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Quantum gravity effects modify the Heisenberg’s uncertainty principle to a generalized uncertainty 
principle (GUP). Earlier work showed that the GUP-induced corrections to the Schrödinger equation, 
when applied to a non-relativistic particle in a one-dimensional box, led to the quantization of length. 
Similarly, corrections to the Klein–Gordon and the Dirac equations, gave rise to length, area and volume 
quantizations. These results suggest a fundamental granular structure of space. In this work, it is 
investigated how spacetime curvature and gravity might influence this discreteness of space. In particular, 
by adding a weak gravitational background field to the above three quantum equations, it is shown that 
quantization of lengths, areas and volumes continue to hold. However, it should be noted that the nature 
of this new quantization is quite complex and under proper limits, it reduces to cases without gravity. 
These results suggest that quantum gravity effects are universal.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

During the last 70 years, much effort has been devoted towards 
the construction of a consistent theory of Quantum Gravity (QG). 
All approaches to QG start with an assumption about the structure 
of spacetime at scales that are extremely small, way beyond the 
current experimental advancement.

However, even if not direct, experimental evidence, e.g. analo-
gous gravity experiments [1], suggests that gravity can show quan-
tum effects. Therefore, since there is no direct experimental guid-
ance, it is quite natural to try to develop a correct theory based on 
conceptual restrictions. Like any other active research field, what 
Quantum Gravity Phenomenology (QGP) ideally needs is a combi-
nation of theory and doable experiments [2].

At the moment, QGP can be thought of as a combination of all 
studies that might contribute to direct or indirect observable pre-
dictions [3,4] and analogous models [1]. These studies support the 
small and the large scale structure of spacetime consistent with 
String Theory, or any other approaches to QG.

The first step to identifying the relevant doable experiments for 
QGP research would be the identification of the working scale of 
this new field. This, known as the Planck scale, is first estimated 
from dimensional arguments. The Planck scale is uniquely defined 

* Corresponding author.
E-mail addresses: soumen.deb@uleth.ca (S. Deb), saurya.das@uleth.ca (S. Das), 

elias.vagenas@ku.edu.kw (E.C. Vagenas).
http://dx.doi.org/10.1016/j.physletb.2016.01.059
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
by the fundamental constants, namely the speed of light c, the 
gravitational constant G , and the Planck constant h̄, to provide the 
units of length, mass, and time

�Pl =
√

h̄G

c3
∼ 10−35 m ,

mPl =
√

h̄c

G
∼ 10−8 kg ,

tPl =
√

h̄G

c5
∼ 10−44 s .

The smallness of this scale makes QG phenomenologists’ job dif-
ficult, which is to test the Planck scale effects and extract useful 
information for further theoretical studies.

Among the many mathematical results of String Theory there is 
one which is of particular interest and relevant to QGP. This is the 
modification of the Heisenberg uncertainty principle (HUP), which 
is well known as generalized uncertainty principle (GUP). In the 
context, mainly but not only, of String Theory, the suggested ver-
sion of GUP is [5–13]

�x ≥ h̄

�p
+ α′ �p

h̄
(1)

where 
√

α′ ≈ 10−32 cm [14].
Recently, the theories of Doubly Special Relativity (DSRs) were 

introduced principally to give a physical interpretation of the 
Planck length, i.e., �Pl , in the structure of spacetime [15]. In 
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particular, different values could be attributed to the Planck 
length by different observers. Thus, DSRs avoid these violations of 
Lorentz invariance by considering the Planck length as an observer-
independent scale. One of the consequences of DSRs was a simi-
lar modification of the position–momentum commutation relation 
[16,17] which leads to a modification of the HUP as well. In this 
case, the suggested form of the commutator is given by [3]

[xi, p j] = ih̄

(
δi j − α

(
pδi j + pi p j

p

)

+ α2(p2δi j + 3pi p j)

)
(2)

where p can be interpreted as the magnitude of �p since p2 =
3∑

i=1
pi pi and α = α0

mPlc
= α0�Pl

h̄ .

The suggested form of the commutator given in Eq. (2) is satis-
fied by the modified operators

xi = x0i,

pi = p0i(1 − αp0 + 2α2 p2
0), i = 1,2,3 . (3)

Here, x0i, p0i satisfy the canonical commutation relations
[x0i, p0i] = ih̄δi j , implying that p0i = −ih̄ ∂

∂x0i
is the standard mo-

mentum (operator) at low energies and pi the modified momen-

tum at higher energies. Note that p2
0 =

3∑
i=1

p0i p0i [18].

The specific modification of the commutator (see Eq. (2)), with 
the modified operators as given in Eq. (3), leads to a version of 
GUP which reads [19–21]

�x�p ≥ h̄

2

[
1 − 2α < p > +4α2 < p2 >

]

≥ h̄

2

[
1 +

(
α√

< p2 >
+ 4α2

)
�p2

+ 4α2 < p >2 −2α

√
< p >2

]
(4)

with the dimensionless parameter α0 generally considered to be of 
order of unity.

It is evident that QGP indicates an irremovable uncertainty in 
distance measurements [2]. In the framework of String Theory, the 
modified commutation relations of position and momentum oper-
ators result in a version of GUP. A similar, but subtler, consequence 
of this version is that the apparently continuous-looking space on 
a very fine scale is actually grainy. One can ask whether this is a 
sole influence of gravity or a fundamental structure of the space-
time. Now, if one admits the fact that classical gravity is a derived 
effect of curvature of spacetime caused by mass, then one can ex-
pect to find this discontinuity even in the regions of the universe 
far from a massive object.

The nature of this discreteness may or may not change when 
the spacetime is no more flat, namely it is a curved spacetime due 
to the presence of a gravitational field. In order to investigate this, 
we trap a particle in a box with a gravitational potential inside the 
box and see if gravity influences the discreteness shown in [18,22].

The outline of this work is as follows. In the next Section, 
we briefly review the problem of a particle moving in a one-
dimensional potential. Spacetime is flat but due to GUP-effects, it 
effectively shows a discrete structure. In Sec. 3, we investigate the 
discreteness of spacetime in the problem of a non-relativistic parti-
cle moving in a one-dimensional potential when gravity is present. 
Furthermore, we explore the discreteness of spacetime for the case 
of relativistic 0-spin and 1/2-spin particles moving again in a one-
dimensional potential when gravity is present. Finally, in Sec. 4, we 
briefly present our results.

2. Discreteness of space in flat spacetime

In this section, we briefly review the non-relativistic situation 
where a particle is trapped in a one-dimensional box and one finds 
the GUP-corrected Schrödinger equation [18]. In particular, we con-
sider one of the standard examples in quantum mechanics, namely 
the problem of a particle moving in a one-dimensional infinite po-
tential well. The well or the one dimensional box of length L is 
defined by the potential V (x) = 0 for 0 ≤ x ≤ L and ∞ outside this 
box. The quantum mechanical equation governing such a particle 
is the Schrödinger equation

Hψ = Eψ

except for the fact that the position and momentum operators are 
now modified due to the GUP-effects.

Incorporating the GUP corrections, one can write the modified 
Schrödinger equation as

d2

dx2
ψ + k2

0ψ + 2iαh̄
d3

dx3
ψ = 0 (5)

where k0 =
√

2mE/h̄2.
At this point, it should be stressed that the α-dependent term 

in the above equation is only important when energies are com-
parable to Planck energy and lengths are comparable to Planck 
length. The general solution of this equation is

ψ = Aeik′
0x + Be−ik0

′′x + Ceix/2αh̄ .

The first two terms along with the boundary conditions V (x = 0) =
0 = V (x = L) lead to the standard energy quantization. It is the 
new third α-dependent term that gives rise to a new condition 
[18]

cos

(
L

2αh̄
− θC

)
= cos(k0L + θC ) = cos(nπ + θC + δ0)

which in turn implies that1

L

2αh̄
= L

2α0�Pl
= −nπ + 2qπ ≡ pπ (6)

where p ≡ 2q ±n is a natural number. The above expression shows 
that the length L is quantized. This result can be interpreted as the 
fact that, like the energy of the particle inside the box, the length 
of the box can assume only certain values. In particular, L has to 
be in units of α0�Pl . This indicates that the space, at least in a 
confined region and without the influence of gravity, is likely to be 
discrete.

Further work has shown that this consequence of the GUP ef-
fects can be extended to relativistic scenarios in one, two, and 
three dimensions [22]. There are several reasons why one needs 
to investigate the relativistic cases. High energy particles are much 
more likely to probe the fabric of spacetime near the Planck 
scale, which means that they are necessarily relativistic or ultra-
relativistic particles. In addition, the fact, that most elementary 
particles are fermions, leads us to investigate Dirac equation in-
stead of the Schrödinger equation.

1 As already mentioned, for brevity the mathematical details have been omitted 
here. However, for the interested reader, the derivation of the quantization condi-
tion, i.e. Eq. (6), can be found in [18]. The whole analysis goes from Eq. (11) to 
Eq. (21) of reference [18].
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3. Discreteness in curved spacetime

It has been proven that the GUP corrections imposed on a free 
particle lead to the discreteness of space. Although the moving par-
ticle was kept in a box, no force field inside the box was assumed, 
i.e., the particle was free to move in a flat spacetime. If we wish 
to claim that the quantum gravity effects are universal then we 
should expect that the length quantization will also emerge in the 
presence of external forces. In other words, discreteness of space 
must hold whether or not there is an external field present.

3.1. Non-relativistic case

The first step towards this generalization would be to consider 
gravity as the external force field inside the box, since it is the 
weakest among the four fundamental forces as well as being uni-
versal. Additionally, as we have discussed before, our goal is to find 
how gravity determines the nature of discreteness. With a gravita-
tional potential present inside the box, we ignore all but the first 
term of the Taylor expansion of this potential, which is a linear 
term. This is reasonable because we are interested in the behavior 
of spacetime fabric near Planck scale and the gravitational poten-
tial changes very little over such small distances. Furthermore, in 
practice, we often use the gravitational potential energy approxi-
mated as V (h) = mgh over a small vertical distance h and, thus, 
the field strength reads Eh = − 1

m
∂dV (h)

∂dh = −g . It is evident that 
this also justifies the previous claim of utilizing a linearized poten-
tial term.

Let us now consider a one-dimensional box of length L (0 <
x < L) with a linear potential inside, which has the form

V (x) =
{

kx, if 0 < x < L
∞, otherwise

(7)

with k a parameter of unit J/m and the smallness of k is assumed.
Without considering the GUP effects, the Schrödinger equation 

governing the motion of a particle of mass m inside this box is 
given by [23]

d2ψ0(x)

dx2
− 2m

h̄2
(kx − E)ψ0(x) = 0 , (8)

with ψ0(x) = 0 when x ≤ 0 or x ≥ L, since the potential outside 
the box becomes ∞.

The above equation, namely Eq. (8), is an Airy equation whose 
general solution reads [24]

ψ0(x) = C1 Ai

⎡
⎣ 2m

h̄2 (kx − E)

( 2m
h̄2 k)

2
3

⎤
⎦+ C2 Bi

⎡
⎣ 2m

h̄2 (kx − E)

( 2m
h̄2 k)

2
3

⎤
⎦ (9)

where Ai[u] and Bi[u] are Airy functions of the first and second 
kind, respectively.

We now use this wavefunction, i.e., ψ0, for solving the GUP-
corrected Schrödinger equation. Utilizing the GUP-modified opera-
tors given in Eq. (3) in order to modify the Hamiltonian of the sys-
tem under study, the GUP-corrected one-dimensional Schrödinger 
equation for a non-relativistic particle moving in a box of length L
with a linear potential reads, cf. Eq. (5),

d2ψ

dx2
+ 2m

h̄2
(E − kx)ψ + 2iαh̄

d3ψ

dx3
= 0 . (10)

It is seen that the additional third term, 2iαh̄ d3ψ

dx3 , which depends 
on the GUP parameter, i.e., α, becomes significant at high energies 
(comparable to Planck energy), or, equivalently, at small lengths 
(comparable to Planck length). Therefore, we can consider a pertur-
bative approach in order to solve Eq. (10). A suitable trial solution 
can be of the form

ψ1 = ψ0(E + εα,k, x)

= ψ0(E,k, x) + εα
d

dE
ψ0(E,k, x) (11)

where the form of ψ0 is given by Eq. (9), and ε is a coefficient that 
will be determined later.

Skipping intermediate mathematical steps, the general solution 
of the GUP-corrected Schrödinger equation is given by

ψ(x) = A√
π

[
ξ−1/4 sin

(
2

3
ξ

3
2 + π

4

)
+

(
2m

h̄2

)1/3

k−2/3εα

(
−1

4
ξ−5/4 sin

(
2

3
ξ3/2 + π

4

)

+ ξ1/4 cos

(
2

3
ξ3/2 + π

4

))]
+

B√
π

[
ξ−1/4 cos

(
2

3
ξ

3
2 + π

4

)
+

(
2m

h̄2

)1/3

k−2/3εα

(
−ξ1/4 sin

(
2

3
ξ3/2 + π

4

)

− 1

4
ξ−5/4 cos

(
2

3
ξ3/2 + π

4

))]
+ Ceix/2h̄α (12)

with

ξ =
(

2m

h̄2

) 1
3

k− 2
3 (E − kx)

ε =
[
(2ih̄)

3

4

(
2m

h̄2

) 11
12

k
7
6 E− 1

4

×
(

C1 sin
(
ξ0 + π

4

)
− C2 cos

(
ξ0 + π

4

))

+ α (2ih̄)

(
2m

h̄2

) 17
12

k
1
6 E

5
4

×
(

C2 sin
(
ξ0 + π

4

)
− C1 cos

(
ξ0 + π

4

))]

÷
[(

2m

h̄2

) 11
12

k
1
6 E− 1

4

×
(

C1 sin
(
ξ0 + π

4

)
− C2 cos

(
ξ0 + π

4

))]

ξ0 = 2

3

((
2m

h̄2

) 1
3

k− 2
3 E

) 3
2

and A, B , C are constants. In particular, we can absorb the phase 
of A in ψ , such that A can be treated as a real constant while B
can be written as B = |B|eiθB . Furthermore, C is such a constant 
that its magnitude |C | becomes zero in the limit α → 0, since the 
last term must vanish in this limit.

Next, by imposing the boundary conditions ψ(x = 0) = 0 and 
ψ(x = L) = 0, we arrive at the following condition on the length of 
the box
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cos(L/2h̄α) =
(

1 − kL

E

)−1/4

×
[

A∗ sin

(
2

3

√
2m

h̄2

(E − kL)3/2

k
+ π

4

)
+

B∗ cos

(
2

3

√
2m

h̄2

(E − kL)3/2

k
+ π

4

)]
(13)

where A∗ and B∗ are constants that depend on A, B , k, and E .
It can be shown that in the limit k → 0 the wavefunction given 

by Eq. (12) becomes the solution of Schrödinger equation for an 
infinite potential well. Thus, taking the limit k → 0 the RHS of 
Eq. (13) reads

B1 cos (κ L0) − A1 sin (κ L0) (14)

where L0 is the length of the box in flat spacetime, κ =
√

2mE
h̄2 , and

A1 = H1

(
A∗ cos

(
H2

k
+ π

4

)
− B∗ sin

(
H2

k
+ π

4

))
(15)

B1 = H1

(
A∗ sin

(
H2

k
+ π

4

)
+ B∗ cos

(
H2

k
+ π

4

))
(16)

with

H1 = 1√
π

[(
2m

h̄2

) 1
3 (E − kx)

k
2
3

]− 1
4

(17)

H2 = 2

3

(
2m

h̄2

) 1
2

E
3
2 . (18)

Without loss of generality, we let A1 = sin θ and B1 = cos θ for an 
arbitrary θ ; thus, Eq. (13) becomes

cos(L0/2h̄α) = cos θ cos (κ L0) − sin θ sin (κ L0) (19)

= cos (κ L0 + θ) . (20)

According to the analysis in [18], the above equation implies that 
L0

2h̄α = pπ , p ∈N. Since L is the perturbation of L0, Eq. (13) yields

L

2h̄α
= f (k)p1π + pπ (21)

where p1 ∈ N and for each p there is a finite set of values of 
p1 ∈ N. Moreover, since the first term on the RHS of Eq. (21) is 
a small perturbative term, the number of p1 values, for each p, 
depends on the smallness of function f (k).

As in the case of flat spacetime, we have arrived at a length 
quantization condition. Moreover, we have a fine structure (split-
ting) of the length quantization due to the presence of gravity (see 
Fig. 1). This is similar to the energy quantization of the hydrogen 
atom, in presence of an external electromagnetic field.

3.2. Relativistic case

The small-scale structure of spacetime should not depend on 
the use of relativistic or non-relativistic test particles. However, 
particles with speeds comparable to the speed of light should be 
treated relativistically, and the fundamental spacetime structure 
should be reexamined. In this subsection, we take a closer look at 
the relativistic equivalent of the Schrödinger equation, i.e., Klein–
Gordon equation and, in particular, the modification induced by 
GUP. First, we will derive the GUP-version of the Klein–Gordon 
equation with a linear potential and then we will try to solve it in 
order to obtain possible length quantization. Notwithstanding its 
Fig. 1. Comparison between L0 (solid lines) which is the quantized length with GUP 
corrections in flat spacetime and L (dotted lines) which is the quantized length with 
GUP corrections in curved spacetime.

relative simplicity, Klein–Gordon equation has mathematical diffi-
culties, especially when it comes to dimensions higher than one. 
For this reason, it is much easier to implement the more versatile 
Dirac equation. Therefore, we will also solve the Dirac equation in 
order to find a similar length quantization as in [22].

3.2.1. Klein–Gordon equation
The Klein–Gordon equation with no force field is given by [25]

(h̄2� + m2c2)ψ = 0 (22)

where � = 1
c2

∂2

∂t2 − ∇2 and �∇ = ∂
∂x î + ∂

∂ y ĵ + ∂
∂z k̂.

Next, we take into account a gravitational force field by utilizing 
a linearized potential. In this case, the GUP-corrected Klein–Gordon 
equation in one dimension reads

d2ψ

dx2
+ 1

h̄2c2

(
E2 − m2c4 − 2Ekx

)
ψ + 2iαh̄

d3ψ

dx3
= 0 . (23)

Comparing Eq. (23) with Eq. (10), i.e.,

d2ψ

dx2
+ 2m

h̄2
(E − kx)ψ + 2iαh̄

d3ψ

dx3
= 0 ,

and by making the following “transformations”

2m

h̄2
E → 1

h̄2c2
(E2 − m2c4)

2Ek

h̄2c2
→ 2mk

h̄2

we arrive at a length quantization similar to the one given by 
Eq. (21).

3.2.2. Dirac equation in one dimension
The three-dimensional version of Klein–Gordon equation suffers 

from the non-locality of the differential operators. In particular, the 
term p2, when GUP is considered, becomes

p2 = p2
0 − 2αp3

0 = −h̄2∇2 + 2iαh̄3∇3

and, thus, the second term reads

2iαh̄3
(

∂2

∂x2
+ ∂2

∂ y2
+ ∂2

∂z2

)3/2

.

We can deal with this term which is a non-local one using frac-
tional calculus [26], but a much simpler approach would be to 
employ the Dirac equation.

The free-particle Dirac equation is given by [27]

i
∂ =

(
βmc2 + c �α · �P

)
 (24)
∂t
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with

β ≡ γ 0 =
(

I2 0
0 −I2

)
(25)

and

αi ≡ γ 0γ i =
(

I2 0
0 −I2

)(
0 σi

−σi 0

)
=
(

0 σi
σi 0

)

where σi , with i = x, y, z for the 3 spatial dimensions, are the Pauli 
spin matrices. These matrices are given by [28]

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

σz =
(

1 0
0 −1

)
(26)

Here βmc2 + c �α · �P is the Dirac Hamiltonian with no force field 
to be present. It should be noted that �α is distinct from the GUP 
parameter, i.e., α.

At this point, we take into account a gravitational force field 
by utilizing a potential term in the form V (�r). In this case, the 
GUP-corrected Dirac equation reads

i
∂

∂t
=
(
βmc2 + c �α · �P + V (�r)I4

)
 . (27)

Specifically, for the case of one spatial dimension, say z, the GUP-
corrected Dirac equation reads(

−ich̄αz
d

dz
+ cαh̄2 d2

dz2
+ βmc2 + kzI4

)
ψ(z) = Eψ(z) .

This equation represents a relativistic particle in a one-dimensional 
box with a potential of the form kz inside.

The four linearly independent solutions to this equation are 
given by

ψ1 = N1

⎛
⎝1 − 4ikακz

c/z + 2iακ
(

c(1 − 2ακh̄2) − 2E
)
⎞
⎠×

eiκz
(

χ
rσzχ

)

ψ2 = N2eiz/αh̄
(

χ
σzχ

)
(28)

with χ being a normalized spinor that satisfies the relation 
χ †χ = I .

Imposing the boundary conditions directly here, we end up 
having the so-called Klein paradox. In order to avoid this, we will 
resort to the MIT bag model of quark confinement [29]. Imposing 
the MIT bag boundary conditions and omitting some straightfor-
ward steps, the condition on the length of the box is given by

L

αh̄
= arg

⎡
⎢⎢⎢⎢⎢⎣

ρ1(ir − 1)

(
ei(δ−κ L)−e

i

(
κL−tan−1

(
2r

r2−1

)))

F ′

⎤
⎥⎥⎥⎥⎥⎦

− π

4
+ 2nπ, n ∈N, (29)

where κ = κ0 +αh̄κ2
0 with κ0 being the wavenumber that satisfies 

the relation E2 = (h̄κ0)
2 + (mc2)2. Additionally, r, δ, ρ1, and F ′ are 

defined as
r = h̄κ0c

E + mc2

δ = tan−1
(

2r

r2 − 1

)

ρ1 =
⎛
⎝1 − 4ikακz

c/z + 2iακ
(

c(1 − 2ακh̄2) − 2E
)
⎞
⎠

F ′ = √
2F

with F ∼ αs and s > 0.

3.2.3. Dirac equation in three dimensions
In the most general case, let us consider a box defined by 0 ≤

xi ≤ Li, i = 1 . . .d, d being the dimension of the box, i.e., d = 1, 2, 
or 3. That is, this box can be one, two, or three-dimensional. The 
box has a linearized potential inside, as before. Without loss of 
generality, we orient the box such that the direction in which the 
potential changes is our x-direction. The Dirac Hamiltonian with 
the linear potential term can now be written as

H = c �α · �p + βmc2 + V (�r)I

= c
(
αx px + αy p y + αz pz

)+ βmc2 + kxI

= c �α · �p0 − cα
(�α · �p0

) (�α · �p0
)+ βmc2 + kxI .

Note that we employed the GUP-corrected momenta, i.e., pi =
p0i(1 − αp0), i = 1, .., 3, where p0i = −ih̄ d

dxi
, and followed Dirac 

prescription, i.e., we replaced p0 by �α · �p0.
The wavefunction inside the box turns out to be

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
d∏

i=1

(
ρ

δi1
1 eiκi xi + ρ

δi1
2 e−i(κi xi−δi)

)

+ F ei q̂.�r
αh̄

]
χ

d∑
j=1

[
d∏

i=1

(
ρ

δi1
1 eiκi xi +

(−1)δi j ρ
δi1
2 e−i(κi xi−δi)

)
rκ̂ j

+ F ei q̂.�r
αh̄ q̂ j

]
σ jχ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where δi j is the usual Kronecker delta, q̂ is an arbitrary unit vector, 
and δl is given by

δl = κl Ll = tan−1

(
2rκ̂l

r2κ̂2
l − 1

)
+O(lnα)

with κ̂l being the l component of the unit vector of the wave vec-
tor �κ with components κl .

Moreover, ρ1 and ρ2 are defined as

ρ1 =
⎛
⎝1 − 4ikακ1x

c/x + 2iακ1

(
c(1 − 2ακ1h̄2) − 2E

)
⎞
⎠

ρ2 =
⎛
⎝1 + 4ikακ1x

c/x − 2iακ1

(
c(1 + 2ακ1h̄2) − 2E

)
⎞
⎠ .

The number of terms in the first row is 2d + 1 and that in the 
second row is (2d + 1) × d.

Using the MIT bag model again, we obtain conditions on the 
dimensions of the box. In this case, these conditions are not
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symmetrical unlike the case in flat spacetime. Along x-direction, 
the length quantization has the following form

q̂1L1

αh̄
= q̂1L1

α0�Pl

= −θ1 + arg

(
ρ1(irκ̂1 − 1) − ρ2(irκ̂1 + 1)eiδ1

F ′ f 1̄

)

+ 2n1π, n1 ∈N (30)

with fl̄(xi, κi, δi) =
d∏

i=1(i �=l)

(
eiκi xi + e−i(κi xi−δi)

)
. Along y and z di-

rections, the quantization conditions are identical

q̂l Ll

αh̄
= q̂l Ll

α0�Pl
= −2θl + 2nlπ (31)

with nl ∈N and θl = tan−1(q̂l).
This is also consistent with the fact that the potential inside the 

box increases linearly along x-direction and remains zero along y
and z directions.

To obtain the area and volume quantizations, we simply multi-
ply the above conditions

AN =
N∏

l=1

q̂l Ll

α0�Pl
=

N∏
l=2

(2nlπ − 2θl)

(
2n1π − θ1

+ arg

(
ρ1(irκ̂1 − 1) − ρ2(irκ̂1 + 1)eiδ1

F ′ f 1̄

))
(32)

with nl ∈ N, and where N = 2 and N = 3 represent the area and 
volume quantization, respectively.

4. Conclusions

In this work, we have shown that if we trap a particle in a one-
dimensional box of size L, include a gravitational potential inside 
the box and then try to measure the length of the box, the length L
will appear as a quantized quantity in units of α0�Pl where �Pl is 
the Planck length. This result can be interpreted as the discrete-
ness of space near the Planck scale holding for curved spacetime 
as it holds for flat spacetime, as shown in previous works [18,22].

For the gravitational potential, we have used the first term of a 
Taylor series to describe it as a linearized potential. This is reason-
able because we are interested in the behavior of spacetime fabric 
near Planck scale and the gravitational potential changes at a very 
slow rate over such small distances.

We have implemented our method for a non-relativistic particle 
in curved spacetime and for a relativistic one. In the latter case, 
the GUP-corrected Klein–Gordon equation in one dimension has 
been solved as well as the GUP-corrected Dirac equation in one, 
two and three dimensions. As already mentioned, in all cases the 
length of the box appears as a quantized quantity in units of α0�Pl . 
The presence of lengths that are proportional to the Planck length 
in all cases strengthens the claim of the existence of a minimum 
measurable length. Furthermore, in two and three dimensions, the 
area and volume quantizations were also obtained.

Extension of the method employed in this work for arbitrary 
curved spacetime would be quite interesting. In particular, it is ex-
pected that subsequent terms in the Taylor series would give rise 
to a more general curved spacetime. Hence, an arbitrary form of 
the gravitational potential could be analyzed following the same 
approach. This would still assume a fixed classical background. 
A complete theory of quantum gravity, once formulated, should be 
able to address the issues discussed here, with background space-
time which may be fluctuating. In this case, we hope that the 
results derived in this work would continue to hold, at least ap-
proximately, and almost exactly in the limit when such fluctuations 
can be ignored.

Finally, one may be interested in delving into the possible con-
nection between the non-relativistic particle moving in a box in-
side which a linear potential is present, and the hydrogen atom. In 
both systems, a fine structure (splitting) shows up. In particular, for 
the first system it is the fine structure of the length quantization, 
while for second system it is the fine structure of the energy quan-
tization. This apparent coincidence suggests further investigation 
of the discreteness of spacetime. In addition, although the original 
HUP is restricted to position–momentum commutation while the 
time–energy uncertainty principle has been merely thought of as 
a statistical measure of variance, a more generalized idea of GUP-
corrected commutation relation involving 4-momentum might give 
rise to discontinuity of time.
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