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High energy effects onD-brane and black hole emission rates
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We study the emission of scalar particles from a class of near-extremal five-dimensional black holes and the
correspondingd-brane configuration at high energies. We show that the distribution functions and the black
hole greybody factors are modified in the high energy tail of the Hawking spectrum in such a way that the
emission rates exactly match. We extend the results to charged scalar emission and to four dimensions.
[S0556-282197)02712-4
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. INTRODUCTION o d*

FD:AHP(T_H —(277)41 @

Recently, it was shown that a microscopic interpretation

can be given to Bekenstein-Hawking entropy of certainwhereT,, is the Hawking temperature of the black h§&.

stringy black holes. These black holes can be identified witlpn the other hand, the Hawking spectrum from the black
elementary or solitonic string states and the degeneracy gfple is given by

the latter matches with the entropy of the black hidle 3].
Hawking radiation of scalars has also been understood in o\ d%
terms of theirD-brane description. The Planck factor in the Fy=0app T 2m*
Hawking spectrum was obtained [i4,5] using the distribu-
tion functions of open string states residing on Ihdranes.  where o4, is the greybody factor for the black hole, which
Shortly, it was shown ii6] that the rate oD branes decay- for low energy emissions is just the area of the event horizon
ing into low energy scalars perfectly matched the HawkingA,, . Substituting, we find that the rat€¢8) and (3) match
spectrum from the corresponding black hole. The black holegxactly.
considered were solutions of low energy effective action of In [10], the restrictionT >Tg was dropped, while still
type-lIB string theory compactified on a five-dimensional remaining in the near-extremal region, and it was shown in
torus. Their D-brane description consisted 0fQs  general that, fo ~Tg,
D-5-branes wrapped aroui@ andQ, D-1-branes wrapped
around St contained in theT® and a collection of open _ e”/T—1
strings carrying some momentum alo8y The situation is Tabs™ Yeff® (e”?TL—1)(e®?R—1)" )
equivalent to a single “long”D-1-brane wrappedd;Qs
times around th&! [5,7]. The left- and right-moving mass- with the Hawking temperature given by
less open string states on this long brane constitute two non-
interacting one-dimensional gases, approximated by canoni- 2 1 1

. ! . . — =t —. (5)
cal ensembles at low energies. A pair of oppositely moving Ty T. Tgr
states, each carrying energy2, can annihilate to form a
closed string state, like the graviton in the internal dimen-Once again, it is seen from Eqs$l) and (3), that the
sions, of energyw, which cannot reside on th2 brane and D-brane and the black hole decay rates match.
is emitted as a scalar particle. The exact decay rate can be In the above analyses, it was strictly assumed that the
calculated from the Dirac-Born-Infeld action, which to lead- energy of the emitted scalars was vanishingly small. Re-

©)

ing order is given by cently, the high energy tail of the emission spectrum for
D-branes as well as black holes was probef&halthough
B o o | d% confined to theT > Ty regime. The energyw was chosen
I'o=errwp 27, )P\ 2T (2m)* @ such thatTgr, Tu<w<T_ . In this regime, the right-moving

open strings were treated as a microcanonical ensemble and
wherep(w/2T gr) =1[exp@/2T_ g)—1] andg.y is related  the corresponding distribution function was modified to
to the parameters of the corresponding black hole.and

Tr are the effective temperatures of the left- and right- 0] , ,
R f g p(—)~exqu<NR—m)—sR<NR>]=exrx—AsR>,

moving canonical ensembles. In the linfi{ >Tg, it was 2TR
shown thaf 6] (6)
where ASy is the change in the right-moving entropy on
*Electronic address: saurya@imsc.ernet.in removal of a boson at leveh with energyw/2. HerEN(Q and
"Electronic address: dasgupta@imsc.ernet.in N, are the left- and right-moving momenta on the long
*Electronic address: sarkar@imsc.ernet.in D-1-brane, respectivelythe actual momenta on the one
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IN[ +NE

w \/N' L w
4w R lam

Sen=2m(N[ + Np). (7) —\/NL—L(4

In the limit T >Tg, sinceN;>Ng, we get from Eq.(7), —exg —AS —ASe)=exn — ASay).
ASg=ASs. Ths (—AS —ASg)=exp(—ASgy)

brane is given in terms the quantum number ® »
p exp — 27
2T,

N_ r=N/| r/Q:1Qs). Now, the black hole entropy is given by p 2Tx =
[6,8]

J

(12
p(%) ~exf Sgu(M — w) — Sgu(M) ]=exp(— ASgy), Thus, Eqg.(1) can be written as
® B d*k
whereA Sg,, is the change in the entropy of the black hole of Fo=erwexi _ASBH)W' 13

:)unal massM after it emits the Hawking particle of energy In the black hole side, the Hawking factor becomes, on in-

On the black hole side, this change in the distributionCIUSIOn of back reactiofé],

function has been attributed to the back reaction effects

which become important at high energies[14,8] this was p(

studied by modeling the outgoing particle as a spherical shell

and quantizing it. In the WKB approximation, the Hawking

factor p(w/Ty) turned out to be precisely the right-hand side which implies

of Eq. (8). The left distribution function and the greybody

factor remains unchanged and thus, once agairDtlane

and black hole emission rates are found to match. FH:Uab@Xq_ASBH)W' (15
In this paper, we will relax the conditioi >Tg and

investigate the range>T_ gy . The gas of open strings is In the next section, we will calculate,,s and compare the

treated as a microcanonical ensemble in both the left and the-brane and black hole emission rates. Note thaf8irthe

right sectors. We show that the greybody factor gets signifiteft sector did not contribute ta Sz and the relation be-

cantly modified in the high energy tail of the spectrum. With tween the distribution functions was

these, we find that the emission rates once again match. Fi-

nally, we generalize the results for charged scalar emission p( w )_p( ©

(O]

ﬁ) ~exf Sgu(M — @) — Sgn(M) ] =exp( — ASgy),
(14)

d*k

and to four dimensions. 2Tk Ty
Il. D-BRANE EMISSION SPECTRUM Here, on the other hand, both the sectors become equally
AT HIGH ENERGIES important and contribute to the Hawking factor.
_ Consider a one-dimensional gas of massless open _strings IIl. BLACK HOLE GREYBODY FACTORS
in a box of lengthL. The total momentun® of the gas is AT HIGH ENERGIES
given in terms of the quantum numbil' by P=27N’/L
and the energy of a colliding string by In this section, we calculate the greybody factors for the
five-dimensional black hole under consideration for quanta
w/2=2mm/L. (9)  of high energies. We follow the methods [&-11]. This is

o . _ appropriate in the energy regime where back reaction be-
For low energy excitations, such that<yN’, the gas is  comes important. We solve the Klein-Gordon equation in the
well approximated by a canonical ensemble, and the distripackground of the metric given 2]

bution function is of the Bose-Einstein form. However, for

higher energies, when 1 r2
2 0 13
ds?=———— —dt?| 1— —| [+ (f,f,f3)
JN’<m<N’, (10) (f1fof3) r
2\ -1
which amounts to the excitation energy being much greater x| l1= r70) dr2+r2dQ2|, (16)
than the corresponding temperature, the canonical descrip- r
tion is inadequate, and the gas should be described by a
microcanonical ensemble. Since we are interested in the rd/here
gime T ~Tg and w exceeds these temperatures, the micro- r2 r2 r2
canonical distribution functions should be invoked in the f=|1+— 1+_; 1+_2
right as well as the left sectors, which is given [I8} r r r
® and
p(— =exd —27m(JYN[ g— VN[ g—m)]. (11
2T, R r2
h=1——9. (17)

From Egs.(7) and(9), we write r
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The parameters,, rs, andr, can be expressed in terms of On the other hand, the asymptotic expansions of the Bessel
the two charge€Q;, Qs, and the momentunm along the functions yield the solutions
D-1-brane as

Ji-dp)= \F ﬁ( 7 m) 24
I’%:gTQl, réngS: 1-p)= ﬂ_—pCO Pt (24)
,Sinh20 g®n 2_ 2. N;_(p)= \/zsin(p—3—ﬂ+ E)
>~ Ry ra=rgsintfo, o i3
which are used to compute the incoming flux at infinity,

where o is a boost parameter. The radial part of the Klein-
Gordon equation for a scalar field corresponding to the
s-wave state and propagating in the background of the above »

metric is given by b =- Z|a|2' (25)

given by

+ w?fR=0. (18 In this computation, we have droppedBadependent piece.
From Eq.(23), it is clear that the term multiplying is large
for small values of the perturbation parameter. This implies
that B/ a<<1.

In the near zone, Eq18) can be written as

hdf ,dR
rFarl " dr

In our calculations, we relax the low energy condition
wrs,wr <1, originally imposed if10] and solve the above
equation by treating the new-dependent terms that enter
due to this relaxation, as a perturbation over the terms origi-, 4 ( dR) ,

2 2 (24,2
i o . Ml 1F rar r2+r
nally present. The following analysis is valid so long as 3 o hﬁa to ( nr16 5) +( 1r45) +( lr2 5)

wr1,wrs<1, although it need not be vanishingly small. To-

wards the end of this section, we show that this is the rel- (26)
evant range for comparing with tHe-brane results. Equa- _ :
tion (18) is solved by dividing space into two regions, the Defining new variables and parametera,B as
near and far zones, and then matching the solutions at some r2 2 2 2 2
. . . . . 0 w r1r5rn w r1I’5
intermediate region. We assume the following relation be- v=—, A=— ) : B= _(_) . (@27
tween the various parameters r 41 1o 41\ 1o

o, Mn<fm<rq, Is, (19) Eq. (26) becomes
where the near and far solutions are matched=at,,. In the _odf 0 dR B e\
far region, we get, from Eq.18), (1 v)dv((1 v) dv AT v + 202 R=0. (28

d?y
dr?

Notice that close to the horizow,— 1. Thus, on writing
v=1- & and expanding the @7 term in square brackets, we
obtain the equation for the near region as

2/p2 2
, 34+ 0 (ritrg)
+| 0w+ 2

=0, (20

—3/2

where we have substituteld= ir and the restrictions

given in Eq.(19). The termwz(rf-l-_r_é) was absent irf10] (1_0)1 (1_U)d_R +l s B+ 6/2+€_5} _
because of the low energy condition. Definipg wr, we dv dv
obtain (29
d?y 3/4— w?(r2+r32) Hereafter, we drop thes/2 term, which is very small. In
dp? |~ 1+ P A $=0, (21)  order to compute the flux of neutral scalars absorbed into the
black hole, we need to know the near region solution very
which has the solution close to the horizon. In Ed28), if we make the substitution
y=—In(1-v), we obtain, in this region, a simple harmonic
T equation forR: namely,
y=\ 7 rladi-dp)+BNi-dp)]. (22)
d’R AL € R
where ezwz(r§+r§)/2. Now, in the matching region, we W+ B 2 0. (30

use the smalp expansion for the Bessel functions, and fi- . . o
nally obtain, for the solution, And the incoming solution is given by

R \/gwaxz{%é“g)ecom(l_e) Rm:Kexp<—i\/A+B+§|n(1—u)). (31)

_ € P e Substitutingz=(1—wv), and writing an ansatz for the solu-
sinr(1l—e€)\ 2

tion asR=Kz 'P*92R, we obtain

] . (23
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d?R, . dRy
z(l—z)d7—+(1—z)(1—|p—|q)E+qu1=0.
(32

This is seen to be a hypergeometric equatioR jnvhere we
have defineg andq by the equations

€ €
(p+0q)%=4 A+B+ 3] pa=B+s. (33
The above equation has the solution
R;=F(=ip,—iq,1-ip—iq,2), (34)

whereF is the hypergeometric function, and hence the full

solution forR is given by

R=Kz P*O2F(—ip —iq,1-ip—iq,z). (35

Next, we expresp andq in terms of the black hole param-

eters. Solving the Eq33) yields, forp andq,

Coryrs o org (ritrd) 1
T 2rp 4 ryg coshr’
2 2
ol qr ol (ri+rg) 1
q=—l ooy 21 ° . (36
2rg 4 rqr5 coshr
Substituting forT, g, namely,
Tl e 3
L,R_me (37
and usingr,~rs, we get
_ w " wro
P= 47 Tg  2coshr
and
w wrl
- (39)

q 47T, 2coshr

In order to proceed to calculate the absorption cross section,

let us first match the far and near zone solutions=at ;.
Extrapolating the near solution given by E85) to the re-
gion of smallv (larger) yields

B I'(1-ip—iq)
R‘K{m—ip)r(l—iq)

+vp(a+blnug)|, (39

wherea andb are constants depending prandq. Next, we
expand the right-hand side of E(3) in powers ofe, and
retaining the lowest order terms & we find the matching
condition atr =r,:

T 3/ o
0¥ S[1=ein(pn/2)]| = K[E+vm(@+binoy)],
(40)

where
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_ I'1—-ip—iq)
S T'(1-ip)T'(1—iq)

and we have imposed the conditiar-1. The matching re-
gion is chosen such thair , is slightly less than unity. Thus,
the second term on the left-hand side of E40) can be

dropped, and we get the relation ag 0]

7
\[2(1) 5 =KE.

Now, let us calculate the absorption cross secfi®h The
flux into the black hole, from Eq31) is given by

(41)

D o= —T5(P+ K[ (42)
From Egs.(25) and(42), we get
A Dy 2772r(2)
Tabs= T P T(D+Q)@- (43
Using the identity
i) 2=
(=) sinhmrx’
we get
1 _ 27pq exg2m(p+q)]—1 44
[E " p+q [exp2mp)—1][exp2mq)—1]"

Now, recalling the expressions fprandg, in Eg. (36), we
see that in the limit whero/T, ,R>1, we can ignore the
factors of unity in the numerator and denominator and finally
we are left with the following expression for the absorption
Cross section:

_ 0 1
Oabs— Oabst Tabs (45

where o =7°rir2e and the correction term
olp=4mlwririrscoshr. Thus, we see, following the rela-

tion between the various parameters that we have considered,

2
r
—0) <1.
My

1

T abs
0

T abs

Using the definitiorgeq=7rarZ, we get

(46)

T abs™ Jeff®@-

Now, let us compare the expressions for the black hole
and D-brane decay rates at the high energy regime that we
are considering. Substituting E@6) in Eq. (15), we see that
the black hole decay rate becomes

d*k

I'yy=gerrweXxp( — ASgp)

which is just theD-brane decay rat€l3). It may be noted
that this matching cannot be obtained by naively ignoring the
unity factors in Eqs(1), (3), and(4). This is because of the
fact that in the regime of high energy particle emission that
we are interested in, the Planckian distribution of the Hawk-
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ing particles is no longer valid and we have to instead resortime scalar. A mass is also endowed such tapt m. When

to Egs.(12) and(14). Hence our resul(46) effects a subtle T, >Tg, andw is low, the emission rate is

match between the black hole amibrane decay rates at

high energies. It can be shown that in the special case I

T.>Tg (o0—), the results of8] are reproduced. D )

A word about the range of validity of the above result is

in order. As stated earlier, microcanonical corrections befor higher energies, however, the decay rate is modified. In

come important when the conditi¢h0) holds. Using Eq(9)  the regimeT ~Tg, (0*€)/2T g>1, the density functions

and substituting the expression for temperafiile namely, are best approximated as a microcanonical distribution in
this regime. The expression for the left and right densities are

_ [8ELR (ag Sameas that in Eq12), however, with energiese(+ €)/2
Laf

:AH(w—e) p(w—e) d*k 53

2Tr | (2m)*

TLR= and (w—e)/2 of the left and right particles, respectively. The
product of the left and right density functions combine to
in Eq. (10), we obtain give
w w+e w—e
>1 49) — )l — = _
TL,R ( p 2T|_ )p 2TR ) exq ASBH)! (54)

which was the condition under which we had derived EQ\yhere now ASz, is given by ASgy=S(M,Q)
(46). Hence we see that taking microcanonical corrections_ S(M—w,Q—¢€). Here M is the Arnowitt-Deser-M,isner

into consideration naturally enforces the high energy condi(ADM) mass of the black hole an@ its Kaluza-Klein
tion (49). In terms of the black hole parameters, this can becharge proportional to the momentuh —Ng. Clearly

written as ASgy is the change in entropy due to the emission of a

r particle with energyw and charges. Then Eq.(52) can be

org> r_o' (50  written as
1
. . (w®—e?) d
Also, our perturbative analysis is valid so long @ss<<1, FD=geﬁ—exq—ASBH)W. (59
w v

which is consistent with the conditiam<N; g of Eq. (10).

Hence, the range ab for which our calculations are valid is The microcanonical decay rate thus obtained can be re-

r produced exactly from field theory, followin@], using the
—°<wr5<l. (51 techniques developed ifl4]. Charged black holes emit
M charged particles at a rate given by

On the other hand, it is clear that for low energieanonical 7
s . . . w"—e
distribution m< /N’ implying wrs<ro/r;. Thus, it is suf- Ty= T
ficient to calculate the greybody factor fasrs<1, as in w
[10]. However, in our case, it becomes important to look a
o aps fOr higher o, and Eq.(51) exhausts the range over
which theD-brane distribution functions follow that of mi-

crocanonical ensembles.

w— e) d*k
(56)

Ty J(2m)*

t’I'he density function is evaluated by computing Bogoliubov
coefficients. These relate the wave function at the horizon to
the normal components of the wave functiomatec. Due to

the infinite boosts associated with the horizon, the wave

function ¢, is well approximated by the WKB value
IV. CHARGED EMISSION RATES

INCLUDING BACK REACTION dnh=exp(1S). (57)

inch:jeez fﬁ::tsegfstcgi}affgggisoﬁeg_?](;ngeizn ?;eegf?gﬁderﬁ?he actionS is calculated along the trajectory of the charged
9 o ) Y shell which approximates the outgoing charged scalar wave.

ergy charged scalar emission fra branes, has been ob- The Bogoliubov coefficients are, hence

tained in[13]. The emitted massless graviton field with po- ' '

larization along the compact directions now have a net 1 o

momentum along the compa& direction on which the aww,sz e'“te'Sdt,

one-brane is wrapped. The decay rate is given by ST

(w’—e?) [w+e
I'p=0err p p

1 oo
— — 1wt AIS,
an (52) Bow = v(r,—e)f,we e'Sdt, (58)

w—e) d*%
2Ts | (2m)*

Comparing with Eq(1), we find that here the energies and whereu(r,e) andv(r,—e) give the radial wave function of
the momenta of the left and right modes are shifted by ahe positive energy, positively charged particle and negative
factor of +e/2, respectively. This ensures that there is a neenergy and negatively charged particle, respectively. Since
momentume in the St direction, while the energy of the  and the action diverge near the horizon, the saddle point
outgoing particle isw. This net momenta along the compact value of the integral dominates. The saddle point value is
direction gives rise to a Kaluza-Klein chargdor the space- determined through the equation
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2 2

aS ra s\ L, _ NE

Eiw=0. (59 1+r_2 1~|—r—2 w*”— e+ (wsinho— ecoshyr) 2 R
By the Hamilton Jacobi equation, the saddle point corre- h df .dR}
sponds toH*°=F w, H being the Hamiltonian of the out- +r_3 dr hr dr =0 (67
going particle. Since the trajectory of the charged shell is that
of a null geodesic in the metrid4] By making the following transformations as ihO]:

ds?’=—[N{(M+H,Q+e)dt]? _
‘ 0 2= w?—e? et —pto w+e
+[dr+N,(M+H,Q+e)dt]?, (60) ’ o' ]’

we have rh=resinho’, (68)

r= +H,Q+e)— +H,Q+e). . ,
r=N(M+#.Q+e)=N,(M+#.Q+e) G we obtain Eg.(18) with w—w’ and r,—r;. To order

Using this and the fact thatS/ar=P (P is the canonical (fo/r1)? we again obtain ther,,sas in[10] as
conjugate momentumwe find
e(a)*e(IJ)/TH_ 1
re Tabs™ Jett® —orerT — o1y (69
|aww,|=exp<—lmJ P+dr), (el —1) (el  R-1)
T+o

Here (w+e)/T +(w—€)/Tg=(w—ed)/Ty and &
re =tanhr is the value of the scalar potential at the horizon.
|,80,w,|:ex;{—lmjr Pdr), 62 Thus clearly aso' /T g>1, 0aps—Perw’. Inserting this
0 value in Eq.(56), it is seen to match with Eq55).

where P. correspond to the positive energy, positively

charged particle and negative energy, negatively charged v, SCALAR EMISSION IN FOUR DIMENSIONS

particle trajectories, respectively. As in the casd&if the

positive energy trajectory gives a real value of the integra- In this section, we briefly comment on the extension of
tion, while there is an imaginary contribution from the other. OUr results to include high energy emission of scalar particles

Asro=R(M—w,Q—e)—¢, in_ the more realistic case of four dimensio_ns. In the five
dimensional case that we have analyzed, inclusion of the
ry -0 dH-®dQ high energy effects did not affect the matching of the black
'er Pfdr:_ﬂfo *(M+H,Q—¢e) hole andD-brane decay rates, even when the low energy
° ' condition of [10] was relaxed, up to leading order of the
1 (M-0,Q-e perturbation parameter that we considered. However, in this
=- EJM o dSh, (63)  case we shall show that the same is not true, and that there is

indeed a leading order correction #q,s which means that

the decay rates no longer match exactly as one goes beyond
the low energy conditiowr ;<<1. We shall not indicate the
calculations explicitly, which are essentially in the same

where we have usett P=dH—®dQ near the horizon and
dH=(k/2m)d S+ PdQ, ® being the electromagnetic sca-
lar potential at the horizon. Thus

lines as in Sec. lll, but rather state the main results. The
2= exf San(M — ©,0—€) — San(M., resylts for charg.ed scalar emission rates may bg obtained by
[Bor|" =X Sen(M — ©,Q—€) = Seu(M. Q)] a simple extensiofil5]. The relevant wave equation whose
=exp(—ASgh), |@ue|=1. (64)  solution we seek i§15,16
The density function, in the high energy approximatiof8ik h d dRrR
— —| hr?——| + w?fR=0, (70)
2 redr dr
w—¢€ |ﬁww’|
p T ~ | |2 . (65 4 .
H Yoo’ where f=II;_;(1+r;/r), r;'s being the parameters of the
four-dimensional black hole. This equation can be expanded
Therefore, . . . :
in powers of 1¥ in the near and far regions exactly as we did
w—e in the five-dimensional case. For the near region, keeping the
p( T )=exp(—ASBH), (66)  next to leading order term in Lleads to the equation
H
L . d?y A
and from Eq.(54), it is seen that this equals the value of o +1+= w2h=0, (71)
p(w+el2T )p(w—el2Tg) obtained from theD-brane pic- dr r
ture.

The greybody factorr ¢ for high energies is determined where
using the same methods as in the neutral emission case. The
scalar equation is A=(rytratry), ¢=rR.
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Interestingly, this equation is formally similar to the Cou- Again writing the incoming solution as
lomb wave equation. It has a solution in terms of confluent

hypergeometric equations: namely, R=Kexd —iVA+B+CIn(1-v)], (80)
y=aF(np)+ BG(np), (720  the incoming flux at the black hole horizon is calculated to
be

wherep=owr and »=(—Aw)/2 is a small parameter. The
asymptotic form for this expression for largds given by (a+b)

fabs:|K|2r0 2

(82)
F=gcos#+fsing, G=fcosh—gsind, (73

where f and g are constants depending on the black hoIeN.OW’ matchmg the near and the far zone solutions 43k
i : : gives the relation
parameters: namely, to first order in

- K o T
f=1+ -0, <TETT2) (82
2p
. whereE is given in terms ofl” functions as before as
9= " 22 (79 ___T(-ia-ib) o
T'(1-ia)l'(1—ib)’ (83
0=p—nln2p— 7y,
so that the calculation fow,,¢ finally yields
v being Euler’s constant. The flux of incoming particles cal- abs vy
culated from this form for the wave function at infinity is A7 fpe
. _ _ 0
given by Tabs 27— oapd 1— 7], (84)
n
2
fin:ﬂ _q_ L_%)(_mﬁ . (75  where g3, —4m?rir ra0 at high energies. Hence we see
4 201 4T r from Eq. (84) that there is an orden correction too s, in

It can be seen that most of the terms in the above expressiovq\j;rgrﬁzt Itioitt):]: fll\lfl?s-dlgrg:SISV?taf: tchaes?n;'é’?:égnt:rﬁcgfrcrgﬁggn
can be neglected as—«~ and we are left with gligioie. ' 9

tion implies that theD-brane and black hole decay rates

|a|? match only in the energy regime given by
fin=—w. (76)
4 o
) . \/:< wl 1< 1,
Note that we have dropped @-dependent piece iff;, as s
exactly in the five-dimensional calculation it turns out to be o ] ] ] o
extremely small compared to thedependent term. where the emission rates in four dimensions is given by
In the near region, Eq70) reduces after keeping the lead- a3k
ing order terms in descending powers of 1d FH=FD=4W2r1f2f3weXp(—ASBH)(ZT)3-
hdl ,dR A B C) ,
2 hrgrl it st 2| e R=0. (77 The difference between the five- and four-dimensional
cases that we have dealt with is also apparent from the gen-
In terms of the variablea andb defined according to eral analysis of16]. The far zone equation that was effec-
tively the source of the difference in the two different dimen-
(a+b)’=4(A+B+C); ab=B+C. sions can be written to leading order fordimensions as
very close to the horizon we can once again make the sub- d?y (D—2)(D—4)
stitutiony= —In(1—v) so that Eq(77) reduces to the simple dp? +1- Lz $=0, (85)
harmonic equation
’R wherep=wr, andR=r"(P~2/2), The general solution of
- = the above equation is
+(a+ =
ar
and, just as in the five-dimensional caaeandb are related F= \/;pllz\](Dg,)/z(p). (86)

to the black hole parameters, the relation being given by
In five dimensions, the addition of an interaction term also of

a= +27@T(rrz+rorg+rory), the form 1p? simply modifies the order of the Bessel func-
4mTr tion. The resulting corrections im,,sis negligible. However,
in four dimensions, there is a newplterm, which gives rise
b +270T(r 3+ ol 3+T1r5). (79  fothe Coulomb wave function and a leading order correction

 AnT, in the final result.
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VI. DISCUSSIONS black hole byw. The corresponding effect on tie-brane is
ndthe reduction of the excitation energy of the gas of open

In this paper, we have compared black hole a -strings, i.e.E=E| + Eg—E— w. SinceE can be written as
D-brane decay rates for neutral and charged scalar emission

at high energies. The microcanonical picture was used in the
D-brane side, which naturally incorporates the condition
/T g>1. This condition was crucially used in calculating 8Gs
the black hole greybody factor. In five dimensions, the decay

rates match for all values of energy consistent with the mithe parameters, and ¢ are changed accordingly. It can be
crocanonical picture, while in four dimensions, they match inshown that these changes result in a correction also of order
a restricted range. It would be interesting to investigate thigro/r;)? in o4psand hence can be ignored.

difference and see if a more careful analysis can bring about
an exact matching in four dimensions.

In our calculation of high energy greybody factors, it was
assumed that there were no explicit back reaction effects as We thank S. R. Das, T. Jayaraman, P. Majumdar, P. Ra-
in the case of the Hawking spectrum. This can be justified asadevi, and G. Sengupta for discussions. One ofAuB)
follows: the modified black hole metric due to back reactionwould like to thank G. Date for discussions. We thank the
of the shell can be approximated by the original metric withorganizers of the Puri Workshop, for hospitality, where part
a shift in the Arnowitt-Deser-MisnefADM) mass of the of the work was done.

wr2cosh2r
E-—C
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