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Abstract

This paper argues that a new generic ap-
proach to statistical NLG can be made to
perform Referring Expression Generation
(REG) successfully. The model does not
only select attributes and values for refer-
ring to a target referent, but also performs
Linguistic Realisation, generating an ac-
tual Noun Phrase. Our evaluations suggest
that the attribute selection aspect of the al-
gorithm exceeds classic REG algorithms,
while the Noun Phrases generated are as
similar to those in a previously developed
corpus as were Noun Phrases produced by
a new set of human speakers.

1 Introduction

Referring Expressions Generation (REG) is a sub-
task of Natural Language Generation (NLG) that
decides how to distinguish a target referent from
its distractors, as when we say “the sofa”, “the red
sofa”, and so on, to distinguish the referent from
other furniture. Most current REG algorithms are
rule-based (Gatt and Krahmer, 2018), though Ma-
chine Learning is also starting to be used (e.g.
Di Fabbrizio et al., 2008).

REG is usually treated as an independent stage
or component of NLG pipelines (e.g. Reiter and
Dale, 2000; Reiter, 2007; Gatt and Krahmer, 2018;
Di Fabbrizio et al., 2008). The present paper
changes the relationship between NLG and REG:
it regards REG as a special case of usual NLG,
and proposes a vector-based algorithm to trans-
form REG tasks into a generic NLG tasks. The
paper adopts the NLG algorithm of our previous
work (which is also vector-based; Li, 2019), but
certain adaptations needed to be made to allow the
algorithm to perform the traditional REG attribute
selection task.

Our REG algorithm produces referring expres-
sions (REs) by learning from a data-text corpus of
REs. In a nutshell, the algorithm splits the tex-
tual expressions in the training corpus into small
spans according to their meaning, and reassembles
these spans into new expressions when it refers
to a referent. We evaluate the performance of
the REG function on the Tuna corpus (Gatt et al.,
2007) against 3 strong baselines. Experimental
results show that our algorithm outperforms the
baselines in terms of Dice scores. An additional
experiment also shows positive results for our al-
gorithm on an experts-based evaluation based on
a BLEU-based comparison between algorithm-
generated and human-produced referring expres-
sions.

2 Related Work

The main REG algorithms have often focussed on
the semantic core of the REG task, which is to
select semantic attributes for a referring expres-
sion (e.g., sofa, red), disregarding the expres-
sion of these attributes in words (e.g., “the red
sofa”) (Krahmer and Van Deemter, 2012). The
term REG is sometimes restricted to “one-shot”
references, where it is the task of one single NP to
identify the referent. We will use the term REG in
this restricted sense. Consequently, linguistic con-
text is irrelevant, so pronouns and other anaphoric
NPs (as in the GREC challenge, for instance (Gatt
et al., 2009)) will not be taken into account.

Early REG approaches sought to find a mini-
mum set of attributes that jointly single out the ref-
erent, this is called the Full Brevity (FB) approach
(Dale, 1989), or to “greedily” add maximally dis-
criminatory attributes one by one, that is, adding
attributes one at a time, choosing always the one
that removes the largest number of distractors, un-
til the referent has been uniquely identified; this is
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called the Greedy algorithm (GR).
The approach that is often thought to be most

suitable for relatively simple referential situations
(cf. §6 below), known as the Incremental Algo-
rithm (IA), resembles GR to the extent that it adds
attributes one by one until the referent has been
singled out. However, the order in which the IA
selects attributes is not based on their discrimina-
tory power (as was the case with GR), but on their
place in what is known as the Preference Order
(PO). The PO is a list that works like an oracle that
tells us in what order Attributes should be selected
and, although efforts have been made to determine
the PO on independent grounds, in practice it is
nontrivial to find the best PO for a given REG task.
Thus each PO defines another IA. Therefore, when
we evaluate our own REG approach in §4.3, we
will not only compare it with FB and GR, but with
a number of different IAs, with different POs.

Statistical methods have come to REG relatively
late. The hybrid approach of Di Fabbrizio et al.
(2008) used statistical methods to determine the
PO of the IA. The Bayesian approach of Frank
and Goodman (2012) went further, but although
it has some attractive features, it does not yet per-
form at the same level as IA. Other statistical ap-
proaches have focussed specifically on the logical
structure of complex REs (FitzGerald et al., 2013)
and on collaborative aspects of referring (Garoufi
and Koller, 2014), among other issues.

REG algorithms have typically focussed on
Content Selection (i.e., selection of semantic at-
tributes). For example, when the usefulness of
REs for readers was addressed in the Shared Task
Evaluation Challenges (STECs; Gatt and Belz,
2010), the sets of properties produced by each of
the algorithms submitted to the STECs were con-
verted into actual Noun Phrases (by one and the
same simple Linguistic Realisation algorithm) be-
fore they were shown to readers.

3 Summary of the Text-Reassembling
Generation Model

We are developing a new approach to NLG (Li,
2019), which we call the Text-Reassembling Gen-
eration (TRG) model. Earlier experiments with
this method have focussed on the SUMTIME cor-
pus (Sripada et al., 2002), and more specifically on
Lexical Choice and the generation of SUMTIME-
style sentences such as “MAINLY W-NW 10
OR LESS” (a brief weather prediction about the

Table 1: A simplified training corpus for training
the Vector-Based Approach to NLG. Wind speed
(ws) are expressed in Knots and wind direction
(dir) is presented by Compass points.

Text Data
W 10-12 {ws=10,dir=265}
WS 22-24 {ws=22,dir=130}
MAINLY 10 OR LESS {ws=9,dir=10}
... ...

strength and direction of wind). In the present pa-
per, we show how this approach can be adapted
to perform the REG task (a task not previously
considered in this work). Here we sketch the out-
lines of TRG; the next section applies these ideas
to REG.

TRG uses a generation strategy that we call
“splitting-and-reassembling”. It splits the training
sentences into text fragments (i.e. the strings con-
sist of words, numbers, punctuations, and so on)
during training; then, it reuses (reassembles) the
fragments to generate new sentences. The training
process aims to extract sentence fragments. From
a training corpus, the approach learns what frag-
ment express what non-linguistic data by inspect-
ing what non-linguistic data most likely co-occurs
with what fragment.

Vector-based Knowledge Representation (KR)
is often used in deep learning-based and other Ma-
chine Learning approaches (Ramachandram and
Taylor, 2017). TRG adopts attribute-value pairs
for representing non-linguistic data (see §4.1 for
details), and the attribute-value pairs are further
represented by vectors. Table 1 presents a simpli-
fied training corpus of SUMTIME sentences about
wind. For example, the fragment “10-12” co-
occurs with ws=10 (i.e., the first data record). If
this pattern was observed frequently in the training
set, our model can learn that the fragment “10-12”
expresses ws=10.

Another part of our approach is schema extrac-
tion, in which each text fragment is replaced by a
placeholder that leaves out everything except the
type of attribute expressed. After the replacement,
the text becomes a sequence of placeholders, and
we call the sequence the schema. For example, re-
visiting the example of Figure 1, the three corpus
texts are transformed into two schemas:

W 10-12 ⇒ [direction] [speed]
WS 22-24 ⇒ [direction] [speed]
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MAINLY 10 OR LESS ⇒ [speed]

The two schemas are:

schema 1: [direction] [speed]
schema 2: [speed]

where the placeholders are denoted by square
brackets.

Generation is a two-step process: given a set of
non-linguistic data as input, TRG firstly selects a
schema. It then replaces each placeholder in the
schema with a text fragment which expresses the
non-linguistic data (i.e., the input). Note that this
approach can generate texts which do not appear
in the training corpus. Because TRG represents
input data by vectors, both schema selection and
text fragment selection are based on vector com-
parison between the input data vector and corpus
data vectors. Unlike most of its predecessors, it
is purely statistical in that it does not use a hand-
crafted grammar or other hand-crafted rules.

4 The Vector-Based REG Algorithm

In this section we show how the TRG algorithm
was made to apply to REG, which generates ex-
pressions that distinguish a target from its dis-
tractors. A RE typically expresses only a subset
of the features of the target referent. For exam-
ple, although in the Tuna corpus, furniture has 4
properties including type, colour, size, and
orientation. Speakers referring to a large red
frontal chair (in the presence of other large frontal
chairs) may only say “the red chair”, because this
suffices to distinguish the referent from all the
other objects in the domain (called the distractors).
The choice of features tells us something about the
referent, but also about the differences between the
target(s) and distractors.

To generate an appropriate referring expression,
information of both the target and the distractors
needs to be considered. To bring REG within the
scope of TRG, we therefore combine the features
of the target referent with the differences between
the target and distractors, treating this as a new
group of features. Then we generate a RE as well
as a description of the new group, and this descrip-
tion is the textual RE for the target. The resulting
algorithm is called the Vector-Based approach to
REG (VB-REG).

In the following sections, we first introduce how
we represent a domain object (i.e., a target or a
distractor) and the differences between the target

colour = 𝑟𝑒𝑑,	

[ 1,  0,  0,  0,  1,  0,  1,  0,  0,  0,  1,  0,  0,  0 ]

typecolour size orientation

orientation = 𝑓𝑟𝑜𝑛𝑡𝑎𝑙size = 𝑙𝑎𝑟𝑔e,
type = 𝑐ℎ𝑎𝑖𝑟

Figure 1: An example of vector represen-
tation for a domain object with the fea-
ture set {colour=red, size=large,
type=chair, orientation=frontal}.

and distractors (§4.1). We then discuss our strat-
egy for generating REs for a target referent (§4.2
and §4.3). Finally, we explain how to generate an
actual referential noun phrase (§4.4).

4.1 Representing a Reference Problem as a
Fixed-Length Vector

We represent a target or a distractor with fea-
tures which are represented as attribute-value
pairs, e.g., colour=red and type=chair.
Here colour and type are attributes and
red and chair are the values. A chair
whose colour is red, size is large, and ori-
entation is frontal can be represented by the
feature set: {colour=red, size=large,
type=chair, orientation=frontal}.

In order to apply our model, we need to repre-
sent feature sets in a vector. Recall that there are
in total 14 features in the Tuna corpus (Gatt et al.,
2007); they are:

colour=red type=chair
colour=blue type=desk
colour=green type=fan
colour=grey type=sofa
orientation=front size=large
orientation=back size=small
orientation=left
orientation=right

We therefore use a 14-dimension vector to
represent an arbitrary feature set, with each
dimension corresponding to an attribute-value
pair. Also, each dimension is a binary vari-
able (i.e., 1 or 0), with 1 indicating that the
corresponding feature appears in the feature
set, and 0 otherwise. In this way, the fea-
ture set {colour=red, size=large,
type=chair, orientation=frontal}
of the expression “a large red frontal
chair” can be converted to a vector
[1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0], that we
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Table 2: An example of a simplified REG case
from the Tuna corpus.

Target: {colour=grey,size=large,...}
Distractor 1: {colour=blue,size=small,...}
Distractor 2: {colour=red,size=large,...}
Distractor 3: {colour=blue,size=large,...}
Distractor 4: {colour=red,size=large,...}

call the target vector (namely t). Two objects are
indistinguishable if their vector representations
are the same.

Since the words that are used for referring to
an object depend not just on that object (i.e., the
referent), but on other objects as well (i.e., the dis-
tractors), we model the difference between a tar-
get and its distractors with an additional vector,
which we call the difference vector (d). In con-
trast to the feature set vector, here, the difference
vector has only 4 dimensions, with each dimen-
sion corresponding to one of the attribute types of
the Tuna corpus, i.e., colour, size, type, and
orientation. The value of the dimensions in-
dicates the degree to which the target differs from
the distractors for a corresponding attribute.

Let attr be an attribute, Pattr the probability
that the value of attr of the target matches the
same attribute value of any of the distractors.

Pattr =
count(attrtarget = attrdistractor)

count(distractor)
(1)

We show how to compute the difference vector d
with the example in Table 2.

In Table 2, the value of the colour attribute of
the target is grey. However, no distractor has the
same value for the colour attribute, meaning that
Pcolour = 0. Thus, we have

d(colour) = 1− Pcolour = 1 (2)

This means that target’s colour is very different
from the distractors, i.e., an outlier among the
colour of the distractors. For the size attribute,
target’s size feature (i.e., size=large) occurs
three times among the four distractors. Thus, we
have

Psize =
3

4

d(size) = 1− Psize =
1

4

That indicates that the size of the target is unlikely
to be an outlier to the distractors. Finally, the dif-
ference vector d is given as

d = [d(colour),d(size),d(type),d(orien)] = [1,
1

4
, ...]

As we described, the referring expression gen-
eration considers both the target information (pre-
sented by t) and the differential (presented by d)
between the target and distractors. We join the two
vectors as a big vector (namely knowledge vector
or k) for combining the two parts of information.
In this case, k is:

k = [ t
... d ] = [1, 0, 0, 0, ..., 1,

1

4
, ...]

In this way, the two parts of information are
merged together, and the length of k is fixed, even
though the number of distractors varies. A tra-
ditional REG task is, therefore, represented by a
fixed-length vector, the REG processing can be
performed by our NLG algorithm. The following
steps sketch the process for doing this.

4.2 Extracting Schemas From a Corpus
So far, we represented REG tasks as knowl-
edge vectors; this section extracts from the cor-
pus a set of what we call expression schemas, or
schemas for short. Both the knowledge vectors
and schemas will be used to train the REG model.
A schema represents the overall structure of an
RE. For example, from an occurrence of “the red
chair” in the corpus, we extract the schema

“the” [colour] [type]

Similarly, “the old man wearing glasses” derives
the schema

“the” [age] “man” [hasGlasses]

The words are replaced according to the align-
ment labels in the training corpus. For exam-
ple, in Tuna corpus, the words “red”, “chair”,
“old”, and “wearing glasses” are labelled with
colour=red, type=chair, age=old, and
hasGlasses=true respectively in the two
sample expressions (Figure 2). In this way, we ex-
tract a schema from each corpus expression.

4.3 Schema Selection
This step uses schema selection to perform tra-
ditional REG attribute selection, among other
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Figure 2: The (simplified) alignment examples for
human-produced expressions in Tuna corpus in
XML format.

things. It focusses on how to obtain a schema
for a given REG task (represented by a knowledge
vector i.e. our vectorised KR), focussing on what
attributes should be expressed. Instead of creat-
ing new schemas, we reuse the existing schemas
extracted from the training corpus. Because the
schemas omit the specific attribute values, multi-
ple expressions share the same schema (and mul-
tiple schemas share the same set of placeholders).
To select a schema for a given RE task, we adopt
the lexical selector of Li et al. (2016) as schema se-
lector, which is fully statistical, and which accepts
the knowledge vector.

To train the schema selector, we represent each
unique schema i extracted from the training corpus
as a column vector (denoted by sTi ), whose dimen-
sion is equal to the total number of data records
in the training set M. If the schema of the j-
th data record of the corpus is same as schema i,
then the j-th element of sTi equals 1, and 0 oth-
erwise. In addition, we also need to construct a
matrix (namely K) which encodes the informa-
tion of all the data records of the corpus. K con-
sists of knowledge vectors of each feature group of
the training data, with each row corresponding to a
knowledge vector k of a data record. Suppose the
training corpus includes m records and n features
in total, then K is a m − by − n matrix. Based
on K and sTi , our model training process finds a
projection vector (i.e., the column vector pT

i ) of

Equation 3 by Least Square (Li et al., 2016).

K · pT
i = sTi (3)

pT
i = pinv(K) · sTi (4)

The projection vector pT
i indicates how the infor-

mation of a knowledge vector kr projects on the
use of the schema i. Therefore, a weight (wr) that
i should be adopted for expressing r is estimated
by Equation 5.

wr = kr · pT
i (5)

When every pT
i is found, given an unseen knowl-

edge vector (k∗), we select the schema (denoted
by x) for k∗ such that x maximises k∗ · pT

i=x (Li
et al., 2016):

x = argmax
x

(k∗ · pT
i=x) (6)

When a schema is selected, we pick up and out-
put the attributes of all the placeholders within the
schema as the outcome for the REG task. Note that
in the Tuna corpus, a given referent can never be
described using two different values of the same
attribute (e.g., a sofa cannot be both red and blue).
Therefore, selecting attributes suffices for this part
of the REG task.

In the above we have focussed on attribute se-
lection. However, when a schema is selected, we
do not only select attributes, we also fix the over-
all syntactic pattern of the RE. Thus, schema se-
lection performs an important part of Linguistic
Realisation as well.

4.4 Generating Complete Referential Noun
Phrases

Expression schemas contain a lot of information
about a referential Noun Phrase – including its
syntactic structure and the use of function words –
but they still contains placeholders for attributes.
This section focuses on generating textual REs.
The remaining generation task is to replace place-
holders by actual words, after schema selection.

Analogous to schema selection, we adopt the
selector of (i.e., Li et al., 2016) to do this. Place-
holders are classified according to their corre-
sponding attributes (e.g. colour or type). Two
placeholders belong to the same class if they ex-
press the same attribute (whatever they are in the
same or different REs), and we train an individual
lexical selector for each class of placeholders.
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For each placeholder class, we first build up
a small training corpus that consists of all the
words (or multi-word phrases) corresponding to
the placeholder, with the features that the word (or
the multi-word phrase) expresses.

Looking through the Tuna corpus, from the ex-
pressions, for example, “the red sofa” and “the
blue chair”, we find that the placeholder [colour]
can be described by words “red” and “blue”. So
the extracted small corpus for [colour] contains the
two words, which is shown in Table 3

Table 3: The extracted small corpus for place-
holder [colour] from Tuna corpus

Text Data

red {colour=red}
blue {colour=blue}
... ...

Then, for each class of placeholder (e.g. for
[colour]), we train a lexical selector with the cor-
responding small corpus (e.g. Table 3). The train-
ing and word selecting processes are the same as
in Schema Selection (§4.3). First, the words (and
phrases) and corpus data in the small group are
represented by vectors and a matrix; then they are
used to find the projecting vectors through Equa-
tion 3; finally, words (or word phrases) are se-
lected through Equation 6 for the placeholders of
the class according to the given knowledge vector
(that used to select the schema). Therefore, after
selecting a schema, we replace its placeholders by
the selected words (or word phrases) to transform
the schema into a textual expression.

To summarise our approach to REG, we gener-
ate a textual RE (i.e., a Noun Phrase) for a REG
task by adopting a three-step generation strategy:
Given a REG task, we first represent the task as
a knowledge vector which includes the knowledge
of both target and distractor. Secondly, we select
a schema, and finally, select words for each place-
holder in the schema. If the process stops just af-
ter the schema selection, we still achieve the tradi-
tional RE task by picking up the attributes of the
placeholder in the schema as the selected attribute
set.

5 Evaluating the VB-REG Algorithm

We evaluated both Attribute Selection and Lin-
guistic Realisation by making use of the Tuna cor-

pus (Gatt et al., 2007), which contains two do-
mains: Furniture and People. The Tuna corpus
consists of corpus records; each record consists
of a REG trail (i.e. one or two targets and some
distractors) and a Noun Phrase produced by a par-
ticipant to express the target. The Noun Phrases
were collected in two conditions: the participants
were either allowed to use location descriptions
(e.g. “in the top left”) or not (van der Sluis et al.,
2006).

Here we focus on those corpus records which
have one singular target object (rather than a set of
two) and where the locational descriptions were
not allowed to use. There are 210 corpus records
in Furniture domain, and 180 records in People do-
main. We also discarded the records in which the
locational descriptions were still used.

Our evaluation assumes a type of Knowl-
edge Representation based on an attribute-value
schema. Corpora such as ReferIt (Kazemzadeh
et al., 2014), which do not use this type of KR,
are not directly amenable to this approach.

5.1 Evaluating Attribute Selection in the
VB-REG Algorithm

We evaluate the quality of our attribute selection
using Dice score and PRP (Perfect Recall Percent-
age) scores, which are the most often used REG
evaluation metrics (Van Deemter, 2016). Dice cal-
culates the degree of similarity between sets: in
our case, the set of properties expressed by the REs
in the corpus versus the set of properties expressed
by the REs generated by our algorithm; PRP gives
the percentage of cases in which a generated RE
expresses exactly the same properties as an RE in
the corpus.

For each domain, we randomly divided the tri-
als into two parts of the same size, for training
and testing respectively. We repeated the experi-
ment 10 times with different division of the trails
to perform 10-fold cross-validation. We trained
our model as explained in §4; then, we selected
attributes for the testing data, and calculated the
Dice and PRP scores based on the expressions of
test data and the attributes generated. The scores
of 10-fold cross-validation are shown in Table 4.
The average Dice score (Mean) of the 10-fold ex-
periments of Furniture domain is 0.916 with PRP
being 61.6; for People domain, the average Dice
score is 0.848 with PRP being 46.0.

To compare with other REG algorithms, we
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Table 4: REG evaluation results, showing Dice
scores, standard deviation (SD), PRP scores

Furniture People
Dice SD PRP Dice SD PRP

fold 0 .930 .11 66.2 .828 .19 40.0
fold 1 .907 .13 60.3 .813 .22 44.8
fold 2 .917 .11 59.5 .854 .18 48.5
fold 3 .915 .12 60.6 .852 .18 46.6
fold 4 .914 .11 58.3 .885 .16 58.9
fold 5 .932 .12 69.2 .838 .17 44.8
fold 6 .924 .11 64.9 .832 .15 34.9
fold 7 .905 .13 60.3 .815 .17 36.4
fold 8 .923 .10 60.0 .892 .14 56.3
fold 9 .894 .14 56.6 .871 .15 49.2
Mean .916 .12 61.6 .848 .17 46.0

Table 5: The performance comparison of our al-
gorithm (VB-REG) with the Incremental Algo-
rithms, Full Brevity algorithm, and Greedy Algo-
rithm on Furniture domain.

Dice SD PRP

IA-COS .917 .12 6.9
IA-CSO .917 .12 6.9
IA-RAND .840 .15 31.4
IA-OCS .829 .14 25.0
IA-SCO .815 .14 19.2
IA-OSC .803 .16 22.4
IA-SOC .780 .16 18.6
FB .841 .17 39.1
GR .829 .17 37.2
VB-REG .916 .12 61.6

show the tables from Van Deemter (2016, see Ta-
ble 5 and Table 6) which shows the performance
of the classic REG algorithms on the part of the
Tuna corpus on which we focus (i.e., excluding
location and references to sets): Full Brevity al-
gorithm (FB), Greedy Algorithm (GR), and Incre-
mental Algorithms (IA-xxx), the IA-xxx suffixes
denote different Preference Orders. For exam-
ple, IA-COS is the version for the furniture corpus
that had colour (C), orientation (O), and size (S)
as its first-most, second-most, and third-most pre-
ferred attribute; IA-GBHOATSS was the version
of IA for the people corpus that used the Pref-
erence Order has Glasses, has Beards, Hair, etc.

Our approach, which is statistical and domain
independent (hence does not distinguish between
the furniture and people domain), preforms ex-
tremely well compared to the classic algorithms.

Table 6: Performance comparison of our al-
gorithm (VB-REG) with the Incremental Algo-
rithms, Full Brevity algorithm, and Greedy Algo-
rithm on the People domain.

Dice SD PRP

IA-GBHOATSS .844 .17 44.7
IA-BGHOATSS .822 .17 36.4
IA-GHBOATSS .776 .21 29.5
IA-BHGOATSS .728 .19 15.9
IA-HGBOATSS .688 .18 3.8
IA-HBGOATSS .658 .20 4.5
IA-RAND .598 .23 11.4
IA-SSTAOHBG .344 .11 0.0
FB .764 .23 34.1
GR .693 .20 8.3
VB-REG .848 .17 46.0

Although our Mean Dice Score of Furniture do-
main (i.e. 0.916) is slightly lower than the cham-
pion, our algorithm beats the others in all other
columns (Mean Dice scores of People domain and
PRP for both domains).

5.2 Evaluating the fluency of NPs generated
by the VB-REG algorithm

We also evaluate the fluency of the Noun Phrases
generated by the VB-REG algorithm. We decided
to use BLEU as a metric, with Noun Phrases pro-
duced by human experts as our baseline, using the
same Tuna records and the same experimental set-
tings as before. For each domain, the Tuna corpus
was, once again, randomly divided into two parts:
the training corpus and testing corpus.

The training corpus is only used to train the VB-
REG model. After training, the model selects at-
tributes and generates textual REs for each test-
ing corpus data. The selected attributes are shown
to 2 experts who are familiar with NLG but not
with the Tuna corpus. The experts were also pro-
vided with relevant corpus texts. Then they were
asked to produce referring expressions (i.e., Noun
Phrases) for the attributes. They were asked to
work individually, then discuss and produce only
one answer sheet that both of them agreed on. The
experts thus worked as a human Surface Realiser.

For each data in the testing corpus, we obtained
three Noun Phrases: one generated by VB-REG
algorithm, one produced by human experts; the
third one was the original expression in the test-
ing corpus. We calculated the BLEU scores of
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Table 7: 10 fold REG evaluation results of BLEU
scores

Furniture People
VB-REG expert VB-REG expert

fold 0 .837 .889 .964 .923
fold 1 .751 .844 .910 .904
fold 2 .864 .815 .973 .923
fold 3 .873 .834 .931 .899
fold 4 .840 .844 .963 .888
fold 5 .822 .745 .979 .948
fold 6 .960 .793 .949 .977
fold 7 .853 .807 .883 .900
fold 8 .781 .901 .968 .897
fold 9 .840 .928 .983 .958
Mean .842 .840 .950 .922
p-value .943 .026

the generated expression and expert expression
by using the testing corpus (the corpus expres-
sion) as the reference for BLEU. Finally, we calcu-
lated the mean scores of every testing record. We
performed 10-fold cross-validation; outcomes are
shown in Table 7. The high BLEU scores suggest
that our model achieves high fluency levels. In the
furniture domain, our model performs at a similar
level as the experts (no significant difference); in
the people domain, our model “outperforms” our
experts (p = 0.026). The p-values are calculated
by a paired sample t-test.

6 Discussion

We have proposed a statistical model for automat-
ically selecting attributes for REG and expressing
these in an actual noun phrase. Our evaluation
shows that the method performs well in terms of
both attribute selection and text fluency.

Unlike previous approaches to REG (see e.g.,
§2), the VB-REG algorithm does not contain the
idea of unique identification in any shape or form.
Instead of singling out the referent from the dis-
tractors, our approach simply learns how human
speakers refer. This approach has interesting
consequences, not least for the dual phenomena
of over- and under-specification, on which much
work on REG has focussed. In a nutshell, our ap-
proach generates over- and under-specified REs to
the extent that they occur in the data. Thus, if a
corpus contains many underspecified REs (as may
be the case if the corpus is based on children’s
speech, e.g., (Matthews et al., 2012)), then our

REG algorithm will loyally reproduce these. If our
corpus contains many highly over-specified REs
(e.g. if the domain is complicated (Paraboni et al.,
2007) or contains a lot of clutter (Koolen, 2013)),
then so will our algorithm.

Referring Expressions Generation is more than
the relatively simple reference task on which we
have focussed here. For example, reference can
use logical operators such as negation; reference
can be to sets (including e.g. geographic regions
(Turner et al., 2010)); it can involve gradable at-
tributes; it can involve guesses about the hearer’s
knowledge (R.Kutlak et al., 2016); it can involve
collaboration between speaker and hearer (Garoufi
and Koller, 2014), and so on (Van Deemter, 2016).
Although our evaluation has focussed on the sin-
gular part of the Tuna corpus only, we believe that
the VB-REG approach is suitable for dealing with
the above complications, provided some adapta-
tions are made to our KR method (e.g. allowing
us to represent how a set of target referents differs
from all other domain elements). We hope to test
this hypothesis in future.

VB-REG generates textual REs through schema
selection and word selection. This generation
strategy suffices for generating the type of REs
found in the TUNA corpus, as we have seen, but
syntactically complex REs can pose a problem.
Consider the expression “the old man carrying a
young dog”, whose schema is

“the” [age] “man carrying a” [age] [animal]

, containing two placeholders for age. When VB-
REG selects words for [age] (as in §3) above, it
lacks the information that the [age] is for the man
or the dog. In this case, VB-REG would select the
same word for the two [age] placeholders. This
limitation stems from the NLG approach in which
VB-REG is embedded; if VB-REG is embedded
into an NLG approach that does not have this lim-
itation (e.g., providing a mechanism to distinguish
the two [age] placeholders), the resulting algo-
rithm will not suffer from this limitation.

In addition, VB-REG adopts the strategy that
all the schema shares the same set of placehold-
ers to adapt to small-scale corpus (e.g. Tuna), but
the strategy may cause a syntactically error. Se-
lection of lexicalisations for placeholders is done
without taking the context of the schema into ac-
count. However, it is not guaranteed that all lex-
icalisation always fits into all placeholder (of dif-
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ferent schemas). For example, we could have the
following two textual descriptions:

“the man wearing glasses”
“the bespectacled man”

They would lead to the schemas:
“the” “man” [hasGlasses]
“the” [hasGlasses] “man”

where both “wearing glasses” and “bespectacled”
present the candidate phrases for the placeholder
[hasGlasses]. Thus the generated textual REs
could be ”the man bespectacled” or ”the wearing
glasses man”, which are not syntactically correct.
Although the strategy works well in our evalua-
tion, it would be safe if a restrictive strategy is
adopted. If the scale of training corpus allows, we
can let each schema use an unique set of place-
holder (i.e. placeholders are no longer shared by
schemas). Because usually multiple corpus texts
derive the same schema, the frequent schemas still
obtain enough training data under the restrictive
strategy.

7 Conclusion and Future Work

This paper has presented REG as a special case
of NLG. It is important to note that the key strat-
egy that we employed for representing an REG
task – which separates properties of the refer-
ent from differences between the referent and
the distractors – can be applied to any vector-
based NLG approach, for example the neural-
network-based NLG approaches (e.g. Wen et al.,
2015) and Concept-based NLG approaches (e.g.
Belz, 2008; Konstas and Lapata, 2013). In this
way, these NLG approaches can perform REG
by adopting our knowledge representation as their
input. Neural-network-based approaches adopt
fixed-length vectors as their input, and generate
texts word by word, so our knowledge vectors and
the corresponding corpus texts can be used to train
them. Concept-text generation models can like-
wise adopt vectorised inputs. These approaches
usually adopt concept sets (i.e. sets of pairs of at-
tributes and values) as their input. Vector-based
KR can be transformed into concept sets by re-
garding the vector entries as pairs of an entry index
and an entry value. Thus our knowledge vectors
can be adopted by these approaches.

One important item for future work is further
evaluation. Although the model performs very
well on the Tuna reference task, further exper-
imental evidence on more challenging reference

tasks is required in order to assess the generality of
the proposed approach. It would be interesting, for
instance, to apply the method to the ReferIt corpus
(Kazemzadeh et al., 2014).
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