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1. General introduction 

1.1. Study background 

The West African Sahel (WAS) is a home for millions of peasants, who live in villages, practise and 

depend on subsistence agriculture (Bationo and Buerkert, 2001) for a living. Local peasants can 

afford only little or even no external inputs, and lack access to functional markets (Buerkert and 

Schlecht, 2013). Pearl millet (Pennisetum glaucum (L). R. Brown) is their major cereal (Dendy, 

1995; IUSS, 2014). Often considered as a subsistence and famine crop, the productivity of pearl 

millet as a staple food is stable because it is grown by most households (FAO, 1995). Compared to 

other cereal crops grown in this region, pearl millet production is fostered for several reasons. E.g., it 

contains more protein than maize and sorghum (Saleh et al., 2013); it is more tolerant to drought 

stress than most cereal crops (Baltensperger, 2002; Saleh et al., 2013), it thrives well on poor sandy 

soils where other crops fail (NRC, 1996) as well as responds better to fertilizer amendments 

(Baltensperger, 2002). These arguments indicate that producing pearl millet in the WAS is less risky 

compared to other cereal crops, and explains why pearl millet is the most adapted and grown, as well 

as suitable crop for arid and semi-arid regions of the world (Dendy, 1995). 

Smallholder pearl millet per capita production in the WAS did not significantly increase in the past 

four decades. Among the factors that constrain pearl millet yield, poor seedlings establishment is the 

most common (Klaij and Hoogmoed, 1993; Karanam and Vadez, 2010; Valluru et al., 2010). Poorly 

established seedlings, often, lead to low grain yields (Rebafka et al., 1993; Karanam and Vadez, 

2010). These can be as low as 166 kg ha-1 as in Niger Republic, a WAS country, after the 1980 severe 

drought (McIntire and Fussell, 1989), compared to a relatively high yield of 917 kg ha-1 under good 

management practices (Bationo et al., 1992). The low, on average, yield is particularly threatening 

the food security of the fast growing population in this region (Nyong et al., 2007). 
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Our climate is continuously changing; temperature is increasing whereas water resources are 

decreasing (Hulme et al., 2001). These changes pose adverse effects on agriculture in general 

(Schlenker and Lobell, 2010). For this reason, food insecurity is expected to exacerbate in future, in 

particular if adequate adaptation measures are not taken. Early seasonal drought arising from erratic 

rainfall especially at the season’s onset, often retard seedlings establishment (Sivakumar, 1988). 

Obviously, steady water supply to the seedlings through irrigation can curtail early seasonal drought 

(Fox and Rockström, 2003). However, the local farmers practise rain-fed agriculture, a low-input 

system. Crop failure is often the consequence of early seasonal drought; farmers lose invested money, 

and food insecurity increases. Re-planting requires additional inputs, thereby, increasing the 

production costs. 

Seed treatment options (Scott, 1975; Rebafka et al., 1993; Karanam and Vadez, 2010), mineral 

fertilization (Badiane et al., 2001), micro-dosing (Hayashi et al., 2008; Twomlow et al., 2010) and 

the use of irrigation schemes (Fox and Rockström, 2003) can potentially improve seedlings 

establishment and crop yield under WAS conditions. However, these options were developed outside 

the smallholder farming framework. As a result, the adoption of these practices by the WAS local 

farmers in particular is pending till date. 

1.2. Problem statement and justification of the study 

The nutrient-deficient (Bationo and Buerkert, 2001) as well as low water holding capacity Arenosols 

characterize the WAS region (IUSS, 2014). Thus, nutrient supplementation is required to enhance 

seedlings establishment, which is decisive for improved panicle yield (Rebafka et al., 1993; Karanam 

and Vadez, 2010). Despite the effectiveness of seed coating, seed priming, micro-dosing and 

irrigation at enhancing pearl millet seedlings establishment under WAS conditions, lack of financial 

resources (Van der Pol and Traore, 1993) as well as skills partly disallow smallholder farmers access 
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to these technologies. Consequently, over four decades of research did not lead to successfully 

transferred technology to the target people. The yield of pearl millet is still restricted by the 

traditional cropping system - a consistent low-yield practice that needs urgent improvement. There is 

a tremendous need for an innovation based on local materials that is simple to practise by smallholder 

farmers, particularly in the absence of the innovators. The dry sowing, often carried out by the 

Sahelian farmers to prolong the vegetative period as well as seasonal rainwater usage by the crop, is 

prone to crop failure due to erratic rainfall at the beginning of the season. Re-establishment incurs 

extra-expenses. In addition, the uncoated seeds used for dry sowing are susceptible to pests such as 

birds and ants (Nwanze and Sivakumar, 1990) as well as field rodents. 

Fowler and Rockstrom (2001) and Schlecht et al. (2006) suggested that innovations targeting the 

smallholder African farmers in particular should be based on local materials, simple to understand as 

well as effective. In this context, the seedball technology exactly suits the WAS smallholder pearl 

millet production (Nwankwo and Herrmann, 2018). Seedballs consist, in their base recipe, for about 

ten balls of 80 g sand, 50 g loam, 25 ml water and 2.5 g seeds. They can contain additives such as 

nutrients, pesticides, rodenticides or inoculants, depending on preferences and necessities. They 

particularly address seedlings establishment under dry sowing. To the best of our knowledge, to date, 

there are no studies that have optimized the seedball technology for pearl millet production in the 

WAS. This study aimed at filling this gap and at the same time increasing pearl millet seedlings 

performance and panicle yield under low chemical soil fertility and early seasonal droughts using 

local resources. 

1.3. Seed treatment options and hindrance factors 

Seed treatment is based on protecting agents such as pesticides, fungicides, insecticides (Scott, 1975) 

or specific nutrient additives to increase crop performance and yield. On nutrient poor soils, such as 
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Arenosols and on-station conditions in WAS, phosphorus (P) seed coating (Rebafka et al., 1993; 

Karanam and Vadez, 2010) and priming (Raj et al., 2004; Aune and Ousman, 2011) i.e. soaking 

seeds for a certain period with water, increased early biomass production, seedlings emergence and 

pearl millet panicle yield. A challenging question remains: how implementable are these technologies 

in local farm environments. 

The adoption of innovations by farmers depends on farmers perceptions of the risk and benefits 

(Feder and Umali, 1993; Sofoluwe et al., 2011), socio-economic and cultural factors as well as the 

characteristic of the innovation itself (Pannell et al., 2006). Prokopy et al. (2008) observed education 

level, access to information and income as the major determinants of best practices adoption among 

farmers. Putting the above factors together, it is clear that these seed treatment options in particular 

were not developed for the WAS smallholder farmers. Herrmann et al. (2013) suggested that research 

for development should involve the target farmers as early as the development stage of a technology. 

The reason behind is to assess the farmers’ perception and make the necessary changes in order to 

increase the chances of adoption. It is, therefore, relevant to explore simple options based on local 

farmers’ affordable local resources that can address the risk of pearl millet production in the WAS. 

1.4. Potential of local materials and impacts of seedball on agriculture 

The seedball technology as invented by (Fukuoka, 1978) in the context of permaculture has great 

relevance in dry land farming in particular. Seedball, as an innovation, is based on local materials 

such as sand, loam and water. It mitigates seed predation (Overdyck et al., 2013) and improves 

seedlings emergence (Fukuoka, 1978; Nwankwo et al., 2018). In Southern Australia, a semi-arid 

region, seedballs were used to revegetate rangelands (Atkinson and Atkinson, 2003). 

Contrary to the seed coating with pure P, the seedball technology totally conforms to the agricultural 

management practices in the WAS environments, without any identified religious or gender barriers 
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as at the time of this study. According to Nwankwo and Herrmann (2018), the major advantages of 

seedball over seed coating, seed priming or mineral fertilization are: (i) the simple applicability; (ii) 

low costs; and (iii) its sustainability in an economic and ecological sense i.e. minimizing the number 

of seeds inputs at sowing. However, the seedball technology needs to be mechanically and 

chemically optimized for pearl millet production i.e. with respect to the right diameter size (diam), 

share of local materials as well as nutrient additives used. 

1.5. Guiding principles and objectives 

The idea for this study was to cover the continuum from technology development to adoption. 

Therefore, it was necessary to work in parallel in greenhouses/laboratories, on-station and on-farm. 

With respect to farmer involvement, a participatory approach was chosen, i.e. involving farmer 

associations – as multiplicators – as early as possible, in order to gain access to local materials, to 

know potential constraints, and adapt the technology to farmers’ needs (respecting gender) and 

potentials. 

The specific objectives of this study were to: 

(1) Review the seedball technology relative to seed priming and coating with pure P, and identify its 

potential constraints as well as applicability in the WAS; 

(2) Optimize the seedball technology for pearl millet production in the WAS region using local 

resources; 

(3) Validate seedball technology performance under Sahelian field conditions; and 

(4) Determine agronomic benefits of seedball technology for smallholder farmers in particular. 

 



6 

 

1.6. Guiding hypotheses 

The hypotheses of this study were: 

(1) Seedballs can be developed based on locally available resources such as loam, sand, wood ash, 

and/or a minute amount of commercial mineral fertilizer (NPK); 

(2) Seedball application lowers cropping risk of poor seedling establishment and increases panicle 

yields of pearl millet under subsistence production systems in the WAS; and 

(3) Seedball influences nutrient distribution in the root zone to enhance early root and shoot 

development of pearl millet within the first three weeks of planting. 

1.7. Structure of thesis 

This thesis as a whole follows the conceptional continuum from the identification of potential 

constraints for technology performance and adoption over details of seedball technology 

development, to exploration of potential mechanisms behind biomass improvement. Following 

chapter 1 that presents the general introduction, chapter 2 is a review article published in the 

International Journal of Agriculture Innovations and Research, titled “Viability of the seedball 

technology to improve pearl millet seedlings establishment under Sahelian conditions - a review of 

pre-requisites and environmental conditions”. It tackles the potential of the seedball technology to 

improve pearl millet early biomass indicators a well as the potential application constraints and 

chances of adoption by the Sahelian farmers. Chapter 3, published in Journal of Agriculture and 

Rural Development in the Tropics and Subtropics as “Physical and chemical optimisation of the 

seedball technology addressing pearl millet under Sahelian conditions” explores the mechanical 

(diameter size, seed placement) and chemical (nutrient content, osmotic potential) aspects of the 

seedball technology to obtain a general recipe that performs under the given environmental 
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conditions. Chapter 4, published in the Journal of Plant Nutrition and Soil Science, focuses on 

understanding the mechanisms of seedball-induced root and shoot enhancement of pearl millet 

seedlings. It explores the P content and EC of NPK-amended seedballs in the root zone of pearl 

millet seedlings, and the subsequent development of shoot biomass indicators within the first three 

weeks after planting. Chapter 5 integrates all results and discusses them with respect the conformity 

of the seedball technology to the agronomic practices of the WAS smallholder pearl millet farmers 

and growth as well as development enhancement of pearl millet seedlings by the seedball technology. 

It further summarizes the achievements of the seedball technology project, discusses open questions 

as well as gives recommendations for future research. 

1.7.1. References 

Atkinson, V. L., Atkinson, V., 2003. Mine and industrial site revegetation in the semi-arid zone, 

North-Eastern Eyre Peninsula, South Australia. Master thesis. University of South Australia, 

Australia. 

Aune, J. B., Ousman, A., 2011. Effect of seed priming and micro-dosing of fertilizer on sorghum and 

pearl millet in Western Sudan. Exp. Agric. 47, 419-430. 

Badiane, A., Faye, A., Yamoah, C. F., Dick, R., 2001. Use of compost and mineral fertilizers for 

millet production by farmers in the semiarid region of Senegal. Biological Agriculture & Horticulture 

19, 219-230. 

Baltensperger, D. D., 2002. Progress in proso, pearl and other millets. In: Janick, J. and Whipkey, A. 

eds. Trends in New Crops and New Uses. Alexandria, VA: ASHS Press, 100-103. 

Bationo, A., Buerkert, A., 2001. Soil organic carbon management for sustainable land use in Sudano-

Sahelian West Africa. Nutrient Cycling in Agroecosystems 61, 131-142. 

Bationo, A., Christianson, C., Baethgen, W., Mokwunye, A., 1992. A farm-level evaluation of 



8 

 

nitrogen and phosphorus fertilizer use and planting density for pearl millet production in Niger. 

Fertilizer Research 31, 175-184. 

Buerkert, A., Schlecht, E., 2013. Agricultural innovations in small-scale farming systems of Sudano-

Sahelian West Africa: Some prerequisites for success. Science et Changements 

Planétaires/Sécheresse 24, 322-329. 

National Research Council, 1996. Lost Crops of Africa, Vol. 1: Grains. Washington D.C: National 

Academy Press. 

Dendy, D. A. V., 1995. Sorghum and the millets: Production and importance. In: Sorghum and 

Millets: Chemistry and Technology. AACC International: St. Paul, MN 11-26. 

FAO, 1995. Regional trends in production and utilization of sorghum and millets in: Sorghum and 

millets in human nutrition. Food and Nutrition, Rome, Italy, Series 27. 

Feder, G., Umali, D. L., 1993. The adoption of agricultural innovations: A review. Technol. Forecast. 

Soc. Change 43, 215-239. 

Fowler, R., Rockstrom, J., 2001. Conservation tillage for sustainable agriculture: An agrarian 

revolution gathers momentum in Africa. Soil and Tillage Research 61, 93-108. 

Fox, P., Rockström, J., 2003. Supplemental irrigation for dry-spell mitigation of rainfed agriculture in 

the Sahel. Agric. Water Manage. 61, 29-50. 

Fukuoka, M., 1978. The one-straw revolution: An introduction to natural farming. New York Review 

of Books, New York, United States. 

Hayashi, K., Abdoulaye, T., Gerard, B., Bationo, A., 2008. Evaluation of application timing in 

fertilizer micro-dosing technology on millet production in Niger, West Africa. Nutrient Cycling in 

Agroecosystems 80, 257-265. 

Herrmann, L., Haussmann, B. I. G., Van Mourik, T., Traoré, P. S., Oumarou, H. M., Traoré, K., 



9 

 

Ouedraogo, M., Naab, J., 2013. Coping with climate variability and change in research for 

development targeting West Africa: Need for paradigm changes. Science et Changements 

Planétaires/Sécheresse 24, 294-303. 

Hulme, M., Doherty, R., Ngara, T., New, M., Lister, D., 2001. African climate change: 1900–2100. 

Clim. Res. 17, 145-168. 

IUSS, W. G., 2014. World reference base for soil resources 2014 international soil classification 

system for naming soils and creating legends for soil maps. Rome, Italy 1-203. 

Karanam, P., Vadez, V., 2010. Phosphorus coating on pearl millet seed in low P Alfisol improves 

plant establishment and increases stover more than seed yield. Exp. Agric. 46, 457-469. 

Klaij, M., Hoogmoed, W., 1993. Soil management for crop production in the West African Sahel. II. 

Emergence, establishment, and yield of pearl millet. Soil and Tillage Research 25, 301-315. 

McIntire, J., Fussell, L., 1989. On-farm experiments with millet in Niger: Crop establishment, yield 

loss factors and economic analysis. Exp. Agric. 25, 217-233. 

Nwankwo, C. I., Blaser, S. R., Vetterlein, D., Neumann, G., and Herrmann, L. (2018). 

Seedball‐induced changes of root growth and physico‐chemical properties – a case study with pearl 

millet. Journal of Plant Nutrition and Soil Science, 181, 768-776. 

Nwankwo, C. I., Herrmann, L., 2018. Viability of the seedball technology to improve pearl millet 

seedlings establishment under Sahelian conditions - a review of pre-requisites and environmental 

conditions. IJAIR 6, 261-268. 

Nwanze, K. F., Sivakumar, M., 1990. Insect pests of pearl millet in Sahelian West Africa—II. 

Raghuva albipunctella De Joannis (Noctuidae, Lepidoptera): Distribution, population dynamics and 

assessment of crop damage. Int. J. Pest Manage. 36, 59-65. 

Nyong, A., Adesina, F., Elasha, B. O., 2007. The value of indigenous knowledge in climate change 



10 

 

mitigation and adaptation strategies in the African Sahel. Mitigation and Adaptation strategies for 

global Change 12, 787-797. 

Overdyck, E., Clarkson, B. D., Laughlin, D. C., Gemmill, C. E., 2013. Testing broadcast seeding 

methods to restore urban forests in the presence of seed predators. Restor. Ecol. 21, 763-769. 

Pannell, D. J., Marshall, G. R., Barr, N., Curtis, A., Vanclay, F., Wilkinson, R., 2006. Understanding 

and promoting adoption of conservation practices by rural landholders. Australian Journal of 

Experimental Agriculture 46, 1407-1424. 

Prokopy, L. S., Floress, K., Klotthor-Weinkauf, D., Baumgart-Getz, A., 2008. Determinants of 

agricultural best management practice adoption: Evidence from the literature. Journal of Soil and 

Water Conservation 63, 300-311. 

Raj, S. N., Shetty, N. P., Shetty, H. S., 2004. Seed bio-priming with Pseudomonas fluorescens 

isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int. J. 

Pest Manage. 50, 41-48. 

Rebafka, F. P., Bationo, A., Marschner, H., 1993. Phosphorus seed coating increases phosphorus 

uptake, early growth and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown on an acid 

sandy soil in Niger, West Africa. Nutrient Cycling in Agroecosystems 35, 151-160. 

Saleh, A. S., Zhang, Q., Chen, J., Shen, Q., 2013. Millet grains: Nutritional quality, processing, and 

potential health benefits. Comprehensive Reviews in Food Science and Food Safety 12, 281-295. 

Schlecht, E., Buerkert, A., Tielkes, E., Bationo, A., 2006. A critical analysis of challenges and 

opportunities for soil fertility restoration in Sudano-Sahelian West Africa. Nutrient Cycling in 

Agroecosystems 76, 109-136. 

Schlenker, W., Lobell, D. B., 2010. Robust negative impacts of climate change on African 

agriculture. Environmental Research Letters 5, 014010. 



11 

 

Scott, D., 1975. Effects of seed coating on establishment. N. Z. J. Agric. Res. 18, 59-67. 

Sivakumar, M., 1988. Predicting rainy season potential from the onset of rains in southern Sahelian 

and Sudanian climatic zones of West Africa. Agricultural and Forest Meteorology 42, 295-305. 

Sofoluwe, N., Tijani, A., Baruwa, O., 2011. Farmers perception and adaptation to climate change in 

Osun State, Nigeria. African Journal of Agricultural Research 6, 4789-4794. 

Twomlow, S., Rohrbach, D., Dimes, J., Rusike, J., Mupangwa, W., Ncube, B., Hove, L., Moyo, M., 

Mashingaidze, N., Mahposa, P., 2010. Micro-dosing as a pathway to Africa’s green revolution: 

Evidence from broad-scale on-farm trials. Nutrient Cycling in Agroecosystems 88, 3-15. 

Valluru, R., Vadez, V., Hash, C., Karanam, P., 2010. A minute P application contributes to a better 

establishment of pearl millet (Pennisetum glaucum (L.) R. Br.) seedling in P deficient soils. Soil Use 

and Management 26, 36-43. 

Van der Pol, F., Traore, B., 1993. Soil nutrient depletion by agricultural production in southern Mali. 

Fertilizer Research 36, 79-90. 

 

 

 

 

 

 

 

 

 

 



12 

 

2. Viability of the seedball technology to improve pearl millet seedlings 

establishment under Sahelian conditions - a review of pre-requisites and 

environmental conditions  

Charles Ikenna Nwankwoa, Ludger Herrmanna 
aUniversity of Hohenheim, Institute of Soil Science and Land Evaluation, Emil-Wolff Str. 27, 70599 

Stuttgart, Germany 

 

2.1. Abstract 

Poor and erratic rainfall, poor chemical soil fertility and low water holding capacity of widely spread 

sandy soils are major constraints in the pearl millet (Pennisetum glaucum (L.) R. Brown) cropping 

system of the WAS. These factors lead to poor seedlings germination and vigor, and in turn low 

yields. Since the early growth stages determine final crop performance under Sahelian conditions, 

improvements should focus on this time span critical for final crop performance. Lack of financial 

resources and skills often prevent Sahelian farmers from adopting many of the existing solutions to 

improve crop performance such as seed treatments, NPK and application of irrigation. Due to short 

growing period and labor constraints at sowing, Sahelian farmers partly practise dry sowing. 

However, this practice is associated with a high risk of crop failure due to regularly occurring early 

droughts. Re-sowing might then be constrained by seed and labor availability. Urgently needed is a 

cheap technology based on locally available resources that reduces seed needs, increases early 

seedling vigor and reduces the crop failure risk. Seedball might be such a technology. Seedball is an 

easy and affordable “seed-pelleting” technique that combines indigenous local materials such as 

sand, loam, water and seeds in a gravimetric ratio to enhance seedling establishment. Amendments 

such as fertilizer or pesticides can be added depending on target preferences and local problems. Our 

evaluation shows that seedballs have the potential to improve the Sahelian pearl millet cropping 

systems since the technology is mainly based on local resources and, thus, can be adapted to local 
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needs by individuals through added nutrient additives such as NPK and wood ash. Additionally, 

seedball production does not conflict with other pre-seasonal labor loads or gender issues, and is 

coupled with low financial demands. 

Keywords: dry planting, dry sowing, germination constraints, local resources, seedling emergence, 

seedling vigor. 

2.2. Introduction 

In the WAS, pearl millet (Pennisetum glaucum (L.) R. Brown) is the major staple crop, mainly 

produced on Arenosols (IUSS, 2014) that are low in both available N and P (De Rouw, 2004). Millet 

yields are severely constrained by the combined effects of low and variable rainfall (Nicholson and 

Palao, 1993; D'amato and Lebel, 1998), low soil chemical fertility (Herrmann et al., 1994) as well as 

financial and labor scarcity (Cooper et al., 2008). One farmer adaption strategy to these difficult 

conditions is dry planting (Bationo and Buerkert, 2001), in particular for remote fields. However, this 

strategy bears a very high risk of crop failure due to early droughts that regularly occur and lead to 

poor seedlings emergence and sometimes, total crop loss (Salack et al., 2014). Consequently, farmers 

need to replant but are often faced with seed and labor shortages due to restricted financial resources 

(Cooper et al., 2008). Innovative options that can improve Sahelian pearl millet-cropping system 

comprise seed coating (Rebafka et al., 1993), fertilizer placement (Twomlow et al., 2010; Aune and 

Ousman, 2011), irrigation systems (Woltering et al., 2011) or NPK (Badiane et al., 2001; El-Lattief, 

2011). Nonetheless, these options are often unaffordable for subsistence farmers or simply not in 

spatial reach. For example, the sophisticated machine used for P coating of pearl millet to increase 

panicle yield (Rebafka et al., 1993) necessitates high financial inputs. Additionally, NPKs are often 

not accessible on the local markets. As a consequence of lacking financial resources (Cooper et al., 

2008), skills (Brick and Visser, 2015) and dysfunctional markets, resource poor and illiterate farmers 
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are doomed to deal with poor pearl millet performance on repeatedly cropped Arenosols. 

In designing and introducing agricultural innovations especially for African farmers, utilization of 

information depends on education and literacy level (Doss, 2001), which most Sahelian farmers lack. 

Particularly when focusing on poor subsistence farmers, management options need to be simple and 

based on cheap local materials. One such option is the seedball technology. It was developed by 

Masanobu Fukuoka within the permacropping approach to improve rice performance in dry fields 

(Fukuoka, 1978). Seedballs are produced using a gravimetric mixture of soil materials, additives that 

mainly serve as nutrient sources, and several seeds. They usually have around 2 cm diameter size, can 

be easily produced by hand during times of low workload in the off-season, rely on indigenous local 

resources, and are cheap and affordable to acquire. This paper reviews potential and pre-requisites of 

the seedball technology to improve the establishment of pearl millet seedlings under typical 

conditions of the WAS. 

2.3. The socio-economic environment 

Sahelian farmers are mostly subsistence-oriented and frequently rely on a few cultivation plots. A 

landholding can be as small as four hectares per village shared and cultivated by over fifteen farmers 

(Neef and Heidhues, 1994). Scarcity of financial resource is the major factor hindering adoption of 

established mitigations strategies dealing with adverse effects of climate change (Tschakert, 2007). 

The economic empowerment of women is globally recognised as a key factor towards reducing 

poverty and economic growth (Blackden and Bhanu, 1999). In most African farming systems, men 

retain the right to land, but can provide access to women through marital customs (Doss, 2001). In 

few cases females can head households (Saito et al., 1994), controlling the overall agricultural 

activities in particular true for widows. On the contrary, regularly female spouses serve as aids 

(Safilios-Rothschild, 1985), working under the instructions of their husbands. Innovations, addressing 
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cropping systems in the African Sahel (Rebafka et al., 1993; Karanam and Vadez, 2010; Twomlow et 

al., 2010; Aune and Ousman, 2011) rarely focus on women empowerment. African female farmers in 

general, are less likely to adopt innovations for reasons such as complex and heterogeneous 

households, complicated and dynamic gender roles within households, and huge variation at 

responding to changes in economic circumstances (Doss, 2001). Nevertheless, women provide more 

agricultural labor than men in the whole of sub-Saharan Africa (Saito et al., 1994). Women first help 

their husband to crop his field before they are allowed to invest in their own plots. 

In the African Sahel region, women account for > 50 % of the population. But they receive a 

disproportionately low share of public investment and are disadvantaged by a range of socio-cultural, 

regulatory and institutional factors. Even in the agricultural sector where women tend to 

predominate, credit and land ownership have historically been directed to the male head of the 

household despite of the fact that Sahelian women often outperform their male counterparts. In 

Burkina Faso, agriculture accounts for 36 % of the gross domestic product to which women 

contribute 29 % and men 7 %. In Mali these shares are 26 % to 14 % in favour of women (Blackden 

et al., 2003). These figures indicate the crucial role of women in agriculture that is often overlooked 

(Chen, 2008). Women’s farmland are often located at far distance from the homestead (Jackson, 

1985). Land privatizations can cause the less privileged African women to completely lose their 

already acquired lands or reduce access to it (Lastarria-Cornhiel, 1997). These gender imbalances 

limit agricultural productivity as a result of underutilization of human resources. Factors such as 

financial demand, indigenous resource input, labor requirement and education that restrict gender-

specific adoption need to be evaluated before transferring any innovation to the field. 

Seedballs need only local inputs such as sand, loam, seeds and water that are abundantly available at 

low costs. Little instruction is necessary to teach people how to produce seedballs. A major demand 
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is labor. However, seedballs can be produced during the off-season when opportunity costs are low. 

Transport cost from the homestead to the field is higher for seedballs than for conventional seeds. 

Women usually crop only small plots, marginalizing the transport costs. Taking these arguments 

together, the seedball technology may be particularly attractive in particular for women who own low 

fertility fields, farther away from the homestead that need to be sown at non-optimal times since 

men’s fields are preferentially sown at the beginning of the cropping season. 

2.4. The natural environment 

The WAS represents a transition zone between the arid Sahara in the north and the humid tropical 

savannahs in the south, noted for its steep north–south gradient in mean annual rainfall (Le Houerou, 

1980). The cropping year is characterised by a long dry and a short humid season usually about three 

months. The northern Sahel that receives annual rainfall of 200 to 400 mm mainly represents grazing 

lands whereas the southern Sahel with an annual rainfall range of 400 to 600 mm serves as the pearl 

millet cropping domain. During recent times the WAS has seen a cyclic climate pattern at a decadal 

time scale. The deterministic reasons for the long-term fluctuations are not yet fully understood 

(Salack et al., 2014). It is likely that non–El Nino-Southern Oscillation (ENSO) – related variations 

in sea surface temperatures (Giannini et al., 2003; Brooks, 2004), and large-scale changes in land 

cover and land–atmosphere interactions (Charney, 1975; Hulme and Kelly, 1993; Zeng et al., 1999; 

Hulme et al., 2001), increasingly affect the Sahelian climate. The WAS has suffered from several 

devastating droughts and famines in the last decades, in particular in the early 1970s and the 

late1980s (Olsson et al., 2005). Farmers in WAS have to account for climatic variability at intra– and 

inter–annual as well as decadal time scales (Mertz et al., 2009). The possible consequences include 

species and variety losses. The variable and erratic rather than the overall low rainfall is considered 

as one of the most limiting factors for agricultural production (Nicholson and Palao, 1993; D'amato 
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and Lebel, 1998; Graef and Haigis, 2001) in this semi–arid environment. Seasonal weather forecasts 

have shown to be unreliable (Sivakumar, 1988). First, it is difficult for farmers to adapt to a variable 

seasonal length that is presently unpredictable. Therefore, farmers invest into risk diversification e.g. 

by adopting dry sowing (Bationo and Buerkert, 2001) as a mitigation option. Secondly, early 

droughts pose a huge threat to seedlings survival directly after germination. It is of high interest to 

farmers to improve millet establishment and early vigor since the early growth stages are decisive for 

the final yield (Rebafka et al., 1993; Valluru et al., 2010). The question of how to cope with these dry 

spells (Fox and Rockström, 2003) is still a trending topic in the Sahel, particularly in the context of 

smallholder farming. 

Therefore, reducing the risks of early seasonal drought and nutrient deficiency associated with dry 

sowing and infertile soil might be possible through seedball technology by amending seedballs with 

the suitable nutrients-additives to increase both nutritional status and drought tolerance in the 

seedlings. This might increase seedlings survival and vigor, reduce repeated sowing and subsequently 

increase the vegetative period of the crop. 

2.5. The soil aspect 

The major soils for Sahelian pearl millet productions are Luvic Arenosols (Muehlig-Versen et al., 

2003; Karanam and Vadez, 2010). These soils are slightly acidic (pHH2O < 6) and inherently deficient 

in plant available P (Rebafka, 1993; Muehlig-Versen et al., 2003). They are extremely low in organic 

carbon (Corg) (< 1 %) and total N content (Bationo and Buerkert, 2001) as well as available calcium 

(Ca) (Voortman et al., 2004) but bear high potassium (K) reserves (Herrmann, 1996). Additionally, 

they are coarse textured (> 70 % sand to 1 m depth), have a low water retention capacity (often < 10 

Vol. %), a high hydraulic conductivity (Bley, 1990), and are easy to till (Klaij and Hoogmoed, 1993). 

Different processes lead to surface crusting that negatively influences water infiltration at the start of 
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the growing season (Casenave and Valentin, 1989). Though rainfall is low, leaching losses of up to 

200 lm-2 can accumulate over the season (Fechter, 1993). The so-called spatial micro–variability of 

soil properties (and corresponding yields) poses another challenge to the farmers (Herrmann et al., 

1994), and are sometimes used as risk diversification strategy (Brouwer et al., 1993). As population 

pressure forces an intensification of land use, integrated soil management is essential for cropping 

success. Such an approach combines improved soil moisture storage measures and the use of organic 

and inorganic fertilizers as well as other soil amendment options (Koning et al., 2001) to increase 

yield. Though atmospheric net nutrient input regularly occurs during the dry season, these are, with 

exceptions for P, too low to replenish the losses via cropping, leaching, wind and water erosion 

(Herrmann, 1996). Extreme dryness, poor soil structure and lack of vegetative cover can increase the 

susceptibility of semi-arid soils, in particular Arenosols to wind and water erosion (Michels et al., 

1995; Andrew, 2007), often leading to catastrophic crop losses. 

Seedballs can - in the microenvironment - increase water retention due to their higher clay content 

and induce water transport towards the root by having a different water retention characteristic. The 

higher clay content can also contribute to a higher amount of rechargeable nutrient such as P, Ca and 

magnesium (Mg) directly around the seedlings roots. 

2.6. The cropping aspect 

In small seeded species such as subterranean clover (Trifolium subterraneum), P and Ca seed 

reserves were exhausted as early as fourteen days (Krigel, 1967). In oats, most of the P reserves from 

the seeds were translocated to the developing roots and shoot during the first eight days after 

germination (Hall and Hodges, 1966). These results indicate that small-seeded species need nutrient 

supplementation as early as seedlings emergence. Pearl millet seeds are generally small and 

consequently bear a low nutrient stock. A single grain weighs 7–10 mg that contains P reserves of 
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only about 20 μg. Therefore, additional nutrient input through pelleting appears promising (Peske and 

Novembre, 2011). In particular, an external supply of P soon after emergence is advisable (Rebafka 

et al., 1993). Although pearl millets are naturally tough and can thrive in infertile soils 

(Duivenbooden and Cissé, 1993), higher yields can be attained if seedlings are nutritionally enhanced 

as early as the emergence (Karanam and Vadez, 2010; Valluru et al., 2010). An inevitable advantage 

of vigorous early growth arising from sufficient seed reserves is resistance against early stress 

conditions (Read, 1983). This is vital in the Sahelian region where plant establishment is often 

impaired by drought and sand windblast, occurring regularly prior to the rainfall events (Banzhaf, 

1988). 

Pearl millet and cowpea are the major Sahelian crops, since they are adapted to the harsh climatic 

and poor soil conditions. Due to the population pressure, fallowing is consecutively, abandoned and 

cropping is extended into marginal lands. Decreasing crop surface per household increasingly forces 

farmers to intercrop. A crop rotation as recommended by Bationo and Ntare (2000) is hardly feasible 

anymore. Lack of fertilizer access on the markets as well as poor financial resources of households 

lead to nutrient mining (Van der Pol and Traore, 1993) that is in long-term detrimental for the crop 

yield. One measure to counteract in particular nutrient deficiency during the early growth stages is 

micro-dosing (Buerkert and Schlecht, 2013). This means small amount of fertilizer closely placed to 

the seeds in the sowing pocket. These small amounts of fertilizer do not include a high risk of no 

return on investment in case of crop failure. Traditionally, farmers wait with sowing activities until 

0.10–0.15 m of the top soil are humidified by the starting rains. Any delay in sowing then decreases 

yield potential (El-Lattief, 2011) due to a shortened vegetation period and leaching of the already 

poor available nutrient fractions. Seedballs can potentially lower cropping risks by prolonging the 

growing period through dry sowing. When seeds are untreated, predation by rodents, pests and 
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insects are often inevitable, causing the need for re-sowing. Seedballs ability to encapsulate seeds in 

hard form may reduce seed predation. A typical scenario herein is the observed 35 % reduction in 

seed predation of Tawa tree (Beilschmiedia tawa) when its seeds were placed in balls made of 

nutritionally enriched clay in New Zealand (Overdyck et al., 2013). 

Nutrient-enhancement effects of local materials such as wood ash (Saarsalmi et al., 2012), compost 

manure (Zmora-Nahum et al., 2007), charcoal (Santalla et al., 2011) and termite mound materials 

(Karak et al., 2014) on soil and crops have been studied in the past. Wood ash has both long and short 

time effects on soils, and varies in its chemical contents depending on the burnt compounds, 

combustion process and ash conditioning (Augusto et al., 2008). Its application does not pose risks to 

the environment (Demeyer et al., 2001), but affects the soil chemistry in two ways; as a liming agent 

and as a source of nutrients (Nkana et al., 2002). Charcoals serve as soil conditioners and as 

sequesters of C in recalcitrant and in reactive forms (Novotny et al., 2009), improving exchange 

capacity, surface area and nutrient contents (Glaser et al., 2002). 

Seedballs can potentially counteract the aforementioned cropping constraints by (i) reducing seed 

predation due to the -in the dry state- hard shell and providing small amounts of lacking nutrients that 

can improve seedlings establishment. Additionally, by directing water resources and again nutrients 

that might be otherwise leached from the surrounding towards the roots due to the higher water 

suction of the finer material. The only requirement is an optimisation using the specific local 

resources. Seedballs do not increase the nutrient status of soils. Therefore, the nutrients added need to 

be embedded in a holistic fertilisation strategy (Voortman, 2010) that provides the necessary 

nutrients once the crop establishment is achieved. 
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2.7. Seed treatment technologies 

Different seed treatment techniques to improve pearl millet crop performance have been studied in 

the past. These include seed coating with P (Rebafka et al., 1993; Karanam and Vadez, 2010), and 

seed coating and priming with Pseudomonas spp. under greenhouse and field conditions (Raj et al., 

2004). These techniques enhanced seedlings establishment and improved crop yield under field 

conditions. Karanam and Vadez (2010) tested P coating using three-hybrid pearl millet varieties 

planted in pots (three seedlings per pot) or Polymerized vinyl chloride (PVC) cylinders (one seedling 

per cylinder), the latter option to allow for a longer growth span. The soil material used was derived 

from an Alfisol with low P status. In their findings, seed coating at a rate of approximately 400 g P ha-

1 increased shoot biomass by > 400 % at early stages, and panicle weight by 50 %. The seed coating 

process of mixing pearl millet seeds with grounded KH2PO4 salt and glue solution at a specific-

homogenized rate of 0.1 ml g−1 seed is already too sophisticated. Rebafka et al. (1993) tested the 

effect of enhanced seedling establishment achieved through P (ammonium dihydrogen phosphate) 

seed coating, on the final yield of pearl millet in an acid sandy, P deficient soil in Niger (West 

Africa). They observed a dry matter increment of up to 280 % in seedlings, and increased grain yield 

by up to 45 % in the field. However, the seed coating requires the use of highly sophisticated 

machine - a precision rotation pan - at a coating rate of not more than 0.5 mg P seed-1 using bentonite 

as coating substance. Farmers may not replicate this coating practice due to its high skill demand. 

Again, the bentonite-containing phosphate salts used as the coating agent may not be available in the 

local markets, and might be practically impossible to be formulated by the farmers. Additionally, 

ensuring an accurate coating rate of exactly 0.5 mg P seed-1 may be difficult, and this specified rate 

can impair germination when higher, or reduce yield when lower. In the findings of Raj et al. (2004), 

bio-priming pearl millet seeds with Pseudomonas fluorescens isolates resulted in an improved 
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germination and seedling vigor, and subsequently led to up to 22 % increased grain yield in the field. 

However, the preparation (including centrifugation and pelleting), harvesting and storage of 

Pseudomonas fluorescens requires a King’s B broth amended with 20 % glycerol and a cooling 

facility of -80 0C. Additionally, an ultra-violet-visible spectrophotometer was used to adjust the 

density to 108 cfuml-1 before inoculation. Prior to inoculation, seeds were surface-sterilized with 0.02 

% mercuric chloride, and further soaked in a bacterial suspension amended with 0.2 % 

carboxymethyl cellulose to facilitate the adherence of the bacteria to the seeds. This process is first, 

complicated due to high knowledge-demand with respect to the chemistry of the priming solutions, 

which the smallholder farmers lack. Second, the storage and cooling facilities require electricity and 

cooling devices. These are not within the spatial reach of the Sahelian subsistence farmers. 

The decisive question for applicability is, whether farmers are able to apply a seed treatment 

technology, and this is depending on the level of mechanisation that is necessary. An innovation that 

needs high financial investments, components that are not locally available or includes technical 

aspects that are not manageable by local blacksmiths, will not find adoption in a subsistence-oriented 

agricultural environment. Therefore, a simple-to-understand and easy-to-apply alternative innovation 

is necessary; seedballs could be such a technology. 

Seedballs as patently invented by Masanobu Fukuoka in which loamy soil was combined with 

compost, water and rice seeds, can be effective in converting bare land into forest (Fukuoka, 1978). 

As sowing technology, they can replace traditional seeds offering benefits of (i) enhanced early 

nutrient delivery (ii) reduced seed predation (iii) controlled seed amounts and (iv) reduced labor input 

at sowing. If we theoretically apply this technology to the Sahelian environment, we can state the 

following. In contrast to other technologies, seedballs do not need enhanced technological 

equipment. The basic constituents (i.e. sand, loam, any kind of fertilizer e.g. compost, seeds, water) 
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are in the hands of the farmers and accessible to both sexes. Producing seedballs needs little training. 

Production itself can be made by hand in a community action. However, if greater surfaces are to be 

planted, mechanisation is mandatory, since one hectare needs under Sahelian conditions and pearl 

millet as a crop approximately 10,000 seedballs (i.e. 1 seedball per planting pocket at a sowing 

distance of 1 m*1 m). Manufacturing can happen before the vegetation period if seedballs can be 

sufficiently dried immediately after production in order to impede unwanted germination. This is 

possible under the high daytime temperatures in the Sahel. Early production before the season allows 

for dry sowing. This is in particular an important aspect, since sowing at the start of the vegetation 

period is constrained by labor shortage. 

The two crucial aspects for potential success of seedballs are that (i) seedballs show sufficient 

germination, and (ii) a growth advantage compared to conventional sowing. The pre-requisites for 

seedball production are (i) the availability of its components such as sand, loam, seeds, water, and 

organic or inorganic manure (ii) the dry and sunny atmospheric condition in the Sahel that ensures 

that seedballs dry in less than twenty-four hours (h) after production, and (iii) human resources. 

These pre-requisites are, at low and affordable cost, within the reach of the every Sahelian farmer and 

his or her household. First of all, the seedballs need to be mechanically optimized in the sense that 

size, composition and number of seeds contained lead to a sufficient number of germinated seeds. 

The second step is then to add nutrient components. If these are NPK or wood ash, the amount needs 

to be optimized in order to avoid osmotic effects that hamper germination or early plant 

development. Once seedballs are mechanically and chemically optimized, the next question is what 

kind of sowing technique is appropriate. In theory, seedballs can be applied directly onto the surface, 

as done in Australia for rangeland improvement (Atkinson and Atkinson, 2003). However, it appears 

reasonable that incorporation into the soil is favoring water supply and thus better germination and 
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growth. Timing of sowing is probably important, too. The technology was developed for application 

with dry sowing but also sowing at the onset of the rainy season might have advantages. 

The last question is then, what the real mechanisms are, that contribute to the success of seedballs. 

Are these exclusively nutrient factors or are other effects involved? One could hypothesize that 

seedballs - as they have a finer texture than the surrounding soil matrix - are attracting water due to a 

higher water suction. In combination with enhanced rooting density, this property can support 

survival in early drought periods, since more water is available to the plant, less energy is needed to 

extract this water from the surroundings and more nutrients are transported towards the plant that are 

otherwise potentially leached. In fact, certain plants can manipulate their rhizosphere under poor soil 

physiological status to increase nutrient availability (Neumann and Römheld, 2007), but to date, this 

is not proven for pearl millet. Therefore, seedballs might be a management option that can act as a 

substitute for this disability, particularly in the chemically infertile Sahelian Arenosols. 

Another advantage of seedballs is that the incorporated seeds are hardly accessible to predators such 

as birds, small mammals or ants until the suitable germination conditions are met (Kelt et al., 2004). 

A known number of seeds can be inserted into seedballs. It is important to identify this number in a 

participatory manner with farmers, since the number of existing plants per pocket does not only play 

a role as yield component but also to counteract harmful erosion events. Under Sahelian conditions, 

at the onset of the rainy season, strong convective storm events regularly occur (Lamers, 1995). The 

saltating sand grains during these events can impact on pearl millet seedlings to such an extent that 

they die. Therefore in one sowing pocket more seedlings need to be established than is necessary only 

for the yield aspect. In a sowing pocket the outer plants protect the inner ones against erosion effects. 

With conventional manual sowing under Sahelian conditions, an unknown seed amount is 

incalculably inserted into the soil. Seed wastage is most prominent when children do the sowing. 
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They tend to increase the seed amount per pocket when they become tired. And this effect can be 

massive.  Klaij and Hoogmoed (1993) report insertion of up to 300 seeds per pocket as conventional 

practice. Consequently, irrespective of who does the sowing with seedballs, sowing can become more 

economical from the perspectives of required seed amount and labor. With respect to the latter 

seedballs can reduce the demand for thinning activities and in case of efficient emergence for 

replanting. All these benefits would support, in particular, women farmers who have the lowest 

resource availability. 

2.8. Constraints to adoption 

Only a few research findings on enhanced pearl millet production technologies have passed on to the 

Sahelian farmers during the last decades. This is partly caused by lacking skills and financial 

resources of farmers but also by lacking extension services and the top-down attitude in the 

researcher-extensionist-farmer continuum. Buerkert and Schlecht (2013) state that there are three 

pre-requisites for success of agricultural innovations in Sudano-Sahelian West Africa. These are (i) 

enhanced farmers’ access to markets (ii) low cost innovations, and (iii) limited risk of no return on 

investment. Herrmann et al. (2013) call for a paradigm change in research, pledging for more 

participation of and giving more responsibility to farmers. They state that the empowerment of 

farmers leads to faster progress with respect to innovation testing, adaptation and sustainable 

adoption. For local framers, adapting and adopting innovations is a complex process that involves 

risk considerations. Technologies are easier adopted if they relate to the knowledge background of 

the farmers and when they can be observed and evaluated (e.g. in demonstration plots) before they 

enter into on-farm testing. Cropping risks related to a technology and its handling need to be made 

explicit. Adaptation – that means change of a technology according to the needs and capacities of a 

farmer needs to be accepted by the researchers, and become a regular concept in their activities. 
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Several workshops held with the Sahelian smallholder pearl millet farmers revealed that the 

application of seedballs has no disadvantages in the Sahel region (Biegert, 2013). In fact, it was 

reported (i) that the indigenous local material components of seedballs are freely available (ii) that all 

gender can easily produce seedballs, and (iii) that seedballs application might be economical due to 

low financial demand and rational use of seeds. Neither religious beliefs nor other habits hinder 

potential adoption of seedballs. 

2.9. Conclusions, open questions and research demands 

Reviewing what was discussed above, it appears possible that the seedball technology has advantages 

under Sahelian conditions since it is a cheap technology based on locally available resources that 

does not disadvantage any sex. However, it is also clear that this technology needs to be adapted and 

optimized. A panicle yield increment of about 30 % in pearl millet was observed in several on-farm 

trials in 2016 planting season in Maradi region, Niger Republic. In fact, seedball technology is 

interesting for other semi-arid areas such as Rajasthan in India, Punjab and Sindh in Pakistan. 

However, it is of scientific interest to know which mechanisms contribute to the success of the 

technology in order to refine recommendations and to develop the technology further. 
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Figure 1: Proposed operational scheme for the development of the seedball technology in the 

Sahelian smallholder context. 
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In order to make it operational, the following scheme appears reasonable. First of all, farmers in 

different regions need to be interviewed with respect to potential constraints for adoption. If no major 

barriers are revealed, the mechanical and chemical optimisation can start. This is best to be done in 

greenhouse trials, considering aspects like optimal binding agent, nutrients and pesticides as 

additives. For the latter, care must be taken that local farmers might be able to apply those chemical 

compounds in a reasonable and comprehensive manner. Once greenhouse trials show the defined 

performance (e.g. with respect to germination rates or biomass indicators) first trials can be 

performed under field conditions in the Sahel. Optimally, one starts with researcher controlled trials 

in order to avoid too many uncertainties with respect to interpretation of trial results (e.g. non-

communicated additional farmer treatments). If these on-station trials are performing, the test phase 

with demonstration plots in different villages can start. These can yield additional information on 

necessary adaptation to local conditions and in particular, gender preference, and labor demand. 

Finally, farmers are free to experiment with the technology only reporting which additional 

management measures have been taken. Again, this information can help to improve the performance 

of the technology and to develop a final technical sheet for extension purposes. 

With respect to the Sahelian conditions in particular, Schlecht et al. (2006) and Fowler and 

Rockstrom (2001) reclaim (i) to develop a simple–to–understand technique (ii) which can increase 

resource use efficiency (iii) and that is compatible with the socio–economic level of the target rural 

farmers. Therefore, the seedball technology should use freely available, and inexpensive local 

materials such as sand, loam, termite mound material, charcoal, animal dung or wood ash. With 

respect to NPK as nutrient additive in the seedballs, only minute amounts per hectare (i.e. several kg) 

are required; these are available and affordable to smallholder WAS farmers in particular. 

Finally, research on socio–economic advantages in the target Sahelian region is mandatory before 
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this technology can be massively distributed to the farmers. Additionally, a proper assessment of 

gender equality, adoption scenarios, and mechanization for mass production at low labor cost appear 

meaningful. 
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3.1. Abstract 

This study deals with the development of the seedball technology in particular for dry sowing under 

Sahelian conditions and pearl millet as crop. At first, our participatory evaluation in Senegal showed 

that (i) local materials needed for seedball production are locally available, (ii) the technology 

conforms to the existing management systems in the Sahel, and (iii) socio-economic conditions do 

not hinder seedball adoption. Afterwards, seedball was mechanically and chemically optimised. Pearl 

millet seedlings derived from the seedball variants were grown and compared to the control under 

greenhouse conditions. Our results showed that the combination of 80 g sand + 50 g loam + 25 ml 

water is the standard seedball dough, which produces about ten 2 cm diameter-sized seedballs. Either 

1 g NPK fertiliser or 3 g wood ash can be added as nutrient additive to enhance early biomass of 

pearl millet seedlings. Ammonium fertiliser, urea and gum arabic as seedball components hampered 

seedlings emergence. Seedball + 3 g wood ash and seedball + 1 g NPK-treatments enhanced shoot 

biomass by 60 % and 75 %, root biomass by 36 % and 94 %, and root length density by 14 %and 28 

%, respectively, relative to the control. Shoot nutrient content was not greatly influenced by 

treatment. However, multiplying biomass yield with nutrient content indicates that nutrient extraction 

was higher in nutrient-amended seedballs. On-station field tests in Senegal showed over 95 % 

emergence under real Sahelian conditions. Since early seedlings enhancement is decisive for pearl 
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millet panicle yield under the Sahelian conditions, on-farm trials in the Sahel are recommended. 

Keywords: Pearl millet early growth, seedball technology, local resources, dry sowing, seedling 

emergence, subsistence farming, smallholder farmer, cheap seed pelleting technique.  

3.2. Introduction 

Under Sahelian conditions, seedling establishment is a major yield factor in pearl millet (Pennisetum 

glaucum [L.] R. Br.) production systems (Rebafka, 1993). This fact, apart from low seed quality and 

limited water supply, is mainly explained by low chemical fertility (Valluru et al., 2010) of the 

widespread sandy soils (Arenosols according to the World Reference Base for soil resources – WRB; 

IUSS, 2014). Arenosols are characterised by low P (Rebafka, 1993; Muehlig-Versen et al., 2003), N 

and organic matter content (Bationo & Buerkert, 2001). Unfortunately, the improvement of seedling 

establishment through seed coating (Rebafka et al., 1993; Karanam & Vadez, 2010) and the 

application of NPK (Bationo et al., 1993; Bationo & Ntare, 2000; Bationo & Buerkert, 2001; Aune & 

Ousman, 2011; El-Lattief, 2011) is hardly feasible for smallholder farmers. This is due to lack of 

skills and financial resources (Van der Pol & Traore, 1993; Cooper et al., 2008), as well as lacking 

infrastructure. 

In the Sahel, farmers partly practice dry sowing with uncoated seeds to optimally use the vegetative 

period in order to ensure higher yield (Bationo & Buerkert, 2001). However, uncoated seeds bear 

high risks of loss through predation and early season droughts. In contrast, seed coating has the 

potential to improve seedling establishment. E.g., it mitigates high seed size variation when lack of 

uniformity poses challenges (Peske & Novembre, 2011), controls seed predation (Overdyck et al., 

2013), and ensures early nutrient supply (Rebafka et al., 1993; Karanam & Vadez, 2010). Small 

seeded species have more advantages from seed coating relative to large seeds due to nutrient 

addition through the coating materials. Pearl millet is such a crop, having 7–10 mg weight per seed 
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(Rebafka et al., 1993), only. 

The seedball technology, invented by Fukuoka (1978) in the frame of the permaculture concept, was 

introduced to improve rice seedling establishment under dry sowing conditions. It has been used in 

Australia for rangeland improvement (Atkinson & Atkinson, 2003). Apart, hardly any research ever 

addressed this technology. It combines local materials such as sand, loam and seeds. Other additives 

such as nutrients or pesticides can potentially be added, depending on local needs. NPK, organic 

compost (Badiane et al., 2001) and wood ash (Saarsalmi et al., 2012) can play significant roles in 

increasing the nutrient supply of plants. E.g., wood ash can serve the dual function of P nutrient 

release and low soil pH amelioration (Nkana et al., 2002). These materials can be incorporated into 

the seedball coating materials as additives, addressing the often observed soil-related plant growth 

limitations in the Sahel (Herrmann et al., 1994). However, their content needs to be optimised in 

order to avoid any effects that hinder seed germination, e.g. through high osmotic pressure. 

The low reserve of 20 μg P per seed (Rebafka et al., 1993) qualifies the pearl millet crop for nutrient 

supplementation at emergence. Pearl millet seeds have been successfully coated (Rebafka et al., 

1993; Karanam & Vadez, 2010; Peske & Novembre, 2011). However, a technology is lacking that is 

based on local resources and affordable to subsistence farmers in the Sahel. Therefore, the present 

study describes the development of the seedball technology for Sahelian subsistence pearl millet 

production systems and its potential for seedling improvement under poor soil conditions. The main 

objectives of this study were to physically (materials, size) and chemically (nutrients, osmotic 

pressure) optimise seedballs in order to improve early seedling performance (biomass, nutrient 

content) and prepare on-site testing. 
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3.3. Materials and methods 

A participatory discussion with farmers in Louga, Senegal on coating pearl millet seeds with local 

materials and five greenhouse experiments are reported. The greenhouse experiments were conducted 

at the University of Hohenheim, Germany and at ISRA experimental station in Bambey, Senegal. We 

report here only the key methodologies and findings. The presentation is chronological, with later 

experimental layouts depending on the previous results. 

3.3.1. Participatory approach on seedball testing and adoption in the Sahel 

In Louga, Senegal, a participatory study was conducted with the Louga federation of farmers 

associations (FAPAL: Fédération des Associations Paysannes de Louga) for a period of four weeks. 

A workshop on seedball production was carried out to practically demonstrate to the farmers, how 

seedballs are produced. Sand, loam, water, and seeds were used as basic constituents, wood ash and 

animal dung as nutrient additives, charcoal and termite soil as conditioner, and chili pepper 

(Capsicum annuum) as repellent. Doughs were formed from gravimetric mixtures of these materials. 

Afterwards, seedballs of about 2 cm diameter size were handmade and dried in < 24 hours (h) to 

avoid unwanted germination. Every step taken in seedball production was carefully explained to 

farmers. Expert interviews, based on social status and gender, were conducted in Wolof language 

with the help of a translator. Data on the cultivation methods and management norms in the 

intervention zone Louga, as well as on the potential benefits and limitations of seedballs, were 

collected. An open-discussion class that allowed the farmers to freely interact about seedball was 

conducted. The opinions and perceptions of the farmers on seedball usage and applicability were 

evaluated. 20 female and 25 male farmers participated in this study. 

The qualitative outcomes of our participatory study clearly indicated that the materials necessary for 
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seedball production are freely available in the farm households, i.e. wood ash, charcoal, animal dung, 

sand as well as seeds and water. Loam and termite soil can be sought less than 4 km away from the 

settlements. Seedball sowing appeared to be simple using the “drop-and-match” technique in 

particular in the predominant sandy fields. Farmers stated that seed wastage could be minimised 

since a known number of seeds is inserted into the seedballs. As a compromise, seedball 

development (mechanical as well as chemical optimisation) using these farmers’ affordable local 

recourses became a main task. 

3.3.2. Seed pre-germination test and material preparation 

Local seed varieties collected from the Bambey area, Senegal were used for this study. Seed quality 

plays a vital role in crop establishment. Thus, checking the viability of any seed lot through a 

germination test is essential (Meyer & Schmid, 1999). Germination tests for the available seeds were 

conducted as reported by Throneberry&Smith (1955), but slightly modified. Fifty seeds were 

randomly selected from the seed lot and placed into 9.0 cm diameter by 1.8 cm height petri-dishes, 

each, in 12 repetitions. Whatman™ filter paper, 47 mm diameter was soaked in distilled water up to 

saturation. The water-saturated filter papers were placed into the petri-dishes and, after seed addition, 

inside a germination chamber. The germination conditions were set at 29.4 °C average temperature, 

62 % relative humidity and 12 h / 12 h day/night cycle. On the 7th day, the germinated seeds were 

counted for each petri-dish. 

Cheap and potentially locally available materials such as sand, organic compost, charcoal, animal 

manure, cattle urine and wood ash were identified as potential seedball components. NPK in minute 

quantity as a non-local resource was identified, too. The “local materials” used were classified into 

three groups: matrix, fillers and nutrient additives. Sand was used as matrix since it mimics the major 

soil property and is available everywhere, where millet is cropped in the Sahel. Loam, gum arabic 
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and termite soil served as potential fillers. Loam is frequently available for free at least in Sahelian 

subsoils and characterised by higher cation exchange capacity relative to sand (Lorenz, 1999). 

Compost, charcoal, sheep and goat dung, cattle urine, wood ash and NPK as well as calcium nitrate 

tetrahydrate (CNT) served as potential nutrient additives. All materials, except urine and CNT, were 

air-dried at ambient temperature as well as hand-crushed or grinded with a mortar where necessary. 

Afterwards, these materials were sieved through a 2mm mesh to remove over-sized particles. 

3.3.3. Laboratory analyses 

The pH, EC, soluble cations, total P and N as well as Corg were measured in all the tested seedball 

materials, except gum arabic. The pH of the materials was measured using a glass electrode pH meter 

(1:20 H2O). EC (1:20 H2O) was measured using a portable EC meter, Model 3320 obtained from 

Xylem Analytics Germany Sales GmbH & Co. KG, Germany (www.wtw.com). Water soluble 

cations (1:20 ratio wt. / wt.) – Ca, K and Na were photometrically measured using an Elex 6361 

flame photometer (Eppendorf, Hamburg, Germany). Water-soluble Mg was measured with a Perkin-

Elmer Model 3100 AAS PerkinElmer, Norwalk, CT, USA. Total C and N were measured from finely 

ground sample materials using VarioMacro EL instrument (Elementar, Hanau, Germany). Plant 

available P was extracted with calcium acetate lactate and determined colometrically based on the 

molybdenum blue method (Rodriguez et al., 1994). It was measured with a Cary 50 UV-Visible 

Spectrophotometer (Varian, Mulgrave, Australia) at 710 nm wavelength. 

In addition, the shoot P, Mg and K contents were measured in pearl millet seedlings after harvest. 

Finely ground shoot samples were digested with a HNO3/H2O2 solution (10 minutes, 105 °C 

temperature, ventilated) in a microwave (MLS 1200 mega, Leutkirch, Germany). Afterwards, the 

extract was filtered using blueband filter paper. For K and Mg content determination, 25 ml from the 

filtrate was transferred to 50 ml volumetric flask and after, filled to 50 ml mark with distilled water.  
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Table 1: Chemical properties of the seedball components and nutrient additives used in this study. 

Component pH1:20 H20 EC 1:20 (µS cm-1) Corg (%) C:N 

Loam 5.9 11 0.8 12 

Charcoal 8.1 143 78.9 114 

Manure 8.3 2560 32.3 19 

Termite soil 8.3 55 0.1 7 

Wood ash 11.6 8430 1.1 35 

Mineral fertilizer 4.8 5160 0.3 - 

  

Table 2: Total nitrogen and phosphorus as well as the cation content of wood ash and mineral 

fertiliser used in this study. 

Content (mg kg-1) Wood ash Mineral fertilizer  

Ntotal 326 151100 

Ptotal 1880 67200 

K+ 65100 152500 

Ca2+ 683 27500 

Mg2+ 860 7430 

Na+ 2190 2470 
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 For P determination, 10 ml of the extract was mixed with 8 ml of John solution in a 50 ml 

volumetric flask that was then filled to the 50 ml mark with distilled water. Nutrients in the solution 

were measured as described above. 

3.3.4. Experiment 1: Mechanical optimisation of seedballs 

Seed germination is often related to sowing depth (Chen & Maun, 1999; Benvenuti et al., 2001). 

Shallow sowing depth stimulates more germination than surface placement (Benvenuti et al., 2001). 

A sowing depth of 2–4 cm is considered optimum for the emergence of Calligonum L. species (Ren 

et al., 2002). This depth is exactly applicable for pearl millet seeds with similar seed size. Bearing 

this in mind, two major factors: the (i) diameter of the seedball and (ii) location of seeds inside the 

seedballs, were considered during the seedball development. Where sowing depth is influential, seeds 

emerging from higher diameter seedballs or the core centre of seedballs might differ from those 

emerging from near the seedball’s surface. On the other hand, randomised seed placement distributes 

germination failure risk and eases production. 

The reason behind the mechanical optimisation is to determine the optimum seedball diameter and 

the best seed placement position that will not hamper seedlings emergence. In addition, an ideal 

seedball, after drying, will not break when dropped from about 2 m above the soil surface, i.e. the 

height when sown by an adult person. 

The first part of the mechanical optimisation study was conducted at ISRA/CNRA research station, 

Bambey, Senegal, to observe seedling (i) emergence and (ii) development. Sandy topsoil material and 

loam were collected from an uncultivated area inside the station. These materials were prepared as 

described in section 3.3.2 (see above). Loam, termite mound material, and gum arabic were 

separately and permutatively combined with sand. Each combination was mixed with water to point 

of dough formation. Seedballs were manually moulded from the dough. The seedballs were of four 
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different diameters: 1.0, 1.5, 2.0, 2.5, and 3.0 cm. Afterwards, they were dried under ambient 

temperature (25–30 °C). For the seedling emergence experiment, seven treatments were tested: (i) 

conventional sowing without seedballs served as absolute control. Otherwise NPK- and wood ash-

amended seedballs of random and central seed placement formed from 80 g sand + 50 g loam + 25 

ml water and 1–3 cm diameter range served as seedball treatments, labelled as (ii) 

Sball+3gAsh+1cmdiam, (iii) Sball+3gAsh+2cmdiam, (iv) Sball+3gAsh+3cmdiam, (v) 

Sball+1gNPK+1cmdiam, (vi) Sball+1gNPK+2cmdiam, and (vii) Sball+1gNPK+3cmdiam. Each 

seedball contained 15 seeds, placed in two different positions: (i) random and (ii) central placement. 

Number of repetitions was 6. Seedlings emergence, only, was counted on the 7th day after planting 

(DAP). 

The second part of the mechanical optimisation study assessed pearl millet seedling height 

development, only. Three diameters (1.0, 2.0 and 2.5 cm) and six treatments were tested: (i) 

conventional sowing as absolute control, (ii) seedballs without amendments and amended ones with 

(iii) charcoal (Sball+30gCha), (iv) compost (Sball+30mlComp), (v) animal manure (Sball+4gMan) 

and (vi) termite soil (Sball+30gTerm). Each seedball contained 6 seeds. Number of repetitions was 6. 

Seedlings height and leaf development were measured on the 9th DAP. 

Day and night temperatures of 36 and 23 °C respectively, were observed in the greenhouse 

throughout the emergence period. Seedballs were sown with the physical centre at 3.0 cm depth, i.e. 

approximately the depth at which pearl millet is sown by farmers. Each experimental unit consisted 

of a black 2-liter polyethylene bag, filled with sand at a bulk density of 1.6 g cm−3. Each treatment 

was repeated six times in a completely randomised design. Soil moisture of 60 % field capacity was 

adjusted in each experimental unit every 24 h throughout the experiment. 
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3.3.5. Experiment 2: Chemical optimisation of seedballs 

The objective of seedball chemical optimisation was to identify the optimum contents of seedball 

additives that conserve germination rates and at the same time enhance biomass development. 

Charcoal, wood ash, termite soil and gum arabic collected nearby Bambey, Senegal were tested as 

seedball additives. The experimental conditions (temperature, soil water content, sand-substrate, bulk 

density and germination bags) were same as in the mechanical optimisation. This study concentrated 

on wood ash, CNT and exclusively NPK fertiliser as nutrient additives. The intention was to optimise 

the nutrient content in a way that negative osmotic effects are avoided but maximum nutrient 

amounts incorporated into the seedball. 

In the first part of the chemical optimisation study, only the seedlings emergence was assessed. Wood 

ash, cattle urine, charcoal and NPK served as nutrient additives. NPK 17:17:17, manufactured by 

Green Partners International GmbH & Co. KG, Germany was used. It contained 4.1 %, 4.8 % and 8.1 

% ammonium, nitrate and carbamide N, respectively. So-called quartz sand, i.e. sieved alluvial sand 

from SW-Germany, was used as growth medium. It contained 2 wt. % coarse sand (630–2000 μm), 

60 wt. % medium sand (200–630 μm) and 38 wt. % fine sand (63–200 μm). The intention to use this 

sand was to mimic the sandy soil textures as reported to be typical for Sahelian pearl millet sites by 

Hebel (1995). The loam for seedball production was collected from the subsoil of a field called 

“Goldener Acker” located at the University campus of Hohenheim, Germany. According to WRB 

classification system, the reference soil group there is a Luvisol. Wood ash, cattle urine, charcoal and 

NPK were added in variable quantities. Where urine was used as nutrient additive, no furtherwater 

was added to produce the seedball dough. 2 cm diameter-sized seedballs were formed from 80 g sand 

+ 50 g loam + 25 ml water. Seed number was adjusted to 6 and 10 per seedball. Seeds were randomly 

placed. Conventional sowing served as control. All treatments were sown at 3 cm depth. The 
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experimental design was a randomised complete block with six replications per treatment. Seedling 

number was counted on the 7th DAP. 

In the second part of the chemical optimisation study, sandy subsoil, collected from Rastatt (48° 49′ 

N, 8° 11′ E) in Germany, was used as substrate. The intention was to mimic the typical Sahelian pearl 

millet soils. The collected soil material was air-dried and passed through a 2 mm sieve to remove 

coarser particles. The soil is characterised by > 90 % sand, a pHCaCl2 of 4.5, < 1 wt.% organic 

matter, a C:N ratio of 23 and a potential cation exchange capacity of 39 mmol kg−1 at around 0.7 m 

depth. Further properties of this soil can be accessed from Stahr et al. (2009). The seven tested 

treatments were: (i) conventional sowing as absolute Control; (ii) seedballs without amendments as 

Sball control; NPK-containing seedballs at two levels (iii) Sball+0.5gNPK (iv) Sball+1gNPK; (v) one 

wood ash-containing seedball variant (Sball+3gAsh); and CNT-containing seedballs at two levels (vi) 

Sball+0.1gCNT and (vii) Sball+0.5gCNT. Each seedball as well as the control contained ten seeds. 

The used fertiliser was NPK 15:15:15, 2–5 mm granular sized, white-coloured, containing < 2.0 wt. 

% water. CNT, ≥ 99 % pure, obtained from Carl Roth GmbH, Germany (www.carlroth.com), was 

used in addition as ammonia-free N-source. 

Seedballs of 2 cm diameter size were formed and air-dried in < 24 h. The sowing depth for all 

treatments was 3.0 cm. Plastic containers of 12.0 cm in diameter and 14.0 cm in height were used. 

Each container was filled with sieved sand at a bulk density of 1.6 g cm−3. At the bottom of each 

plastic container, Whatman™ filter paper was installed to avoid sand materials from sipping through. 

The soil was air-dried before the treatments were sown. This was intended to mimic dry sowing as 

often practiced by Sahelian farmers. The experimental design was fully randomised, comprising six 

treatment replications. About 2.5 mm sized gravels covered the topmost 2.0 cm of each plastic 

container. This was to reduce soil water loss via evaporation. Water sprinkler was used for watering 
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the experimental containers throughout this study. Watering started 48 h after sowing the treatments. 

16 wt. % soil moisture content was adjusted daily using a weigh balance until harvest. A day/night 

cycle of 10/14 h was ensured. Day and night temperatures of 32 and 26 °C, respectively, with a 

relative air humidity of 48.5 % were maintained throughout the growth period. Seedling height and 

leaf number were repeatedly measured per week. 

On the 28th DAP, the seedlings were harvested. Root (weight, length) and shoot (weight, leaf 

number) variables were measured. The dry matter was obtained after drying to a constant weight in 

an oven at 58–60 °C temperature range for 48 h. Dried shoots were analysed for P, Mg and K using 

the method described in section 2.3. Total nutrient uptake was calculated as: root biomass × nutrient 

content + shoot biomass × nutrient content. The roots were obtained by carefully washing the 

materials through a 2 mm sieve and were cut into lengths of about 1.0 cm with a clean pair of scissors 

to minimise root inter-twisting particularly during scanning. Measurement errors in root diameter as 

well as root length measurement are often associated with long (> 3 cm) root sections during 

scanning (Nwankwo et al., 2013 – unpublished). Half of each sample was used for dry matter and the 

other half for root length determination. The stored roots were scanned with an EPSON Perfection 

V700 PHOTO dual lens scanner and the values of the root length and diameter were measured using 

WinRhizo® V2009c software (Regent Instruments, Nepean, Canada). 

3.3.6. Experiment 3: Seedball storage effects and on-station testing 

Seedball production is time demanding, without mechanisation requiring approximately 40 h for 

10,000 units per person. This means quite an investment for the farmer. For the applicability of the 

technology, it is important to know whether the seedballs can be manufactured before the season 

(when labour load is low) and stored without causing decreasing germination rates. 

The objective of the first experiment was, therefore, to identify whether storage time has an effect on 
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number of germinated seeds. A second experiment was dedicated to the question whether seedballs 

function also under real Sahelian conditions using local materials. For this purpose, Sball+3gAsh and 

Sball+1gNPK treatments, containing 25 seeds per seedball were produced according to the same 

recipe as used in the two preceding experiments and tested against conventional sowing. The reason 

to constrain to wood ash and NPK as nutrient carrier was that these materials showed a positive 

growth effect in the chemical optimisation study and are available to Sahelian farmers, at least in 

small amounts. In contrast, CNT that showed the best biomass results is a pure chemical not available 

and affordable to these farmers. 

For the first experiment, about 200 seedballs, per treatment, were produced at once and stored in the 

greenhouse of University of Hohenheim. Every week, germination tests were carried out with 20 

seedballs per treatment for nine weeks period. Same greenhouse experimental conditions as stated in 

mechanical and chemical optimisation section (see sections 2.4 and 2.5), except average temperature 

that was 28.6 °C, were maintained. Average number of germinated seeds per seedball after eight days 

are reported. 

For the field test under Sahelian conditions, Control, Sball, Sball+3gAsh and Sball+1gNPK 

treatments were tested for germination inside the ISRA/CNRA station, Bambey, Senegal. Seedballs 

were produced with local materials collected from the locality of Bambey. Each seedball contained 

15 seeds; same seed number was inserted per planting pocket in the control i.e., the conventional 

sowing. The experimental site (14° 42′ N, −16° 28′ W) was characterised by a brown coloured sandy-

loam soil characterised by a pH of 6.0 and a C:N ratio of 48. The exchangeable cations as extracted 

by NH4-acetate from the first 0.3 m topsoil revealed in g kg−1: 24.8 Ca, 5.1 Mg, 1.0 K, and 0.7 Na, as 

well as 26.5 mgkg−1 of plant available P as extracted by the Bray1 method. 

Dried stands of Vetiveria nigritana and scarcely located seedlings of Balanites aegyptiaca were 
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manually cleared off the site, which was fallowed for two years before this study. The planting area 

was 14 m×15 m. Sowing was 3 cm deep, at a spacing of 1 m ×1 m, in a completely randomised block 

design of four treatment replications. No form of fertilisation was applied since we did not intend for 

any harvest. It was an off-season experiment; therefore, water was supplied via irrigation. Water 

equivalent to 20 mm rain every four days was supplied using sprinklers starting from the 2nd DAP. 

The intention of sowing before watering was to mimic dry sowing as often practiced by Sahelian 

farmers. Throughout the study, the observed average day and night temperatures were 27 and 19 °C, 

respectively. For reasons of genetic variation and environmental conditions, pearl millet seedlings 

may not survive after emergence under field conditions (Peacock et al., 1993). Therefore, to check 

for seedlings survival after germination, repeated germination counts per planting pocket were 

conducted every week in a four weeks period. The number of emerged seedlings per planting pocket 

was noted. 

3.3.7. Statistical analysis 

Where statistical analysis was applicable, normal distribution and variance homogeneity were tested 

based on the Shapiro-Wilk test. As data were not evenly distributed, Welch’s one-way analysis of 

variance using Proc. GLM was performed for all data sets of one-time measurements (e.g. biomass 

and dry matter). Proc. MIXED was performed for repeated measurements (e.g. plant height and leaf 

count). The treatment means were compared for significant differences at p < 0.05. Results are 

presented as means (± standard deviations) of the measured variables while the mean values 

represent the treatment means. All analyses were performed with SAS version 9.4 while Sigma Plot 

version 13.0 was used to plot all graphs. 
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3.4. Results 

The used seed lot showed a germination rate of over 90 % in the greenhouse. Thus, the seeds were 

accepted as viable for the experiments. 

3.4.1. Experiments 1 and 2: Chemical and mechanical optimisation of seedballs 

 

Figure 2: Treatment effects on pearl millet: (a) number of plants at day 7 after sowing, (b) plant 

height at day 9 after sowing at the greenhouse of ISRA/CNRA research station, Bambey, Senegal. 

Symbols show arithmetic means (n = 6) and error bars indicate standard deviations (±). Control = 

non-pelleted seeds, Sball = 80 g sand + 50 g loam + 25 ml water, Ash = wood ash, NPK = 15:15:15 

mineral fertiliser, Cha = charcoal, Comp = compost, Term = termite soil, Man = manure, diam = 

diameter size in cm, centralized = seed placement at the core centre of the seedball i.e. seeds were 

inserted into the seedballs after the seedball was moulded, and randomized = scattered seed 

placement in seedball i.e. seeds were mixed with the seedball components before the seedball was 

moulded. 
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Pre-trials (data not presented) have shown that the best base recipe for seedball dough is derived from 

a mixture of 80 g sand + 50 g loam + 25 ml water and that germination is best at a shallow sowing 

depth of about 3 cm as practiced by farmers. The greater the seedball diameter for centrally placed 

seeds in particular, the less the number of emerged plants one week after sowing (Fig. 2a). With 

respect to seed placement within seedballs, randomised placement showed an overall good 

performance, while central placement reduced number of emerged seeds in dependence of seedball 

diameter. There was no significant effect of seedball diameter on biomass development as presented 

by the plant height at day 9 after sowing. However, the manure-amended seedballs showed in general 

lower means (Fig. 2b). 2 cm diameter appears as good compromise between material needed, nutrient 

amount added and emergence rate. Two striking effects of additives can be observed: gum arabic as 

well as urine heavily depress pearl millet emergence from seedballs (Fig. 3). 

Seedling emergence was affected by treatment. Wood ash and CNT at high application rates of 3 and 

0.5 g per standard seedball recipe significantly reduced seedlings emergence by 41 % and 64 %, 

respectively (Fig. 4a). Treatments showed effects on shoot and root variables at harvest. 

Sball+3gAsh, Sball+0.5gCNT and Sball+1gNPK treatments were 60 %, 202 % and 75 % higher in 

shoot and 36 %, 154 % and 94 % in root biomass compared to the control (4b and 4c). The root 

length density repeats these trends. Sball+3gAsh, Sball+0.5gCNT and Sball+1gNPK treatments 

showed 14 %, 12 % and 28 % increment in root length density relative to the control (Fig. 4d). 

Higher root diameter was observed in Sball+1gNPK treatment relative to the control. Root to shoot 

ratio did not respond to treatment (data not shown). 

Treatment did not clearly influence the nutrient content of the seedlings (Fig. 4e). Sball+3gAsh, 

Sball+0.5gCNT and Sball+1gNPK treatments showed 82 %, 440 % and 193 % more P uptake, 

respectively, than the control (Fig. 4f). The total nutrient uptake is more indicative than the nutrient 
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content. The former shows the already known pattern for all three investigated nutrients (Fig. 4f). In 

particular, K uptake was affected. It was 127 %, 380 % and 82 % higher in Sball+3gAsh, 

Sball+0.5gCNT and Sball+1gNPK treatments, respectively (Fig. 4f). Mg uptake was influenced by 

treatment as well. Sball+3gAsh, Sball+0.5gCNT and Sball+1gNPK treatments showed 66 %, 367 % 

and 68 % more Mg uptake than the control. 

 

Figure 3: Treatment effects on pearl millet seedling number at the 7th day after sowing for (a) six and 

(b) ten seeds per seedball, observed at the greenhouse of University of Hohenheim, Germany. Bars 

represent arithmetic means (n =6) and error bars indicate standard deviations (±). Control = non-

pelleted seeds, Sball = 2 cm diameter sized-seedball made from a mixture of 80 g sand + 50 g loam + 

25 ml water. Cha = charcoal, Ash = wood ash, Gum = gum arabic, Man = manure, Term = termite 

soil, NPK= 25 ml 17:17:17 mineral fertiliser in 200 ml g−1 solution and Urine = cattle urine. 
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Figure 4: Treatment effects on pearl millet (a) emergence at 7th DAP, and (b) shoot biomass (c) root 

biomass (d) root length density (e) shoot nutrient content as well as (f) total nutrient uptake, at 28th 

DAP, observed at the greenhouse of University of Hohenheim, Germany. Numbers in (e) indicate the 

ratio of K to Mg content of the shoot. Symbols show arithmetic means (n= 6) and error bars indicate 

standard deviations (±), except for (e) where biomass was pooled due to small sample sizes. p = 

probability value, Control= non-pelleted seeds, Sball = 2 cm diameter sized-seedball made from a 

mixture of 80 g sand + 50 g loam + 25 ml water, Ash = wood ash, CNT= calcium nitrate tetrahydrate 

and NPK= 15:15:15 mineral fertiliser. 
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3.4.2. Seedball storage effects and on-station testing 

Plant height and leaf number as biomass proxies responded to treatments. Relative to the control, 29 

% and 18 % increments in height were observed in Sball+1gNPK on the 12th and 16th DAP, 

respectively (Fig. 5a). Within 24th DAP, Sball+3gAsh, Sball+0.5gCNT and Sball+1gNPK treatments 

showed 11 % and 18 % and 17 % height increment, compared to the control. Sball+1gNPK treatment 

in particular enhanced leaf development, particularly between 15th and 25th DAP (Fig. 5b). 

 

Figure 5: Pearl millet (a) shoot height and (b) leaf number development for different treatments at the 

greenhouse of University of Hohenheim, Germany. Symbols show arithmetic means (n = 6) and error 

bars indicate standard deviations (±). Control = non-pelleted seeds, Sball = 2 cm diameter sized-

seedball made from a mixture of = 80 g sand + 50 g loam + 25 ml water, Ash = wood ash, and NPK 

= 15:15:15 mineral fertiliser. 

Seedlings emergence slightly declined in Sball+3gAsh and Sball+1gNPK treatments after about six 

weeks of storage (Fig. 6). As for the on-station seedball germination in Senegal, the germination rates 

for the Control (98.2 %), Sball (97.4 %), Sball+3gAsh (97.1 %) and Sball+1gNPK (96.1 %) 
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treatments were comparable under field conditions. Over 20 seedlings per germination pocket was 

observed for all treatments. The seedlings of Sball+3gAsh and Sball+1gNPK treatments in particular 

were more vigorous than those of the conventional sowing. 

 

 

Figure 6: Absolute number of emerged pearl millet seedlings 8 DAP for three treatments as affected 

by storage time at the greenhouse of University of Hohenheim, Germany. Symbols show arithmetic 

means (n = 20) and error bars indicate standard deviations (±). Control = non-pelleted seeds, Sball = 

2 cm diameter sized-seedball made from a mixture of = 80 g sand + 50 g loam + 25 ml water, Ash = 

wood ash and NPK = 15:15:15 mineral fertiliser. 

3.5. Discussion  

 3.5.1. Participatory approach on seedball testing and adoption in the Sahel 

Technology adaptation and sustainable adoption are faster reached in a development context if target 

farmers are involved in all steps of technology development (Herrmann et al., 2013). Therefore, 

Sahelian local farmers participated in this study as early as possible, i.e. identifying potential 
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constraints to adoption of the seedball technology at pearl millet cropping sites with their 

predominant sandy soils. 

Seedball technology seems to reduce seed usage per hectare at sowing. Seed wastage poses in 

particular a problem when children do the sowing and get physically exhausted. Then more than 300 

seeds can be found in single sowing pockets (Klaij & Hoogmoed, 1993). Farmers preferred dry 

sowing practice because it prolongs the vegetation period and thus, potentially increases yield. Hand-

sowing was preferred to the use of local sowing machines that demand cattle, horses or donkeys for 

traction and present a limitation. 

The seedball technology absolutely conforms to the already established pearl millet management 

systems in the Sahel. Its application does not pose any form of disadvantage if the production is done 

during the dry season when opportunity costs are low, i.e. labour is not a limiting factor. Neither 

material availability nor social factors (gender and religion) per se, seem to hamper the adoption of 

the seedball technology at the Sahelian site investigated. 

Female farmers appeared to be more interested in the technology, though. This might be explained by 

the fact that female farmers have less access to sowing machines and do need to support their 

husbands during the major sowing time at the beginning of the rainy season and are, thus, more keen 

to apply dry sowing. 

3.5.2. Experiment 1: Mechanical optimisation of seedballs 

Most likely, pearl millet seeds in central placement were unable to mechanically make their way 

through the substrate (Fig. 2a). With respect to the diameter, the biomass experiment did not provide 

a final argument (Fig. 2b). However, in a seedball of 1 cm diameter only a limited amount of seeds 

and nutrients can be incorporated. On the other hand, seedballs of 3 cm diameter need a lot of 

material (about threefold the amount of 2 cm diameter seedballs) that needs to be transported to the 
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production site and afterwards to the fields, meaning elevated costs. Therefore, as a compromise, a 

diameter of 2 cm was considered optimum for seedball production. 

3.5.3. Experiment 2: Chemical optimisation of seedballs 

The negative effect of gum arabic on seedlings emergence (Fig. 3a) can potentially be explained by 

its strong tendency to absorb water itself. In consequence, if only low amounts of water are added, 

the seeds cannot compete. For urine and Macrotermes termite mound material (Fig. 3b), another 

explanation is necessary. The liberation of ammonia (Bremner & Krogmeier, 1989; Haden et al., 

2011) or similar ammonium compounds (Pan et al., 2016) can intoxicate cereal seeds at direct 

contact. The urea compound in urine decomposes into ammonia. Own observations in other trials not 

reported here showed the negative effects of any ammonia containing fertiliser on pearl millet 

emergence. Macrotermes mound material can also contain relative high amounts (> 50 mgkg−1) of 

ammonia (Hebel, 1995). 

The probable reasons for failed emergence in the wood ash and CNT amended seedballs (Fig. 4a) are 

osmotic effects since both components have a very high solubility in water. All other treatments with 

lower share of osmotic compounds did not significantly reduce emergence compared to the control. It 

is well established that germination can be impaired in the case pearl millet seeds are coated with P at 

higher concentration (Rebafka et al., 1993) or other materials (Peske & Novembre, 2011). 

We did not assess the temporal root development in this study. However, positive effects were 

observed in the early root development of Sball+1gNPK treatment in other experiments, using 

computer tomography (CT) (Nwankwo et al., 2018). N and P addition through NPK and wood ash, 

(Table 2) can be suspected to cause this effect. It is well documented that local nutrient supply as 

early as emergence influences early root development in pearl millet (Rebafka et al., 1993; Karanam 

& Vadez, 2010; Valluru et al., 2010). This is particularly true for P. 
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On the other hand, seedlings K content could be increased by ash and CNT application. While the ash 

effect can be explained by the high content of water soluble K in the ash itself, the CNT effect must 

be indirect, i.e. by better extraction of K from the soil mediated by a longer root network (Fig. 4c). 

The same argument can be applied for Mg, since the 0.5 g CNT application yields highest content for 

Mg as well. The K in the plant can contribute to biomass production (Fig. 4b and c) by increasing 

drought tolerance through better water use efficiency by effective regulation of the stomata. This is in 

agreement with the findings of Ashraf et al. (1994) on dry matter and biomass production of pearl 

millet shoot and root systems under drought conditions. Since wood ash (860 mgkg−1) and the NPK 

fertiliser (7430 mgkg−1) contained this nutrient (Table 2), only for CNT the effect needs to be 

explained by extraction from the growth medium (Cummins & Perkins, 1974). The seedlings of all 

our treatments contained Mg in higher amount than the range (0.102–0.126 %) reported as deficient 

by Embleton (1966). 

In the acidic soils of the African Sahel where potentially plant available P can be fixed by soil 

aluminium (Scott- Wendt et al., 1988), wood ash- and NPK-amended seedballs can potentially 

enhance P uptake in pearl millet. This is in particular true for the wood ash that locally increases the 

soil pH and thus counteracts Al-toxicity. This can be of great advantage, since early P uptake in pearl 

millet is decisive for higher dry matter and panicle yield under Sahelian conditions (Rebafka et al., 

1993; Buerkert, 1995; Karanam & Vadez, 2010). 

Poor pearl millet seedling performance (Fig. 4b and c), as observed in our absolute control 

(conventional sowing) and seedball control (no nutrient amendment) treatment is often caused by low 

P and K nutrient uptake (Scott-Wendt et al., 1988). The non-nutrient amended seedball treatment, 

Sball, showed similar K, Mg and P uptake as the control, indicating the importance of nutrient 

additives for the success of this technology. Nutrients positively influence biomass development and 
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allocation in plants (Poorter & Nagel, 2000; Hermans et al., 2006) in particularly if water is not 

limiting – as in this study. Conversely, low nutrient availability decreases plant nutrient uptake and 

consequently reduces leaf dry mass (Evans, 1996). 

Similar observations have been reported on pearl millet when nutrients were supplied as early as the 

establishment stage (Rebafka et al., 1993; Karanam & Vadez, 2010; Valluru et al., 2010). Excessive 

shoot development in Sball+0.5gCNT treatment led to a lodging effect. Speculatively, the high N 

content of the CNT most likely triggered this effect. In rice, excessive N content was responsible for 

seedlings lodging (Mannan et al., 2010). In this experiment, the wood ash treatment shows slow early 

development, but overtakes the control in the last phase. Possible reasons for the first effect is the 

high osmotic pressure exerted by the soluble components of the wood ash, and for the second effect 

the equilibrated nutrient supply, since wood ash – that derives from plant materials – is the most 

complex fertiliser that can be imagined. 

The marginal plant height difference observed from 24th DAP onwards indicates nutrient depletion in 

the limited rooting volume by the well-established seedlings. Therefore, nutrient supplementation to 

maintain the seedlings is necessary, precisely three weeks after planting. This is exactly the time 

when the local farmers carry out weeding and thinning. Fertilisation can be supplemented at this 

stage to ensure a continuation of the already established seedling. This could be in form of animal 

manure, considering its availability as well as affordability in the Sahel. 

3.5.4. Experiment 3: Seedball storage effects and on-station 

Long-term cumulative osmotic effect arising from the wood ash and NPK contents of the seedball 

can be suspected for the declined seedlings emergence six weeks after storage (Fig. 6). Emergence 

rate was lower in the nutrient amended treatments, but still high enough with respect to farmer needs. 

In addition, number of emerged seeds per seedball can be adjusted by the number of seeds inserted. 



63 

 

As a common practice, Sahelian farmers often thin down to 2–3 plants per pocket from > 30 emerged 

seedlings. Seedlings emergence rates as observed in this experiment of about 14 seedlings per pocket 

is, therefore, acceptable. In the on-station test, the > 96 % seedlings emergence rate observed in all 

the treatments is a clear indication that seedballs are a viable option in sandy Sahelian fields. Since 

here no quantitative biomass variables were assessed, testing should be continued for whole cropping 

seasons. 

3.6. Conclusions on the applicability and optimised formula of the seedball 

technology under Sahelian conditions 

Opportunities exist, through the seedball technology, to improve the performance of pearl millet 

production under Sahelian conditions (poor soil + erratic rainfall). Farmers’ perception about the 

technology was in general positive. The standard base dough consists of 80 g sand + 50 g loam + 25 

ml water (+ 1 g NPK or 3 g wood ash). All components that potentially contain ammonia (urea, 

urine, manure) should be avoided since they consistently reduce germination rates. Once 

confectioned and dried, seedballs can be stored for prolonged periods (at least two months), showing 

only a slight trend of decreasing germination over time. Number of germinated seeds can be adjusted 

via the seed number per seedball. In farmers’ environment, the production of seedballs can be based 

on simple volumetric ratios using traditional bins, plastic cups or bottle caps. A topic is workload, but 

this can be circumvented by seedball manufacturing before the planting season. 

In this study, nutrient amended seedballs have proven to enhance seedling performance in the early 

growth stages (first 3–4 weeks). From a farmer perspective, as soon as crop establishment is 

guaranteed, further fertilisation (e.g. with organic manure) needs to be applied. Seedballs reduce the 

risk of loss on investment in particular with respect to fertiliser, requiring < 2 kg NPK per hectare, 

and lower seed number per pocket. On-station in Senegal, first tests have shown that seedballs can be 
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produced with the indigenous local materials, and that germination is sufficient under the given 

Sahelian environmental conditions. The next steps are now to quantitatively test performance effects 

on-station and on-farm. 
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4.1. Abstract  

Seedball is a cheap ‘‘seed-pelleting-technique’’ that combines local materials, seeds and optionally 

additives such as mineral fertilizer to enhance pearl millet (Pennisetum glaucum (L.) R. Brown) early 

growth under poor soil conditions. The major objective here was to study the mechanisms behind 

positive seedball effects. Chemical effects in the rhizosphere and early root development of seedball-

derived pearl millet seedlings were monitored using micro-suction-cups to extract soil solutions and 

X-ray tomography to visualize early root growth. Pearl millet (single seedling) was grown in soil 

columns in a sandy soil substrate. Root and shoot biomass were sampled. X-ray tomography imaging 

revealed intense development of fine roots within the nutrient-amended seedball. Seedball and 

seedball+NPK treatments, respectively, were 65 % and 165 % higher in shoot fresh weight, and 108 

% and 227 % higher in shoot dry matter than the control treatment. Seedball+NPK seedlings showed 

promoted root growth in the upper compartment and 105 % and 30 % increments in root fresh and 

dry weights. Soil solution concentrations indicate that fine root growth ass stimulated by release of 

nutrients from the seedballs to their direct proximity. Under real field conditions, the higher root 

length density and finer roots could improve seedlings survival under early drought conditions due to 

better ability to extract water and nutrients from a greater soil volume. 
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Keywords: seedball technology, rhizosphere dynamics, pearl millet roots, seedling establishment, 

early crop growth, Sahel, arid and semi-arid areas, dry sowing. 

4.2. Introduction 

Pearl millet [Pennisetum glaucum (L.) R. Brown] is one of the major staple crops produced grown on 

nutrient-poor sandy soils of the African Sahel (FAO, 1986; Herrmann et al., 1994). Poor seedling 

establishment arising from low N and P availability (De Rouw, 2004) is still a challenging factor 

limiting the yield. The use of mineral fertilizers (Bationo et al., 1993; Pandey et al., 2001), seed 

treatment (Rebafka et al., 1993; Raj et al., 2004; Karanam and Vadez, 2010) or irrigation (Fox and 

Rockstro¨m, 2003) have proven to potentially increase crop yield in semi-arid areas such as the 

Sahel. However, lack of skills and financial resources disallow the Sahelian smallholder farmers to 

use these options (Corbeels et al., 2014; Brick and Visser, 2015). 

A prerequisite for adoption of any technology in the smallholder context is that it is cheap, simple, 

based on locally available resources, and does not interfere with peak labor demands (Fowler and 

Rockstrom, 2001). Seedballs are such a kind of seed-pelleting-technique. It combines sand as matrix, 

loam as binding agent, and supportive additives in small amounts such as fertilizer, wood ash, or 

pesticides. Moreover, seedballs can be prepared in the dry seasons when labor is not a limiting factor. 

The technology was developed in the framework of permaculture in Japan (Fukuoka, 1978) and used 

for revegetation of semi-arid areas in South Australia (Atkinson, 2003). However, little is known 

about the mechanisms by which plant establishment is improved. Scientific studies and literature on 

this topic are missing. Due to its materials and properties, seedballs appear suitable in particular for 

fine-grained seeds such as pearl millet. Application to dry sowing – as frequently practiced in the dry 

and drought prone Sahelian environment – is a particular option, since the dry state of hard seedballs 

protects the seeds against predators and might postpone germination to suitable conditions (avoiding 
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unwanted germination under too low rainfall). In addition, additives, such as fertilizers or fungicides, 

might positively influence crop establishment as well as favor early plant vigor. 

The aim of this study was to evaluate the mechanisms behind seedball-mediated positive effects in 

the root zone of pearl millet seedlings. It is to be expected that seedballs physically and chemically 

influence soil conditions at a micro-scale (several cm). The main objective was to measure physico- 

chemical effects spatially close to the seedballs compared to conventional sowing. We hypothesized 

that seedballs influence (1) available nutrient distribution in the rhizosphere and (2) early root and 

consequently shoot development of pearl millet within the first 21 days after planting (DAP). In order 

to test these hypotheses, soil column experiments were conducted, and root growth and soil solution 

composition were monitored in situ. In addition, soil solution was sampled and chemically analyzed 

as well as plant biomass (root and shoot) determined. 

4.3. Materials and methods  

4.3.1. Preparation of soil samples and seedballs 

The experiment was conducted in the climate chamber of Helmholtz Centre for Environmental 

Research, Halle, Germany. Sandy subsoil material was collected from Rastatt (48°49’N, 8°11’E) in 

Germany, intended to mimic typical Sahelian pearl millet sites. The soil material was air-dried and 

passed through a 2 mm sieve to remove coarser particles. The soil is characterized by > 90 % sand, a 

pHCaCl2 of 4.5, less than 1 % organic matter, a carbon : nitrogen ratio of 23, a potential cation 

exchange capacity of 39 mmol kg–1, and 33 mg kg–1 plant-available P (PBray1). Further properties of 

this soil can be accessed from Stahr et al. (2009). Apart from the available P content, these properties 

are similar to those of Sahelian Arenosol materials that serve as major pearl millet cropping sites 

(Herrmann, 1996). 
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Seedballs made of 80 g sand, 50 g loam, 25 mL water, and with or without 1.0 g NPK (see below) of 

2.0 cm diameter size, each, were produced manually. At ambient temperature (20–25 ℃), the formed 

seedballs were air dried in less than 24 h to avoid unwanted seed germination. Each seedball as well 

as the control treatment contained two pearl millet [Pennisetum glaucum (L.) R. Brown] seeds and 

were thinned to one seedling per germination column on the 5th DAP, owing to the friable nature of 

sand substrate. The seeds were from local variety collected from farmers in Bambey (Senegal) shortly 

after harvest in November 2015. Therefore, one seedling (a single plant per germination column) was 

used throughout the experiment. The seeds were stored for 3 months and 2 weeks at an average 

temperature of 25 °C prior to this experiment. Three treatments were established: (1) conventional 

sowing without seedballs served as absolute control, (2) seedballs with no nutrient additive served as 

seedball control, and (3) mineral fertilizer-containing seedballs represented the intended formula for 

later application in the field (seedball+NPK). The used mineral fertilizer was NPK 15:15:15. It had 

2–5 mm granular size, was white-colored, and contained less than 2 % water. 

Unpublished results of preceding experiments revealed that ammonium fertilizers and urea as 

nutrient additives inhibited germination. For this reason, nitrate was chosen as N fertilizer. Sowing 

depth for all treatments was 3.0 cm, measured from the soil surface (Fig. 7). A fertilized conventional 

treatment was not intended, since growth chamber resources were restricted and positive effects of 

the micro-dosing technology are known (Hayashi et al., 2008). The expected advantage of seedballs 

versus non-seedball micro-dosing is the lower fertilizer amount required and the lower risk of crop 

performance failure due to osmotic effects when farmers, as frequently practiced to reduce labor 

demand, mix fertilizer and seeds during conventional sowing. 

4.3.2. Soil column setup and experimental conditions 

Columns were 7.0 cm in diameter and 25.0 cm in height. Transparent polycarbonate pipes were used. 
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The columns were carefully filled with sieved sand, using a simultaneous filling and compacting 

method aiming at a homogenous bulk density (1.6 g cm–3). At the bottom of each column, a nylon 

mesh of 30 mm pore size was installed to allow free drainage at the lower boundary. The complete 

randomized experimental design comprised six replications of the three treatments: control, seedball, 

and seedball+NPK. For each treatment, ten columns were initially prepared. After germination, the 

six most identical plants with respect to height and leaf number were selected for the experiment. All 

columns were wrapped in aluminum foil to prevent light exposure of the soil that triggers algal 

bloom (Linkous et al., 2000). The gravimetric water content of each column was adjusted to 16.3 %. 

 

 

Figure 7: Sketch of a soil column displaying position of micro-suction cups in relation to seedball and 

definition of the upper and lower part of the column for the determination of root parameters. 

About 2.5 mm-sized gravel covered the topmost 2.0 cm of the columns to minimize water loss via 

evaporation. Through weighing, soil moisture content was daily adjusted until harvest. Day length of 
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12 h was ensured with 350 mmol m–2 s–1 photosynthetic active radiation. Day and night temperatures 

of 30 and 25 °C, respectively, with a relative air humidity of 65 % were maintained throughout. The 

seedlings were harvested on the 22nd DAP. Root weight, root length, and root diameter, as well as 

shoot weight were separately assessed. In addition, the soil columns were segmented into an upper 

(0.0–10.0 cm) and lower (10.1–25.0 cm) part as shown in Fig. 7. 

4.3.3. Computer tomography and soil solution 

X-ray tomography (CT) was performed with an industrial µCT (XT H 225, Nikon Metrology) with 

140 kV, 286 µA (equals 40 W), and 500 ms exposure time to obtain raw images from the upper and 

lower root zones of the germination columns. Each scan was performed with 1000 projections and 

one frame per projection, resulting in an exposure time of 8.5 min per scan. A copper filter with 0.5 

mm thickness was used to reduce the beam hardening artefact and the amount of low energized 

radiation. Distance between X-ray source and sample was about 13 cm. The spatial resolution of the 

X-ray tomogram was 40 mm. The calculated dose rate for these settings is 480 R h–1, equal to 4.2 Gy 

h–1. The dose was calculated with the RadProCalculator Version 3.26 (www.radprocalculator.com). 

For this study, we only considered the CT data for visual examination regarding early root growth. 

Further quantitative analyses of CT data for all time points were out of scope for the present study. 

All image processing steps were carried out with the Fiji software (Schindelin et al., 2012). Noise 

was removed with a non-local means filter (Buades et al., 2005) and roots were segmented using 

hysteresis thresholding with user-defined thresholds as implemented in the 3D Image suite (Ollion et 

al., 2013). Ex ante, CT image analyses showed that the soil columns were homogeneously filled with 

the growth substrate, and that seedballs and suction cups did not change their position within the 

columns (not shown). 

As for CT, soil solution sampling took place every week from each soil column. MicroRhizon 
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samplers from Rhizosphere Research Products B.V., The Netherlands 

(https://www.rhizosphere.com/microrhizons), 1.0 mm in diameter and a mean pore size of 0.15 mm, 

six per soil column (three per layer), were installed in 3.5 and 7.0 cm depth as described by 

Vetterlein and Jahn (2004). Soil solution sampling was carried out at a suction of 390 (–15) hPa for 

less than 4 h. In general, three samples per depth were measured and arithmetic means reported here. 

In cases in which sample volume was too small, soil solution was pooled for one sampling depth in 

the same soil column. EC, pH, and P concentration were measured. The first two variables were 

immediately measured after sampling, using a Mettler-Toledo Seven Excellence® with automatic 

temperature correction. These measurements were conducted at a room temperature of 20 ℃. The 

remaining soil solutions were frozen and stored for P determination applying the molybdenum blue 

and ascorbic acid method. The absorbance of the complex was measured at 710 nm using a Varian 

‘‘Cary 50 Conc’’ UV-VIS spectrophotometer. Details of the methods used to determine the P 

concentration of the solutions can be found in Rodriguez et al. (1994). 

4.3.4. Shoot and root parameters 

Plant height and leaf number as shoot development parameters were recorded after each CT-scan. 

After harvest (22 DAP), fresh weights (biomass) of the shoot and root systems were directly 

measured. The dry matter was obtained after drying in an oven at 68 ℃ for 36 h. The upper and 

lower parts of the column were separated at harvest. Roots were obtained by washing the material 

through a sieve (2 mm mesh size). The roots were cut to lengths of about 1.0 cm using a clean pair of 

scissors to avoid root inter-twisting during scanning. Inter-twisted roots often lead to errors in root 

diameter as well as root length measurement. Half of each sample was used for dry matter 

determination, the other half for determination of root length in different root diameter classes. Root 

length and root diameter were measured using WinRhizo® V2009c software (Regent Instruments, 
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Nepean, Canada). 

4.3.5. Statistical analysis 

Gauss distribution and variance homogeneity were tested using the Shapiro–Wilk test. As data were 

not evenly distributed, Welch’s one-way analysis of variance, using Proc GLM, was performed for all 

data sets of one-time measurements (e.g., biomass). Proc MIXED was performed for repeated 

measurements (e.g., H+ concentration of soil solution). The treatment means were compared for 

significant differences (P < 5 %). Results are presented as treatment means (– standard deviations) of 

the measured variables. All analyses were performed with SAS version 9.4, while Sigma Plot version 

13.0 was used to plot all graphs. 

4.4. Results 

4.4.1. Temporal development of root and shoot parameters 

Germination for all replicates occurred between the 3rd and 5th DAP. Plant height as a parameter for 

shoot development over time differed between treatments as early as 7 DAP. It was consistently and 

significantly higher for all seedball treatments throughout the experiment, compared to the control 

(Fig. 8a). Likewise, leaf number developed more rapidly in seedball+NPK (Fig. 8b), but there was no 

significant difference. 

Root development was monitored with CT 7, 14, and 21 DAP. Visualization of roots and seedballs 

was possible (Fig. 9), but not all root segments could be segmented from the CT data. The given 

resolution (voxel size 40 mm) was too low in relation to the root diameter class dominating in pearl 

millet (compare Fig. 11) to conduct automated complete segmentation. Hence, only two 

representative examples (selection based on WinRhizo results) were selected for detailed image 
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processing. 

 

Figure 8: Pearl millet shoot development after planting as indicated by (a) plant height and (b) leaf 

number for the three treatments. Symbols show arithmetic means (n = 6) and error bars indicate 

standard deviations (–). 

The comparison of control and seedball+NPK clearly shows that fine root growth (red color in Fig. 

9b) was strongly promoted within the seedball. 

The seedball itself is clearly visible within the surrounding soil matrix. With respect to a qualitative 

screening of all CT scans, a tendency towards a higher total fine root development in the upper 

column parts in the seedball treatments was observed, while conventionally sown plants developed 

stronger roots faster to greater depth. 
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Figure 9: 3D representation of the segmented root system within the upper part of the soil column on 

day 21 within the spatial context of the soil–seedball structure. Roots within the seedball are colored 

in red, roots outside the seedball are colored in blue. The soil-seedball structure is presented in grey, 

with dark colors representing material with low electron density, i.e., air-filled pores and light colors 

representing high electron density, i.e., quartz grains. (a) Control treatment, (b) seedball+NPK. Voxel 

side length is 40 mm, hence roots in the lowest diameter class (0–200 mm) could only partially be 

segmented. 

4.4.2. Shoot and root biomass at harvest 

Shoot fresh and dry weights as well as root fresh weight at harvest showed the same response pattern 

as already reported for the biomass indicators during the experiment. For example, seedball and 

seedball+NPK treatments, respectively, were 65 % and 165 % higher in shoot fresh weight, and 108 

% and 227 % higher in shoot dry matter than the control treatment (Fig. 10a). Seedball+NPK 
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seedlings showed 105 % and 30 % increments in root fresh and dry weights, compared to the control 

(Fig. 10b). 

 

Figure 10: Fresh and dry weights of pearl millet (a) shoot (b) root biomass, as well as (c) root length 

density and (d) root:shoot biomass ratio 21 d after planting for the three treatments. Numbers in (c) 

indicate the ratio of root length density between upper and lower part of the columns. Lower-case 

letters on top of bars indicate significant differences of means, n.s = not significant. Arithmetic 

means (n = 6) are shown and error bars indicate standard deviations (–). 

In seedball treatments, higher root density was detected in particular for the upper part (Fig. 10c). In 

particular, for treatment seedball+NPK root growth was promoted more strongly within the upper 

compartment. This is reflected by the ratio of root length density in the upper versus the lower 

compartment (Fig. 10c). The root : shoot biomass ratio (Fig. 10d) clearly shows that despite the local 
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promotion of fine root growth within the seedball (Fig. 9), overall shoot growth increased more than 

root growth in the seedball treatments. The control plants invested relatively more into root 

development, compared to those in the seedball treatments, as indicated by the root:shoot dry matter 

ratio (Fig. 10d). 

 

Figure 11: Pearl millet root length within different diameter classes 21 days after planting for the 

three treatments. Data are provided separately for the (a) upper and (b) lower part of the columns. 

Lower-case letters on top of bars indicate significant differences of means, whereas n.s. indicates 

non-significant differences. Arithmetic means (n = 6) are shown and error bars indicate standard 

deviations (–). 

In all treatments, the largest share of the root length (about 83 %) was found in the diameter class < 

200 mm (Fig. 11). In the upper part, this diameter class was more dominant than in the lower part. 

The highest root length in diameter class < 200 mm was found for treatment seedball+NPK. 

4.4.3. Soil solution composition 

Soil solution EC decreased with time in both sampling depths for all treatments, indicating depletion 
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of salts in soil solution by plant nutrient uptake (Fig. 12c, d). 

 

 

Figure 12: Change of pH and EC at 3.5 and 7.0 cm depth for the three treatments throughout the 21 d 

growth period of pearl millet. Symbols show arithmetic means (n = 6) and error bars indicate 

standard deviations (–). 

This was observed in particular for “seedball+NPK”, which initially (7th DAP) showed the highest 

values. In general, values were higher in 3.5 cm depth (vicinity of seedball; Fig. 12c) than in 7 cm 

depth (Fig. 12d). This effect is in part due to a slight gradient in water content induced by gravity, but 

the main driver is suspected to be nutrient release from the seedball, in particular in the 

Seedball+NPK treatment. 
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Figure 13: Change of soil solution phosphorus concentration in (a) 3.5 and (b) 7 cm depth for the 

three treatments throughout the 21 d growth period of pearl millet. Symbols show arithmetic means 

(n = 6) and bars indicate standard deviation (–). 

Soil pH was higher in the seedball treatments close to the seedball (3.5 cm depth). The 

seedball+NPK treatment showed a P concentration in the soil solution one order of magnitude higher 

than the other treatments, with a decline in P concentration over time (Fig. 13a). In 7.5 cm depth, P 

concentrations were low in all treatments (Fig. 13b). 

4.5. Discussion 

4.5.1. Effects of seedballs on growth and development of pearl millet seedlings 

Seedballs did not hamper germination due to the fact that a large number of pre-trials were conducted 

in order to find the right formula with respect to seedball size, constituents, and seed number 

(Nwankwo et al., unpublished). It is well described in the literature that coating pearl millet seeds 

with nutrients in high concentration, e.g., P (Rebafka et al., 1993), binders, or other coating products 
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(Peske and Novembre, 2011) can inhibit germination. In particular, Arabic gum showed a partly 

negative influence on germination when used as binding agent in seedballs (Muehlena, 2013). 

Therefore, it is necessary to understand the effects of any additive (e.g., urea or other organic 

fertilizers) with respect to nutrient and water availability, as well as toxic effects in the vicinity of the 

germinating primary roots (Pan et al., 2016). 

In regard to the early growth, seedballs showed their efficiency within the first 3 weeks after planting, 

exactly the time span for which they were expected to be supportive. This is true in particular when 

mineral fertilizer is used as a nutrient additive. Positive effects were also obtained in other 

experiments when replacing NPK by wood ash that is a locally available natural fertilizer and 

contains water-soluble P and K compounds (Nwankwo et al., unpublished). It appears that the NPK 

fertilizer is available to the plants from the beginning and its concentration was such that no negative 

osmotic effects were observed. Similar growth-stimulating effects were reported for pearl millet 

when seeds were coated with P alone (Rebafka et al., 1993; Valluru et al., 2010). This appears 

reasonable since P is often seen as the major limiting nutrient in Sahelian sandy soils (Rebafka, 1993; 

Bationo and Buerkert, 2001). 

Enhanced root proliferation, particularly within the seedball, was detected through CT-scanning in 

seedball+NPK treatments. Further fine root analysis with WinRhizo confirmed a large fraction of fine 

roots in particular in the upper part of the treatment seedball+NPK. This is in line with high P 

concentration in soil solution in this treatment (Fig. 13). Local increase in P concentration is known 

to promote root branching (Kretzschmar et al., 1991; Hafner et al., 1993; Rebafka et al., 1994), 

particularly at seedlings stage. A significant increase in overall pearl millet yield (panicle and stover 

biomass) has been reported in the Sahelian soil characterized as low-P soil (Karanam and Vadez, 

2010). The main factor responsible for this yield increment was the early nutrient supply to the 
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seedlings at emergence stage (Rebafka et al., 1993; Valluru et al., 2010). Seedballs have the potential 

to yield similar results in Sahelian subsistence pearl millet production systems if properly produced 

and applied. 

Seedball seedlings developed more homogeneously than the more erratically behaving control (see 

error bars in Fig. 10). Growth variability is a common characteristic in Sahelian pearl millet stands 

(Gerard and Buerkert, 2001). However, since the material in the soil columns was homogeneous, the 

varying response of seedlings in the control are likely explained by non-homogeneity of seed quality 

(e.g., size or nutrient content in the kernel) which is of particular relevance if external nutrient supply 

is low. In the Sahelian context, landraces are widely cropped that are, by definition, genetically non-

uniform (Haussmann et al., 2012). This can be suspected for the local Senegalese variety, too. 

Root length density was lowest in the control treatment (Fig. 10c) and at the same time, root to shoot 

dry matter ratio was highest (Fig. 10d). These facts indicate that the control plants needed to invest 

relatively more into the root system in order to collect nutrients, since water was not a limiting factor 

in the experimental setup. CT scans indicated that seedball+NPK favored root growth in particular 

within the seedball and more general in the upper part. While this strategy is adequate for exploiting 

the fertilizer applied, it might result in an increased risk in the incidence of drought stress. In 

particular, in combination with the decrease in root:shoot ratio, a larger transpirational demand has to 

be satisfied. On the other hand, the higher root density in the upper centimeters allows exploiting 

water resources that are otherwise lost by evaporation. Additionally, the K supply by the fertilizer 

might result in higher water use efficiency. In the African Sahel, where drought is often inevitable 

particularly at early pearl millet growth stages, crop water management is crucial. This implies that 

fast development of the seedlings will be advantageous if the growth season is shortened by drought, 

but not if drought occurs early in the season. 
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One question that remains is why the seedballs without nutrient addition had a positive effect. Most 

likely, the loam added as filler contained nutrients that could be efficiently used by the small 

seedlings. Loam constitutes 35–40 % of the seedball matrix. The loam hardly contains available N if 

the source is subsoil material – as in this case. In the Sahel zone, termite mound material can as well 

serve as binding agent. Large termite mounds can contain as much as 230 mg kg–1 nitrate (Herrmann 

et al., 1994). Since termite mound material in sandy soils contains regularly more clay particles, it 

could be used where loam is otherwise not available. The measured pH of the seedball treatment was 

5.1, i.e., pH was shifted closer to the optimum for the availability of soil P. As a consequence, P 

availability was likely increased. However, this was not reflected in the soil P concentration. There 

are two factors influencing the pH change: the loam and the fertilizer components. In the case of the 

seedball treatment, the loam component alone increased the soil solution pH to 5.5–5.9. This effect is 

probably due to the low buffering capacity of the pure sand that was used as matrix in the growth 

columns. The pH value of the used fertilizer for the seedball+NPK treatment was 4.8. Therefore, as 

expected, the loam effect was reduced resulting in a pH of 5.2–5.3. The control (4.5–4.9) more or less 

reflected the bulk soil pH (4.5). In principle, soil solution pH is influenced by the form of the N 

source applied, acidic or alkaline for NH4
+ or NO3

-, respectively (Smiley, 1974; Nye, 1981; Gijsman, 

1990). However, the temporal trends are too small in the nutrient-amended seedball treatment to be 

interpreted in this respect. 

Seedball+NPK had an effect on the EC and P concentration of the soil solution in the immediate 

environment (several centimeters). The effect is only visible in the first DAP and vanishes rather fast. 

With respect to the decreasing order in the measured EC (seedball+NPK > seedball > control), again 

mineral fertilizer and the loam component can be made responsible. The fertilizer has water-soluble 

compounds and the loam contains exchangeable ions. These differences were clear on 7th DAP for 
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the nutrient-amended seedballs, but decreased in the following to non-significant differences. The 

temporal trend to decreasing values can be explained by the nutrient uptake of the seedlings, reducing 

the ion concentration in the soil solution. Osmolarity of the solution showed similar trends (data not 

presented). Due to the small soil solution volumes sampled, only P could be analyzed with respect to 

nutrients. On 7th DAP, the P concentration in the nutrient-amended seedball treatment was over 160-

times higher, compared to the control (Fig. 13a), in the upper rhizosphere. At 7 cm depth, the small 

concentration fluctuations of extreme low values hardly allow for any interpretation. Therefore, the 

spatial effect of seedballs in this respect is rather small. This is probably due to two reasons: (1) the 

nutrient amount in seedballs is, absolutely, small and (2) the roots absorb this resource rather fast 

from the soil solution. 

4.6. Conclusion 

Seedballs positively influence biomass variables of pearl millet seedlings in particular within the first 

three weeks of establishment. The higher root length density and biomass of seedlings developed 

from seedballs might increase the survival rate under Sahelian field conditions in the case of drought 

occurring late in the season. The small amounts of nutrients that can be added to seedballs only have 

a short-duration effect on plant performance. The soil solution data indicate that the nutrient 

concentration is only higher in the seedball environment during the first week. Whether this 

improved seedling establishment is sufficient to promote plant growth throughout the season needs to 

be tested under field condition. 
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5. Discussion: Are seedballs a reliable technology for pearl millet subsistence 

farming in the sandy West African Sahelian belt? 

Poor seedlings establishment continues to be the major cause of low panicle yield in the WAS 

smallholder pearl millet production system (Rebafka et al., 1993; Karanam and Vadez, 2010). The 

nutrient-deficient Arenosols characterizing this region (IUSS, 2014), the micro-variability of the soil 

(Brouwer et al., 1993; Herrmann et al., 1994), and early seasonal drought arising from the erratic 

rainfall, in particular, at the beginning of the season (Sivakumar, 1988) have been strongly linked to 

poor seedlings establishment. Coating of pearl millet seeds with pure P (Rebafka et al., 1993; 

Karanam and Vadez, 2010), soaking of seeds in  Pseudomonas fluorescens isolates i.e. seed priming 

(Raj et al., 2004) and mineral fertilization (Badiane et al., 2001; Pandey et al., 2001) have been 

generally accepted as lasting solutions to enhance seedlings establishment in the WAS region. 

However, the adoption of these techniques by the local farmers is uncertain due to lack of skills to 

practise seed treatments and lack of financial resources to acquire NPK, coupled with the 

unavailability of the specific recommended fertilizers in the market (Van der Pol and Traore, 1993). 

According to Fowler and Rockstrom (2001), the factors that increase innovation adoption in the 

context of the African smallholder farmers in particular are (i) the use of local materials (ii) simple 

applicability, and (iii) affordability. Consequently, the main goals of this study were to improve pearl 

millet seedlings establishment in WAS environment using a local material-based innovation – i.e. 

seedball technology, understand its enhancement mechanisms, and determine its agronomic benefits 

for the smallholder farmers. Hence, the main findings of this study were: 

(1) The seedball technology totally conforms to the agronomic practices of the WAS smallholder 

farmers. The farmers can independently produce and apply seedballs with freely available resources – 

i.e. sand and loam. Gender and religion seem not to pose a barrier to seedball applicability in this 
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region. In addition, the involvement of the farmers as early as the seedball development stage was 

crucial to increase its adoption by the local farmers. 

(2) The optimized seedball technology enhanced the performance of pearl millet seedlings under 

WAS conditions i.e. early seasonal drought and P-deficient soils. Wood ash and NPK as nutrient 

additives are crucial to increase pearl millet early biomass. Ammonium fertilizers as well as animal 

urine as nutrient additives, however, inhibited germination. The 2 cm diameter sized seedballs with 

randomly placed seeds allowed for optimum seedlings establishment. 

(3) The root and shoot enhancement of pearl millet seedlings by the seedball seemed to be triggered 

by an increased nutrient release, in particular P into the root zone. However, the nutrients released by 

the seedball were depleted after three weeks of planting by plant uptake. From this moment onward, 

nutrient supplementation is mandatory e.g. through organic manuring to further support the growth of 

the well-established seedlings. 

(4) The seedball technology seemed to be beneficial to the WAS local farmers. Seed usage at sowing 

was minimized. In addition, there are hints that seedball sowing is simple on the sandy soils in 

particular. However, the farmers needed more time to produce the seedballs relative to using the 

conventional seeds. 

5.1. Optimization and further tasks 

Confirming to our hypothesis, pearl millet seedlings establishment was enhanced soon after 

emergence by seedballs, in particular when NPK and wood ash were used as nutrient additives. Our 

study revealed the best recipe for making seedball dough (Sball), at which germination is not 

hampered, was derived from a mixture of 80 g sand + 50 g loam + 25 ml water + 2.5 g pearl millet 

seeds. Exactly, 10 to 11 seedballs of 2 cm diameter size can be produced from this gravimetric base 

dough mixture. Random seed placement inside the seedball showed good germination performance 
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relative to central seed placement. The diameter size and sowing depth from the soil surface for 

seedball were optimum at 2 cm and 3 cm, respectively (Chapter 3). The poor germination 

performance observed in the centrally placed seeds probably resulted from the autotoxic water-

soluble compounds produced by pearl millet roots during emergence, which declined germination at 

higher concentration (Saxena et al., 1996). This assumption is based on the fact that the pearl millet 

seeds were tightly clustered in our seedballs. The poor emergence observed in seedball sown at > 3 

cm depth could be linked to mechanical impedance, which resists small seeded species from breaking 

through substrates, in particular at > 3 cm sowing depths. Chen and Maun (1999) investigated the 

effect of sand burial on seed germination and seedling emergence in ten Calligonum species, and 

pointed out that the deeper the seeds in sand, the lower the germination. A major advantage of 

recommended seed placement relative to central seed placement is time saving during seedball 

production; the task of allocating a certain number of pearl millet seeds per seedball is minimized 

since the seeds can be directly mixed with loam, sand and water during base dough preparation. 

Sball+3gAsh and Sball+0.5gCNT treatments reduced seedlings emergence by about 40 % and 60 %, 

respectively. High osmotic pressure can be suspected for the reduced emergence, since these same 

water-soluble compounds at lower concentration in the seedball did not reduce seed germination. 

Reduced seed germination is often associated with seed coating. For instance, Rebafka et al. (1993) 

observed the same in pearl millet when seeds were coated with pure P at higher concentration. 

However, it is possible to increase seed number in the seedballs when necessary (Chapter 3). 

Considering the local farmers ability to make the seedballs by themselves, unlike seed coating with 

pure P, the challenge of reduced seedlings emergence in seedball can be tackled by increasing the 

seed content per seedball. A recommendation is to investigate the solubility of wood ash gotten from 

different sources since wood ash greatly varies in components, depending on the burnt materials, 
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combustion process and ash conditioning (Augusto et al., 2008). Ammonium fertilizer, cow urine and 

arabic gum totally inhibited seed germination in the seedball. This observation is consistent with the 

reports of Pan et al. (2016) on the toxic effect of ammonium compounds on cereal seed germination, 

particularly for ammonium fertilizer and urine. Therefore, these compounds and fertilizers that 

contain NH4
+ exclusively are not recommended as additives in seedballs; choice of fertilizer is 

crucial. Other tested potential nutrient additives in the seedball such as ruminant dung and compost 

manure showed insignificant effects on early biomass development at concentrations in the seedballs 

that did not hamper germination due to their NH4
+ content. This is contrary to the purpose of the 

seedball; hence, animal dung and compost manure were considered unsuitable as seedball nutrient 

additives. 

Seedball amendment with 1 g of NPK (Sball+1gNPK), 0.5 g CNT (Sball+0.5gCNT) and 3 g 

(Sball+3gAsh) significantly enhanced the early biomass indicators in pearl millet seedlings. The 

observed overall root length, root length density, root biomass as well as the root dry matter were 

greatly enhanced. Likewise, seedlings height, leaf development obtained through leaf counting, shoot 

biomass as well as shoot dry matter were enhanced. These observations are consistent with the 

reports of Karanam and Vadez (2010) and Valluru et al. (2010) when P in particular was supplied to 

pearl millet as early as seedlings emergence in P-deficient sandy soils. N supply increased leaf 

development (Coaldrake, 1985) as well as dry matter (Coaldrake and Pearson, 1985) in pearl millet. 

Thus, our findings corroborate the hypothesis that seedballs increase early P supply to produce, in 

turn, healthy pearl millet seedlings during the establishment phase. P content of the seeds often serve 

as nutrient source during seedlings emergence (Hall and Hodges, 1966). Hypothetically, seedball will 

show less enhancement effects with greater grain sizes due to higher P stock per single grain. The 

thousand grain weight of pearl millet varies only between 14 to 44 g per 1000 grains (Baryeh, 2002). 
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Thus, a suggestion is to experimentally test the effect of pearl millet grain size on the early biomass 

indicators. 

Seedballs did not significantly enhance P, K and Mg nutrients content in pearl millet. Nevertheless, 

total nutrient uptake, as a product of biomass and nutrient content, was significantly enhanced by 

Sball+1gNPK, Sball+3gAsh and Sball+0.5gCNT treatments (Chapter 3). Poor P and K supply results 

in poor nutrient uptake in pearl millet (Scott‐Wendt et al., 1988). In the WAS, where P content of the 

soil can be as low as 1 mg kg-1 (Manu et al., 1991), the seedball technology can be an alternative, for 

early nutrient supply, to the local farmers who cannot afford other sophisticated seed treatment 

options. The use of wood ash as nutrient additive to the seedball by the farmers would be one way of 

increasing P availability and uptake by plants. Wood ash has been shown to release P as well as 

ameliorate low soil pH (Nkana et al., 2002). The poor seedlings establishment effects of the acidic as 

well as low plant available P soils of the Sahel (Scott‐Wendt et al., 1988) on pearl millet can be 

potentially minimized through the seedball technology. In addition, the enhanced K uptake in 

seedball-derived pearl millet seedlings can potentially increase drought resilience in the Sahel, where 

early seasonal drought is sometimes inevitable (Sivakumar, 1988). Higher K uptake in pearl millet is 

positively associated with drought resistance (Ashraf et al., 1994). However, to clear these suspicious 

advantages of the seedball technology, field trials in the WAS environment are recommended since 

our experiment was conducted in pots as well as climate-controlled environments. 

5.2. Exploring mechanisms and open questions  

Previous studies of seed coating with pure P by Rebafka et al. (1993) as well as priming by Raj et al. 

(2004) and mineral fertilization (Badiane et al., 2001), obviously, increased pearl millet seedlings 

establishment and panicle yield under WAS conditions. However, a major critic to these options 

remains their inaccessibility to the WAS subsistence pearl millet farmers in particular. In this study, 
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the chemically (osmotic effect reduction, nutrient content) and physically (right diameter size, 

random seed placement) optimized seedball technology clearly enhanced pearl millet seedlings 

establishment. The investigated mechanisms behind this positive enhancement revealed that 

seedballs released nutrients that most likely improved the physico-chemical properties in the pearl 

millet root zone, compared to traditional sowing system (Chapter 4). 

As observed through the CT-scan, Sball+1gNPK in particular showed early (first 7 days), fine as well 

as intense root development in pearl millet seedlings, compared to the control. The ex-situ nutrient 

analysis of the soil solution sampled from the root zone, revealed Sball+1gNPK treatment triggered P 

nutrient release as well as cations and anions, observed through EC measurement. As a result, 

suspected nutrient uptake enhanced root development in pearl millet. The increased EC as influenced 

by the seedball in the root zone is an indicator for other nutrients (cations and anions) availability. 

According to Ho et al. (2005), deep rooting systems in plants increased P uptake. Adequate P content 

in plants is associated with drought tolerance (Zegada-Lizarazu and Iijima, 2005). Thus, the increased 

root density, as observed in our seedball, can be an important adaptation of plants for P uptake 

(Lynch, 2011). Low P availability constrains food production particularly for smallholder farmers in 

the Sahel (Verde and Matusso, 2014). A worse scenario is the loss of plant available P and other 

nutrients through plant harvest (Heckman et al., 2003), especially when both grain and stover (as 

animal feed) are harvested as often done in the Sahel. In this context, the seedball technology can be 

crucial at enhancing P, cations and anions availability as well as uptake. 

The non-nutrient amended seedball also had some positive effects (Chapter 4). However, does this 

positive effect make the addition of nutrient additives to the seedballs invalid? No, seedball needs 

nutrient additives because they are crucial to enhance the early biomass indicators. The seedlings 

enhancement effect of non-nutrient amended seedball (see Chapter 4) may be linked to zero-
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competition for nutrient due to the fact that a single seedling was grown per germination column, 

coupled with the cations supply by the 35 – 40 % loam as component of the seedballs. Loam has a 

higher cation exchange capacity relative to sand (Lorenz, 1999). The WAS sandy soil, in general, is 

low in effective cation exchange capacity (Bationo and Mokwunye, 1991), coupled with its micro-

variability nature (Herrmann et al., 1994) often associated with poor pearl millet growth (Barron et 

al., 1999). These WAS adverse conditions apparently qualify the addition of nutrient additives to the 

seedball. This is particularly important since 14 - 20 seedlings could emerge from the seedball. The 

competition for scarce nutrients has to be kept to a minimum. 

In spite of the positive effect of the seedball on pearl millet seedlings, there are needs for further 

investigation on the root development as affected by the seedball. Does the seedball increase root 

distribution several cm away from its placement? Does the seedball influence root architecture of 

pearl millet? How far away (in cm) can the seedball-released nutrients be transported in the root 

zone? And how will the seedling roots react after 3-4 weeks of establishment i.e. when soil nutrients 

are depleted? 

5.3. Reasons for biomass increment in the field  

In small seeded species, P seed reserves were often exhausted as early as 14-18 DAP (Williams, 

1948; Krigel, 1967). The observation of Williams (1948) showed that grain was the first source of P 

in cereal seeds. Hence, P- deficiency is often the consequence in particular when the growth medium 

is P deficient. Seed P reserves were translocated to the developing roots and shoot as early as 8 DAP 

(Hall and Hodges, 1966). In support of this, a review by Williams (1955) revealed  more than 90 % of 

N and P uptake accumulated when the dry matter was just 25 % of the final weight in cereals. The 

accumulated nutrients served as reserve on which all later growth depended. Consequently, the level 

of this nutrient accumulation determined the final yield in cereals. These observations indicate that 
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the seeds of small-seeded species need nutrient supplementation as early as seedlings emergence 

stage. Particularly, when the substrate is P-deficient, as in the WAS sandy soil. 

Pearl millet seeds are generally small, weighing 7–10 mg per grain. As a result, its nutrient stock is 

low. A single pearl millet grain has a seed P reserve of about 20 μg, which apparently qualifies it for 

an external P supply soon after seedling emergence (Rebafka et al., 1993). Several works have 

demonstrated that higher grain yields could be attained if the seedlings were nutritionally and 

physiologically enhanced as early as the emergence (Rebafka, 1993; Rebafka et al., 1993; Karanam 

and Vadez, 2010; Valluru et al., 2010) in particular under WAS conditions. Exactly, this is the 

primary function of the seedball technology; to supply the targeted nutrients to pearl millet seedlings 

as early as seedlings emergence (Chapters 3 and 4). Valluru et al. (2010) observed that P supply to 

pearl millet seedlings later than 19 DAS had no effect on the plant biomass. These results indicate 

that enhanced seedlings soon after emergence are a pre-requisite for higher grain yield in WAS pearl 

millet production. Likewise, seedballs produce nutritionally and physiologically (root and shoot 

biomass) enhanced pearl millet seedlings relative to the traditional sowing system (Chapters 3 and 4). 

In turn, seedballs can potentially increase pearl millet grain yield. 

Now that the potential of the seedball technology is known, long-term (> 7 years, if possible) on-farm 

trials in the Sahelian environment are highly recommended, especially under different seasonal 

conditions. This is particularly important since the Sahelian weather conditions are highly 

unpredictable as well as vary with huge differences (Sivakumar, 1988; D'amato and Lebel, 1998; 

Cooper et al., 2008; Herrmann et al., 2013; Salack et al., 2014). 

5.4. Pre-conditions for adoption  

Farmers’ perception of the risk and benefits (Sofoluwe et al., 2011), the social, economic, and 

cultural status as well as the characteristic (simple or complicated, cheap or expensive) of an 
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agricultural innovation (Pannell et al., 2006) greatly influence its adoption. Obviously, the already 

existing seed treatment (Rebafka et al., 1993; Raj et al., 2004; Karanam and Vadez, 2010) as well as 

mineral fertilization (Badiane et al., 2001; Twomlow et al., 2010; Aune and Ousman, 2011) options, 

though effective, were not developed for the smallholder farmers. Lack of skills (Brick and Visser, 

2015) to practise the seed treatments as well as financial resources (Cooper et al., 2008) to acquire 

the NPK often disallow these local farmers. Consequently, the adoption of these options is low. 

Several authors (Fowler and Rockstrom, 2001; Schlecht et al., 2006; Twomlow et al., 2010; 

Vanlauwe et al., 2010; Ayuke et al., 2011) suggested that innovations targeting the smallholder 

farmers in particular, should (i) be simple to understand (ii) depend on local resources (iii) minimize 

cropping risks as well (iv) be compatible with the social and economic status of the farmers. Based 

on these criteria, the seedball technology is a valid option. The technology is simple to understand, 

uses locally available as well as low-cost materials, and enhanced pearl millet seedlings 

establishment under WAS conditions. During the training of the farmers on seedball production, both 

female and male farmers as well as farmers of different spiritual beliefs participated. These facts 

indicate that the technology is not hampered by any gender or religious barrier of any kind. Thus, the 

seedball technology is for every farmer at will. 

In research for development, as done in this study, Herrmann et al. (2013) suggested to involve the 

target farmers as early as the development stage of an innovation. Exactly, the Sahelian farmers were 

involved during the seedball technology development (Chapter 3). An in-depth review as well as 

farmer training workshops (conducted in Louga, Senegal and Maradi, Niger Republic) revealed that 

the seedball technology absolutely conforms to the agronomic management practices for pearl millet 

production in the WAS. The local farmers of the FUMA Gaskiya farmers federation along with the 

researchers of INRAN learned the importance as well as the production of seedballs. The increment 



102 

 

in number from 45 to more than 1600 during the three years of this project is a hint that seedball 

adoption is feasible. During seedball development, the necessary changes for adaptations were 

discussed among the farmers during the training workshops. 

The seedball technology fits to dry and hand sowing. Dry sowing, to date, remains a major practice in 

the WAS agricultural system (Mulvaney et al., 2014). Farmers believe, it prolongs the vegetative 

period of the plant as well as increases the seasonal rainfall utilization. However, two major setbacks 

of dry sowing practice in the WAS are high crop failure (Salack et al., 2014) and seeds exposure to 

pests such as birds and ants (Nwanze and Sivakumar, 1990). Already, it is evident that seedballs 

minimized pest predation (Overdyck et al., 2013). Seedballs remain in the soil without germinating 

till sufficient germination conditions are met (Fukuoka, 1978). With respect to sowing, seedballs can 

be hand-sown the same way as conventional seeds. 

5.5. Summary of achievements 

This study has proven that the underutilized local resources such as wood ash, sand and loam can be 

used to enhance pearl millet seedlings establishment in the WAS through the seedball technology. 

The right mixture for making the seedball base dough was clearly identified as 80 g sand + 50 g loam 

+ 25 ml water + 2.5 g seeds. In addition, the suitable features that enhance optimum performance of 

the seedball were identified. E.g., diameter size of 2 cm, nutrient additives of either 1 g NPK or 3 g 

wood ash, random seed placement, and sowing depth of 3 cm. In addition, the seedball could be 

stored for up to 8 weeks without significantly reducing its germination. 

The seedball technology seems to save seeds. Seeds are the most important resources to a 

smallholder farmer at the season’s onset in particular (Diouf, oral comm.). For the WAS pearl millet 

production system, 4 kg ha-1 is often recommended. Note that this amount could be more when 

children do the sowing and become exhausted; as high as 300 seeds per planting pocket was observed 
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by Klaij and Hoogmoed (1993). In contrast, the seedball contains a relative fixed number of seeds, 

usually 20–25 per seedball. Thus, seed wastage is minimized irrespective of who does the sowing. 

With the seedball technology, farmers, who consistently obtain pearl millet seeds from their own 

harvest or buy from seed dealers (Ndjeunga, 2002), can save seeds as well as financial resources for 

other purposes. 

Again, there are hints that sowing is easier with the seedballs on the dominant sandy soils of the 

Sahel, compared to the conventional pearl millet seeds. Farmers can simply drop the seedball and 

step on it; thus, making holes with an auger is not required. Nevertheless, it is important to note that 

time is invested during the production of the seedballs from gathering the materials, especially the 

loam that could be fetched far from the homestead, till drying the seedballs. 

Another important achievement of the seedball technology project is networking between the local 

farmers, and their Universities as well as national scientists. This is particular evident in the Maradi 

region of Niger Republic, where pearl millet serves as the major staple cereal. The emphasis of such 

networks between farmers could play a crucial role in capacity building to address other challenges 

facing pearl millet production, as well as enhance farmers’ indigenous knowledge exchange. 

Contrary to other seed treatment technologies, the seedball technology seems to be more beneficial to 

the female farmers. The women apply the seedball through dry sowing when labour demand is less, 

thereby creating time to help their husbands at season’s on-set. 

In summary, the seedball technology will be particularly useful in the WAS as a simple and cheap 

innovation that enhances pearl millet seedlings establishment. The technology seems promising with 

respect to early biomass increment as well as its adoption by the local farmers. In addition, there were 

no identified barriers (gender or religious) of any kind in our study. 
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5.6. Open questions and further tasks 

The next steps will be to take the technology to the WAS smallholder farmers through experimentally 

designed long-term field trials as well as demonstration plots. The trials should aim at assessing the 

yield increment potential of the technology on pearl millet panicle under different Sahelian 

conditions. Another suggestion is to experimentally test whether other market-available NPK in the 

WAS, apart from NPK 15:15:15, can serve as effective nutrient additive in the seedball. 

Seedball enhanced biomass production of pearl millet seedlings (Chapters 3 and 4). Hypothetically, it 

has to be pointed out that the high biomass production could expose the well-developed seedlings to 

drought stress through higher overall water consumption. High root biomass can lead to greater 

exploitation of soil water volume. Therefore, further research needs to evaluate water consumption 

by transpiration. Cereals vary in P uptake. E.g., pearl millet has genetic variability for P uptake, usage 

and grain yield under P deficient conditions (Gemenet et al., 2016). Therefore, it might be interesting 

to, experimentally, test P uptake in different breeds of seedball-derived vs traditional pearl millet 

seedlings in a climate-controlled environment. 

Again, the overall socio-economic status of the local farmers as well as the farmers’ perception of 

seedball as an innovation necessitate investigation. The time investment from gathering all the 

seedball components to producing the seedball may play a crucial role in the adoption of the seedball 

technology. A potential hindrance factor to some farmers could be lack of loam in certain villages of 

the African Sahel (Abass, oral comm.). Clearly, loam is not as rampant as sand in the WAS; some 

farmers may need to travel up to 5 km away from their homestead in search of loam; hence, a 

toilsome workload. 

Pesticides, in larger trials, can be applied to seedballs. Diseases as well as pests that attack pearl 

millet seedlings need suitable treatments as the seedball technology developed in this study is not a 
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solution to all problems. Therefore, in working towards alleviating the challenges of seedlings 

establishment in the WAS regions, there is no particular solution that fits in all challenges. The 

Sahelian famers produce sorghum next to pearl millet. Fonio (Digitalia spp) has similar size to pearl 

millet; it is an important crop often neglected in the Sahel. It is therefore recommended to explore the 

yield improvement potential of the seedball technology on sorghum and fonio crops. The exploration 

should start under climate chamber controlled conditions, and in case of success, extend to the field 

for validation under different Sahelian weather conditions. 
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Summary (in English) 

The objectives of this study were to review the potential of the local material-based innovation – i.e. 

the seedball technology, at enhancing pearl millet seedlings establishment under Sahelian conditions, 

identify its potential constraints as well as applicability, chemically and mechanically optimize the 

seedball, and validate its performance under Sahelian field conditions. Seedball is a local seed 

pelleting techniques that aims at improving seedlings performance and to stabilize yield. 

First, the potential local materials such as sand, loam, wood ash, gum arabic, termite soil, charcoal as 

well as animal dung as the seedball components were identified and reviewed. These materials were 

selected based on their affordability to the local farmers. Potential constraints to seedball 

applicability as well as adoption in the Sahel were evaluated, and options for adaptation were 

discussed with the farmers. Afterwards, mechanical and chemical optimization of the seedball 

technology in several greenhouse experiments were conducted, followed by a germination test of the 

optimized seedball in the Sahelian field. Lastly, the mechanism of pearl millet seedlings root and 

shoot enhancement was investigated using micro-suction cup and computer tomography. 

Our evaluation showed that the materials needed for seedball production are locally available at 

affordable costs. The seedball technology totally conforms to the agronomic management practices in 

the African Sahel. In addition, the socio-economic status as well as cultural practices seemed not to 

reduce the chances of seedball technology adoption in this region. Our greenhouse studies showed 

that the seedball base dough, from which about ten 2 cm diameter-sized seedballs can be produced, is 

derived from the combination of 80 g sand + 50 g loam + 25 ml water. Either 1 g mineral fertilizer or 

3 g wood ash can be added as nutrient additive to enhance early biomass of pearl millet seedlings. 

With respect to nutrient additives, ammonium fertilizers and urea hampered seedlings emergence. 

Wood ash amended (Sball+3gAsh) and mineral fertilizer-amended seedballs (Sball+1gNPK) 
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enhanced shoot biomass by 60 % and 75-160 %, root biomass by 36 % and 94 %, and root length 

density of pearl millet by 14 % and 28 %, respectively, relative to the control. Again, the mineral 

fertilizer amended seedball in particular enhanced root dry matter by 227 %, compared to the control. 

Although the shoot nutrient content was not clearly enhanced by the seedball, nutrient extraction, 

calculated as the product of biomass yield and nutrient content, was higher in the nutrient-amended 

seedballs, compared to the conventional sowing. In Senegal, optimized seedballs showed over 95 % 

emergence in an on-station trial, indicating its viability in the Sahel region. With respect to seedball 

enhancement mechanism, the mineral fertilizer-amended seedball in particular promoted root growth 

within the vicinity of the seedball as early as 7 days after planting. The analysis of the sampled soil 

solution revealed that P as well as other cations and anions, observed through EC measurement, were 

released by the seedball in direct proximity of the seedball. Most likely, the nutrient release by the 

seedball triggered the observed fine root growth and overall higher root biomass of pearl millet 

seedlings. However, due to nutrient depletion in the root zone, nutrient supplementation was needed 

after three weeks after sowing to further promote growth of the well-established seedlings. 

At the Sahelian field, where seedlings enhancement is decisive for higher panicle yield in pearl 

millet, nutrient amended seedballs can potentially increase panicle yield under subsistence 

production. The seedball technology is cheap, and seems to have favorable conditions for adoption in 

the Sahel, coupled with its minimal seed usage and simple sowing on the sandy soil. A 

recommendation will be to conduct long-term, on-farm as well as on-station field trials, testing the 

seedball technology under different seasonal weather conditions. Pearl millet and sorghum are the 

major Sahelian staple crops. Fonio (Digitaria spp) is often neglected despite its high nutritional 

values. It is, therefore, recommended to test the seedball technology on the other fine-grained cereal 

crops. 
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Zusammenfassung (in German) 

Im Rahmen dieser Arbeit wurde das Potential von Saatkugeln, einer auf lokalen Ausgangs-materialen 

basierenden Aussaattechnologie, untersucht, um den Perlhirseanbau, insbesondere die Auflaufphase, 

unter den Bedingungen der Sahelzone zu verbessern. Die möglichen Einsatzbeschränkungen wurden 

identifiziert, die Saatkugeln bezüglich ihrer chemischen und physikalischen Eigenschaften optimiert 

und die Anwendbarkeit unter Feldbedingungen der Sahelzone validiert. Saatkugeln stellen eine 

lokale Pelletiertechnik dar, die Sand, Lehm sowie Holzasche oder einen geringen Anteil an 

Mineraldünger verwendet, um das Auflaufverhalten zu verbessern. 

Zunächst wurden die potentiellen lokalen Ausgangsmaterialien zur Herstellung der Saatkugeln wie 

zum Beispiel Sand, Lehm, Holzasche, Termitenhügelsubstrat, Gummi arabikum, Holzkohle, sowie 

Kompost identifiziert und charakterisiert. Diese Materialien wurden anhand ihrer Bezahl- und 

Verfügbarkeit für die lokalen Bauern ausgewählt. Potentielle Einschränkungen des Einsatzes der 

Saatkugeln, sowie die Adaption an die Bedingungen der Sahelzone wurden unter Einbeziehung der 

lokalen Landwirte diskutiert und evaluiert. Anschließend wurden verschiedene 

Gewächshausexperimente durchgeführt, um die physikalischen und chemischen Eigenschaften der 

Saatkugeln zu optimieren. Darauf folgte ein Keimungstest der optimierten Saatkugeln unter 

Feldbedingungen der Sahelzone. Abschließend wurden mittels Mikrosaugkerzen und 

Computertomographie die Mechanismen des Keimlingswurzelwachstums und des Sprosswachstums 

der Perlhirsekeimlinge untersucht. 

Unsere Evaluation zeigte, dass die Ausgangsmaterialien für die Saatkugelherstellung vor Ort zu 

niedrigen Kosten verfügbar sind. Die Saatkugeltechnologie entspricht den landwirtschaftlichen 

Verfahrensweisen in der afrikanischen Sahelzone und kann daher leicht angewandt werden. 

Außerdem scheinen der sozioökonomische Status und die kulturellen Praktiken der Landbevölkerung 
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einem Einsatz der Saatkugeltechnologie in dieser Region nicht negativ entgegenzustehen. Die 

Gewächshausexperimente zeigten, dass eine Mischung aus 80 g Sand, 50 g Lehm und 25 ml Wasser 

die optimale Zusammensetzung der Saatkugeln darstellt. Aus dieser Menge können zehn Saatkugeln 

mit einem Durchmesser von 2 cm hergestellt werden. Zusätzlich wurden sowohl 1 g Mineraldünger 

als auch 3 g Holzasche als Nährstoffquelle hinzugefügt, um die frühe Biomassenproduktion der 

Perlhirsenkeimlinge zu verbessern. 

Der Einsatz der Stickstoffverbindungen Ammonium und Harnstoff hemmte das Auflaufen der 

Keimlinge. Die Nährstoffadditive Holzasche bzw. Mineraldünger führten zu einer Zunahme der 

Sprossbiomasse um 60 % bzw. 75 - 160 %, der Wurzelbiomasse um 36 % bzw. 94 % und der 

Wurzellängendichte der Perlhirse um 14 % bzw. 28 %, relativ zur Kontrolle. Die Mineraldünger 

enthaltende Saatkugel erhöhte insbesondere die Wurzeltrockenmasse um 227 % im Vergleich zur 

Kontrolle. Der Nährstoffgehalt des Sprosses nach Anwendung der Saatkugel-Technologie war nicht 

eindeutig erhöht. Jedoch war die Nährstoffextraktion, berechnet als Produkt aus Biomasseertrag und 

Nährstoffgehalt, bei den mit Nährstoffen angereicherten Saatkugeln, höher als bei herkömmlicher 

Aussaat. 

In Senegal zeigten die optimierte Saatkugeln in einem Stationsversuch eine Auflaufrate von über 95 

%. Die Mineraldüngervariante zeigte bereits 7 Tage nach der Aussaat eine Steigerung des 

Wurzelwachstum in der Nähe der Saatkugel. Die Leitfähigkeitsmessung der Bodenlösung im 

Rhizotronversuch zeigte, dass Nährstoffe aus der Saatkugel herausdiffundierten. 

Höchstwahrscheinlich löste die Nährstofffreisetzung aus der Saatkugel das beobachtete 

Feinwurzelwachstum und die positive Gesamtwurzelentwicklung der Perlhirsesämlinge aus. 

Aufgrund der Nährstoffverarmung in der Wurzelzone drei Wochen nach der Keimung wird jedoch 

eine weitere Nährstoffgabe erforderlich, um das Wachstum der etablierten Sämlinge weiter zu 
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fördern. 

Auf den Arenosolen der Sahelzone können Saatkugeln mit zugesetzten Nährstoffen den 

Biomasseertrag in der Subsistenzlandwirtschaft erhöhen. Die Saatkugeltechnologie ist kostengünstig 

und es scheint keine soziokulturellen Gründe zu geben, die gegen ein Anwendung sprächen. Die 

Technologie ist mit einem minimalen Saatgutverbrauch bei einfacher Aussaat auf sandigem Boden 

verbunden. Als weiterer Schritt sollten mehrjährige Freilandversuche unter realen Bedingungen auf 

Subsistenzbetrieben in der Sahelzone durchgeführt werden. Perlhirse und Sorghum sind die 

Grundnahrungsmittel. Fonio (Digitaria spp.) wird trotz seiner hohen Nährwerte oft vernachlässigt. Es 

wird empfohlen, die Saatkugel-Technologie mit Sorghum- und Fonio-Kulturen zu testen. 
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Seedball Technology Fact Sheet 2017 

A. Introduction 

The seedball as technology was born in the frame of the permaculture movement in Japan to cultivate 

in areas normally unsuitable for cropping. It was then adapted in Australia for rangeland amelioration 

and finally adopted by the “guerrilla gardening” community and is distributed today for this purpose 

by organisations like Greenpeace. 

B. Background 

With respect to natural resources the semi-arid Sahelian environment is characterised by high 

climatic variability in space and time. The growing season is short (approximately 3 months), its 

beginning unpredictable and early season droughts after sowing common. Cropping risk is further 

increased by sandy soils with low nutrient status and low water holding capacity. Farmers are mainly 

subsistence oriented smallholders with low investment capital. Due to the short cropping season 

timely sowing is crucial in order to capture the yield potential. Every day of later sowing is 

decreasing the yield potential. That is why dry sowing before the season is commonly practiced. 

However dry sowing has its risks including predation of the seeds e.g. by rodents or birds and crop 

loss due to early droughts after minimal rains that led to seed germination. 

C. The seedball concept 

Seedballs are simply a mixture of soil materials that stick together, water, seeds and additives that 

improve plant performance. The latter can be nutrients, pesticides or anti-rodent components. In the 

framework of the SMIL-programme emphasis was on optimisation of the nutrient content. The 

principle idea followed was that the seedballs should be based on local materials that are affordable 

for subsistence farmers. 
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Hypotheses why seedballs should work in the Sahelian context: 

1. They conserve the seed under dry sowing against rodents, birds and other pests by physical 

protection. 

2. Seeds do not germinate under too low rainfall. 

3. In the soil they attract water due to a higher matric potential resulting in faster germination. 

4. Seedballs deliver constraining nutrients in the early growing phase. 

5. Subsequent better root establishment and K delivery lead to better water use efficiency and in turn 

a higher survival rate in case of early drought. 

6. Better root establishment allows to catch nutrients otherwise leached. 

7. Higher root density leads to higher total nutrient uptake and early biomass production. 

D. Seedball optimisation 

Decisive for the seedball success is an optimal germination rate. Therefore, first the physical 

properties needed to be optimised. Seedballs with a diameter of 1.5-2cm diameter showed the best 

responses in this respect. 

In the next step nutrient content needed to be maximised without hampering the germination rate. For 

this purpose NPK fertiliser and woodash as a locally available multicomponent fertiliser were tested. 

E. The final seedball recipe 2nd phase: On-farm testing 

In 2016 more than 150 on-farm tests were conducted in the Maradi region of Niger. Out of those 53 

could be used to determine the statistical difference to conventional sowing since they included the 

information on the panicle yield of the control. 
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Table 3: On-farm panicle yield difference of the seeball technology compared to conventional 

farmers’ sowing practice in the Maradi region of Niger 2016 given in % 

All treatments Sandy soils Loamy soils 

+29 

(n=58, p=0.02) 

+27 

(n=30, p=0.06) 

+32 

(n=20, p=0.24) 

 

F. Laboratory results on the mechanisms behind seeball success 

Laboratory and greenhouse trials showed in 2016 and 2017 that nutrient amended seedballs lead to 

better root development (density and distribution) and higher nutrient uptake particularly in the first 

two weeks after sowing. Then the nutrients provided by the seedballs are exhausted and additional 

fertilisation needs to take place. 

G. The way forward 

In 2017 on-farm trials are conducted in the Maradi region of Niger. More than 1000 volunteer 

participants were recorded by the local farmer organisation, Fuma Gasikya. In addition, greenhouse 

trials shall evaluate the response of seedballs to early drought conditions. In future, mechanisation of 

seeball production needs to be improved in order to attract the attention of male farmers. 
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Figure 14: Influence of seedball on pearl millet seedlings establishment in an on-farm trial at three 

weeks after planting in Maradi region, Niger. 
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Seedball dataset  

Physical and chemical optimisation of the seedball technology addressing pearl millet under 

Sahelian conditions 

Table 4: The effect of treatment and seedball diameter size (Sball_diam) on pearl millet germination 

(Germ), height and leaf development 9 days after sowing at the greenhouse of ISRA/CNRA research 

station, Bambey, Senegal. Treatment (n = 6) column shows Control = non-pelleted seeds, Sball = 80 

g sand + 50 g loam + 25 ml water, NPK = 15:15:15 mineral fertilizer, Cha = charcoal, Comp = 

compost, Term = termite soil and Man = manure. 

Treatment Rep Sball_diam (cm) Germ (#/20) Height (cm) Leaf (#) 

Control 1 1 18 12 2 

Control 2 1 19 14 2 

Control 3 1 12 12 2 

Control 4 1 12 13 2 

Control 5 1 13 13 2 

Control 6 1 14 12 2 

Sball 1 1 1 14 2 

Sball 2 1 2 12 3 

Sball 3 1 . . . 

Sball 4 1 . . . 

Sball 5 1 . . . 

Sball 6 1 1 18 3 

Sball+30gCha 1 1 1 10 2 

Sball+30gCha 2 1 1 10 2 

Sball+30gCha 3 1 6 14 3 

Sball+30gCha 4 1 4 12 2 

Sball+30gCha 5 1 3 14 2 

Sball+30gCha 6 1 2 13 2 

Sball+30mlComp 1 1 . . . 

Sball+30mlComp 2 1 1 6 1 

Sball+30mlComp 3 1 5 16 2 

Sball+30mlComp 4 1 2 14 2 

Sball+30mlComp 5 1 . . . 

Sball+30mlComp 6 1 4 8 2 
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Sball+4gMan 1 1 3 13 2 

Sball+4gMan 2 1 1 13 2 

Sball+4gMan 3 1 1 4 1 

Sball+4gMan 4 1 9 12 2 

Sball+4gMan 5 1 . . . 

Sball+4gMan 6 1 1 10 2 

Sball+30gTerm 1 1 4 15 2 

Sball+30gTerm 2 1 3 10 2 

Sball+30gTerm 3 1 . . . 

Sball+30gTerm 4 1 . . . 

Sball+30gTerm 5 1 . . . 

Sball+30gTerm 6 1 7 12 2 

Control 1 2 18 12 2 

Control 2 2 19 14 2 

Control 3 2 12 12 2 

Control 4 2 12 13 2 

Control 5 2 13 13 2 

Control 6 2 14 12 2 

Sball 1 2 1 14 2 

Sball 2 2 6 12 2 

Sball 3 2 5 13 2 

Sball 4 2 2 7 2 

Sball 5 2 8 13 2 

Sball 6 2 . . . 

Sball+30gCha 1 2 3 12 3 

Sball+30gCha 2 2 6 16 2 

Sball+30gCha 3 2 2 10 3 

Sball+30gCha 4 2 1 4 2 

Sball+30gCha 5 2 1 9 2 

Sball+30gCha 6 2 8 14 3 

Sball+30mlComp 1 2 . . . 

Sball+30mlComp 2 2 6 14 2 

Sball+30mlComp 3 2 1 15 3 

Sball+30mlComp 4 2 2 9 2 

Sball+30mlComp 5 2 . . . 

Sball+30mlComp 6 2 2 11 2 

Sball+4gMan 1 2 1 3 1 

Sball+4gMan 2 2 4 10 2 

Sball+4gMan 3 2 2 13 2 

Sball+4gMan 4 2 . . . 

Sball+4gMan 5 2 . . . 
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Sball+4gMan 6 2 . . . 

Sball+30gTerm 1 2 8 15 2 

Sball+30gTerm 2 2 8 13 2 

Sball+30gTerm 3 2 4 13 2 

Sball+30gTerm 4 2 . . . 

Sball+30gTerm 5 2 3 9 2 

Sball+30gTerm 6 2 . . . 

Control 1 3 18 12 2 

Control 2 3 19 14 2 

Control 3 3 12 12 2 

Control 4 3 12 13 2 

Control 5 3 13 13 2 

Control 6 3 14 12 2 

Sball 1 3 2 3 1 

Sball 2 3 1 11 2 

Sball 3 3 15 12 3 

Sball 4 3 7 11 2 

Sball 5 3 4 15 3 

Sball 6 3 5 12 2 

Sball+30gCha 1 3 1 14 2 

Sball+30gCha 2 3 5 8 2 

Sball+30gCha 3 3 2 3 1 

Sball+30gCha 4 3 14 13 2 

Sball+30gCha 5 3 11 11 3 

Sball+30gCha 6 3 10 14 3 

Sball+30mlComp 1 3 . . . 

Sball+30mlComp 2 3 1 5 2 

Sball+30mlComp 3 3 3 16 3 

Sball+30mlComp 4 3 5 15 2 

Sball+30mlComp 5 3 . . . 

Sball+30mlComp 6 3 . . . 

Sball+4gMan 1 3 1 12 2 

Sball+4gMan 2 3 1 5 2 

Sball+4gMan 3 3 2 6 1 

Sball+4gMan 4 3 2 11 2 

Sball+4gMan 5 3 . . . 

Sball+4gMan 6 3 . . . 

Sball+30gTerm 1 3 10 11 2 

Sball+30gTerm 2 3 6 12 2 

Sball+30gTerm 3 3 3 13 2 

Sball+30gTerm 4 3 . . . 
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Sball+30gTerm 5 3 8 14 3 

Sball+30gTerm 6 3 1 14 3 
 

Table 5: Effect of seed position in the seedball on pearl millet germination 7 days after sowing for 

different treatments factors at the greenhouse of ISRA/CNRA research station, Bambey, Senegal. The 

treatment (n = 6) column shows Control = non-pelleted seeds, Sball = 80 g sand + 50 g loam + 25 ml 

water, Ash = wood ash, NPK = 15:15:15 mineral fertiliser, diam = seedball diameter size in cm. 

GermCentralized = seed placement at the core centre of the seedball and GermRandomized = 

scattered seed placement in seedball. 

Treatment Rep GermCentralized (#/15) GermRandomized (#/15) 

Control 1 13 14 

Sball+3gAsh+1cmdiam 1 7 12 

Sball+3gAsh+2cmdiam 1 5 11 

Sball+3gAsh+3cmdiam 1 3 15 

Sball+1gNPK+1cmdiam 1 8 12 

Sball+1gNPK+2cmdiam 1 5 11 

Sball+1gNPK+3cmdiam 1 3 14 

Control 2 13 14 

Sball+1gNPK+1cmdiam 2 8 12 

Sball+3gAsh+1cmdiam 2 7 12 

Sball+1gNPK+2cmdiam 2 5 11 

Sball+3gAsh+2cmdiam 2 5 11 

Sball+1gNPK+3cmdiam 2 3 14 

Sball+3gAsh+3cmdiam 2 3 15 

Control 3 12 13 

Sball+1gNPK+1cmdiam 3 7 11 

Sball+3gAsh+1cmdiam 3 6 9 

Sball+1gNPK+2cmdiam 3 4 9 

Sball+3gAsh+2cmdiam 3 4 10 

Sball+1gNPK+3cmdiam 3 2 12 

Sball+3gAsh+3cmdiam 3 3 11 

Control 4 10 10 

Sball+1gNPK+1cmdiam 4 6 9 

Sball+3gAsh+1cmdiam 4 6 9 

Sball+1gNPK+2cmdiam 4 4 10 
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Sball+3gAsh+2cmdiam 4 3 10 

Sball+1gNPK+3cmdiam 4 2 12 

Sball+3gAsh+3cmdiam 4 2 12 

Control 5 13 14 

Sball+1gNPK+1cmdiam 5 8 12 

Sball+3gAsh+1cmdiam 5 7 12 

Sball+1gNPK+2cmdiam 5 5 11 

Sball+3gAsh+2cmdiam 5 5 11 

Sball+1gNPK+3cmdiam 5 3 14 

Sball+3gAsh+3cmdiam 5 3 15 

Control 6 11 12 

Sball+1gNPK+1cmdiam 6 6 10 

Sball+3gAsh+1cmdiam 6 5 10 

Sball+1gNPK+2cmdiam 6 3 9 

Sball+3gAsh+2cmdiam 6 3 9 

Sball+1gNPK+3cmdiam 6 1 12 

Sball+3gAsh+3cmdiam 6 1 13 
 

Table 6: Treatment effects on pearl millet survival (GermSurv) after germination, germination 

number (MaxGerm) as well as time (MxGermTime) 7 days after sowing at the greenhouse of 

University of Hohenheim, Germany. Treatment (n = 6) column shows Control = non-pelleted seeds, 

Seedball = 2 cm diameter sized-seedball made from a mixture of 80 g sand + 50 g loam + 25 ml 

water, Ash = wood ash, NPK = 25 ml 17:17:17 mineral fertiliser and CNT = calcium nitrate 

tetrahydrate. 

Treatment Rep GermSurv (#/10) MaxGerm (#/10) MxGermTime (day) 

Control 1 9 9 3 

Sball 1 9 9 5 

Sball+1gNPK 1 8 9 6 

Sball+3gAsh 1 2 3 8 

Sball+0.1gCNT 1 10 10 5 

Sball+0.5gNPK 1 10 10 6 

Sball+0.5gCNT 1 3 3 3 

Control 2 8 9 6 

Sball 2 7 7 4 

Sball+1gNPK 2 6 6 5 
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Sball+3gAsh 2 5 6 8 

Sball+0.1gCNT 2 8 8 4 

Sball+0.5gNPK 2 9 10 6 

Sball+0.5gCNT 2 1 2 6 

Control 3 8 8 4 

Sball 3 9 9 4 

Sball+1gNPK 3 6 6 5 

Sball+3gAsh 3 8 8 8 

Sball+0.1gCNT 3 6 6 5 

Sball+0.5gNPK 3 8 9 6 

Sball+0.5gCNT 3 1 1 5 

Control 4 6 8 4 

Sball 4 8 10 4 

Sball+1gNPK 4 4 4 5 

Sball+3gAsh 4 3 3 11 

Sball+0.1gCNT 4 10 10 5 

Sball+0.5gNPK 4 6 6 6 

Sball+0.5gCNT 4 . . . 

Control 5 8 8 4 

Sball 5 9 9 6 

Sball+1gNPK 5 8 8 6 

Sball+3gAsh 5 4 4 8 

Sball+0.1gCNT 5 9 9 5 

Sball+0.5gNPK 5 7 10 5 

Sball+0.5gCNT 5 3 5 6 

Control 6 5 6 3 

Sball 6 9 10 6 

Sball+1gNPK 6 8 8 7 

Sball+3gAsh 6 4 5 8 

Sball+0.1gCNT 6 8 8 6 

Sball+0.5gNPK 6 8 8 6 

Sball+0.5gCNT 6 5 5 5 
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Table 7: Treatment effects on pearl millet root length (Rootlen), root dry matter (Rootdrymat), shoot 

biomass (Shootbio), shoot dry matter (Shootdrymat), root biomass (Rootbio) and root length density 

(Rootden) 28 days after sowing at the greenhouse of University of Hohenheim, Germany. Treatment 

(n = 6) column shows Control = non-pelleted seeds, Seedball = 2 cm diameter sized-seedball made 

from a mixture of 80 g sand + 50 g loam + 25 ml water, Ash = wood ash, NPK = 25 ml 17:17:17 

mineral fertiliser and CNT = calcium nitrate tetrahydrate. 

Treatment Rep 
Rootlen  

(cm) 
Rootdrymat  

(g) 
Shootbio  

(g) 
Shootdrymat 

(g) 
Rootbio  

(g) 
Rootden  
(cm cm-3) 

Control 1 808 0.04 0.36 0.07 0.21 0.52 

Sball 1 639 0.03 0.33 0.06 0.17 0.41 

Sball+1gNPK 1 1272 0.07 0.66 0.12 0.46 0.81 

Sball+3gAsh 1 1611 0.07 1.07 0.17 0.52 1.03 

Sball+0.1gCNT 1 684 0.04 0.40 0.08 0.26 0.44 

Sball+0.5gNPK 1 779 0.05 0.39 0.07 0.34 0.50 

Sball+0.5gCNT 1 1370 0.04 1.03 0.16 0.54 0.88 

Control 2 917 0.04 0.49 0.09 0.26 0.59 

Sball 2 920 0.06 0.52 0.11 0.33 0.59 

Sball+1gNPK 2 1865 0.11 0.99 0.20 0.75 1.19 

Sball+3gAsh 2 1102 0.06 0.65 0.13 0.34 0.71 

Sball+0.1gCNT 2 942 0.05 0.45 0.10 0.27 0.60 

Sball+0.5gNPK 2 609 0.03 0.34 0.07 0.19 0.39 

Sball+0.5gCNT 2 . . 2.49 0.42 1.27 . 

Control 3 981 0.04 0.47 0.08 0.25 0.63 

Sball 3 773 0.04 0.40 0.08 0.28 0.49 

Sball+1gNPK 3 1427 0.07 0.90 0.19 0.44 0.91 

Sball+3gAsh 3 786 0.04 0.46 0.09 0.22 0.50 

Sball+0.1gCNT 3 1707 0.07 0.61 0.13 0.47 1.09 

Sball+0.5gNPK 3 828 0.04 0.42 0.07 0.30 0.53 

Sball+0.5gCNT 3 . . 2.35 0.27 0.68 . 

Control 4 1506 0.05 0.58 0.11 0.36 0.96 

Sball 4 825 0.03 0.44 0.08 0.27 0.53 

Sball+1gNPK 4 2075 0.14 1.25 0.28 0.71 1.33 

Sball+3gAsh 4 1355 0.09 0.95 0.16 0.41 0.87 

Sball+0.1gCNT 4 983 0.03 0.39 0.08 0.25 0.63 

Sball+0.5gNPK 4 1146 0.05 0.49 0.07 0.36 0.73 

Sball+0.5gCNT 4 . . . . . . 
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Control 5 864 0.04 0.41 0.08 0.28 0.55 

Sball 5 715 0.02 0.37 0.06 0.16 0.46 

Sball+1gNPK 5 1081 0.05 0.59 0.11 0.46 0.69 

Sball+3gAsh 5 1140 0.03 0.69 0.10 0.26 0.73 

Sball+0.1gCNT 5 720 0.03 0.45 0.08 0.17 0.46 

Sball+0.5gNPK 5 1011 0.04 0.49 0.09 0.32 0.65 

Sball+0.5gCNT 5 921 0.06 0.88 . 0.52 0.59 

Control 6 1320 0.06 0.65 0.14 0.36 0.84 

Sball 6 839 0.04 0.38 0.07 0.30 0.54 

Sball+1gNPK 6 751 0.07 0.75 0.16 0.51 0.48 

Sball+3gAsh 6 1360 0.17 0.89 0.17 0.59 0.87 

Sball+0.1gCNT 6 893 0.03 0.46 0.09 0.21 0.57 

Sball+0.5gNPK 6 1148 0.07 0.49 0.10 0.32 0.73 

Sball+0.5gCNT 6 1314 0.08 0.67 0.12 0.62 0.84 
 

 

Table 8: Pearl millet height and leaf development per plant for different treatments at the greenhouse 

of University of Hohenheim, Germany. Treatment (n = 6) column shows Control = non-pelleted 

seeds, Sball = 2 cm diameter sized-seedball made from a mixture of = 80 g sand + 50 g loam + 25 ml 

water, Ash = wood ash, and NPK = 15:15:15 mineral fertiliser. 

Treatment Rep Time (day) Height (cm) Leaf (#) 

Control 1 4 7 1 

Sball 1 4 5 1 

Sball+1gNPK 1 4 6 1 

Sball+3gAsh 1 4 . . 

Sball+0.1gCNT 1 4 6 1 

Sball+0.5gNPK 1 4 . . 

Sball+0.5gCNT 1 4 8 1 

Control 2 4 8 1 

Sball 2 4 6 1 

Sball+1gNPK 2 4 5 1 

Sball+3gAsh 2 4 . . 

Sball+0.1gCNT 2 4 5 1 

Sball+0.5gNPK 2 4 . . 

Sball+0.5gCNT 2 4 . . 

Control 3 4 7 1 



134 

 

Sball 3 4 8 1 

Sball+1gNPK 3 4 5 1 

Sball+3gAsh 3 4 2 1 

Sball+0.1gCNT 3 4 4 1 

Sball+0.5gNPK 3 4 . . 

Sball+0.5gCNT 3 4 . . 

Control 4 4 8 1 

Sball 4 4 8 1 

Sball+1gNPK 4 4 7 1 

Sball+3gAsh 4 4 . . 

Sball+0.1gCNT 4 4 5 1 

Sball+0.5gNPK 4 4 . . 

Sball+0.5gCNT 4 4 . . 

Control 5 4 7 1 

Sball 5 4 5 1 

Sball+1gNPK 5 4 6 1 

Sball+3gAsh 5 4 . . 

Sball+0.1gCNT 5 4 5 1 

Sball+0.5gNPK 5 4 . . 

Sball+0.5gCNT 5 4 4 1 

Control 6 4 6 1 

Sball 6 4 5 1 

Sball+1gNPK 6 4 4 1 

Sball+3gAsh 6 4 . . 

Sball+0.1gCNT 6 4 4 1 

Sball+0.5gNPK 6 4 . . 

Sball+0.5gCNT 6 4 4 1 

Control 1 8 11 1 

Sball 1 8 8 1 

Sball+1gNPK 1 8 10 1 

Sball+3gAsh 1 8 . . 

Sball+0.1gCNT 1 8 1 1 

Sball+0.5gNPK 1 8 8 1 

Sball+0.5gCNT 1 8 12 1 

Control 2 8 10 2 

Sball 2 8 8 1 

Sball+1gNPK 2 8 9 1 

Sball+3gAsh 2 8 . . 

Sball+0.1gCNT 2 8 10 1 

Sball+0.5gNPK 2 8 7 1 

Sball+0.5gCNT 2 8 3 1 
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Control 3 8 11 1 

Sball 3 8 11 1 

Sball+1gNPK 3 8 11 1 

Sball+3gAsh 3 8 5 1 

Sball+0.1gCNT 3 8 12 2 

Sball+0.5gNPK 3 8 6 1 

Sball+0.5gCNT 3 8 3 1 

Control 4 8 11 1 

Sball 4 8 11 1 

Sball+1gNPK 4 8 10 1 

Sball+3gAsh 4 8 . . 

Sball+0.1gCNT 4 8 9 1 

Sball+0.5gNPK 4 8 6 1 

Sball+0.5gCNT 4 8 . . 

Control 5 8 9 1 

Sball 5 8 7 1 

Sball+1gNPK 5 8 9 1 

Sball+3gAsh 5 8 . . 

Sball+0.1gCNT 5 8 8 1 

Sball+0.5gNPK 5 8 7 1 

Sball+0.5gCNT 5 8 8 1 

Control 6 8 10 2 

Sball 6 8 9 1 

Sball+1gNPK 6 8 9 1 

Sball+3gAsh 6 8 3 1 

Sball+0.1gCNT 6 8 7 1 

Sball+0.5gNPK 6 8 6 1 

Sball+0.5gCNT 6 8 7 2 

Control 1 12 24 2 

Sball 1 12 19 2 

Sball+1gNPK 1 12 23 2 

Sball+3gAsh 1 12 8 2 

Sball+0.1gCNT 1 12 19 2 

Sball+0.5gNPK 1 12 21 2 

Sball+0.5gCNT 1 12 25 2 

Control 2 12 23 2 

Sball 2 12 22 2 

Sball+1gNPK 2 12 25 2 

Sball+3gAsh 2 12 13 2 

Sball+0.1gCNT 2 12 25 2 

Sball+0.5gNPK 2 12 21 2 
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Sball+0.5gCNT 2 12 14 2 

Control 3 12 22 2 

Sball 3 12 22 2 

Sball+1gNPK 3 12 27 2 

Sball+3gAsh 3 12 15 2 

Sball+0.1gCNT 3 12 24 2 

Sball+0.5gNPK 3 12 16 2 

Sball+0.5gCNT 3 12 10 2 

Control 4 12 22 2 

Sball 4 12 24 2 

Sball+1gNPK 4 12 24 2 

Sball+3gAsh 4 12 6 2 

Sball+0.1gCNT 4 12 23 2 

Sball+0.5gNPK 4 12 18 2 

Sball+0.5gCNT 4 12 . . 

Control 5 12 22 2 

Sball 5 12 22 2 

Sball+1gNPK 5 12 23 2 

Sball+3gAsh 5 12 8 2 

Sball+0.1gCNT 5 12 21 2 

Sball+0.5gNPK 5 12 21 2 

Sball+0.5gCNT 5 12 16 2 

Control 6 12 21 2 

Sball 6 12 19 2 

Sball+1gNPK 6 12 25 2 

Sball+3gAsh 6 12 14 2 

Sball+0.1gCNT 6 12 20 2 

Sball+0.5gNPK 6 12 21 2 

Sball+0.5gCNT 6 12 18 2 

Control 1 16 27 3 

Sball 1 16 27 3 

Sball+1gNPK 1 16 32 4 

Sball+3gAsh 1 16 12 3 

Sball+0.1gCNT 1 16 23 3 

Sball+0.5gNPK 1 16 24 3 

Sball+0.5gCNT 1 16 29 2 

Control 2 16 26 3 

Sball 2 16 23 3 

Sball+1gNPK 2 16 35 3 

Sball+3gAsh 2 16 19 3 

Sball+0.1gCNT 2 16 32 3 
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Sball+0.5gNPK 2 16 23 3 

Sball+0.5gCNT 2 16 20 3 

Control 3 16 27 3 

Sball 3 16 24 3 

Sball+1gNPK 3 16 38 3 

Sball+3gAsh 3 16 22 3 

Sball+0.1gCNT 3 16 30 3 

Sball+0.5gNPK 3 16 21 3 

Sball+0.5gCNT 3 16 11 3 

Control 4 16 26 3 

Sball 4 16 26 3 

Sball+1gNPK 4 16 32 4 

Sball+3gAsh 4 16 13 4 

Sball+0.1gCNT 4 16 24 3 

Sball+0.5gNPK 4 16 21 3 

Sball+0.5gCNT 4 16 . . 

Control 5 16 23 3 

Sball 5 16 27 3 

Sball+1gNPK 5 16 28 3 

Sball+3gAsh 5 16 13 3 

Sball+0.1gCNT 5 16 24 3 

Sball+0.5gNPK 5 16 24 3 

Sball+0.5gCNT 5 16 19 3 

Control 6 16 26 3 

Sball 6 16 20 3 

Sball+1gNPK 6 16 36 3 

Sball+3gAsh 6 16 19 4 

Sball+0.1gCNT 6 16 24 3 

Sball+0.5gNPK 6 16 25 3 

Sball+0.5gCNT 6 16 29 3 

Control 1 20 28 3 

Sball 1 20 33 4 

Sball+1gNPK 1 20 38 4 

Sball+3gAsh 1 20 19 4 

Sball+0.1gCNT 1 20 31 4 

Sball+0.5gNPK 1 20 26 3 

Sball+0.5gCNT 1 20 38 3 

Control 2 20 36 3 

Sball 2 20 29 3 

Sball+1gNPK 2 20 44 4 

Sball+3gAsh 2 20 31 3 
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Sball+0.1gCNT 2 20 40 4 

Sball+0.5gNPK 2 20 26 3 

Sball+0.5gCNT 2 20 31 4 

Control 3 20 38 3 

Sball 3 20 30 3 

Sball+1gNPK 3 20 45 4 

Sball+3gAsh 3 20 31 3 

Sball+0.1gCNT 3 20 37 3 

Sball+0.5gNPK 3 20 26 3 

Sball+0.5gCNT 3 20 22 4 

Control 4 20 35 3 

Sball 4 20 27 3 

Sball+1gNPK 4 20 39 4 

Sball+3gAsh 4 20 26 3 

Sball+0.1gCNT 4 20 33 3 

Sball+0.5gNPK 4 20 23 2 

Sball+0.5gCNT 4 20 . . 

Control 5 20 30 3 

Sball 5 20 31 3 

Sball+1gNPK 5 20 35 4 

Sball+3gAsh 5 20 23 3 

Sball+0.1gCNT 5 20 35 3 

Sball+0.5gNPK 5 20 26 3 

Sball+0.5gCNT 5 20 34 4 

Control 6 20 36 3 

Sball 6 20 22 2 

Sball+1gNPK 6 20 40 4 

Sball+3gAsh 6 20 34 3 

Sball+0.1gCNT 6 20 33 3 

Sball+0.5gNPK 6 20 28 3 

Sball+0.5gCNT 6 20 27 2 

Control 1 24 43 3 

Sball 1 24 38 4 

Sball+1gNPK 1 24 56 4 

Sball+3gAsh 1 24 50 4 

Sball+0.1gCNT 1 24 48 4 

Sball+0.5gNPK 1 24 44 3 

Sball+0.5gCNT 1 24 67 3 

Control 2 24 55 3 

Sball 2 24 48 3 

Sball+1gNPK 2 24 54 4 
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Sball+3gAsh 2 24 51 3 

Sball+0.1gCNT 2 24 45 4 

Sball+0.5gNPK 2 24 40 3 

Sball+0.5gCNT 2 24 60 4 

Control 3 24 46 3 

Sball 3 24 40 3 

Sball+1gNPK 3 24 63 4 

Sball+3gAsh 3 24 49 3 

Sball+0.1gCNT 3 24 49 3 

Sball+0.5gNPK 3 24 47 3 

Sball+0.5gCNT 3 24 50 4 

Control 4 24 50 3 

Sball 4 24 44 3 

Sball+1gNPK 4 24 55 4 

Sball+3gAsh 4 24 55 3 

Sball+0.1gCNT 4 24 41 3 

Sball+0.5gNPK 4 24 52 2 

Sball+0.5gCNT 4 24 . . 

Control 5 24 40 3 

Sball 5 24 41 3 

Sball+1gNPK 5 24 46 4 

Sball+3gAsh 5 24 55 3 

Sball+0.1gCNT 5 24 46 3 

Sball+0.5gNPK 5 24 41 3 

Sball+0.5gCNT 5 24 50 4 

Control 6 24 48 3 

Sball 6 24 45 2 

Sball+1gNPK 6 24 55 4 

Sball+3gAsh 6 24 54 3 

Sball+0.1gCNT 6 24 44 3 

Sball+0.5gNPK 6 24 43 3 

Sball+0.5gCNT 6 24 50 2 

Control 1 28 47 4 

Sball 1 28 41 4 

Sball+1gNPK 1 28 56 4 

Sball+3gAsh 1 28 56 5 

Sball+0.1gCNT 1 28 48 4 

Sball+0.5gNPK 1 28 48 4 

Sball+0.5gCNT 1 28 68 4 

Control 2 28 57 4 

Sball 2 28 50 4 
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Sball+1gNPK 2 28 54 4 

Sball+3gAsh 2 28 56 3 

Sball+0.1gCNT 2 28 45 5 

Sball+0.5gNPK 2 28 45 4 

Sball+0.5gCNT 2 28 69 5 

Control 3 28 46 4 

Sball 3 28 44 4 

Sball+1gNPK 3 28 63 4 

Sball+3gAsh 3 28 50 3 

Sball+0.1gCNT 3 28 50 4 

Sball+0.5gNPK 3 28 47 4 

Sball+0.5gCNT 3 28 53 5 

Control 4 28 54 4 

Sball 4 28 48 3 

Sball+1gNPK 4 28 60 4 

Sball+3gAsh 4 28 62 4 

Sball+0.1gCNT 4 28 45 4 

Sball+0.5gNPK 4 28 52 4 

Sball+0.5gCNT 4 28 . . 

Control 5 28 46 4 

Sball 5 28 47 4 

Sball+1gNPK 5 28 48 4 

Sball+3gAsh 5 28 62 4 

Sball+0.1gCNT 5 28 50 4 

Sball+0.5gNPK 5 28 46 4 

Sball+0.5gCNT 5 28 53 5 

Control 6 28 49 4 

Sball 6 28 45 3 

Sball+1gNPK 6 28 60 4 

Sball+3gAsh 6 28 60 5 

Sball+0.1gCNT 6 28 47 4 

Sball+0.5gNPK 6 28 43 4 

Sball+0.5gCNT 6 28 52 5 
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Table 9: Pearl millet seedlings emergence 8 days afer sowing for three treatments as affected by 

storage time at the greenhouse of University of Hohenheim, Germany. Treatment (n = 20) column 

shows Control = non-pelleted seeds, Sball = 2 cm diameter sized-seedball made from a mixture of = 

80 g sand + 50 g loam + 25 ml water, Ash = wood ash and NPK = 15:15:15 mineral fertiliser. 

Treatment Rep Time (week) Germination (#/20) 

Control 1 1 19 

Control 2 1 18 

Control 3 1 19 

Control 4 1 20 

Control 5 1 18 

Control 6 1 21 

Control 7 1 19 

Control 8 1 20 

Control 9 1 21 

Control 10 1 20 

Control 11 1 19 

Control 12 1 21 

Sball+3gAsh 1 1 14 

Sball+3gAsh 2 1 18 

Sball+3gAsh 3 1 15 

Sball+3gAsh 4 1 14 

Sball+3gAsh 5 1 18 

Sball+3gAsh 6 1 14 

Sball+3gAsh 7 1 15 

Sball+3gAsh 8 1 14 

Sball+3gAsh 9 1 14 

Sball+3gAsh 10 1 18 

Sball+3gAsh 11 1 14 

Sball+3gAsh 12 1 18 

Sball+1gNPK 1 1 14 

Sball+1gNPK 2 1 18 

Sball+1gNPK 3 1 16 

Sball+1gNPK 4 1 14 

Sball+1gNPK 5 1 18 

Sball+1gNPK 6 1 14 

Sball+1gNPK 7 1 15 

Sball+1gNPK 8 1 16 

Sball+1gNPK 9 1 14 
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Sball+1gNPK 10 1 15 

Sball+1gNPK 11 1 16 

Sball+1gNPK 12 1 14 

Control 1 3 18 

Control 2 3 19 

Control 3 3 20 

Control 4 3 18 

Control 5 3 21 

Control 6 3 19 

Control 7 3 20 

Control 8 3 21 

Control 9 3 20 

Control 10 3 19 

Control 11 3 21 

Control 12 3 18 

Sball+3gAsh 1 3 14 

Sball+3gAsh 2 3 17 

Sball+3gAsh 3 3 14 

Sball+3gAsh 4 3 15 

Sball+3gAsh 5 3 17 

Sball+3gAsh 6 3 18 

Sball+3gAsh 7 3 14 

Sball+3gAsh 8 3 17 

Sball+3gAsh 9 3 16 

Sball+3gAsh 10 3 17 

Sball+3gAsh 11 3 14 

Sball+3gAsh 12 3 14 

Sball+1gNPK 1 3 14 

Sball+1gNPK 2 3 17 

Sball+1gNPK 3 3 18 

Sball+1gNPK 4 3 14 

Sball+1gNPK 5 3 14 

Sball+1gNPK 6 3 17 

Sball+1gNPK 7 3 16 

Sball+1gNPK 8 3 14 

Sball+1gNPK 9 3 15 

Sball+1gNPK 10 3 16 

Sball+1gNPK 11 3 16 

Sball+1gNPK 12 3 17 

Control 1 5 18 

Control 2 5 19 
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Control 3 5 18 

Control 4 5 18 

Control 5 5 20 

Control 6 5 20 

Control 7 5 18 

Control 8 5 20 

Control 9 5 21 

Control 10 5 20 

Control 11 5 19 

Control 12 5 21 

Sball+3gAsh 1 5 18 

Sball+3gAsh 2 5 15 

Sball+3gAsh 3 5 16 

Sball+3gAsh 4 5 14 

Sball+3gAsh 5 5 15 

Sball+3gAsh 6 5 14 

Sball+3gAsh 7 5 15 

Sball+3gAsh 8 5 16 

Sball+3gAsh 9 5 17 

Sball+3gAsh 10 5 18 

Sball+3gAsh 11 5 15 

Sball+3gAsh 12 5 16 

Sball+1gNPK 1 5 15 

Sball+1gNPK 2 5 15 

Sball+1gNPK 3 5 14 

Sball+1gNPK 4 5 17 

Sball+1gNPK 5 5 15 

Sball+1gNPK 6 5 17 

Sball+1gNPK 7 5 18 

Sball+1gNPK 8 5 14 

Sball+1gNPK 9 5 14 

Sball+1gNPK 10 5 15 

Sball+1gNPK 11 5 14 

Sball+1gNPK 12 5 16 

Control 1 7 20 

Control 2 7 18 

Control 3 7 18 

Control 4 7 20 

Control 5 7 18 

Control 6 7 19 

Control 7 7 20 
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Control 8 7 18 

Control 9 7 18 

Control 10 7 19 

Control 11 7 18 

Control 12 7 19 

Sball+3gAsh 1 7 14 

Sball+3gAsh 2 7 18 

Sball+3gAsh 3 7 17 

Sball+3gAsh 4 7 16 

Sball+3gAsh 5 7 16 

Sball+3gAsh 6 7 15 

Sball+3gAsh 7 7 18 

Sball+3gAsh 8 7 16 

Sball+3gAsh 9 7 17 

Sball+3gAsh 10 7 16 

Sball+3gAsh 11 7 16 

Sball+3gAsh 12 7 15 

Sball+1gNPK 1 7 14 

Sball+1gNPK 2 7 15 

Sball+1gNPK 3 7 14 

Sball+1gNPK 4 7 15 

Sball+1gNPK 5 7 15 

Sball+1gNPK 6 7 14 

Sball+1gNPK 7 7 16 

Sball+1gNPK 8 7 14 

Sball+1gNPK 9 7 15 

Sball+1gNPK 10 7 14 

Sball+1gNPK 11 7 16 

Sball+1gNPK 12 7 14 

Control 1 9 19 

Control 2 9 18 

Control 3 9 18 

Control 4 9 19 

Control 5 9 18 

Control 6 9 18 

Control 7 9 19 

Control 8 9 20 

Control 9 9 21 

Control 10 9 19 

Control 11 9 19 

Control 12 9 20 
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Sball+3gAsh 1 9 14 

Sball+3gAsh 2 9 15 

Sball+3gAsh 3 9 18 

Sball+3gAsh 4 9 14 

Sball+3gAsh 5 9 15 

Sball+3gAsh 6 9 14 

Sball+3gAsh 7 9 16 

Sball+3gAsh 8 9 15 

Sball+3gAsh 9 9 15 

Sball+3gAsh 10 9 15 

Sball+3gAsh 11 9 15 

Sball+3gAsh 12 9 14 

Sball+1gNPK 1 9 13 

Sball+1gNPK 2 9 14 

Sball+1gNPK 3 9 13 

Sball+1gNPK 4 9 13 

Sball+1gNPK 5 9 15 

Sball+1gNPK 6 9 14 

Sball+1gNPK 7 9 15 

Sball+1gNPK 8 9 14 

Sball+1gNPK 9 9 14 

Sball+1gNPK 10 9 15 

Sball+1gNPK 11 9 15 

Sball+1gNPK 12 9 14 
 

Table 10: Pearl millet plant nutrient uptake 28 days after sowing at the greenhouse of University of 

Hohenheim, Germany. Treatment (n = 6) column shows Control = non-pelleted seeds, Sball = 2 cm 

diameter sized-seedball made from a mixture of 80 g sand + 50 g loam + 25 ml water, Ash = wood 

ash, NPK= 15:15:15 mineral fertiliser and CNT = calcium nitrate tetrahydrate. 

Treatment Rep 
Phosphorus  
(mg pot-1) 

Magnesium  
(mg pot-1) 

Potassium  
(mg pot-1) 

Control 1 0.6 1.0 10.6 

Sball 1 0.6 1.4 11.6 

Sball+1gNPK 1 1.9 1.8 20.5 

Sball+3gAsh 1 2.0 3.1 43.4 

Sball+0.1gCNT 1 0.7 1.5 12.8 

Sball+0.5gNPK 1 0.9 2.1 12.3 
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Sball+0.5gCNT 1 3.2 4.6 48.5 

Control 2 0.8 1.3 14.2 

Sball 2 1.0 2.4 18.8 

Sball+1gNPK 2 3.0 2.8 31.4 

Sball+3gAsh 2 1.3 1.9 26.4 

Sball+0.1gCNT 2 0.8 1.6 14.1 

Sball+0.5gNPK 2 0.7 1.5 10.7 

Sball+0.5gCNT 2 7.7 11.1 117.0 

Control 3 0.8 1.3 13.8 

Sball 3 0.8 1.9 14.7 

Sball+1gNPK 3 2.3 2.3 26.5 

Sball+3gAsh 3 0.9 1.3 18.5 

Sball+0.1gCNT 3 1.1 2.4 19.9 

Sball+0.5gNPK 3 0.9 2.1 13.1 

Sball+0.5gCNT 3 5.8 8.6 104.9 

Control 4 1.0 1.7 17.1 

Sball 4 0.8 2.0 15.9 

Sball+1gNPK 4 3.4 3.3 37.7 

Sball+3gAsh 4 1.8 2.7 38.1 

Sball+0.1gCNT 4 0.7 1.4 12.5 

Sball+0.5gNPK 4 1.0 2.4 15.2 

Sball+0.5gCNT 4 . . . 

Control 5 0.7 1.2 12.1 

Sball 5 0.7 1.5 12.9 

Sball+1gNPK 5 1.8 1.7 18.7 

Sball+3gAsh 5 1.2 1.9 27.5 

Sball+0.1gCNT 5 0.7 1.4 13.5 

Sball+0.5gNPK 5 1.0 2.3 15.2 

Sball+0.5gCNT 5 2.9 4.1 42.1 

Control 6 1.1 1.8 19.0 

Sball 6 0.8 1.9 14.3 

Sball+1gNPK 6 2.2 2.1 23.4 

Sball+3gAsh 6 1.9 2.9 37.2 

Sball+0.1gCNT 6 0.8 1.5 14.2 

Sball+0.5gNPK 6 1.0 2.3 15.4 

Sball+0.5gCNT 6 2.8 4.0 34.6 
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Seedball-induced changes of root growth and physico-chemical properties 

Table 11: Height and leaf development of pearl millet seedlings 22 days after sowing as affected by 

three treatments at UFZ climate chamber, Halle, Germany. Treatment (n = 6) column shows Control 

= non-pelleted seeds, Seedball = 80 g sand + 50 g loam + 25 ml water whereas NPKSeedball = 

Seedball + 1 g  15:15:15 NPK mineral fertiliser. 

Treatment Rep Time (day) Height (cm) Leaf (#) 

Control 1 7 9 2 

Control 2 7 6 2 

Control 3 7 14 2 

Control 4 7 3 2 

Control 5 7 10 2 

Control 6 7 7 2 

Seedball 1 7 12 2 

Seedball 2 7 17 2 

Seedball 3 7 18 3 

Seedball 4 7 17 2 

Seedball 5 7 11 2 

Seedball 6 7 16 2 

NPKSeedball 1 7 11 2 

NPKSeedball 2 7 5 2 

NPKSeedball 3 7 18 2 

NPKSeedball 4 7 13 2 

NPKSeedball 5 7 19 2 

NPKSeedball 6 7 17 2 

Control 1 14 25 5 

Control 2 14 19 5 

Control 3 14 39 5 

Control 4 14 9 3 

Control 5 14 24 5 

Control 6 14 19 4 

Seedball 1 14 35 5 

Seedball 2 14 37 6 

Seedball 3 14 37 6 

Seedball 4 14 44 5 

Seedball 5 14 33 5 

Seedball 6 14 40 6 
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NPKSeedball 1 14 39 6 

NPKSeedball 2 14 31 5 

NPKSeedball 3 14 48 6 

NPKSeedball 4 14 40 6 

NPKSeedball 5 14 36 6 

NPKSeedball 6 14 44 5 

Control 1 21 43 7 

Control 2 21 46 7 

Control 3 21 53 7 

Control 4 21 33 6 

Control 5 21 46 7 

Control 6 21 38 6 

Seedball 1 21 50 6 

Seedball 2 21 47 7 

Seedball 3 21 48 6 

Seedball 4 21 59 5 

Seedball 5 21 53 7 

Seedball 6 21 52 6 

NPKSeedball 1 21 58 7 

NPKSeedball 2 21 54 7 

NPKSeedball 3 21 62 7 

NPKSeedball 4 21 52 7 

NPKSeedball 5 21 43 7 

NPKSeedball 6 21 60 7 
 

Table 12: Treatment effect on the extracted soil solution at the upper part (3.5 cm depth) of 

germination column on phosphorus concentration (Upper_P), pH (Upper_pH) and electrical 

conductivity (Upper_EC) throughout the 21 days growth period of pearl millet. Treatment (n = 6) 

column shows Control = non-pelleted seeds, Seedball = 80 g sand + 50 g loam + 25 ml water, and 

NPKSeedball = Seedball + 1 g  15:15:15 NPK mineral fertiliser, whereas b.d. for phosphorus 

concentration indicates below detection level. 

Treatment Rep Upper_P (mg l-1) Upper_pH Upper_EC (mS µS-1) 

Control 1 0.02 4.8 1891 

Control 2 0.02 4.5 1821 

Control 3 b.d. 4.3 1236 
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Control 4 0.05 4.7 1693 

Control 5 0.04 4.3 1762 

Control 6 0.03 4.7 1796 

Seedball 1 0.01 7.3 1488 

Seedball 2 0.01 4.9 1507 

Seedball 3 b.d. 5.7 1399 

Seedball 4 0.38 4.5 1510 

Seedball 5 0.01 4.7 1475 

Seedball 6 0.15 7.6 1093 

NPKSeedball 1 10.64 5.8 4133 

NPKSeedball 2 0.79 5.4 1968 

NPKSeedball 3 10.18 5.7 2733 

NPKSeedball 4 3.35 5.2 2689 

NPKSeedball 5 b.d. 4.9 1279 

NPKSeedball 6 1.44 5.3 3017 

Control 1 b.d. 5.1 382 

Control 2 0.02 4.6 1389 

Control 3 b.d. 4.9 854 

Control 4 b.d. 4.8 1021 

Control 5 b.d. 4.5 1005 

Control 6 b.d. 4.8 1132 

Seedball 1 0.05 6.8 376 

Seedball 2 0.01 5.4 507 

Seedball 3 b.d. 5.3 356 

Seedball 4 0.01 5.2 1211 

Seedball 5 0.04 4.9 941 

Seedball 6 0.01 5.1 401 

NPKSeedball 1 1.67 5.3 449 

NPKSeedball 2 1.43 5.3 1325 

NPKSeedball 3 0.29 5.3 227 

NPKSeedball 4 1.85 5.7 444 

NPKSeedball 5 b.d. 5.1 236 

NPKSeedball 6 0.33 5.0 657 

Control 1 b.d. 5.0 169 

Control 2 0.02 4.8 762 

Control 3 b.d. 4.8 468 

Control 4 0.02 5.1 467 

Control 5 0.02 4.7 326 

Control 6 0.03 4.9 372 

Seedball 1 0.02 7.1 282 

Seedball 2 0.07 5.2 43 
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Seedball 3 b.d. 6.0 43 

Seedball 4 0.04 6.1 553 

Seedball 5 . 5.0 . 

Seedball 6 . 6.1 308 

NPKSeedball 1 0.23 5.1 174 

NPKSeedball 2 . . . 

NPKSeedball 3 0.55 5.3 423 

NPKSeedball 4 0.31 5.4 106 

NPKSeedball 5 0.01 5.3 194 

NPKSeedball 6 0.09 5.2 140 
 

Table 13: Treatment effect on the extracted soil solution at the lower part (3.5 cm depth) of 

germination column on phosphorus concentration (Lower_P), pH (Lower_pH) and electrical 

conductivity (Lower_EC) throughout the 21 days growth period of pearl millet. Treatment (n = 6) 

column shows Control = non-pelleted seeds, Seedball = 80 g sand + 50 g loam + 25 ml water, and 

NPKSeedball = Seedball + 1 g  15:15:15 NPK mineral fertiliser, whereas b.d. for phosphorus 

concentration indicates below detection level. 

Treatment Rep Lower_P (mg l-1) Lower_pH Lower_EC (mS µS-1) 

Control 1 0.01 4.7 859 

Control 2 b.d. 4.5 1205 

Control 3 0.03 4.7 1199 

Control 4 b.d. 4.8 1047 

Control 5 0.01 4.7 1097 

Control 6 b.d. 4.8 1527 

Seedball 1 0.01 4.7 1339 

Seedball 2 0.03 4.9 1059 

Seedball 3 b.d. 5.0 549 

Seedball 4 0.02 4.2 872 

Seedball 5 0.03 4.0 1473 

Seedball 6 0.04 4.6 1011 

NPKSeedball 1 0.04 4.8 1496 

NPKSeedball 2 0.03 4.8 1797 

NPKSeedball 3 b.d. 4.6 1515 

NPKSeedball 4 0.06 4.7 1628 

NPKSeedball 5 0.02 4.9 757 
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NPKSeedball 6 0.01 4.8 1503 

Control 1 b.d. 5.0 339 

Control 2 b.d. 4.8 555 

Control 3 b.d. 5.2 261 

Control 4 b.d. 4.9 487 

Control 5 b.d. 4.7 434 

Control 6 b.d. 4.9 837 

Seedball 1 0.01 4.9 285 

Seedball 2 0.02 5.2 228 

Seedball 3 b.d. 5.0 214 

Seedball 4 b.d. 5.0 334 

Seedball 5 b.d. 4.8 458 

Seedball 6 b.d. 6.6 614 

NPKSeedball 1 1.20 5.2 460 

NPKSeedball 2 0.01 5.0 755 

NPKSeedball 3 0.35 5.4 450 

NPKSeedball 4 0.01 5.1 335 

NPKSeedball 5 0.02 5.1 195 

NPKSeedball 6 b.d. 4.9 584 

Control 1 0.01 5.2 106 

Control 2 0.02 4.9 186 

Control 3 0.01 5.2 115 

Control 4 0.01 5.1 261 

Control 5 0.02 5.1 320 

Control 6 0.02 5.1 363 

Seedball 1 b.d. 4.8 129 

Seedball 2 0.01 5.2 87 

Seedball 3 0.01 5.2 111 

Seedball 4 0.02 5.3 96 

Seedball 5 0.01 4.8 158 

Seedball 6 b.d. 5.1 96 

NPKSeedball 1 0.01 5.0 161 

NPKSeedball 2 0.01 5.1 177 

NPKSeedball 3 0.01 5.0 110 

NPKSeedball 4 b.d. 5.2 110 

NPKSeedball 5 0.02 5.1 130 

NPKSeedball 6 0.01 5.2 107 
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Table 14: Shoot biomass (Shootbio), dry matter (Shootdry), upper 3.5 cm part root biomass 

(Upperrootbio) as well as lower 7.0 cm part root biomass (Lowerrootbio) and total root biomass 

(Totrootbio) of pearl millet 21 days after sowing for the three treatments. Treatment (n = 6) column 

shows Control = non-pelleted seeds, Seedball = 80 g sand + 50 g loam + 25 ml water, and 

NPKSeedball = Seedball + 1 g  15:15:15 NPK mineral fertiliser. 

Treatment Rep 
Shootbio  

(g) 
Shootdry  

(g) 
Upperrootbio 

(g) 
Lowerrootbio 

(g) 
Totrootbio  

(g) 

Control 1 2.64 0.40 1.07 0.98 2.05 

Control 2 2.63 0.26 1.55 0.76 2.31 

Control 3 3.96 0.58 1.76 1.24 3.00 

Control 4 0.95 0.03 0.31 0.17 0.48 

Control 5 2.87 0.37 0.59 1.03 1.62 

Control 6 1.04 0.06 0.26 0.06 0.32 

Seedball 1 3.65 0.55 1.36 1.58 2.94 

Seedball 2 3.92 0.58 1.89 1.49 3.38 

Seedball 3 3.74 0.60 1.24 1.27 2.51 

Seedball 4 4.16 0.69 1.24 1.33 2.57 

Seedball 5 3.69 0.54 0.87 1.40 2.27 

Seedball 6 4.20 0.58 1.50 1.15 2.65 

NPKSeedball 1 6.80 1.00 2.13 2.62 4.75 

NPKSeedball 2 4.82 0.71 1.49 1.25 2.74 

NPKSeedball 3 7.80 1.12 1.34 1.67 3.01 

NPKSeedball 4 7.03 1.08 1.62 2.21 3.83 

NPKSeedball 5 3.87 0.58 1.75 0.82 2.57 

NPKSeedball 6 7.06 1.07 1.80 1.41 3.21 
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Table 15: Total root dry matter (Totrootdrym), root length (Totrootlen) as well as density (Rootden) 

of pearl millet 21 days after sowing for three treatments. Treatment (n = 6) column shows Control = 

non-pelleted seeds, Seedball = 80 g sand + 50 g loam + 25 ml water i.e. seedball without nutrient 

additive, and NPKSeedball = Seedball + 1 g  15:15:15 NPK mineral fertiliser i.e. seedball with 

nutrient additive. 

Treatment Rep 
Totrootdrym  

(g) 
Totrootlen  

(cm) 
Rootden  
(cm cm-1) 

Control 1 0.67 5524 5.74 

Control 2 0.56 5936 6.17 

Control 3 0.68 7932 8.24 

Control 4 0.28 988 1.03 

Control 5 0.51 4886 5.08 

Control 6 0.31 1317 1.37 

Seedball 1 0.74 7248 7.53 

Seedball 2 0.74 9750 10.13 

Seedball 3 0.79 8119 8.44 

Seedball 4 0.51 6131 6.37 

Seedball 5 0.50 5088 5.29 

Seedball 6 0.50 6381 6.63 

NPKSeedball 1 0.92 12146 12.62 

NPKSeedball 2 0.66 5957 6.19 

NPKSeedball 3 0.76 7687 7.99 

NPKSeedball 4 0.53 7438 7.73 

NPKSeedball 5 0.52 7764 8.07 

NPKSeedball 6 0.57 9670 10.05 
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Table 16: Root length of pearl millet within different diameter classes, in mm, 21 days after planting 

for the three treatments. Treatment (n = 6) column shows Control = non-pelleted seeds, Seedball = 80 

g sand + 50 g loam + 25 ml water i.e. seedball without nutrient additive, and NPKSeedball = 

Seedball + 1 g  15:15:15 NPK mineral fertiliser i.e. seedball with nutrient additive. 

Treatment Rep Location  
0-0.2mm 

(cm) 
0.2-0.4mm 

(cm) 
0.4-0.6mm 

(cm) 
0.6-0.8mm 

(cm) 
0.8-1.0mm 

(cm) 

Control 1 upper 2807.5 483.3 110.4 88.8 78.1 

Control 2 upper 3615.3 448.1 49.5 46.5 45.0 

Control 3 upper 4493.9 496.5 150.6 29.3 13.0 

Control 4 upper 474.3 43.2 7.7 5.5 2.7 

Control 5 upper 1156.7 262.4 29.0 14.5 12.2 

Control 6 upper 697.4 102.9 20.2 8.1 5.2 

Seedball 1 upper 3503.2 465.0 52.7 24.3 37.7 

Seedball 2 upper 4932.2 549.7 133.9 108.9 72.2 

Seedball 3 upper 4174.5 653.4 108.4 52.4 33.3 

Seedball 4 upper 2569.7 360.0 53.5 30.7 21.0 

Seedball 5 upper 2492.6 293.5 56.5 22.6 22.7 

Seedball 6 upper 3107.2 400.5 65.8 21.7 25.7 

NPKSeedball 1 upper 6302.3 723.3 159.8 180.7 194.6 

NPKSeedball 2 upper 3260.5 389.1 54.3 21.7 20.2 

NPKSeedball 3 upper 3642.4 408.6 72.9 34.2 28.2 

NPKSeedball 4 upper 3277.9 558.5 59.9 18.2 19.2 

NPKSeedball 5 upper 4793.2 827.2 172.1 84.4 41.5 

NPKSeedball 6 upper 5612.3 879.0 109.5 72.1 67.7 

Control 1 lower 1809.6 113.3 17.9 1.1 . 

Control 2 lower 1376.0 272.6 46.2 15.6 7.6 

Control 3 lower 2373.5 326.2 42.2 5.4 . 

Control 4 lower 324.7 96.6 20.6 8.1 3.5 

Control 5 lower 2364.8 832.2 114.9 45.5 39.7 

Control 6 lower 367.7 76.1 22.4 7.7 3.3 

Seedball 1 lower 2504.2 468.3 119.4 30.0 14.3 

Seedball 2 lower 2867.9 756.9 189.8 45.5 41.3 

Seedball 3 lower 2234.1 612.4 145.3 46.1 33.1 

Seedball 4 lower 2058.4 743.8 182.8 52.6 18.7 

Seedball 5 lower 1802.6 279.0 69.5 20.0 16.9 

Seedball 6 lower 2007.7 533.3 143.3 26.6 20.1 

NPKSeedball 1 lower 2599.5 1158.5 498.2 158.5 81.1 

NPKSeedball 2 lower 1632.0 419.2 106.8 19.1 12.6 
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NPKSeedball 3 lower 2540.7 681.6 165.2 43.8 35.9 

NPKSeedball 4 lower 2404.1 819.5 196.1 45.7 13.0 

NPKSeedball 5 lower 1207.5 410.7 142.5 36.7 18.5 

NPKSeedball 6 lower 2098.0 576.2 157.7 34.2 24.4 
 


