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PHYSICAL REVIEW D, VOLUME 63, 024023

Statistical entropy of Schwarzschild black strings and black holes
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Pennsylvania 16802-6300
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Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064, India
(Received 1 June 2000; published 29 December 000

The statistical entropy of a Schwarzschild black string in five dimensions is obtained by counting the black
string states which form a representation of the near-horizon conformal symmetry with a central charge. The
statistical entropy of the string agrees with its Bekenstein-Hawking entropy as well as that of the Schwarzs-
child black hole in four dimensions. The string length which gives the Virasoro algebra also reproduces the
precise value of the Bekenstein-Hawking entropy and lies inside the stability bound of the string.
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That black hole solutions of general relativity have ansumption is that the near-horizon symmetries which give rise
entropy associated with them has been known for a londo non-zero “charges” will be realized as symmetries also in
time, but statistical calculations have begun to appear reldhe quantum theory. The quantum numbers of these charges
tively recently. So far statistical computations of entropywould then label the quantum states corresponding to the
have mainly been limited to near-extremal black holes in lassical spacetime. It is in this spirit that one may count the
string theoretic approadi] and non-rotating black holes in degeneracy of a subset of states that are associated with a
a quantum geometry approafd. black hole of a given mass. A similar criterion was advo-

The aim of this work was to encompass both non-cated in[5] for asymptotic symmetries. The canonical alge-
extremal and extremal, both rotating and non-rotating blackera of charges can be realizéd the physical phase space of
holes. There has been an attempt at finding a universaligeneral relativity as a Virasoro algebra with a central exten-
valid approachi3], and we have been inspired by it. A some- sion. The entropy of the string is then given by the logarithm
what similar procedure has been giver{4}. Instead of us-  0f the degeneracy of the representative states of the Virasoro
ing the detailed dynamics of the underlying quantum theory@lgebra that share a commdlarge conformal weight. A
these calculations rely more on symmetries. Our analysis follarge conformal weight is equivalent to a large mass or area
lows the same general principle. However, in the detailed®f the black string.
framework of [3], an essential restriction is made to the The line element of a Schwarzschild-string in “tortoise”
(t—r)-plane of black hole, i.e., the angular directions arecoordinates is
disregarded. To us this seems artificial. Moreoy8t,is not :
direct%y applicable to nonrotating black holes. Hg?i we set up ds’=A(—dt?+dr})+r2d¢?+r?sifod¢?+1%dy?,

a somewhat different way of getting a similar infinite con-
dr 2GM

formal symmetry which can be directly used for a non- A= —1— 1)
rotating black hole and can be generalized to the rotating dr, ro-
case. This approach, like that of the earlier work, is also . . .

To count all microstates of a Schwarzschild black hole,mass per unit length of the string. For the moment we keep
we shall start with a five dimensional Schwarzschild blackarbitrary. We will consider the class of metrics which ap-
string. The Bekenstein-Hawkin@H) entropy of the string proach the Schwarzschlld-stnng geometry near the horizon
is the same as that of a Schwarzschild black hole in a spac® EQ. (1). Our boundary conditions are motivated by the
time of one lower dimensioribecauseG,=1G,_,). We  requirement of conformal symmetry:
show that the Boltzmann entropy of the string agrees with its _ 2 _ _ 2
BH entropy and argue how one may reproduce the Boltz- 99u=0(A%), gy, =O(A),  89=0O(A%),
mann entropy of the black hole from that of the string.

We will consider a class of spacetimes whose near- 891y=0(4), 89, =0(4),
horizon geometry resembles that of a Schwarzschild string.

We then consider spacetime diffeomorphisms which pre- 99r,r, =O(A),  8Gr 4=0(A), 89, 4=0(A),

serve the boundary conditions at the horizon. The key as- )
09; y=0(A), 694p=0(A%),
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Now we seek vector fieldg” which generate diffeomor- horizon symmetries in the Fourier modes @&i) and y. If
phisms preserving these fall-off conditions. Let us make awe definex. =t/\/8G2M?= 6, one set of modes is
near-horizon expansion of suchéé(t,r, ,0,,x), which is

a candidate for a near-horizon symmetry vector, in powers of ~ T""'"' =\2G2MZexf 2inx_+in’ ¢+ 2min"x],

A:

RN = —4GMinexd 2inx_+in’ ¢+ 2min"x],
E=T(t,0,4,x)+O(A), E+=R(t,0,¢,x)+O(A),

nn'n" _ ; +in' &+ in”y1.
E=X(1,8,d,x) + O(A), 07 exg 2inx_+in’¢+2min"x] (6)

) ) There is another set involving, , which is obtained by
£'=0(1,0,¢,x) +04(t,0,¢,x) A+ O(A), replacingx_ by x. . Its contribution will be incorporated
5 later. The overall normalization of the solutiof® is fixed
£7=D(1,0,¢,x)+ O(A). ) by the surface-deformatiof8D) algebra defined below. The

¢-mode numben’ plays no interesting’te in the analysis
to follow and is set equal to zero. On the other hand, we pick

zon are physical and measurable, and those which give zebjap the diagonal elements1€n”) of x_ and x-modes in
Py . : give hich ¢ furnish a Diff(S') algebra. If we define the surface
surface charges are irrelevant. The expansi@hare moti- ) - ’ S
vated by the desire to get an infinite symmetry with thedeformation piirameter§f1= VA&non and &= &, the SD
above requirement. bracketd5] of &4 give rise to the corresponding brackets for
Equatingdg,,,=L.9,, we get relations between various ¢* in the following way:

components of*, L o
{&n Emfsp= Endiém— (M=),

{€n Emtsp=I(M—N)EL 1,

Expansion coefficients which are associated with non
vanishing on-shellsurface chargetsee below at the hori-

tt:R=—-4G Mg, T,

t0:00=0,0,T=4GM?3,0,; t¢:9,P=0; f Al sy
{&n:Emfsp= Endjém+ N €3djém— (Men),
tx:9;X=0; 660:9,0=0R=-2GMd,0;

{€n émtsp=O(A) ()
0¢:9,40 +sinf09,d=0; o o
where (&, énlso= VAL Entsy  and  {& . &nlsp
Ox:9,X=3,0=0; ¢p:9,P+coth®=0; ={&,&mtsp-
To realize these local symmetries in terms of the canoni-
Px:dpX=03,0=0; cal Poisson brackets, let us recall the canonical surface de-
formation generators of the ADM formulatig6] [the phase
xXx:9,X=0, (4)  space coordinates aré;(,7")]:
which can be solved completely. Solutions for®,X and A 1 43 N
the zero mode of! are HL¢]= 167T|Gf d™xE*(X)C.(x) + QLE]. ®)
§=To, @=Acosp+Bsing, HereC,=(C,C;) are the energy and momentum constraints

C=(mjm' —57?)/yh—*Ryh and C;= -2, where “R
d=cotd(—Asinp+Bcosp)+k,, X=k,. (5 is the curvature of the= constant surface and=]. A
vertical bar denotes covariant differentiation with respect to
To,A,B,k,k, are constants. The following linear combina- the induced metric on the space SIi@LE] represents the
tions of these form the five global Killing vectors of the appropriate boundary term which, in the presence of the

Schwarzschild strindone associated with its mass per unit . -
length, three associated with the rotational symmetry and on?ound.ary condition$2), makes the total generatbif £] dif-
erentiable at the boundary. In other words, boundary terms

more with the translational symmetry along the length of the . o . ~ 7
string: a/at, dldg, (Cosdldg—cotdsingdlid), (singalas  appearing due to the variation of the constraint${ir¢] in
+cotdcospdlip), dldx,. For us, however, the interesting the phase space coordinates and from variationQ[af]
solutions are the higher order modes which are near-horizogancel each other in the presence of the boundary conditions
symmetry vectors. It is convenient to express these neaf2). The variation of the constraints alone thus gives the

variation of Q[ £] as a combination of total derivatives:

. . 1 .

i " - ~ A
On-shell” refers to the implementation of the energy and mo- 5Q[ &)= f d*x{GKI[ & (sh;;) 1 — Sh;; &
mentum constraints. This phrase is to be distinguished from “on- L] 167G { [ 17k N ’k]
the-solution,” i.e., “on(1),” which will also be used here. Even- miel A ik

tually all charges will be evaluated on-the-solution. t286m—&m 5hik}\| ©)

024023-2



STATISTICAL ENTROPY OF SCHWARZSCHILD BLACK . .. PHYSICAL REVIEW 63 024023

where K = /h(h*h!'+h'hik—2hiihk!) and the integral  Thus the value ot depends on the on-the-solution value of
is evaluated at the horizon of Edl1). The variations L, and the Lie bracket

(6hyj,67") in Eq.(9) belong to the constraint surface in the .

phase space while the coefficients take their values on the . ~-3 _ J' K3 o 2t
solution. The coefficient of the last term vanishes identically L. Ql&]=5 16 dr,, dodgdy VhE, Vi V10,

on-the-solution. The rest of the variations can be integrated, (16)

giving rise to the surface charge o )
One comment is in order regarding the form(l#&). Ther,

A 1 A STKI A o . integral is evaluated at=2GM (one also usedr=Adr,).
Ql¢]= 167rle dX{G [ Ehij—hi & ]+ 28 i} The required anti-symmetry 8iV,,, under the exchange of
(10) (m«<n) results naturally from the on-the-solution value of
L,+m in EQ. (13) and the integral16) which turns out to
where all barred quantities refer to the on-the-solution methave the general form yn3+8n)é,.,, where y=(a?
ric. The surface charge0) simplifies on-the-solution to —1)Aq\2/47G and B=Ay\2/327G with a=27GMI/I.
1 Note that a linear term im appears also frorih1é+m. Upon
31— Sk T o 3t adding the two linear terms, one requires tiheé-{n) form
R T Ldedd)d%{e [=hyaddr @D Fihe central extension which is needed to mike_,=0.
This can be achieved by shiftirlg,, or more simply by the
Since the surface chargesl) are linear functionals of”,  choice y=g, i.e., «>=9/8. The value ot is then read off
they obey the canonical Poisson brackets algebra induced lisom the coefficienty:
the SD algebra(7) in the constrained phase space
{Q[&1,QI 71} =QI{Z 7}spl +W,, where W is a possible o 3An2
central extension. The canonical Poisson bracket can be cast c=12y= G (17)
into the form of a Lie bracket

A A o R It is necessary to check the stability of the strjg (see also
{Q[&0],Q[éml} = Ql{én  Emtspl + Wam= EémQ[gn], [8] for an entropy argumentThe choicea?=9/8 leads to
(12)  31=47GM+2 which is inside the stability bound <Ol
o <3.375mGM (estimated from the entropy bour®n;>S
wherecgngﬁnzghﬁigﬁn. Equation(12) can be understood as (5D Schwarzschild of mass!).
follows. In phase space one can associate a vector field On using Eqs(17) and (13) the statistical entropys_
q°[h;; , 7] with each phase space scalar functional, say th&om the (x_)-sector is found to be giveffor A,>G) [9]
chargeQ, such thatf,F={Q,F}, for an arbitrary scalar by
functionalF. SinceQ is a linear functional of the phase space
coordinategsee Eq.(10)] and &“, the Lie derivative gener- S =271 /C_LOZ ﬂ
ated by the vector field® is taken to be equal tg;. 6 8G
The (infinitely many) canonical generators are obtained

by using the various modes &f in Eq. (11):

(18

The two sectorsx., thus give the total entropp=S_
+S, =Au/4G which agrees with the Bekenstein-Hawking

A entropy.
Ln= QL] We end with a few comments on some aspects of the
1 . calculation.(1) We chose a specific set of boundary condi-
= WJ d&dqbd)((\/ﬁhr*’* ar*ég) tions near the horizon. The choice was motivatedhg,10
4 A where it was shown that conformal symmetry plays a key
AH\/E role in describing near-horizon states. Our primary aim has

(13 been to obtain the conformal symmet2) Our boundary
condition (2) is only one of possible choices, but it is one
that gives a conformal symmetry with non-vanishing central
charge. Presumably it provides the maximum degeneracy.
(3) The counting of black hole states is reproduced by the
. IR counting of black string states in the following sense: the
W"m:'(n_m)Lm+n+£me[§”]' (14) Boltzmann entropies of the black string and the black hole
should be related as 18y ing~ 109 Qpoet N whereN is the
MHumber of microscopic constituents along the string which is
proportional to its lengthwhich in turn is proportional td/.
Thus the statistical entropy of the black hole B
ot ;Iog Qﬁt,ing— I ~M2—IL\/I ~M? for Iar?ehM,b\lNhiEhhcrﬂngtches
. A - — 3 the Bekenstein-Hawking entropy of the blac We
IWim=1Lg, QLén] = (N=M)Lnsm=75(N"=N) G- require a large string length in the above calculation, imply-
(15  ing a five dimensional Planck lengthe{)*? which is large

= 320G om0

whereA,=16w(GM)?2. The central extensiow,, is evalu-
ated from the formuld12) and the SD brackef):

In quantum theory we replace the Poisson brackets by co
mutator bracketsi{...}—[...]. As a result the central
charge takes the following form:
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compared to the four dimensional Planck lengigh This  power-law corections to Cardy formuleS~log(A,/4G), as
signals the opening up of an extra dimension near the horidiscussed by12] in detail.

zon[11], though what happens asymptoatically is not clear at ) )

the moment(S) The conformal Symmetry lives in the p|ane SD and AG thank Abhay Ashtekar for dI.SCUSSIOI’]S and
(t/\/8GZMZ+ 27ry) = 6. One may be tempted to find a con- Various suggestions. They also thank P. Majumdar for dis-
nection between this plane and the string world sheet. Howcussions on corrections to the area formula. The work of
ever, the (— r*)_p|ane p|ays no Speciaﬂmin this approach S.D. and A.G. was Supported by the National Science Foun-
and both the sectors of conformal symmetry contributedation grant PHY95-14240 and the Eberly Research Funds
equally to the entropy, unlike if3]. (6) The leading order of Penn State. P.M. thanks the Theory Division of CERN,
correction to the entropy is logarithmicoming from the where the collaboration started.
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