Supplementary data for the article:

Andrić, J. M.; Antonijević, I. S.; Janjić, G. V.; Zarić, S. D. Influence of Hydrogen Bonds on Edge-to-Face Interactions between Pyridine Molecules. *J Mol Model* **2018**, *24* (3), 60. <u>https://doi.org/10.1007/s00894-017-3570-y</u>

# **Supplementary Material (SI)**

# Influence of hydrogen bonds on edge-to-face interactions between pyridine molecules

## Journal of Molecular Modeling

Jelena M. Andrić<sup>a</sup>, Ivana S. Antonijević<sup>b</sup>, Goran V. Janjić<sup>b</sup>, Snežana D. Zarić<sup>c,d</sup>

<sup>a</sup> Innovation center, Department of Chemistry, Studentski trg 12-16, Belgrade, Serbia;

<sup>b</sup> Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia

<sup>c</sup> Department of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia;

<sup>d</sup> Department of Chemistry, Texas A & M University at Qatar, P.O. Box 23874, Doha, Qatar.

#### S1. Calculation of interactions energy in edge-to-face interactions between two pyridine molecules

The interaction energy between two pyridine molecules,  $\Delta E_{(Pd\perp Pa)}$ , was defined as difference of energy of dimer molecule and energies of monomers. In the symbol  $(P_d\perp P_a)$ ,  $P_d$  denotes the donor-pyridine molecule; symbol  $P_a$  denotes the acceptor pyridine molecule, while the symbol  $\perp$  denotes edge to face orientation of molecules.

$$\Delta E (Pd \perp Pa) = E_{PdPa} - E_{Pd} - E_{Pa}$$
<sup>(1)</sup>

The energy of edge to face interaction, between two pyridine molecules with hydrogen bonds in W1<sup> $\cdot\cdot$ </sup>P<sub>d</sub> $\perp$ P<sub>a</sub> and P<sub>d</sub> $\perp$ P<sub>a</sub><sup> $\cdot\cdot$ </sup>W2systems (W1 is water molecule that forms hydrogen bond with donor-pyridine, while W2 is water molecule that forms hydrogen bond with acceptor pyridine) was calculated for binary system using the equations 2 and 3.

$$\Delta E \quad (W1 \cdots Pd \perp Pa) = E_{W1PdPa} - E_{W1Pd} - E_{Pa} \tag{2}$$

$$\Delta E (Pd \perp Pa \cdots W2) = E_{PdPaW2} - E_{Pd} - E_{PaW2}$$
(3)

The change of strength of edge-to-face interactions between two pyridine molecules in systems with hydrogen bonds  $(W1^{...}P_d \perp P_a \text{ or } P_d \perp P_a^{...}W2)$  and without hydrogen bond  $(P_d \perp P_a)$  is expressed by  $\Delta\Delta E$  (the equation 4 and 5).

$$\Delta \Delta E = \Delta E \ (W1 \cdots Pd \perp Pa) - \Delta E \ (Pd \perp Pa) \tag{4}$$

$$\Delta \Delta E = \Delta E \ (Pd \perp Pa \cdots W2) - \Delta E \ (Pd \perp Pa) \tag{5}$$

szaric@chem.bg.ac.rs

The energy of edge-to-face interaction between two pyridine molecules, where both pyridines are with simultaneous hydrogen bonds;  $W1^{...}P_d \perp P_a^{...}W2$  system was determined using the equation 6.

$$\Delta E \quad (W1 \cdots Pd \perp Pa \cdots W2) = E_{W1PdPaW2} - E_{W1Pd} - E_{PaW2} \tag{6}$$

The change of strength of edge-to-face interactions between two pyridine molecules in W1<sup>···</sup>P<sub>d</sub> $\perp$ P<sub>a</sub><sup>···</sup>W2 and P<sub>d</sub> $\perp$ P<sub>a</sub> systems, can be expressed by  $\Delta\Delta E$  (the equation 7).

$$\Delta \Delta E = \Delta E \ (W1 \cdots Pd \perp Pa \cdots W2) - \Delta E \ (Pd \perp Pa) \tag{7}$$

#### S2. Model system for simultaneous CH/O interaction



Figure S1. Model system used for calculations of simultaneous CH/O interaction.

#### S3. Optimization of water molecule in trimers

In both studied model systems, geometry of pyridine dimer was fixed while water molecule was optimized using MP2 method and cc-pVTZ basis set. In starting geometry, water molecule is perpendicular to the plane of pyridine and H…N distance is 2.0 Å in both model systems. In model system  $W1\cdots P_d \perp P_{a[O]}$  anti system, H-O-H…N torsion angle is -119.43° while in model system  $P_d \perp P_a \cdots W2_{[O]}$  syn the same angle is -0.10°. After optimization, the water molecule slightly changed its orientation. Namely, H…N distance in  $W1\cdots P_d \perp P_{a[O]}$  anti system is 1.928 Å and H-O-

H<sup>...</sup>N torsion angle is 28.87°. H<sup>...</sup>N distance in W1····P<sub>d</sub> $\perp$  P<sub>a[O]</sub> anti system is 1.956 Å and H-O-H<sup>...</sup>N torsion angle is -63.13°.



Figure S2. Geometries of two systems with optimized water molecule.

### S4. Cooperativity energies for model systems with hydrogen bonded pyridines

Since it was of interest to investigate the cooperative effects of three-body systems we performed calculations for all trimers to obtain a quantitative account of cooperativity. Cooperativity energies, that consider interaction energies between all pairs of molecules, were calculated using the following expressions:

$$\Delta E_{\text{Pyr1/Pyr2/W}} = E_{\text{Pyr1/Pyr2/W}} - (E_{\text{Pyr1}} + E_{\text{Pyr2}} + E_{\text{w}})$$
(8)  
where  $\Delta E_{\text{Pyr1/Pyr2}}$ ,  $\Delta E_{\text{Pyr1/W}}$  and  $\Delta E_{\text{Pyr2/W}}$  are pair interaction energies calculated using expressions:  
 $\Delta E_{\text{Pyr1/Pyr2}} = E_{\text{Pyr1/Pyr2}} - (E_{\text{Pyr1}} + E_{\text{Pyr2}})$ (9)  
 $\Delta E_{\text{Pyr1/W}} = E_{\text{Pyr1/W}} - (E_{\text{Pyr1}} + E_{\text{W}})$   
 $\Delta E_{\text{Pyr2/W}} = E_{\text{Pyr1/W}} - (E_{\text{Pyr2}} + E_{\text{W}})$ (20)  
 $\Delta E_{\text{coop}} = \Delta E_{\text{Pyr1/Pyr2/W}} - \Delta E_{\text{Pyr1/W}} - \Delta E_{\text{Pyr2/W}}$ (10)

Cooperativity energy for four-body model system (tetramer) with the strongest edge-to-face interaction (-5.05 kcal/mol)

To investigate cooperative effects of four-body system we calculate cooperativity energy value ( $\Delta E_{\text{COOP}}$ ) for W1<sup>...</sup>P<sub>d</sub> $\perp$ P<sub>a</sub><sup>...</sup>W2 <sub>[O]anti</sub> tetramer using the following expression:

 $\Delta E_{coop} = E_{W1/Pyr1/Pyr2/W2} - (E_{W1} + E_{Pyr1} + \Delta E_{Pyr2} + E_{W2}) - (\Delta E_{W1/Pyr1} + \Delta E_{W1/Pyr2} + \Delta E_{W1/W2} + \Delta E_{Pyr1/Pyr2} + \Delta E_{Pyr1/W2} + \Delta E_{Pyr1/W2} + \Delta E_{Pyr1/Pyr2/W2})$ (11)