- ¹ Molecular-Level Insight into Selective Catalytic
- ² Reduction of NO_x with NH_3 to N_2 over Highly
- ³ Efficient Bifunctional V_a-MnO_x Catalyst at Low

4 Temperature

- 5 Ying Xin,[†] Hao Li,[†] Nana Zhang,[†] Qian Li,[†] Zhaoliang Zhang,^{*†} Xiaoming Cao,^{*‡} P. Hu,[‡]
- 6 Lirong Zheng,[§] and James A. Anderson^{*, #}
- 7 [†]School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of 8 Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China [‡]Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of 9 10 Chemistry and Molecular Engineering, East China University of Science and Technology, 11 Shanghai 200237, China 12 [§]Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ^¹Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, University of 13 14 Aberdeen, AB24 3UE, United Kingdom
- 15
- 16

17 **ABSTRACT**: Selective catalytic reduction of NO_x with ammonia (SCR) is not only an important 18 model catalytic reaction, but also significant in terms of improving environmental air quality and 19 human health. However, SCR catalysts suffer from the low activity and selectivity to N₂ at low 20 temperature, which in part may be attributed to our limited understanding of the reaction 21 mechanism. Here, an unambiguous molecular-level mechanism is presented for an improved 22 low-temperature SCR activity using the bifunctional catalysts composed of highly active oxides 23 (Mn₂O₃) for NH₃ activation and highly selective vanadates (Mn₂V₂O₇) which promote N₂ 24 formation. NH₃ is initially activated by Mn_2O_3 to form an NH₂ intermediate. Transfer of NH₂ to 25 $Mn_2V_2O_7$ then takes place which facilitates the capture of gaseous NO leading to the formation of NH₂NO over Mn₂V₂O₇, whereafter NH₂NO is efficiently converted to the preferred N₂ rather 26 27 than the undesired by-product, N₂O. The proximity of the two components achieved via sol-gel 28 preparation plays a crucial role in the transfer of active intermediates.

29

30 KEYWORDS: Nitrogen oxides; Selective catalytic reduction; Bifunctional catalyst; Density
 31 functional theory; Mechanism

32

33 1. INTRODUCTION

As one of the main fields of interest in environmental catalysis, nitrogen oxides (NO_x) removal using catalytic technologies has always received significant attention from researchers.¹ Selective catalytic reduction (SCR) of NO_x with ammonia (NH₃) is considered as the most efficient and widely used technology, however, developing the low-temperature active catalyst

(< 200°C) with high N₂ selectivity still remains a challenge.^{2,3} In general, the adsorption and 38 activation of NH₃ on the acid sites of the catalysts is regarded as a key step in SCR reaction to 39 enable NO_x conversion at low temperatures.^{4,5} Furthermore, the activation of adsorbed NH₃ 40 relies on an oxidizing component such as a transition metal oxide.⁶⁻⁸ However, N₂ selectivity is 41 42 exceptionally low while employing catalysts with adequate oxidation capability, such as Mn oxides (MnO_x) .^{2,3,9} MnO_x catalysts permit the high NO_x conversion at low temperature, while the 43 44 selectivity to N₂ decreases due to the excessive activation of N-H bond and the resultant oxidation of NH₃ by NO, gaseous O₂ and bulk O.^{3,10} Although the activity of MnO_x catalysts can 45 be modified by changing the Mn oxidation state,¹¹ crystallinity,^{3,12} as well as the surface area and 46 morphology,¹³ the low N₂ selectivity is still an inevitable drawback which must be overcome for 47 the practical applications.^{2,9,10} 48

49 In general, two plausible strategies have been adopted to enhance the low-temperature SCR performance of MnO_x catalysts.^{2,9,10,14} One strategy is to synthesize bi- or multi-metal oxide 50 catalysts to construct specific active sites which combine MnO_x with other metal oxides (Fe.¹⁵ 51 Ce,¹⁶⁻¹⁸ Ni,¹⁹ Nb,²⁰ Cr,²¹ Zr,²² etc.), or supported MnO_x on TiO₂,²³⁻²⁶ SiO₂,^{25,27} Al₂O₃,^{25,28,29} 52 zeolites³⁰⁻³², and carbon-based materials.³³⁻³⁶ The improved activity and N₂ selectivity were thus 53 54 achieved. The second approach is to prepare materials to develop the bifunctional catalysts, which involve the cooperation of two types of active sites with specific properties.³⁷⁻⁴¹ Several 55 56 bifunctional catalysts that consist of an oxidation component (such as Mn, Mn-Ce, Mn-Cr, Mn-Cu, Mn/Ce-Zr oxides, 38,39,42 CoO_x-CuO_x/TiO₂, 43 etc.) and an SCR-active component (such as Fe-57 ZSM-5,^{38,39} V₂O₅-WO₃/TiO₂,³⁹ Fe-beta,⁴² NiMn₂O₄,⁴³ etc.) have received attention, in which V-58 based oxides possess high N₂ selectivity and resistance to sulfur oxide poisoning.^{44,45} 59 Specifically, vanadates attract intensive attention due to the higher thermal stability than V₂O₅.⁴⁶⁻ 60

⁵⁰ However, vanadates have not been exploited to date as an active component of a bifunctional 61 62 SCR catalyst.^{46,47,49,51,52} Furthermore, the deceptively simple synergism between the oxidation component and the SCR-active component for the bifunctional catalysts still remains elusive at a 63 molecular level.⁵³ For instance, Salazar et al. found that such a synergy completely vanished 64 65 when the two components present as separate beds of an oxidation catalyst and an SCR catalyst. On this basis, they challenged the so-called "fast SCR" route and proposed a possible HNO₂ 66 67 intermediate which may be formed over the oxidation component and proceeds to the SCR sites for further reaction. However, no spectroscopic or simulated/computed evidence was 68 presented.39 69

70 In the present work, a Mn-V composite oxide (V_a-MnO_x) composed of NH₃ activation 71 component (Mn_2O_3) and N_2 formation component ($Mn_2V_2O_7$) was prepared to probe the intrinsic 72 SCR mechanism at low temperature from both an experimental and theoretical basis. Mn₂O₃ was 73 confirmed to activate adsorbed NH_3 into a weakly adsorbed intermediate, NH_2 , which can be 74 transferred to Mn₂V₂O₇, where it reacts with the gaseous NO to form NH₂NO. The selective decomposition of NH₂NO into N₂ is far more favorable over Mn₂V₂O₇ than on Mn₂O₃. As a 75 result, both the high activity and high N_2 selectivity are achieved over the bifunctional V_a -MnO_x 76 77 catalyst at low temperature. This demonstrates a significant progress in balancing activity and 78 selectivity of the two aspects of MnO_x-based SCR catalysts.

79

80 2. EXPERIMENTAL SECTION

81 **Catalyst preparation.** A series of V_a -MnO_x catalysts were prepared by a sol-gel method. A 82 known amount of NH₄VO₃, Mn(CH₃COO)₂ and citric acid (CA) were mixed together in a

83 specific order with designated molar ratios. NH₄VO₃ was dissolved in 30 mL purified water at 84 70° C in a water bath under vigorous stirring, until the NH₄VO₃ had been fully dissolved and then 85 held there for about 30 min. The corresponding quantity of CA was then slowly added to the 86 solution and held for 30 min. The molar ratio of citric acid to the metal components (the total 87 moles of vanadium and manganese) was fixed at 1.0. After that, the Mn(CH₃COO)₂ was added to 88 the solution and stirred for 2 h. The suspension obtained was transferred to an evaporating dish 89 and oven dried at 110°C overnight. The resulting materials were calcinated at 450°C for 5 h in 90 muffle furnace in static air. The mixed oxides were denoted as V_a -MnO_x, where a represents the 91 molar ratios of V/(V+Mn). Pure manganese oxide and vanadium-based oxide were synthesized 92 using a similar procedure. For comparison and further investigation, oxidation phase (Mn_2O_3) 93 and reactive phase (Mn₂V₂O₇) components were mechanically mixed with the Mn₂V₂O₇ to yield 94 a materials consistent with $V_{0.05}$ -MnO_x, and denoted as Mn₂O₃+Mn₂V₂O₇. Another reference 95 sample denoted as MoO₃+Mn₂V₂O₇ was also synthesized by a similar procedure. Before SCR 96 activity tests, the catalysts were pressed, crushed and sieved to 40-60 mesh.

97 **Catalyst characterization.** X-ray diffraction (XRD) patterns of the samples were recorded on 98 a Bruker D8-FOCUS X-ray diffractometer using Cu K α radiation ($\lambda = 1.5418$ Å) at 50 kV and 99 30 mA. Intensity data were collected over a 20 range of 10-80° with a 0.03° step size and a 100 counting time of 0.3 s per point. The relative amount of various components in V_a -MnO_x can be 101 obtained using the quantitative XRD analysis by the reference intensity ratio (RIR) method.⁵⁴ 102 Inductively coupled plasma-atomic emission spectrometer (ICP-AES) experiments were carried 103 out on the IRIS Intrepid IIXSP instrument from Thermo elemental. Transmission electron 104 microscopy (TEM) was conducted using a JEOL JEM-2010 microscope at an accelerating 105 voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) data were obtained on an Escalab

250Xi instrument from Thermo Fisher Scientific using monochromatic Al Ka radiation. To 106 107 compensate for surface charging effects, the binding energies were calibrated using the C 1s 108 hydrocarbon peak at 284.80 eV. X-ray absorption fine structure (XAFS) measurements at the Mn 109 and V K-edges were performed in the transmission and fluorescence modes, respectively, at 110 room temperature on the XAFS station of the 1W1B beam line of Beijing Synchrotron Radiation 111 Facility (BSRF, Beijing, China), respectively. XAFS data were analyzed using the IFEFFIT software package.⁵⁵ Brunauer-Emmett-Teller (BET) surface areas were determined from N₂ 112 113 adsorption/desorption isotherms using a Micromeritics ASAP2020M instrument. Before 114 exposure to N₂, samples were outgassed at 300°C for 5 h. Raman spectroscopy was obtained 115 using a RM2000 (RENISHAW) with the 532 nm laser line. H₂-temperature programmed 116 reduction (H₂-TPR) experiments were carried out on a TP-5000 Multifunctional Adsorption 117 Instrument with a thermal conductivity detector (TCD) to monitor H₂ consumption. Before 118 testing, 50 mg of sample was sieved to 40-60 mesh and pretreated at 400°C for 30 minutes in a 119 30 mL/min flow of pure O_2 , then cooled to room temperature in the same atmosphere. The 120 reduction temperature was raised at 10°C/min from 30 to 800°C in a 30 mL/min flow of 5 vol.% 121 H₂ in N₂. In order to quantify the total amount of H₂ consumed, a CuO standard was used for 122 calibration purposes. NH₃-temperature programmed desorption (NH₃-TPD) experiments were 123 performed in a quartz reactor using 50 mg of catalyst. NH_3 (m/z=16) was monitored using a 124 quadrupole Mass Spectrometer (OmniStar 200, Balzers). Prior to experiment, the samples were 125 pretreated at 400°C for 30 min in 10 vol.% O₂/He (50 mL/min) and then cooled to 30°C. NH₃ 126 adsorption was performed in 4000 ppm NH₃ (50 mL/min) until the outlet NH₃ concentration 127 remained constant. Samples were then purged with pure He for 1 h to remove weakly bound 128 NH₃. Finally, the samples were heated to 500°C at 10°C/min. In situ infrared (IR) spectra were

recorded using a Bruker Tensor 27 spectrometer over the range 4000-400 cm⁻¹, with 16 scans, at a resolution of 4 cm⁻¹. Self-supporting wafers were pretreated in the cell at 400°C in a flow of He for 30 min to remove any adsorbed species. After cooling to ambient temperature, a background spectrum was recorded. The IR spectra were recorded at room temperature in a flow of 500 ppm NH₃+He balance or 500 ppm NH₃+500 ppm NO+5.3 vol.% O₂+He balance (150 mL/min). The samples were then heated to 250°C at 10°C/min.

135 **Catalytic activity.** The steady state SCR activity over V_a -MnO_x catalysts and the reference 136 samples were tested in a fixed-bed quartz tube reactor (6.0 mm i.d.) with a thermocouple placed 137 inside the catalyst bed in the temperature range 150-450°C. In SCR reactions, the model flue gas 138 consisted of 500 ppm NO, 500 ppm NH₃, 5.3 vol.% O_2 and He balance. The total flow rate was 139 maintained at 300 mL/min corresponding to a gas hourly space velocity (GHSV) of 50 000 h⁻¹. 140 Concentrations of NO and NO₂ were monitored by a chemiluminiscence NO_x analyzer (42*i*-HL, 141 Thermo). N₂O and NH₃ were determined by quadrupole mass spectrometer (MS, OmniStar 200, 142 Balzers) using the m/z of 44 for N₂O, and 17 for NH₃. The data for steady-state activity of 143 catalysts were collected after about 1 h on stream. From the concentration of the gases at steady state, the NO_x conversion and N₂ selectivity were calculated according to the following 144 145 equations:

146
$$NO_x \text{ conversion } (\%) = \frac{[NO_x]_{in} - [NO_x]_{out}}{[NO_x]_{in}} \times 100\%$$

147 N₂ selectivity (%) =
$$\frac{[NO_x]_{in} + [NH_3]_{in} - [NO_x]_{out} - [NH_3]_{out} - 2[N_2O]}{[NO_x]_{in} + [NH_3]_{in} - [NO_x]_{out} - [NH_3]_{out}} \times 100\%$$

By assuming conditions free from diffusion limitations were met, the SCR reaction rates normalized by sample mass and BET surface area of the catalyst can be calculated according to the following equation:⁴

151
$$Rate = \frac{X_{NO}QC_{f}}{V_{m}W(S_{BET})}$$

where X_{NO} is the NO conversion at a steady SCR reaction temperature (100 °C) (%), Q is the volumetric flow rate (300 mL/min) and C_f is the feeding concentration of NO (500 ppm). V_m is the molar volume of gas (22.4 mL/mol), W is the sample weight (g) and S_{BET} is the BET surface area of the catalyst (m²/g).

156

157 3. THEORETICAL CALCULATIONS

158 To understand the relevant structural and electronic properties of Mn₂O₃ and Mn₂V₂O₇ 159 materials and the SCR network occurring on their surfaces at a molecular level, the spin 160 polarized first-principles calculations based on density functional theory (DFT) implemented in the Vienna *ab initio* Software Package (VASP)^{56,57} were performed with a plane-wave kinetic 161 energy cutoff of 500 eV. The projector augmented wave (PAW) pseudo potentials⁵⁸ were utilized 162 163 to describe the valence-core interactions. The exchange-correlated term was described utilizing generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhoff (PBE).⁵⁹ The PBE+U 164 165 approach was also used to address the on-site Coulomb interactions in the localized d orbitals of 166 Mn and V cations through an additional Hubbard-type U term.

167 For Mn₂O₃, since it will be converted from orthorhombic structure (space group *Pcab*) to 168 cubic structure (space group *Ia3*) in the form of α phase once the temperature is above 308 K⁶⁰ 169 which is lower than the SCR reaction temperature, a cubic conventional unit cell of α -Mn₂O₃ 170 containing 16 units of Mn₂O₃ with the equilibrium lattice constant of 9.658 Å was investigated. 171 The effective U = 4.0 eV fitted according to its oxidation energy⁶¹ was utilized for the Mn cation 172 at α -Mn₂O₃. The exposed Mn₂O₃(202) surface found by TEM was modeled by a 4-layer $p(1\times 1)$ 173 slab of 8.364 Å × 8.364 Å separated by a ~10 Å vacuum in Z direction utilizing 4 × 4 × 1 k-point 174 mesh for Brillouin integration.

175 $Mn_2V_2O_7$ exists in the form of β - $Mn_2V_2O_7$ with a thortveitite-like structure in a monoclinic system of space group C2/m at the reaction temperature.⁶² Hence, the bulk β -Mn₂V₂O₇ 176 containing 2 Mn₂V₂O₇ units within a unit cell of 6.710 Å \times 8.726 Å \times 4.970 Å was modeled as 177 the most stable ferromagnetic (FM) states.⁶³ The effective U = 4.0 and 3.1 eV as reported for 178 isovalent binary metal oxides⁶¹ were utilized for Mn and V, respectively. For the exposed 179 180 $Mn_2V_2O_7(\overline{2}01)$ surface, there are two possible terminations. The only difference between $Mn_2V_2O_7(\overline{2}01)$ -A and $Mn_2V_2O_7(\overline{2}01)$ -B terminals is the existence of the exposed one-fold 181 coordinated oxygen anion (O_{1c}). The more stable $Mn_2V_2O_7(\bar{2}01)$ -A terminal with O_{1c} was 182 183 studied during this reaction. We refer to $Mn_2V_2O_7(\overline{2}01)$ -A as $Mn_2V_2O_7(\overline{2}01)$ hereinafter. The 184 stoichiometric exposed β -Mn₂V₂O₇($\overline{2}01$) surface was modeled by a 6-layer $p(1\times 1)$ slab of 6.868 Å $\times 6.868$ Å separated by a ~ 10 Å vacuum in Z direction utilizing $4 \times 4 \times 1$ k-point mesh for 185 186 Brillouin integration.

For both $Mn_2O_3(202)$ and $Mn_2V_2O_7(\overline{2}01)$ surfaces, during the geometry optimization, the bottom two layers were fixed while the adsorbates and the other layers were relaxed until the force of each atom was lower than 0.05 eV/Å. The transition states (TSs) were determined within a constrained minimization scheme with the same force convergence criterion.⁶⁴⁻⁶⁶ Each TS was further verified as the first-order saddle with only one imaginary vibrational frequency and the 192 corresponding vibrational mode along the reaction coordination based on the numerical193 vibrational frequency analysis.

194 The adsorption energies of reactants were calculated following:

195
$$E_{ad}(x) = E(slab) + E(x) - E(x/slab)$$

where E(slab), E(x) and E(x/slab) are the total energies of the catalyst surface, x in the gas phase and x adsorbed on the catalyst surface, respectively. The more positive $E_{ad}(x)$ is, the more strongly the species x binds with the surface. The adsorption energies were also checked utilizing the screened hybrid functional of Heyd-Scuseria-Ernzerhoff functional (HSE06)⁶⁷ at the optimized structure obtained from PBE+U level.

201

202 4. RESULTS AND DISCUSSION

203 4.1 Structural characterization and catalytic activity

205

Figure 1. XRD patterns of V_a -MnO_x, Mn₂O₃, Mn₂V₂O₇ and reference samples.

206

Samples	ICP data			Theoretical values		XRD		XPS		Surface		NH_3 desorption		
	V (wt.%)	Mn (wt.%)	V/Mn molar ratio	V/Mn molar ratio	Mn ₂ V ₂ O ₇ (wt.%)	Mn ₂ V ₂ O ₇ (wt.%)	Mn ₂ O ₃ / Mn ₂ V ₂ O ₇ molar ratio	Surface V/Mn molar ratio	O _α /(O _α +O _β) (%)	area (m²/g)	H ₂ -uptake (µmol/g)	(µmol/g)	(µmol/m²)	Theoretical (µmol/m²)
Mn_2O_3		68.59			0	0	0	0	35.7	31.9	1128	27.01	0.85	0.85
V _{0.03} -MnO _x	1.53	65.49	0.03	0.03	6.0	4.7	32.1	0.03	33.9	28.9	1209	37.32	1.29	0.93
V _{0.05} -MnO _x	2.64	63.90	0.04	0.05	10.2	10.4	18.1	0.05	34.7	39.2	1239	47.72	1.22	1.00
V _{0.07} -MnO _x	3.77	64.75	0.06	0.07	14.3	14.2	12.3	0.05	32.5	32.3	1062	40.61	1.26	1.06
$Mn_2V_2O_7$	33.67	34.95	1.03	1	100	100		0.69	22.2	15.5	1125	35.62	2.29	2.29
Mn ₂ O ₃ + Mn ₂ V ₂ O ₇	3.06	67.36	0.05	0.05	10.2	10.0	18.5	0.67	24.3	31.1	1332			

207 **Table 1.** ICP, XRD, XPS, surface areas, H₂-TPR, and NH₃ desorption data for V_a-MnO_x.

208

209 XRD patterns show that V_a -MnO_x composite oxides contain Mn₂O₃ (JCPDS No. 73-1826, 210 orthorhombic) and Mn₂V₂O₇ (JCPSD No. 73-1806, monoclinic) phases (Figure 1). The contents 211 of Mn₂V₂O₇ from the quantitative XRD analysis coincide with the theoretical values and ICP 212 data, indicating that the doped V might exist in the form of Mn₂V₂O₇ (Table 1). On the basis of 213 the similar Mn K-edge X-ray absorption near edge structure (XANES) spectra and radial 214 structure function (RSF) curves for Mn_2O_3 and V_a -MnO_x (Figure S1), most of the Mn atoms in 215 V_a -MnO_x are trivalent and in octahedral coordination, and others are in the form of Mn₂V₂O₇ according to XRD (Figure 1). On the other hand, two peaks are recognized at ~1.7 Å and ~3.1 Å 216

in the RSF curves of $Mn_2V_2O_7$, corresponding to the Mn^{2+} -O and Mn^{2+} -V shells, respectively. In the case of the V K-edge, the peak position and shape of the normalized XANES and RSF (Figure 2) curves for V_a -MnO_x correspond well with those of $Mn_2V_2O_7$ and $Mn_2O_3+Mn_2V_2O_7$, consistent with the XRD patterns (Figure 1 and Table 1) confirming that all of the V atoms in V_a -MnO_x exist in the same tetrahedral coordination environment as in $Mn_2V_2O_7$.⁶⁸ Raman spectra also show the $Mn_2V_2O_7$ phase for $V_{0.07}$ -MnO_x (Figure S2).

223

224

Figure 2. Normalized XANES spectra (a) and the RSF curves (b) of V K-edge for V_a -MnO_x and the reference samples.

228

229 XPS was further used to characterize the surfaces of V_a-MnO_x. For Mn₂O₃ and V_a-MnO_x, no 230 obvious change in binding energies of Mn 2p was observed due to the excess Mn_2O_3 in V_a -MnO_x 231 (Figure S3a). As for $Mn_2V_2O_7$, the Mn $2p_{3/2}$ binding energy was located at 640.8 eV, which is attributed to Mn^{2+,7} Compared with those of Mn₂V₂O₇ and Mn₂O₃+Mn₂V₂O₇, the binding 232 233 energies of V 2p for V_a -MnO_x show an obvious shift toward lower values, indicating a reduction in the oxidation state of $V_{,}^{69,70}$ probably due to the the strong interaction between Mn₂O₃ and 234 235 Mn₂V₂O₇ (Figure S3b). The O 1s peaks can be fitted using two oxygen species, the lattice oxygen at ~529.9 eV (O_{β}) and the chemisorbed surface oxygen at ~531.1 eV (O_{α}) (Figure S3c).⁷ 236 237 The close values of $[O_{\alpha}/(O_{\alpha}+O_{\beta})]$ for V_a-MnO_x to Mn₂O₃, which are much higher than those in 238 $Mn_2V_2O_7$ and $Mn_2O_3+Mn_2V_2O_7$, guarantee the activition of NH₃ on V_a-MnO_x. The approximate 239 V/Mn atomic ratio of V_a -MnO_x to ICP and theoretical values also suggest that V is not enriched 240 on the surface.

242

Figure 3. (a) NO_x conversion and (b) N₂ selectivity for V_a -MnO_x, Mn₂O₃, Mn₂V₂O₇ and reference samples.

NO conversion and selectivity to N_2 are shown in Figure 3. Mn_2O_3 is active in SCR reaction over the whole temperature range, however, N_2 selectivity decreases significantly with increasing temperature. In contrast, $Mn_2V_2O_7$ exhibits much lower activity with excellent N_2 selectivity. Evidently, both NO_x conversion and N_2 selectivity were improved for V_a -MnO_x. In particular, $V_{0.05}$ -MnO_x shows NO_x conversions above 90% between 120 and 240°C, and the N_2 selectivity was always above 80%. Furthermore, NO_x conversion to N_2 for $V_{0.05}$ -MnO_x is higher

than that of the $Mn_2O_3+Mn_2V_2O_7$ sample, which constitutes the arithmetic sum of individual components with the same component content as $V_{0.05}-MnO_x$, at measured temperatures, suggesting the existence of synergism between Mn_2O_3 and $Mn_2V_2O_7$ in $V_{0.05}-MnO_x$. However, if Mn_2O_3 is replaced by an equivalent non-oxidant MoO_3 , NO_x conversion is even lower than that of $Mn_2V_2O_7$, confirming that the presence of Mn_2O_3 is indispensable for the reaction. Moreover, the samples did not undergo structural modifications during the SCR reactions (Figure S4).

259

Figure 4. Reaction rates at 100°C for V_a -MnO_x, Mn₂O₃, Mn₂V₂O₇ and reference samples.

Figure 4 shows the reaction rates for NO_x conversion to N_2 in the kinetic regime at 100°C. The activity for N_2 production is improved over V_a -MnO_x on the basis of the specific rate per gram and per surface area, and $V_{0.05}$ -MnO_x is the most active for N_2 production. Furthermore, the Mn₂O₃+Mn₂V₂O₇ sample shows similar behavioral trends but to a less extent than $V_{0.05}$ -MnO_x.

267 This again indicates that the improved activity of V_a -MnO_x has a basis in the synergism between

 $268 \qquad Mn_2O_3 \ and \ Mn_2V_2O_7.$

4.2 Redox and acid properties

Figure 5. (a) H₂-TPR profiles for Mn_2O_3 , $Mn_2V_2O_7$, V_a -MnO_x and reference samples, and (b)

NH₃-TPD profiles of Mn_2O_3 , $Mn_2V_2O_7$, and V_a -MnO_x.

277 Mn-based catalysts have been reported to show the improved SCR activity due to their strong 278 redox properties.¹⁰ Hence, H₂-TPR patterns of V_a -MnO_x (and references) were performed 279 (Figure 5a). Based on the XRD patterns of the samples after SCR reactions (Figure S5), the 280 reduction products of Mn₂O₃ and Mn₂V₂O₇ are MnO and MnV₂O₄, respectively. Mn₂O₃ shows 281 peaks at 328 and 440°C, which are assigned to the reduction of Mn₂O₃ to Mn₃O₄ and Mn₃O₄ to 282 MnO, respectively. Mn₂V₂O₇ shows only a high-temperature reduction peak above 500°C, corresponding to the transformation, V^{5+} (Mn₂V₂O₇) to V^{3+} (MnV₂O₄). The low-temperature 283 284 redox peaks of V_a -MnO_x could be attributed to the reduction of Mn species. However, compared with pure Mn_2O_3 and $Mn_2V_2O_7$, the Mn^{3+} reduction to Mn^{2+} is shifted to higher temperature 285 while the reduction of V^{5+} into V^{3+} starts at a lower temperature in V_a-MnO_x, suggesting 286 287 synergistic effects between Mn_2O_3 and $Mn_2V_2O_7$ in V_a -MnO_x possibly involving H spillover from Mn_2O_3 to $Mn_2V_2O_7$, which results in the simultaneously suppression of Mn^{3+} reduction and 288 promotion of the V^{5+} reduction. In addition, the primarily quantitive H₂ consumption is very 289 290 close (Table 1).

Acidity is another crucial factor in SCR reactions.⁷¹ To determine this aspect of these samples, 291 292 NH₃-TPD was carried out (Figure 5b) and the corresponding desorption quantities were 293 calculated (Table 1). More NH₃ was desorbed from V_a -MnO_x compared with Mn₂O₃, Mn₂V₂O₇, 294 and the theoretical mass-weighted arithmetic values calculated from the corresponding weight 295 ratio of Mn_2O_3 and $Mn_2V_2O_7$ in V_a -MnO_x, which would be consistent with synergistic effects 296 arising between Mn₂O₃ and Mn₂V₂O₇ for the V_a-MnO_x samples. In addition, the temperature 297 range of NH₃ desorption is consistent with the active temperature window for SCR of V_a-MnO_x. 298 The maximum NH₃ desorption per gram sample was obtained for $V_{0.05}$ -MnO_x which also shows 299 the highest reaction rate (Table 1 and Figure 4). However, the NH₃ desorption amount per unit surface area of V_a -MnO_x was nearly identical (Table 1), suggesting that the promoted SCR performance of V_a -MnO_x originate from the increased acid amounts in despite of their various compositions.

303

304 **4.3** *In situ* **IR spectra of NH**³ **adsorption**

305

Figure 6. *In situ* IR spectra of (a-c), NH₃ adsorption at steady-state and (d) during SCR reaction over (a) Mn_2O_3 , (b) $Mn_2V_2O_7$ and (c, d) $V_{0.05}$ -MnO_x.

308

To investigate the nature of the adsorbed NH_3 species and potential reaction intermediates, *in* situ IR spectra were collected of NH_3 adsorption at room temperature and subsequent desorption with increasing temperature (Figure 6a-c). Only ammonia adsorption at Lewis acid sites was

312 observed for Mn_2O_3 (Figure 6a), which is supported by the absence of negative bands about 3600 313 cm⁻¹ (Figure S6a).^{45,71-73} Bands at ~1209 and ~1607 cm⁻¹ are attributed to the symmetric and asymmetric bending modes of NH₃ coordinately linked to Lewis acid sites, respectively.⁷² The 314 weak band at 1410 cm⁻¹ disappears completely after He purging at room temperature, which is 315 316 derived from the protonation of weakly adsorbed NH₃.²⁹ Notably, a band at 1538 cm⁻¹ was 317 observed for Mn₂O₃, which is attributed to the scissoring vibration mode of weakly adsorbed NH₂ (amide) species arising from the partial oxidation of NH₃ (H-abstraction),⁷⁴ because it 318 disappears after the He purge at room temperature.⁷² 319

320 In addition, for $Mn_2V_2O_7$, evidence for both Brønsted and Lewis acid sites was observed from 321 Figure 6b, while the IR spectra of $V_{0.05}$ -MnO_x exhibits the combined characteristics of Mn₂O₃ and Mn₂V₂O₇ (Figure S6b and 6c). The bands at 3353-3028 cm⁻¹ arise from N-H stretching 322 vibrations of NH₃ adsorbed on Lewis sites (Figure S6b). The corresponding bending vibrations 323 are observed at 1170/1178 cm⁻¹ (Figure 6c).⁷⁵⁻⁷⁷ The characteristic bands for NH₄⁺ formed by the 324 325 interaction of NH₃ with Brønsted sites around 1440 cm⁻¹ (Figure 6c) are also supported by the negative band at 3660-3670 cm⁻¹ (Figure S6b), which indicates the consumption of the -OH. The 326 327 enhanced quantities of Lewis and Brønsted acidity in V_{0.05}-MnO_x compared with those of Mn₂O₃ 328 and $Mn_2V_2O_7$ are again potentially indicative of synergistic effects between the components, in 329 accordance with the NH₃-TPD results (Figure 5b and Table 1). In addition, NH₃ bound to Lewis acid sites were more strongly adsorbed,⁷² because the intensity of bands due to Brønsted acid 330 331 sites decreased noticeably with the increasing temperature, while those due to adsorption at Lewis acid sites still remained. Importantly, the NH₂ species at 1538 cm⁻¹ was still detected in 332 333 $V_{0.05}$ -MnO_x. In comparison with *in situ* IR spectra of the MoO₃+Mn₂V₂O₇ sample (which lacks 334 redox properties at low temperature) (Figure S7), it is concluded that the NH₂ species arose from

the activation of the adsorbed NH₃ on Mn₂O₃. Moreover, despite the high amount of Brønsted acidity in the MoO₃+Mn₂V₂O₇ sample, its poor SCR activity may indicate that the Lewis acidity may play a crucial role in the SCR reaction at low temperature (Figure 3 and Figure S7).²⁴

339

340

Figure 7. TEM and HRTEM images of (a) Mn_2O_3 , (b) $Mn_2V_2O_7$, (c, d) $V_{0.05}$ -Mn O_x .

341

TEM characterization reveals that the nanoparticles are aggregated together with ~20 (Figure 343 7a) and ~80 nm in diameter (Figure 7b) for Mn_2O_3 and $Mn_2V_2O_7$, respectively. The close 344 proximity of Mn_2O_3 and $Mn_2V_2O_7$ particles in V_a -MnO_x is demonstrated in the example of $V_{0.05}$ -345 MnO_x (Figure 7c and d). This again may be seen as evidence that the higher activity of V_a -MnO_x 346 compared with Mn_2O_3 which contributes to the synergism between Mn_2O_3 and $Mn_2V_2O_7$. It is 347 likely that the NH₂ intermediate from NH₃ partial oxidation on Mn₂O₃ transfers to Mn₂V₂O₇ 348 where the further reactions of NH₂ with gaseous NO ultimately produce N₂ rather than N₂O over 349 Mn_2O_3 . Following this assumption, it could be the case that $V_{0.05}$ -MnO_x, which shows the 350 maximum activity, exhibits the optimal contact between Mn_2O_3 and $Mn_2V_2O_7$, thus facilitating 351 transfer of intermediates. According to the physical dimensions of Mn₂O₃ and Mn₂V₂O₇ 352 nanoparticles in V_a -MnO_x, the optimal ratio of Mn₂O₃ and Mn₂V₂O₇ is calculated by assuming 353 that the particles are spherical and tangentially contacted (Figure 8). At most, one hundred 354 Mn_2O_3 spherical particles are at a tangent with the surface of one $Mn_2V_2O_7$ particle, while for 355 one Mn_2O_3 spherical particle, only 6.25 $Mn_2V_2O_7$ particles are located at its external surface 356 tangentially. Therefore, the calculated optimal matching value for the molar ratio between Mn₂O₃ and Mn₂V₂O₇ is 16, which is very close to those of the calculated molar ratios from 357 theoretical values and quantitative XRD analysis for $V_{0.05}$ -MnO_x (Table 1). This confirms that 358 359 the optimal activity of $V_{0.05}$ -MnO_x is a consequence of the optimal contact arising between the 360 two components which facilitate the transfer of the active intermediates. Anyway, the transfer 361 process will be corroborated by the following DFT calculations.

362

Figure 8. The simulated geometric configuration and calculation formulas for the optimal
 contact between the two different phases.

Mn₂O₃

Mn₂V₂O₇

(a)

366

367

Figure 9. (a) Photographs and schematic graphs of Mode 1 and 2, (b) NO_x conversion and (c) N_2 selectivity of the Mode 1 and 2 samples. Dual-bed configuration with Mn_2O_3 packed above

372

(Mode 1) or below (Mode 2) $Mn_2V_2O_7$ and separated by a layer of quartz sand.

373

374 To further demonstrate the transfer of the reactive intermediate, SCR reactions over the 375 catalysts with the two functionalities packed in different modes under the same conditions were 376 performed (Figure 9a). Irrespective of Mode 1 or 2, the negligible improvement in activity was 377 observed compared with Mn₂O₃ (Figure 9b and c) indicating that even though the active 378 intermediates are generated over Mn₂O₃, transfer cannot proceed (Mode 1) due to the long-379 distance between the two components. In addition, the activity of the $Mn_2O_3+Mn_2V_2O_7$ sample is 380 higher than those of Mode 1 and 2 (Figure 9b and c), confirming that tight contact is 381 indispensable, as in the case of V_a -MnO_x.

382 Further investigation of the transferred NH₂ from Mn₂O₃ with gaseous NO on Mn₂V₂O₇ was 383 conducted using in situ IR spectra of the SCR reaction over $V_{0.05}$ -MnO_x (Figure 6d). In 384 comparison with Figure 6c, a unique band at ~1325 cm⁻¹ which was not found over pure Mn_2O_3 385 and Mn₂V₂O₇ samples could be attributed to N=O stretching vibration. However, in the surface 386 reactions on $V_{0.05}$ -MnO_x between not only NO+O₂ and pre-adsorbing NH₃ (Figure S8a) but also NH₃ and pre-adsorbed NO+O₂ (Figure S8b), the ~1325 cm⁻¹ band is similarly present, suggesting 387 that it is correlated with both N=O and N-H moieties, most likely due to the NH₂NO species,⁷⁸ 388 389 arising from the combination of the NH₂ species and gaseous NO.⁷² This assignment will be 390 shown reasonable by DFT calculations. Thus, the V_a -MnO_x system works as a bifunctional 391 catalyst, in which Mn_2O_3 is responsible for NH₃ activation while $Mn_2V_2O_7$ participates in N₂ 392 production whilst the transfer of the NH₂ intermediate occurs between the two components. 393 Without NH₂ migration from Mn_2O_3 to $Mn_2V_2O_7$, this NH₂ intermediate would be further 394 oxidized to N₂O over the Mn_2O_3 . Once NH₂ intermediate is transferred to $Mn_2V_2O_7$, the NH₂NO 395 formed over $Mn_2V_2O_7$ is converted to N₂ rather than N₂O at lower temperature. To verify the 396 above hypothesis, DFT calculations were performed.

397 **4.5 DFT calculations**

As displayed in HRTEM images (the insets of Figure 7a and b), the (202) and ($\overline{2}01$) surfaces were exposed for Mn₂O₃ and Mn₂V₂O₇, respectively. Consequently, DFT calculation was carried out on Mn₂O₃(202) (Figure S9) and Mn₂V₂O₇($\overline{2}01$) (Figure S10). Other considerations for choosing the two facets are provided in Supporting Information.

402 Firstly, the calculations of NH₃ adsorption were conducted and the corresponding adsorption energies of the most stable configuration (Figure S11) on $Mn_2O_3(202)$ and $Mn_2V_2O_7(\overline{2}01)$ are 403 404 listed in Table S1. The adsorption energies were calculated on the basis of PBE+U and checked 405 by HSE06 calculations. As listed in Table S1, PBE+U and HSE06 results are qualitatively consistent. In the case of Mn_2O_3 , NH_3 tends to adsorb atop at the Lewis acid sites of Mn_{4c}^{I} (4-fold 406 coordinated Mn cation) rather than at the Brønsted site of HO_{2c}^{I} (two-fold coordinated oxygen 407 408 anion) over $Mn_2O_3(202)$. Moreover, the adsorption energy of NH_3 is evidently stronger than that 409 of NO over Mn₂O₃(202), suggesting that the Lewis acid site of Mn would be occupied by NH₃ 410 while NO is difficult to adsorb on the surface. In the case of $Mn_2V_2O_7$, NH₃ also preferentially adsorbs at the Lewis acid site of Mn_{5c}^{I} (Mn_{5c}^{I} 5-fold coordinated Mn cation) rather than at the 411 412 Brønsted site of HO_{1c} (one-fold coordinated oxygen anion) over Mn₂V₂O₇($\overline{2}01$). Nevertheless, 413 the adsorption strength of NH₃ over Mn₂V₂O₇($\overline{2}01$) is weaker than that over Mn₂O₃(202) at Lewis acid sites while the order of NH₃ binding strength is reversed at Brønsted site due to the existence of one-fold coordinated oxygen at $Mn_2V_2O_7(\overline{2}01)$. These facts imply a stronger Lewis acidity of Mn cations at the $Mn_2O_3(202)$ surface compared with those in the $Mn_2V_2O_7(\overline{2}01)$ surface. In addition, NO barely adsorbs over $Mn_2V_2O_7(\overline{2}01)$, which suggests that the Lewis acid sites would also be occupied by NH₃ on the $Mn_2V_2O_7(\overline{2}01)$ surface. The above results are all in good agreement with the *in situ* IR characterization.

420

421

422Figure 10. Energy profiles of NH3 adsorption and its oxidative dehydrogenation over423 $Mn_2O_3(202)$ and $Mn_2V_2O_7(\overline{2}01)$ considering the large entropy of gaseous NH3 (T = 400 K, TS =4240.80 eV) and the corresponding transition state structures of TS1a* and TS1b* and final states of425adsorbed NH3* oxidative dehydrogenation over these two surfaces, respectively.

427 Since NH₃ exposure prior to NO adsorbs at Lewis acid sites over both Mn₂O₃(202) and $Mn_2V_2O_7(\bar{2}01)$, we further explored NH₃ oxidative dehydrogenation over $Mn_2O_3(202)$ and 428 $Mn_2V_2O_7(\overline{2}01)$ at a reaction temperature of 400 K. As shown in Figure 10, not only is the 429 adsorption strength of NH₃ on Mn₂O₃(202) stronger than on Mn₂V₂O₇($\overline{2}01$) but also the NH₃ 430 activation barrier of 0.29 eV on Mn₂O₃(202) is much lower in comparison with 1.23 eV for 431 432 $Mn_2V_2O_7(\overline{2}01)$, indicating that Mn_2O_3 with excellent oxidation properties can readily activate the adsorbed NH_3 to form $NH_2^* + H^*$ (* denotes the adsorbed species) which is demanding on 433 434 $Mn_2V_2O_7(\bar{2}01).$

Figure 11. (a) Energy profiles and the corresponding transition states and intermediate states geometry structures of the oxidative dehydrogenation of NH₂* and the formation of N₂O and N₂ processes over Mn₂O₃(202) considering the great entropy of gaseous NO and NH₂NO (T = 400K, $TS_{NO} = 0.87$ eV and $TS_{NH_2NO} = 1.07$ eV); (b) Energy profiles and the corresponding transition states and intermediate states geometry structures of N₂O and N₂ formation over Mn₂V₂O₇($\overline{2}$ O1)

442

443

after the migration of NH₂^{*} from Mn₂O₃(202) to Mn₂V₂O₇($\overline{2}01$) considering the great entropy of gaseous NO and NH₂NO (T = 400 K, $TS_{NO} = 0.87$ eV).

444

Accordingly, the subsequent reaction channels beginning with NH2^{*} including the possible 445 further oxidative dehydrogenation of NH_2^* were investigated over $Mn_2O_3(202)$. As shown in 446 447 Figure 11a, on the one hand, the energy barrier for NH_2^* oxidative dehydrogenation to NH^* is as high as 1.26 eV, leading to the outcome that the formation of NH^*+2H^* from activated $NH_2^*+H^*$ 448 449 via this pathway, i.e. the deep oxidative dehydrogenation of NH₃ would not be feasible at low temperature. On the other hand, the formation of *NH2NO from NH2* and gaseous NO is 450 451 evidently exothermic, which could compensate for the entropy loss of gaseous NO due to its fixation by the surface. This indicates that NH_2^* tends to associate with gaseous NO to produce 452 453 *NH₂NO rather than undergo further dehydrogenation. After the desorption and re-adsorption process, the chemisorption of *NH2NO at Mn site will switch from the configuration via the N of 454 NH₂ moiety to the more stable configuration via the N of NO moiety ($^{*}NH_{2}NO \rightarrow NH_{2}NO^{*}$). The 455 NH₂NO^{*} formed could then be dehydrogenated to NHNO^{*} almost without energy barrier which 456 then tends to be further dehydrogenated to form N₂O instead of the more desirable N₂ from the 457 458 dehydroxylation over Mn₂O₃(202). The formation of N₂ must undergo N-O bond dissociation 459 process. Since the breaking of the single bond of N-O in NHNOH and the formation of monovalent NHN^{*} and OH^{*} would be thermodynamically far easier than the breaking of double 460 bond of N=O in NHNO and the formation of bivalent NH₂N^{*} and O^{*} with stronger bonding 461 competition at single Mn cation of $Mn_2O_3(202)$, the production of N_2 will pass through 462 NHNOH^{*} over Mn₂O₃(202). However, since the reaction energy from NHNO^{*} to NHNOH^{*} is 463 464 1.44 eV, which is even higher than the energy barrier of 0.78 eV for the dehydrogenation of 465 NHNO^{*} to yield N₂O, N₂O production is more favorable than N₂ over the pure $Mn_2O_3(202)$ 466 surface. This DFT result is consistent with the experimental results of the low N₂ selectivity of 467 Mn_2O_3 in SCR reaction (Figure 3b).

Interestingly, in the presence of the second component of $Mn_2V_2O_7$, despite the tough 468 oxidative dehydrogenation of NH₃ to produce NH₂^{*} over Mn₂V₂O₇($\overline{2}01$), once NH₂^{*} is able to 469 470 migrate to this surface from the $Mn_2O_3(202)$ surface, it is clear from Figure 11b that the energy 471 barriers of the subsequent reaction channels towards the production of N₂O and N₂ are all rather low. Additionally, although the facile energy barrier of oxidative dehydrogenation of NHNO^{*} to 472 473 yield N₂O over Mn₂V₂O₇($\overline{2}$ 01) (0.33 eV) is evidently lower than that over Mn₂O₃(202) (0.78 474 eV), the energy barriers in the branch pathway towards the formation of gaseous N₂ starting from NHNO^{*} are all even lower than the energy barrier of N₂O formation over Mn₂V₂O₇($\overline{2}01$). This 475 476 might be attributed to the presence of one-fold coordinated lattice oxygen anion at the surface of 477 $Mn_2V_2O_7(\overline{2}01)$ with stronger Lewis basicity and steric structure advantage which is in favor of 478 the hydrogen transfer between the surface and intermediates via hydrogen bond for the formation of NHNOH^{*} and NNOH^{*}. Thus N₂ production is more favorable than N₂O over Mn₂V₂O₇($\overline{2}01$) 479 surface. Furthermore, once NH₂^{*} could readily migrate to Mn₂V₂O₇ from Mn₂O₃, the formation 480 481 of N₂O over the Mn₂O₃(202) surface could be suppressed. This sheds light on the fact that N₂ 482 could be rapidly and selectively produced utilizing V_a -MnO_x catalysts, which also underscores the significance of the existence of Mn_2O_3 which is capable of activating NH_3 to form NH_2^* and 483 the intimate contact between Mn_2O_3 and $Mn_2V_2O_7$ on which NH_2^* migration depends. 484

485 Combining experimental results with DFT calculations, we conclude that the SCR reaction 486 over this bifunctional catalyst mainly follows the pathway as described: adsorbed NH_3 is 487 activated over Mn_2O_3 into a NH_2 intermediate, which then transfers to $Mn_2V_2O_7$ where it reacts 488 with gaseous NO to form NH₂NO, which will be exclusively decomposed into N₂. The NO_x 489 conversion on Mn₂O₃ into N₂O is thus inhibited.

490

491 **5. CONCLUSIONS**

In summary, we have fabricated the bifunctional V_a -MnO_x catalysts composed of Mn₂O₃ and 492 493 Mn₂V₂O₇, which separate the activation of NH₃ and the production of N₂ via an active 494 intermediate NH₂ transfer. Both NO_x conversion and N₂ selectivity are greatly improved in 495 comparison with Mn₂O₃ at the low temperature due to the synergism between Mn₂O₃ and 496 $Mn_2V_2O_7$ which enhanced Lewis acid density of V_a -MnO_x. The maximum activity for $V_{0.05}$ -497 MnO_x is attributed to the optimal contact between these two components, highlighting the 498 significance of the proximity for transfer of the intermediate. Using a combination of *in situ* IR 499 characterization and DFT calculations, the NH₂ intermediate was found to be formed by NH₃ 500 dehydrogenation over Mn₂O₃, and to subsequently be transferred and reacted with gaseous NO 501 into NH₂NO on Mn₂V₂O₇, which exclusively decomposes into N₂. The deep oxidation of 502 adsorbed NH₃ on Mn₂O₃ into N₂O is therefore inhibited.

503

504 ASSOCIATED CONTENT

505 **Supporting Information**. Additional characterization data (such as XAFS, Raman, XPS, 506 XRD and *in situ* IR) and theoretical calculation results can be found in the Supporting 507 Information.

509 AUTHOR INFORMATION

- 510 **Corresponding Author**
- 511 *chm_zhangzl@ujn.edu.cn
- 512 *xmcao@ecust.edu.cn
- 513 *j.anderson@abdn.ac.uk
- 514

515 ACKNOWLEDGEMENTS

516 This work was supported by National Natural Science Foundation of China (No. 21477046,

517 21333003 and 21673072) and Key Technology R&D Program of Shandong Province (No.

518 2016ZDJS11A03). The authors also thank the computing time support from Special Program for

519 Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase)

- 520 under Grant No.U1501501.
- 521

522 **REFERENCES**

- 523 (1) Centia, G.; Ciambelli, P.; Perathoner, S.; Russo, P. Environmental catalysis trends and outlook, *Catal.*524 *Today* 2002, 75, 3-15.
- 525 (2) Liu, C.; Shi, J. W.; Gao, C.; Niu, C. M. Manganese oxide-based catalysts for low-temperature selective
 526 catalytic reduction of NO_x with NH₃: A review, *Appl. Catal. A: Gen.* 2016, 522, 54-69.
- (3) Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Manganese oxide catalysts for NO_x reduction with NH₃ at
 low temperatures, *Appl. Catal. A: Gen.* 2007, 327, 261-269.
- 529 (4) Liu, Y.; Xu, J.; Li, H. R.; Cai, S. X.; Hu, H.; Fang, C.; Shi, L. Y.; Zhang, D. S. Rational design and *in situ*

- fabrication of $MnO_2@NiCo_2O_4$ nanowire arrays on Ni foam as high-performance monolith de- NO_x 531 catalysts, *J. Mater. Chem. A* **2015**, 3, 11543-11553.
- (5) Qi, G.; Yang, R. T.; Chang, R. MnO_x-CeO₂ mixed oxides prepared by co-precipitation for selective
 catalytic reduction of NO with NH₃ at low temperatures, *Appl. Catal. B: Environ.* 2004, 51, 93-106.
- 6) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and mechanistic aspects of the selective catalytic
 reduction of NO_x by ammonia over oxide catalysts: A review, *Appl. Catal. B: Environ.*1998, 18, 1-36.
- 536 (7) Xiong, Y.; Tang, C. J.; Yao, X. J.; Zhang, L.; Li, L. L.; Wang, X. B.; Deng, Y.; Gao, F.; Dong, L. Effect of
 537 metal ions doping (M=Ti⁴⁺, Sn⁴⁺) on the catalytic performance of MnO_x/CeO₂ catalyst for low
 538 temperature selective catalytic reduction of NO with NH₃, *Appl. Catal. A: Gen.* 2015, 495, 206-216.
- 539 (8) Liu, F. D.; Yu, Y. B.; He, H. Environmentally-benign catalysts for the selective catalytic reduction of NO_x
- from diesel engines: structure-activity relationship and reaction mechanism aspects, *Chem. Commun.*2014, 50, 8445-8463.
- 542 (9) Li, J. H.; Chang, H. Z.; Ma, L.; Hao, J. M.; Yang, R. T. Low-temperature selective catalytic reduction of
 543 NO_x with NH₃ over metal oxide and zeolite catalysts—A review, *Catal. Today* 2011, 175, 147-156.
- (10) Zhang, S. G.; Zhang, B. L.; Liu, B.; Sun, S. L. A review of Mn-containing oxide catalysts for low
 temperature selective catalytic reduction of NO_x with NH₃: reduction mechanism and catalyst
 deactivation, *RSC Adv.* 2017, 7, 26226-26242.
- 547 (11) Tang, X. F.; Li, J. H.; Sun, L.; Hao, J. M. Origination of N₂O from NO reduction by NH₃ over β-MnO₂
 548 and α-Mn₂O₃, *Appl. Catal. B: Environ.* 2010, 99, 156-162.
- 549 (12) Tang, X. F.; Hao, J. M.; Xu, W. G.; Li, J. H. Low temperature selective catalytic reduction of NO_x with
 550 NH₃ over amorphous MnO_x catalysts prepared by three methods, *Catal. Commun.* 2007, 8, 329-334.
- (13) Tian, W.; Yang, H. S.; Fan, X. Y.; Zhang, X. B. Catalytic reduction of NO_x with NH₃ over differentshaped MnO₂ at low temperature, *J. Hazard. Mater.* 2011, 188, 105-109.
- (14) Xu, H. M.; Yan, N. Q.; Qu, Z.; Liu, W.; Mei, J.; Huang, W. J.; Zhao, S. J. Gaseous heterogeneous catalytic
 reactions over Mn-based oxides for environmental applications: A critical review, *Environ. Sci. Technol.*2017, 51, 8879-8892.
- 556 (15) Long, R. Q.; Yang, R. T.; Chang, R. Low temperature selective catalytic reduction (SCR) of NO with NH₃

- 557 over Fe-Mn based catalysts, *Chem. Commun.* **2002**, 452-453.
- (16) Qi, G.; Yang, R. T. Performance and kinetics study for low-temperature SCR of NO with NH₃ over MnO_x CeO₂ catalyst, *J. Catal.* 2003, 217, 434-441.
- 560 (17) Eigenmann, F.; Maciejewski, M.; Baiker, A. Selective reduction of NO by NH₃ over manganese-cerium
 561 mixed oxides: Relation between adsorption, redox and catalytic behavior, *Appl. Catal. B: Environ.* 2006,
 562 62, 311-318.
- 563 (18) Casapu, M.; Krocher O.; Elsener, M. Screening of doped MnO_x-CeO₂ catalysts for low-temperature NO564 SCR, *Appl. Catal. B: Environ.* 2009, 88, 413-419.
- (19) Wan, Y. P.; Zhao, W. R.; Tang, Y.; Li, L.; Wang, H. J.; Cui, Y. L.; Gu, J. L.; Li, Y. S.; Shi, J. L. Ni-Mn bimetal oxide catalysts for the low temperature SCR removal of NO with NH₃, *Appl. Catal. B: Environ.*2014, 148-149, 114-122.
- 568 (20) Lian, Z. H.; Liu, F. D.; He, H.; Shi, X. Y.; Mo, J. S.; Wu, Z. B. Manganese-niobium mixed oxide catalyst
- for the selective catalytic reduction of NO_x with NH_3 at low temperatures, *Chem. Eng. J.* **2014**, 250, 390-398.
- 571 (21) Chen, Z. H.; Yang, Q.; Li, H.; Li, X. H.; Wang, L. F.; Tsang, S. C. Cr-MnO_x mixed-oxide catalysts for
 572 selective catalytic reduction of NO_x with NH₃ at low temperature, *J. Catal.* 2010, 276, 56-65.
- 573 (22) Zuo, J. L.; Chen, Z. H.; Wang, F. R.; Yu, Y. H.; Wang, L. F.; Li, X. H. Low-temperature selective catalytic
 574 reduction of NO_x with NH₃ over novel Mn–Zr mixed oxide catalysts, *Ind. Eng. Chem. Res.* 2014, 53,
 575 2647-2655.
- 576 (23) Qi, G.; Yang, R. T. Low-temperature selective catalytic reduction of NO with NH₃ over iron and
 577 manganese oxides supported on titania, *Appl. Catal. B: Environ.* 2003, 44, 217-225.
- 578 (24) Smirniotis, P. G.; Peña, D. A.; Uphade, B. S. Low-temperature selective catalytic reduction (SCR) of NO
- with NH₃ by using Mn, Cr, and Cu oxides supported on hombikat TiO₂, *Angew. Chem. Int. Ed.* 2001, 40,
 2479-2482.
- 581 (25) Smirniotis, P. G.; Sreekanth, P. M.; Peña, D. A.; Jenkins, R. G. Manganese oxide catalysts supported on
- 582 TiO₂, Al₂O₃, and SiO₂: A comparison for low-temperature SCR of NO with NH₃, *Ind. Eng. Chem. Res.*
- **2006**, 45, 6436-6443.

- (26) Park, E.; Kim, M.; Jung, H.; Chin, S.; Jurng, J. Effect of sulfur on Mn/Ti catalysts prepared using
 chemical vapor condensation (CVC) for low-temperature NO reduction, *ACS Catal.* 2013, 3, 1518-1525.
- 586 (27) Huang, J. H.; Tong, Z. Q.; Huang, Y.; Zhang, J. F. Selective catalytic reduction of NO with NH₃ at low
- temperatures over iron and manganese oxides supported on mesoporous silica, *Appl. Catal. B: Environ.*2008, 78, 309-314.
- (28) Singoredjo, L.; Korver, R.; Kapteijn, F.; Moulijn, J. Alumina supported manganese oxides for the lowtemperature selective catalytic reduction of nitric oxide with ammonia, *Appl. Catal. B: Environ.* 1992, 1,
 297-316.
- (29) Kapteijn, F.; Singoredjo, L.; Driel, M.; Andreini, A.; Moulijn, J. A.; Ramis, G.; Busca, G. Aluminasupported manganese oxide catalysts: II. Surface characterization and adsorption of ammonia and nitric
 oxide, *J. Catal.* **1994**, 150, 106-115.
- (30) Qi, G.; Yang, R. T.; Chang, R. Low-temperature SCR of NO with NH_E over USY-supported manganese
 oxide-based catalysts, *Catal. Lett.* 2003, 87, 67-71.
- (31) Lou, X. R.; Liu, P. F.; Li, J.; Li, Z.; He, K. Effects of calcination temperature on Mn species and catalytic
 activities of Mn/ZSM-5 catalyst for selective catalytic reduction of NO with ammonia, *Appl. Surf. Sci.*2014, 307, 382-387.
- 600 (32) Carja, G.; Kameshima, Y.; Okada, K.; Madhusoodana, C. D. Mn–Ce/ZSM5 as a new superior catalyst for
 601 NO reduction with NH₃, *Appl. Catal. B: Environ.* 2007, 73, 60-64.
- (33) Marbán, G.; Valdés-Solís, T.; Fuertes, A. B. Mechanism of low-temperature selective catalytic reduction
 of NO with NH₃ over carbon-supported Mn₃O₄ Role of surface NH₃ species: SCR mechanism, *J. Catal.*2004, 226, 138-155.
- (34) Wang, L. S.; Huang, B. C.; Su, Y. X.; Zhou, G. Y.; Wang, K. L.; Luo, H. C.; Ye, D. Q. Manganese oxides
 supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH₃: Catalytic
 activity and characterization, *Chem. Eng. J.* 2012, 192, 232-241.
- 608 (35) Fang, C.; Zhang, D. S.; Cai, S. X.; Zhang, L.; Huang, L.; Li, H. R.; Maitarad, P.; Shi, L. Y.; Gao, R. H.;
- 509 Zhang, J. P. Low-temperature selective catalytic reduction of NO with NH₃ over nanoflaky MnO_x on
- 610 carbon nanotubes in situ prepared via a chemical bath deposition route, *Nanoscale*, **2013**, 5, 9199-9207.

- 611 (36) Xiao, X.; Sheng, Z. Y.; Yang L.; Dong, F. Low-temperature selective catalytic reduction of NO_x with NH₃
- 612 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method, *Catal. Sci.*613 *Technol.* 2016, 6, 1507-1514.
- 614 (37) Zhang, R. D.; Liu, N.; Luo, Z.; Yang, W.; Liang, X.; Xu, R. N.; Chen, B. H.; Duprez, D.; Royer, S. A
- remarkable catalyst combination to widen the operating temperature window of the selective catalytic
 reduction of NO by NH₃, *ChemCatChem* **2014**, 6, 2263-2269.
- 617 (38) Salazar, M.; Becker, R.; Grünert, W. Hybrid catalysts–an innovative route to improve catalyst
 618 performance in the selective catalytic reduction of NO by NH₃, *Appl. Catal. B: Environ.* 2015, 165, 316619 327.
- 620 (39) Salazar, M.; Hoffmann, S.; Tkachenko, O. P.; Becker, R.; Grünert, W. Hybrid catalysts for the selective
- 621 catalytic reduction (SCR) of NO by NH₃. On the role of fast SCR in the reaction network, *Appl. Catal. B:*622 *Environ.* 2016, 182, 213-219.
- (40) Krivoruchenko, D. S.; Telegina, N. S.; Bokarev, D. A.; Stakheev, A. Y. Mn–Ce/beta "bifunctional"
 catalyst for the selective catalytic reduction of nitrogen oxides with ammonia, *Kinet. Catal.* 2015, 56,
 741-746.
- (41) Krivoruchenko, D. S.; Kucherov, A. V.; Telegina, N. S.; Bokarev, D. A.; Selvam, P.; Stakheev, A. Y.
 Development of the bifunctional catalyst Mn-Fe-Beta for selective catalytic reduction of nitrogen oxides,
- 628 *Russ. Chem. B.* **2014**, 63, 389-395.
- 629 (42) Stakheev, A. Y.; Mytareva, A. I.; Bokarev, D. A.; Baeva, G. N.; Krivoruchenko, D. S.; Kustov, A. L.; Grill,
- 630 M.; Thøgersen, J. R. Combined catalytic systems for enhanced low-temperature NO_x abatement, *Catal*.
- 631 *Today* **2015**, 258, 183-189.
- 632 (43) Tang, X. L.; Li, Y. Y.; Yi, H. H.; Yu, Q. J.; Gao, F. Y.; Zhang, R. C.; Li, C. L.; Chu, C. An efficient two-
- 633 step method for NH₃ removal at low temperature using CoO_x -CuO_x/TiO₂ as SCO catalyst followed by 634 NiMn₂O₄ as SCR catalyst, *Energ. Fuel.* **2017**, 31, 8580-8593.
- (44) Zhu, M. H.; Lai, J. K.; Tumuluri, U.; Wu, Z. L.; Wachs, I. E. Nature of active sites and surface
 intermediates during SCR of NO with NH₃ by supported V₂O₅-WO₃/TiO₂ catalysts, *J. Am. Chem. Soc.*2017, 139, 15624-15627.

- 638 (45) Vuong, T. H.; Radnik, J.; Rabeah, J.; Bentrup, U.; Schneider, M.; Atia, H.; Armbruster, U.; Grünert, W.;
- 639 Brückner, A. Efficient $VO_x/Ce_{1-x}Ti_xO_2$ catalysts for low-temperature NH₃-SCR: Reaction mechanism and 640 active sites assessed by in situ/operando spectroscopy, *ACS Catal.* **2017**, 7, 1693-1705.
- 641 (46) Huang, L.; Zhao, X.; Zhang, L.; Shi, L. Y.; Zhang, J. P.; Zhang, D. S. Large-scale growth of hierarchical
- 642 transition-metal vanadate nanosheets on metal meshes as monolith catalysts for De-NO_x reaction, 643 *Nanoscale* **2015**, 7, 2743-2749.
- (47) Liu, F. D.; He, H.; Lian, Z. H.; Shan, W. P.; Xie, L. J.; Asakura, K.; Yang, W. W.; Deng, H. Highly
 dispersed iron vanadate catalyst supported on TiO₂ for the selective catalytic reduction of NO_x with NH₃, *J. Catal.* 2013, 307, 340-351.
- (48) Casanova, M.; Nodari, L.; Sagar, A.; Schermanz, K.; Trovarelli, A. Preparation, characterization and NH₃SCR activity of FeVO₄ supported on TiO₂-WO₃-SiO₂, *Appl. Catal. B: Environ.* 2015, 176-177, 699-708.
- (49) Zhao, X.; Huang, L.; Li, H.; Hu, H.; Hu, X. N.; Shi, L. Y.; Zhang, D. S. Promotional effects of zirconium
 doped CeVO₄ for the low-temperature selective catalytic reduction of NO_x with NH₃, *Appl. Catal. B:*
- *Environ.* **2016**, 183, 269-281.
- (50) Marberger, A.; Elsener, M.; Ferri, D.; Sagar, A.; Schermanz, K.; Kröcher, O. Generation of NH₃ selective
 catalytic reduction active catalysts from decomposition of supported FeVO₄, *ACS Catal.* 2015, 5, 41804188.
- (51) Wu, G. X.; Li, J.; Fang, Z. T.; Lan, L.; Wang, R.; Gong, M. C.; Chen, Y. Q. FeVO₄ nanorods supported
 TiO₂ as a superior catalyst for NH₃–SCR reaction in a broad temperature range, *Catal. Commun.* 2015,
 64, 75-79.
- (52) Casanova, M.; Schermanz, K.; Llorca, J.; Trovarelli, A. Improved high temperature stability of NH₃-SCR
 catalysts based on rare earth vanadates supported on TiO₂–WO₃–SiO₂, *Catal. Today* 2012, 184, 227-236.
- 660 (53) Salazar, M.; Hoffmann, S.; Tillmann, L.; Singer, V.; Becher, R. Hybrid catalysts for the selective catalytic
- reduction (SCR) of NO by NH₃: Precipitates and physical mixtures, *Appl. Catal. B: Environ.* 2017, 218,
 793-802.
- (54) Chung, F. H. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing
 method for quantitative multicomponent analysis, *J. Appl. Cryst.* 1974, 7, 519-525.

- (55) Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting, *J. Synchrotron Radiat.* 2001, 8, 322324.
- (56) Kresse, G.; Furthmüller, J. Efficient iterative schemes for *ab initio* total-energy calculations using a planewave basis set, *Phys. Rev. B* 1996, 54, 11169-11186.
- (57) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors
 using a plane-wave basis set, *Comp. Mater. Sci.* 1996, 6, 15-50.
- 671 (58) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method, *Phys.*672 *Rev. B* 1999, 59, 1758-1775.
- (59) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple, *Phys. Rev. Lett.* **1996**, 77, 3865-3868.
- 675 (60) Grant, R. W.; Geller, S.; Cape, J. A.; Espinosa, G. P. Magnetic and crystallographic transitions in the α676 Mn₂O₃-Fe₂O₃ system, *Phys. Rev.* **1968**, 175, 686-695.
- (61) Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+U
 framework, *Phys. Rev. B* 2006, 73, 195107.
- (62) He, Z. Z.; Ueda, Y. Magnetic properties of Mn₂V₂O₇ single crystals, *J. Solid State Chem.* 2008, 181, 235238.
- (63) Yan, Q. M.; Li, G.; Newhouse, P. F.; Yu, J.; Persson, K. A.; Gregoire, J. M.; Neaton, J. B. Mn₂V₂O₇: An
 earth abundant light absorber for solar water splitting, *Adv. Energy Mater.* 2015, 1401840.
- (64) Michaelides, A.; Hu, P.; Alavi, A. Physical origin of the high reactivity of subsurface hydrogen in catalytic
 hydrogenation, *J. Chem. Phys.* 1999, 111, 1343-1345.
- (65) Liu, Z. P.; Hu, P. General trends in the barriers of catalytic reactions on transition metal surfaces, *J. Chem. Phys.* 2001, 115, 4977-4980.
- (66) Hu, W. D.; Lan, J. G.; Guo, Y.; Cao, X. M.; Hu, P. Active low-coordination lattice oxygen and cooperation
 of multiple active sites, *ACS Catal.* 2016, 6, 5508-5519.
- (67) Heyd, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the
 Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional, *J. Chem. Phys.* 2004, 121, 1187-1192.
- 691 (68) Li, P.; Xin, Y.; Li, Q.; Wang, Z. P.; Zhang, Z. L.; Zheng, L. R. Ce-Ti amorphous oxides for selective

- catalytic reduction of NO with NH₃: Confirmation of Ce–O–Ti active sites, *Environ. Sci. Technol.* 2012,
 46, 9600-9605.
- (69) Jeong, J.; Aetukuri, N.; Graf, T.; Schladt, T. D.; Samant, M. G.; Parkin, S. S. P. Suppression of metalinsulator transition in VO₂ by electric field-induced oxygen vacancy formation, *Science*, **2013**, 339, 14021405.
- 697 (70) Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; Gryse, R. D. Determination of the V2p XPS binding
 698 energies for different vanadium oxidation states (V⁵⁺ to V⁰⁺), *J. Electron Spectrosc.* 2004, 135, 167-175.
- (71) Topsøe, N. Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in
 situ on-line Fourier transform infrared spectroscopy, *Science* **1994**, 265, 1217-1219.
- 701 (72) Chen, L.; Li, J. H.; Ge, M. F. DRIFT study on cerium-tungsten/titiania catalyst for selective catalytic
 702 reduction of NO_x with NH₃, *Environ. Sci. Technol.* 2010, 44, 9590-9596.
- (73) Centeno, M. A.; Carrizosa, I. Odriozola, J. A. NO–NH₃ coadsorption on vanadia/titania catalysts:
 determination of the reduction degree of vanadium, *Appl. Catal. B: Environ.* 2001, 29, 307-314.
- (74) Liu, F. D.; He, H.; Zhang, C. B.; Shan, W. P.; Shi, X. Y. Mechanism of the selective catalytic reduction of
 NO_x with NH₃ over environmental-friendly iron titanate catalyst, *Catal. Today* 2011, 175, 18-25.
- 707 (75) Amores, J. M. G.; Escribano, V. S.; Ramis, G.; Busca, G. An FT-IR study of ammonia adsorption and
 708 oxidation over anatase-supported metal oxides, *Appl. Catal. B: Environ.* 1997, 13, 45-58.
- (76) Wu, Z. B.; Jiang, B. Q.; Liu, Y.; Wang, H. Q.; Jin, R. B. DRIFT study of manganese-titania-based
 catalysts for low-temperature selective catalytic reduction of NO with NH₃, *Environ. Sci. Technol.* 2007,
- 711 41, 5812-5817.
- 712 (77) Qi, G.; Yang, R. T. MnO_x-CeO₂ mixed oxides prepared by co-precipitation for selective catalytic
 713 reduction of NO with NH₃ at low temperatures, *J. Phys. Chem. B* 2004, 108, 15738-15747.
- (78) Li, Q.; Gu, H. C.; Li, P.; Zhou, Y. H.; Liu, Y.; Qi, Z. N.; Xin, Y.; Zhang, Z. L. In situ IR studies of
 selective catalytic reduction of NO with NH₃ on Ce-Ti amorphous oxides, *Chinese J. Catal.* 2014, 35,
 1289-1298.
- 717

718				
719				
720				
721				
722				
723				
724				
725				
726				
727				
728				
729				
730				
731				
732	Table of Contents			

