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Statistical entropy of Schwarzschild black strings and black holes
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~Received 1 June 2000; published 29 December 2000!

The statistical entropy of a Schwarzschild black string in five dimensions is obtained by counting the black
string states which form a representation of the near-horizon conformal symmetry with a central charge. The
statistical entropy of the string agrees with its Bekenstein-Hawking entropy as well as that of the Schwarzs-
child black hole in four dimensions. The string length which gives the Virasoro algebra also reproduces the
precise value of the Bekenstein-Hawking entropy and lies inside the stability bound of the string.
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That black hole solutions of general relativity have
entropy associated with them has been known for a l
time, but statistical calculations have begun to appear r
tively recently. So far statistical computations of entro
have mainly been limited to near-extremal black holes i
string theoretic approach@1# and non-rotating black holes i
a quantum geometry approach@2#.

The aim of this work was to encompass both no
extremal and extremal, both rotating and non-rotating bl
holes. There has been an attempt at finding a univers
valid approach@3#, and we have been inspired by it. A som
what similar procedure has been given in@4#. Instead of us-
ing the detailed dynamics of the underlying quantum theo
these calculations rely more on symmetries. Our analysis
lows the same general principle. However, in the deta
framework of @3#, an essential restriction is made to th
(t2r )-plane of black hole, i.e., the angular directions a
disregarded. To us this seems artificial. Moreover,@3# is not
directly applicable to nonrotating black holes. Here we set
a somewhat different way of getting a similar infinite co
formal symmetry which can be directly used for a no
rotating black hole and can be generalized to the rota
case. This approach, like that of the earlier work, is a
generalizable to arbitrary dimensions.

To count all microstates of a Schwarzschild black ho
we shall start with a five dimensional Schwarzschild bla
string. The Bekenstein-Hawking~BH! entropy of the string
is the same as that of a Schwarzschild black hole in a sp
time of one lower dimension~becauseGn5 lGn21). We
show that the Boltzmann entropy of the string agrees with
BH entropy and argue how one may reproduce the Bo
mann entropy of the black hole from that of the string.

We will consider a class of spacetimes whose ne
horizon geometry resembles that of a Schwarzschild str
We then consider spacetime diffeomorphisms which p
serve the boundary conditions at the horizon. The key
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sumption is that the near-horizon symmetries which give r
to non-zero ‘‘charges’’ will be realized as symmetries also
the quantum theory. The quantum numbers of these cha
would then label the quantum states corresponding to
classical spacetime. It is in this spirit that one may count
degeneracy of a subset of states that are associated w
black hole of a given mass. A similar criterion was adv
cated in@5# for asymptotic symmetries. The canonical alg
bra of charges can be realized~in the physical phase space o
general relativity! as a Virasoro algebra with a central exte
sion. The entropy of the string is then given by the logarith
of the degeneracy of the representative states of the Vira
algebra that share a common~large! conformal weight. A
large conformal weight is equivalent to a large mass or a
of the black string.

The line element of a Schwarzschild-string in ‘‘tortoise
coordinates is

ds25D~2dt21dr
*
2 !1r 2du21r 2 sin2udf21 l 2dx2,

D5
dr

dr*
512

2GM

r
. ~1!

Here 0<x,1 and thusl is the length of the string.M is the
mass per unit length of the string. For the moment we keel
arbitrary. We will consider the class of metrics which a
proach the Schwarzschild-string geometry near the hori
of Eq. ~1!. Our boundary conditions are motivated by th
requirement of conformal symmetry:

dgtt5O~D2!, dgtr
*
5O~D!, dgtu5O~D2!,

dgtf5O~D!, dgtx5O~D!,

dgr
*

r
*
5O~D!, dgr

*
u5O~D!, dgr

*
f5O~D!,

dgr
*

x5O~D!, dguu5O~D2!,

dguf5O~D!, dgux5O~D!, dgff5O~D!,

dgfx5O~D!, dgxx5O~D!. ~2!
©2000 The American Physical Society23-1
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Now we seek vector fieldsjm which generate diffeomor
phisms preserving these fall-off conditions. Let us mak
near-horizon expansion of such ajm(t,r * ,u,f,x), which is
a candidate for a near-horizon symmetry vector, in power
D:

j t5T~ t,u,f,x!1O~D!, j r
* 5R~ t,u,f,x!1O~D!,

jx5X~ t,u,f,x!1O~D!,

ju5Q~ t,u,f,x!1Q1~ t,u,f,x!D1O~D2!,

jf5F~ t,u,f,x!1O~D!. ~3!

Expansion coefficients which are associated with n
vanishing on-shell1 surface charges~see below! at the hori-
zon are physical and measurable, and those which give
surface charges are irrelevant. The expansions~3! are moti-
vated by the desire to get an infinite symmetry with t
above requirement.

Equatingdgmn5Ljgmn we get relations between variou
components ofjm,

tt:R524GM] tT;

tu:] tQ50,]uT54GM2] tQ1 ; tf:] tF50;

tx:] tX50; uu:]uQ50,R522GM]uQ1 ;

uf:]fQ1sin2u]uF50;

ux:]uX5]xQ50; ff:]fF1cotuQ50;

fx:]fX5]xF50;

xx:]xX50, ~4!

which can be solved completely. Solutions forQ,F,X and
the zero mode ofj t are

j t5T0 , Q5A cosf1B sinf,

F5cotu~2A sinf1B cosf!1k1 , X5k2 . ~5!

T0 ,A,B,k1 ,k2 are constants. The following linear combin
tions of these form the five global Killing vectors of th
Schwarzschild string~one associated with its mass per u
length, three associated with the rotational symmetry and
more with the translational symmetry along the length of
string!: ]/]t, ]/]f, (cosf]/]u2cotu sinf]/]f), (sinf]/]u
1cotu cosf]/]f), ]/]x,. For us, however, the interestin
solutions are the higher order modes which are near-hor
symmetry vectors. It is convenient to express these n

1‘‘On-shell’’ refers to the implementation of the energy and m
mentum constraints. This phrase is to be distinguished from ‘‘
the-solution,’’ i.e., ‘‘on ~1!,’’ which will also be used here. Even
tually all charges will be evaluated on-the-solution.
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horizon symmetries in the Fourier modes ofu,f and x. If
we definex65t/A8G2M26u, one set of modes is

Tnn8n95A2G2M2 exp@2inx21 in8f12p in9x#,

Rnn8n9524GMin exp@2inx21 in8f12p in9x#,

Q1
nn8n952exp@2inx21 in8f12p in9x#. ~6!

There is another set involvingx1 , which is obtained by
replacingx2 by x1 . Its contribution will be incorporated
later. The overall normalization of the solutions~6! is fixed
by the surface-deformation~SD! algebra defined below. The
f-mode numbern8 plays no interesting roˆle in the analysis
to follow and is set equal to zero. On the other hand, we p
up the diagonal elements (n5n9) of x2 and x-modes in
which jm furnish a Diff(S1) algebra. If we define the surfac
deformation parametersĵn

t 5ADjn0n
t and ĵn

i 5jn0n
i , the SD

brackets@5# of ĵn
m give rise to the corresponding brackets f

jm in the following way:

$ĵn ,ĵm%SD
t 5 ĵn

i ] i ĵm
t 2~m↔n!,

$jn ,jm%SD
t 5 i ~m2n!jm1n

t ,

$ĵn ,ĵm%SD
i 5 ĵn

j ] j ĵm
i 1hi j ĵn

t ] j ĵm
t 2~m↔n!,

$jn ,jm%SD
i 5O~D! ~7!

where $ĵn ,ĵm%SD
t 5AD$jn ,jm%SD

t and $ĵn ,ĵm%SD
i

5$jn ,jm%SD
i .

To realize these local symmetries in terms of the cano
cal Poisson brackets, let us recall the canonical surface
formation generators of the ADM formulation@6# @the phase
space coordinates are (hi j ,p i j )#:

H@ ĵ #5
1

16p lGE d4xĵm~x!Cm~x!1Q@ ĵ #. ~8!

HereCm5(C,Ci) are the energy and momentum constrai
C5(p i j p

i j 2 1
3 p2)/Ah2 4RAh and Ci522p i u j

j , where 4R
is the curvature of thet5 constant surface andp5p i

i . A
vertical bar denotes covariant differentiation with respect
the induced metric on the space slice.Q@ ĵ # represents the
appropriate boundary term which, in the presence of
boundary conditions~2!, makes the total generatorH@ ĵ # dif-
ferentiable at the boundary. In other words, boundary te
appearing due to the variation of the constraints inH@ ĵ # in
the phase space coordinates and from variations ofQ@ ĵ #
cancel each other in the presence of the boundary condit
~2!. The variation of the constraints alone thus gives
variation ofdQ@ ĵ # as a combination of total derivatives:

dQ@ ĵ #5
1

16p lGE d4x$Gi jkl @ ĵ t~dhi j ! uk2dhi j ĵ ,k
t #

12ĵ idp i
l2 ĵ lp ikdhik% u l ~9!

-
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STATISTICAL ENTROPY OF SCHWARZSCHILD BLACK . . . PHYSICAL REVIEW D63 024023
where 2Gi jkl 5Ah(hikhjl 1hil hjk22hi j hkl) and the integral
is evaluated at the horizon of Eq.~1!. The variations
(dhi j ,dp i j ) in Eq. ~9! belong to the constraint surface in th
phase space while the coefficients take their values on
solution. The coefficient of the last term vanishes identica
on-the-solution. The rest of the variations can be integra
giving rise to the surface charge

Q@ ĵ #5
1

16p lGE d4x$Ḡi jkl @ ĵ thi j uk2hi j ĵ ,k
t #12ĵ ip i

l% u l

~10!

where all barred quantities refer to the on-the-solution m
ric. The surface charge~10! simplifies on-the-solution to

Q@ ĵ #5
1

16p lGE
D
dudfdx$Ḡi jkr

* @2h̄i j ]kĵ
t#%. ~11!

Since the surface charges~11! are linear functionals ofjm,
they obey the canonical Poisson brackets algebra induce
the SD algebra ~7! in the constrained phase spa

$Q@ ĵ #,Q@ĥ#%5Q@$ĵ,ĥ%SD#1Wjh where W is a possible
central extension. The canonical Poisson bracket can be
into the form of a Lie bracket

$Q@ ĵn#,Q@ ĵm#%5Q@$ĵn ,ĵm%SD#1Wnm5Lĵm
Q@ ĵn#,

~12!

whereLĵn
ĵm

t 5 ĵn
i ] i ĵm

t . Equation~12! can be understood a
follows. In phase space one can associate a vector
qa@hi j ,p i j # with each phase space scalar functional, say
chargeQ, such thatLqF5$Q,F%, for an arbitrary scalar
functionalF. SinceQ is a linear functional of the phase spa
coordinates@see Eq.~10!# and ĵm, the Lie derivative gener-
ated by the vector fieldqa is taken to be equal toLĵ .

The ~infinitely many! canonical generators are obtain
by using the various modes ofĵm in Eq. ~11!:

Ln5Q@ ĵn#

5
1

8p lGE
D
dudfdx~Ahhr

*
r
* ] r

*
ĵn

t !

5
AHA2

32pG
dn0 , ~13!

whereAH516p(GM)2. The central extensionWnm is evalu-
ated from the formula~12! and the SD bracket~7!:

Wnm5 i ~n2m!Lm1n1Lĵm
Q@ ĵn#. ~14!

In quantum theory we replace the Poisson brackets by c
mutator brackets:i $ . . . %→@ . . . #. As a result the centra
charge takes the following form:

iWnm5 iLĵm
Q@ ĵn#2~n2m!Ln1m5

def c

12
~n32n!dm1n .

~15!
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Thus the value ofc depends on the on-the-solution value
Ln1m and the Lie bracket

Lĵm
Q@ ĵn#5

1

8p lGE dr* dudfdxAhhklĵm
i ¹ i¹ l]kĵn

t .

~16!

One comment is in order regarding the formula~16!. Ther *
integral is evaluated atr 52GM ~one also usesdr5Ddr* ).
The required anti-symmetry ofWnm under the exchange o
(m↔n) results naturally from the on-the-solution value
Ln1m in Eq. ~13! and the integral~16! which turns out to
have the general form (gn31bn)dm1n , where g5(a2

21)AHA2/4pG and b5AHA2/32pG with a52pGM/ l .
Note that a linear term inn appears also fromLn1m . Upon
adding the two linear terms, one requires the (n32n) form
of the central extension which is needed to makeW1,2150.
This can be achieved by shiftingL0, or more simply by the
choiceg5b, i.e., a259/8. The value ofc is then read off
from the coefficientg:

c512g5
3AHA2

8pG
. ~17!

It is necessary to check the stability of the string@7# ~see also
@8# for an entropy argument!. The choicea259/8 leads to
3l 54pGMA2 which is inside the stability bound 0, l
,3.375pGM ~estimated from the entropy boundSstring.S
~5D Schwarzschild of massM ).

On using Eqs.~17! and ~13! the statistical entropyS2

from the (x2)-sector is found to be given~for AH@G) @9#
by

S252pAcL0

6
5

AH

8G
. ~18!

The two sectors,x6 , thus give the total entropyS5S2

1S15AH/4G which agrees with the Bekenstein-Hawkin
entropy.

We end with a few comments on some aspects of
calculation.~1! We chose a specific set of boundary con
tions near the horizon. The choice was motivated by@1,3,10#
where it was shown that conformal symmetry plays a k
rôle in describing near-horizon states. Our primary aim h
been to obtain the conformal symmetry.~2! Our boundary
condition ~2! is only one of possible choices, but it is on
that gives a conformal symmetry with non-vanishing cent
charge. Presumably it provides the maximum degener
~3! The counting of black hole states is reproduced by
counting of black string states in the following sense: t
Boltzmann entropies of the black string and the black h
should be related as logVstring; logVhole1N whereN is the
number of microscopic constituents along the string which
proportional to its lengthl which in turn is proportional toM.
Thus the statistical entropy of the black hole isS
; logVstring2 l;M22M;M2 for large M, which matches
the Bekenstein-Hawking entropy of the black hole.~4! We
require a large string length in the above calculation, imp
ing a five dimensional Planck length (l Pl )1/2 which is large
3-3
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compared to the four dimensional Planck lengthl P . This
signals the opening up of an extra dimension near the h
zon @11#, though what happens asymptotically is not clear
the moment.~5! The conformal symmetry lives in the plan
(t/A8G2M212px)6u. One may be tempted to find a con
nection between this plane and the string world sheet. H
ever, the (t2r * )-plane plays no special roˆle in this approach
and both the sectors of conformal symmetry contrib
equally to the entropy, unlike in@3#. ~6! The leading order
correction to the entropy is logarithmic~coming from the
ty,

ev
,

02402
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power-law corections to Cardy formula!: S; log(AH/4G), as
discussed by@12# in detail.
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