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Extruding the vortex lattice: two reacting populations of dislocations

J.S. WATKINS and N.K. WILKIN

School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK

PACS 61.72.Lk — Linear defects: dislocations, disclinations

PACS T74.25.Uv — Vortex phases

PACS 45.70.Vn — Granular models of complex systems

Abstract — A controllable soft solid is realised in vortex matter [1-3] in a type II superconductor.
The two-dimensional unit cell area can be varied [4] by a factor of 10* in the solid phase, without
a change of crystal symmetry offering easy exploration of extreme regimes compared to ordinary
materials. The capacity to confine two-dimensional vortex matter to mesoscopic regions [3, 5]
provides an arena for the largely unexplored metallurgy of plastic deformation at large density
gradients. Our simulations reveal a novel plastic low mechanism in this driven non-equilibrium
system, utilising two distinct, but strongly interacting, populations of dislocations. One population
facilitates the relaxation of density; a second aids the relaxation of shear stresses concentrated

at the boundaries.

The disparity of the bulk and shear moduli in vortex matter ensures the

dislocation motion follows the overall continuum flow reflecting density variation.

Soft matter forms a versatile laboratory to study plastic
deformation, including: the observation of dislocation nu-
cleation [6], motion [5, 7-11], reactions [12] and role in
grain boundary processes [13]. Soft vorter matter has
the specific advantage that the density of vortices can be
changed easily by altering the magnetic field applied, and
a density gradient is created by applying a field gradient
[14,15]). The regime of large density gradients has been
extensively studied in colloidal systems [16,17]. Here, the
regime of large density gradients in vortex matter is natu-
rally studied by extrusion along a channel between reser-
voirs of different densities. The resulting time dependent
non-equilibrium state is the subject of this article.

The channel is formed by a clean (unpinned) region of
width w between walls provided by two pinned regions of
vortex lattice. Altering the external magnetic field alters
the density of vortices within the channel, while the pinned
regions are unaltered for moderate changes of field. Except
when we explicitly compare with the liquid phase, our
simulations are at a sufficiently low temperature that—for
our finite sample—there are no thermally excited Halperin-
Nelson-Young dislocations.

That vortex dynamics is collective in such a channel
was demonstrated [5] by the application of the electrical
current to a small region of the channel which generated
motion of vortices up to 5um = 30w away. This implies a
value of 5um for the Larkin-Ovchinnikov length [18], over
which the vortex lattice is not pinned. Motivated by these

results, we will consider the clean limit for the channel in
this article, with an ordered pinned lattice defining the
channel edges.

To investigate flow (both in solid and liquid phases) at
controllable density gradients, our simulations add a reser-
voir with a chosen vortex density to each end of the chan-
nel (Fig. 1). Experimentally, the reservoirs could be fed
via vortex pumps [19]; in the simulation vortices are added
or removed sufficiently remotely from the channel exit and
entrance so as not to affect the flow. This is achieved by
calculating the field in each reservoir and adding or re-
moving vortices at the lateral edges of each reservoir in
order to maintain the required field. Using this method
gives more control over the field gradient than a periodic
boundary condition on the flow.

The geometry of the channel is shown in Fig. 1, where
Bi, and By are the fields in the left and right reservoirs,
with By, > Bg, favouring vortex motion from left to right
in the channel. We work in the regime where the average
density in the channel is comparable to the pinned lattice,
so experimental changes of field would be small. We ex-
amine a “wide” channel of width, w ~ 10ag, where ag is
the lattice parameter of the pinned lattice, which is our
unit of length (and the associated unit of field, By). So,
although the channel lattice is only slightly mismatched
with the pinned lattice, the cumulative effect across the
width of the channel can be several lattice parameters.
The “wide” channel will allow a continuum description.
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Pinned Channel Edge Vortices

Mobile Channel Vortices

Fig. 1: The model of a thin channel superconductor with an imposed magnetic field gradient B(z)z, where z is
normal to the plane. Mobile vortices from a high-density source move along the channel under the action of a vortex density

gradient. The channel edges are defined by pinned vortices.

Fig. 2a shows the yield stress for plastic flow at By, —
Br = ABy = 0.08 for T' = 0. Above the yield stress
7 x (AB), i.e. linear to a good approximation. In the
liquid phase, for T' > T, = 0.014, linearity is present for
all AB. That AB, and T}, are numerically small reflects
the disparity of bulk and shear moduli in the vortex lattice.

A reference for density changes along the channel is pro-
vided by the local vortex spacing in the liquid phase, a’(z),
which is smooth:

ae(x)N 2 %o
| V3(Br — Bu)(z/L) + By’

where L is the channel length and ®¢ is the flux quantum.
If the “solid”, plastic, phase were glassy or hexatic, the
density might vary continuously as well. However, as can
be seen from Fig. 3a, this is not true. While the inter-
vortex spacing parallel to the channel, aP(z), tracks the
liquid variation, a’(x), the perpendicular component of the
spacing, bP(x) (b = v/3/2a for an equilateral triangular
lattice), is step-like along the channel.

The interpretation, confirmed by examination of Fig.
4, is that the vortex matter is mostly crystalline with the
inter-row spacing commensurable with the channel width.
The commensurability dictates discrete changes along the
channel, where rows disappear, associated with an edge
dislocation in the “bulk” of the channel. Because vortex
matter has no cohesive energy, the inter-row separation
expands (and the unit cell expands) as x passes an edge
dislocation, the lattice filling the channel laterally with
fewer rows. The required number of bulk dislocations
is increased by increasing the magnetic field gradient or
the width of the channel (which requires more rows to

be removed for a given density change). Our simulations
demonstrate this for density gradients necessitating up to
4 edge dislocations, with channel widths of up to 30by.

The unit cell changes shape from a compressed isosceles
triangle to an equilateral triangle upon passing an edge
dislocation. I.e. the transition from n + 1 rows to n rows
occurs when b = (v/3/2)aP(z) = w/n. To avoid gross
mechanical disequilibrium, we expect the unit cell area to
be continuous as a function of x. Equating the unit cell
sizes in the sections with different rows at the boundary
implies a discontinuity in aP(z), at —a~ = (2/v/3)(w/n?),
where a™ is the lattice parameter on the side with n + 1
rows and a~ that with n rows. This difference is indicated
in Fig. 3a, agreeing with the simulations.

The “geometrically necessary strain” caused by the lat-
tice parameters of the pinned region and the channel lat-
tice becoming increasingly mismatched as z increases is
concentrated in “misfit”, or geometrically necessary dis-
locations (GNDs) at the interface Fig. 4). The “charge”
density of GNDs, p,, reflecting the lack of registry due to
the variation in aP(x), is:

(-

Fig. 3b shows the agreement between this expression
and the density of GNDs found in the simulation.

The dynamic behaviour (see Supplementary Video S1)
of the plastic flow reflects the interacting populations of
GND and “bulk” dislocations. The GNDs glide parallel
to the channel edges, lubricating the vortex lattice mo-
tion along the channel. The bulk dislocations glide on
symmetry-related glide-planes across the channel. The

(1)
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Fig. 2: Overall flow, yield and acceleration along chan-
nel. a shows the variation of the vortices’ average velocity,
U(AB), with field difference. There is a critical field difference
for the solid to yield at sufficiently low temperatures, which
disappears above the melting temperature (similar to the ve-
locity/Lorentz relation from the Leiden group [5,9]). b shows
the velocity profile, v;(z), in the channel and sleeve (cylindri-
cal) geometries, with AB = 0.46. To provide bounds on the
velocity profiles, we also show continuum calculations for v(x)
and a cutoff nearest-neighbour only discrete lattice sum. As
the channel width grows v(x) approaches the cylindrical result
(which is closer to the continuum model), showing the dimin-
ishing effect of edge shear.

video appears to show that bulk dislocations are reflected
at the channel edge onto to the other glide-plane not paral-
lel to the channel edge, and repeat this zig-zagging motion
between the channel edges. We have followed this periodic
motion for more than 100 periods.

However, it cannot be a reflection, as the conserved [20]
Burgers vector changes when gliding on different planes.
The resolution is that a “reaction” occurs, visible in Sup-
plementary Video S1: a bulk dislocation upon reaching
a channel edge combines with a GND producing an bulk
dislocation on the third glide-plane (i.e. the three possible
Burgers vectors add to zero).

The steady state of plastic flow is constituted by
the regions of constant row number, delimited, in the
laboratory-frame, by the average x-coordinates of the zig-
zagging bulk dislocations. The gliding GND dislocations
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Fig. 3: The discontinuous evolution of the lattice along
the channel. a shows the variation in the vortex spacing
(found using Delaunay triangulation) parallel to the channel
boundary, a(z), with vertical arrows indicating jumps men-
tioned in the text. The component of the separation perpen-
dicular to the channel edges, b(z), is also plotted. The system
contains three zones of n, = 8, 7 and 6 rows of vortices. b
shows the density of GNDs. The solid line is calculated using
an interpolated aP(z) from the simulation and equation (1).
The dashed line is a continuum prediction. The red line is
from the simulations.

ensure this.

Building a global picture of the flow down the chan-
nel from these local descriptions of dislocation motion is
aided by Fig. 2a. Note the near identity of flow rates
in liquid and plastic phases—despite the considerable dif-
ference in structure. The underlying cause is that vortex
matter is soft but incompressible [21]: the ratio of the
bulk, &, to shear, p, moduli is k/u = 167(A/€)? > 1, for
strongly type II superconductor, where £ is the coherence
length and A is the penetration depth of the supercon-
ductor. Thus the macroscopic flow rate, reflecting density
gradients, is insensitive to crystalline order and the steady-
state profile for v(z) and p(z) along the channel may be
derived using the continuity equation for the vortices and
the force equation on each vortex (see Supplementary Ma-
terial),
oz dp

") = e 3
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Fig. 4: The double dislocation network in the channel. A snapshot of the vortex positions in a channel, of width w = 8by,
is shown. There are three “bulk” edge dislocations. The Burgers circuit construction [20] for the second dislocation is indicated.
Pinned vortices in the channel edges are marked with (x). A and O mark vortices with 5 and 7 neighbours respectively.

All other vortices have 6 neighbours. (Top) An bulk dislocation approaching the lower channel edge.

dislocation after the interaction with a GND with b = —y.

They yield:
x Q
z)=p0),/1 = —; v(z)=—=,
o) = p(O)[1= L vlo) = s
where x = 0 has been chosen to be the start of the

channel, Q = p(z)v(z) is conserved in steady state and
Lo = ®%p(0)?/(mnQuo) > L in our simulations (i.e. the
number of rows does not drop to zero). The resulting
velocity field is shown in Fig. 2b.

The microscopic dislocation motion is slaved to this
density—gradient dominated continuum description (i.e.
determined kinematically) as the Peierls-Nabarro stress
for glide is determined [20] by the small shear modu-
lus. The GNDs ensure the average motion of the channel
lattice occurs with the velocity v(z): each GND trans-
lates the lattice by ag as it passes, so their velocity,
vg(w) = v(x), a0y (x)):

The zig-zagging dislocations ensure that the density
profile is stationary in the laboratory frame. They move
backwards, see Fig. 5, at an average velocity v,z =
—2v(zx), where the factor of two comes from the angle
of the glide plane. Channel-edge friction can be removed
by considering a “sleeve”, with a periodic boundary con-
dition in the y-direction. On the sleeve there are still pre-
ferred row separations due to commensurability with the
circumference of the cylinder. Fig. 2b shows indeed that
the sleeve-system is closer than the channel to the contin-
uum model. This is then reminiscent to the description
[22,23] of bacterial cell wall growth and provides a phys-
ical mechanism for the observations in colloidal dynamics
as seen in Deutschlénder et al. [24].

In summary, the first study of plastic deformation under

(Bottom) The same

channel

sleeve

Fig. 5: Motion of the “bulk” dislocations, kinematic
and dynamic. Dislocation paths are shown for both the chan-
nel and the sleeve, in a reference frame moving with the chan-
nel/sleeve lattice. In the case of the channel, non-kinematic
influences are implied an additional velocity modulation: mov-
ing faster as they leave a channel edge and slowing are they
approach an edge. This is due to image forces being repulsive
due to the rigid pinned lattice, although this is partly cancelled
by the lubrication of the GND’s allowing slip along the surface
[25]. There is no correlation between the different zig-zagging
dislocations—presumably because their velocities are different
(as v(x) varies) and interactions are suppressed by exponential
screening due to the image arrays.

significant density gradients has demonstrated the exis-
tence of a new steady-state with a strongly interacting set
of dislocations on all of the glide planes of the vortex crys-
tal. Whilst the vortex crystal has no cohesive energy, one
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would expect similar behaviour for any two-dimensional
matter compressed sufficiently from its equilibrium den-
sity. The generalization to three dimensions—either for flux
lines or particles—is an open question, as is the potential of
the latter for high /low compressibility (cf pinned/channel)
heterogeneous mixtures in geophysical flows.
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Methods. — Simulation Techniques.
The motion of the N two dimensional vortices is repre-
sented via molecular dynamics, describing the vortices as
particles with repulsive interactions and following the dif-
fusion dynamics of Jensen et. al. [26,27]:

nv; = FZV + F?,

v; is the velocity of the ith vortex with n an effective
viscosity due to the normal fluid. Temperature is in-
cluded via FY a thermostat [26,28] with (F) = 0 and

(FF(6)F](t") = 2kpnTd;;6(t — t'). Finally, the vortices
interact via the standard [29] repulsive force:

N
£ () = — oKy (/N E Y = 3 (s — 1))

=1

where fo = ®2/27ppA3, X is the penetration depth, ®
is the flux quantum, K is a modified Bessel function and
F}V is the total force on the ith vortex due to the others.
Reasonable values of the pinned vortices lattice parameter
are chosen based on experiment [30]. We use the lattice
parameter, ag = 100nm, of the pinned lattice as the unit of
length, fixing the penetration depth A = 1.11a( followings
the values used by Besseling et al. and ensures a sepa-
ration of bulk and shear moduli; C1; > Cgg. Magnetic
fields are described in units of the pinned vortices field
which we take to be By = 0.24T. For simulation purposes
we use a force cut-off range [27] set at rey = 6A. We let
kg =n = fo = 1. (This choice of units gives a fundamen-
tal mass of M = nag/fo = 1 and time T' = n2ag/fo = 1.)
The magnetic fields at the ends of the channel are main-
tained via (large) vortex reservoirs, Fig. 1, which are held
at the required fields by the addition or removal of vor-
tices.

Following the method of Spencer et al. [31], density of
defects and the rotational order parameter were used to
determine a melting temperature for the bulk system as
T = 0.014.

Our simulations are almost all deep in the solid phase,
well below Ty, except when we make comparison with the
liquid phase and show the absence of a yield stress for
T > Ty,. We confirm the solid nature by structure factor
measurements [31]. The lattice parameter of the pinned
vortices at the channel edge (CE) was ag corresponding
to B = 1 and row spacing by = v/3/2. The majority of
runs fixed By, = 1.05 such that the lattice parameters of
the CE and flowing vortices coincide at = 6.17 along the
channel. The channel length for all simulations was set at
60.

The time step for the simulations was chosen [29] to be
0t = 0.01 to ensure the maximum vortex displacement in
one iteration was < ag/50. Results are taken after at least
100 000 time steps, at which time the vortices had reached
a non-equilibrium steady-state.

Definition of geometrically necessary dislocation
density Note this continuum relation

= (l - af&))

breaks down when pg(z) — 0, as, in the context of this
article, it happens over a finite region, whereas the con-
tinuum description is appropriate on scales, A, which are
large compared to the (divergent, as pg(z) — 0) inter-
dislocation separation—which is a contradiction.
Continuum analysis. Modelling the system using the
continuum approximations allows for the spatial variation
of p(z) and v(z) to be determined. The starting point is
to ignore edge effects, working more than a penetration
depth into the channel, so inter-vortex interactions have
decayed to zero. Then the equation of motion becomes a
force balance between the viscous drag term and the sum
over repulsive vortex-vortex interactions, roughly over a
penetration depth area. Replacing the discrete sum over
vortices with an integral over density gives an equation of
the form

-

v(r) = / dfr e - ) E ) (2)

The viscous term on the left hand side is due to the
“normal fluid” of excited quasiparticles scattering from
the vortex, or trapped in its core. We now use the small
value for the change in vortex density over a distance of
the penetration depth to approximate equation (2). Per-
forming a change of basis r’ — r+ ¢ and Taylor expanding
p(r +¢) to first order in ¢ gives the transformed equation

() = [ ACrQ) o) + ¢ VRIS (3)

Since ¢ = (¢ cos ¢, ( sin @), Z = (cos ¢, sin ¢) and Vp =

(0p/0x,0p/Dy), only the term in dp/dx survives, which
results in

_ %5 dp

viw) = npo dz

(4)
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To determine the density profile the steady state conti-
nuity equation is introduced, in 1D this is @ = p(x)v(z).
Substituting equation (4) and performing the simple inte-
gration gives the density profile

nQu
pla) = [ p(0)2 = TR0 (%)
0
where the boundary condition on the entrance to the
channel p = p(0) was used.
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