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Abstract 

1. Human activities can influence the movement of organisms, either repelling or attracting 

individuals depending on whether they interfere with natural behavioural patterns or enhance 

access to food. To discern the processes affecting such interactions, an appropriate analytical 

approach must reflect the motivations driving behavioural decisions at multiple scales.   

2. In this study, we developed a modelling framework for the analysis of foraging trips by 

central place foragers. By recognising the distinction between movement phases at a larger 

scale and movement steps at a finer scale, our model can identify periods when animals are 

actively following moving attractors in their landscape.  

3. We applied the framework to GPS tracking data of northern fulmars Fulmarus glacialis, 

paired with contemporaneous fishing boat locations, to quantify the putative scavenging 

activity of these seabirds on discarded fish and offal. We estimated the rate and scale of 

interaction between individual birds and fishing boats and the interplay with other aspects of 

a foraging trip. 

4. The model classified periods when birds were heading out to sea, returning towards the 

colony or following the closest boat. The probability of switching towards a boat declined 

with distance and varied depending on the phase of the trip. The maximum distance at which 

a bird switched towards the closest boat was estimated around 35 km, suggesting the use of 

olfactory information to locate food. Individuals spent a quarter of a foraging trip, on 

average, following fishing boats, with marked heterogeneity among trips and individuals. 

5. Our approach can be used to characterise interactions between central place foragers and 

different anthropogenic or natural stimuli. The model identifies the processes influencing 

central place foraging at multiple scales, which can improve our understanding of the 
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mechanisms underlying movement behaviour and characterise individual variation in 

interactions with a range of human activities that may attract or repel these species. 

Therefore, it can be adapted to explore the movement of other species that are subject to 

multiple dynamic drivers. 

Keywords: Animal telemetry, Bayesian, movement attractors, central place foraging, Fulmarus 

glacialis, hidden state modelling, multi-scale. 

 

Introduction 

Animal movements may change in response to various human activities operating in their 

environment. These may have a repelling or an attracting effect on wildlife depending on 

whether they interfere with natural behavioural patterns or enhance access of food (Bartumeus et 

al. 2010; Hays et al. 2016). Aspects of these interactions that are particularly relevant to inform 

management include the scale at which they occur, the prevalence among individuals and their 

interplay with other biological and ecological functions (Crowder & Norse 2008).  

Assessing the movement of free-ranging animals towards or away from particular centres of 

attraction in their landscape is challenging. An animal’s decision to head towards attractors 

depends on a series of contextual factors, including the individual's body condition, reproductive 

needs, previous experience, current activity and underlying motivation at a given time and over a 

longer time scale (Nathan et al. 2008; McClintock et al. 2012; Michelot et al. 2017). The 

assessment is further complicated when these attractors move, because their continuously 

varying distance from an animal will impact the individual’s ability to sense their presence and, 

when within detectable distance, will be traded-off against the potential benefit they represent 
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(Bodey et al. 2014). Understanding this complex decision-making thus requires discriminating 

among the different processes that influence how and why the animals move at different scales 

(Nathan et al. 2008) and disentangling their interaction with new attracting components entering 

the landscape.  

Many species act as central place foragers (Orians & Pearson 1979), including seabirds and 

pinnipeds (Boyd et al. 2014; Patrick et al. 2014). These animals exploit food resources around a 

particular location to which they are bound to return, often due to reproductive requirements 

(Stephens, Brown & Ydenberg 2007). Particularly in the early phases of their life, young depend 

on parents for food and protection, and adults are constrained to perform regular return trips to 

the colony, den or nest. When they encounter profitable patches along these trips, their fine-scale 

movement changes, often becoming slower and more convoluted (Michelot et al. 2017). This 

behavioural mode is known as area-restricted search (ARS) and is believed to reflect foraging 

activity in a patchy landscape (Kareiva & Odell 1987). Therefore, characterising the interaction 

of central place foragers with human activities and other moving attractors in the environment 

needs to account for the interplay of the various attracting processes and multi-scale drivers of 

movement.  

Hidden state models are routinely applied to animal telemetry data with the aim of identifying 

periods during which an individual is travelling through unprofitable areas (transit mode) and 

periods spent searching for food in profitable patches (resident or ARS mode) (Patterson et al. 

2008; McClintock et al. 2012; Beyer et al. 2013; Jonsen et al. 2013). The two modes can be 

distinguished based on the movement features estimated from the track, whereby transit mode is 

faster and more directed and resident mode is slower and more convoluted (Jonsen et al. 2013). 

However, in addition to fine-scale step lengths and turning decisions (i.e. the movement steps) 
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that define the current behavioural mode, an individual’s movement will also be influenced by a 

broader attraction process that determines its movement phase (Nathan et al. 2008). Particularly, 

central place foragers will first depart from the home base (hereafter central place), heading out 

towards available foraging patches, and, after having spent some time travelling and foraging, 

will return towards the central place (Michelot et al. 2017). The overall bearing during different 

phases of a trip (e.g. heading away from or towards the central place) can be decoupled from the 

process determining transit versus resident behaviour, in that an animal might engage in either of 

the two modes irrespective of where it is broadly heading. As a result, two state processes can be 

thought as occurring concomitantly. First, a larger-scale process determining the overall bearing 

of the animal as the trip progresses, reflecting the different phases of the trip. Second, a finer-

scale process affecting the animal’s residency in a given area, reflecting the movement mode at 

any moment in time (Nathan et al. 2008). Failing to distinguish the two may confound the 

estimation of the state-specific parameters and, ultimately, the identification of the corresponding 

states.  

In this study, we developed a modelling framework for the analysis of the movements of central 

place foragers, where the process affecting an animal’s bearing was treated separately from the 

process affecting its residency in an area. We illustrate this approach using a case study that 

explores how seabird movements are influenced by the presence of fishing boats. Discarding by 

commercial fisheries has been recognised as one of the key challenges to achieving the 

sustainable use of marine resources (Kelleher 2005). Species, populations and individuals differ 

in their reliance on discards (e.g. Phillips et al. 1999; Votier et al. 2004, 2010; Tew Kai et al. 

2013; Granadeiro, Brickle & Catry 2014; Bodey et al. 2014; Patrick et al. 2015). The fine-scale 

analysis of seabird movement behaviour in relation to fishing boats can reveal whether birds are 
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actively following the boats and permit quantification of key features of these interactions, e.g. 

the scale, frequency and individual heterogeneity (Votier et al. 2010; Bodey et al. 2014; Patrick 

et al. 2015; Collet, Patrick & Weimerskirch 2017a; b). Developing a modelling framework to 

evaluate the dependency of individual seabirds on discards is therefore critical for evaluating 

demographic effects and the potential consequences that changes in international regulation may 

have on marine food webs (Votier et al. 2004; Bicknell et al. 2013; Tew Kai et al. 2013; Cohen 

et al. 2014).  

By recognising the distinction between movement steps at a finer scale and movement phases at 

a larger scale, our model can identify periods when an animal is actively following a fishing 

boat, irrespective of its movement mode. We apply the framework to GPS data collected on a 

central place forager, the northern fulmar Fulmarus glacialis (hereafter ‘fulmar’), paired with 

anonymised locations of fishing boats operating contemporaneously to the tracking data. Fulmars 

are known to feed on a variety of prey, including offal and non-target fish discharged by 

commercial fisheries (Phillips et al. 1999) and are therefore one of the species expected to 

interact with fishing boats to at least some extent. We illustrate how this modelling framework 

can be used to estimate the rate of interaction between individual animals and moving attractors 

in their environment, the scale at which these interactions occur and their interplay with other 

aspects of a foraging trip, such as foraging activity or the need to return to the central place. 

Materials and methods 

Model structure 

We developed a modelling framework for the foraging trips of central place foragers where 

movement phase and movement steps were treated as separate, hidden states (Nathan et al. 2008) 
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(Fig. 1). We assumed that a first hidden state variable, si,t, defined the mean bearing of the animal 

at each time step t of trip i, while a second hidden state variable, ri,t, affected the step length and 

the variability around the mean bearing (Table S1). Under the first state process, an individual 

could be heading either away from the central place (si,t = 1), towards the central place (si,t = 2) 

or towards the closest moving attractor (si,t = 3). When the animal was moving away from the 

central place, we assumed that the state-specific mean bearing μs,i,t was drawn from a wrapped 

Cauchy distribution centred on the angle υi between the central place and the furthest location 

reached during trip i, with unknown trip-specific concentration parameter εi, i.e. μ1,i,t ~ wC(υi, εi). 

If the animal was moving towards the central place, it moved with mean bearing μ2,i,t, which was 

the angle between the current location and the central place. Finally, if the animal was moving 

towards the closest attractor, the mean bearing μ3,i,t represented the angle between the current 

location and that attractor. The mean bearing under state si,t = 1 was not fixed because 

preliminary exploration of the available data showed that the degree of directedness when 

moving away from the central place could vary among different trips (Fig. 2). Taken together, 

this made it possible to distinguish the two processes affecting angle concentration; that is, an 

individual’s current behavioural mode and the variation in directedness among different trips. 

However, when running a model with fixed bearing for state 1, all other estimates were largely 

unchanged (Table S9). We assumed that, in the first time step of a trip, an individual was moving 

away from the central place (si,1 = 1).  

Under the second state process, an individual could be in transit (ri,t = 1) or resident mode (ri,t = 

2). Following Morales et al. (2004) and McClintock et al. (2012, 2013), the step length at time t 

of trip i, xi,t, was assumed to emerge from a Weibull distribution with state-specific scale (αr) and 

shape (βr) parameters, i.e. xi,t ~ W(βr, αr), and steps in transit mode were assumed to be larger 
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than steps in resident mode, i.e. α1 > α2. The movement mode also affected the concentration 

parameter of the bearing distribution ρr, and transit mode was assumed to be more directed than 

resident mode, i.e. ρ1 > ρ2. We assumed that, in the first time step, an individual leaving the 

central place was in transit mode (ri,1 = 1). The two state processes in combination affected the 

observed bearing θi,t, which emerged from a wrapped Cauchy distribution (Morales et al. 2004; 

McClintock et al. 2012, 2013) with mean μs,i,t and concentration parameter ρr, i.e. θi,t ~ wC(μs,i,t, 

ρr). Other distributions could alternatively be used to model step lengths and bearings (Beyer et 

al. 2013; Michelot, Langrock & Patterson 2016; Michelot et al. 2017). To assess whether the 

choice of such distributions affected the results, we ran an alternative version of the model that 

used a von Mises distribution for the animal’s bearing at each time step and a Gamma 

distribution for its step length (detailed in Appendix S4). 

The first state process was also informed by the observed distance, di,t, between an individual and 

the closest attractor, which had state-dependent lognormal distribution di,t ~ logN(φs, σs). This 

distribution was chosen to account for the fact that distance values can only be positive and their 

distribution will thus tend to be rightly skewed (Fig. S1). Specifically, under state si,t = 1 and si,t 

= 2 (i.e. when not moving towards an attractor), distance from the closest attractor was expected 

to have the same statistical distribution, but be larger and more variable than under state 3 on 

average, i.e. φ1 = φ2 > φ3 and σ1 = σ2 > σ3.  

The temporal sequences of both hidden states were treated as Markov processes (i.e. the state at a 

moment in time only depended on the previous state), regulated by two separate sets of transition 

probabilities among states (Fig. 1). The transition probabilities for the first process constituted a 

3 × 3 matrix Γ, where each element, γh,j, indicated the probability that si,t = j given that si,t-1 = h. 

Because the chance of an individual moving towards the central place increases as time 
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progresses, the transition probabilities towards state 2 (i.e. heading towards the central place) 

were assumed to depend on the elapsed proportion pi,t of the total trip. Similarly, the transition 

probabilities towards state 3 (i.e. heading towards the closest attractor) were assumed to depend 

on the distance to the closest attractor, di,t. To model these effects, a multinomial logit 

formulation was used. Specifically, the transition probabilities to state 2 at time t of trip i were 

modelled as logit(γh,2,i,t) = ah,2 + bh,2 ∙ pi,t, where si,t-1 = h, ah,2 is the basal probability of 

transitioning from state h to state 2 on the logit scale and bh,2 represents the effect of the elapsed 

proportion of the trip. The transition probabilities to state 3 at time step t of trip i were 

formulated as logit(γh,3,i,t) = ah,3 + bh,3 ∙ di,t, where si,t-1 = h, ah,3 is the basal probability of 

transitioning from state h to state 3 on the logit scale, and bh,3 is the effect of the distance of the 

closest attractor. Transition probabilities to state 1 were then derived as γh,1,i,t = 1- γh,2,i,t  - γh,3,i,t.  

The transition probabilities for the second process formed a 2 × 2 matrix Δ, where each element, 

δk,l, was the probability that ri,t = l given that ri,t-1 = k.  

We use a formulation similar to McClintock et al. (2013) to express the joint conditional 

likelihood (f) of all observations (step lengths x, turning angles θ, distances from the closest 

attractor d) and unknown state sequences (s and r) as the product of their independent 

likelihoods: 

𝑓𝑓(𝐱𝐱, 𝛉𝛉, 𝐝𝐝, 𝐬𝐬, 𝐫𝐫 | 𝛚𝛚)  = ∏ ∏ �𝑓𝑓(𝑥𝑥𝑖𝑖,𝑡𝑡 | 𝛚𝛚, 𝑟𝑟𝑖𝑖,𝑡𝑡) ∙ 𝑓𝑓(𝜃𝜃𝑖𝑖,𝑡𝑡 | 𝛚𝛚, 𝑠𝑠𝑖𝑖,𝑡𝑡, 𝑟𝑟𝑖𝑖,𝑡𝑡) ∙ 𝑓𝑓(𝑑𝑑𝑖𝑖,𝑡𝑡 | 𝛚𝛚, 𝑠𝑠𝑖𝑖,𝑡𝑡) ∙
𝑇𝑇𝑖𝑖
𝑡𝑡=2

𝐼𝐼
𝑖𝑖=1

𝑓𝑓(𝑠𝑠𝑖𝑖,𝑡𝑡 | 𝛚𝛚, 𝑠𝑠𝑖𝑖,𝑡𝑡−1) ∙ 𝑓𝑓(𝑟𝑟𝑖𝑖,𝑡𝑡 | 𝛚𝛚, 𝑟𝑟𝑖𝑖,𝑡𝑡−1)�, 

where ω denotes the set of all model parameters, I is the total number of trips and Ti is the 

duration of each trip. 
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Case study: data collection and processing 

We used fulmar tracking data collected on Eynhallow, Scotland (59.12° N, 3.1° W; Fig. 2) as 

part of a long-term demographic study (Thompson & Ollason 2001) to demonstrate the 

application of the analytical approach. All bird handling, marking and telemetry tagging was 

carried out under Home Office and British Trust for Ornithology licenses. Adult fulmars were 

caught on the nest during early chick rearing between the 12th and the 17th of July 2009 using a 

net or noose. A GPS logger (iGot-U GT-120, MobileAction®, Taipei, Taiwan; 18 g) was 

attached to mantle feathers using tape (Tesa® 4651, Hamburg, Germany). GPS devices were set 

to record one position every 10 minutes. Tagged birds were recaptured after one or multiple 

foraging trips, and location data were downloaded using the manufacturer’s software.  

Under EC Regulation No. 2244/2003 and Scottish Statutory Instrument (SI) 392/2004 the 

geographical position, identity, course and speed of all fishing boats above a given size (15 m in 

2009) must be reported at least every two hours. Satellite tracking via vessel monitoring system 

(VMS) is used to record such information (Witt & Godley 2007). Anonymised VMS locations of 

fishing boats operating concurrently to fulmar GPS deployments in July 2009 were provided by 

Marine Scotland Science. Only VMS locations associated with fulmar data were analysed, 

making it impossible to identify specific boats from our data and results. 

Hidden state models require data collected at regular time intervals. Therefore, fulmar tracks 

were linearly interpolated at a 10-minute resolution using package adehabitatLT (Calenge 2006) 

in R (R Development Core Team 2016). Ninety-four percent of the observed intervals between 

consecutive bird GPS positions were shorter than the chosen time step, ensuring limited 

interpolation over long unobserved periods. The step length, i.e. the distance between 

consecutive locations in degrees, and the bearing, i.e. the absolute angle of each step measured 
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from 0 radians, were calculated for each location. VMS data were also linearly interpolated at the 

same temporal resolution to match fulmar data. Regardless of their distance from a bird, all boats 

occurring within a 5-minute time window around a fulmar’s 10-minute fix were identified. The 

coordinates and distance in kilometres of the closest boat were associated to the corresponding 

fulmar location.  

Our analysis aimed to classify fulmar behaviour within a foraging trip. Therefore, a bird’s 

movements in inshore waters around the colony were excluded. Moreover, only one individual 

was tracked over two different foraging trips, so these were treated separately in the analysis. 

The overall bearing of each trip was calculated as the angle between the starting location and the 

location furthest from the colony reached during that trip. 

Because the resolution of fishing boat data was relatively coarse (mean interval between VMS 

locations: 110 min; standard deviation: 91 min), their interpolation at the same temporal scale of 

fulmar GPS tracks introduced an unknown degree of error over periods between consecutive 

VMS locations. We tested whether such uncertainty affected the conclusions drawn from our 

model, using the approach developed by Torres et al. (2011) to generate circular spatial buffers 

encompassing the area where a boat could have been at each unobserved time step. We 

developed a modified version of the model that accounted for the resulting uncertainty in angle 

and distance to the closest boat, as described in detail in Appendix S3. 

Model fitting 

Models were fitted in a Bayesian framework using OpenBUGS run from R (package 

R2OpenBUGS; Sturtz, Ligges & Gelman 2005). A Bayesian approach was chosen because of its 

flexibility, which allows concomitantly fitting multiple state processes affecting different 
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components of behaviour. This implementation also facilitates potential extensions to include a 

hierarchical structure (see Discussion). Prior distributions for model parameters are listed in 

Table S2 in Supporting Information. Markov chain Monte Carlo (MCMC) algorithms were 

iterated until convergence of the states and parameters. Three chains were run in parallel, each 

starting at different initial values. The proportions λ1,1-3 and λ2,1-2 of time steps classified under 

each state were used to monitor the convergence of both state variables. Convergence was 

assessed by visually inspecting trace and density plots (Lunn et al. 2013), and confirmed using 

the Brooks-Gelman-Rubin (BGR) diagnostic and Monte Carlo (MC) error (Lunn et al. 2013). 

The package coda was used to assess convergence, calculate effective sample size and extract 

posterior estimates (Plummer et al. 2006). Appendix S1 reports the code for the model in 

OpenBUGS format. 

 

Results 

Six individual fulmars were tagged during the study period, with a total of 7 foraging trips 

available for analysis (Fig. 2). Trips lasted 25 hours on average (range 18 - 34 hours). The final, 

regularised and filtered dataset included 1,061 locations. The median distance from the closest 

boat at any moment in time was 18 km, although this ranged widely (between 70 meters and 57 

km) and appeared to have a multimodal distribution (Fig. S1). 

The initial 10,000 iterations were discarded as burn-in, while 200,000 unthinned iterations were 

used for inference (Link & Eaton 2012). The analysis required 18 h (including model compiling 

and initialisation times) on 8 Intel(R) Core(TM) i7-4910MQ CPU @ 2.90GHz processors, 16 

GB RAM. For comparison, fitting the model to a subset of the data including four trips and 
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approximately half of the data points (582 locations) required 8.5 h. Convergence was confirmed 

by the relative diagnostics and the effective sample size was greater than 400 for all parameters 

(Lunn et al. 2013). Despite the large number of parameters in the model, these all converged 

adequately and were estimated with precision, possibly because a Bayesian approach allowed 

setting some broad constraints on the priors that facilitated mixing and state identification (Table 

S2). For example, we set state ri,t = 2 to be more convoluted than ri,t = 1 by specifying a 

constraint on angle concentration ρ1 > ρ2. We also set ρ1 ≥ 0.5 so that ri,t = 1 represented directed 

movement. Similar constraints reflected a broad understanding of the biological processes 

underlying the data. However, some of the trip-specific concentration parameters for the bearing 

of state 2 (heading out to sea), εi, showed relatively poorer chain mixing because movements 

tended to be highly directed during some portions of these trips (i.e. εi close to 1; Fig. S2). Due to 

computing memory limitations, we retained only one in 20 iterations for both state variables. 

Posterior estimates of model parameters and associated uncertainty are summarised in Table S3. 

The model correctly classified the periods when a bird was heading out to sea and moving 

towards the colony (Fig. 3a), which were characterised by a lognormal distribution of distances 

from the closest boat centred on 3.1 km on the log scale (i.e. 22 km). In contrast, when a bird 

was following the closest boat, the mean distance was smaller (0.9 km on the log scale, i.e. 2.5 

km). The probability of heading towards the colony increased as the trip progressed (Fig. 4a), 

while the probability of switching towards a boat declined as the distance from the closest boat 

increased (Fig. 4b). Specifically, the probability of a bird switching towards a boat if it was 

travelling towards the colony (state 2) approached 0 after 30 km, while in state 1 (when the bird 

was heading out to sea) the transition probability approached 0 before 20 km. The relationship 

with distance was also more variable in state 2 than under state 1. When heading towards a boat, 
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an individual tended to remain in that state with high probability, up to a distance of more than 

30 km. Animations of the tracks coloured by the median posterior estimate of state si,t at each 

time step (particularly for trip 3, 4 and 7) illustrate the ability of the model to identify periods 

when a bird was actively following the closest fishing boat (Appendix S2; examples in Fig. 5).  

The distinction between transit and resident mode (state ri,t) was also clear, with resident mode 

being characterised by small, convoluted steps (ρ2 = 0.37, while ρ1 = 0.81) (Fig. 3b). When an 

individual was heading out to sea, 43% of locations were in transit mode, against 57% in resident 

mode (Table S4). Transit mode became more frequent while travelling towards the colony, 

representing 59% of locations in transit mode against 41% in resident mode. When following a 

boat, birds were mostly (76%) in resident mode, although in 24% of the time they showed 

directed movement with larger step lengths, corresponding to the initial approach phase (Table 

S4). On average, birds spent 24% of their time following fishing boats, but with marked 

differences among trips and individuals (Table S5). Boat interactions lasted between 10 minutes 

and 7.3 hours (mean = 2.7 hours; SD = 2.1). 33% of ARS behaviour occurred while following a 

boat, while the remaining 67% occurred while heading out to sea or towards the colony. 

Results remained largely unchanged if a different set of distributions for the step length and 

bearing was used (Appendix S4). Similarly, the inclusion of uncertainty in boat interpolated 

locations following Torres et al. (2011) did not alter the conclusions of the model (Appendix 

S3). 
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Discussion 

The modelling approach presented in this study allows the identification of the processes that 

regulate the movement of central place foragers over the course of a foraging trip. These 

processes operate at different scales and result in heterogeneous movement steps (defining an 

individual’s behavioural mode) nested within the broader phases that constitute a foraging trip. 

Therefore, the model explicitly acknowledges the multi-scale nature of animal movement 

ecology, reflecting aspects of the short- and long-term motivation driving an individual’s 

behavioural decisions as it moves in the environment (Nathan et al. 2008). Here, the approach 

was applied to classify periods when a marine central place forager, the northern fulmar, was 

actively following fishing boats, presumably to access offal and non-target fish discarded in the 

sea. More generally, this approach offers the potential to explore how various ecological agents 

and anthropogenic activities could influence movement patterns by either attracting or repelling 

individuals as they forage from their central place.   

Discriminating the three attraction processes defining the movement phase of a foraging trip 

(away from the central place, towards the central place and towards moving attractors) was 

possible because these were explicitly decoupled from the process determining movement 

features at a small scale (i.e. the speed and directedness of movement steps). Therefore, 

movement mode and phase can be combined flexibly via the two hidden state processes. Our 

model differs from the approach proposed by Michelot et al. (2017), who defined movement 

phases in conjunction with specific features of the associated steps. Their approach is effective 

when a foraging trip can be split into predefined segments. However, it could not accommodate 

scenarios where foraging areas are less localised, the interaction with attractors in the landscape 

occurs at irregular times and locations, and the attractors may move. The novel formulation 
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presented here offers a general approach that does not require one to assume a stereotypical 

sequence of states during a trip, and further extends the framework proposed by McClintock et 

al. (2012) for biased movements. For example, in trip number 6 of this study, the tracked bird 

moved towards the colony, but then flew out again before returning to the colony and concluding 

the trip, a sequence of behaviours that was correctly classified by the model. Similarly, foraging 

bouts indicated by the ARS mode were not constrained to occur in predefined foraging areas. To 

our knowledge, this is the first example of telemetry data being used to model multiple state 

processes separately at different scales. Overlaying the two state processes highlighted that ARS 

behaviour occurred disproportionately in different phases of the trip. This mode corresponds to 

putative foraging activity (Kareiva & Odell 1987), but possibly also includes resting and drifting 

on the sea surface. Understanding how movement modes are distributed over the course of a 

foraging trip is important to characterise the dynamic allocation of time and energy to different 

activities (Grémillet et al. 2003). This could shed light on an individual’s decision-making 

process, as well as provide information on the variable vulnerability to anthropogenic threats and 

disturbances at different moments in time (Dean et al. 2013). For species that only forage in 

well-defined regions (Michelot et al. 2017), the approach could be modified to explicitly 

quantify the increased probability of switching to ARS mode as time or distance from the central 

place increases. Moreover, a fourth state could be added to the first state process to further 

distinguish movement that is not directed towards attractors or the central place into movement 

away from the central place and movement with unknown bearing (e.g. targeting foraging 

patches off the main course of the trip). We ran a model with this additional state and present 

results in the Supplementary Information (Appendix S5, Table S8 and Fig. S5). Overall, 

movement states under the two processes could be successfully described because of the high 
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degree of separation between the corresponding distributions of the movement variables and the 

use of the ancillary variable distance from the closest attractor (Beyer et al. 2013). 

We focused on seabirds’ attraction to fisheries as an example of the relevance of the proposed 

approach to inform management of human activities at sea. Seabirds are known to occur in areas 

that are intensely used by fisheries, but it is often unclear whether the animals are directly 

exploiting fishery discards or relying on the same prey aggregations (Karpouzi, Watson & Pauly 

2007; Tew Kai et al. 2013). Our analytical approach can be used to assess whether tracked 

animals changed their movement patterns and actively followed fishing boats. Because the 

movement mode is decoupled from the attraction towards a boat, the model both identifies the 

threshold distance at which an individual starts its approach and estimates the time spent 

putatively foraging around a boat. We applied the model to fulmar tracking data and found that, 

on average, tracked birds spent around a quarter of their trips in close proximity to fishing boats, 

with one bird actively following a boat for > 7 hours. Moreover, a third of recorded ARS 

behaviour occurred while following a boat, suggesting that a substantial component of these 

birds’ foraging activity could be dependent on discards. However, the time spent tracking boats 

varied widely among individuals and trips. Such variability could be ascribed to the differential 

occurrence of fishing boats within the detection range of an individual during a specific trip, but 

could also reflect individual differences in the propensity to approach boats and in the reliance 

on discards as a source of food (Votier et al. 2010; Granadeiro et al. 2014; Patrick et al. 2015). 

In turn, these individual differences in interaction rate could result in different exposure to by-

catch risk (Lewison et al. 2014). In future, multiple trips by single individuals could be used to 

characterise such heterogeneity, paired with stable isotope analysis to verify resulting dietary 

differences (Votier et al. 2010; Granadeiro et al. 2014). To this purpose, the Bayesian 
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formulation of the model will grant the flexibility required to include a hierarchical structure and 

accommodate individual random effects. With a larger tracking dataset, our model could also be 

extended to include age, sex, season and time of day as covariates potentially affecting transition 

probabilities among states, which could help clarify some of the observed differences among 

individuals (Collet et al. 2017b). The effects of a variable reliance on discards and by-catch risk 

on individual condition, survival and reproductive success could then be evaluated using life 

history data collected via long-term population monitoring (Cohen et al. 2014; Collet et al. 

2017b).  

The ability of the model to capture the interplay of motivations driving individual decisions was 

demonstrated in this study with the inclusion of the effects of distance from the closest boat and 

proportion of the trip elapsed. The state-specific probability of switching towards the closest boat 

and its variable relationship with distance highlights the trade-offs an individual makes between 

the potential benefits of accessing discards, the distance to reach this source of food and the 

phase of the trip (Cohen et al. 2014). While travelling out to sea in the initial part of a foraging 

trip, fulmar propensity to switch towards a boat tapered off rapidly with distance, reaching 0 at 

around 20 km. In this phase, variability among individuals and trips was small. In contrast, the 

propensity to switch towards a boat when travelling back to the colony may be balanced against 

several other factors, such as the cumulative feeding success over the trip and the growing 

pressure to return to attend the chick. This could explain the estimated larger variability in the 

corresponding transition probability. An individual may also be more willing to travel long 

distances to reach a boat if a trip was particularly unsuccessful (Cohen et al. 2014), which would 

justify the probability of following a boat dropping to 0 at larger distances. Similarly, when a 

bird switched its movement towards a boat, it was unlikely to switch states, reflecting a relatively 
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stable decision-making process. In general, the maximum ecological footprint of fishing boats’ 

influence on birds’ decisions was over three times greater for fulmars than previously estimated 

for northern gannets Morus bassanus (Bodey et al. 2014). Here, we estimated that a boat could 

attract a fulmar up to approximately 35 km, which could represent the maximum detection range 

for the species. This distance is comparable to the 30 km threshold identified by Collet, Patrick 

& Weimerskirch (2017b) for wandering albatrosses Diomedea exulans and black-browed 

albatrosses Thalassarche melanophrys. The inconsistency among species could reflect 

differences in the sensory system used to locate food, with Procellariiformes such as fulmars and 

albatrosses relying largely on olfaction as opposed to sight (Hutchison & Wenzel 1980; Nevitt 

2008). Further work applying this modelling approach to other scavengers could quantify 

species- or population-specific parameters, which would support the investigation of the 

implications of discarding for different seabird communities.  

Fishing boat locations were only available from VMS at a coarser temporal resolution than 

fulmar GPS tracks. Therefore, an unknown degree of uncertainty surrounds our interpolated boat 

locations. However, it is important to note that our approach detected direct interactions between 

birds and fishing boats despite such uncertainty, and that the estimated scale and frequency of 

interactions between tracked birds and fishing boats did not vary when the method proposed by 

Torres et al. (2011) was used to capture the potential magnitude of interpolation errors. In 

addition, boat locations were not filtered on the basis of their activity state, which previous 

studies have inferred from the boats’ movement patterns (e.g. Bodey et al. 2014). We did not 

take this approach because we did not want to assume a priori that birds only follow boats when 

the vessels are actively fishing. Collet et al. (2017a) did not find a relationship between 

attendance to fishing boats and mass gain, suggesting that attraction might occur even in the 
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absence of active fishing or discarding. Future work could explore the potential difference in 

attractiveness among different activities and types of fishing boats (e.g. trawling versus non-

trawling), which also contribute to the trade-offs regulating behavioural decisions, thus shedding 

light on some of the heterogeneity among trips we detected. 

The model developed here has broad applicability beyond the presented case study of seabird 

interactions with fisheries. Firstly, it could naturally be applied to quantify the attraction of other 

central place foraging species towards any static or mobile anthropogenic activity providing 

enhanced access to food, e.g. pinnipeds targeting underwater structures acting as reefs (Russell et 

al. 2014) or fish farms (Sepúlveda et al. 2015). The approach could also be modified to model 

individuals’ avoidance of disturbing activities, such as intense noise sources (e.g. Russell et al. 

2016). In addition, the role of dynamic environmental variables on movement decisions could be 

explored. For example, the characterisation of the first phase of seabirds’ foraging trips could be 

improved by including an effect of wind direction in determining the overall bearing when 

leaving the colony. This will be especially important for species such as fulmars that rely on 

dynamic soaring for long-ranging flight (Furness & Bryant 1996). In general, decoupling 

movement steps from movement phases allows disentangling the processes influencing 

movement at multiple scales (Nathan et al. 2008). As a result, the model may potentially be 

adapted to any setting in which a species uses separate habitats for different activities or life-

history stages. For example, it could be reformulated for the movements of migratory species, 

where the patterns of attraction switch seasonally, to assess the effects of anthropogenic activities 

at different stages of migration (e.g. Schofield et al. 2010). Finally, external agents need not be 

anthropogenic, and the approach could thus be used to model the influence of predators’ distance 

on prey movements (e.g. Breed et al. 2017), the location of conspecifics in groups of social 



21 
 

species (Boinski & Garber 2000), or the availability of carcasses on the ranging pattern of 

scavengers (Kane et al. 2017). In essence, the model requires the estimation of bearings 

representing competing attraction or repulsion processes affecting an individual over time, and 

extensive telemetry datasets are already available to develop many of these possible extensions. 

These applications will improve our understanding of the functional mechanisms driving animal 

behaviour and how both natural and anthropogenic drivers influence movement patterns. 

 

Acknowledgements 

We thank Orkney Islands Council for access to Eynhallow and Talisman Energy (UK) Ltd for 

fieldwork and equipment support. Marine Scotland provided access to anonymized VMS data. 

Handling and tagging of fulmars was conducted under licenses from the British Trust for 

Ornithology and the UK Home Office. EE was funded by a Marine Alliance for Science and 

Technology for Scotland/University of Aberdeen College of Life Sciences and Medicine 

studentship. We are grateful to Jason Matthiopoulos, Thomas Cornulier, Beth Scott, David 

Lusseau, Julien Martin and Tiago Marques for suggestions on model development, and to the 

many colleagues who assisted with fieldwork. We thank Emer Rogan and University College 

Cork for providing desk space to EP. Finally, we thank Editor-in-Chief Ben Sheldon, Associate 

Editor Luca Borger and three anonymous reviewers for their useful comments on the paper.  

 

Author contributions: All authors contributed to discussions that led to the development of the 

study. PT and EE designed and managed the data collection; EP, EE and PT conceived the 

research question; EP and LN developed the modelling approach; EP led the analysis and the 



22 
 

writing of the manuscript. All authors contributed critically to the drafts and gave final approval 

for publication. 

 

Data accessibility 

Data available from the Dryad Digital Repository: https://doi:10.5061/dryad.0d377r6 (Pirotta et 

al., 2018). 

 

References 

Bartumeus, F., Giuggioli, L., Louzao, M., Bretagnolle, V., Oro, D. & Levin, S.A. (2010) Fishery 

discards impact on seabird movement patterns at regional scales. Current Biology, 20, 215–

222. 

Beyer, H.L., Morales, J.M., Murray, D. & Fortin, M.J. (2013) The effectiveness of Bayesian 

state-space models for estimating behavioural states from movement paths. Methods in 

Ecology and Evolution, 4, 433–441. 

Bicknell, A.W.J., Oro, D., Camphuysen, K.C.J. & Votier, S.C. (2013) Potential consequences of 

discard reform for seabird communities. Journal of Applied Ecology, 50, 649–658. 

Bodey, T.W., Jessopp, M.J., Votier, S.C., Gerritsen, H.D., Cleasby, I.R., Hamer, K.C., Patrick, 

S.C., Wakefield, E.D. & Bearhop, S. (2014) Seabird movement reveals the ecological 

footprint of fishing vessels. Current biology, 24, 514–515. 

Boinski, S. & Garber, P. (2000) On the Move: How and Why Animals Travel in Groups. 

University of Chicago Press, Chicago. 



23 
 

Boyd, C., Punt, A.E., Weimerskirch, H. & Bertrand, S. (2014) Movement models provide 

insights into variation in the foraging effort of central place foragers. Ecological Modelling, 

286, 13–25. 

Breed, G.A., Matthews, C.J.D., Marcoux, M., Higdon, J.W., LeBlanc, B., Petersen, S.D., Orr, J., 

Reinhart, N.R. & Ferguson, S.H. (2017) Sustained disruption of narwhal habitat use and 

behavior in the presence of Arctic killer whales. Proceedings of the National Academy of 

Sciences, 114, 2628–2633. 

Calenge, C. (2006) The package adehabitat for the R software: a tool for the analysis of space 

and habitat use by animals. Ecological Modelling, 197, 516–519. 

Cohen, L., Pichegru, L., Grémillet, D., Coetzee, J., Upfold, L. & Ryan, P. (2014) Changes in 

prey availability impact the foraging behaviour and fitness of Cape gannets over a decade. 

Marine Ecology Progress Series, 505, 281–293. 

Collet, J., Patrick, S.C. & Weimerskirch, H. (2017a) A comparative analysis of the behavioral 

response to fishing boats in two albatross species. Behavioral Ecology, 28, 1337–1347. 

Collet, J., Patrick, S.C. & Weimerskirch, H. (2017b) Behavioral responses to encounter of 

fishing boats in wandering albatrosses. Ecology and Evolution, 7, 3335–3347. 

Crowder, L. & Norse, E. (2008) Essential ecological insights for marine ecosystem-based 

management and marine spatial planning. Marine Policy, 32, 772–778. 

Dean, B., Freeman, R., Kirk, H., Leonard, K., Phillips, R.A., Perrins, C.M. & Guilford, T. (2013) 

Behavioural mapping of a pelagic seabird: combining multiple sensors and a hidden 

Markov model reveals the distribution of at-sea behaviour. Journal of the Royal Society 



24 
 

Interface, 10, 20120570. 

Furness, R.W. & Bryant, D.M. (1996) Effect of wind on field metabolic rates of breeding 

northern fulmars. Ecology, 77, 1181–1188. 

Granadeiro, J.P., Brickle, P. & Catry, P. (2014) Do individual seabirds specialize in fisheries’ 

waste? The case of black-browed albatrosses foraging over the Patagonian Shelf. Animal 

Conservation, 17, 19–26. 

Grémillet, D., Wright, G., Lauder, A., David, N. & Wanless, S. (2003) Modelling the daily food 

requirements of wintering great cormorants: a bioenergetics tool for wildlife management. 

Journal of Applied Ecology, 40, 266–277. 

Hays, G.C., Ferreira, L.C., Sequeira, A.M.M., Meekan, M.G., Duarte, C.M., Bailey, H., Bailleul, 

F., Bowen, W.D., Caley, M.J., Costa, D.P., Eguíluz, V.M., Fossette, S., Friedlaender, A.S., 

Gales, N., Gleiss, A.C., Gunn, J., Harcourt, R., Hazen, E.L., Heithaus, M.R., Heupel, M., 

Holland, K., Horning, M., Jonsen, I., Kooyman, G.L., Lowe, C.G., Madsen, P.T., Marsh, 

H., Phillips, R.A., Righton, D., Ropert-Coudert, Y., Sato, K., Shaffer, S.A., Simpfendorfer, 

C.A., Sims, D.W., Skomal, G., Takahashi, A., Trathan, P.N., Wikelski, M., Womble, J.N. & 

Thums, M. (2016) Key questions in marine megafauna movement ecology. Trends in 

Ecology and Evolution, 31, 463–475. 

Hutchison, L.V. & Wenzel, B.M. (1980) Olfactory function in the Northern Fulmar (Fulmaris 

glacialis). Olfaction and Taste (ed H. van der Starre), pp. 237–240. IRL Press, London, UK. 

Jonsen, I., Basson, M., Bestley, S., Bravington, M.V., Patterson, T.A., Pedersen, M.W., 

Thomson, R., Thygesen, U.H. & Wotherspoon, S.J. (2013) State-space models for bio-

loggers: A methodological road map. Deep Sea Research Part II: Topical Studies in 



25 
 

Oceanography, 88-89, 34–46. 

Kane, A., Healy, K., Guillerme, T., Ruxton, G.D. & Jackson, A.L. (2017) A recipe for 

scavenging in vertebrates – the natural history of a behaviour. Ecography, 40, 324–334. 

Kareiva, P. & Odell, G. (1987) Swarms of predators exhibit “preytaxis” if individual predators 

use area-restricted search. The American Naturalist, 130, 233. 

Karpouzi, V.S., Watson, R. & Pauly, D. (2007) Modelling and mapping resource overlap 

between seabirds and fisheries on a global scale: A preliminary assessment. Marine Ecology 

Progress Series, 343, 87–99. 

Kelleher, K. (2005) Discards in the World’s Marine Fisheries: An Update. FAO Fisheries 

Technical Paper, No. 470. Food and Agriculture Organization of the United Nations, Rome, 

Italy. 

Lewison, R.L., Crowder, L.B., Wallace, B.P., Moore, J.E., Cox, T., Zydelis, R., McDonald, S., 

Dimatteo, A., Dunn, D.C., Kot, C.Y., Bjorkland, R., Kelez, S., Soykan, C., Stewart, K.R., 

Sims, M., Boustany, A., Read, A.J., Halpin, P., Nichols, W.J. & Safina, C. (2014) Global 

patterns of marine mammal, seabird, and sea turtle bycatch reveal taxa-specific and 

cumulative megafauna hotspots. Proceedings of the National Academy of Sciences of the 

United States of America, 111, 5271–5276. 

Link, W.A. & Eaton, M.J. (2012) On thinning of chains in MCMC. Methods in Ecology and 

Evolution, 3, 112–115. 

Lunn, D., Jackson, C., Best, N., Thomas, A. & Spiegelhalter, D. (2013) The BUGS Book: A 

Practical Introduction to Bayesian Analysis. Chapman & Hall/CRC, Boca Raton, Florida, 



26 
 

USA. 

McClintock, B.T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B.J. & Morales, J.M. 

(2012) A general discrete-time modeling framework for animal movement using multistate 

random walks. Ecological Monographs, 82, 335–349. 

McClintock, B.T., Russell, D.J.F., Matthiopoulos, J. & King, R. (2013) Combining individual 

animal movement and ancillary biotelemetry data to investigate population-level activity 

budgets. Ecology, 94, 838–849. 

Michelot, T., Langrock, R., Bestley, S., Jonsen, I.D., Photopoulou, T. & Patterson, T.A. (2017) 

Estimation and simulation of foraging trips in land-based marine predators. Ecology, 98, 

1932–1944. 

Michelot, T., Langrock, R. & Patterson, T.A. (2016) moveHMM: an R package for the statistical 

modelling of animal movement data using hidden Markov models. Methods in Ecology and 

Evolution, 7, 1308–1315. 

Morales, J.M., Haydon, D.T., Frair, J., Holsinger, K.E. & Fryxell, J.M. (2004) Extracting more 

out of relocation data: building movement models as mixtures of random walks. Ecology, 

85, 2436–2445. 

Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. & Smouse, P.E. (2008) 

A movement ecology paradigm for unifying organismal movement research. Proceedings of 

the National Academy of Sciences, 105, 19052–19059. 

Nevitt, G.A. (2008) Sensory ecology on the high seas: the odor world of the procellariiform 

seabirds. Journal of Experimental Biology, 211, 1706–1713. 



27 
 

Orians, G.H. & Pearson, N.E. (1979) On the theory of central place foraging. Analysis of 

ecological systems (eds D.J. Horn, R.D. Mitchell & G.R. Stairs), pp. 155–177. Ohio State 

University Press, Columbus, OH. 

Patrick, S.C., Bearhop, S., Bodey, T.W., Grecian, W.J., Hamer, K.C., Lee, J. & Votier, S.C. 

(2015) Individual seabirds show consistent foraging strategies in response to predictable 

fisheries discards. Journal of Avian Biology, 46, 1–10. 

Patrick, S.C., Bearhop, S., Grémillet, D., Lescroël, A., Grecian, W.J., Bodey, T.W., Hamer, K.C., 

Wakefield, E., Le Nuz, M. & Votier, S.C. (2014) Individual differences in searching 

behaviour and spatial foraging consistency in a central place marine predator. Oikos, 123, 

33–40. 

Patterson, T.A., Thomas, L., Wilcox, C., Ovaskainen, O. & Matthiopoulos, J. (2008) State-space 

models of individual animal movement. Trends in Ecology & Evolution, 23, 87–94. 

Phillips, R.A., Petersen, M.K., Lilliendahl, K., Solmundsson, J., Hamer, K.C., Camphuysen, C.J. 

& Zonfrillo, B. (1999) Diet of the northern fulmar Fulmarus glacialis: Reliance on 

commercial fisheries? Marine Biology, 135, 159–170. 

Pirotta, E., Edwards, E.W.J., New, L., Thompson, P.M. (2018) Data from: Central place foragers 

and moving stimuli: a hidden-state model to discriminate the processes affecting movement. 

Dryad Digital Repository, https://doi:10.5061/dryad.0d377r6 

Plummer, M., Best, N., Cowles, K. & Vines, K. (2006) CODA: Convergence Diagnosis and 

Output Analysis for MCMC. R News, 6, 7–11. 

R Development Core Team. (2016) R: A language and environment for statistical computing. R 



28 
 

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL 

http://www.R-project.org/. 

Russell, D.J.F., Brasseur, S.M.J.M., Thompson, D., Hastie, G.D., Janik, V.M., Aarts, G., 

McClintock, B.T., Matthiopoulos, J., Moss, S.E.W. & McConnell, B. (2014) Marine 

mammals trace anthropogenic structures at sea. Current Biology, 24, 638–639. 

Russell, D.J.F., Hastie, G.D., Thompson, D., Janik, V.M., Hammond, P.S., Scott-Hayward, 

L.A.S., Matthiopoulos, J., Jones, E.L., McConnell, B.J. & Votier, S. (2016) Avoidance of 

wind farms by harbour seals is limited to pile driving activities. Journal of Applied Ecology, 

53, 1642–1652. 

Schofield, G., Hobson, V.J., Fossette, S., Lilley, M.K.S., Katselidis, K.A. & Hays, G.C. (2010) 

Fidelity to foraging sites, consistency of migration routes and habitat modulation of home 

range by sea turtles. Diversity and Distributions, 16, 840–853. 

Sepúlveda, M., Newsome, S.D., Pavez, G., Oliva, D., Costa, D.P. & Hückstädt, L.A. (2015) 

Using satellite tracking and isotopic information to characterize the impact of South 

American sea lions on Salmonid aquaculture in Southern Chile. PLoS ONE, 10, 1–18. 

Stephens, D.W., Brown, J.S. & Ydenberg, R.C. (2007) Foraging: Behavior and Ecology. The 

University of Chicago Press, Chicago. 

Sturtz, S., Ligges, U. & Gelman, A. (2005) R2WinBUGS: A Package for Running WinBUGS 

from R. Journal of Statistical Software, 12, 1–16. 

Tew Kai, E., Benhamou, S., van der Lingen, C.D., Coetzee, J.C., Pichegru, L., Ryan, P.G. & 

Grémillet, D. (2013) Are Cape gannets dependent upon fishery waste? A multi-scale 



29 
 

analysis using seabird GPS-tracking, hydro-acoustic surveys of pelagic fish and vessel 

monitoring systems. Journal of Applied Ecology, 50, 659–670. 

Thompson, P.M. & Ollason, J.C. (2001) Lagged effects of ocean climate change on fulmar 

population dynamics. Nature, 413, 417–420. 

Torres, L.G., Thompson, D.R., Bearhop, S., Votier, S., Taylor, G.A., Sagar, P.M. & Robertson, 

B.C. (2011) White-capped albatrosses alter fine-scale foraging behavior patterns when 

associated with fishing vessels. Marine Ecology Progress Series, 428, 289–301. 

Votier, S.C., Bearhop, S., Witt, M.J., Inger, R., Thompson, D. & Newton, J. (2010) Individual 

responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes 

and vessel monitoring systems. Journal of Applied Ecology, 47, 487–497. 

Votier, S.C., Furness, R.W., Bearhop, S., Crane, J.E., Caldow, R.W.G., Catry, P., Ensor, K., 

Hamer, K.C., Hudson, A. V., Kalmbach, E., Klomp, N.I., Pfeiffer, S., Phillips, R.A., Prieto, 

I. & Thompson, D.R. (2004) Changes in fisheries discard rates and seabird communities. 

Nature, 427, 727–730. 

Witt, M.J. & Godley, B.J. (2007) A step towards seascape scale conservation: Using vessel 

monitoring systems (VMS) to map fishing activity. PLoS ONE, 2. 

 

Supporting Information 

The following Supporting Information is available for this article online:  

Figure S1. Distribution of distances of fulmar locations from the closest boats. 

Figure S2. Example of posterior results for the concentration of bearing under state 2. 



30 
 

Figure S3. Interactions between fulmars and fishing boats. 

Table S1. Description of variables and model parameters. 

Table S2. Prior distributions of model parameters. 

Table S3. Posterior estimates of model parameters. 

Table S4. Estimated activity budget by each combination of the two states. 

Table S5. Estimated activity budget of tracked fulmars during each foraging trip. 

Appendix S1. OpenBUGS code for the model. 

Appendix S2. Animations of fulmar movement and interactions with fishing boats. 

Appendix S3. Implementation of the method by Torres et al. (2011) to account for the 

uncertainty in boat interpolated locations. 

Figure S4. Schematic diagram of the circular spatial buffer around each interpolated location, 

calculated following the method by Torres et al. (2011). 

Table S6. Posterior estimates of parameters for the model implementing the method by Torres et 

al. (2011). 

Appendix S4. Reformulation of the model using a different set of distributions for the observed 

variables. 

Table S7. Posterior estimates of parameters for the model reformulated with alternative 

distributions. 

Appendix S5. Reformulation of the model with an additional state representing movement with 

unknown bearing. 



31 
 

Table S8. Posterior estimates of parameters for the model with an additional state representing 

movement with unknown bearing. 

Figure S5. Fulmar tracks classified using the model with an additional state representing 

movement with unknown bearing. 

Table S9. Posterior estimates of parameters for a model without the trip-specific concentration 
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Figures 

 

Figure 1. a) Schematic representation of the hidden Markov model. The black squares indicate 

the two hidden state processes, s and r. The transition between states over time is indicated with 

black arrows, and the corresponding probabilities (γ and δ) are in yellow. State-dependent 

distributions (red arrows), characterised by state-dependent parameters (in blue; described in the 

text), determine the observations (step lengths x, bearing θ and distance from the closest attractor 

d; red circles) at each time step t. b) Schematic representation of a fulmar’s foraging trip. The 

first state process regulates the movement phase: moving out to sea (green), towards a boat 

(black) or towards the colony (red). In this example, the bird followed one boat. The blue arrow 

indicates the direction of movement of the closest boat during this interaction. The second state 

process regulates the characteristics of the movement steps, distinguishing between resident (area 

restricted search; dashed boxes) and transit behaviour. State-dependent observations (step 

lengths x, bearing θ and distance from the closest boat d) are exemplified for one time step t. 
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Figure 2. Map of the study area and fulmar GPS tracks, coloured by trip. 
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Figure 3. Fulmar tracks coloured by the latent behavioural states estimated by the model. In a), 

locations are classified based on the first state process, defining mean movement bearing. An 

individual can be in one of three states: heading out to sea (state 1), heading towards the colony 

(state 2) and heading towards the closest boat (state 3). In b), locations are classified based on the 

second state process, defining fine-scale movement mode. An individual can either be in transit 

(state 1) or in area restricted search (ARS) mode (state 2). 
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Figure 4. Estimated effects of covariates on state transition probabilities. In a), relationship 

between the elapsed proportion of a trip and the probability of switching from each state to state 

2 (heading to the colony). In b), relationship between the distance to the closest boat and the 

probability of switching from each state to state 3 (heading towards the closest boat). 

 



36 
 

Figure 5. Examples of fulmar interactions with closest fishing boats estimated by the hidden state 

model. In a), a portion of the track from trip 4. In b), a portion of the track from trip 3.  
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Online Supporting information 

 

 

Figure S1. Distribution of distances between each interpolated location of a fulmar and the 
closest boat within a 5-minute time window. 

 

Figure S2. Example of posterior results for the concentration of flight bearing under state 2 
(heading away from the colony) for trip 4, ε4. In a), the trace plot of the three parallel chains. In 
b), the posterior density distribution for the parameter. 
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Figure S3. Interactions between fulmars and fishing boats, as defined by the first latent state process. Locations are classified based 
on the corresponding posterior state estimates. An individual can be in one of three states: heading out to sea (state 1, green), heading 
towards the colony (state 2, orange) and heading towards the closest boat (state 3, black). The closest boats are represented as blue 
crosses. Individual trips are plotted separately. 
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Table S1. Description of variables and model parameters. The subscript i and t indicate the trip 
and the time step therein, respectively. Subscripts s and r indicate parameters that vary with 
either of the two state processes. 

 

Class Symbol Name Definition 

Data 

xi,t Step length 
Distance between consecutive 

locations 

θi,t Observed bearing 
Absolute angle between the x-

axis (0) and a given step 

di,t Attractor distance 
Distance from the closest 

attractor 

υi Trip direction 
Angle between the central place 
and the furthest location reached 

during a trip 

Underlying 
variables 

si,t First state process 
Latent behavioural state 
defining mean bearing 

(movement phase) 

ri,t Second state process 
Latent behavioural state 

defining fine-scale movement 
features (movement step) 

Model 
parameters 

μs,i,t Mean bearing 
Mean angle of a given step 
measured from 0 radians 

εi 
Concentration of mean 

bearing (state 1) 
Variability in mean bearing 

under state 1 

φs Mean distance 
Mean distance from the closest 

attractor (log scale) 

σs 
Standard deviation of 

distance 
Variability in distance from the 

closest attractor (log scale) 

ρr 
Concentration of 
observed bearing 

Variability in observed bearing 

αr Scale 
Scale parameter for the 

distribution of step lengths 

βr Shape 
Shape parameter for the 

distribution of step lengths 
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ah,2 
Logit transition 

probability (state 2) 

Basal transition probability from 
state si,t-1 = h and si,t = 2 on the 

logit scale 

ah,3 
Logit transition 

probability (state 3) 

Basal transition probability from 
state si,t-1 = h and si,t = 3 on the 

logit scale 

bh,2 
Coefficient for trip 

proportion 

Effect of elapsed trip proportion 
on transition probability from 
si,t-1 = h to si,t = 2 (logit scale) 

bh,3 Coefficient for distance 

Effect of distance from the 
closest attractor on transition 

probability from si,t-1 = h to si,t = 
3 (logit scale) 

γh,j 
Transition probability 

(first state process) 
Probability of switching 

between si,t-1 = h and si,t = j 

δk,l 
Transition probability 
(second state process) 

Probability of switching 
between ri,t-1 = k and ri,t = l 
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Table S2. Prior distributions of model parameters. The subscripts i and t refer to trips and time 
steps within trips, respectively. Priors for the scale and shape parameters of the distribution of 
step lengths were defined on the logarithmic scale to avoid meaningless negative values. Upper 
limits for these distributions were chosen based on preliminary exploration of the data. Wider, 
unrealistic values caused the Weibull distribution to crash. The prior for the observed distribution 
of distances from the closest boat was truncated at 0, because distances can only be positive. 
Larger Normal and Uniform distributions were tested (Appendix S6), but did not change model 
results. The priors for angle concentrations were bound between 0 and 1 by nature of these 
parameters, but some constraints were imposed to specify the relative degree of directedness 
between states. Particularly, we constrain state ri,t = 2 to be more convoluted than ri,t = 1 by 
specifying ρ1 > ρ2, and set ρ1 ≥ 0.5 because we want ri,t = 1 to represent directed movement. The 
priors for the intercept and slope of the linear predictor of the transition probabilities for state s 
had an uninformative Normal distribution, resulting in a relatively wide prior centred on 0.5 on 
the inverse logit scale. Parameters bh,3 were an exception: a narrower prior was chosen in this 
case because the large values that distance from the closest boat could take caused transition 
probabilities to be exactly 0 or 1, thus crashing the Categorical distribution. An uninformative 
Dirichlet distribution was used for the transition probabilities for state r. 

 

Description Parameter Prior 

Mean distance from closest boat under state 
si,t 

φ1 Truncated Normal (3, 1) [φ3,] 
φ2 φ1 

φ3 Truncated Normal (1, 1) [0,] 

Standard deviation of distance from closest 
boat under state si,t 

σ1 Uniform (0, 1) 

σ2 σ1 

σ3 Uniform (0, σ1) 

Trip-specific concentration of mean bearing 
for state si,t = 1 εi Uniform (0,1) 

Concentration of observed bearing 
ρ1 Uniform (0.5, 1) 

ρ2 Uniform (0, ρ1) 

Scale of step length distribution 
log(α1) Uniform (-10, -2.5) 

log(α2) Uniform (-10, log(α1)) 

Shape of step length distribution 
log(β1) Uniform (-1, 1.5) 

log(β2) Uniform (-1, 1.5) 

ah,2 Normal (0, 1) 
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Basal transition probability from state si,t-1 = 
h (logit scale) ah,3 Normal (0, 1) 

Effect of elapsed trip proportion on 
transition probability from state si,t-1 = h to 

state si,t = 2 (logit scale)  
bh,2 Normal (0.5, 1) 

Effect of distance to the closest boat on 
transition probability from state si,t-1 = h to 

state si,t = 3 (logit scale) 
bh,3 Normal (-0.2, 0.1) 

Transition probabilities from state ri,t-1 = k δk,1, δk,2 Dirichlet (1,1) 
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Table S3. Posterior estimates of model parameters (median and 95% highest posterior density 
interval). 

 

Description Parameter Lower 
(2.5%) Median Upper 

(97.5%) 

Mean distance from closest 
boat under state si,t 

φ1 3.05 3.10 3.15 
φ2 3.05 3.10 3.15 

φ3 0.80 0.90 0.99 

Standard deviation of distance 
from closest boat under state 

si,t 

σ1 0.60 0.63 0.66 

σ2 0.60 0.63 0.66 

σ3 0.60 0.63 0.66 

Trip-specific concentration of 
mean bearing for state si,t = 1 

ε1 0.36 0.56 0.74 

ε2 0.81 0.96 1.00 

ε3 0.61 0.83 0.98 

ε4 0.96 0.99 1.00 

ε5 0.51 0.67 0.81 

ε6 0.06 0.33 0.69 

ε7 0.95 0.99 1.00 

Concentration of observed 
bearing 

ρ1 0.79 0.81 0.84 

ρ2 0.30 0.38 0.46 

Scale of step length 
distribution 

α1 0.066 0.070 0.073 

α2 0.005 0.006 0.007 

Shape of step length 
distribution 

β1 2.06 2.28 2.52 

β2 0.90 0.97 1.05 

Basal transition probability for 
state si,t (logit scale) 

a1,2 -4.69 -3.88 -3.16 

a2,2 0.38 1.52 2.73 

a3,2 -2.11 -0.95 0.17 

a1,3 0.12 1.32 2.50 

a2,3 -0.95 0.99 2.73 
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a3,3 3.61 4.42 5.29 

Effect of elapsed trip 
proportion on transition 

probability from state si,t-1 to 
state si,t = 2 (logit scale) 

b1,2 -0.46 1.05 2.52 

b2,2 0.85 2.35 3.86 

b3,2 -0.67 0.90 2.43 

Effect of distance to the closest 
boat on transition probability 
from state si,t-1 to state si,t = 3 

(logit scale) 

b1,3 -0.50 -0.38 -0.26 

b2,3 -0.37 -0.22 -0.09 

b3,3 -0.50 -0.36 -0.21 

Transition probabilities for 
state ri,t 

δ1,1 0.84 0.87 0.90 

δ1,2 0.10 0.13 0.16 

δ2,1 0.07 0.09 0.12 

δ2,2 0.88 0.91 0.93 

State si,t proportions 

λ1,1 0.44 0.47 0.49 

λ1,2 0.26 0.29 0.31 

λ1,3 0.23 0.24 0.26 

State ri,t proportions 
λ2,1 0.41 0.43 0.45 

λ2,2 0.54 0.57 0.59 
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Table S4. Estimated activity budget by each combination of the two states. 

 

 

 

 

 

 

 

 

 

 

Table S5. Estimated activity budget of tracked fulmars during each foraging trip. This is 
expressed as the percentage of locations classified under each state of the first state process 
(movement out to sea, towards the colony or towards a boat). 

 

Trip ID Individual 
First state process (s) Second state process (r) 

1 (sea) 2 (colony) 3 (boat) 1 (transit) 2 (ARS) 

1 1 66.7% 16.3% 17.0% 40.3% 59.7% 

2 1 46.3% 7.4% 46.3% 26.9% 73.1% 

3 2 21.3% 22.6% 56.1% 35.5% 64.5% 

4 3 36.9% 25.6% 37.4% 51.7% 48.3% 

5 4 62.5% 35.5% 2.0% 45.4% 54.6% 

6 5 89.3% 10.7% - 11.6% 88.4% 

7 6 31.7% 59.1% 9.1% 67.2% 32.8% 
  

State 
Second state  

process  

1 (transit) 2 (resident)  

First state 
process 

1 (sea) 20.3% 27.7% 48.0% 

2 (colony) 16.3% 11.5% 27.8% 

3 (boat) 6.0% 18.2% 24.2% 
  42.6% 57.4%  
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Appendix S1. Code for the hidden-state model in OpenBUGS format. 

 

Appendix S2. Animations of fulmar movement and interaction with fishing boats. 

 

Appendix S3. Implementation of the method by Torres et al. (2011) to account for the 
uncertainty in boat interpolated locations. 

Vessel Monitoring System (VMS) locations of fishing boats are accurate, but they are collected 
approximately every two hours, while the exact position of boats in between fixes is unknown. In 
this study, we linearly interpolated VMS locations to match fulmar locations every 10 minutes, a 
procedure that introduces an unknown level of uncertainty over unobserved periods. In order to 
test whether this uncertainty could influence the results of our model, we followed the method 
described by Torres et al. (2011) to estimate a circular spatial buffer around each interpolated 
location, which represents the area where the boat could have been at that time. Briefly, two 
consecutive VMS locations define a segment of a boat’s track. The radius of the spatial buffer at 
each interpolated location within this segment depends on the reported speed of the boat at the 
extremes of the segment and the time taken to move between these extremes. If, for example, a 
boat was moving fast at the reported VMS locations but only covered a small distance over that 
time interval, the uncertainty around its locations in the unobserved period is greater than for a 
boat that covered approximately the expected distance given the speed and time difference. The 
position of each interpolated location along the segment also affects the radius of the relative 
buffer, reaching the maximum at the midpoint of the segment where the uncertainty on the boat’s 
location is greatest. More details and a step by step description of the buffer calculation can be 
found in Torres et al. (2011). We followed their procedure and obtained, for each interpolated 
location, a value of buffer radius. We then identified four additional points for each location: two 
along the corresponding segment and two along a line passing through the location and 
perpendicular to the segment, at a distance from the interpolated location equal to the estimated 
radius of the buffer (Fig. S4). 

We calculated the minimum (dmin,i,t) and maximum (dmax,i,t) distance from the closest boat of a 
fulmar in trip i, at each time step t, as the minimum and maximum distances between the bird’s 
position and the five points (the interpolated location and the four additional locations) identified 
for each boat location. Similarly, we calculated the bearings to the five locations and extracted 
the minimum (χmin,i,t) and maximum (χmax,i,t) of these values. We used these minima and maxima 
to represent the range of potential distances and bearings to the closest boat given the uncertainty 
in its exact location. Specifically, we modified the model so that the distance and bearing to the 
closest boat could take any value in these ranges, i.e. di,t ~ U(dmin,i,t, dmax,i,t) and μ3,i,t ~ U(χmin,i,t, 
χmax,i,t). Also, we specified a separate, state-dependent lognormal distribution for the minimum 
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and maximum distances to the closest boat, dmin,i,t ~ logN(φmin,s, σmin,s) and dmax,i,t ~ logN(φmax,s, 
σmax,s). 

The estimates of the parameters and associated uncertainty from this modified version of the 
model are reported in Table S4. With the exception of the parameters associated with the new 
lognormal distributions of minimum and maximum distance from the closest boat, the 95% 
highest posterior density intervals for all parameters were largely overlapping between the two 
model formulations. We compared the state classification under the model incorporating boat 
uncertainty with the classification under the original model, and found that the new model 
formulation led to the same state classification in 97.4% and 99.3% of locations, for the first and 
second state process (s and r) respectively. 

 

 

Figure S4. Schematic diagram of the circular spatial buffer around each interpolated location, 
calculated following the method by Torres et al. (2011). In blue, the track of a boat; the dashed 
portion represents a segment between two consecutive VMS fixes (indicated here as VMS1 and 
VMS2). The red dots, I1-4, represent the interpolated locations within the segment. The red circle 
indicates the circular spatial buffer for location I2, with the radius represented as a red arrow. The 
four additional locations used for the calculation of the range of a fulmar’s distance and bearing 
to the boat are represented as green crosses.
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Table S6. Posterior estimates of parameters (median and 95% highest posterior density interval) 
for the model implementing the method by Torres et al. (2011) to capture the uncertainty in boat 
locations. 

 

Description Parameter Lower 
(2.5%) 

Median Upper 
(97.5%) 

Mean minimum distance from 
closest boat under state si,t 

φmin,1 2.95 3.00 3.05 
φmin,2 2.95 3.00 3.05 

φmin,3 0.48 0.58 0.68 

Mean maximum distance from 
closest boat under state si,t 

φmax,1 3.23 3.28 3.32 
φmax,2 3.23 3.28 3.32 

φmax,3 1.36 1.44 1.53 

Standard deviation of 
minimum distance from closest 

boat under state si,t 

σmin,1 0.67 0.70 0.73 

σmin,2 0.67 0.70 0.73 

σmin,3 0.66 0.69 0.73 

Standard deviation of 
maximum distance from 

closest boat under state si,t 

σmax,1 0.61 0.64 0.67 

σmax2 0.61 0.64 0.67 

σmax,3 0.61 0.63 0.66 

Trip-specific concentration of 
mean bearing for state si,t = 1 

ε1 0.36 0.55 0.72 

ε2 0.75 0.93 0.99 

ε3 0.57 0.81 0.96 

ε4 0.96 0.99 1.00 

ε5 0.53 0.68 0.82 

ε6 0.07 0.30 0.58 

ε7 0.95 0.99 1.00 

Concentration of observed 
bearing 

ρ1 0.78 0.81 0.84 

ρ2 0.37 0.45 0.52 

Scale of step length 
distribution 

α1 0.066 0.070 0.073 

α2 0.005 0.006 0.007 
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Shape of step length 
distribution 

β1 2.05 2.27 2.50 

β2 0.91 0.98 1.06 

Basal transition probability for 
state si,t (logit scale) 

a1,2 -4.66 -3.85 -3.14 

a2,2 0.28 1.40 2.58 

a3,2 -2.19 -1.04 0.06 

a1,3 0.61 1.76 2.90 

a2,3 -0.96 1.13 3.02 

a3,3 3.87 4.70 5.62 

Effect of elapsed trip 
proportion on transition 

probability from state si,t-1 to 
state si,t = 2 (logit scale) 

b1,2 -0.46 1.04 2.45 

b2,2 0.93 2.39 3.88 

b3,2 -0.72 0.84 2.38 

Effect of distance to the closest 
boat on transition probability 
from state si,t-1 to state si,t = 3 

(logit scale) 

b1,3 -0.51 -0.40 -0.29 

b2,3 -0.37 -0.22 -0.09 

b3,3 -0.45 -0.34 -0.23 

Transition probabilities for 
state ri,t 

δ1,1 0.84 0.87 0.90 

δ1,2 0.10 0.13 0.16 

δ2,1 0.07 0.09 0.12 

δ2,2 0.88 0.91 0.93 

State si,t proportions 

λ1,1 0.45 0.47 0.49 

λ1,2 0.26 0.28 0.30 

λ1,3 0.24 0.25 0.26 

State ri,t proportions 
λ2,1 0.41 0.43 0.46 

λ2,2 0.54 0.57 0.59 
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Appendix S4. Reformulation of the model using a different set of distributions for the observed 
variables. 

In our model, the step length at time t of trip i, xi,t, was assumed to emerge from a Weibull 
distribution with state-specific scale (αr) and shape (βr) parameters, i.e. xi,t ~ W(βr, αr), while the 
observed bearing θi,t was assumed to have a wrapped Cauchy distribution with mean μs,i,t and 
concentration parameter ρr, i.e. θi,t ~ wC(μs,i,t, ρr) (Morales et al. 2004; McClintock et al. 2012, 
2013). To assess whether the choice of such distributions affected the results, we reformulated 
the model using an alternative set of distributions that are also commonly used to model step 
lengths and angles in animal movement models (Michelot, Langrock & Patterson 2016; Michelot 
et al. 2017). Particularly, step lengths were modelled using a Gamma distribution with state-
specific shape (ζr) and rate (ηr) parameters, i.e. xi,t ~ Γ(ζr, ηr). ζr had uniform prior U(0, 7) and ζ2 

< ζ1. ηr had a uniform prior U(1, 500). Bearings were modelled using a von Mises distribution 
with mean μs,i,t and concentration parameter κr, i.e. θi,t ~ vM(μs,i,t, κr). The mean μs,i,t  was 
computed as described in the main text, while κr could take any integer value between 0 and 40 
and κ2 < κ1. The values of the modified Bessel function of order 0, I0(κr), required in the von 
Mises probability density function, were calculated in R for each integer value of κr in the 
allowed range.  

The estimates of the parameters and associated uncertainty from this alternative version of the 
model are reported in Table S5. With the exception of the parameters associated with the new 
implemented distributions, which are necessarily different, the 95% highest posterior density 
intervals for all parameters were largely overlapping between the two model formulations. We 
also compared the state classification under the new model with the classification under the 
original model, and found that the new model formulation led to the same state classification in 
96.3% and 95.7% of locations, for the first and second state process (s and r) respectively.
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Table S7. Posterior estimates of parameters (median and 95% highest posterior density interval) 
for the model reformulated with alternative distributions for bearing and step length. 
 

Description Parameter Lower 
(2.5%) Median Upper 

(97.5%) 

Mean distance from closest 
boat under state si,t 

φ1 3.02 3.07 3.12 
φ2 3.02 3.07 3.12 

φ3 0.73 0.83 0.93 

Standard deviation of distance 
from closest boat under state 

si,t 

σ1 0.62 0.65 0.68 

σ2 0.62 0.65 0.68 

σ3 0.61 0.64 0.67 

Trip-specific concentration of 
mean bearing for state si,t = 1 

ε1 0.37 0.57 0.74 

ε2 0.81 0.96 0.99 

ε3 0.60 0.81 0.96 

ε4 0.90 0.97 0.99 

ε5 0.51 0.66 0.79 

ε6 0.24 0.60 0.92 

ε7 0.88 0.95 0.99 

Concentration of observed 
bearing 

κ1 9 11 13 

κ2 2 2 2 

Rate of step length distribution 
η1 64.5 76.7 90.7 

η2 89.4 110.1 139.3 

Shape of step length 
distribution 

ζ1 4.21 5.05 6.04 

ζ2 0.79 0.88 0.99 

Basal transition probability for 
state si,t (logit scale) 

a1,2 -4.61 -3.84 -3.14 

a2,2 0.34 1.40 2.52 

a3,2 -2.04 -0.89 0.22 

a1,3 -0.06 1.08 2.21 

a2,3 -0.56 1.18 2.79 

a3,3 3.36 4.13 4.98 
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Effect of elapsed trip 
proportion on transition 

probability from state si,t-1 to 
state si,t = 2 (logit scale) 

b1,2 0.08 1.49 2.87 

b2,2 0.82 2.26 3.71 

b3,2 -0.52 1.06 2.62 

Effect of distance to the closest 
boat on transition probability 
from state si,t-1 to state si,t = 3 

(logit scale) 

b1,3 -0.50 -0.37 -0.26 

b2,3 -0.37 -0.23 -0.10 

b3,3 -0.49 -0.34 -0.18 

Transition probabilities for 
state ri,t 

δ1,1 0.82 0.86 0.90 

δ1,2 0.10 0.14 0.18 

δ2,1 0.06 0.08 0.11 

δ2,2 0.89 0.92 0.94 

State si,t proportions 

λ1,1 0.45 0.47 0.49 

λ1,2 0.28 0.30 0.33 

λ1,3 0.21 0.22 0.24 

State ri,t proportions 
λ2,1 0.36 0.38 0.40 

λ2,2 0.60 0.62 0.64 
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Appendix S5. Reformulation of the model with an additional state representing movement with 
unknown bearing. 

In alternative to allowing a variable mean bearing under state si,t = 1, μ1,i,t, to capture the different 
directedness among trips, the model could be reformulated to include an extra state, si,t = 4, 
representing movement off the main course of the trip. This state corresponded to any period 
where an individual was targeting localised areas (e.g. foraging patches) that were not aligned 
with the rest of the trip, thus further discriminating state 1 into two different phases: heading 
away from the central place towards the offshore region, and heading towards specific patches 
with unknown bearing. The fourth state was characterised by a random mean bearing, i.e. μ4,i,t ~ 
Uniform (-π, π) and the same distribution of distances to the closest attractor, di,t, as in state 1 and 
2, i.e. φ4 = φ1 = φ2 and σ4 = σ1 = σ2. In contrast, the bearing for state 1 was fixed, i.e. μ1,i,t = υi. The 
alternative model required the estimation of six additional basal transition probabilities on the 
logit scale, a, and two additional slope parameters, b (Table S8).  

The estimates of the parameters and associated uncertainty from this alternative version of the 
model are reported in Table S8. The comparison of the proportions of states s under the original 
and alternative versions of the model shows that most of the locations classified as si,t = 4 (12% 
of the total, on average) were originally classified as si,t = 1. The posterior proportion for this 
state declined from 0.47 to 0.35. The plots of the foraging trips coloured by posterior state 
classification confirm the interpretation of the fourth state (Fig. S5). 
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Table S8. Posterior estimates of parameters (median and 95% highest posterior density interval) 
for the model with an additional state representing movement with unknown bearing. 

 

Description Parameter Lower 
(2.5%) Median Upper 

(97.5%) 

Mean distance from closest 
boat under state si,t 

φ1 3.06 3.11 3.16 
φ2 3.06 3.11 3.16 

φ3 0.82 0.92 1.01 

φ4 3.06 3.11 3.16 

Standard deviation of distance 
from closest boat under state 

si,t 

σ1 0.60 0.63 0.66 

σ2 0.60 0.63 0.66 

σ3 0.60 0.63 0.65 

σ4 0.60 0.63 0.66 

Concentration of observed 
bearing 

ρ1 0.77 0.80 0.83 

ρ2 0.26 0.33 0.41 

Scale of step length 
distribution 

α1 0.066 0.070 0.073 

α2 0.005 0.006 0.007 

Shape of step length 
distribution 

β1 2.05 2.27 2.50 

β2 0.90 0.97 1.05 

Basal transition probability for 
state si,t (logit scale) 

a1,1 2.28 2.90 3.62 

a2,1 -2.22 -0.59 0.81 

a3,1 -2.71 -1.21 0.10 

a4,1 -2.97 -1.85 -0.50 

a1,2 -2.95 -1.62 -0.49 

a2,2 0.66 1.88 3.19 

a3,2 -2.14 -0.90 0.27 

a4,2 -3.65 -2.45 -1.20 

a1,3 0.88 2.49 3.95 

a2,3 -1.51 0.60 2.61 
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a3,3 3.83 4.66 5.59 

a4,3 -0.56 1.05 2.50 

Effect of elapsed trip 
proportion on transition 

probability from state si,t-1 to 
state si,t = 2 (logit scale) 

b1,2 -1.24 0.91 2.89 

b2,2 0.95 2.50 4.07 

b3,2 -0.79 0.86 2.45 

b4,2 -1.60 0.26 2.03 

Effect of distance to the closest 
boat on transition probability 
from state si,t-1 to state si,t = 3 

(logit scale) 

b1,3 -0.40 -0.26 -0.15 

b2,3 -0.38 -0.21 -0.07 

b3,3 -0.49 -0.35 -0.20 

b4,3 -0.43 -0.29 -0.16 

Transition probabilities for 
state ri,t 

δ1,1 0.84 0.87 0.90 

δ1,2 0.10 0.13 0.16 

δ2,1 0.07 0.09 0.12 

δ2,2 0.88 0.91 0.93 

State si,t proportions 

λ1,1 0.30 0.35 0.39 

λ1,2 0.26 0.28 0.32 

λ1,3 0.23 0.25 0.26 

λ1,4 0.06 0.12 0.18 

State ri,t proportions 
λ2,1 0.41 0.43 0.45 

λ2,2 0.55 0.57 0.59 
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Figure S5. Fulmar tracks classified using the model with an additional state representing movement with unknown bearing. An 
individual can be in one of four states: heading away from the colony towards the offshore region (state 1, green), heading towards the 
colony (state 2, orange), heading towards the closest boat (state 3, black), or heading towards other patches with no predefined bearing 
(state 4, light blue). The closest boats are represented as blue crosses. Individual trips are plotted separately. 
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Table S9. Posterior estimates of parameters (median and 95% highest posterior density interval) 
for a model without the trip-specific concentration of bearing parameters ε. When comparing the 
state classification under the new model with the classification under the original model, the new 
model formulation leads to the same state classification in 95.4% and 99.3% of locations, for the 
first and second state process (s and r) respectively.

 

Description Parameter Lower 
(2.5%) Median Upper 

(97.5%) 

Mean distance from closest 
boat under state si,t 

φ1 3.06 3.11 3.16 
φ2 3.06 3.11 3.16 

φ3 0.83 0.93 1.02 

Standard deviation of distance 
from closest boat under state 

si,t 

σ1 0.60 0.63 0.66 

σ2 0.60 0.63 0.66 

σ3 0.60 0.62 0.65 

Concentration of observed 
bearing 

ρ1 0.73 0.76 0.79 

ρ2 0.24 0.31 0.37 

Scale of step length 
distribution 

α1 0.066 0.070 0.073 

α2 0.005 0.006 0.007 

Shape of step length 
distribution 

β1 2.07 2.29 2.53 

β2 0.89 0.96 1.04 

Basal transition probability for 
state si,t (logit scale) 

a1,2 -4.58 -3.79 -3.07 

a2,2 0.38 1.52 2.72 

a3,2 -2.14 -0.96 0.17 

a1,3 0.17 1.39 2.60 

a2,3 -0.57 1.40 3.13 

a3,3 3.70 4.51 5.40 

Effect of elapsed trip 
proportion on transition 

probability from state si,t-1 to 
state si,t = 2 (logit scale) 

b1,2 -0.32 1.28 2.81 

b2,2 0.95 2.47 3.97 

b3,2 -0.63 0.95 2.50 

b1,3 -0.50 -0.37 -0.26 
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Effect of distance to the closest 
boat on transition probability 
from state si,t-1 to state si,t = 3 

(logit scale) 

b2,3 -0.36 -0.22 -0.09 

b3,3 -0.50 -0.36 -0.22 

Transition probabilities for 
state ri,t 

δ1,1 0.84 0.87 0.90 

δ1,2 0.10 0.13 0.16 

δ2,1 0.07 0.09 0.12 

δ2,2 0.88 0.91 0.93 

State si,t proportions 

λ1,1 0.41 0.44 0.46 

λ1,2 0.29 0.31 0.34 

λ1,3 0.24 0.25 0.26 

State ri,t proportions 
λ2,1 0.41 0.43 0.45 

λ2,2 0.55 0.57 0.59 
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Appendix S6. Reformulation of the model with larger priors for the state-dependent distribution 
of distance from the closest boat. 

The priors for the state-dependent means of the lognormal distance from the closest boat (φ) and 
associated uncertainties (σ) were chosen based on the observed distribution of distances in the 
data exploration (Table S2). To test whether these priors had an effect on the uncertainty of the 
posterior, we ran a new model where we decreased the precision of the Normal priors for φ by an 
order of magnitude (from 1 to 0.1, corresponding to a change in standard deviation from 1 to 
approximately 3.2) and increased the range of the flat Uniform priors for σ by an order of 
magnitude (from 1 to 10), i.e.: 

φ1 = φ2 ~ Truncated Normal (3, 3.2) [φ3,] 

φ3 ~ Truncated Normal (1, 3.2) [0,] 

σ1 = σ2 ~ Uniform (0, 10) 

σ3 ~ Uniform (0, σ1) 

This did not change the results. In summary, the new posterior medians for parameters φ and σ 
(and 95% highest posterior density interval) were: 

φ1 = φ2 = 3.1 (3.05 – 3.15) 

φ3 = 0.90 (0.80 – 1.00) 

σ1 = σ2 = 0.63 (0.60 – 0.66) 

σ3 = 0.63 (0.60 – 0.66). 
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