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High energy effects onD-brane and black hole emission rates

Saurya Das,* Arundhati Dasgupta,† and Tapobrata Sarkar‡

The Institute of Mathematical Sciences, CIT Campus, Chennai (Madras) 600 113, India
~Received 18 February 1997!

We study the emission of scalar particles from a class of near-extremal five-dimensional black holes and the
correspondingD-brane configuration at high energies. We show that the distribution functions and the black
hole greybody factors are modified in the high energy tail of the Hawking spectrum in such a way that the
emission rates exactly match. We extend the results to charged scalar emission and to four dimensions.
@S0556-2821~97!02712-4#

PACS number~s!: 04.70.Dy, 04.62.1v, 11.25.Mj

I. INTRODUCTION

Recently, it was shown that a microscopic interpretation
can be given to Bekenstein-Hawking entropy of certain
stringy black holes. These black holes can be identified with
elementary or solitonic string states and the degeneracy of
the latter matches with the entropy of the black hole@1–3#.
Hawking radiation of scalars has also been understood in
terms of theirD-brane description. The Planck factor in the
Hawking spectrum was obtained in@4,5# using the distribu-
tion functions of open string states residing on theD branes.
Shortly, it was shown in@6# that the rate ofD branes decay-
ing into low energy scalars perfectly matched the Hawking
spectrum from the corresponding black hole. The black holes
considered were solutions of low energy effective action of
type-IIB string theory compactified on a five-dimensional
torus. Their D-brane description consisted ofQ5
D-5-branes wrapped aroundT5 andQ1 D-1-branes wrapped
aroundS1 contained in theT5 and a collection of open
strings carrying some momentum alongS1. The situation is
equivalent to a single ‘‘long’’D-1-brane wrappedQ1Q5
times around theS1 @5,7#. The left- and right-moving mass-
less open string states on this long brane constitute two non-
interacting one-dimensional gases, approximated by canoni-
cal ensembles at low energies. A pair of oppositely moving
states, each carrying energyv/2, can annihilate to form a
closed string state, like the graviton in the internal dimen-
sions, of energyv, which cannot reside on theD brane and
is emitted as a scalar particle. The exact decay rate can be
calculated from the Dirac-Born-Infeld action, which to lead-
ing order is given by

GD5geffvrS v

2TL
D rS v

2TR
D d4k

~2p!4
, ~1!

wherer(v/2TL,R)51/@exp(v/2TL,R)21# andgeff is related
to the parameters of the corresponding black hole.TL and
TR are the effective temperatures of the left- and right-
moving canonical ensembles. In the limitTL@TR , it was
shown that@6#

GD5AHrS v

TH
D d4k

~2p!4
, ~2!

whereTH is the Hawking temperature of the black hole@6#.
On the other hand, the Hawking spectrum from the black
hole is given by

GH5sabsrS v

TH
D d4k

~2p!4
, ~3!

wheresabs is the greybody factor for the black hole, which
for low energy emissions is just the area of the event horizon
AH . Substituting, we find that the rates~2! and ~3! match
exactly.

In @10#, the restrictionTL@TR was dropped, while still
remaining in the near-extremal region, and it was shown in
general that, forTL;TR ,

sabs5geffv
ev/TH21

~ev/2TL21!~ev/2TR21!
, ~4!

with the Hawking temperature given by

2

TH
5

1

TL
1

1

TR
. ~5!

Once again, it is seen from Eqs.~1! and ~3!, that the
D-brane and the black hole decay rates match.

In the above analyses, it was strictly assumed that the
energy of the emitted scalars was vanishingly small. Re-
cently, the high energy tail of the emission spectrum for
D-branes as well as black holes was probed in@8# although
confined to theTL@TR regime. The energyv was chosen
such thatTR ,TH!v!TL . In this regime, the right-moving
open strings were treated as a microcanonical ensemble and
the corresponding distribution function was modified to

rS v

2TR
D'exp@SR~NR82m!2SR~NR8 !#5exp~2DSR!,

~6!

whereDSR is the change in the right-moving entropy on
removal of a boson at levelm with energyv/2. HereNR8 and
NL8 are the left- and right-moving momenta on the long
D-1-brane, respectively~the actual momenta on the one
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brane is given in terms the quantum number
NL,R5NL,R8 /Q1Q5). Now, the black hole entropy is given by
@6,8#

SBH52p~ANL81ANR8 !. ~7!

In the limit TL@TR , sinceNL8@NR8 , we get from Eq.~7!,
DSBH'DSR . Thus,

rS v

2TR
D'exp@SBH~M2v!2SBH~M !#5exp~2DSBH!,

~8!

whereDSBH is the change in the entropy of the black hole of
initial massM after it emits the Hawking particle of energy
v.

On the black hole side, this change in the distribution
function has been attributed to the back reaction effects
which become important at high energies. In@14,8# this was
studied by modeling the outgoing particle as a spherical shell
and quantizing it. In the WKB approximation, the Hawking
factorr(v/TH) turned out to be precisely the right-hand side
of Eq. ~8!. The left distribution function and the greybody
factor remains unchanged and thus, once again theD-brane
and black hole emission rates are found to match.

In this paper, we will relax the conditionTL@TR and
investigate the rangev@TL,R,H . The gas of open strings is
treated as a microcanonical ensemble in both the left and the
right sectors. We show that the greybody factor gets signifi-
cantly modified in the high energy tail of the spectrum. With
these, we find that the emission rates once again match. Fi-
nally, we generalize the results for charged scalar emission
and to four dimensions.

II. D-BRANE EMISSION SPECTRUM
AT HIGH ENERGIES

Consider a one-dimensional gas of massless open strings
in a box of lengthL. The total momentumP of the gas is
given in terms of the quantum numberN8 by P52pN8/L
and the energy of a colliding string by

v/252pm/L. ~9!

For low energy excitations, such thatm!AN8, the gas is
well approximated by a canonical ensemble, and the distri-
bution function is of the Bose-Einstein form. However, for
higher energies, when

AN8!m!N8, ~10!

which amounts to the excitation energy being much greater
than the corresponding temperature, the canonical descrip-
tion is inadequate, and the gas should be described by a
microcanonical ensemble. Since we are interested in the re-
gimeTL;TR andv exceeds these temperatures, the micro-
canonical distribution functions should be invoked in the
right as well as the left sectors, which is given by@8#

rS v

2TL,R
D5exp@22p~ANL,R8 2ANL,R8 2m!#. ~11!

From Eqs.~7! and ~9!, we write

rS v

2TL
D rS v

2TR
D5expH 22pFANL81ANR8

2ANL82LS v

4p D2ANR82LS v

4p D G J
5exp~2DSL2DSR!5exp~2DSBH!.

~12!

Thus, Eq.~1! can be written as

GD5geffvexp~2DSBH!
d4k

~2p!4
. ~13!

In the black hole side, the Hawking factor becomes, on in-
clusion of back reaction@8#,

rS v

TH
D'exp@SBH~M2v!2SBH~M !#5exp~2DSBH!,

~14!

which implies

GH5sabsexp~2DSBH!
d4k

~2p!4
. ~15!

In the next section, we will calculatesabs and compare the
D-brane and black hole emission rates. Note that, in@8# the
left sector did not contribute toDSBH and the relation be-
tween the distribution functions was

rS v

2TR
D5rS v

TH
D .

Here, on the other hand, both the sectors become equally
important and contribute to the Hawking factor.

III. BLACK HOLE GREYBODY FACTORS
AT HIGH ENERGIES

In this section, we calculate the greybody factors for the
five-dimensional black hole under consideration for quanta
of high energies. We follow the methods of@9–11#. This is
appropriate in the energy regime where back reaction be-
comes important. We solve the Klein-Gordon equation in the
background of the metric given by@12#

ds25
1

~ f 1f 2f 3!
2/3F2dt2S 12

r 0
2

r 2D G1~ f 1f 2f 3!
1/3

3F S 12
r 0
2

r 2D
21

dr21r 2dV3
2G , ~16!

where

f5S 11
r n
2

r 2D S 11
r 1
2

r 2D S 11
r 5
2

r 2D
and

h512
r 0
2

r 2
. ~17!
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The parametersr 1, r 5, and r n can be expressed in terms of
the two chargesQ1, Q5, and the momentumn along the
D-1-brane as

r 1
25

gQ1

V
, r 5

25gQ5 ,

r 0
2 sinh2s

2
5

g2n

R2V
, r n

25r 0
2sinh2s,

wheres is a boost parameter. The radial part of the Klein-
Gordon equation for a scalar fieldf corresponding to the
s-wave state and propagating in the background of the above
metric is given by

h

r 3
d

drS hr3dRdr D1v2fR50. ~18!

In our calculations, we relax the low energy condition
vr 5 ,vr 1!1, originally imposed in@10# and solve the above
equation by treating the newv-dependent terms that enter
due to this relaxation, as a perturbation over the terms origi-
nally present. The following analysis is valid so long as
vr 1 ,vr 5,1, although it need not be vanishingly small. To-
wards the end of this section, we show that this is the rel-
evant range for comparing with theD-brane results. Equa-
tion ~18! is solved by dividing space into two regions, the
near and far zones, and then matching the solutions at some
intermediate region. We assume the following relation be-
tween the various parameters

r 0 , r n!rm,r 1 , r 5 , ~19!

where the near and far solutions are matched atr5rm . In the
far region, we get, from Eq.~18!,

d2c

dr2
1Fv21

23/41v2~r 1
21r 5

2!

r 2 Gc50, ~20!

where we have substitutedR5cr23/2 and the restrictions
given in Eq.~19!. The termv2(r 1

21r 5
2) was absent in@10#

because of the low energy condition. Definingr5vr , we
obtain

d2c

dr2
2F211

3/42v2~r 1
21r 5

2!

r2 Gc50, ~21!

which has the solution

c5Ap

2
r@aJ12e~r!1bN12e~r!#. ~22!

where e[v2(r 1
21r 5

2)/2. Now, in the matching region, we
use the smallr expansion for the Bessel functions, and fi-
nally obtain, for the solution,

R5Ap

2
v3/2H a

2

~r/2!2e

G~22e!
1

b

2F S r

2D
2e

cotp~12e!

2
e

sinp~12e!S r

2D
221eG J . ~23!

On the other hand, the asymptotic expansions of the Bessel
functions yield the solutions

J12e~r!5A 2

pr
cosS r2

3p

4
1

pe

2 D , ~24!

N12e~r!5A 2

pr
sinS r2

3p

4
1

pe

2 D ,
which are used to compute the incoming flux at infinity,
given by

F in52
v

4
uau2. ~25!

In this computation, we have dropped ab dependent piece.
From Eq.~23!, it is clear that the term multiplyingb is large
for small values of the perturbation parameter. This implies
thatb/a!1.

In the near zone, Eq.~18! can be written as

h

r 3
d

drS hr3dRdr D1v2F ~r nr 1r 5!
2

r 6
1

~r 1r 5!
2

r 4
1

~r 1
21r 5

2!

r 2 GR50.

~26!

Defining new variablesv and parametersA,B as

v5
r 0
2

r 2
; A5

v2

4 S r 1r 5r nr 0
D 2; B5

v2

4 S r 1r 5r 0
D 2, ~27!

Eq. ~26! becomes

~12v !
d

dvS ~12v !
dR

dv D1FA1
B

v
1

e

2v2GR50. ~28!

Notice that close to the horizon,v→12. Thus, on writing
v512d and expanding the 1/v2 term in square brackets, we
obtain the equation for the near region as

~12v !
d

dvS ~12v !
dR

dv D1FA1
B1e/2

v
1

ed

2 GR50.

~29!

Hereafter, we drop theed/2 term, which is very small. In
order to compute the flux of neutral scalars absorbed into the
black hole, we need to know the near region solution very
close to the horizon. In Eq.~28!, if we make the substitution
y52 ln(12v), we obtain, in this region, a simple harmonic
equation forR: namely,

d2R

dy2
1SA1B1

e

2DR50. ~30!

And the incoming solution is given by

Rin5KexpS 2 iAA1B1
e

2
ln~12v ! D . ~31!

Substitutingz5(12v), and writing an ansatz for the solu-
tion asR5Kz2 i (p1q)/2R1, we obtain
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z~12z!
d2R1

dz2
1~12z!~12 ip2 iq !

dR1
dz

1pqR150.

~32!

This is seen to be a hypergeometric equation inR, where we
have definedp andq by the equations

~p1q!254SA1B1
e

2D ; pq5B1
e

2
. ~33!

The above equation has the solution

R15F~2 ip,2 iq,12 ip2 iq,z!, ~34!

whereF is the hypergeometric function, and hence the full
solution forR is given by

R5Kz2 i ~p1q!/2F~2 ip,2 iq,12 ip2 iq,z!. ~35!

Next, we expressp andq in terms of the black hole param-
eters. Solving the Eq.~33! yields, forp andq,

p5
vr 1r 5
2r 0

es1
vr 0
4

~r 1
21r 5

2!

r 1r 5

1

coshs
,

q5
vr 1r 5
2r 0

e2s1
vr 0
4

~r 1
21r 5

2!

r 1r 5

1

coshs
. ~36!

Substituting forTL,R , namely,

TL,R5
r 0

2pr 1r 5
e6s, ~37!

and usingr 1;r 5, we get

p5
v

4pTR
1

vr 0
2coshs

and

q5
v

4pTL
1

vr 0
2coshs

. ~38!

In order to proceed to calculate the absorption cross section,
let us first match the far and near zone solutions atr5rm .
Extrapolating the near solution given by Eq.~35! to the re-
gion of smallv ~large r ) yields

R5KF G~12 ip2 iq !

G~12 ip !G~12 iq !
1vm~a1blnvm!G , ~39!

wherea andb are constants depending onp andq. Next, we
expand the right-hand side of Eq.~23! in powers ofe, and
retaining the lowest order terms ine, we find the matching
condition atr5rm :

Ap

2
v3/2Fa2 @12e ln~rm/2!#G5K@E1vm~a1blnvm!#,

~40!

where

E5
G~12 ip2 iq !

G~12 ip !G~12 iq !

and we have imposed the conditionz.1. The matching re-
gion is chosen such thatvrm is slightly less than unity. Thus,
the second term on the left-hand side of Eq.~40! can be
dropped, and we get the relation as in@10#:

Ap

2
v3/2

a

2
5KE. ~41!

Now, let us calculate the absorption cross section@6#. The
flux into the black hole, from Eq.~31! is given by

Fabs52r 0
2~p1q!uKu2. ~42!

From Eqs.~25! and ~42!, we get

sabs5
4p

v3

Fabs

F in
5
2p2r 0

2

v
~p1q!

1

uEu2
. ~43!

Using the identity

uG~12 ix !u25
px

sinhpx
,

we get

1

uEu2
5
2ppq

p1q

exp@2p~p1q!#21

@exp~2pp!21#@exp~2pq!21#
. ~44!

Now, recalling the expressions forp andq, in Eq. ~36!, we
see that in the limit whenv/TL ,R@1, we can ignore the
factors of unity in the numerator and denominator and finally
we are left with the following expression for the absorption
cross section:

sabs5sabs
0 1sabs

1 , ~45!

where sabs
0 5p3r 1

2r 5
2v and the correction term

sabs
1 54p3vr 0

2r 1r 5coshs. Thus, we see, following the rela-
tion between the various parameters that we have considered,

sabs
1

sabs
0 ;S r 0r 1D

2

!1.

Using the definitiongeff5p3r 1
2r 5

2, we get

sabs5geffv. ~46!

Now, let us compare the expressions for the black hole
andD-brane decay rates at the high energy regime that we
are considering. Substituting Eq.~46! in Eq. ~15!, we see that
the black hole decay rate becomes

GH5geffvexp~2DSBH!
d4k

~2p!4
~47!

which is just theD-brane decay rate~13!. It may be noted
that this matching cannot be obtained by naively ignoring the
unity factors in Eqs.~1!, ~3!, and~4!. This is because of the
fact that in the regime of high energy particle emission that
we are interested in, the Planckian distribution of the Hawk-
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ing particles is no longer valid and we have to instead resort
to Eqs.~12! and ~14!. Hence our result~46! effects a subtle
match between the black hole andD-brane decay rates at
high energies. It can be shown that in the special case
TL@TR (s→`), the results of@8# are reproduced.

A word about the range of validity of the above result is
in order. As stated earlier, microcanonical corrections be-
come important when the condition~10! holds. Using Eq.~9!
and substituting the expression for temperature@6#, namely,

TL,R5A8EL,R

Lp f
~48!

in Eq. ~10!, we obtain

v

TL,R
@1 ~49!

which was the condition under which we had derived Eq.
~46!. Hence we see that taking microcanonical corrections
into consideration naturally enforces the high energy condi-
tion ~49!. In terms of the black hole parameters, this can be
written as

vr 5@
r 0
r 1
. ~50!

Also, our perturbative analysis is valid so long asvr 5,1,
which is consistent with the conditionm!NL,R8 of Eq. ~10!.
Hence, the range ofv for which our calculations are valid is

r 0
r 1

!vr 5,1. ~51!

On the other hand, it is clear that for low energies~canonical
distribution! m!AN8 implying vr 5!r 0 /r 1. Thus, it is suf-
ficient to calculate the greybody factor forvr 5!1, as in
@10#. However, in our case, it becomes important to look at
sabs for higher v, and Eq. ~51! exhausts the range over
which theD-brane distribution functions follow that of mi-
crocanonical ensembles.

IV. CHARGED EMISSION RATES
INCLUDING BACK REACTION

The results of the previous sections can be extended to
include charged scalar emission. The decay rate for low en-
ergy charged scalar emission fromD branes, has been ob-
tained in@13#. The emitted massless graviton field with po-
larization along the compact directions now have a net
momentum along the compactS1 direction on which the
one-brane is wrapped. The decay rate is given by

GD5geff
~v22e2!

v
rS v1e

2TL
D rS v2e

2TR
D d4k

~2p!4
. ~52!

Comparing with Eq.~1!, we find that here the energies and
the momenta of the left and right modes are shifted by a
factor of6e/2, respectively. This ensures that there is a net
momentume in the S1 direction, while the energy of the
outgoing particle isv. This net momenta along the compact
direction gives rise to a Kaluza-Klein chargee for the space-

time scalar. A mass is also endowed such thatueu5m. When
TL@TR , andv is low, the emission rate is

GD5
AH~v2e!

v
rS v2e

2TR
D d4k

~2p!4
. ~53!

For higher energies, however, the decay rate is modified. In
the regimeTL;TR , (v6e)/2TL,R@1, the density functions
are best approximated as a microcanonical distribution in
this regime. The expression for the left and right densities are
same as that in Eq.~12!, however, with energies (v1e)/2
and (v2e)/2 of the left and right particles, respectively. The
product of the left and right density functions combine to
give

rS v1e

2TL
D rS v2e

2TR
D5exp~2DSBH!, ~54!

where now DSBH is given by DSBH5S(M ,Q)
2S(M2v,Q2e). Here M is the Arnowitt-Deser-Misner
~ADM ! mass of the black hole andQ its Kaluza-Klein
charge, proportional to the momentumNL2NR . Clearly
DSBH is the change in entropy due to the emission of a
particle with energyv and chargee. Then Eq.~52! can be
written as

GD5geff
~v22e2!

v
exp~2DSBH!

d4k

~2p!4
. ~55!

The microcanonical decay rate thus obtained can be re-
produced exactly from field theory, following@8#, using the
techniques developed in@14#. Charged black holes emit
charged particles at a rate given by

GH5
Av22e2

v
sabsrS v2e

TH
D d4k

~2p!4
. ~56!

The density function is evaluated by computing Bogoliubov
coefficients. These relate the wave function at the horizon to
the normal components of the wave function atr→`. Due to
the infinite boosts associated with the horizon, the wave
functionfh is well approximated by the WKB value

fh5exp~ ıS!. ~57!

The actionS is calculated along the trajectory of the charged
shell which approximates the outgoing charged scalar wave.
The Bogoliubov coefficients are, hence,

avv85
1

u~r ,e!
E

2`

`

eıvteıSdt,

bvv85
1

v~r ,2e!
E

2`

`

e2ıvteıSdt, ~58!

whereu(r ,e) andv(r ,2e) give the radial wave function of
the positive energy, positively charged particle and negative
energy and negatively charged particle, respectively. Since
v and the action diverge near the horizon, the saddle point
value of the integral dominates. The saddle point value is
determined through the equation
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]S

]t
6v50. ~59!

By the Hamilton Jacobi equation, the saddle point corre-
sponds toH7e57v, H being the Hamiltonian of the out-
going particle. Since the trajectory of the charged shell is that
of a null geodesic in the metric@14#

ds252@Nt~M1H,Q1e!dt#2

1@dr1Nr~M1H,Q1e!dt#2, ~60!

we have

ṙ5Nt~M1H,Q1e!2Nr~M1H,Q1e!. ~61!

Using this and the fact that]S/]r5P (P is the canonical
conjugate momentum!, we find

uavv8u5expS 2ImE
r10

r f
P1dr D ,

ubvv8u5expS 2ImE
r20

r f
P2dr D , ~62!

where P6 correspond to the positive energy, positively
charged particle and negative energy, negatively charged
particle trajectories, respectively. As in the case of@8#, the
positive energy trajectory gives a real value of the integra-
tion, while there is an imaginary contribution from the other.
As r 05R(M2v,Q2e)2e,

ImE
r o

r f
P2dr52pE

0

2v dH2FdQ

k~M1H,Q2e!

52
1

2EM ,Q

M2v,Q2e

dSBH , ~63!

where we have usedṙ dP5dH2FdQ near the horizon and
dH5(k/2p)dSBH1FdQ, F being the electromagnetic sca-
lar potential at the horizon. Thus

ubvv8u
25exp@SBH~M2v,Q2e!2SBH~M ,Q!#

5exp~2DSBH!, uavv8u51. ~64!

The density function, in the high energy approximation is@8#

rS v2e

TH
D'

ubvv8u
2

uavv8u
2 . ~65!

Therefore,

rS v2e

TH
D5exp~2DSBH!, ~66!

and from Eq.~54!, it is seen that this equals the value of
r(v1e/2TL)r(v2e/2TR) obtained from theD-brane pic-
ture.

The greybody factorsabs for high energies is determined
using the same methods as in the neutral emission case. The
scalar equation is

S 11
r 1
2

r 2D S 11
r 5
2

r 2D Fv22e21~vsinhs2ecoshs!2
r 0
2

r 2GR
1
h

r 3
d

drS hr3dRdr D50. ~67!

By making the following transformations as in@10#:

v825v22e2, e6s85e6sS v7e

v8 D ,
r n85r 0sinhs8, ~68!

we obtain Eq. ~18! with v→v8 and r n→r n8. To order
(r 0 /r 1)

2, we again obtain thesabsas in @10# as

sabs5geffv8
e~v2eF!/TH21

~e~v1e!/2TL21!~e~v2e!/2TR21!
. ~69!

Here (v1e)/TL1(v2e)/TR5(v2eF)/TH and F
5tanhs is the value of the scalar potential at the horizon.
Thus clearly asv8/TL,R.1, sabs→geffv8. Inserting this
value in Eq.~56!, it is seen to match with Eq.~55!.

V. SCALAR EMISSION IN FOUR DIMENSIONS

In this section, we briefly comment on the extension of
our results to include high energy emission of scalar particles
in the more realistic case of four dimensions. In the five
dimensional case that we have analyzed, inclusion of the
high energy effects did not affect the matching of the black
hole andD-brane decay rates, even when the low energy
condition of @10# was relaxed, up to leading order of the
perturbation parameter that we considered. However, in this
case we shall show that the same is not true, and that there is
indeed a leading order correction tosabs which means that
the decay rates no longer match exactly as one goes beyond
the low energy conditionvr 1!1. We shall not indicate the
calculations explicitly, which are essentially in the same
lines as in Sec. III, but rather state the main results. The
results for charged scalar emission rates may be obtained by
a simple extension@15#. The relevant wave equation whose
solution we seek is@15,16#

h

r 2
d

drS hr2dRdr D1v2fR50, ~70!

where f5) i51
4 (11r i /r ), r i ’s being the parameters of the

four-dimensional black hole. This equation can be expanded
in powers of 1/r in the near and far regions exactly as we did
in the five-dimensional case. For the near region, keeping the
next to leading order term in 1/r leads to the equation

d2c

dr2
1S 11

A

r Dv2c50, ~71!

where

A5~r 11r 21r 3!, c5rR.
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Interestingly, this equation is formally similar to the Cou-
lomb wave equation. It has a solution in terms of confluent
hypergeometric equations: namely,

c5aF~hr!1bG~hr!, ~72!

wherer5vr and h5(2Av)/2 is a small parameter. The
asymptotic form for this expression for larger is given by

F5gcosu1 fsinu, G5 fcosu2gsinu, ~73!

where f and g are constants depending on the black hole
parameters: namely, to first order inh,

f511
h

2r
,

g52
h

4r2
, ~74!

u5r2h ln2r2hg,

g being Euler’s constant. The flux of incoming particles cal-
culated from this form for the wave function at infinity is
given by

f in5
uau2

4 S 212
h

2vr
2

h

4v2r 2D S 2v1
h

r D . ~75!

It can be seen that most of the terms in the above expression
can be neglected asr→` and we are left with

f in5
uau2

4
v. ~76!

Note that we have dropped ab-dependent piece inf in as
exactly in the five-dimensional calculation it turns out to be
extremely small compared to thea-dependent term.

In the near region, Eq.~70! reduces after keeping the lead-
ing order terms in descending powers of 1/r to

h

r 2
d

drS hr2dRdr D1S Ar 4 1
B

r 3
1
C

r 2Dv2R50. ~77!

In terms of the variablesa andb defined according to

~a1b!254~A1B1C!; ab5B1C.

very close to the horizon we can once again make the sub-
stitutiony52 ln(12v) so that Eq.~77! reduces to the simple
harmonic equation

d2R

dy2
1~a1b!R50 ~78!

and, just as in the five-dimensional case,a andb are related
to the black hole parameters, the relation being given by

a5
v

4pTR
12pvTH~r 1r 31r 2r 31r 1r 2!,

b5
v

4pTL
12pvTH~r 1r 31r 2r 31r 1r 2!. ~79!

Again writing the incoming solution as

R5Kexp@2 iAA1B1Cln~12v !#, ~80!

the incoming flux at the black hole horizon is calculated to
be

f abs5uKu2r 0
~a1b!

2
. ~81!

Now, matching the near and the far zone solutions as in@10#
gives the relation

K

a
5

v

ES 12
ph

2 D , ~82!

whereE is given in terms ofG functions as before as

E5
G~12 ia2 ib !

G~12 ia !G~12 ib !
, ~83!

so that the calculation forsabs finally yields

sabs5
4p

v2

f abs
f in

5sabs
0 @12ph#, ~84!

where sabs
0 54p2r 1r 2r 3v at high energies. Hence we see

from Eq. ~84! that there is an orderh correction tosabs, in
contrast to the five-dimensional case where this correction
was negligible. This, along with the microcanonical condi-
tion implies that theD-brane and black hole decay rates
match only in the energy regime given by

Ar 0
r 1

!vr 1!1,

where the emission rates in four dimensions is given by

GH5GD54p2r 1r 2r 3vexp~2DSBH!
d3k

~2p!3
.

The difference between the five- and four-dimensional
cases that we have dealt with is also apparent from the gen-
eral analysis of@16#. The far zone equation that was effec-
tively the source of the difference in the two different dimen-
sions can be written to leading order forD dimensions as

d2c

dr2
1F12

~D22!~D24!

r2 Gc50, ~85!

wherer5vr , andR5r2(D22)/2c. The general solution of
the above equation is

F5Ap

2
r1/2J~D23!/2~r!. ~86!

In five dimensions, the addition of an interaction term also of
the form 1/r2 simply modifies the order of the Bessel func-
tion. The resulting corrections insabsis negligible. However,
in four dimensions, there is a new 1/r term, which gives rise
to the Coulomb wave function and a leading order correction
in the final result.
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VI. DISCUSSIONS

In this paper, we have compared black hole and
D-brane decay rates for neutral and charged scalar emission
at high energies. The microcanonical picture was used in the
D-brane side, which naturally incorporates the condition
v/TL,R@1. This condition was crucially used in calculating
the black hole greybody factor. In five dimensions, the decay
rates match for all values of energy consistent with the mi-
crocanonical picture, while in four dimensions, they match in
a restricted range. It would be interesting to investigate this
difference and see if a more careful analysis can bring about
an exact matching in four dimensions.

In our calculation of high energy greybody factors, it was
assumed that there were no explicit back reaction effects as
in the case of the Hawking spectrum. This can be justified as
follows: the modified black hole metric due to back reaction
of the shell can be approximated by the original metric with
a shift in the Arnowitt-Deser-Misner~ADM ! mass of the

black hole byv. The corresponding effect on theD-brane is
the reduction of the excitation energy of the gas of open
strings, i.e.,E5EL1ER→E2v. SinceE can be written as

E5
pr 0

2cosh2s

8G5
,

the parametersr 0 ands are changed accordingly. It can be
shown that these changes result in a correction also of order
(r 0 /r 1)

2 in sabsand hence can be ignored.

ACKNOWLEDGMENTS

We thank S. R. Das, T. Jayaraman, P. Majumdar, P. Ra-
madevi, and G. Sengupta for discussions. One of us~A.D!
would like to thank G. Date for discussions. We thank the
organizers of the Puri Workshop, for hospitality, where part
of the work was done.

@1# A. Sen, Mod. Phys. Lett. A10, 2081~1995!.
@2# A. Strominger and C. Vafa, Phys. Lett. B379, 99 ~1996!.
@3# J. M. Maldacena and A. Strominger, Phys. Rev. Lett.77, 428

~1996!; C. V. Johnson, R. R. Khuri, and R. C. Myers, Phys.
Lett. B 378, 78 ~1996!; M. Cvetic and D. Youm, Phys. Rev. D
54, 2612~1996!; G. Horowitz, Report No. gr-qc/9604051~un-
published!; A. A. Tseytlin, Nucl. Phys.B477, 431 ~1996!; N.
Hambli, Phys. Rev. D54, 5129~1996!.

@4# C. Callan and J. Maldacena, Nucl. Phys.B475, 645 ~1996!.
@5# J. Maldacena and L. Susskind, Nucl. Phys.B475, 679 ~1996!.
@6# S. R. Das and S. D. Mathur, Nucl. Phys.B478, 561 ~1996!.
@7# S. R. Das and S. D. Mathur, Phys. Lett. B375, 103 ~1996!.
@8# E. Keski-Vakkuri and P. Kraus, Report No. hep-th/9610045

~unpublished!.
@9# W. G. Unruh, Phys. Rev. D14, 3251~1976!.

@10# J. Maldacena and A. Strominger, Phys. Rev. D55, 861~1997!.
@11# S. R. Das, G. Gibbons, and S. D. Mathur, Phys. Rev. Lett.78,

417 ~1997!.
@12# G. Horowitz, J. Maldacena, and A. Strominger, Phys. Lett. B

383, 151 ~1996!.
@13# S. S. Gubser and I. R. Klebanov, Nucl. Phys.B482, 173

~1996!.
@14# P. Kraus and F. Wilczek, Nucl. Phys.B433, 665~1994!; B437,

231 ~1994!.
@15# S. S. Gubser and I. R. Klebanov, Phys. Rev. Lett.77, 4491

~1996!.
@16# S. P. de Alwis and K. Sato, Phys. Rev. D55, 6181~1997!.

7700 55SAURYA DAS, ARUNDHATI DASGUPTA, AND TAPOBRATA SARKAR


