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Abstract

We consider the gravitational scattering of point particles in four dimensions, at Planckian centre of mass energy and low
momentum transfer, or the eikonal approximation. The scattering amplitude can be exactly computed by modelling point
particles by very generic metrics. A class of such metrics are black hole solutions obtained from dimensional reduction of
p-brane solutions with one or more Ramond-Ramond charges in string theory. At weak string coupling, such black holes are
replaced by a collection of wrapped D-branes. Thus, we investigate eikonal scattering at weak coupling by modelling the
point particles by wrapped D-branes and show that the amplitudes exactly match the corresponding amplitude found at
strong coupling. We extend the calculation for scattering of charged particles. q 1998 Published by Elsevier Science B.V.
All rights reserved.

1. Introduction

It is expected that the quantum gravity effects
would become important at energies compared to the
Planck Scale. Since the gravitational coupling con-
stant G is not dimensionless, one can construct two
independent dimensionless coupling constants, which
for example in four space-time dimensions can be
defined as G 'G s and G 'G t. Here G is theI 4 H 4 4

four dimensional Newton’s constant, and s,t are the
Mandelstam variables. Remarkably, it was shown in
w x1 that the full theory of quantum gravity can be
split up into two independent theories with these
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coupling constants. Thus, a quantum gravitational
regime for gravitational scattering can be envisaged
when either G f1 or G f1, or both. While theI H
former signifies Planckian centre-of-mass energies,
the latter implies Planckian momentum transfers.
The first quantum gravitational scenario is easier to
deal with because although s is large, t can be held
fixed at a relatively small value such that srt™`.
The impact parameter of scattering, in this case, is
very large and the scattering is almost forward. This
is the so called eikonal approximation where the
exact two particle scattering amplitude can be com-
puted. In practice, it is advantageous to view one of

Ž .the particles as static say A and the other moving
Ž .say B at almost luminal velocity past it with a large
impact parameter. A being static, can be suitably
modelled by a metric, whose gravitational field B is
supposed to experience. Then one can solve the
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wave equation for B in this given background and
obtain the scattering amplitude. Of course, the re-
verse process is equally valid, when the ‘shock-wave’
space time produced by the A is obtained by Lorentz
boosting the metric and analysing the wave function
of the slow particle in this shock-wave background.
As expected, the two pictures yield the same result
w x2 .

In the above picture, the point particles are usu-
ally modelled by Schwarzschild or Reissner-
Nordstrom metrics, depending on whether the parti-¨
cles are neutral or charged. Although this seems
natural in the framework of general relativity, these
specific choices are certainly not mandatory. We
show here that the results can be extended for a large
class of generic spherically symmetric metrics. As an
example, a large class of metrics arise as solutions of
low energy string theory and one could model the
particles by these metrics as well. The black holes
which carry the NS-NS charges have already been
considered in Planckian scattering which lead to

w xinteresting consequences 3 . It is shown here that
these black hole metrics do not fall into the class of
metrics we consider here, except in the extremal
limit. Recently a new class of black hole solutions of
low energy effective action of superstring theory

Žhave been found, whose weak coupling in terms of
.the string coupling g description consists of certain

configurations of solitonic string states or D-branes,
wrapped on suitable compact manifolds. Several
pieces of evidence have emerged supporting this
identification, the most notable being the fact that the
degeneracy associated with the D-brane configura-
tion exactly reproduces the Bekenstein-Hawking en-

w xtropy 4 and open string interactions on the D-brane
reproduce the Hawking radiation spectrum of these

w xblack holes 5 . Thus, while the black hole descrip-
tion can be used at large coupling, the D-brane

w xdescription is appropriate at small coupling 4–6 .
w xD-brane scattering has been considered in 7–12 ,

w xand in particular in 7–10 , it has been shown scatter-
ing amplitudes of R-R charged p-branes agree with
appropriate D-brane scattering in ten dimensions.
There are black hole solutions with a singular hori-
zon obtained by wrapping these R-R charged p-
branes on compact spaces. The entropy for these
black holes is zero, and hence the appropriate pro-
cess to check for D-brane black hole correspondence

is to look at scattering amplitudes. In this paper, we
show that indeed the exact eikonal scattering ampli-
tude can be computed for wrapped D-branes at weak
coupling. Moreover, this amplitude agrees with that
found in the black hole picture. The agreement per-

Ž .sists when the particles carry U 1 charges also.
In the following section, we calculate the eikonal

scattering phase shift in the strong coupling regime
by modelling the particles by a general spherically
symmetric black hole metric in four space-time di-
mensions. We also consider the special cases of R-R
and NS-NS charged black holes. In the next section,
we calculate the corresponding phase shift at weak
coupling using D-p-branes wrapped on tori. The
D-brane result is found to be independent of the
brane dimensions as long as they are completely
wrapped on the internal tori. Significantly, the scat-
tering phase shift is dominated by graviton ex-
changes at ultrarelativistic velocities, as anticipated

w xearlier in the calculations of 2 . Finally, we extend
the calculations to include particles carrying electric
charges, where too the results continue to agree.

2. Eikonal scattering at large string coupling

We will assume that the slow target particle gives
rise to the following most general spherically sym-
metric metric in four dimensions:

1
2 2 2 2 2 2ds syl dt q dr qRr dV , 1Ž .2l

where l and R are functions of the radial coordinate
only.

In general let the ultrarelativistic particle of charge
Ž .e be minimally coupled to the U 1 gauge field Am

produced by the static particle. Then its wave func-
tion F satisfies the covariant Klein-Gordon equation

1
mn 2'D yg g D F qm Fs0 ,Ž .m n'y g

D sE y ieA , 2Ž .m m m

where m and E are the mass and energy of the test
w xparticle. In the spirit of 2 we will assume that

M,m<M , where M is the Planck mass. In thepl pl

centre of mass frame of the particles, their energies
'are proportional to s and for the particles to have

'relativistic velocities at this energy M,m< s . Since
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'in our problem s ;M we get the above conditionpl

on the mass. Thus we will ignore all terms quadratic
in M,m in subsequent discussions. We substitute a
solution of the form

F
X

i E tF r ,t s e Y u ,f ,Ž . Ž .lmr

and linearize the metric components at large dis-
tances as

2GM
2l s1y , Rs1qOO 1rr .Ž .

r

Here M is the ADM mass of the black hole metric.
Retaining terms upto order 1rr 2, the radial equation

th Ž .of the l partial wave is for large l
X2 2d F l lq1 4G MEŽ . 4 X2y yE y q2 eEA F02 2 rdr r

s0 . 3Ž .
The gauge potential is assumed to have A as the0

only non-zero component. With its explicit spheri-
cally symmetric form

A sKrr 4Ž .0

and the identity ss2 ME, the above equation re-
duces to

X2d F l lq1 2 G syeK EŽ . Ž .4 X2y yE y F2 2 rdr r

s0 . 5Ž .
It is straightforward to obtain the phase shift from

w xhere and the answer is 13

d sarg G lq1y iG s . 6Ž .Ž .l 4

w xExpanding the rhs for l41, we get 14

d sy G syeK ln l . 7Ž . Ž .l 4

The above phase shift resembles Rutherford scat-
tering with the fine structure constant a being re-

Žplaced by the effective coupling constant y G sy4
.eK , which is attractive for large s. The phase shift

can be substituted in
`1

2 id lw xf s,t s 2 lq1 e y1 P cosuŽ . Ž . Ž .Ý l'2 i s ls0

8Ž .

to obtain the scattering amplitude. Using the asymp-
totic formula for large l

P cosu ™J 2 lq1 sinur2 ,Ž . Ž .Ž .l 0

w xand converting the sum into an integral as in 1 , we
get

` u
1y2 iG s' 'f s,t syi s dy y J 2 y s sin , 9Ž . Ž .H 0 ž /20

2 2'where y' lr s and ts4E sin ur2. Finally, one
gets

yi G SyeK G 1y i G syeKŽ . Ž .Ž .4 4
f s,t sŽ .

p t G 1q i G syeKŽ .Ž .4

=

Ž .yi G sye K44
. 10Ž .ž /yt

The cross section follows:

4 G syeKŽ .4
s s,t s . 11Ž . Ž .2t

Ž .The amplitude 10 exhibits the infinite set of ’t
Hooft poles at the values G syeKsyiN, where4

Ns1,2, . . . ,`. Note that for ordinary particles, eK
<1 and the electromagnetic contribution to the
scattering is suppressed at Planckian energies. In
other words, gravity assumes the role of the domi-
nant interaction at the Planck scale.

The linearizations of the functions l and R are
valid for spherically symmetric metrics of general
relativity as well as black holes carrying Ramond-
Ramond charges. Examples in four dimensions are
w x15

ds2 syfy1r2 hdt 2 q f 1r2 hy1dr 2 qr 2dV 2 ,Ž .
12Ž .

4 Ž .where hs1yr rr, fsŁ 1qr rr and the0 is1 i

horizon is at r . This black hole metric arises when0

three distinct five branes of M-theory intersect along
a line which is then wrapped on a circle. The param-

Ž .eters r ,is1,..,4 are related to the four U 1 chargesi

carried by the black hole, three of which are propor-
tional to the number of the three different 5-branes,
while the fourth is proportional to the Kaluza-Klein
momentum along the intersection line. The ADM

Ž 4 .mass of this black hole is Ms Ý r q2 r r4G .is1 i 0 4

For solutions obtained by wrapping BPS saturating



( )S. Das et al.rPhysics Letters B 428 1998 51–5854

fundamental strings or R-R charged p-branes, the
w xgeneral solution is of the form 16

ds2 syfy1r2dt 2 q f 1r2 dr 2 qr 2dV 2 , 13Ž . Ž .p p

where f s1qc rr, c is a constant related to thep p p

mass of the p-brane. The horizon is at rs0, and
thus is singular in nature. But this metric is well
behaved at large distances and gives the exact scat-
tering amplitude as shown in the above calculation.

On the other hand, certain black holes carrying
NS-NS charges have non-extremal metric of the

w xform 17

2GM dr 2
2 2ds sy 1y dt qž / 2GMr

1yž /r

a
2 2qr 1y dV , 14Ž .ž /Mr

where a'Q2ey2 f 0 , Q being the electric charge and
f the asymptotic value of the dilaton field. There is0

a curvature singularity at the horizon rsarM,
which expands without limit for vanishing masses. It

Ž . Ž Ž ..can be seen that the corresponding R r Eq. 1
Ž .here cannot be linearised in the asymptotic r™`

region, except in the extremal limit. Thus, the eikonal
scattering can be computed with these metrics only

w xin the extremal limit 3 .

3. Eikonal scattering at small string coupling

In this section, we will compute the eikonal phase
shift at weak string coupling, when the D-brane
picture is appropriate. We develop a general formal-
ism for the scattering of wrapped D-branes before
specialising to four dimensions.

Consider a D-p-brane moving with a relative ve-
locity Õ with respect to a D-l-brane in 10 space-time
dimensions. They are separated by a large transverse
distance b. We assume lFp and that none of the
coordinate directions of the D-l-brane are orthogonal
to those of the D-p-brane. Apart from the direction
of velocity and the time coordinate, the end points of
an open string ending on the two branes satisfy

Ž . Ž .either Neumann N or Dirichlet D boundary condi-
tions. We denote as NN the number of string coordi-
nates which satisfy N condition at both the ends.

Similarly ND and DD. Evidently, DDs8yp, NN
s l and NDspy l. The scattering phase shift be-
tween these two branes are given by the one loop

w xvacuum superstring amplitude 7,8

`
NN

`d k dt X 2 21 y2 p a tŽk qM .id b s e ,Ž . ÝH H2 Ž .NN t0 02pŽ . i

15Ž .

where

b2 1
2M s q oscillators .Ž .ÝXXi 2 a4p a

The oscillator sum and the integral finally yields

`1 dt X2yN Nr2X2 yb tr2p ad b s 8p a t eŽ . Ž .H
4p t0

P B=J , 16Ž . Ž .
where B, J are the bosonic and fermionic contribu-
tions to the oscillator sum in the in the one loop open

w xsuperstring amplitude given by 8

Q
X 0,itŽ .1yŽNNqD D. yNDBs f q f q , 17Ž . Ž . Ž .1 4

Q e t ,itŽ .1

1 Q e t ,itŽ .2NNqD D NDJs yf q f qŽ . Ž .2 32 Q 0,itŽ .2

Q e t ,itŽ .3NNqD D NDqf q f qŽ . Ž .3 2
Q 0,itŽ .3

Q e t ,itŽ .48yf q d , 18Ž . Ž .4 p , l
Q 0,itŽ .4

where q'eyp t,
`

1r12 nf q sq 1yq , 19Ž . Ž . Ž .Ł1
ns0

`

1r12 n'f q s 2 q 1qq , 20Ž . Ž . Ž .Ł2
ns0

`

y1r24 2 ny1f q sq 1qq , 21Ž . Ž .Ž .Ł3
ns0

`

y1r24 2 ny1f q sq 1yq . 22Ž . Ž .Ž .Ł4
ns0

The rapidity e is defined as tanhpesÕ. Note that
the last term in J comes from summation of the

Ž .FNS y1 sector and contributes only when NDs0.
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This term is due to R-R exchange, and we will
concentrate on this term in the next section when we
look at charged particle amplitudes.

Now, to compare the D-brane results with the
results on the black hole side, we have to compactify
the branes on suitable compact manifolds, such that
in the non-compact space-time they look like point
particles. For simplicity, we compactify on a c di-

Ž .mensional torus with pFc , such that the resultant
Ž .noncompact space time is a 10yc dimensional

with a Lorentzian signature. We take the range of
each coordinate of the torus to be L ,is1, . . . ,c.i

Thus, the volume of the torus is VsŁL . To obtaini

the phase shift for these wrapped D-branes, the
Ž .formula 16 has to be modified. For each compacti-

fied NN direction, the momentum integral is re-
placed by a discrete sum in the one loop amplitude.
In other words the momentum integral is restricted to
the remaining non-compact NN directions, and and a

Ž 2 X 2 .factor of Q 0,8p a trL is inserted in the inte-3

grand for each compactified direction. Similarly, for
each compact DD direction, a sum over winding
modes is introduced, resulting in a factor of

Ž 2 2 X . w xQ 0,itL r2p a in the integrand 9 . Since all the3

NNs l coordinates are compactified and there are
cyp compact DD coordinates, the final result is

`1 dt X2yb tr2p ad b s eŽ . H
4p t0

=
l

X2 2Q 0,8 ip a trLŽ .Ł 3 i
is1

=
c

X2Q 0,itL r2pa P B=J .Ž .Ž .Ł 3 i
ispq1

23Ž .

Ž .Now, large impact parameter b™` , scattering is
dominated by the exchange of massless closed string
states, for which it is sufficient to restrict the inte-

w xgrand in the regime t™0 10,18 . Using the relevant
w xformulae given in 9,19 , we get

L 1
X2Q 0,8 ip a trL ™ , 24Ž .Ž .3 X3r2 ' '2 p a t

X1r2 '2 p a 1
X2 2Q 0,itL r2p a ™ , 25Ž .Ž .3 'L t

eyp e 2 t
yŽ pyl .r2 w3yŽ pyl .r2x 2p r3 tB™2 p t e , 26Ž .

sinhpe

J™4 ey2 p r3 t epe 2 t

= 22y py l r2qsinh pey2d coshpe ,Ž . p , l

27Ž .

and the phase shift becomes

`
3dt tX2yb tr2p ad b s L k e e , 28Ž . Ž . Ž .H cr2t t0

where

l

Ž .cy pql LX Łcr2 cyŽ pql . i'2 p a is1
Ls , 29Ž .cpq l2

LŁ� 0j
jspq1

2y py l r2qsinh2pey2d coshpeŽ . p , l
k e s .Ž .

sinhpe

30Ž .

Note that the integral in the above expression is
independent of p and l and depends only on c. That
is, it is the same for branes of arbitrary dimensions
for a given compactification. Thus, scattering phase
shifts for all p,l can be calculated from the above
expression provided the branes completely wrap on

Ž .the internal torus. Also, as expected, K es0 s0
for ps l or py ls4. This is the familiar no-force
condition for BPS states.

However, for our present purposes, we specialise
to the case of cs6, i.e. scattering in 4 dimensional
non-compact space time. Then the integral over t in

X'Ž . Ž .28 simply yields a factor y2ln br 2pa . In
addition, we make the ultrarelativistic approximation
Õ™1 , e™`, such that

1
pek e ™ e .Ž .

2

Ž .Then Eq. 28 becomes

pl
peL L eŁ Łi j bis1 js1

d b sy ln .Ž . Xpqly6X 'pq ly3 pqly6 2pa'2 p a V
31Ž .



( )S. Das et al.rPhysics Letters B 428 1998 51–5856

Rewriting this amplitude in terms of the masses of
the branes given by

Ž .p l

LŁ i
is1m s , 32Ž .pŽ l . Ž .p l q1Ž .p l X'g 2p aŽ .

Ž .and the Newton’s constant in 10yc dimensions
Ž .for cs6

8p 6 g 2a
X 4

G s 33Ž .10yc V

yields

b
ped b syG m m e ln . 34Ž . Ž .4 p l X'2pa

Ž .Finally, using ssm m exp pe , which simply ex-p l

presses the relativistic transformation of energy, and
lsbE, the amplitude takes the form

l
d b syG sln , 35Ž . Ž .4 X'E 2pa

X'Žthe factor E 2pa is irrelevant as it does not
appear in the scattering amplitude and the cross

.section, and will simply be dropped .
Thus not only is the phase shift exactly calculable

Ž .in the weak coupling regime, comparison with 7
Ž .for es0 shows that it perfectly agrees with that
calculated in the strong coupling regime, implying
that there is no discontinuity in the point particle
scattering amplitude as one tunes the string coupling,
for arbitrary masses of particles. Moreover, as ex-
pected, the gravitational interaction dominates over-
whelmingly over gauge interactions.

4. Inclusion of charge

To extend the results of the previous section to
include gauge interactions, the charge interaction
term proportional to coshpe has to be retained in the

Ž .kinematical factor 30 . This vanishes unless ps l,
since branes of different dimensions do not couple to
each other via gauge fields. Thus for ps l

1 pek e ™ e y4 .Ž . Ž .2

As before, introducing m and G givesp 4

2 ped b syG m e y4 ln l 36Ž . Ž . Ž .4 p

2sy G sy4G m ln l . 37Ž .Ž .4 4 p

Let us now consider the phase shift obtained
Ž .using the black hole background, Eq. 7 . Here,

inclusion of charge shows that the coupling constant
is given by GsyeK. To determine K , we look at
the pq1 form potentials due to the static brane to
which the relativistic p brane couples. In 10-dimen-
sions the asymptotic value of the pq1 potential is

w xgiven by 10

qp pA s dtndxn . . . ndx , 38Ž .pq1 7ypr

where

5yp
7yp7yp2 X5yp 'q s2 g p a G . 39Ž .p ž /2

Ž .The effective U 1 potential due to the brane living
in R10yc =T c is obtained in two steps: Firstly, a
Kaluza Klein reduction is performed on the 10-di-
mensional pq1 potential to obtain a one form
potential in 10yp dimensions due to the brane

p w xcompletely wrapped on T 20 :

qp
A s dt . 40Ž .1 7ypr

Secondly, for the remaining cyp compact direc-
tions, which are transverse to the brane vertical
reduction is performed. For this, we stack the
Kaluza-Klein reduced configurations in the compact
directions transverse to the brane and go to the
continuum limit by integrating over the latter, result-

w xing in one form potentials in 10yc dimensions 20
p

q LŁ cypp i
` d rHis1A s dt 41Ž .H1 7ypV o

22 2r qrH

p

q LŁ cypy1p i
` r drHis1s dV dt 42Ž .H Hcypy1 7ypV 0

22 2r qrH
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where r refers to the transverse distance from theH
p-brane, and V is the volume of the unitcypy1
Ž .cypy1 sphere, given by

cyp

22p
V s .cypy1 cyp

G ž /2

The integral is elementary, and when expressed in
terms of the p-brane mass and the Newton’s con-

Ž . Ž .stant given Eqs. 32 and 33 respectively, we get

7yc
4G G10yc ž /2

A s m dt . 43Ž .1 p7yc

7yc2p r

Ž .Comparing with the expression 4 , we conclude that

7yc
4G G10yc ž /2

Ks m .p7yc

2p

Now, the charge of the moving brane is esm , byp

the BPS condition. Consequently, for cs6, the scat-
Ž .tering phase shift 7 will be modified as

2d b sy G sy4G m ln l 44Ž . Ž .Ž .4 4 p

Ž .which precisely agrees with the phase shift 37
obtained in the D-brane side.

5. Discussions

We have shown that the eikonal scattering ampli-
tude obtained by modelling the point particles as
black holes is exactly reproduced by eikonal scatter-
ing of wrapped D-branes. In this regime only the

Žgravitational field at infinity is probed as the black
.hole metric is linearised and the details of the metric

are not realised. So, one should study the corrections
to the eikonal phase shift, as the impact parameter
and velocity are tuned to smaller values, and see

w xwhether the details begin to emerge 12,21 . Our
results are independent of the dimensions of the

Ž .brane but the kinematical factor k e , and hence
Ž .d b ceases to be independent of p and l once one

relaxes the condition e™`.

We know that the type II B string theory has
Ž .S-duality group as SL 2,Z which relates fundamen-

tal strings to the D-strings. Under this S-duality
operation, gravitons are left invariant and NS-NS
charged fields become R-R charged fields. Our D-

Žbrane calculation for gravitational exchange domi-
. Žnant term matches the leading order term eikonal

.limit in the scattering amplitude for fundamental
w xstrings 22 . This confirms the S-duality symmetry.

Moreover, we have obtained the subdominant term
Ž .eikonal limit due to R-R charged field exchange
between the two D-p-branes. Invoking the S-duality,
we can say that this must be also be the amplitude
for NS-NS gauge field exchange in fundamental

w xstring scattering. In 22 , corrections to the eikonal
fundamental string-string graviton exchange ampli-

2tude were calculated and shown to be order 1rl . It
will be interesting to see whether the D-brane scat-
tering amplitude gives the same.

Though the fundamental string and the D-brane
scattering amplitudes are same, the relevant energy
scales for eikonal scattering are different for the two.
For the D-p-branes to be relativistic, the condition

E4m 45Ž .p

must be imposed on their energy. Using the expres-
sion for the brane mass, we get

L p

E4 .pq1X'g a

As is evident, in 10-dimensions, the mass of the D-0
brane is much larger than the Planck mass M andplX'the string mass m ;1r a . Hence for conditions
Ž .45 to be realised, energies relevant for D-0 brane
eikonal scattering has to be much larger than both
M and m . In other words for D-0 branes topl s

become relativistic, we need to consider regimes
2 X Ž 2 . Žwhere sg a 41, In the c.m. frame ssE . Note

that for non-perturbative effects of M-theory to be-
2 X w xcome important, we need to have tg a ™1 18 , and

.we are not probing that regime. On the other hand,
for fundamental strings, sa

X
41 gives the eikonal

w x w xlimit, as considered in 22 . Following 23 we take
X'1rg a as the energy scale in our problem. and the

condition on the compactification volume, from Eq.
Ž .44 is

pX'V < a ,p
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which implies that the compactification radii should
be sufficiently small compared to the string scale.

X' w xNote that if we had used 1r a , as in 22 the
conditions on compactification lengths would have
become g dependent, and difficult to interpret.

Another interesting observation is that though the
D-brane scattering amplitude includes all long range
closed string exchanges, only the graviton exchange
dominates in the above kinematical regime 5. This
was anticipated in the black hole calculation by ’t
Hooft and the weak coupling calculation vindicates
this. Our weak coupling calculations can be gener-
alised to higher dimensions. For example, in five
non-compact dimensions, it is easy to see that the
phase shift goes as 1rb, which is the Green’s func-
tion for three transverse dimensions.

One can try to examine more sophisticated com-
pactifications e.g. on K 3 to see whether similar

w xconclusions hold for those situations also 25 . We
hope to report on it in the near future.
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