatohepatitis demonstrated that the CCR6+ subset of γδ T cells prevented 236 

fibrosis by promoting the apoptosis of hepatic stellate cells34. 237 

As alluded to earlier, another subset of unconventional lymphocytes, NKT cells, 238 

appear to promote inflammatory liver disease.   NKT cells are lymphocyte subsets 239 

which express cell surface markers associated with NK cells as well as the T cell 240 

receptor and they are characterised by their recognition of glycolipid antigens. They 241 

have been shown to localise to the hepatic sinusoids and demonstrate a 242 

crawling/patrolling phenotype35. NKT cells accumulated in models of liver injury and 243 

were shown to promote hepatic inflammation and contributed to progressive 244 

fibrosis36. Further studies focused on the potential contribution of NKT cells to fatty 245 

liver disease.  Higher levels of NKT cells were detected in patients undergoing 246 

transplantation for NASH compared to order indications, this accumulation was also 247 

seen in murine models of NASH and mice deficient in NKT cells were protected from 248 

fibrosis in this model37.  Subsequent studies implicated hepatic NKT cells in the 249 
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increased production pro-fibrogenic factors including osteopontin and hedgehog 250 

ligands38.  251 

Further understanding of the functional properties of another unique subset of 252 

innate-like T cells, mucosal-associated invariant T cells (MAIT) cells, has highlighted 253 

their potential as regulators of liver inflammation.  MAIT cells are characterised by 254 

the expression of a semivariant TCR that recognises a MHC-like protein (MR-1)39.  255 

MR-1 presents vitamin B metabolites derived from commensal and pathogenic 256 

bacteria and thus MAIT cells can be activated by a variety of bacterial strains40.   The 257 

high levels  of these cells in human gut biopsies and accumulation in laminia propria 258 

led to them being named MAIT cells41.  Subsequent studies have now shown that 259 

they are also enriched in the liver and  have explored their antimicrobial properties in 260 

immune mediated liver disease and alcoholic liver disease42-44.  This has led 261 

investigators to speculate that MAIT cells may make a significant immune 262 

contribution in the liver acting as a firewall between the host and gut derived 263 

bacteria45.  However these reports have also shown that MAIT cells are highly 264 

activated in the liver and are the predominant IL-17 producers within the hepatic T 265 

cell compartment and could therefore be important drivers of aberrant hepatic 266 

inflammation. A recent study has studied the contribution of these cells in chronic 267 

liver injury.  MAIT cells were found to be enriched in the periportal region and along 268 

the fibrotic septa in tissue from cirrhotic livers and in a carbon tetrachloride model of 269 

chronic liver injury these cells were found to be pro-fibrogenic by promoting the pro-270 

inflammatory properties of both monocyte-derived macrophages and fibroblasts46.   271 

Unconventional lymphocytes are therefore a novel target to treat chronic 272 

inflammatory liver disease, but further work is clearly required to understand how to  273 

either manipulate their function or utilise them as cell therapy.  274 
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 275 

 276 

 277 

Lymphocyte recruitment via the liver sinusoids 278 

The accumulation of adaptive immune cell populations within the liver is also a 279 

hallmark and driver of all adult chronic inflammatory liver diseases. A prerequisite 280 

for leukocyte recruitment from the circulation into organs is their interaction with 281 

endothelial cells lining blood vessels. In general, leukocyte migration from the blood 282 

into inflamed tissues occurs in post-capillary venules47; however, in the liver, this 283 

process occurs in the low shear flow microvasculature of the hepatic sinusoids which 284 

are lined by liver sinusoidal endothelial cells (LSEC)7 (Figure 2).  LSECs are a 285 

phenotypically and functionally unique population of endothelial cells.  They are 286 

characterised by a minimal basement membrane and atypical cellular junctions as 287 

well as membranous pores organised in sieve plates called fenestrations48.   288 

Additionally, LSECs are also characterised by the expression of an array of 289 

scavenger receptors (SRs)49.    These structural and phenotypic characteristics 290 

support the physiological functions of LSEC but they also influence the mechanisms 291 

of lymphocyte recruitment and thus are potential organ specific anti-inflammatory 292 

targets.  The low shear stress environment of the hepatic sinusoids negates the 293 

requirement for the early rolling steps of the leukocyte adhesion cascade7. As a 294 

consequence, LSEC express negligible levels of selectins50, a small family of 295 

transmembrane Ca2+-dependent lectins which play an integral role in the initial 296 

stages of leukocyte recruitment in more conventional vascular beds51. A critical step 297 

in determining if lymphocytes accumulate at sites of inflammation is not only their 298 

adhesion to endothelium but also their subsequent transmigration across the 299 
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endothelial barrier.  We now know that the process of transendothelial migration 300 

(TEM) in itself is a multi-step pathway involving a combination of receptor 301 

interactions which are potential therapeutic targets for inflammation52.  The 302 

conventional route for TEM by leukocytes is via the paracellular route (in between 303 

cells, through cellular junctions), but it has also been shown that leukocytes can 304 

migrate via the transcellular route (directly through the endothelial body)53. Studies 305 

on human LSEC demonstrate that a significant proportion of lymphocytes migrate via 306 

the transcellular route54.   Additional in vitro studies,   demonstrated that the structure 307 

of these endothelial cells permits a novel migratory pattern, where lymphocytes were 308 

shown to migrate directly into LSEC and then migrate into adjacent endothelial 309 

cells55. This migration was dependent on interferon gamma and facilitated by the 310 

unique junctional complexes between LSEC.  This work highlights that the sinusoidal 311 

vascular bed is not a simple barrier but plays an active role in regulating the immune 312 

microenvironment within the liver and the positioning of lymphocytes in liver tissue. 313 

Further work has elucidated some the molecular contributors to this process and 314 

their potential as novel anti-inflammatory targets.   315 

 316 

Conventional adhesion molecules 317 

Several studies have demonstrated that LSEC use a unique combination of both 318 

conventional endothelial adhesion molecules, such as vascular cell adhesion 319 

molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), and atypical 320 

adhesion molecules to mediate lymphocyte recruitment in chronic liver disease 56,57.  321 

VCAM-1 binds the leukocyte-expressed α4β1 integrin 58 and plays an important role 322 

in capturing lymphocytes from blood flow within the hepatic sinusoids and 323 

subsequently mediates stabilisation59,60. ICAM-1 supports firm adhesion of 324 
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lymphocytes, via binding to αLβ2 integrin (lymphocyte function-associated molecule-1 325 

(LFA-1)) 61, and subsequently mediates their transmigration across LSEC54,62. Both 326 

VCAM-1 and ICAM-1 are significantly upregulated by proinflammatory factors, such 327 

as cytokines63; however, their adhesive function is largely dependent on the 328 

formation of endothelial adhesive platforms (EAPs)64. EAPs play an essential role in 329 

the spatial organisation of VCAM-1 and ICAM-1 within the cell membrane, resulting 330 

in concentrated areas of expression of the adhesion molecules in the contact area 331 

with adherent leukocytes64. The formation of EAPs has been proposed to be 332 

regulated by the tetraspanin family of receptors, which are able to laterally associate 333 

with adhesion molecules to form microdomains64,65. In support of this previous work, 334 

the tetraspanin CD151  associated with VCAM-1 within LSECs and was able to 335 

regulate lymphocyte adhesion under physiological flow conditions in vitro66. Due to 336 

their widespread constitutive expression in a number of cell types and tissues, 337 

VCAM-1 and ICAM-1 are unlikely to represent viable therapeutic targets; however, 338 

modulating their lateral interactions with tetraspanins, such as CD151, may present 339 

an attractive and organ-specific target for chronic inflammatory liver disease.   340 

 341 

Mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1), which belongs 342 

to the immunoglobulin family along with VCAM-1 and ICAM-1, is known to bind to 343 

the α4β7 integrin67 and plays an important role in lymphocyte trafficking to the gut, via 344 

mucosal vessels68. Under normal physiological conditions, MAdCAM-1 is absent 345 

from the liver; however,  previous studies have demonstrated that MAdCAM-1 can 346 

be upregulated through the enzymatic activity of an atypical adhesion molecule, 347 

vascular adhesion protein-1 (VAP-1), in LSEC in some chronic liver diseases69. This 348 

is particularly evident in primary sclerosing cholangitis (PSC), where it promotes the 349 
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recruitment of, gut-activated T cells which express high levels of α4β7 integrin 70,71. Its 350 

hepatic functionality is highly supportive of immunological crosstalk between the gut 351 

and the liver, and MAdCAM-1 might contribute to the pathophysiological link 352 

between inflammatory bowel disease (IBD) and PSC, a progressive autoimmune 353 

biliary disease which is associated with IBD in ~80% of cases. Currently, clinical 354 

trials are being considered to target MAdCAM-1/α4β7 interactions in PSC using 355 

therapeutic antibodies originally developed for the treatment of IBD. Trials have 356 

included a selective humanised monoclonal antibody, Vedolizumab, to α4β7.  Prior 357 

clinical studies with Vedolizumab in the setting of IBD have confirmed that this drug 358 

can modulate lymphocyte recruitment to the gut in both ulcerative colitis and Crohn’s 359 

disease leading to a reduction in inflammation and improved mucosal healing72,73.  360 

This has led to gathering interest in the use of Vedoluzimab in the setting of diseases 361 

where MAdCAM-1 has been shown to be upregulated, particularly PSC.  Until 362 

recently, this had involved single centre case series with results suggesting safety 363 

and improvement of inflammatory parameters74. A multi-centre study has now been 364 

completed in patients with PSC and IBD which demonstrated clinical responses in 365 

the IBD pathology, and the drug was safely tolerated, but it did not lead to any 366 

detectable improvement in liver biochemistry75. Whether targeting the MAdCAM-367 

1/α4β7 interaction could improve long term outcomes in PSC, including prevention of 368 

progressive fibrosis, transplant-free survival and cancer incidence, still needs to be 369 

addressed.  370 

 371 

Atypical adhesion molecules 372 

Vascular adhesion protein-1 (VAP-1) is a membrane-bound amine oxidase that, 373 

under normal physiological conditions, is expressed in vascular endothelial cells, 374 
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smooth muscle cells, and adipocytes76. During homeostasis VAP-1 is localised to 375 

cytoplasmic vesicles in endothelial cells, but under inflammatory conditions the 376 

protein is trafficked to the cell surface77. Early studies of VAP-1 showed that it 377 

mediated leukocyte binding to high endothelial venules (HEVs), the specialised post-378 

capillary venules found in lymph nodes78. Further studies confirmed that VAP-1 was 379 

expressed at high levels in chronically diseased liver tissues ex vivo79 and directly 380 

mediated adhesion and transmigration across LSEC in vitro80. In addition, via its 381 

enzyme activity, VAP-1 can upregulate expression of other adhesion molecules (e.g. 382 

VCAM-1, ICAM-1 and MAdCAM-1) and chemokines (e.g. CXCL8) in LSECs, 383 

consequently enhancing leukocyte recruitment69,81. More recently, these results have 384 

been corroborated  in vivo, confirming the multifaceted role of VAP-1 in leukocyte 385 

recruitment to the liver in murine models of liver injury, and described VAP-1 386 

expression by hepatic stromal cell populations82. A number of preclinical studies 387 

targeting VAP-1 have confirmed that inhibition of its enzymatic activity and/or 388 

blockade of its adhesive function with therapeutic antibodies reduces leukocyte 389 

infiltration in a range of rodent models of inflammatory diseases83.  390 

 391 

Scavenger receptor that binds phosphatidylserine and oxidized lipids (SR-PSOX), 392 

which in its soluble form is also known as the chemokine, CXCL16, is expressed by 393 

LSEC84 and is upregulated in both acutely85,86 and chronically injured liver tissues87. 394 

CXCL16 is a specific ligand for the chemokine receptor CXCR6, thus enabling its 395 

membrane-bound form to interact with intrahepatic CXCR6+ immune cells, such as 396 

effector T cells87,88, natural killer (NK) cells89,90 and NKT cells84. Genetic deficiency of 397 

SR-PSOX has recently been shown to reduce the extent of inflammation and 398 

necrosis in a murine model of acetaminophen (APAP)-induced acute liver injury85. 399 
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Additionally, and perhaps more encouragingly, pharmacological intervention with 400 

neutralising antibodies against SR-PSOX has shown efficacy in reducing 401 

inflammation in preclinical murine models of sepsis-mediated86,91 and carbon 402 

tetrachloride (CCl4)-mediated92 acute liver injury. Furthermore, Wehr and colleagues 403 

were also able to demonstrate the efficacy of SR-PSOX antibody therapy in a 404 

commonly used murine model of non-alcoholic steatohepatitis (NASH), showing a 405 

reduction in both macrophage infiltration and triglyceride levels. Therefore, targeting 406 

the SR-PSOX (CXCL16)/CXCR6 axis may hold promising potential for treatment of 407 

inflammation and subsequent fibrosis of the liver92. 408 

 409 

The class H scavenger receptor stabilin-1, also known as common lymphatic 410 

endothelial and vascular endothelial cell receptor (CLEVER-1), was originally shown 411 

to mediate lymphocyte transmigration across HEVs93. Given the phenotypic 412 

similarities between lymphatic endothelial cells and LSEC50, stabilin-1 was found to 413 

be expressed in human liver and shown to be significantly upregulated in the hepatic 414 

sinusoids in chronic liver disease54. Following this, adhesion assays with lymphocyte 415 

subsets demonstrated that stabilin-1 specifically mediated transendothelial migration 416 

of  Tregs and B-cells through LSECs in vitro, under conditions which mimic the 417 

physiological flow and proinflammatory microenvironment of the hepatic sinusoids 418 

during liver injury54,62. This was the first demonstration of a Treg-specific adhesion 419 

molecule and transmigration of this lymphocyte subset was shown to be dependent 420 

on a combination of stabilin-1, VAP-1 and ICAM-1.  Tregs play a vital role in promoting 421 

tolerance, they mediate immunosuppression through multiple mechanisms and 422 

prevent autoimmunity and counteract inflammatory reactions  mediated by the 423 

effector arm of the immune system94. Therefore, in the context of inflammatory liver 424 
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diseases approaches to upregulate stabilin-1 or promote the function of stabilin-1 425 

could promote Treg accumulation as a strategy to prevent progressive hepatitis.    426 

 427 

The expression of the stabilin-1 homologue, stabilin-2, has also been described in 428 

LSEC and was originally shown to act as a clearance receptor for hyaluronan from 429 

the blood95,96. Through a number of mutation experiments and antibody blockade 430 

studies in vitro, Jung et al. found that stabilin-2 was also able to mediate lymphocyte 431 

binding and identified the integrin αMβ2 as the lymphocyte-expressed ligand97. They 432 

also determined that stabilin-2 predominantly acts in the firm adhesion step of the 433 

leukocyte adhesion cascade as its silencing, via shRNA, did not affect lymphocyte 434 

rolling or transendothelial migration, but was still able to significantly reduce the 435 

number of adherent cells97. To date, the study by Jung et al. remains the sole 436 

investigation of the role of stabilin-2 in leukocyte recruitment to LSEC.  Further work 437 

is required to understand how the stabilin receptor family expressed on LSEC 438 

contribute to lymphocyte recruitment in preclinical models of inflammatory liver 439 

disease.   440 

 441 

Scavenger receptor class F, member 1 (SCARF1 or SR-F1), also known as 442 

scavenger receptor expressed by endothelial cells (SREC-I), has also been shown to 443 

be expressed in both murine and human LSEC98,99. Recently, it has been shown that 444 

SCARF1 plays a role in the selective recruitment of CD4+ T cells to human LSEC, 445 

under physiological shear stress conditions in vitro99. In this study, SCARF1 446 

contributed to the firm adhesion step of the leukocyte adhesion cascade, with 447 

endothelial surface expression of SCARF1 observed in adhesive cup structures 448 

formed on the surface of the LSEC99. However, SCARF1 is an understudied 449 
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scavenger receptor100  and more research into the extent of the contribution of 450 

SCARF1 in immune cell recruitment is required before it can be considered as a 451 

therapeutic target. Nevertheless, SRs including SCARF1 have been shown to be 452 

upregulated in several human inflammatory liver diseases and appear to accumulate 453 

at the interface between inflammation/fibrosis and correlate with fibrosis progression.  454 

 455 

Chemokines 456 

Chemokines are an important component in the process of leucocyte recruitment 457 

and contribute to both firm of adhesion of leukocytes to endothelium and their 458 

subsequent migration across the endothelium.  They are a family of small proteins 459 

which bind to G-protein coupled receptors on the leukocyte surface and induce 460 

conformational changes of intergrins which triggers firm adhesion101.  They are also 461 

found within intraendothelial vesicles and promote transendothelial migration102.  We 462 

have already highlighted their role in monocyte and NK/NKT populations but they 463 

also play a significant role on lymphocyte recruitment within the sinusoids.  The most 464 

extensively investigated are the inflammatory chemokines CXCL9-11 which bind to 465 

the receptor CXCR3 and have been shown to be upregulated in a range of liver 466 

diseases103-105 and functionally they contribute to the transendothelial migration of 467 

lymphocytes across primary human HSEC103.   Previous studies have also shown 468 

that chemokines contribute to the compartmentalisation of lymphocytes in liver 469 

diseases with the CXCR3 ligands promoting recruitment into the parenchyma 470 

whereas CCR5 ligands (the chemokines CCL3-5) contribute to portal tract 471 

recruitment103,106,107.  The contribution of chemokines to inflammation provides a 472 

clear rationale for targeting them as novel anti-inflammatories but a recent study 473 

highlights the difficulties of achieving sustained inhibition of chemokines.  NI-0801 is 474 
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a human monoclonal antibody against the CXCR3 ligand, CXCL10, which was 475 

studied in the context of PBC108.  Investigators completed a phase 2a study in 476 

patients with PBC with inadequate response to ursodeoxycholic acid with the aim of 477 

assessing the safety and efficacy of NI-0801.  The study demonstrated that the drug 478 

was safely tolerated and led to pharmacological responses in the blood but there 479 

was no therapeutic benefit identified with repeated infusions.   480 

 481 

An alternative approach would be to consider targeting lymphocyte subsets, focusing 482 

on pro-inflammatory subsets and allowing persistent recruitment of regulatory 483 

subsets in order to shift the balance in the hepatic microenvironment.  Whilst CXCR3 484 

ligands have been implicated in the recruitment of several subsets including both 485 

Tregs cells and subsets which secrete the pro-inflammatory cytokine IL-17 (Th17 486 

cells)109,110, other chemokines were implicated in the subsequent migration into 487 

hepatic tissue of these subsets. Treg recruitment was regulated by the CCR4 ligands 488 

CCL17 and CCL22, whereas Th17 recruitment was regulated by CCL20, a CCR6 489 

ligand109,110. In view of these findings, targeting the chemokine CCL20 rather than 490 

CXCR3 ligands may prove to be a more effective anti-inflammatory approach which 491 

will not alter Treg recruitment.  Recent studies highlight the importance of the 492 

Th17/Treg balance in determining progressive inflammatory liver disease111-113. 493 

 494 

Retention of immune cells in the stromal compartment 495 

Following migration into the tissue, infiltrating immune cells are maintained in the 496 

local microenvironment. Complemetary to the role of the endothelial layer, the 497 

stromal compartment of the liver maintains a microenvironment which permits the 498 

recruitment and retention of inflammatory cells. The hepatic stellate cell (HSC) 499 
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population are a hepatic stromal cell type which resides in a quiescent state in the 500 

sub-endothelial layer between the endothelium and the parenchymal cells, namely 501 

the space of Disse. Release of stimulating factors from injured epithelial cells and 502 

infiltrating immune causes the HSCs to become activated, driving a programme of 503 

proliferation, migration and contractility of HSC controlled by a plethora of both 504 

paracrine and autocrine stimuli. The consequence of this activation is the synthesis 505 

of extracellular matrix (ECM) proteins and subsequent accumulation of scar tissue.  506 

In view of the key role played by HSC in fibrogenesis, there has therefore been a 507 

vast drive to investigate how these cells may be targeted as a therapeutic strategy in 508 

liver disease (reviewed in 114).  509 

 510 

In vitro activated primary human HSCs and in vivo activated liver myofibroblasts 511 

(aLMFs) secrete a range of cytokines, chemokines and growth factors which can 512 

recruit and position leukocytes by G-coupled receptor-dependent and –independent 513 

mechanisms115. When cultured in basal conditions, aLMFs and HSC secreted high 514 

levels of IL-6, HGF, VEGF, CCL2, and CXCL8 under control conditions and 515 

stimulation with pro-inflammatory cytokines TNFα and IFNγ enhanced all factors and 516 

induced secretion of additional chemokines including CCL5, CXCL9 and CXCL10. 517 

Moreover, aLMF- and HSC-conditioned supernatants promoted strong and rapid 518 

migration of lymphocytes towards these chemotactic factors under pro-inflammatory 519 

conditions and stimulated increased recruitment of lymphocytes across adjacent 520 

LSEC monolayers. These findings demonstrated that there are signals from HSCs 521 

which can recruit infiltrating immune cells which may be targeted to halt the 522 

progression of fibrogenesis. One such target which we have already discussed in the 523 

context of inflammation is VAP-1. VAP-1 is a dual functioning entity which, as 524 
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described, acts as an adhesion molecule as well as an enzyme which has a role in 525 

recruiting lymphocytes across endothelial cells80. More recent in vivo studies 526 

described a novel role of VAP-1 in hepatic inflammation and fibrogenesis through 527 

modulating HSC phenotype116. Soluble VAP-1 secreted by HSCs was enzymatically 528 

active and was able to recruit lymphocytes. VAP-1 modulation in the HSC cell line 529 

LX-2 increased transcription of profibrogenic genes such as collagen 1a1 as well as 530 

enhancing wound healing. These data were supported by murine models of liver 531 

injury in which VAP-1 knockout animals had less inflammation and fibrosis in 532 

response to injury116. The blockade of VAP-1 to treat primary sclerosing cholangitis 533 

(PSC) is currently being evaluated in the phase II clinical trial BUTEO (BUTEO 534 

NCT02239211). 535 

 536 

Inflammatory pathways which promote fibrosis resolution and liver 537 

regeneration 538 

We have covered some of the mechanisms which drive effector immune responses 539 

within the liver but it is also becoming clear that pathways which promote resolution 540 

of the inflammatory process play a key role in determining the severity of tissue 541 

injury. Targeting cellular populations that promote resolution could provide a novel 542 

anti-inflammatory approach. The resolution of inflammation and fibrosis is a highly 543 

co-ordinated, multifaceted process that is intended to eliminate remaining injurious 544 

agents responsible for the initial insult and shift the balance from a pro-inflammatory 545 

to an anti-inflammatory microenvironment (Figure 3). This is achieved through a 546 

sequence of events where selected immune cell populations are removed through 547 

apoptosis/necrosis/efferocytosis accompanied by recruitment and differentiation of 548 

pro-resolution immune subsets such as macrophages. Homeostasis is then restored 549 
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following repopulation of the injured area through regeneration of the hepatocyte 550 

pool, repopulation of the Kupffer cell niche and maintenance of hepatic tolerance, for 551 

example through Treg recruitment and retention. 552 

 553 

Immune cell intervention 554 

Resolution of fibrosis is usually ascribed to the function of a specific macrophage 555 

population that secrete a range of pro-resolution mediators including matrix 556 

metalloproteinases, such as MMP-13117, which promote the degradation of scar 557 

tissue. Duffield and co-workers used a transgenic CD11b-DTR mouse to selectively 558 

deplete CD11bhi macrophages in a reversible CCl4-induced model of liver injury and 559 

described a biphasic injurious response; depletion of macrophages during ongoing 560 

injury reduced the extent of tissue damage, whereas depletion of the macrophage 561 

population following withdrawal of the toxin delayed recovery118. Building on these 562 

preliminary observations, hepatic macrophages have been shown to transition from 563 

pro-inflammatory Ly6ChiCCR2hiCX3CR1lo expressing populations to pro-reparative 564 

Ly6CloCCR2loCX3CR1hi subsets in mice, a process thought to be dependent on IL-4, 565 

IL-10 and phagocytosis24,119. Development of cellular therapy for liver cirrhosis 566 

through the provision of human phagocytic macrophage populations 567 

(CD163hiCD169hiCD206hiCCR2lo) is underway, with potential advantages over 568 

conventional monotherapeutic intervention strategies120,121. 569 

 570 

Adhesion receptors may also play a dual role in both the establishment and 571 

resolution of hepatic injury. Stabilin-1 has been discussed in the context of leukocyte 572 

recruitment, but this molecule is also expressed by a highly phagocytic macrophage 573 

population during resolution of chronic liver disease where it serves to limit further 574 



 24 

inflammation and fibrosis by scavenging products of lipid peroxidation and 575 

suppressing secretion of CCL3122.  Similar roles for other scavenger receptors are 576 

highly likely within the context of inflammatory liver disease123. 577 

 578 

Bile acids can signal through two major receptor pathways that regulate hepatic lipid 579 

and glucose metabolism, namely farnesoid X receptor (FXR) and TGR5 (a G protein-580 

coupled bile acid receptor). Treatment of mice with the dual FXR/TGR5 agonist INT-581 

767 induced a restorative intrahepatic macrophage phenotype (Ly6CloCD206hi and 582 

expression of Retnla and Clec7a)124. Provision of agonists for FXR and TGR5 have 583 

been suggested as potential therapeutics during liver regeneration where there is an 584 

excess bile acid pool125 in NASH126  or in cholestatic liver diseases127 although some 585 

caution is required given the pleiotropic effects of these receptors, such as the role of 586 

TGR5 in the development of cholangiocarcinoma128. 587 

 588 

During acute liver failure (ALF), a marked increase in inflammatory macrophages is 589 

observed in areas of necrosis. However, patients with ALF exhibit an expanded 590 

population of macrophages with a resolution-like phenotype with suppressed innate 591 

and enhanced efferocytic/phagocytic responses that are present in both circulatory 592 

and tissue compartments. This functional switch was associated with the expression 593 

of the TAM family member Mer tyrosine kinase (MerTK+HLA-DRhigh) induced by 594 

secretory leukocyte protease inhibitor (SLPI) produced within the inflamed liver of 595 

both mice and humans following ALF. Such reprogramming of the myeloid 596 

population promotes neutrophil apoptosis and subsequent clearance through 597 

enhanced efferocytosis, and may be a target for future therapies129.  Hepatocytes 598 

(and other liver resident cells) are also able to remove apoptotic and necrotic cells by 599 
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efferocytosis, although the relative contributions of this process to the resolution of 600 

chronic liver injury has not been determined fully130. 601 

 602 

Macrophages are not the sole mediators of hepatic resolution. NK cell cytotoxicity 603 

against early-activated or senescent-activated HSC via NK cell activating ligands 604 

(RAE-1 in mice; MICA in human), TRAIL receptors and production of IFN-γ, an 605 

inhibitor of HSC activation, promotes the resolution of liver injury131. Invariant NKT 606 

cells are thought to promote HSC killing, but can also be activated at the site of injury 607 

by self-antigens, leading to the production of IL-4 (but not IFN-γ), driving hepatocyte 608 

proliferation, a shift in the macrophage population from Ly6Chi to Ly6Clo expression 609 

and improved healing responses132. In mice, the regeneration of LSEC is dependent 610 

on the relative expression of the CXCL12 receptors CXCR4-7. During injury 611 

constitutive FGFR1 signalling increased the ratio of CXCR4:CXCR7 expression by 612 

LSEC, leading to an altered angiocrine response and proliferation of the stromal cell 613 

niche. Conversely, during resolution CXCR7 upregulation acts in concert with 614 

CXCR4 to induce the transcription factor Id1 with concomitant release of 615 

regenerative angiocrine factors and promotion of a pro-resolution environment133. 616 

 617 

Hepatic regeneration 618 

Cellular repopulation of the hepatic niche following injury is essential to maintain not 619 

only the metabolic function of the organ, but also the ability to detoxify xenobiotics. 620 

Regeneration of the hepatocyte population is promoted by Kupffer cells through the 621 

production of IL-6 and TNF-α, driven by local recruitment of neutrophils in an ICAM-1 622 

dependent process134-136, production of complement proteins C3a and C5a137 and 623 

local provision of growth factors such as HGF, VEGF and IL-1a138. Repopulation of 624 
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the hepatic niche usually occurs through self-replication of hepatocytes; however, in 625 

chronic liver disease hepatocyte proliferation is often impaired (for example through 626 

immune cell-derived IFN-γ 131,139,140). Under these circumstances, the hepatocyte 627 

pool may be supplemented through a ductular reaction that regenerates functional 628 

hepatocytes from biliary cells, with important implications for therapeutic restoration 629 

of liver function141. 630 

 631 

Conclusion 632 

We have highlighted several pathways and targets which could potentially contribute 633 

to new therapies for inflammatory liver disease.  It is likely that combination therapies 634 

will be required to achieve significant clinical end points in terms of fibrosis 635 

regression and improvement in overall survival.  An additional consideration is the 636 

dynamic and complex cycle of maldaptive wound repair which characterises 637 

advanced liver disease.  It will be crucial that anti-inflammatory treatment for liver 638 

disease involves a personalised/precision medicine approach taking into account the 639 

stage of disease, inflammatory infiltrate and potential of driving fibrosis resolution.  640 

Whilst the benefits of inhibiting inflammation and driving resolution in chronic liver 641 

diseases are clear, the chronic nature of most liver diseases and the unique 642 

microenvironment of the liver promote the development of HCC. The future of 643 

developing novel anti-inflammatory agents in liver disease needs to take into account 644 

the potential of promoting HCC in the setting of subclinical malignancy or carcinoma-645 

in situ.  Previous studies have highlighted this potential risk in the setting of hepatitis 646 

C eradication with direct acting anti-viral therapy142 and it is now becoming clear that 647 

HCC thrives in immunosuppressive microenvironments143. It is therefore important 648 

that we dedicate further research into understanding in which situations the 649 
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approach of suppressing inflammation in patients who have suffered liver disease for 650 

many years could potentially promote HCC.  Nevertheless, we remain hopeful that 651 

the progress which has been made in understanding the regulators of inflammation 652 

in the liver microenvironment will lead to successful therapies to prevent the 653 

progression/reverse chronic liver disease.  654 

 655 

Figure Legends  656 

Figure 1 Immune response to danger signals released from chronic epithelial 657 

injury 658 

Chronic epithelial damage in the liver leads to cellular stress and the release of 659 

danger signals.  Pro-inflammatory pathways are triggered by Kupffer cell recognition 660 

of these danger signals by receptors including TLR-4, galectin 3 and CD36 as well 661 

as activation of the inflammasome.  Subsequent recruitment of CCR2+ monocytes 662 

into liver tissue from the circulation leads to exacerbation of fibrogenesis.  663 

Unconventional T cells also play an important role in sensing cellular stress at 664 

epithelial surfaces.  CCR6+ γδ T cells prevent fibrosis by promoting hepatic stellate 665 

cell apoptosis whereas NKT cells and MAIT promote fibrogenesis with NKT cells 666 

releasing pro fibrogenic factors such as osteopontin and hedgehog ligands and MAIT 667 

cells activating proinflammatory and profibrogenic pathways in macrophages and 668 

hepatic stellate cells.  DAMPS, danger associated molecular patterns; HMGB1, high 669 

mobility group protein B1; MDA-LDL, Malondialdehyde- low density lipoprotein; ATP, 670 

adenosine triphosphate; NLRP3, NOD-, LRR- and pyrin domain-containing 3; NKT 671 

cell, natural killer T cell; MAIT cell, mucosal associated invariant T cell; HSC, hepatic 672 

stellate cell; ECM; extracellular matrix.  673 

 674 
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Figure 2 Lymphocyte recruitment and retention within the hepatic sinusoids 675 

during chronic liver injury 676 

All progressive chronic inflammatory liver diseases are associated with recruitment 677 

and retention of circulating lymphocytes into liver tissue.  This recruitment occurs 678 

within the low shear stress environment of the hepatic sinusoids, where lymphocyte 679 

recruitment is triggered by selectin-independent capture and firm adhesion by 680 

VCAM-1 supported by CD151 on the endothelial surface.  Other factors promote 681 

lymphocyte subset specific recruitment including aberrant adhesion of gut-homing 682 

lymphocytes (alpha4beta7+) to MAdCAM-1 and CD4 lymphocytes adhesion 683 

mediated by SCARF1. Presentation of chemokines including IP-10 to CXCR3+ T 684 

cells and CXCL16 to CXCR6+ T cells triggers activation and migration of T cells.  685 

The subsequent transendothelial migration step involves a combination of receptors 686 

including the atypical adhesion molecule VAP-1 with Treg specific recruitment 687 

occurring via transcellular pathway mediated by VAP-1 and stabilin-1. HSCs 688 

contribute to subendothelial retention of lymphocytes through the release of several 689 

chemotactic factors and contribution from VAP-1.  T cell subset positioning in liver 690 

tissue is further regulated by chemokines including CCL20 for Th17 cells and CCL17 691 

and CCL22 for Tregs.   VCAM-1, vascular adhesion molecule-1; MAdCAM-1, 692 

mucosal vascular addressin cell adhesion molecule-1; SCARF1, scavenger receptor 693 

class F, member 1; IP-10, interferon gamma-induced protein 10; VAP-1, vascular 694 

adhesion protein-1. 695 

 696 

Figure 3  Pathways which promote fibrosis resolution and liver regeneration  697 

The liver has the capacity to promote resolution of fibrosis and regenerative 698 

pathways.  Kupffer cells have the capability to promote hepatocyte regeneration 699 
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through the release of several factors including IL-6 and TNFα.  Liver sinusoidal 700 

endothelium can promote a pro regenerative pathway rather than pro-fibrotic through 701 

the upregulation of CXCR7 which induces the transcription factor Id1 leading to 702 

proregenerative angiocrine factors.  NK cells can contribute to fibrosis resolution by 703 

directly killing senescence activated HSCs.  Macrophages also play a pivotal role in 704 

fibrosis resolution through the release of several factors including MMP13 which 705 

degrades scar tissue.  A key role is played by a subset of macrophages 706 

characterised by the pro-resolution phenoptype Ly6CloCCR2loCX3CR1hi.  In chronic 707 

liver injury, uptake of products of lipid peroxidation such as oxLDLs by macrophages 708 

expressing stabilin-1 suppresses the release of pro-fibrotic factors.  During acute 709 

liver injury the release of SLPI leads to the upregulation of MerTK on macrophages 710 

which promotes neutrophil apoptosis and subsequent clearance leading to resolution 711 

of inflammation.  NK cell, natural killer cell; MMP-13, metalloproteinase-13; oxLDL, 712 

oxidised low density lipoprotein; SLPI, secretory leukocyte protease inhibitor; MerTK,  713 

Mer tyrosine kinase.   714 
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