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Abstract 

 

We assessed the effects of post-exercise cold-water immersion (CWI) in modulating PGC-1α mRNA 

expression in response to exercise commenced with low muscle glycogen availability.  In a randomized 

repeated-measures design, nine recreationally active males completed an acute two-legged high-intensity 

cycling protocol (8 x 5 min at 82.5% peak power output) followed by 10 minutes of two-legged post-

exercise CWI (8°C) or control conditions (CON). During each trial, one limb commenced exercise with 

low (LOW: <300 mmol.kg-1 dw) or very low (VLOW: <150 mmol.kg-1 dw) pre-exercise glycogen 

concentration, achieved via completion of a one-legged glycogen depletion protocol undertaken the 

evening prior. Exercise increased (P < 0.05) PGC-1α mRNA at 3 h post-exercise.  Very low muscle 

glycogen attenuated the increase in PGC-1α mRNA expression compared with the LOW limbs in both the 

control (CON VLOW ~3.6-fold vs. CON LOW ~5.6-fold: P = 0.023, ES 1.22 Large) and CWI 

conditions (CWI VLOW ~2.4-fold vs. CWI LOW ~8.0 fold: P = 0.019, ES 1.43 Large).  Furthermore, 

PGC-1α mRNA expression in the CWI-LOW trial was not significantly different to the CON LOW limb 

(P = 0.281, ES 0.67 Moderate). Data demonstrate that the previously reported effects of post-exercise CWI 

on PGC-1α mRNA expression (as regulated systemically via β-adrenergic mediated cell signalling) are 

offset in those conditions in which local stressors (i.e. high-intensity exercise and low muscle glycogen 

availability) have already sufficiently activated the AMPK- PGC-1α signaling axis.  Additionally, data 

suggest that commencing exercise with very low muscle glycogen availability attenuates PGC-1α 

signaling. 
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New & Noteworthy 

 

We demonstrate post-exercise CWI does not enhance the exercise-induced expression of PGC-1α mRNA 

in muscles commencing exercise with low (i.e. <300 mmol.kg-1 dw) or very low (i.e. <150 mmol.kg-1 dw) 

glycogen concentrations.  From a practical perspective, data suggest that the application of post-exercise 

CWI as a strategic training aid for greater PGC-1α mRNA expression is more likely to have beneficial 

effects when utilized after those high-intensity training sessions that have not induced near maximal 

glycogen depletion. 
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Introduction 

 

It is well documented that regular endurance training induces an increase in skeletal muscle mitochondrial 

density (10). At a molecular level, the mitochondrial adaptations induced by endurance training are largely 

regulated via transient increases in mRNA transcripts encoding mitochondrial proteins in response to each 

acute training session (25).  Upon the onset of contraction, homeostatic perturbations within skeletal 

muscle (e.g., increased AMP/ATP ratio, Ca2+

, reactive oxygen species (ROS), lactate, reduced glycogen 

availability, etc.) result in the activation of regulatory protein kinases that, in turn, activate downstream 

targets such as transcription factors or transcriptional coactivators (21). As a transcriptional coactivator, 

the peroxisome proliferator-activated receptor coactivator (PGC-1α), has been the focus of intense 

investigation during the last two decades and is repeatedly cited as the “master regulator of mitochondrial 

biogenesis” (3, 28).  The importance of PGC-1α in regulating mitochondrial content and function is 

evident from rodent studies demonstrating that overexpression increases oxidative enzyme activity (20), 

improves insulin sensitivity (5), protects against sarcopenia (34) and also improves exercise capacity (6).  

In relation to human skeletal muscle, multiple laboratories have examined the potential to augment the 

adaptive response to a given exercise stimulus through interventions that modulate and enhance the 

exercise-induced activation of the PGC-1α signaling axis.  Consistent with the initial discovery that PGC-

1α was cold-inducible in rodent skeletal muscle (29), we (2,17) and others (13,14) have demonstrated that 

both passive and post-exercise cold-water immersion (CWI) enhances the acute expression of PGC-1α 

mRNA (17), an effect that is likely regulated systemically (via β-adrenergic activation of local cell 

signaling pathways), as opposed to local cooling effects per se (2).  In accordance with the acute effects 

of CWI, chronic application of the CWI stimulus in response to consecutive training sessions up-regulates 

chronic markers of training adaptations such as lipid enzyme activity and oxidative enzyme protein content 
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(14).    

In addition to CWI, we (4, 15) and others (36, 33, 12, 27) have also demonstrated a potent role of reduced 

muscle glycogen availability in enhancing the chronic adaptations to endurance training, an effect that is 

also associated with the augmented activation of the AMPK- PGC-1α signaling axis in response to an 

acute training session that is completed with reduced CHO availability before, during and/or after exercise 

(16).  This body of work is often communicated as the train-low (smart): compete high paradigm surmising 

that carefully selected training sessions could be completed with reduced CHO availability so as to 

augment training adaptation, yet competition should always be commenced with high CHO availability 

so as to promote optimal performance.  When taken together, such data raise the possibility that 

simultaneous application of post-exercise CWI and reduced CHO availability may augment the cell 

signaling responses associated with the regulation of mitochondrial biogenesis, when compared with the 

application of either stimulus in isolation.  However, given recent data highlighting the role of local muscle 

metabolic stress in modulating acute exercise-induced cell signaling pathways (7), it is suggested that the 

application of CWI (i.e. a systemic mediated stress) induces negligible regulatory effects on a muscle that 

has already been subjected to the extreme local metabolic challenge of both high-intensity exercise and 

low muscle glycogen availability. 

 

Accordingly, the aim of the present study was to assess the effects of post-exercise CWI in modulating 

the regulation of PGC-1α mRNA expression in muscles that have already completed the challenge of high-

intensity exercise and low muscle glycogen availability.  Using a prior glycogen manipulation protocol, 

we adopted an experimental design where subjects completed an acute two-legged high-intensity cycling 

protocol with and without two-legged post-exercise CWI but where each limb commenced exercise with 

low (<300 mmol.kg-1 dw) or very low (<150 mmol.kg-1 dw) pre-exercise glycogen concentration.  In this 
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way, we were able to obtain muscle biopsies from four limbs subjected to the same exercise stimulus but 

with differing local (i.e. pre-exercise glycogen availability) and systemic stressors (i.e. CWI versus non-

cooling conditions).   

 

 

Materials and Methods 
 

 

Participants: Nine recreationally active healthy males (age 22 ± 3 yrs.; body mass 74.18 ± 7.88 kg; height 

180.50 ± 6.60 cm; peak power output (PPO) 272 ± 256 W; mean ± SD) participated in this study. 

Participants were instructed to refrain from exercise, alcohol and caffeine 48 hours prior to the first 

depletion protocol, and not to stray from the prescribed meal plan or exercise within the 48 hours 

preceding the experimental day. All procedures performed in the study were approved by the Ethics 

Committee of Liverpool John Moores University and in accordance with the 1964 Helsinki declaration 

and its later amendments. 

 

Preliminary testing: Prior to commencing the experimental trials the participants completed an 

incremental exercise test to fatigue for the determination of V̇ O2peak and PPO (as described in detail in 

8). Results from this test were used to determine the Watts necessary for cycling at a proportion of PPO 

on subsequent test days. PPO was calculated using the equation below (24); where CB is the wattage of 

the last complete bout, FB is the fraction of the final bout completed, and 25 is the increment of 25W 

between each successive bout: PPO = CB + (FB x 25). Further preliminary visits encompassed 

familiarisation to the glycogen depletion protocols to be completed prior to the experimental day. 

 

Experimental design: In a repeated-measure, randomised crossover design, with at least 14 d between 

trials, participants reported to the laboratory a total of nine times, where the first three were familiarisation 

sessions. In order to establish a research design that allowed the investigation of 4 separate conditions 
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from 2 visits participants underwent a single-leg depletion protocol and bi-lateral muscle biopsies with 

and without post-exercise CWI to give the following conditions: Low glycogen control (CON LOW), Very 

Low glycogen control (CON VLOW), Low glycogen CWI (CWI LOW) and Very Low glycogen CWI 

(CWI VLOW) (See Figure 1). 

 

Two-legged glycogen depletion, Visit 1: Participants arrived at the laboratory 40 h prior to the 

experimental trial at 1600 h and undertook a 5-min warm-up at 100 W. From here, participants performed 

an intermittent cycling protocol aimed to deplete both limbs of muscle glycogen. A two-legged glycogen 

depleting cycling protocol consisting of 2 min at 90% PPO, followed immediately by a 2-min recovery 

period at 50% PPO. Participants repeated this work to rest ratio until 2 min cycling at 90% PPO could not 

be maintained, determined as an inability to maintain a cadence of 70 rev.min-1. At this point, exercise 

intensity was lowered to 80% PPO, with the same work to rest ratio. When participants could no longer 

maintain this intensity, it was lowered to 70% and then finally to 60% PPO with the same work to rest 

ratio. When the participants were unable to cycle for 2 min at 60% PPO, the exercise protocol was 

terminated. This intermittent pattern of exercise has previously been shown to evoke glycogen depletion 

in both type I and type II fibres (19). After the completion of the two-legged glycogen depletion protocol, 

participants were provided with a high CHO diet for the next ~22 h (CHO 8 g·kg-1 body mass, protein 

(PRO) 1.4 g·kg-1 body mass, Fat 0.5 g·kg-1 body mass).  Feeding began immediately after the cessation 

of exercise for 4 x hourly intervals that evening. Participants were also provided with breakfast for the 

following morning and returned to the laboratory post-breakfast to collect food for the rest of the day (~8g 

CHO·kg-1 body mass). The purpose of this initial glycogen depletion protocol with high CHO refeed was 

to ensure participants had a similar bi-lateral concentration of muscle glycogen prior to commencing the 

second evening depletion. 
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Single-leg glycogen depletion, Visit 2: Approximately 15 h prior to the experimental trial, participants 

attended the laboratory for a single-leg glycogen depletion protocol to deplete their dominant leg only. 

Glycogen depletion of the dominant leg was undertaken as to ensure similar muscle recruitment patterns 

and therefore glycogen depletion between trials. Single-leg glycogen depletion involved 20 min 

continuous single-leg cycling at 75% PPO, followed by intermittent cycling at a work to rest ratio of 

90s:90s. Intermittent cycling began at 90% PPO decreasing in 5% decrements when such a workload 

could not be maintained for 5 s consecutively. Exercise ceased when 55% PPO could not be maintained 

for 5 s consecutively. Immediately following this, the participants completed an all-out one-legged 

cycling bout at 85% PPO before going on to 30 minutes of 2-arm cycling at 50W in an attempt to decrease 

liver glycogen levels and therefore diminish the potential for muscle glycogen resynthesis (26). 

Participants then underwent an overnight fast before returning to the lab the next day.   

 

Experimental trial, Visit 3: Upon arrival at the laboratory participants were fitted with a heart- rate belt 

(Polar RS400, Kempele, Finland), skin and rectal temperature probes (MHF-18050-A and MRV-55044-

A, Ellab, Rodovre, Denmark) and legs were marked for subsequent insertion of muscle temperature 

needles. Following 10-minutes in a supine position baseline measures of HR, temperature and oxygen 

uptake (V̇O2; Oxycon Pro, Jaeger, Wuerzberg, Germany) were assessed. Resting venous blood 

samples were drawn from a superficial vein in the anti-cubital crease of the forearm using venepuncture 

cannulation (BD Nexiva Closed IV Catheter 22G Blue, Becton Dickinson, Oxford, UK). Resting muscle 

temperature was assessed using a needle thermistor (13050; Ellab, Rodovre, Denmark) before resting bi-

lateral muscle biopsies were sampled from the vastus lateralis (~30-50 mg wet wt). Immediately after 

the resting biopsy participants completed a high-intensity intermittent cycling protocol, consisting of 8 

× 5 min bouts at 82.5% PPO separated by 1 min rest followed by either two-legged CWI (CWI: 10 

min at 7.96 ± 1.05°C) or a control condition (CON; seated rest). From here, participants recovered in 
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a semi-reclined position under normal laboratory temperatures until 3-hours post-exercise. Measures of 

heart rate, skin temperature (thigh and calf) and rectal temperature were recorded throughout the exercise 

and recovery periods. Oxygen uptake was measured during the final minute of each high-intensity bout 

of exercise, during immersion and immediately post-immersion to assess for shivering thermogenesis 

and again at 1, 2 and 3h post-exercise.  

 

Laboratory temperatures remained stable throughout (~21°C) and at no point were participants allowed 

to rub themselves dry or shower (changing into dry clothes after immersion was allowed). Muscle 

temperature was assessed post-exercise, 1, 2 and 3h post-exercise, whilst venous blood samples were 

also drawn at these times. Further bi-lateral muscle biopsies occurred immediately after exercise and 

3h post- exercise in line with previous research (2, 3, 13, 15, 17). Biopsies were obtained from both 

limbs at all time points to allow for comparison between low (LOW) and very low (VLOW) glycogen 

limbs in both CON and CWI trials. All incisions were individually anaesthetised, separated distally by 2-

3 cm and included four passes of muscle tissue per biopsy. 

 

Blood analysis: All samples were analysed in duplicate. Samples were analysed for serum glucose, 

lactate, NEFA, and glycerol concentration using commercially available kits (Randox Laboratories, 

Antrim, UK). Plasma metanephrine and Normetanephrine concentrations were measured using liquid 

chromatography tandem mass spectrometry as previously described (23). Serum samples were also 

analysed for insulin using a solid phase enzyme-linked immunosorbent assay (ELISA, KAQ1251, Life 

Technologies, UK), according to manufacturer’s instructions. 

 

Muscle glycogen: Muscle glycogen concentration was determined according to the method described by 

Van Loon et al. (32). Approximately 2-3 mg of freeze-dried sample was dissected free of all visible non-
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muscle tissue and subsequently hydrolysed by incubation in 500 μl of 1 M HCl for 3-4 hours at 100°C. 

After cooling to room temperature, samples were neutralized by the addition of 250 μl 0.12 mol.L-1 KOH 

saturated with KCl. Following centrifugation, 150 μl of the supernatant was analysed in duplicate for 

glucose concentration according to the hexokinase method using a commercially available kit (GLUC-

HLK, Randox Laboratories, Antrim, UK). Glycogen concentration is expressed as mmol·kg-1dw and 

intra assay coefficients of variation was <5%. 

 

RNA isolation and extraction: 200µl of chloroform was added per 1 ml TRIzol reagent used during 

homogenisation and shaken vigorously by hand for 15 seconds before being incubated at room 

temperature for 3 minutes. Samples were then centrifuged at 12000 g for 15 minutes at 4°C. After 

centrifugation, the samples were separated into their red phenol, middle interphase and upper aqueous 

phase. The upper aqueous phase was carefully removed into a clean, labelled RNA/DNA free Eppendorf, 

ensuring the middle interphase was not disturbed, and mixed with 500µl isopropanol (per 1 ml TRIzol). 

After vortex for 15 s, the sample was incubated at room temperature for 10 minutes before further 

centrifugation (12000 g for 10 minutes at 4°C). The resulting supernatant was removed and the remaining 

RNA pellet washed in 1 ml ice- cooled 75% ethanol (per 1 ml TRIzol), vortexed briefly before 

centrifugation at 7500 g for 8 minutes at 4°C. The ethanol was subsequently removed and the RNA pellet 

allowed to air dry before re-suspension in 30 µl RNA storage solution (Invitrogen, UK). Samples were 

incubated in a block heater at 50°C for 10 minutes to assist with re-suspension before proceeding to 

measurement. RNA concentration and purity were assessed by UV spectroscopy at optical densities 

of 260 and 280 nm with the use of a Nanodrop 2000 (Thermo Fisher Scientific, UK). A target of 

A260 / A280 ratio was set at 2.0. 70 ng RNA was used for each polymerase chain reaction (PCR) reaction. 
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Primer Design: Primer       sequences       (Table       1)       were       identified        using       Gene (NCBI, 

http://www.ncbi.nlm.nih.gov.gene) and   designed   using   Primer-BLAST (NCBI, 

http://www.ncbi.nlm.nih.gov/tools/primer-blast). Sequence homology searches ensured specificity. The 

primers were ideally designed to yield products spanning exon-exon boundaries to prevent any 

amplification of gDNA. Three or more GC bases in the last five bases at the 3’ end of the primer was 

avoided. Secondary structure interactions (hairpins, self-dimer and cross dimer) within the primer were 

avoided. All primers were between 16 and 25 bp, and amplified a product of between 67 – 212bp. Primers 

were purchased from Sigma (Suffolk, UK). 

 

Gene Expression analysis by real time-quantitative reverse transcriptase polymerase chain reaction rt-

qRT-PCR: rt-qRT-PCR amplifications were performed using QuantiFast
TM

SYBR
® Green RT-PCR one-

s t e p  kit on a Rotor-gene 3000Q (Qiagen, Crawley, UK) supported by rotor-gene software 

(Hercules, CA, USA). rt-qRT-PCR was performed as follows: hold 50°C for 10 min (reverse 

transcription/cDNA synthesis), 95°C for 5 min (transcriptase inactivation and initial denaturation step) 

and PCR steps of 40 cycles; 95°C for 10s (denaturation) and 60°C for 30s (annealing and extension). 

Upon completion, dissociation/melting curve analysis were performed to reveal and exclude non-specific 

amplification or primer-dimer issues (all melt analysis in this study presented single reproducible peaks 

for each target gene suggesting amplification of a single product). Following initial screening of suitable 

reference/housekeeping genes, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) showed the most 

stable Ct values across all RT-PCR runs, participants and regardless of experimental condition (27.02 ± 

1.96 CT; 7% Co-efficient of variation) and was selected as the reference gene in all RT-PCR assays. The 

relative gene expression levels were calculated using the comparative Ct (
ΔΔ

Ct) equation (30) where the 

relative expression was calculated as 2-ΔΔCt and where Ct represents the threshold cycle. mRNA 

http://www.ncbi.nlm.nih.gov.gene/
http://www.ncbi.nlm.nih.gov.gene/
http://www.ncbi.nlm.nih.gov/tools/primer-blast
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expression for all target genes was calculated relative to the reference gene (GAPDH; participants own 

reference, not pooled) within same subject and condition and to a calibrator of pre-exercise. The average 

PCR efficiency was 91.25% and variation for all genes (including the reference gene) was less than 

6.3%.  

 

Statistical analysis: All data are presented as mean ± SD. Baseline data, distance cycled, exercise HR and 

RPE were compared between conditions using a Paired Samples T-test. A two-way (4 conditions x 

time) within participant’s general linear model for condition (CON LOW, CON VLOW, CWI LOW, 

CWI VLOW) and time was used to evaluate muscle glycogen, thigh skin temperature, muscle temperature 

and gene expression. A two-way (2 conditions × time) within-participants general linear model was used 

to evaluate all blood measures (glucose, lactate, NEFA, glycerol, insulin, normetanephrine, 

metanephrine), rectal temperature, subjective and physiological responses (HR, RPE, shivering, V̇  O2). 

The main effects for condition and time were followed up using planned LSD multiple comparisons. The 

ES magnitude was classified as trivial (<0.2), small (>0.2-0.6), moderate (>0.6-1.2), large (>1.2-2.0) 

and very large (>2.0-4.0) (11). The α level for evaluation of statistical significance was set at P < .05. 

 

 

Results 
 

Day 1 and 2: Glycogen depletion exercise protocols 

 

In the two-legged glycogen depletion protocol undertaken on the evening of Day 1, no difference was 

observed between conditions for distance cycled (CON 67.1 ± 18.1 km, CWI 67.3 ± 6.1 km, P = 0.394, ES 

0.01 Trivial), time to depletion (CON 134 ± 30 min, CWI 130 ± 12 min, P = 0.669, ES 0.19 trivial) or 

number of intervals completed (8 ± 2 per stage for both CON and CWI, P = 0.669, ES 0.20 Small). In 

the single-leg glycogen depletion protocol undertaken on the evening of Day 2, no significant difference 
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was present between conditions for distance cycled in the 20-minute steady-state period (CON 9.5 ± 

1.2 km, CWI 8.5 ± 0.9 km, P = 0.194, ES 1.09 Moderate), number of subsequent high intensity bouts 

completed (CON 6.8 ± 2.0 per stage, CWI 6.4 ± 2.0 per stage, P = 0.235, 0.18 Trivial) and the distance 

cycled during the intervals (CON 47.5 ± 8.8 km, CWI 47.9 ± 7.3 km, P = 0.587, ES 0.06 Trivial). 

Moreover, no differences were observed between conditions for time (CON 40.7 ± 9.0s, CWI 37.5 ± 

8.4s) and distance (CON 0.6 ± 0.2 km, CWI 0.4 ± 0.1 km) completed in the all-out exhaustive one-leg 

cycle (P = 0.197 ES 0.38 Small and 0.094 ES 0.94 Moderate, respectively).   

 

Day 3: Main experimental trial 

 

Physiological responses to exercise  

 

Distance cycled during the two-legged high-intensity intermittent cycling protocol (CON 26.8 ± 2.8 km, 

CWI 26.7 ± 3.4 km; P = 0.946, ES 0.01 Trivial), heart rate (P = 0.992, ES 0.004 Trivial), V̇O2 (ml·kg-1
·min-

1; P = 0.602, ES 0.24 Small) and RPE (P = 0.849, ES 0.07 Trivial) were similar between CON and CWI 

trials (data not shown). Mean HR during the final minute of exercise was 179 ± 7 beats.min-1 in CON and 

177 ± 9 beats.min-1 in CWI (P > 0.05), equating to ~80% HR max. The RPE in the final exercise bout 

was 20 AU and 19 AU in the CON and CWI trials respectively. Such data highlight that the distance 

cycled and both whole body physiological / perceptual responses were comparable between the control 

and CWI trials. 

 

Muscle glycogen concentration 

 

Muscle glycogen concentrations were lower in the VLOW limbs compared to the LOW limbs in both 

the control (CON LOW vs. CON VLOW: P = 0.017, ES 1.04 Moderate) and CWI trials (CWI LOW vs. 

CWI VLOW: P = 0.001, ES 1.18 Moderate; Figure 2). In contrast, the concentration of muscle glycogen 
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was similar between the respective LOW (CON LOW vs. CWI LOW: P = 0.819, ES 0.07 Trivial) and 

VLOW conditions (CON VLOW vs. CWI VLOW: P = 0.751, ES 0.14 Trivial; Figure 2). Muscle glycogen 

decreased immediately following exercise (P = 0.001, ES 1.11 Moderate) and at 3 h post-exercise (P = 

0.008, ES 1.10 Moderate) compared to pre-exercise values, the magnitude of which did not differ 

between trials (P = 0.116).  Such data confirm that the intended aim of obtaining both LOW (i.e. <300 

mmol.kg-1 dw) and VLOW (i.e. <150 mmol.kg-1 dw) pre-exercise muscle glycogen concentrations was 

achieved in both the control and CWI trials. 

 

Physiological and shivering responses to CWI versus control conditions 

 

Heart rate was similar between conditions (P = 0.584, ES 0.18 Trivial) during the immersion and 

recovery period (see Table 2). The change in HR over time was also similar between conditions (P = 

0.137), declining during the post-immersion period in both conditions. During the same period, oxygen 

uptake was greater in CWI vs. CON (P = 0.014, ES 1.83 Large).  The change in V̇O2 over time was also 

different between conditions (P = 0.045) with increases in V̇O2 occurring during the initial 2 minutes 

of immersion. Following CWI, V̇O2 decreased below pre- immersion values and remained lower 

throughout the 3 h recovery period (ES >0.58 Small) (P < 0.05). Subjective ratings of shivering were 

greater in CWI (P = 0.052, ES 0.94 Moderate). The change in subjective ratings of shivering over time 

also tended to be greater in CWI with values increasing during immersion and the 10-minute period 

immediately post-immersion (P = 0.089) (Table 2). 

 

Thermoregulatory responses to CWI versus control conditions 

 

 

Rectal temperature (Trec) was similar between conditions (P = 0.887, ES 0.02 Trivial) during exercise 

and post-exercise recovery (see Figure 3A). During the immersion and recovery period, Trec decreased 
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from the fifth minute of immersion until 3 h post-exercise (P < 0.001). Thigh skin temperature (Tthigh) 

was lower during immersion and the post-immersion period in CWI vs. CON conditions (P < 0.001, ES 

2.48 Very Large). The change in Tthigh over time was also different between conditions, with Tthigh 

continually decreasing during cooling in CWI conditions, remaining lower than pre-immersion values 

at 3 h post exercise (P = 0.001, see  Figure 3B). Muscle temperature (Tmus) was lower following 

immersion (P <0.001) in the CWI limbs (P < 0.001, ES 0.90 Moderate). The change in Tmus over time 

was also different between conditions. Muscle temperature declined to a large extent immediately after 

immersion in the CWI limb, followed by a further gradual reduction during the remaining 3h post-

exercise period (P < 0.001, ES 1.0 Moderate, see Figure 3C). 

Circulating plasma metabolites and catecholamines 

 

 

There was no significant difference in plasma glucose, lactate, NEFA, insulin and glycerol 

concentrations between conditions (P > 0.05) (Table 3). The change in these parameters over time was 

also similar between conditions (P > 0.05). Exercise-induced significant increases in glucose, lactate, 

glycerol and NEFA (P < 0.05). Metanephrine concentrations were similar between conditions (P = 0.955, 

ES 0.02 Trivial, Table 3). The change in metanephrine over time was also similar between conditions (P 

= 0.438). Metanephrine concentration was increased post-exercise (P < 0.001, ES 2.10 Very Large) 

and remained above baseline at 1h post-exercise (P = 0.02, ES 0.59 Small). Normetanephrine 

concentrations were similar between conditions (P = 0.130, ES 0.14 Trivial, Table 3). The change in 

normetanephrine over time was different between conditions, with normetanephrine concentrations 

decreasing to a greater extent in CON during the 3h post- exercise period (P = 0.026, ES 1.60 Large). 

Normetanephrine concentration increased post- exercise (P = 0.002, ES 1.50 Large) and remained above 

baseline in CWI conditions until 2h post-exercise (P < 0.05; P = 0.058). 
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Skeletal muscle mRNA responses 

 

Exercise increased PGC-1α mRNA at 3 h post-exercise in all conditions (P < 0.001; ES 1.99 

Large) (Figure 4). At 3 h post-exercise, PGC-1α mRNA expression was attenuated in the VLOW 

limbs compared with the LOW limbs in both the CON (CON VLOW vs. CON LOW: P = 0.023, 

ES 1.22 Large) and CWI conditions (CWI VLOW vs. CWI LOW: P = 0.019, ES 1.43 Large; 

P = 0.039).  This reflected the greater change in expression in the LOW limbs in both CON and 

CWI conditions between post-exercise and 3 h post-exercise time points (P =0.034).  There was 

no significant difference in PGC-1α mRNA expression between the CWI LOW limb and CON 

LOW limb at 3 h post-exercise  (P = 0.281, ES 0.67 Moderate;) (Figure 4). In contrast to PGC-

1α, the expression of COXIV, CS, TFam, SIRT1, NRF2 and GLUT4 mRNA (Figure 5) did not 

change in response to exercise or CWI (P > 0.05). 

 

 

Discussion  
 

The rationale for the present study was based on previous observations that both post-exercise CWI 

(2, 13, 14, 17) and reduced muscle glycogen availability (4, 15) independently augment the exercise-

induced mRNA expression of the master regulator of mitochondrial biogenesis, PGC-1α.  

Accordingly, it is tempting to speculate that the application of both stressors simultaneously amplifies 

the adaptive responses of skeletal muscle to exercise, when compared with either intervention alone.  

In contrast, given recent data highlighting the role of local metabolic stress in modulating acute 

exercise-induced cell signaling pathways (7), we hypothesised that the application of CWI (i.e. a 

systemic mediated stress) induces negligible regulatory effects on muscles that have already been 

subjected to the extreme local metabolic challenge of both high-intensity exercise and low muscle 

glycogen availability.  Confirming our hypothesis, we demonstrate that the application of post-exercise 

CWI does not enhance the exercise-induced expression of PGC-1α mRNA in muscles that completed 
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an acute high-intensity cycling protocol with low (i.e. <300 mmol.kg-1 dw) or very low (i.e. <150 

mmol.kg-1 dw) pre-exercise muscle glycogen concentrations.  From a practical perspective, our data 

suggest that the application of post-exercise CWI as a strategic training aid for greater PGC-1α gene 

expression is more likely to have beneficial effects when utilized after those high-intensity training 

sessions that have not induced near maximal glycogen depletion. 

 

In our previous study (2), we utilised the same exercise protocol as that studied here (i.e. 8 x 5 min at 

82.5% PPO) and demonstrated that post-exercise CWI (10 minutes of single limb immersion at 8°C) 

augments PGC-1α mRNA expression (9-12-fold) in both the immersed and non-immersed limbs 

when compared with biopsies obtained from an exercise only trial after which no post-exercise CWI 

occurred (5-fold).  In using that specific design, these data suggested that the effects of post-exercise 

CWI previously observed by our laboratory (17) and others (13, 14) is regulated systemically via β-

adrenergic activation of AMPK (2) and/or cAMP-CREB-PGC-1α signaling (1), as opposed to local 

cooling effects per se. In the present study, we recruited a similar subject population to complete the 

same two-legged exercise protocol studied previously but in conditions where each limb commenced 

exercise with low (<300 mmol.kg-1 dw) or very low (<150 mmol.kg-1 dw) muscle glycogen 

availability.   Additionally, we also adopted a two-legged post-exercise CWI protocol as opposed to 

the single limb immersion protocol studied previously (2).   Indeed, given that the magnitude of 

sympathetic discharge to skeletal muscle is influenced by both the size of the tissue area exposed to 

cooling (31) as well as the magnitude of the cooling stimulus (18), it is noteworthy that the two-

legged immersion protocol studied here elicited almost double the stress response as to that observed 

previously in response to single limb immersion (i.e. Normetanephrine ~919 vs. ~517 pmol·L-1 at 3 

h post-exercise).  Nonetheless, despite the enhanced cooling stimulus and adrenergic response 

observed here, we observed no augmented effects of post-exercise CWI on PGC-1α mRNA 

expression in either the LOW or VLOW limbs.  When taken together, it could be suggested that the 
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systemic effects of post-exercise CWI (i.e. β-adrenergic activation of AMPK and/or cAMP-CREB-

PGC-1α) induces negligible effects on the regulation of PGC-1α mRNA expression when the relevant 

upstream signaling cascade(s) has already been activated by the combination of high-intensity 

exercise and low muscle glycogen availability (i.e. glycogen mediated AMPK-PGC-1α signaling). 

 

Surprisingly, one of the most novel aspects of the present study was the finding that the magnitude 

of the exercise-induced changes in PGC-1α was reduced in the VLOW limbs compared with the 

LOW limbs, a finding that was evident in both the CWI and control trials.  It is difficult to offer a 

definitive explanation for this finding but we suggest two related reasons. Firstly, given that Ca2+ 

release from the sarcoplasmic reticulum (SR) is significantly impaired in glycogen depleted fibres 

(i.e. <150 mmol.kg-1 dw) (22), it is possible that force production was lower in the VLOW limbs 

when compared with the LOW limbs.  As such, subjects may have exhibited greater muscle fibre 

recruitment in the LOW limbs when compared with the VLOW limbs in order to induce a 

compensatory effect to maintain gross cadence and power output.  In this way, a lower PGC-1α 

response (as detected in whole muscle homogenates) in the VLOW limbs may simply be explained 

by lower absolute muscle fibre recruitment.  Alternatively, the potential reduction of SR Ca2+ release 

within specific muscle fibres (22) may actually reduce Ca2+ mediated regulation of the cyclic AMP 

response element of the PGC-1α promoter owing to reduced upstream signaling through p38 MAPK, 

CaMKII and CREB (35).  Unfortunately, we cannot currently offer definitive support for this 

hypothesis given that we did not quantify muscle fibre recruitment of the vastus lateralis muscles of 

both the LOW or VLOW limbs, nor did we measure the activation status of the aforementioned 

signaling proteins in either whole muscle homogenate or specific muscle fibres. Nonetheless, the 

suggestion that extremely low muscle glycogen availability may impair exercise-induced cell 

signaling (as opposed to enhance signaling) lends support for the recently proposed muscle glycogen 

threshold hypothesis (9) surmising that cell signaling processes are particularly responsive within a 
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given range of absolute pre- to post-exercise muscle glycogen concentrations (e.g. 300 to 100 

mmol.kg-1 dw). 

 

Importantly, the VLOW glycogen limbs underwent depleting exercise the night before the experimental 

day, whilst the LOW limbs did not. This may therefore have led to higher absolute pre-exercise mRNA 

values in the VLOW vs. LOW glycogen limbs, ultimately lowering the potential fold changes seen at 3h 

post exercise when compared with pre-values. It is important to highlight that gene expression in the 

present study was calibrated to the limbs own PRE value. As such, it is sensible to suggest that the 

lower values noted for PGC-1α mRNA expression in the VLOW vs. LOW limbs might be a factor of 

this calibration and higher basal levels in the VLOW limbs. Indeed, exploring further and calibrating 

all PGC-1α mRNA data to CON LOW Pre-Exercise the difference between LOW and VLOW 

conditions is no longer statistically significant (P > 0.05). However, despite this, it still remains that 

post-exercise CWI was unable to augment PGC-1α mRNA above the exercise response, in the 

expected manner for LOW and VLOW conditions. This supports the earlier point that the muscle 

may have already been exposed to sufficient levels of metabolic stress via extremely low glycogen 

availability and therefore any additional stress from the cold is unable to augment PGC-1α mRNA 

further. This further exploration is not surprising given the low availability of glycogen in both LOW 

and VLOW conditions. 

 

In summary, we provide novel data demonstrating that the previously documented effects of post-

exercise CWI in modulating PGC-1α mRNA expression in human skeletal muscle are not apparent 

when exercise is commenced with very low muscle glycogen availability.  Such data suggest that any 

potential effect of systemically mediated regulation of PGC-1α mRNA expression is negligible when 

muscles have already been exposed to sufficient local signaling events that arise during exercise.  

Additionally, the presence of extremely low muscle glycogen availability may actually impair 
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exercise-induced cell signaling processes.  From a practical perspective, our data suggest that athletes 

are more likely to obtain beneficial PGC-1α gene expression from post-exercise CWI protocols when 

utilized after those high-intensity interval-training sessions that have not induced near maximal 

glycogen depletion. 
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TABLES 

 

 

Table 1: Primer sequences used for real-time PCR. 

 
Gene Forward Primer Reverse Primer Product Length 

(base pairs) 

GAPDH 

NM_002046.5 

AAGACCTTGGGCTGGGACTG TGGCTCGGCTGGCGAC 168 

PGC-1alpha 

NM_013261.3 

TGCTAAACGACTCCGAGAA TGCAAAGTTCCCTCTCTGCT 67 

p53 

NM_000546.5 

ACCTATGGAAACTACTTCCTGAAA CTGGCATTCTGGGAGCTTCA 141 

SIRT1 

NM_012238.4 

CGGAAACAATACCTCCACCT CACATGAAACAGACACCCCA 186 

COXIV 

NM_001861.4 

CGAGCAATTTCCACCTCTGT GGTCACGCCGATCCATATAA 94 

CS 

NM_004077.2 

CCTGCCTAATGACCCCATGTT CATAATACTGGAGCAGCACCCC 137 

TFAM 

NM_003201.2 

TGGCAAGTTGTCCAAAGAAACCTGT GTTCCCTCCAACGCTGGGCA 135 

 

NRF2 

NM_002040.3 

 

AAATTGAGATTGATGGAACAGAGAA 

 

TATGGCCTGGCTTACACATTCA 

 

95 

 

ERRα 

NM_004451.4 

 

TGCCAATTCAGACTCTGTGC CCAGCTTCACCCCATAGAAA 

 

212 

GLUT4 

NM_001042.2 

TCTCCAACTGGACGAGCAAC CAGCAGGAGGACCGCAAATA 101 

 

Glyceraldehyde 3-phosphate dehydrogenase –GAPDH; Peroxisome Proliferator-activated receptor 

gamma coactivator 1-alpha – PGC-1α; Tumour suppressor protein 53- p53; Sirtuin 1 – SIRT1; 

Cytochrome C oxidase subunit 4 – COXIV; Citrate synthase – CS; Mitochondrial transcription factor A 

– TFAM; Nuclear respiratory factor 2 – NRF2; Estrogen-related receptor alpha – ERRα; Glucose 

transporter type 4 – GLUT4. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&amp;id=576583510
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http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&amp;id=371502114
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&amp;id=215982795
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&amp;id=974005291
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&amp;id=38327624
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Table 2: Heart rate (n=9), oxygen uptake (n=8) and subjective shivering measures (n =9) during immersion and the post-immersion period 

(mean ± SD). 

 
     Immersion     Post-Immersion      

  
PreIm 2min 4min 6min 8min 10min 2min 4min 6min 8min 10 

min 

1h 2h 3h 

HR  

(beats.min-1
) 

CON 84 

±5 

81 

±4 

82 

±2 

80 

±3 

78 

±5 

82 

±7 

84 

±5 

83 

±5 

80 

±6 

82 

±5 

80 

±4 

79 

±5 

76 

±8 

74 

±7 

 
CWI 95 

±19 

110 

±20 

94 

±6 

85 

±12 

81 

±4 

89 

±18 

79 

±10 

76 

±9 

74 

±8 

76 

±11 

80 

±11 

78 

±9 

69 

±9 

73 

±12 

V̇  O2  

(ml·kg-1·
min-1) 

CON 5.4 

±0.8 

5.0 

±0.7 

4.7 

±0.6 

4.6 

±0.7 

4.4 

±0.6 

4.6 

±0.6 

4.7 

±0.6 
4.5# 

±0.7 

4.3# 

±0.5 

4.9# 

±0.8 

4.7# 

±0.7 

4.6# 

±0.6 

4.6# 

±0.8 

4.2# 

±0.7 

 CWI 8.5 

±2.0 

9.7 

±2.1 

9.0 

±1.6 

8.8 

±2.1 

8.4 

±2.1 

8.8 

±2.6 

6.8 

±1.8 
6.9# 

±1.9 

6.2# 

±1.3 

6.4# 

±1.7 

6.3# 

±1.6 

6.0# 

±1.5 

5.4# 

±1.9 

5.6# 

±1.5 

  Pre Im   5min  10min 2min 4min 6min 8min 10 

min 

1h 2h 3h 

Subjective 

Shivering 

CON 1 

±0 

  1 

±0 

 1 

±0 

1 

±0 

1 

±0 

1 

±0 

1 

±0 

1 

±0 

1 

±0 

1 

±0 

1 

±0 

(AU) CWI 1 

±0 

  2 

±1 

 2 

±1 

2 

±1 

2 

±1 

2 

±1 

2 

±1 

2 

±1 

1 

±0 

1 

±0 

1 

±0 

Values are mean ± SD. A main effect for condition and time along with a significant interaction between condition and time was found for V̇O2 

(P < 0.05). # Significant difference from pre-immersion (P < 0.05). PreIm = Pre Immersion, AU = arbitrary units. 

 

 

 

 

 

 



 

Table 3 : Plasma derived metabolic and hormonal markers measured Pre-Exercise, Post-Exercise, +1 h, +2 h, +3 h following the cessation of 

exercise (n = 9 mean ± SD). * Significantly different from Pre-Exercise (P < 0.05), # Main interaction effect present (P = 0.026).  

 

  Pre-Exercise Post-Exercise +1 h +2 h +3 h 

Glucose (mmol·L-1) CON 5.50 ± 0.50 6.15 ± 0.37* 5.28 ± 0.32* 5.20 ± 0.52* 5.29 ± 0.36* 

 CWI 5.77 ± 0.57 6.06 ± 0.89* 5.30 ± 0.85* 5.25 ± 0.85* 5.32 ± 0.76* 

Lactate (mmol·L-1) CON 1.41 ± 0.40 8.23 ± 3.97* 1.86 ± 0.94 1.32 ± 0.44 1.36 ± 0.47 

 CWI 1.68 ± 0.69 7.47 ± 3.42* 2.78 ± 1.55 1.75 ± 0.65 1.44 ± 0.38 

NEFA (mmol·L-1) CON 0.60 ± 0.24 0.83 ± 0.26 1.39 ± 0.23* 1.44 ± 0.35* 1.49 ± 0.43* 

 CWI 0.65 ± 0.24 0.87 ± 0.38 1.64 ± 0.29* 1.39 ± 0.33* 1.50 ± 0.29* 

Glycerol (µmol·L-1) CON 44.94 ± 23.70 290.22 ± 99.92* 120.78 ± 51.52* 114.63 ± 50.00* 102.36 ±45.79* 

 CWI 41.11 ± 22.02 273.81 ± 52.52* 155.36 ± 38.32* 116.00 ± 52.46* 97.21 ± 30.75* 

Insulin (U·mL-1) CON 12.88 ± 6.86 11.55 ± 3.06 13.50 ± 4.08 12.55 ± 4.68 12.79 ± 6.47 

 CWI 14.04 ± 5.02 10.32 ± 4.02 11.61 ± 5.67 11.57 ± 3.61 6.53 ± 1.17 

Normetanephrine 

(pmol·L-1) 

CON    # 699.81 ± 197.68 1728.39 ± 481.09* 914.39 ± 275.69* 738.82 ± 247.92* 634.93 ± 204.63 

 CWI     # 553.09 ± 237.16 1883.33 ± 655.17* 1128.64 ± 531.83* 1033.08 ± 461.74* 919.57 ± 371.43 

Metanephrine 

(pmol·L-1) 

CON 263.94 ± 133.08 535.48 ± 145.29* 305.63 ± 98.15* 272.43 ± 49.25 232.32 ± 72.05 

 CWI 245.67 ± 80.04 506.73 ± 149.39* 321.30 ± 88.33* 258.46 ± 75.54 268.76 ± 70.56 
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