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Abstract 

We consider possible mixing oFelectromagnetic and gravitationi:! shock waves, in the Planckian energy scattering of point 
particles in Minkowski space, By boosting a Reissner-Nordstriim black hole solution to the velocity of light, it is shown 
that no mixing of shock waves takes place for arbitrary finite charge carried by the black hole. However, a similar boosting 
procedure for a charged black hole solution in dilaton gravity yield; some mixing. the wave function of even a neutral test 
particle, acquires a small additional phase facior depending on ihe dilalonic black hole charge. Possible implications for poles 
in the amplitudes for the dilaton gravity case are discussed. 

1. Introduction 

The predominance of shock waves as instantaneous 
mediators of gauge and gravitational interactions in 
two particle scattering at Plan&an centre of mass en- 
ergies and fixed low momentum transfers has been the 
subject of some interest recently [ l-51. All purely lo- 
cal gauge and/or gravitational field degrees of free- 
dom decouple in this kinematical regime. The residual 
degrees of’ freedom are basically gauge or coordinate 
transformation parameters evaluated on the boundary 
of the null plane, describing a simpler field theory 
whose classical solutions represent appropriate shock 
waves. Two particle S-matrices are exactly calcula- 
ble from these reduced theories and reproduce, wher- 
ever possible, th& corresponding eikonal amplitudes 
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[3,10]. There are of course situations when this de- 
coupling of local degrees of freedom is ncjt easy to 
establish within a field theory, as e.g., when magnetic 
monopoles are present. However, this does not de- 
ter description of the ensuing interactions in terms of 
shock waves, nor does it in any way affect the com- 
putation of two particle amplitudes. The interplay be- 
tween electromagnetic anti gravitational in!eractions is 
particularly significant in this case since the magnetic 
monopole sector is basically strongly coupled, akin to 
gravity at Planckian energies [ 51. 

The gravitational shock wave relevant to two parti- 
cle scattering in Minkowski space has been obtained 
[6] in one of two ways: either by demanding that 
the Minkowskian geometry with a lightlike particle 
present is the same as an empty Minkowski space with 
coordinates shifted along the geodesic of the particle, 
or by a process of ‘boosting’ the metric of a mas- 
sive particle to luminal velocities when its mass expo- 
nentially decays to zero. Since there are well known 
(electrically and magnetically) charged black hole so- 
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lutions of the Einstein iquation, hoostirig such SOIU- 
tions to the velocity of light would of cowsc produce 
both gravitational and +ectromagnctic shock waves. 
It is then important to determine whether these two 
species of shock wdvcs actually mir. The problem may 
be stated succinctly as follows: the calculation of the 
amplitude in the shock wave picture entails computing 
the’ phase frctot that the shock wave induces on the 
wave function of the target particle. When both parti- 
@es carry charge, phase factors are induced by electro- 
magnetism and gravity independently of the other. It 
hti’been assumed in the literature that, with both shock 
waves present, the net phase factor is simply the sum 
of the individual phase factors [ I ,3,5]. In other words, 
the gravitational and electromagnetic shock waves are 
assumed to travel collinearly without interaction, even 
though they are extremely localized singulcli- field con- 
figurations. In our opinion, this assumption warrants 
justification. This is what is attempted in the sequel. 

2. Decoupling in the Reissner-Nor&r&n case 

The study of mixing of the two varieties of shock 
waves proceeds by considering black hole solutions 
that also carry electric/magnetic charge, and as such, 
produce both kinds of shock waves upon boosting a 
la Dray and ‘t Hooft [6]. In Section II we show that 
a boosting of the standard Reissner-Nordstrijm black 
hole metric leads to a decoupling of electromagnetic 
and ,gravitationaI effects in a somewhat subtle man- 
ner: the part of the boosted metric that depends ex- 
plicitly on the charge, can bl: removed by a diffeo- 
morphism, leaving behind a piece which cannot, be- 
ing non-differentiable at x- = 0. This ‘discontinu- 
ity’ in the boosted metric, which constitutes the grav- 
ifational shock wave, is identical to the discontinu- 
ity in the boosted Schwarschild metric, independent 
of the charge of its parent black hole solution. In the 
next section, we attempt an application of a similar 
boosting procedure to charged black hole solutions of 
four dimensional dilaton gravity. For generic values 
of the charge, thi$ endeavor results in a boosted met- 
ric whose disconlinuitics do explicitly depend on the 
charge. More importantly, in this case both null co- 
ordinates appear to warrant a discontinuous transfor- 
maticn. WC discuss the implicaticln of this in terms of 
singularities of the mcttic, and show that the gravita- 
tional phase shiIi of the wave function of a test parti- 
clc &pen& on the bladk hole charge even when the 
particle itself is neutral. We end in Section i’J with a 
few concluding remarks. 

The gravitational field due to a stationary point par- 
ticle of mass M and electric charge Q  is given by the 
standard Reissner-NordstrSm metric 

d.? = ( I - 

+y! P 2 
+ -$-) -‘dr* - r2di12 , (1) 

where G  is Newton’s constant. The question we ad- 
dress here is: if the particle is Lorentz-boosted to a 
velocity p N I, what will be the nature of the gravita- 
tional field as observed in the ‘stationary’ frame? Let 
us assume, for simplicity and without loss of general- 
ity, that the partic!e is boosted in the +z direction, so 
that z, t are related to the tranformed coordinates Z, T 
according to 

T= tcoshp+zsinhp 

Z=tsinhp+zcoshp. (2) 

The parameter p is called rapidity: @  = tanhp. The 
null coordinates are defined as usual as X* = t f 2. 
The boosting involves parametrizing the mass of the 
black hole as M = 2pe+ where p is, thk momentum 
of the boosted particle, lying almost entirely in the 
longitudinal direction. p is usually kept fixed at a large 
value in thr: boosting process, and the limit of the 
boosted metric is evaluated as p -+ (30. In this limit, 
the Rcissner-Nordstrijm metric assumes the form 

ds’ -+ dx {dn+ - dx- [ 
2Gp GQ= 
Ix-) - (x-)21) 

- dx: . (3) 

The boosted metric does indeed seem to depend ex- 
plicitly on the charge Q . But, notice that this depen- 
dence is confined to a part of the metric that can be 
remove,. ny a diffeomorphism, albeit one that is singu- 
lar at the origin. However, the part that goes as l/lx-l 
cannot be removed by any difl’eomorpbism; this lat- 
ter, of course, is ‘precisely the part that is associated 
with the gravitational shock wave [I ]. Further. not 
onIy is its coefficient independent of Q . it is identical 
to the the coefficient of the 1 /Ix- 1 term in the boosted 
Schwarschild metric [ 1,6]. All memory of the charge 
af the parent black hole solution is obliterated upon 
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boosting, insofar as the gravitational shock wave is 
concerned. Consequently, the mutual transparency of 
the two shock waves follows immediately.4 Hence 
the net phase shift of the wave function of a test par- 
ticle moving in the two shock waves is simply the 
sum of the phase factors induced individually by each 
shock wave. This, in the case of scattering of two 
electric charges, simply amounts to the replacement 
Gs + Gs + ee’ as mentioned in Refs [ 1,3]. A sim- 
ilar decoupling of electromagnetic and gravitational 
shock waves can be seen by boosting a magnetically 
charged Reissner-Nordstrom solution, which justifies 
once again the determination of the net phase factor 
in the test charge wave iunction as the sum of the in- 
dividual phase factors in Planckian charge-monopole 
scattering [ 51. 

The foregoing analysis is completely general, and 
requires no assumption on the strength of the charge Q, 
except perhaps that it be finite. However, an analysis of 
the singularities of the the metric in ( 1) indicates that, 
if one is to abide by the dictates of Cosmic Censorship, 
the charge Q must obey Q < M. In the extremal 
lim it, the boosting procedure adopted above forces Q 
to decay exponentially to zero as the rapidity runs to 
infinity. The electromagnetic shock wave, by withering 
away in this lim it, then trivially decouples from the 
gravitational one. This was first pointed out in Ref. 
[71. 

3. Non-decoupling in dilaton gravity 

The charged black hole solution of four dimensional 
dilaton gravity, obtained as a part of an effective low 
energy theory from the heterotic string compactified 
on some compact six-fold, is given, following [8,9j. 
ass 

ds2= (1 -$)-‘[(I - Y)dP 

-(,q!!! )--Id2 - (I - -&)r*dll’l , (4) 

. . 
J We note here that our approach and results for the Reissner- 

Nordstriim cast dil%r somewhat from those of Ref. [ 71 where, in 
fact. the limiting procedure employed appears to yield vanishing 
electromagnetic shock waves in the luminal limit. 

5 This metric is the so-called string metric 19 I. What follows is 
equally valid for the Einstein metric. 

where, cy z Q2e -*40, with +a being the asymptotic 
value of the dilaton lield 4. The metric reduces to the 
Schwarzschild metric when cy - 0, and, not surpris- 
ingly, shares the coordinate singularity at r = 2GM 
which becotnes the event horizon for the curvature 
singularity at r = 0. In addition, there is the ‘singular- 
ity’ at r = (Y/M which is not necessarily a coordinate 
singularity. We shall return to this point later. 

We now apply the boosting procedure elaborated in 
the last section to this metric. The mass of the black 
hole is parametrized as M  = 2pe-? and the Lorentz- 
transformed metric is evaluated in the lim it as the ra- 
pidity p + co for fixed large p. The result can be 
expressed as the M inkowski metric in terms of sh$& 
coordinate differentials, 

ds2 --+ df.: a.?- - (di:1)2 , 

where, 

* 
di+ ,= dx’+ - lx-1 

( ) y+i 
dx- 

]--AL.- 
d?- = dx- 2,1lx-1 

( ) l-&, 

dZ l=dxI. (5) 

Several features emerge immediately from these equa- 
tions; of these, the most striking is the explicit depen- 
dence on the charge (Y of terms that will surely con- 
tribute to the gravitational shock wave because of their 
non-differentiable functional form. No 1~1s~ important 
is the fact that, in this cast, the coordinatcx- which, in 
the Schwarschild (and Reissner-NordstrSm) case(s), 
defined the null surface (x- = 0) along which the 
two M inkowski spaces were to be glued, is now it- 
self subject to transformation by such a discontinuous 
function, again explicitly dcpendtng on LY. Before EX- 
amining these aspects in detail, we note in passing that 
the results reduce to those in the Schwarschild case in 
the lim it LY = 0, as indeed is expected. 

First of all, the charge cr may be chosen to be small 
by taking a large value of $0, so that, with a large value 
of p, one can binomially expand the denominators in 
the rhs of the first two equations in (5); this yields, 
for points away from x- = 0, 
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dl+‘z&+- 
[ 

4Gp 4a -+ - 
Ix-l w-)2 1 dx- + S(ff2/p) (6) di .” = dx’- + 2p,xl, -L di 3. cq 2/p” ) . (7) 

singularity in question must be a cutvuture singular- 
ity. Although for the Reissner-Nordstrom case also, 
for generic value of the charge, the singularity at r = 0 
is no longer hidden by the event horizon, there are no 
other singularities away from this point. In the present 
instance, the singularity at r = 0 is actually protected 
by the Schwarzschild horizon. One might consider 
imposing an extremal condition on the charge cy (vid. 
[9]): ff = 2M2 to mitigate the circumstances. How- 
ever, this limit is not interesting for our purpose, for 
the same reason that the extremal Reissner-Nordstrom 
is not - the charge decays exponentially to zero with 
the rapidity going off to infinity. 

We now observe that, as far as the shift in d.r” is con- 
cerncd, the part that will contribute to the gravitational 
shook ivavc is in fact, independent of c., and, further- 
more, is identical to the result in the Schwarschild and 
hence the Reissner-Nordstrom case. As for the latter 
solution, the a-dependent part may be rendered in- 
nocuous by a smooth diffeomorphism. 

This is however not the case for the shift in d.x-, 
which is explicitly o-dependent. Clearly, the gravi- 
tational shock wave now possesses a more compli- 
cated geometrical structure than in the earlier exam- 
ples. The geometry can no longer bc expressed as two 
Minkowskr spaces glued after a shift along the null 
surface X- = 0, for now there is a discontinuity in 
the x- coordinate at that very point, in contrast to the 
previous cases where it was continuous. This discon- 
tinuity has a rather serious implication: unlike in the 
earlier situation wherein the coordinate n- could well 
serve as the affinc parameter characterising the nut1 
geodesic of a test particle crossing the gravitational 
shock wave (cf. [ 61). a null geodesic is actually in- 
complete in this situation. To see this in more detail, 
consider the geodesic equations of a very light particle 
moving in the Lorcntz-boosted matric t4), 

The non-decoupling of gravitational and electro- 
magnetic effects that we see here can be made more ar- 
ticulate if one p~r,ceeds to actually calculate the phase 
shift of the wave function of a test particle encoun- 
tering the gravitational shock wave, notwithstanding 
the pathologies delineated above. The Eqs. (5) above 
for the differentials are consistent with the following 
finite shifts, obtained by generalizing results of [ 61, 

c X> = x: + 2Gp In p*t-: 

x; =x2+ 2lnp”& 
2P 

I”= ‘* E 

( ) r 

g = ( I -- -?-j+-; (++)I . (8) 

Unlike the geodesic equations for a boosted 
Schwarzschild metric, which can bc solved pcrturba- 
tivety in a power series in the mass M (or alternatively 
in the parameter e-p (where p is the rapidity), 163 
these equations do not admit any perturbativc solution 
hccausc of the singularity at I’ = (Y[M. Taking re- 
course to singular perturbation throry does not evade 
the problem; the definition of a contirmms aftine pa- 
ramter is not por?ible in this case It follows that the 

x,=x< I (9) 

With these, following [ I] we can easily calculate the 
net yhasc shift of the wave function of a test particle 
due purely to gravitational effect@: 

Here, kl is the transverse momentum of the test par- 
tic.le. Thus, even if the test particle is electromagneti- 
cally neutral, its wave function undergoes a phase shift 
that depends rrn the charge of the black hole boosted to 
product the gravitationat shock wave. This is a novel 
phenomenon, in our opinion, although, strictly speak- 
ing, in the kinematical regime under consideration, 
the magnitude of the effect is small, Nevertheless, the 
mixing of the electromagnetic and gravitational shock 
waves, in this case is quite obvious. 

The scattering amplitude for a test particte,encoun- 
tering such a gravitational shock wave can be calcu- 
lated following Ref. [I]. Modulo standard kinemati- 
cal factors and irrelevant constants, the answer is 
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lI-(l -i(Gs+ag)) itationally onto a black hole has been analyzed [ 61 to 
f(hO - 7 

I-- i(Gs + a%,) ( 
(11) produce a shift of the classical event horizon. If we 

also subscribe to the view [ I1 ] that this shift essen- 
tially involves generalizing the flat space gravitational 

Since the calculation is performed in a coordinate 
frame in which the test particle is assumed to be mov- 
ing slowly, the amplitude does not appear manifestly 
Lorentz-invariant, although there is nowhere any vi- 
olation of Lorentz symmetry. A more refined calcu- 
lation where Lorentz invariance is explicitly main- 
tained can indeed be done following Verlinde and Ver- 
linde [ 21, but will not be reported here. The only likely 
outcome of such a calculation will he the replacement 
of the quantity ki by the squared momentum trans- 
fer t upto some numerical coefticient of L?( 1). As 
a consequence, the poles in ( 1 I) would undergo a 
shift of 0( icuGt/N2) from their integer-valued (given 
by N) positions on the imaginary ‘axis found in the 
Schwarzschild case [ I ]. This shift is quite different 
from similar shifts when electromagnetic effects are 
included based upon a decoupling assumption [ 1,3,5 1. 
The non-decoupling is manifest from the coefficient 
CWG in this case. Also, the electromagnetic shifts are 
always constant independent of t, in contrast to what 
we find here. 

shock wave to a curved background, then a particle 
whose fields are obtained by boosting fields of a dila- 
ton black hole would cause extra shifts of the horizon 
of a Schwarzschild black hole. In addition, with elec- 
tric and magnetic charges present, novel contribution.5 
are to be expected for any S-matrix (a la ‘t Hcoft 
[ 111) one may attempt to propose for dilalonic black 
holes. 
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4. Conclusions 

The decoupling of electromagnetic and gravitational As already noted, the authors in Ref. [ 73 have also 
shock waves have now been established for the case found the shock wave geometry due to an ultrarela- 
of general relativity, justifying thereby earlier results tivistic charged particle. However, for this purpose, in 
incorporating both fields for electrically and magneti- addition to the the mass, they have also parametrized 
tally charged particles scattering at Planckian centre- its charge Q in terms of the rapidity p such that as 
of-mass energies. The shifts in the poles due to elec- P-‘WQ --+ 0, but the electromagnetic energy mo- 
tromagnetic effects stand vindicated. Admittedly, it is nrentl,, tensor has uon-vanishing components. Con- 
true that in the Einstein gravity case the poles appear sequently, :or :h~, the electromagnetic and gravita- 
to be ytifacts of the large impact parameter approx- tional shock waves do not decouple in the Reissner- 
imation [2]. But, the nature of the shift due to the Nordstrom case. We prefer instead to study the ques- 
dilaton coupling tends to reinforce the speculation that tion of decoupling of the two species of shock waves 
string theory may actually provide a way to compute for arbitrary$xed electric charge Q, following a naive 
corrections to this approximation as a power series in extension of the direct boosting procedure adopted in 
t. It would be interesting if this behaviour could be re- Ref. [ 61. This is done both for the Reissner-Nordstrom 
trieved from the high energy string amplitudes calcu- and the dilaton gravity cases. It does not seem imper- 
lated in earlier work [ IF] in some stiitablc local field ative to use a parametripation for the charge similar 
theory limit. to the mass in this procedure, except in the extremal 

The results may also have implications for biac-k case where the charge is restricted by the mass. If we 
hoIes. The effect of infalling particles @lapsing grav- were to use such a charge resealing for the case of the 
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dilaton gravity, the results would indeed change quan- 
tatively, Jthough the main qualitative outcome, viz., 
a neutral test particle being able to ‘sense’ the charge 
of the luminally boosted black hole, stands. We has- 
ten to add, however, the ahovc conclusions are only 
to be taken seriously within the very restricted kine- 
inatical domain of large s and vanishingly small fixed 
b. Further, the heuristic analysis presented here must 
eventually be supplanted by more rigorous ones. An 
attempt in this direction is in progress i 121. 

After completion of this paper, we became aware of 
the work of K. Sfetsos [ 131 wherein the gravitational 
fields due to a boosted neutral particle in Reissner- 

~ Nordstrom and dilatonic black hole backgrounds have 
b&en obtained directly from the relevant field equa- 
tions. However, the issue that we address in this letter, 
namely the decoupling of shock wsv*s, has not been 
considered there explicitly. 
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